| ﬂﬁ'iu’lAM X

IN ACTION

Benjamin G. Sullins
Mark B. Whipple

|I. HMANNING

Ivww .allitebooks.conl

http://www.allitebooks.org

JMX in Action

www.al litebooks.con]

http://www.allitebooks.org

www.al litebooks.con]

http://www.allitebooks.org

JMX in Action

BEN G. SULLINS
MARK B. WHIPPLE

MANNING

Greenwich
(74° w. long.)

www.al litebooks.con]

http://www.allitebooks.org

For electronic information and ordering of this and other Manning books,
go to www.manning.com. The publisher offers discounts on this book
when ordered in quantity. For more information, please contact:

Special Sales Department

Manning Publications Co.

209 Bruce Park Avenue Fax: (203) 661-9018

Greenwich, CT 06830 email: orders@manning.com

©2003 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to
have the books they publish printed on acid-free paper, and we exert our best efforts to that
end.

Manning Publications Co. Copyeditor: Tiffany Taylor
/I/I 32 Lafayette Place Typesetter: Denis Dalinnik
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1-930110-56-1

Printed in the United States of America
123456789 10— VHG - 05 04 03 02

www.al litebooks.con]

http://www.allitebooks.org

To my beautiful bride, Jenny.
You are my whole world.
You are the love of my life.
B.G.S.

1o my family: Margie and Alexander.
You make my life complete.
M.B.W.

www.al litebooks.con]

http://www.allitebooks.org

www.al litebooks.con]

http://www.allitebooks.org

brief contents

PART 1 GETTING STARTED........c.c.cooeitieieieeereeeeeeeecreeeereeeeeveesneeens 1

1 = Resource management and JMX 3
2 = “Hello World,” the JMX way 23
3 = Building a foundation 51

PART 2 INSTRUMENTING MANAGEABLE RESOURCES................ 63
4 = MBeans for stable resources 65
5 = MBeans for changing resources 95
6 = Communication with MBeans using notifications 117
7 = MBeans on-the-fly 139

PART 3 THE JMX AGENT AND DISTRIBUTED LAYERS............. 163

8 = Working with an MBean server 165
9 = Communicating with JMX agents 187
10 = Advanced MBean loading 229

vii

vww.allitebooks.cond

http://www.allitebooks.org

viii BRIEF CONTENTS

11
12

13
14

Working with the relation service 253

More agent services: monitors and timers 283

Using JMX with the Java Message Service 311
Using JMX with Enterprise JavaBeans 335
Open MBeans 377

Using Ant 385

vww . allitebooks.cond

http://www.allitebooks.org

contents

preface xvii

acknowledgments xix

about this book xxi

about the cover illustration xxvi

Resource management and JMX 3
1.1 Resource management 4

Today’s management environment 5 = The ideal management
environment 6 = Management for the real world 7

1.2 Providing a Java solution: Java Management Extensions 8
Benefits of using JMX 9 = Essential JMX terms 11

1.3 The JMX architecture 14

Example: managing the bicycle shop server 14
The distributed layer 16 = The agent layer 17
The instrumentation layer 18 = Notifications 19

1.4 Using JMX as an application architecture 20
1.5 JMXin use today 21

1.6 Developing with JMX 21

1.7 Summary 22

ix

vww.allitebooks.cond

http://www.allitebooks.org

CONTENTS

“Hello World,” the JMX way 23

2.1 Getting started 24
A JMX architecture refresher 24 = Setting up the
development environment 25
2.2 Managing your first resource 26
Writing the HelloWorld MBean 27
2.3 Creating a JMX agent 29
Writing the HelloAgent class 30 = More about object names 33
2.4 Running the agent 35
Compiling the agent 35 = Running the agent 35
Contacting the agent 35
2.5 Working with the HIML adapter 36
Agent View 36 = MBean View 38 = Admin View 40
Registering/unregistering MBeans on the HelloAgent 41
2.6 Using MBean notifications 43
Adding notification code to the HelloWorld MBean 43
Changes to the HelloAgent class 46
2.7 Summary 48

Building a foundation 51

3.1 The scope of the agent 52
Using the HTML adapter 52 = Using the RMI connector 53
3.2 Writing the JMXBookAgent class 54

Class definition and constructor 54 = Adding agent
connectivity 55 = Finishing with a main() method 57
3.3 Writing the RMIClientFactory class 58

3.4 Writing the ExceptionUtil class 59

3.5 Running the agent 60

Connecting to the agent with the browser 60
Connecting to the agent with an RMI client 60
3.6 Summary 62

CONTENTS

xi

MBeans for stable resources 65

4.1 Laying the MBean groundwork 66
Common coding rules for all MBeans 66
Using Standard MBeans 67

4.2 Composing the standard management interface 68
Components of the management interface 68
Example: a printer MBean interface 70

4.3 Standard MBean inheritance patterns 71
Direct implementation of an MBean interface 72 = Inheriting
the management interface 72 = Overriding the management
interface 73 w Extending the management interface 74

Combination of extending and overriding 74 = Extending a
non-MBean interface 75

4.4 Standard MBeans in action 76
Making applications easily configurable 77

Breaking applications into components 82
MBeans using other MBeans 86

4.5 Handling MBean errors 90

Throwing exceptions 91 = Runtime exceptions 93

4.6 Summary 94

MBeans for changing resources 95
5.1 Working with the DynamicMBean interface 96

5.2 Examining the DynamicMBean interface 96

Acquiring the dynamic management interface 98 = Working with
dynamic MBean attributes 98 = Invoking operations 100

5.3 Understanding the MBeanlInfo class 100

Metadata of the MBeanInfo class 101

The MBeanFeatureInfo and MBeanParameterInfo classes 102
The MBeanConstructorInfo class 102

The MBeanAttributeInfo class 102

The MBeanOperationInfo class 103

The MBeanNotificationInfo class 104

5.4 Inheritance patterns 104

xii CONTENTS

5.5 Dynamic MBeans in action 105

Managing a Jini service 105 = Rebuilding a management
interface at runtime 110

5.6 Creating utility classes 111

Creating a dynamic MBean super class 111

5.7 Summary 116

Communication with MBeans using notifications 117
6.1 Using MBean notifications 118

6.2 Components of the JMX notification model 119

Being a notification broadcaster 119 = Describing notifications
as part of a management interface 121 = The Notification
class 122 = Being a notification listener 123 = Filtering
notifications 124

6.3 A notification polling example 125
6.4 Capturing MBean attribute changes 127

Filtering attribute change notifications 128 = Revising the
Polling MBean 129 = Testing the Polling MBean 131
6.5 Registering as a notification listener 133

Registering with an MBean 133 = Registering with the
MBean server 134

6.6 Persisting MBean notifications 134
6.7 Notifications from the MBean server 136

Notification types sent from the MBean server 137
6.8 Summary 138

MBeans on-the-fly 139
7.1 Working with the Model MBean 140

7.2 Features of the Model MBean 141

MBean persistence 141 = Notification logging 142
Attribute value caching 142 = Operation delegation 142
Generic notifications 142

7.3 Examining the ModelMBean interface 143
Configuring a Model MBean 144 = Acquiring and using the

management interface 144 = Registering for notifications 145
MBean persistence 145

CONTENTS

7.4 Understanding the Model MBean metadata 145

Using descriptors 146 = Constructing a

ModelMBeanInfoSupport object 147

The ModelMBeanAttributeInfo class 149

The ModelMBeanOperationInfo class 151

The ModelMBeanConstructorInfo class 153

The ModelMBeanNotificationInfo class 153
7.5 Model MBeans in action 154

Building ModelMBeanInfo objects 154
Modeling with Model MBeans 161
7.6 Summary 162

xiii

Working with an MBean server 165
8.1 JMX agent architecture in review 166

Using protocol adapters and connectors 166

8.2 The MBeanServer interface 167
Registration methods 168 = Creation and registration
methods 170 = Notification methods 171 = MBean

manipulation 173 = MBean server information 175
Other methods 175

8.3 Querying for MBeans 176
The MBeanServer query methods 177 = Creating query
expressions 179 = Constructing examples 182

8.4 Summary 186

Communicating with JMX agents 187
9.1 Comparing connectors and protocol adapters 189
9.2 Connecting by using RMI 189

Using the RMI connector 189 = Creating the RMI server
MBean 190 = Connecting to the RMI server 191
Additional uses for the RMI connector 193

9.3 Connecting to agents using Jini 195
Components of the Jini connector 196 = Writing the Jini

connector 197 = Outstanding issues 211 = Testing the
Jini connector 211

xiv CONTENTS

9.4 JMXand SNMP 213

Whatis SNMP? 213 = Using an SNMP protocol adapter 214
9.5 Connecting by using a TCP adapter 215

Writing the code 215 ® Testing the TCP adapter 226
9.6 Summary 228

Advanced MBean loading 229
10.1 Understanding the M-let service 230

10.2 Using the M-let service 231
Writing M-let files 231 = Examining the MLet MBean 235
10.3 Using the M-let service to load MBeans 237
Adding to the JMXBookAgent class 237 = Example: using an
M-let file 238 w Example: expanding the agent’s codebase 239
10.4 Wrapping the M-let service to provide notifications 240
Writing the MLetNotification class 241 = Writing the

MLetWrapper MBean 243 = Using the MLetWrapper
MBean 249

10.5 Summary 251

Working with the relation service 253
11.1 Using the JMX relation service 254

Components of the relation service 255

11.2 Using the relation service to manage a phone system 257
Defining the scenario 257
The phone system management example 258
Defining an external relationship with an MBean 259

11.3 Constructing the MBean relationship 261
Creating the MBeans 261 ® Defining the relation 266
Creating the role objects 269 = Creating the Relation
MBean 270 = Adding the relation service to the JMXBookAgent
class 273 = Adding a new relation to the relation service 274
The RelationMain main() method 276

11.4 Running the example 277
Viewing the MBeans 277 = Viewing exposed methods 277
Disabling a phone card 279

11.5° Summary 280

CONTENTS

More agent services: monitors and timers 283
12.1 Monitoring MBean attributes with JMX 284

The monitoring foundation 285 = Monitoring String
values 288 = Monitoring a value range 290
Monitoring a counted value 292
12.2 Monitor examples 293
Creating the example agent and MBean 294
Testing the String monitor 297 = Testing the Gauge
monitor 298 = Testing the Counter monitor 299
12.3 Taking corrective measures 300

12.4 Sending dated notifications: the timer service 302
Examining the timer 302
12.5 Using the timer service 305

Testing the timer service 307

12.6 Summary 308

XV

Using JMX with the Java Message Service 311
13.1 The Java Message Service 312
13.2 Combining JMX with JMS 312

13.3 Driving a home theater system 313
Writing the example 315
13.4 Running the example 326

Starting and configuring the JBoss server 327 = Starting the
agent and registering the MBean 329 = Running the debugger
subscriber 331 = Publishing the control messages 332

13.5 Summary 332

Using JMX with Enterprise JavaBeans 335
14.1 An EJB review 336

The EJB model 336 = Why combine JMX with E[Bs? 337
Accessing enterprise data with JMX 338
14.2 Example: managing user logins 340

The problem 340 = The JMX solution 340

xvi CONTENTS

14.3

14.4

14.5

14.6

Developing the login monitor 341

Constructing the user information entity bean 342
Constructing the user information management MBean 346
Writing the user login client test class 349

Running the Login Monitor 350
Deploying your entity bean in the JBoss server 350 = Registering
with the agent 354 = Counting user login attempts 355
Removing login privileges 356

Example: managing EJBs 356
Constructing the workflow entity bean 357 = Constructing the
WorkflowManager MBean 365 = Running the workflow
manager 370 = Generating EJB managers 371

Summary 375

Open MBeans 377

Al
A2
A3
A4
AL
A.6

What is an Open MBean? 378

Basic data types 378

Creating more complex data structures 379
Describing Open MBean data types 380
Open MBean metadata 381

Summary 383

Using Ant 385

B.1
B.2

Downloading and installing Ant 386
Setting up the build file 386

index 389

preface

The increasing demand for faster development cycles combined with the desire
for more functionality has left less time for building adequate application con-
figuration and management into Java applications. Without allowing for
reconfiguration, management, and monitoring, applications fail to deliver to
customers their full potential of usefulness and flexibility.

A Java programmer can provide a certain amount of configuration for an
application by using property files. Developers typically use property files to
configure a Java program with an initial set of parameters at startup. Imagine
an application that commits certain data to a log file at a given interval. Both
the path to the file and the interval could be configured in a property file.
However, unless the program continues to refresh these properties, it is left
with that single configuration.

Realistically, property files cannot provide complete and thorough applica-
tion configuration management. With more and more configurable attributes,
you will quickly find yourself stuck in a mire of property files. You could
develop a management console for the application, but do you really want to
have to maintain two applications and possibly construct a new console for
each new application? In addition, what are you to do with your non-Java and
hardware resources? These resources may have their own management con-
soles, but now you are looking at an array of different consoles and manage-
ment tools.

xvii

xviii

PREFACE

Ideally, you would like to configure your Java applications once during initial-
ization and as often as needed during runtime. The same is true for non-Java and
hardware resources. The ability to change the configuration at runtime relieves
you of possibly having to shut down or restart an application or resource. You
could provide runtime configuration management yourself programmatically,
but maintaining a proprietary configuration system can be overwhelming when
included with the normal range of requirements for developing useful soft-
ware—especially if you consider that you might want to do this for each product
being developed. Given time-to-market considerations, most development
projects do not have the resources for this type of work.

However, this was the situation before the creation of Java Management Exten-
sions (JMX). Using JMX, you can expose your application components, attributes,
and configuration to management tools in a process called instrumentation. JMX
uses Java classes called managed beans (MBeans for short) to expose predefined
portions of your application. Management tools access these MBeans by interact-
ing with JMX agents that make the MBeans available to any number of protocols
and technologies such as SNMP, Java RMI, and HTTP.

In addition to software, MBeans can wrap native libraries that interface to hard-
ware such as printers. JMX is independent of purpose: it can expose software com-
ponents or hardware interfaces. Management applications will see all managed
resources (MBeans) using the same interfaces and metadata through a JMX agent.
By creating a JMX-compliant application, you expose it to remote, in-house, or
third-party application management tools using a variety of protocols. Conse-
quently, you have given your program a longer period of usefulness by creating a
framework for componentization. Because JMX is written in Java, all Java appli-
cations and technologies can use it.

JMX exists because of the need for cross-platform, consistent application and
resource management. This book covers all aspects of JMX today, including
MBean development, protocol adapters and connectors, and all agent services.
In addition, the book discusses using JMX with J2EE technologies such as Enter-
prise JavaBeans and the Java Message Service.

acknowledgments

Many people helped get this book into your hands. Without the help we
received from many sources, we could not have created a book of the quality
we envisioned. We would especially like to thank the people at Manning: Mar-
jan Bace, Lianna Wlasiuk, and Ted Kennedy. Thanks to Marjan for respond-
ing to the first email inquiry about JMX as a topic for a book and for having
enough patience to let some first-time writers learn on the job. Special thanks
to Lianna, whose incredible editing skills helped deliver this book to the
shelves. In addition, we would like to thank our reviewers: Cyrus Dadgar, Rob-
ert Treese, Lydia Davis, Jason Dornback, Chris Kraus, John Jacobs, Andrew
Jenkins, Shyam Lingegowda, Alex Vekselman, and Michael Yuan. Special
thanks to Cyrus Dadgar for a final technical review of the book, just before it
went to press.

Mark and I would also like to thank the production team for completing our
book. Each person did a fantastic job to get our book to market. They are: project
editor Mary Piergies, copyeditor Tiffany Taylor, design editor Syd Brown, type-
setter Denis Dalinnik, and publicist Helen Trimes. Also, we would like to thank
Liz Welch for doing the final proofread. She was great at catching those small
and hidden mistakes.

In addition, Ben would like to thank his parents for fostering an environ-
ment of love and learning that set him on his way through life, enabling him to
acquire the skills to be successful. Thanks to Mark Whipple for being a great

xix

vww . allitebooks.cond

http://www.allitebooks.org

XX

ACKNOWLEDGMENTS

co-author and a great foosball mentor. Ben would especially like to thank his wife
Jenny and new baby Elijah. Without Jenny, this book never would have been
begun or completed. She has incredible patience and faith—she always finds the
right words to help during hard times (did you ever think I would finish?). Finally,
thanks go to the Lord above for providing this opportunity.

Also, Mark would like to thank his family for putting up with the late nights.
Mark’s contribution to this book would not be possible without his wife Margie’s
perfect timing with the arrival of much-needed coffee supplies and his four-year-
old son Alexander’s patience when more important things such as playing trans-
former robots had to be put off for a while. Thanks go to Mark’s parents, whose
support throughout his life has enabled him to build the skills necessary to suc-
ceed. Mark would also like to thank Ben Sullins, whose ability to play foosball
almost rivals his skill as a developer. Mark would especially like to thank Ben for
putting in the extra effort required to organize this work.

about this book

This book is a detailed guide to the 1.01 specification of the Java Management
Extensions from Sun Microsystems. In fact, this book uses the Sun reference
implementation for all the program examples.

At the time we’re writing this book, the JMX specification still has some
optional sections: the Open MBean and the connector/adapter architecture
for distributing JMX agents. However, this book includes lengthy examples of
connectors and adapters, as well as an appendix covering Open MBeans, which
you will find useful in your JMX development.

Chapter roadmap

In case you are the type of person who likes to pick and choose where to begin
reading a book, the following sections summarize the contents of each chapter.
However, we think it would be great if you read this book from start to finish.

Chapter 1: Resource management and JMX

Chapter 1 gets you started by discussing the average monitoring and applica-
tion management environment in today’s enterprise. This chapter introduces
what we consider the essential areas of application monitoring and manage-
ment, and how JMX applies well to each. Concluding this chapter is a discus-
sion of the JMX architecture.

xxi

xxii

ABOUT THIS BOOK

Chapter 2: “Hello World,” the JMX way

Chapter 2 serves as this book’s Hello World example. The only purpose of this
chapter is to acquaint you with all the major components in the JMX framework.
In this chapter, you will create a simple MBean, a simple agent, and a notifica-
tion. In addition, this chapter sets up your working environment for the remain-
ing examples in other chapters. This chapter also introduces you to the HTML
adapter from Sun Microsystems.

Chapter 3: Building a foundation

With Chapter 3, we lay the groundwork for most of the examples in the remain-
der of the book. Most of our examples center around writing different types of
MBeans in different situations. To run all these examples, we thought it would be
convenient to use a single JMX agent. In chapter 3 you’ll write this agent, and
we’ll introduce you to the Java Remote Method Invocation (RMI) connector for
use in contacting the agent.

Chapter 4: MBeans for stable resources

Starting with chapter 4, we get into the real meat of the book. In this chapter, we
introduce the first of the MBean types we’ll present: the Standard MBean. Chap-
ter 4 covers the common construction rules for all MBeans, as well as the rules
specifically for Standard MBeans. The examples in this chapter use MBeans for
application configuration and componentization.

Chapter 5: MBeans for changing resources

Chapter 5 advances the discussion to the Dynamic MBean. This chapter covers
the DynamicMBean interface and the best time to use Dynamic MBeans. You'll con-
struct a super class for your Dynamic MBeans that will provide some utility
methods for creating the management interface at runtime. This chapter
includes a great example about managing Jini services with Dynamic MBeans.

Chapter 6: Communication with MBeans using notifications

Using this chapter as a break between MBean types, we present material about
MBean notifications. Chapter 6 covers the JMX notification model and provides
some examples concerning the AttributeChangeNotification class, persisting
notifications, and creating an application heartbeat.

Chapter 7: MBeans on-the-fly

Chapter 7 is the last chapter focusing on an MBean type; it covers the Model
MBean. (We discuss one more MBean type in the book, but only in an appen-
dix.) Because Model MBeans are related to the Dynamic MBean, this chapter

ABOUT THIS BOOK xxiii

contains a utility class similar to the super class created in chapter 5. Of course,
this chapter also covers the advantages and features of the Model MBean.

Chapter 8: Working with an MBean server
At this point in the book, we are done presenting the instrumentation layer of
JMX and move into the agent layer. Chapter 8 discusses the MBean server API
and how to use the query methods of the MBeanserver class. This chapter pro-
vides some great examples of using queries.

Chapter 9: Communicating with JMX agents

Chapter 9 is one of the most informative chapters of this book. This chapter dis-
cusses creating and using different protocol adapters and connectors with JMX
agents. It presents the RMI connector, a Jini connector, and a Transmission Con-
trol Protocol (TCP) adapter. There is also some discussion about using Simple
Network Management Protocol (SNMP) and JMX.

Chapter 10: Advanced MBean loading

Chapter 10 begins our coverage of the four agent services available in JMX by dis-
cussing the M-let service used for dynamic class loading. This chapter not only
presents using the M-let service to load MBean classes from remote locations, but
also has you create an M-let wrapper MBean to provide notifications when new
MBeans are loaded.

Chapter 11: Working with the relation service

The relation agent service is covered in chapter 11. We describe it by developing a
phone and fax management system. After you complete this example, you will
understand how to use MBean relationships and the relation service to easily
manage large groups of MBeans.

Chapter 12: More agent services: monitors and timers

Chapter 12 concludes the part of the book focusing on the JMX agent layer by
discussing the remaining two agent services: the JMX monitoring service and
timer service.

Chapter 13: Using JMX with the Java Message Service

Chapter 13 begins the final part of the book. It covers JMX and Java 2 Enterprise
Edition (J2EE) technologies by introducing using JMX with the Java Message Ser-
vice (JMS). This chapter uses a home theater system to demonstrate how MBeans
can be combined with the Publish-Subscribe mode of JMS applications.

xxiv

ABOUT THIS BOOK

Chapter 14: Using JMX with Enterprise JavaBeans

The final chapter of this book discusses using JMX with Enterprise Java Beans
(EJBs). This chapter introduces some potential uses for MBeans in an EJB applica-
tion by showing you how to manage an EJB that controls a user login process. The
second example in the chapter deals with EJBs that create their own MBean at
deployment time.

How to use this book

Like most technical books, this book can be read in two ways.

You can read the book from start to finish, in which case you will probably
gain a better understanding of JMX. By reading the chapters in order, you will
have a better foundation for the material presented in each successive chapter.

However, some of you will want to jump around to specific areas of the book—
most of the chapters can stand alone, with some containing only a single refer-
ence back to chapter 3. (Chapter 3 contains the basic JMX agent that many of the
other MBean examples use.) If you do choose to skip around, we suggest you at
least read chapters 2 and 3; these chapters lay the groundwork for the book and
for the examples in the remaining chapters.

Source code

Source code for all examples presented in /MX in Action is available for download
from the publisher’s web site, www.manning.com/sullins.

Conventions

courier typeface is used for code examples. Bold Courier typeface is used in
some code examples to highlight code that has been changed from previous
examples. Certain references to code in text, such as functions, properties, and
methods, also appear in Courier typeface.

Code annotations accompany many segments of code. Certain annotations
are marked with numbered bullets @. These annotations have further explana-
tions that follow the code.

For clarity, specific query examples have been set in ualics. Text or code to be
entered in various dialog boxes is set in bold type.

ABOUT THIS BOOK XXV

Author Online

Purchase of JMX in Action includes free access to a private web forum run by Man-
ning Publications where you can make comments about the book, ask technical
questions, and receive help from the authors and from other users. To access the
forum and subscribe to it, point your browser to www.manning.com/sullins. This
page provides information on how to get on the forum once you are registered,
what kind of help is available, and the rules of conduct on the forum.

Manning’s commitment to our readers is to provide a venue where a mean-
ingful dialogue between individual readers and between readers and the authors
can take place. It is not a commitment to any specific amount of participation on
the part of the authors, whose contribution to the AO remains voluntary (and
unpaid). We suggest you try asking them some challenging questions, lest their
interest stray!

The Author Online forum and the archives of previous discussions will
remain accessible from the publisher’s web site for as long as the book is in print.

about the cover illustration

The figure on the cover of JMX in Action is a “Chingala de Ceylon,” a Sinha-
lese inhabitant of Sri Lanka, formerly known as Ceylon. The Sinhalese people
have lived in Sri Lanka for over 2,000 years and are the largest ethnic group
on the island, representing 75 percent of the population.

Those who know how quickly programming languages evolve might be
pleased to reflect on the changes that natural human languages constantly
undergo; the descriptions that come with this source material are only about two
hundred years old, but they are not all easily translated by speakers of modern
Spanish. Some captions that accompany the illustrations contain words that are
archaic but can be found in dictionaries; others have now disappeared, not only
from the oral language but also from common written sources.

The title page of the Spanish compendium states:

Coleccion general de los Trages que usan actualmente todas las Nacionas del
Mundo desubierto, dibujados y grabados con la mayor exactitud por R.M.VA.R..
Obra muy util y en special para los que tienen la del viajero universal

which we translate, as literally as possible, thus:

General collection of costumes currently used in the nations of the known world,
designed and printed with great exactitude by R.M.VA.R. This work s very useful
especially for those who hold themselves to be universal travelers

XXVi

ABOUT THE COVER ILLUSTRATION xxvii

Although nothing is known of the designers, engravers, and workers who col-
ored this illustration by hand, the “exactitude” of their execution is evident in
this drawing. The “Chingala de Ceylon” is just one of many figures in this color-
ful collection. Their diversity speaks vividly of the uniqueness and individuality
of the world’s towns and regions just 200 years ago. This was a time when the
dress codes of two regions separated by a few dozen miles identified people
uniquely as belonging to one or the other. The collection brings to life a sense of
isolation and distance of that period and of every other historic period except
our own hyperkinetic present.

Dress codes have changed since then and the diversity by region, so rich at
the time, has faded away. It is now often hard to tell the inhabitant of one conti-
nent from another. Perhaps, trying to view it optimistically, we have traded a cul-
tural and visual diversity for a more varied personal life. Or a more varied and
interesting intellectual and technical life.

We at Manning celebrate the inventiveness, the initiative, and the fun of the
computer business with book covers based on the rich diversity of regional life of
two centuries ago brought back to life by the pictures from this collection.

Part 1

Getting started

Ihis part of the book will get you started with JMX quickly and effectively.
In this part of the book, you will learn about the following:

» Why does JMX exist today?

= How can it help you with your Java development?

You will also get your first JMX application up and running, as we lay the
groundwork for the remaining examples in the book.

Chapter 1 introduces you to JMX by walking you through today’s applica-
tion management and monitoring environment. In this chapter, you will see
how a typical web application could be enhanced through the use of JMX. In
addition, chapter 1 defines basic JMX terms used throughout the book and
closes by explaining the JMX architecture.

The main objective of chapter 2 is to acquaint you with JMX code and the
runtime environment. In this chapter, you will perform the JMX version of the
Hello World program. As you read chapter 2, you will begin to understand
many of the basic concepts of JMX, such as MBeans, notifications, and agents.

The last chapter of this part of the book begins the construction of a
JMX agent that will be used in many of the following chapters. As the book
progresses, you will add functionality to this agent and use it for many of
the examples.

vww . allitebooks.cond

http://www.allitebooks.org

Resource management
and [MX

m Exploring the benefits of JMX
m Defining common JMX terms
m Understanding the JMX architecture

1.1

CHAPTER 1
Resource management and JMX

Distributed applications, devices, and services appear in many different arrange-
ments in an enterprise. At your company, you probably access data from your
intranet services, from computers distributed throughout the company network,
and from services across the firewall out on the Web. For example, you might
access a calendar-sharing application or a financial application to fill out
expense sheets. Someone must maintain all these applications. Not only the
applications, but also the hardware that supports them must be maintained.
Resource management encompasses both applications and hardware. In fact,
both application and hardware management can be supported through the
development of Java Management Extensions (JMX) resource management soft-
ware. This book will show how you can use JMX to manage and monitor all your
resources across an enterprise—both software and hardware.

Whether you're familiar with JMX already or have purchased this book to find
out what JMX is all about, you need to understand why JMX exists today. In this
chapter, you will learn the basis for JMX, the definitions of some common JMX
terms, and the essentials of JMX architecture. Throughout our discussion, we’ll
use as an example a bicycle shop web application on the Internet: people come
to this site to purchase bicycles and gear, and to access articles and content
related to bicycling.

Resource management

Resource management is a management concept that provides a plan and tools for
the management of enterprise applications and resources. For typical enter-
prises, resource management means having tools that report the health of enter-
prise applications and hardware. Based on the health of resources, IT employees
can react to system failures and critical events.

Improved resource monitoring and management capabilities across an enter-
prise provide the IT employee with insight into the health of enterprise applica-
tions, as well as a way to resolve problems when they occur; the IT employee thus
moves from a purely reactionary mode to a more active role. For instance, if
you’re made aware of the fact that resources are performing below par, you can
help avoid a catastrophic failure. In addition, you’ll be able to tune the applica-
tions or devices remotely from a single management console.

The current management environment in many enterprises lacks the quick
responsiveness needed for today’s enterprise applications. In addition, many
application-monitoring and -management solutions are costly and difficult to
implement. In this section, we’ll compare the typical environments in place

1.1.1

Resource management 5

today with our vision of the perfect environment. (The disparity between the two
may surprise you.) Then, we’ll look at what you can achieve in terms of typical
development resources, effort, and support.

Today’s management environment

Today’s management solutions can be divided into two categories: network and
application. The most common tool used for networking (hardware) manage-
ment is Simple Network Management Protocol (SNMP). For applications like web
sites, most enterprise developers must either use the management tools that
come built-in with the application (and the web servers that drive the applica-
tion) or write their own tools. As mentioned earlier, resource management
includes both application and hardware aspects.

Hardware and network management

Most network monitoring and management systems today use an SNMP solution
to provide monitoring and management capabilities for hardware. SNMP is a
monitoring standard that has been in wide use for several years. For the example
Internet bike shop, you would use SNMP to monitor the health and activity of the
servers running your web site and back-end applications.

Information about managed devices is stored in a Management Information
Base (MIB). The MIB is a hierarchical representation of information about
devices. A managed device can be located on an MIB tree using an object name or
object identifier. An example name might be iso.identified-organization.dod.inter-
net.private.enterprise.myenterprise.myvariables.myProduct or something similar.
An object identifier is set of numbers that represents the textual name. (For more
information about MIBs, read the SNMP specifications at http://www.ietf.org.)

Fortunately, many hardware vendors provide MIB definitions and SNMP hooks
into their devices. However, due to the difficulty of SNMP development, few appli-
cations have hooks into SNMP.

SNMP development is not an easy task, and most developers are not trained
to tackle it. Unfortunately, SNMP does not easily provide monitoring and man-
agement for applications like your bicycle store. For everyday Java developers,
working with SNMP is not a suitable option.

Application management

When they’re creating applications, software companies often do not think about
runtime configuration and management; so, at deployment time, there is usually
a scramble to figure out how to maintain the system and be informed of critical

1.1.2

CHAPTER 1
Resource management and JMX

events. Some companies develop their own tools for management or build man-
agement consoles directly into their products. For many companies, application
management comes from the platform that hosts their application: the web or
application server.

When the bicycle shop web site and application were developed, you had to
consider the health of not only your application, but also the application server,
web server, and database (as well as any other software systems). Without a stan-
dard and consistent management platform, you might have to write specific code
in order to expose application properties, health, and statistics. In fact, the man-
ner in which you manage your application will likely change if you purchase a
different monitoring solution.

In today’s typical management environment, I'T personnel will always be in a
reactionary mode when maintaining applications. Hardware and application
management solutions are often developed ad hoc at deployment time. In fact,
currently it is difficult to develop a generic, reusable management and monitor-
ing solution for applications.

The ideal management environment

An ideal management environment would have a proactive capability for dealing
with problems. A management system would constantly monitor the health of
both devices and applications. If a device was down, the management system
could discover an alternative device, reroute services to the alternate, and notify
the administrator of the problem. For instance, if the bicycle shop’s web site was
down or started to experience too much load, the management system could
change some of the services the application provides, notify participating ser-
vices to find an alternate service provider, and notify the administrator that
problems exist. The management system could even start secondary web sites
and services to take the load off the initial application.

Ideal management systems not only would be aware of the health of the
applications, but also would have knowledge of application internals. For exam-
ple, the management solution could quickly produce reports comparing success-
ful and failed bicycle shop transactions. On the system management level, the
number of threads executing could be changed at runtime. The management
system would make informed decisions and take action based on information it
gathered from applications and devices.

Unfortunately, an ideal management system would take too much time and
development resources to achieve. In addition to writing the management tools,
you might need to write custom interfaces for your applications and network

1.1.3

Resource management 7

resources. Such an environment also would require many resources and constant
configuration to ensure that systems were maximized in availability and perfor-
mance. Therefore, rather than build a perfect management environment, you
must create something that’s better than what exists today but that is feasible to
construct and maintain.

Management for the real world

A feasible solution would blend the current management capabilities and the
ideal environment. By gathering and combining information about the health of
network devices and applications, better decisions can be made and proactive
management can occur either automatically or by IT personnel. Let’s walk
through the example bicycle shop web application, which has been built with
management in mind.

A proposed management solution

Suppose you are running the online bicycle shop we've mentioned previously:
customers can purchase bicycles and bike gear from your web site. In order to
ensure that the customer’s shopping experience is not interrupted, you have
installed a secondary server to take queries if the first server fails. In this environ-
ment, web servers, application servers, a database, and networking hardware
provide your web site services. The following items represent the major monitor-
ing and management needs for such an application and its environment:

m Monitoring the system health of platforms and hardware—You need to know the
health of your web and application servers, as well as the hardware that
hosts them. The networking hardware exposes SNMP interfaces that report
its health and any faults that occur. Likewise, the web server is instru-
mented to report errors and has a mechanism that allows you to query its
health. The database is instrumented so that its performance can be que-
ried, along with its health and possible faults.

n Configuring resources at the application level—You probably want to be able to
make direct contact with your bicycle shop services for configuration and
management. When you wrote your bicycle shop application, you had the
foresight to instrument it to give you the information you need to actively
manage the system with a management tool built specifically for your envi-
ronment. For instance, you can connect to your bicycle shop server process
and change the number of items displayed on one page of the catalog.
Your management application can also query the environment services. If

1.2

CHAPTER 1
Resource management and JMX

you query the database and determine that the load on the database is too
great, you can reduce the number of active connections available in a con-
nection pool. You can also reduce the number of threads that are available
to service requests from the outside world. Upon further queries, these
resources can be readjusted as the load decreases on database resources.

n Collecting application statistics—In addition to configuring your bicycle shop
applications, you will also want to gather important statistics on transac-
tions, inquiries, and so forth over time. For instance, you would like to see
a comparison of the number of visits to the catalog verses the number of
purchases made from the site. You would also like to collect the number of
attempts to break into the system by hostile attackers. In fact, you properly
instrumented the application to push this information into the manage-
ment system.

m Debugging options—Don’t overlook the amount of information being stored
for analysis. Fortunately, you had the foresight to realize that you will want
to be able to turn logging verbosity up or down when you debug possible
problems with the bicycle shop application. By exposing management
APIs, you allow yourself to turn on debugging and change the logging out-
put to the console so that you can observe the functions of the application
without having to shut it down to make changes.

m Monitoring server performance—Your web application needs to be monitored
for health and overall load. If the load is too great on the first server, you
want to be able to shift some load to the backup server. To avoid cases of
failure, you need to be notified about critical events via a pager or email.

Providing this solution

The monitoring and management framework described in this section covers
the major areas of many of today’s application management needs. However,
achieving such a framework can be costly and difficult. In the end, application
administrators could be left with many different management consoles and
interfaces to all the different services and hardware.

Providing a Java solution:
Java Management Extensions

In the previous section, we described a monitoring and management environ-
ment that covers the needs of enterprise applications. However, we also noted

Providing a Java solution 9

that building such an environment is difficult and can leave administrators with
many different tools in which to manage the system. As this book will show, using
Java Management Extensions, you can build a management environment that’s
less expensive and more flexible, in a shorter amount of time. JMX is a new
framework added to the Java language; it can provide a management solution
that covers the standards described in the previous section. JMX allows you to
encapsulate all your resources (hardware or software) with Java objects and
expose them in a distributed environment. In addition, JMX provides a mecha-
nism for easily mapping existing management protocols such as SNMP into its
own management structures.

Let’s look at the management areas identified in the previous section and
how JMX can address them:

» Platform health—As previously mentioned, using JMX, you can wrap non-
Java resources and hardware interfaces with Java objects in order to fit
them into a JMX management system. Using Java wrappers, you can inter-
face to your web and application servers and communicate with the hard-
ware driving your system.

n Configuring resources and collecting application statistics—Using JMX, you can
directly expose the API of applications and services. In addition, you can
dynamically choose what parts of the API to expose. With a JMX manage-
ment tool, you can then invoke and query the API at any time. In fact, if
you know you will be using JMX ahead of time, you can build into your
application the simple J]MX component that will expose it to the JMX man-
agement environment. However, you can use JMX to very quickly instru-
ment an application even if development is already completed.

m Debug options—Debug options are configurable like any other application
or resource attribute. Once an interface is exposed through JMX, it can
be invoked.

n Application performance—With JMX, you can easily monitor the system for
critical events. When an event is noticed, JMX can emit notifications to a
predefined listener process. Listeners can be configured to send pages,
write email messages, and so forth; the process is entirely customizable.

1.2.1 Benefits of using JMX

Using a Java-based solution such as JMX offers several benefits, some of which
are probably evident to you as a Java programmer. For example, Java is a porta-
ble language (write once run anywhere), so you can develop your application

10

CHAPTER 1
Resource management and JMX

without regard to platform dependency. In addition to the benefits of the Java
language, JMX has some persuasive advantages.

Ease of use

JMX has a significant advantage over technologies like SNMP because a pro-
grammer with Java experience can quickly pick up the concepts of JMX and
become productive. The knowledge level required to master SNMP is signifi-
cant: the developer must know the development language used and master the
concepts of SNMP, which are not easily understood. The study of SNMP and the
encoding and compilers is a lengthy process.

On the other hand, managing an application with JMX is simple and straight-
forward (especially if your applications are written in Java). A developer can
instrument an application for management with just a few lines of code.

Leveraging existing technologies

When you're building a JMX management environment, you do not have to
throw out your existing management structure: existing management tools can
plug into the JMX technology. As mentioned earlier, JMX provides the capability
for building communication with any protocol (such as SNMP or HI'TP) and con-
nectivity with any other transport (such as Java RMI). In addition, if no manage-
ment capabilities are natively built into the existing enterprise devices and
applications, you can build JMX agents that act on their behalf and present man-
agement capabilities to the operations center.

Componentization

JMX allows you to build your management solution in a componentized fashion.
You can choose to expose entire devices or applications, or just a subset of their
configurable features. In addition, if you send your applications to a customer,
you can include management components that will plug directly into their man-
agement solution suite.

Alerts, events, and statistics
With JMX, you can instrument your application to push information about its
current state of health as well as useful statistics you want to maintain. Using
JMX, you can gather information from other managed resources such as the web
server or databases.

JMX provides a notification system that takes advantage of Java as an object-
oriented language. Notifications provide a rich capability to distribute Java

1.2.2

Providing a Java solution 11

objects as opposed to just data elements. A management system can send notifi-
cations that encapsulate both data and behavior; this is a powerful concept that’s
familiar to object-oriented programmers but that has not been present in previ-
ous monitoring systems.

With JMX, you can emit data elements (alerts and system events) and also
send along a mechanism for interpreting the data. For example, you might send
out a notification with the status of the processor load. This information by itself
might not be useful to a management system (so what if the CPU load is 50%?);
but it would be useful to send an object that contained the data, along with a
mechanism that could provide the application’s view of the load’s importance.
For example, the notification could contain a method isLoadCritical() that
would return the application’s concept of load criticality. The management sys-
tem could make decisions based not only on the load, but also on whether the
application was in a stressful state.

Rapid monitoring solutions

You may have experienced a development environment in which many develop-
ment teams had to coordinate efforts to provide application monitoring and
management APIs. With JMX, each development team is only responsible for
developing managed beans (MBeans) for their application.

As applications are executed, they can deploy their MBeans into a waiting
JMX agent. With all the MBeans in a central but distributed host, a single man-
agement tool can manage and configure all the applications. Using JMX to pro-
vide your management solution provides the benefits of other management
technologies with less implementation difficulty and richer capabilities, due to
the object-oriented behavior and portability afforded with Java.

Essential JMX terms

The following terms are the building blocks for the entire JMX discussion in this
book. We define them here, but you will learn more about them in the next sec-
tion. In addition, as other chapters cover these terms, you will acquire a more
robust understanding of them. We’re presenting the terms now in order to help
explain the JMX architecture in the next section.

Manageable resource

A manageable resource is any application, device, or existing entity that can be
accessed or wrapped by Java. It is the entity that will be exposed for manage-
ment by using JMX. Applications can expose components, APIs, or additional

vww . allitebooks.cond

http://www.allitebooks.org

12

CHAPTER 1
Resource management and JMX

resources for a JMX environment to manage. Manageable resources can even be
network devices such as printers. The manageable resource is the entity man-
aged by a JMX MBean.

MBean

An MBean (managed bean) is a Java class that meets certain naming and inherit-
ance standards dictated by the JMX specification. Instantiated MBeans are Java
objects that expose management interfaces for the manipulation and access of
manageable resources. An MBean’s management interface is made up of the
MBean’s attributes and operations that are exposed for management.
Management applications access MBeans to access attributes and invoke
operations. This book covers three types of MBeans: Standard, Dynamic, and
Model MBeans. Each type of MBean has specific advantages for specific
resources. MBeans reside in another JMX component called the MBean server.

MBean server

An MBean server is a Java class that manages a group of MBeans. It is the heart
of the JMX management environment—it acts as a registry for looking up
MBeans. The MBean server exposes the management interface of any registered
MBean, but it never exposes the object reference. In addition, the MBean server
is implemented to present users with an identical interface regardless of the type
of MBean being accessed: it treats all MBeans equally. The MBean server also
provides methods for performing queries to find MBeans and for other objects
to register as notification listeners (like event listeners) with MBeans.

JMX agent

A JMX agent is a Java process that provides a set of services for managing a set of
MBeans—it is the container for an MBean server. JMX agents provide services
for creating MBean relationships, dynamically loading classes, simple monitor-
ing services, and timers.

Agents can expect to have a set of protocol adapters and connectors that
enable remote and different clients to make use of the agent. Protocol adapters
and connectors are Java classes, usually MBeans, which can internally map an
outside protocol (like HTTP or SNMP) or expose the agent to remote connectivity
(like RMI or Jini). This means JMX agents can be used by a variety of different
management protocols and tools.

Providing a Java solution 13

Protocol adapters and connectors

Protocol adapters and connectors are objects residing within a JMX agent that
expose the agent to management application and protocols. For example, SNMP
could be mapped into a JMX agent using an SNMP adapter object of the agent.
In addition, an agent could have an RMI connector that opens it up for manage-
ment applications that use RMI clients. Protocol adapters consist of a single
object within an agent, whereas connectors have both an object in the agent and
an object used by a client.

An agent can have any number of adapters and connectors, essentially giving
you the ability to reach the agent using new tools or existing management proto-
cols and applications. Not only does your agent have the flexibility to be man-
aged by many applications, but you also have a mechanism for distributing
agents across a network.

Management application

A management application is any user application that is used to interface to any
number of JMX agents. JMX agents can work with management applications
designed to work with JMX technology or those that are not. A compatible JMX
management application will be able to take advantage of JMX’s advanced fea-
tures. You can provide a JMX agent with the ability to interact with existing (non-
JMX) managers by writing custom adapters and connectors. For instance, an
SNMP manager can be used to work with JMX agents by creating an SNMP
adapter. Later in this book, we will work with connectors and adapters covering
RMI, Jini, and TCP.

Notification

Notifications are Java objects emitted by MBeans and the MBean server to
encapsulate events, alerts, or general information. Other MBeans or Java objects
can register as listeners to receive notifications. In fact, the JMX notification
model is similar to the Java event model, as you will see in chapter 6.

Instrumentation

Instrumentation is the process of exposing a manageable resource using an
MBean (or set of MBeans). Instrumentation of an application can take place
alongside development, or developers can work to create MBeans that use exist-
ing APIs of currently active systems. You will discover that with several types of
MBeans from which to choose, you will be able to find an easy way to expose
parts of your applications and resources to JMX.

14

1.3

1.3.1

CHAPTER 1
Resource management and JMX

The JMX architecture

The JMX architecture is a component architecture designed to build flexibility
and usefulness into a management environment. It does so by providing a mech-
anism for agents (and ultimately MBeans) to be reached by many different pro-
tocols and by many different mechanisms. This section breaks the architecture
into its three main layers—instrumentation, agent, and distributed—and dis-
cusses each by following a simple use case as it applies to each layer. Table 1.1
lists the three layers with brief descriptions.

Table 1.1 The three JMX architectural layers

Layer Description

Distributed layer Contains components that enable management applications
to communicate with JMX agents

Agent layer Consists of agents and their MBean servers

Instrumentation layer | Contains MBeans representing their manageable resources

Each layer contains some of the various components we have already discussed,
but you need to understand how everything works together.

Example: managing the bicycle shop server

In order to help you better understand the purpose of each layer, and to tie
them together at the same time, we will walk through a simple use case. Let’s say
the bicycle shop web site has a server application that manages inventory and
suppliers. This application is used to keep track of sales, inventory, and orders to
suppliers on a scheduled basis. Suppose this application can be configured to use
different order formats, logging levels, and schedules. Because this application is
critical to the business, it needs to be configurable (or manageable) without caus-
ing a shutdown of operations.

In many situations like this, you would expect the application to have a con-
sole to which you could connect in order to change the logging level, validation
process, or storage location. However, a business may have many such applica-
tions, each with its own configuration or management tools; in this case, you
would have to go to each application and use the individual tool to change the
logging level. Managing such an environment as a unit would be very difficult.
Figure 1.1 shows this type of situation.

In contrast, let’s consider this situation from a JMX point of view. How can
JMX make this heterogeneous management environment work better? You can

The JMX architecture ‘ 15

Firewwrall

| Failover
| Hargdwate
L]

——agl []
-
L]
-
L]
.' L 2
|| nmagp—
4 Loty

Figure 1.1 An environment with many applications that need management.
Each has its own set of configuration and management tools.

model the management interface of each application with an MBean. Next, you
can expose the MBeans for management in a JMX agent, which is available for
any of your existing protocols. Doing so would allow a single point to control all
the applications. From the users’ perspective, a single application is presented,
as opposed to a collection of disparate software components. This environment
provides a more uniform and robust solution to the management of the applica-
tion suite. Figure 1.2 illustrates your new environment.

Let’s walk through a typical configuration use case for the data storage appli-
cation. Assume a user needs to change the logging level of the application. The
following steps define this use case:

1 The user opens his favorite management tool and connects to the
JMX agent.

2 The user finds the particular MBean that represents the application and
makes the appropriate log level change.

3 The MBean interacts with the bicycle shop application to configure its
log level.

16

1.3.2

CHAPTER 1
Resource management and JMX

Primary Ssinvers

Wiat Sare [e —
e My
= :-.‘L -l e £ L
3 e | - % = —F—
B [Fn i ==
Faleryiied 4 i L5, . |
Hardware x . A
I .
-
Wi S
—t i Ll HTEIL H eyt
[5 L} i
e & & & e
L e T L
L] = [ents basims
|'_'| 5 h ﬂ' ﬂ 1 H' Layer
| 3 ! .
Y
kY 5) s -
V[WebSerm | [ApsbcotonBerves
\1 [
-'h .".\H - " Tk -l
& e e | X ==
= P ==
Firewal |

Secondary Servers

Figure 1.2 An environment with many applications that need management. Each is
represented by its own MBean and managed through a single management tool using any
number of protocols or transports. The three JMX layers are delimited by dotted lines.

The following sections highlight the layers of the JMX architecture by discussing
what takes place at each step in this use case. The first layer used in the use case
is the distributed layer.

The distributed layer

The distributed layer is the outermost layer of the JMX architecture. This layer
is responsible for making JMX agents available to the outside world. There are
two kinds of distributed interaction. The first type is achieved by using objects
called adapters, which provide visibility to MBeans via different protocols such as
HTTP and SNMP. Second, JMX agents have components called connectors that
expose the agent API to other distributed technologies such as Java RMI. In fact,
as figure 1.3 shows, an agent can work with many different technologies. Adapt-
ers and connectors provide the same functionality in a JMX environment. They
are broken into two groups (adapters and connectors) at the time we’re writing
this book, but plans call for them to be labeled as JMX adapters in the next
release of JMX.

1.3.3

The JMX architecture 17

Agert Lapwt Teatriscted
Agenn Servicen ..-L" " L Byt .
- el - L ot
M Comrmcior 7 dger sgoasd oS iin]
s R e
LY Lk]
h"‘ b : L H p Droeeer. B
Inalrurmseniatens Lipe F Adapae 'I'::'.:"“'MI m-'
Figure 1.3
b o e e UpP-Close view of a
= - M':;' - i JMX agent showing
St | v, | adapters and
connectors for HTTP,
RMI, and Jini

Our use case moves through this layer with step 1 from the previous list: a user
uses a management tool to connect with the JMX agent. The JMX agent con-
tains an MBean that can manage the bicycle shop application. However, in its
distributed layer, it contains a component that allows clients to make a connec-
tion to the agent. This component can connect the user to the agent via a web
browser, Java RMI, or SNMP. As shown in figure 1.3, the user’s management tool
can be a JMX-knowledgeable management tool or a tool using another technol-
ogy or protocol.

Once the connection to the agent has been made, the user can use a manage-
ment tool to interact with MBeans registered in the agent. At this point, the use
case moves into the agent layer of the architecture.

The agent layer

The main component of the agent layer is the MBean server. An MBean server is
a Java object that acts as a registry for MBeans; it’s the heart of a JMX agent. In
addition, the agent layer provides four agent services that make managing
MBeans easier: timer, monitoring, dynamic MBean loading, and relationship
services. Figure 1.4 shows a JMX agent’s MBean server and agent services.

The agent layer provides access to managed resources from the management
application. A JMX agent can run in a JVM embedded in the machine that hosts
the resources, or it can be remotely located. The agent does not require knowledge
of the resources that it exposes or the manager application that uses the exposed
MBeans. It acts as a service for handling MBeans and allows manipulation of
MBeans through a collection of protocols exposed via connectors or adapters.

Moving to step 2, the user finds the MBean that manages the configuration
for the bicycle shop application. After finding the MBean, the user invokes an

18

1.3.4

CHAPTER 1
Resource management and JMX

b Imisuted
5 Liryspd i
Torret St LI [Tt]
—— - . . AW | e
Caprdrapeliod T e
sy FlA
"
Vacredosing Seerves ""‘
- -
= - ‘
Chp=3mnac LllLear, ""‘ L. . T P ik
gy Gareca Adaphe " et il Wy gperre =
iy HTTE [
.
Relasornig Serece 50
L] -
WESanh S e
N
i
- " e S
u u d ooy g apeend " gl
Bk oy

o J Grars
It sreriebon Lipes

Figure 1.4 Up-close view of an MBean server with registered MBeans and
agent services

exposed operation that configures the logging level of the application. At this
point, the MBean takes over, and we move into the instrumentation layer.

The instrumentation layer

The instrumentation layer is the closest layer to the managed resources. It com-
prises the MBeans registered in an agent. The MBean allows the resource to be
managed through the use of the JMX agent. Each MBean exposes a piece of the
configuration or functionality of an underlying resource; the MBean exposes
the management capabilities of the resource in a Java object. If the resource
does not natively speak Java, the MBean acts as a translator from the agent to
the resource.

For example, if you have a legacy application that exposes a management
capability through a lookup of data in a database table, you can build an MBean
that makes a JDBC call to the database tables to read or change data. The man-
agement application will not have to worry how the underlying technology is
built because the MBean abstracts it away.

An MBean is a lightweight class that knows how to use, acquire, and manipu-
late its resource in order to provide access or functionality to the agent and user.
Figure 1.5 shows an MBean directly interfacing with its resource.

1.3.5

The JMX architecture 19

ot Lieple Dttt
Agani Sareces ".'\1.‘ L i
T e i
A Cornetier |7 domd egened
|]
Miean Serve
HTWL ._- | ¢ Do Bawed
L dgerd pupeed EleragaTar
At o WTTE R
Inudngmamiion Layw My
‘}'_‘ L I e L -
¥ - hdapier ¥
] dizer gl = Clai
5 B Seme Hpplanies
Propaetiry D8 AP
Cwwr TCRYER
a
b =1 Figure 1.5
Tratabans Sarcer Up-close view of an

MBean interacting
with the resource it
manages

If you desire, you can even create an MBean that presents a collection of applica-
tions as one unit and lets you set the logging level on all the applications
through one call. For example, if you want to change the database and the appli-
cation logging level to debug mode, you can have an MBean make calls to the
separate applications to set the debug levels. Even the underlying technologies
to communicate with the different applications can be different; the MBean will
abstract that knowledge from the manager of the system, and the different tech-
nologies will appear as a cohesive unit.

We have reached the last step of our use case. With this step, the user has
invoked an MBean operation, and the MBean works with its resource in order to
change its logging level.

Notifications

In addition to the three layers presented in the architecture, J]MX provides a
notification model that closely resembles the Java event model. Notifications
provide the final necessary component for a complete management system. The
three architectural layers allow the agent to perform configuration and control
operations on the resource, but a large portion of the management require-
ments rely on reacting to interesting events that occur to the resources. By using
notifications, JMX agents and MBeans can send alerts or report information to

20

14

CHAPTER 1
Resource management and JMX

management applications or other MBeans. Users can receive notifications as a
way of being informed of critical events or requests for attention.

For instance, the bicycle shop application might have the ability to notice
when transactions are in an error state. For these transactions, the application
could be able to push an event to its MBean, which can emit notifications to
interested clients (such as a pager or email address).

As this book will make evident, JMX is the ideal environment for applications
to expose their management and configuration APIs.

Using JMX as an application architecture

The JMX agent layer is ideal for building applications. The MBean server can be
used as a backbone for an application component such as a data layer, a logging
component, or a transaction manager. By defining application components with
MBeans, you can insulate other parts of your application from the implementa-
tion details of each component. Figure 1.6 illustrates this concept.

By using JMX in this manner and by defining stable interfaces to your compo-
nent MBeans, you can create an application that can easily swap out component

Agent Liper

Imub-rrelabor Lipe

Caridonm Candom
el change . it Chelngd Py : Adgber Teremain
Lioaggengi H i
i T

'S - . 4
Ligrging Toabls Soceus I'ip Sceeun Srhadiuar
e Wies- WBhey- WEsas
- g - i
Corbyvbmignd
Lirpet
L T I8 .
¥ [
L 1 1
Lizg Fike |
Dt ks Fie

=

Figure 1.6 An MBean server acting as a structure around which to build an
application. The MBean server contains the various application components as
MBeans, shielding the application from component implementation changes.

JMX in use today 21

implementations. In addition, it is easy to add components by registering a new
MBean on the MBean server internal to your application.

If this type of architecture seems unlikely, consider the fact that JMX is
already being used in this manner. For example, the JBoss application server is
constructed in a component architecture using a JMX MBean server as its back-
bone. This way, |Boss developers can easily add, change, and remove application
services and components from the server.

1.5 JMX in use today

If you are worried about investing in a new management framework without
knowing if it will be adopted by software providers, this section is for you. JMX is a
new technology, but is already being widely adopted as a means of configuring
and instrumenting application servers and building management tools. Table 1.2
lists some products that incorporate JMX.

Table 1.2 Products using JMX

Product Company Description
WebLogic Application | BEA Systems JMX is used to monitor J2EE services running in the server.
Server
JBoss Application JBoss JMX is used for the application server architecture and to
Server monitor services running in the server.
Bluestone Hewlett-Packard JMX is used to configure the application server.

Application Server

OpenView Hewlett-Packard The OpenView monitoring suite can interface to JMX MBeans.

Adventnet Manager Adventnet This is a JMX-based monitoring solution.

JDMK (Java Dynamic | Sun Microsystems | This development kit is used to build JMX products.
Management Kit)

Tivoli JMX IBM Tivoli is IBM’s reference Implementation of JMX.
JONAS Application Bull JMX is used to monitor J2EE services running in the server.
Server

This table lists only a fraction of the products beginning to use JMX. As the J2EE
platform becomes more widely adopted, JMX will become the standard for
instrumentation and management solutions.

vww . allitebooks.cond

http://www.allitebooks.org

22

1.6

1.7

CHAPTER 1
Resource management and JMX

Developing with JMX

The Java Management Extensions API is currently an extension to the J2SE
platform. However, with JSR (Java Specification Request) 000174, JMX is being
evaluated for inclusion in the next release of J2SE. Having chosen to develop
applications with JMX, you will find ample support in the Java community. Not
only does Sun provide a JMX implementation, but you can also download one
from IBM.

In addition, many makers of application servers have built JMX support
directly into their products. By using servers like JBoss or WebLogic, you can
expect a certain level of JMX to be available to your applications at runtime.
However, even without support for JMX in an application server, you can quickly
and easily include a JMX agent in your Java applications. You will see examples
throughout this book.

Summary

At this point, you should have a good understanding of the resource manage-
ment concept. We compared the current resource management environment
with an ideal one and proposed a combined environment that could be imple-
mented in the real world.

JMX provides the required services to enable the proposed managed environ-
ment. It does so with an architecture consisting of three layers: the instrumenta-
tion layer, the agent layer, and the distributed layer. The three layers help JMX
provide a scalable and flexible management system for any environment.

Chapter 2 gets you started with JMX using a typical Hello World example.
You will create a simple JMX agent and your first MBean.

“Hello World,”
the IMX way

Writing your first MBean

Writing a simple JMX agent
Introducing object names

Using the HTML adapter from Sun

23

24

2.1

2.1.1

CHAPTER 2
“Hello World,” the JMX way

Imagine that you decide to buy a new stereo. You go to the store, pick one out, and
bring it home. Are you the type of person who carefully unwraps everything,
checks the parts list, and follows the setup instructions step by step? Or do you
open everything and start figuring out all the connections on your own? This chap-
ter is written for those of you in the second group. If you fall into the first group,
please be sure to read chapter 1; it presents the need for the JMX framework, as
well as JMX’s overall architecture (which is only recapped here in chapter 2).

This purpose of this chapter is to familiarize you with the JMX Reference
Implementation (RI) provided by Sun Microsystems. After completing this chap-
ter, you will have managed your first resource, created a simple JMX agent, and
communicated with the agent from a web browser. In other words, you will create
an MBean, use the MBean server, and manage your MBean using the HTML
adapter provided by Sun in the JMX RL

NOTE The remainder of the book assumes that you already have the JDK 1.3 (at
minimum) installed on your machine and that you have it included in
your PATH. If necessary, you can download it from http://www.javasoft.com.

Getting started

Before we get too far along, let’s have a quick architectural review and create a
development environment.

A JMX architecture refresher

Chapter 1 detailed the JMX architecture and discussed how it provides a man-
agement solution. However, to ensure you get the most of this chapter, let’s have
a brief refresher. The JMX architecture lays out a Java framework consisting of
three main parts, or layers, that work together to provide a Java management
solution. Table 2.1 lists the three layers of the JMX architecture.

Table 2.1 The three JMX component layers

Layer Description

Instrumentation layer | Contains MBeans and their manageable resources

Agent layer Contains the JMX agents used to expose the MBeans

Distributed layer Contains components that enable management appli-
cations to communicate with JMX agents

Figure 2.1 illustrates how the layers work together.

2.1.2

Getting started 25

gt L argen Ciritnted
. Lty
T Servece '
Y * Proti
Lol
- - v
Piwaibsd vl el N '1 - L
] L [rese Fusa
Dyrowms MEsar [EIS B g
Liatedan b o i
w
Rlatiasling Sereds "3 B
VAT leerep
Irmrurrasiatieon Layer
Whean 1 MBeen) WBean 3 Faid
L3 L L
i - "
== e 1 Figure 2.1
Elarage: Mamapa Wlaragia)
Rpmcsgce | || Aeacspece 2 | | Rescurcs 3 The layers of the
o, rat Ea JMX architecture
. = work together.

In this chapter, you will interact with components from each layer. From the
instrumentation layer, you will be using an MBean. MBeans are Java objects that
encapsulate a resource and expose it for management. From the agent layer, you
will use a JMX agent. Actually, you will write your own agent to contain your
MBean. And finally, from the distributed layer, you will use the HTML adapter,
which is a Java object that allows management applications to communicate with
your agent over HTML as a communication protocol. Management applications
are any applications that are interested in accessing, configuring, or manipulat-
ing manageable resources.

Setting up the development environment

If you don’t already have the JMX RI from Sun Microsystems, download it from
http://www.java.sun.com. Download the 1.0 version of JMX. Once you have down-
loaded the zip file, extract it to your hard drive. The extracted zip file produces a
JMX parent directory containing the following directories:

m contrib—Contains unsupported contributions from Sun Microsystems. For
example, Sun provides a Java RMI connector, which, like the adapters,
allows management applications to communicate with JMX agents.

» jmx—Contains the JMX RI, examples, and documentation.

http://www.java.sun.com
http://www.java.sun.com

26

2.2

CHAPTER 2
“Hello World,” the JMX way

For the remainder of this book, you will keep your Java source files in a folder
called JMXBook. In addition, you will use a setup batch file to set your pats and
cLasspaTH for compiling and running the examples from the JMXBook direc-
tory. The batch file contains the following lines:

set CLASSPATH=c:\JMXBook;C:\Jjmx-1_0_l-ribin\jmx\1lib\jmxri. jar;

C:\jmx-1_0_1l-ribin\jmx\1lib\jmxtools. jar;

C:\jmx-1_0_1l-ri-bin\contrib\remoting\jar\jmx_remoting.jar;

set PATH=c:\jdkl.3\bin
The setup batch file is used to set up the JMX environment for compiling and
running the examples in a Windows environment. If you are using Unix, you will
need to modify the script accordingly. As you can see from the pPATH environment
variable, we are using the JDK version 1.3, but every example should work with
any Java 2 Platform Standard Edition. When working from the command line,
you will invoke this file (setup.bat in our case) before doing anything else. After
running the setup script, you can test your CLASSPATH by typing java javax.man-
agement .ObjectName. You should get an error indicating that the class does not
contain a main () method.

NOTE Using Ant: For those of you familiar with Ant (or willing to find out
more), we included an Ant build system setup in appendix B. In the ap-
pendix you will find the Ant XML build doc and information for setting
up your environment.

Managing your first resource

So far we have refreshed what you already know about the major JMX components,
and ensured that you have a good working environment. Now you are ready to cre-
ate your first MBean. Keep in mind that this chapter is intended only as an intro-
duction to MBeans; more complex examples are presented in later chapters.

For the first example, you’'ll create a simple Helloworld MBean. The Hello-
orld MBean exposes a Java string object, its only member variable, as a man-
ageable resource. We will use this example as a tool to introduce you to working
with the entirety of JMX, including the MBean server and the HTML adapter.
Remember, a manageable resource is any resource that can be accessed and con-
figured via an MBean. (For this chapter, don’t worry about the coding standards of
MBeans. However, remember from chapter 1 that this book covers three types of
MBeans: Standard, Dynamic, and Model. You will create only a Standard MBean
in this chapter; the exact rules for developing MBeans are presented in detail in
later chapters.) Figure 2.2 shows the UML diagram for the nelloworid MBean.

2.2.1

Managing your first resource 27

el oriahiBean

S qapGreaingl gpeang Sirng | vied
apEieatings | HTing
sprietareadng | woed

]
[]
1
it arid

ety Gag

satCireebegurecting Sl v
g rpebirgi SEring
T Figure 2.2

The HelloWorld class

The next section discusses writing both the interface and implementing class
shown in the figure.

Writing the HelloWorld MBean

The first step in developing the HelloWorld MBean is to write its Java interface.
The interface declares three methods: one getter, one setter, and an additional
method for printing the Helloworld MBean’s greeting. Normally, you might not
write an interface for a simple HelloWorld example class like this one. However,
as you will learn in chapters 4 and 5, JMX uses interfaces to describe the exposed
attributes and operations of an MBean.

Recall that a getter method is a class method with a name in the form of get-
Member (), and a setter method is a class method with a name in the form of set-
Member (). Think of the methods in a Standard MBean interface as the description
of the implementation class. Put simply, you should be able to understand the
purpose of the methods by their names. In addition, the getter and setter meth-
ods define the member variable access granted to objects that use the MBean. By
creating a getter method for a member variable, you grant read access to it. A set-
ter method grants write access. As you can see from the following interface, this
MBean is quite simple:

package jmxbook.ch2;

public interface HelloWorldMBean

{
public void setGreeting(String greeting);

public String getGreeting();

public void printGreeting();

}

28

CHAPTER 2
“Hello World,” the JMX way

An important item to notice is the package statement. All examples in this chap-
ter are in the package jmxbook.ch2, and each chapter will package its examples
accordingly (for example, jmxbook.ch3 for chapter 3).

The HelloworldMBean interface declares a getter (getGreeting()) and setter
(setGreeting()), aswell as a printGreeting () method. You’'ll use the printGreet-
ing () method later to display the MBean’s greeting value.

Listing 2.1 shows the implementation of the interface.

Listing 2.1 HelloWorld.java

package Jjmxbook.ch2;

public class HelloWorld implements HelloWorldMBean
. Implements

HelloWorldMBean
private String greeting = null; interface

public HelloWorld()
{

this.greeting = "Hello World! I am a Standard MBean";
}

public HelloWorld(String greeting)
{
this.greeting = greeting;

}

public void setGreeting(String greeting)
{
this.greeting = greeting;

}

public String getGreeting()
{
return greeting;

}

public void printGreeting()
{

System.out.println(greeting);
}

And with that, you have created your first MBean. Now, in order to test the
MBean, you need to create a JMX agent to contain it. The next section discusses
the creation of the Helloagent class. After creating your agent, you can begin
using the MBean.

Creating a JMX agent

2.3 Creating a JMX agent

Now that you have your first MBean, you need to make it available for use. To do
so, you must register it in a JMX agent. Therefore, you need to create the Hello-

agent class, which is a simple JMX agent.

As described in chapter 1, JMX agents are JMX components in the agent layer
of JMX and are the containers for MBeans. Part 3 of the book covers JMX agents

in detail.
The Helloagent class performs three important tasks:

m [t creates an MBeanServer instance to contain MBeans.
m [t creates an HTML adapter to handle connections from HTML clients.

m It registers a new instance of the HelloWorld MBean.

As you are about to see, the Belloagent class is probably the simplest agent you will
ever write, but it is still quite powerful. This fact again highlights one of the bene-
fits of using JMX: it is simple and yet useful. In a matter of moments, you have
developed the Helloworld MBean. You can now easily manage this MBean by writ-

ing a simple agent that uses the HTML adapter provided by Sun Microsystems.

Using any web browser, the adapter allows you to interact with the agent to view

all registered MBeans and their attributes. Figure 2.3 depicts this interaction.
Specifically, the adapter lets you:

m View the readable MBean attributes
» Update the writable attributes

» Invoke the other remaining methods

Pt Ly Dt Lntims
£l Linyer P F
Kipbsl CFerirk - .:| e e -
WEaan Seros -
A TR 1 I, el WML e
_ ¥ Adspler A&
il i WrTE
MBsan Ll -
L

Figure 2.3 Using a Web browser to contact the HTML adapter present in the MBean server

30

2.3.1

CHAPTER 2
“Hello World,” the JMX way

Not only that, the adapter gives you a quick method of dynamically creating and
registering additional MBeans. Essentially, the HTML adapter provides you a
simple management tool for working with MBeans. The HTML adapter returns a
protocol (HTML) that your web browser renders as a useable application. But
let’s not get ahead of ourselves; first you need to create the simple JMX agent.

Writing the HelloAgent class

Listing 2.2 presents the HelloAgent class. Don’t worry if you don’t understand or
recognize what is going on in the listing; you will learn more about agents as the
book progresses (part 3). For now, you need only a basic understanding of the
agent code. Boiled down to the simplest steps, listing 2.2 does the following:

1

2

Creates the MBean server and HTML adapter
Registers (and thus enables you to manage) the MBean
Uniquely identifies the MBean

Registers and starts the HTML adapter

package Jjmxbook.ch2;

import javax.management.*;
import com.sun.jdmk.comm.*;

public class HelloAgent

{

private MBeanServer mbs null;
public HelloAgent ()
{
mbs = MBeanServerFactory.createMBeanServer ("HelloAgent"); " ﬁ?:ﬁ?s
HtmlAdaptorServer adapter = new HtmlAdaptorServer(); i) adapter

HelloWorld hw = new HelloWorld(); <— Creates HelloWorld

. MBean instance
ObjectName adapterName = null;

ObjectName helloWorldName = null;

try Creates ObjectName
{ instance; registers

HelloWorld MBean
helloWorldName =
new ObjectName ("HelloAgent:name=helloWorldl");

mbs.registerMBean(hw, helloWorldName);

adapterName = ?
new ObjectName ("HelloAgent:name=htmladapter,port=9092");

Creating a JMX agent 31

adapter.setPort (9092);
mbs.registerMBean (adapter, adapterName);
adapter.start () ;

}

catch(Exception e) Registers and

¢ starts HTML
e.printStackTrace(); adapter MBean

}
}

public static void main(String args[])

{
System.out.println("HelloAgent is running");
HelloAgent agent = new HelloAgent ();

}

}//class
||

Note the import statements in the listing. All classes in the JMX framework are in
the package javax.management.}\n.addjﬁ(nuﬂ.package,com.sun.jdmk.comm,is
provided by the RI provider, Sun Microsystems. This package is considered an
unsupported contribution, meaning that the code is useful for JMX development
but is not part of the JMX specification. In particular, this package contains the
classes you need to instantiate the HTML adapter.

Creating the MBean server and HTML adapter

The Helloagent class implements a main method that allows it to be started as a
standalone process. All it does is call the Helloagent constructor, so let’s start our
code examination there. The first step performed by the agent constructor is the
creation of the MBeanserver object.

Remember from chapter 1 that the MBean server is a Java object used to con-
tain and manipulate J]MX MBeans. The MBean server is a standard JMX class
and is the heart of JMX agents. Agents acquire an instance of the MBeanserver
class by using the javax.management .MBeanServerFactory class. This MBeanServ-
erFactory class is a JMX class that implements the factory pattern to provide
instances of the MBeanServer class. When you need an instance of an MBean-
Server, use the factory object to create or acquire a new instance. The factory can
manage many instances of the MBeanServer class, returning a specific instance or
creating a new one (as in the case of the Helloagent class).

Notice that the parameter HelloAgent was passed to the factory’s create-
MBeanServer () method. This parameter is a string value indicating the name for
this agent’s domain. A domain name is a unique identifier used to indicate a

vww . allitebooks.cond

http://www.allitebooks.org

32

CHAPTER 2
“Hello World,” the JMX way

group of MBeans; the domain uniquely differentiates this MBeanserver from any
other. Each MBeanserver contains a supplied domain name, allowing you to
group MBeans in a meaningful way. If you invoke the factory create () method
again with an identical domain name parameter, it will simply return the previ-
ously created HelloAgent MBeanserver instance. (You will learn more about the
MBeanServer class later in chapter 8. For now, keep in mind that an MBeanServer
object acts as a registry, enabling storage, lookup, and manipulation of MBeans.)

The next step is to create some way for management applications to contact the
HelloAgent. Recall that agents open themselves up to management applications
by constructing protocol adapters and connectors. Adapters and connectors are
a major reason why JMX is so powerful and versatile. These components are Java
objects that allow management applications to use a specific protocol to contact
JMX agents. (You will learn more about them, and create more complex exam-
ples, as the book continues.) This chapter only makes use of the HTML adapter;
to create the adapter, you just need to invoke its default constructor, as seen in
the HelloAgent class.

Registering and managing the MBean

O Once the adapter has been created, you need to register it on the MBeanserver.

This brings up an interesting point about adapters (and connectors): they are
also MBeans. Thus the Java classes that make up the adapters and connectors
are written to conform to one of the MBean types defined by the JMX specifica-
tion. Because they are MBeans, they can be managed during runtime like other
MBeans. However, before you can register an MBean, you need to make sure you
can identify and find it again; this i1s where the javax.management.ObjectName
class comes into play.

Uniquely identifying MBeans

So far, the agent has created the MBeanserver and registered an HTML adapter
with it. Now it is time to examine how the MBeanserver keeps track of objects reg-
istered with it. Look back at the code that registers the Helloworld MBean
instance on the MBeanserver €. When registering an MBean, you need to be able
to distinguish it from every other MBean that might be registered.

To do this, you must create an instance of the javax.management.ObjectName
class. The objectName class is a JMX class that provides a naming system for
MBeans, allowing unique identification of MBeans registered in the MBean
server. Each objectName consists of two parts:

Creating a JMX agent 33

m A domain name—The domain name usually coincides with the domain
name of the MBeanserver in which the MBean wants to register. When it
does not, it is usually meant to segregate one MBean from the others.

m A key=value property liss—Property name/value pairs are used to uniquely
identify MBeans, and also to provide information about the MBean. The
object name may be the first representation a user will see of your MBean.
You can supply information such as names, port values, locations, and pur-
poses with a few property values.

In this case, the objectName for the HellowWorld MBean looks like this:
"HelloAgent :name=helloWorldl"

Now that you have an objectName instance, you will be able to identify and find
the MBean once it is registered.

Registering and starting the HTML adapter

O As previously mentioned, the agent creates an ObjectName for the adapter and

2.3.2

registers the adapter in the MBeanserver object. Because they are MBeans, each
adapter can choose to expose as many attributes as necessary for configuration
by a management application.

Even though at this point in the code the adapter has been created and regis-
tered, management applications still cannot contact it. For clients to make use of
the HTML adapter, it must be started. To start the adapter, you call its start ()
method. The start () method tells the adapter MBean to begin listening for
HTTP clients on the default port of 9092. The Helloagent is now ready to receive
client calls.

More about object names

We briefly described an objectName value in the previous section. Having com-
pleted the code examination, let’s return our focus to the objectName class. As
you noticed, object names have a specific structure that must be followed when
constructing a value.

Figure 2.4 shows the structure of an objectName value.

Domain names

Domain names provides context for the agent in relation to other agents. For
example, an agent might be created to contain MBeans managing resources on
a particular computer. In this case, the domain could be the computer’s host-
name. A domain name does not have to be a meaningful value like a computer’s

34

CHAPTER 2
“Hello World,” the JMX way

hostname, but as a rule of thumb, you should try to provide some meaning in
the name. That way, you will be able to look at an 0bjectName value and possibly
understand something about its MBean.

Asyou can tell from figure 2.4, the domain name
B i 255 does not even have to be specified. If it’s left blank,
' \ / the MBean server provides a default domain name.
; f n The same is true for the MBeanServerFactory class.
Ifyou use createMBeanServer () without a domain
| name parameter, the factory will provide you with
ot b an MBeanServer with a default domain.

Right about now, you may have noticed that both
MBeanServer objects and MBeans (through the
ObjectName) are associated with a domain. In fact,
MBeans of a certain domain can be registered on an MBeanServer containing a dif-
ferent domain name. This situation is acceptable because domain names do not
impose any rules or constraints on which MBeans can be registered on an MBean-
Server ObjeCt.

Figure 2.4 The structure of an
ObjectName value

Key/value property list
The key/value list portion of the object name is a set of comma-separated prop-
erty values that provide the mechanism for uniquely identifying MBeans within
an MBean server. The properties do not have to be actual MBean attributes; the
only requirement is that they are unique when compared to other instances of
ObjectName. In each objectName, you must specify at least one property value that
makes it distinct from all other objectName instances in an MBean server.

The objectName class provides three constructors that build the name
string with various parameters. In the Helloagent class, you create an object-
Name as follows:

helloWorldName = new ObjectName ("HelloAgent:name=helloWorldl");

This objectName uniquely identifies the Helloworld instance by giving it an
attribute of name and value helloworldl. If you register any other MBeans, you
cannot use this property value on its own again; instead, you'll need an addi-
tional property combined with it.

Registering object name conflicts

You can think of the registry function like a more complex rashtable. You put
objects into the table and associated them with a key. The key in this case is the
ObjectName object. To register the MBean, the HelloAgent class invokes the

24

24.1

2.4.2

2.4.3

Running the agent 35

registerMBean () method of the MBeanServer Object. If the objectName is not
unique, the MBeanServer will throw a javax.management.InstanceAlreadyExist-
sException exception, indicating that an MBean was already registered with an
identical objectName. The MBean server does not compare actual MBean
object values for equality—only their associated object names.

Running the agent

Let’s review what you have accomplished so far. First, you created your first
MBean, contained in the Helloworld class. It exposes a single attribute—its greet-
ing—as a manageable resource. (Recall that a manageable resource is any resource
that can be encapsulated by an MBean to provide access and/or configuration.)
Next, you created the Helloagent class, which is a simple JMX agent. The
agent will contain your MBean and provide you with a mechanism for managing
it. That leaves you with one more task to do: compile, run, and contact this agent.

Compiling the agent

To get the agent started, you need to compile your Java source code and execute
the Helloagent class. To compile your classes, execute the following command
after ensuring your environment is set up correctly (cLasspaTs and so forth):

javac jmxbook\ch2*.java

Running the agent
The following command will run the Helloagent:
java jmxbook.ch2.HelloAgent

After executing these commands, your agent should be running. The command
prompt will not return, because the Helloagent process does not exit. However,
you should see the output “HelloAgent is running”, indicating that the agent
has started.

Contacting the agent

To contact the running HelloAgent, you need to use an HTML client. Any web
browser will do the trick. For this example, the HTML adapter of the Helloagent
defaults to listening on port 9092. If you do not have that port available, go back
to the Helloagent code, add the following line after the adapter’s constructor is
called, and add your own port value:

adapter.setPort ([port value]);

36

2.5

CHAPTER 2
“Hello World,” the JMX way

Make the port a value that is available for use. For the remainder of this book, we
will use the HTML adapter on port 9092.

Once you have a valid port value, open your browser and point it to http:/
localhost:9092. (If you have specified a different port, be sure to use that one
instead of 9092.)

The HTML adapter running in your agent is now listening on the specified
port for HTTP requests. When you open your browser to that address, the
adapter responds by sending back HTML. You can now manage your agent by
interacting with the adapter via this HTML.

Before continuing, you should congratulate yourself: you have successfully
created your first MBean and agent. The next section will walk you through com-
municating with your agent using the HTML adapter.

Working with the HTML adapter

Now that you have the HTML adapter up and running on an agent that contains
an MBean, it is time to connect and see what it provides for you. The HTML
adapter provides access to a JMX agent through an HTML client (any web
browser will do). It contains three main pages:

m Agent View—The Agent View is the first page you will see; it provides a
summary of the MBeans contained within the agent. From this page you
can filter the MBean list to provide more refined views.

» MBean View—This page provides details about a specific MBean. From this
page you can set and get MBean attributes and invoke MBean operations.

» Admin View—This page enables you to register new MBeans on the agent.

2.5.1 Agent View

After contacting the agent with your web browser, the Agent View page appears
(figure 2.5). Agent View is an HTML page received from the agent’s HTML
adapter; it shows you all the registered MBeans in this agent, representing them
by presenting their objectName values. From this page, you can get to the MBean
View or Admin View HITML page. Before checking out the other views, notice the
Filter by Object Name field at the top of the page. Right now it displays *:*,
which tells the agent to return a list of all the MBeans it contains. The MBean
count on this page displays the total MBeans returned by each search.

This filter form allows you to filter the MBean list by partial or whole object
names. For instance, if you type HelloAgent:name=helloWorld1 into the field,

Working with the HTML adapter 37

Apeal View

e St el o6 B = Mk Aprn

1o ol ragesarvd Wisaas by dess

Halfal goen Figure 2.5

: The Agent View page
P T presented by the

: HTML adapter

the list will only show your HelloWworld MBean. You can enter partial object
names by following the rules listed in table 2.2.

Table 2.2 Agent View filtering rules

MBean filter rule Example

Use the * character as an alphanumeric wildcard for multiple characters, *:name=helloWorld1,*
and as a wildcard for key/value pairs.

Use the ? character as a wildcard for one character. ??Agent:name=helloWorld1

If you do not specify a domain name, the filter assumes you mean the i
default domain. You must specify at least one key/value pair (or use *).

Partial domain names are valid, but you cannot specify partial key/value ??Agent:name=helloWorld1
pairs (for the key or the value).

All keys must be matched exactly or use a wildcard. ??Agent:*

Key/value pairs can be specified in any order.

Try filtering the MBean list on your own; doing so will help you get the hang of
the objectName format. When you are done, return the filter to *:* so you can
view all MBeans.

Note that the list includes an MBean you did not register in section 2.4: the
MBeanServerDelegate MBean. The MBeanServerDelegate is an MBean created by
the MBeanserver to handle certain tasks—specifically, sending out notifications
for the MBean server. The MBeanserver registers this MBean with a different
domain in order to keep it separated from any others that will be registered.

Now that all the MBeans are visible, click the MBeanServerDelegate MBean
link; it will take you to the MBean View presented by the HTML adapter.

38

CHAPTER 2
“Hello World,” the JMX way

2.5.2 MBean View

MBean View is another HTML page received from the HTML adapter that shows
information about the MBean you clicked. MBean View presents you with all the
details of the selected MBean, including the information shown in table 2.3.

Table 2.3 The elements of MBean View

MBean detail Description or example
Class hame Main class of the MBean, such as HelloWorld.
Object name Object name of the MBean, such as HelloAgent : name=helloWorldl.
Description Description of the MBean. For Standard MBeans, the MBeanServer creates the
description.
Attributes table Lists the exposed attributes of the selected MBean, including the type, access, and

value if possible. The attributes table also allows you to change writable attributes.

Exposed operations | List of operations exposed by the MBean. From here you can invoke an operation.

Reload Period Tells the MBeanServer if it needs to reinstantiate this MBean, and if so, how often.

Unregister button Tells the MBeanServer to unregister this MBean.

Figure 2.6 depicts the MBean view of the MBeanserverDelegate MBean.

Look at the table of MBean attributes in figure 2.6, and notice the values in the
Access column. Currently, all rows contain the value RO, which stands for Read
Only. Other possible values are WO (Write Only) and RW (Read/Write) access. As
you might suspect, RO implies that the MBean’s Java interface has provided only
a getter method for an attribute. WO access implies that there is only a setter
method, and RW implies that both a setter and a getter exist for this attribute.

The HTML adapter is using the reflection API to examine the method names
from the interface. It removes the get or set of each method name and creates
the attribute name from the remaining method name portion. Remaining
methods (those without get or set at the start of their names) go into the Oper-
ations section of the MBean View.

By looking back at figure 2.6, you see that the MBeanServerDelegate exposes
only read-only attributes. These attributes describe the reference implementa-
tion being used and which version of the JMX specification it implements.

Let’s go back to the Agent View by clicking the Back to Agent View link. This
time, select your EellowWorld MBean. Figure 2.7 shows what you should see.

The view of the Helloworld MBean is displayed exactly like that of the MBean-
serverDelegate MBean, except for two important differences. Remember that

Working with the HTML adapter

AiBean View [TDA K]

[11 P e
n e dera 1l e e U ral meedriegar

Yt Pomeei i il

bick m sorm Yiew L1 ==

Sliram dve: wigetien
bl e i -5 B mcmagewed mdler (B B em

Lisa il M Wram gl e

M Srpe Javan e
e raat iy Prmg B0 6K KD
e e R iy Frey 10 S ey
Implrecre ean e 1an sy Ty 1O 14
[r L sty e by Chemy 3 e 0 T T
Sl s e g B0 e Mg R
g fe i "SR SR R W SS—
S i ey g Tmg B0 100 Pl Rt
Lind ol S18rem wprraiizes
K Beegle

Figure 2.6 MBean View presented by the HTML adapter

ol Eean View CEAEA idend]

o+ bl Namar Fol dger eara—=icd Wil
4 blFam dems Chan i bk bl Wl

kg v d m 1an ol
Rk b g e 1 [Feoaa | [|

M Fran droripiie &
nf ma o -0 i e gt r ol i HEea

o T LT o
By prrmbag Thmg FE e el e o k] e
|
Lhet i’ Sl B v it il
Drrreryfiees o primtorimg
==

Figure 2.7 The HelloWorld MBean View

39

40

2.5.3

CHAPTER 2
“Hello World,” the JMX way

you wrote the Helloworld MBean to contain a single exposed attribute: its greet-
ing. That means the greeting attribute of the Helloworld MBean is accessible for
both reading and writing, and the attribute table of the MBean View includes a
text field allowing you to enter a value. Clicking the Apply button commits any
changes. Go ahead and change the value for the greeting, and then click Apply.
The page reloads, and the text field displays the current value of Greeting, which
reflects the changes you just made.

Now look at the MBean Operations section, and you will see one available
operation. The MBean View constructs each operation as a button labeled with
the name of the method. For the Helloworid MBean View, you see a button with
printGreeting as a label. That is the remaining method from the HellowWorld-
MBean interface. Just before the button, you see void, which is the return type of
the method. If this method had any input parameters, you would see a text field
for each input value.

NOTE The HTML adapter can provide input only for certain types of parame-
ters. It supports only strings, primitive types, and the standard classes
related to the primitive types, such as java.lang.Integer.

When you click the printGreeting button, you will see two things happen. First,
the web browser navigates to a page indicating that the method succeeded and
did not return a value. Second, if you look at the output of your agent, you
should see the update value you entered for the Greeting attribute.

Congratulations—you have successfully managed the Helloworld MBean.
There is only one more page to examine from the HTML adapter: the Admin
View. Go back to the Agent View and click the Admin button to go to the Admin
View of the HelloAgent.

Admin View

Using the first two HTML pages, you can configure and query MBeans registered
in the agent. However, what if you want to add additional MBeans to the agent
without writing more code? The Admin View is an HTML page presented by the
HTML adapter that gives you access to the agent’s MBean server in order to
remove or add MBeans. From this page, you can specify an 0bjectName value and
associate it with a Java class that is an MBean. The MBean server will construct
and register an MBean corresponding to your input. The Admin View presents
four text fields (see figure 2.8):

Working with the HTML adapter 41

Agent Adminkstration

Krpu
Java Manw

Clais Lawder

Figure 2.8 The Admin View presented by the HTML adapter

» Domain—The HTML adapter defaults the Domain field to the domain of
the agent. Currently, it shows Helloagent, which is your domain. This is
the first part of the object name.

m Keys—The Keys field requires input in the form /name=value/,* . This field
represents the key/value portion of an object name.

» Java Class—This field requires a full Java class name of the class of the
MBean you want to create.

m Class Loader—The Class Loader field is the only field that is optional. You
can specify a class loader for the MBean server to use when attempting to
load the Java class specified in the previous field.

To get a good understanding of this page, let’s use it to create some more MBeans.
As you will see in the next section, you can have many MBeans of the same type in
one MeeanServer, as long as their object names are unique.

2.5.4 Registering/unregistering MBeans on the HelloAgent
Let’s load another instance of the Helloworld MBean into the agent by using the
Admin View. Leave the domain value as Helloagent. Type in name=helloWorld2
for the Keys field. For the Java Class field, type jmxbook.ch2.HelloWorld, the
implementation of the HelloWorldMBean interface.

NOTE Any class you specify in the Java Class field must be accessible to the
MBeanServer of the agent. For the Helloagent, this requirement
means the input Java Class value must be in its local CLASSPATH.

vww . allitebooks.cond

http://www.allitebooks.org

42

CHAPTER 2
“Hello World,” the JMX way

Leave the Class Loader field empty, to tell the selloagent MBean server to use
the default class loader to find the Java Class value. The agent will use the values
you have entered to create an object name like

HelloAgent :name=helloWorld2

With all the values in place, you are ready to create this new HellowWorld
instance. At this point, you have three Action options to choose from in the
drop-down list:

n Create—Tells the MBeanserver to create an MBean using a no-argument
constructor

n Unregister—Works only if you have specified an objectName of an existing
MBean registered in the agent

n Constructors—Loads the specified MBean class and presents you with a list
of constructors to use in creation of the MBean

These options are similar to the Operations section of the MBean View. For now,
choose the Create option.

Click the Send Request button, and you will see a success message telling you
the agent created and registered the new MBean. Go back to the Agent View and
verify this using the list of MBeans.

Using constructors with arguments

Remember that your HelloWworldMBean implementation class, Helloworld, has two
constructors: the default constructor and a constructor that takes an initial value
for the Greeting attribute. Let’s register a final instance of the Belloworld MBean
by using this second constructor. To do so, perform the following steps:

1 Go back to the Admin View and enter appropriate values to create a new
HelloWorld MBean. Be sure to enter a unique Key value (such as
name=helloWorld3).

2 This time, select Constructors from the Action list and click the Send
Request button. You will see a list of constructors (in this case, two), one
of which displays a text field for its single input parameter.

3 Type a value for the Greeting attribute, and then click the Create button
associated with the constructor. If you entered valid data for the object
name and class fields, you will see the “creation successful” message again.

4 Go back to the Agent View to verify that the MBean list now contains
three instances of the Helloworld MBean.

Using MBean notifications 43

2.6 Using MBean notifications

After creating and registering your own MBean in the previous section, you
already have enough knowledge to start working with JMX. You have learned
how to create a Standard MBean, how to add it to a simple JMX agent, and how
to manage that agent by using the HTML adapter. However, you are still missing
a key ingredient: notifications.

JMX notifications are Java objects used to send information from MBeans and
agents to other objects that have registered to receive them (see figure 2.9).
Objects interested in receiving events are notification listeners—they implement
the javax.management .NotificationListener interface.

Notifications are an important piece of JMX because they allow for the trans-
mission of events. JMX events can be anything from the changing of an MBean
attribute to the registration of a new MBean on an MBean server.

To give you a quick introduction to notifications, you’ll add them to the
HelloWorld MBean in this section. In chapter 6, we’ll cover the notification
model in depth.

2.6.1 Adding notification code to the HelloWorld MBean

For the Belloworld MBean to send notifications, it needs to allow objects inter-
ested in receiving notifications to register for them. JMX supports two mecha-
nisms for MBeans to provide listeners to register for notifications:

u Implement the javax.management .NotificationBroadcaster interface

m Extend the javax.management .NotificationBroadcasterSupport class (WhiCh
in turn implements the NotificationBroadcaster interface)

The advantage of implementing the interface is that it frees your class from being
tied to a particular super class. The advantage of extending the broadcaster

gt Litprr Dustribadusd
& [
Agd naie e

Bfnan Tt
R LA | S Hra
L
(B B S (R A
(&2 VIEmgm

Figure 2.9

Notification being sent
to a registered listener
from an MBean

{& PR A s it gl _{g

44

CHAPTER 2
“Hello World,” the JMX way

support class is that you do not have to write code for the broadcaster interface.
If your MBean does not need to extend a class, then have it extend the Notifica-
tionBroadcasterSupport class and reuse that implementation. The HelloWorld
class does not need any special super class, so you are free to extend the broad-
caster support class, NotificationBroadcasterSupport, as shown in listing 2.3.

Listing 2.3 HelloWorld.java

package Jjmxbook.ch2;
import javax.management.*;

public class HelloWorld extends NotificationBroadcasterSupport
implements HelloWorldMBean @ Extend NotificationBroadcasterSupport class
{

public HelloWorld() @ Define two public
{ constructors
this.greeting = "Hello World! I am a Standard MBean";
}
public HelloWorld(String greeting) 0 Define two public
{ constructors

this.greeting = greeting;

}

public void setGreeting(String greeting)
{

this.greeting = greeting;

Notification notification = new Notification (
"Jjmxbook.ch2.helloWorld.test", this, -1,
System.currentTimeMillis (), greeting); o Create

javax.management.Notification
sendNotification(notification); object

}

public String getGreeting/() Send notification

{
return greeting;

}

public void printGreeting()
{

System.out.println(greeting);
}

private String greeting;

}//class

Using MBean notifications 45

@ You change the declaration of the Helloworld class by extending the Notifica-
tionBroadcasterSupport class. This super class provides the MBean with meth-
ods that allow other objects to register as notification listeners and allow the
MBean to send notifications. The super class implements the javax.manage-
ment .NotificationBroadcaster interface examined after this code discussion.

@ For this example, you are sending only basic notifications. At this step in the
code, you create a Notification object with the constructor

public Notification(java.lang.String type, Jjava.lang.Object source,

long sequenceNumber, long timeStamp,
java.lang.String message)

The parameters of this constructor are listed in table 2.4.

Table 2.4 The Notification constructor parameters

Parameter Description

java.lang.String type Dot-separated st ring value used to identify the notification. Used as
a short description of the purpose and meaning for the notification.

java.lang.Object source The MBean that generated this notification. This will be either the
object reference or the Ob jectName of an MBean.

long sequenceNumber A number that identifies this notification in a possible sequence of
notifications.

long timestamp A timestamp of the creation of the notification.

java.lang.String message A string value containing a message from the notification source.

© By extending the NotificationBroadcastersupport class, you not only gain the
implementation of the NotificationBroadcaster interface, but also inherit the
sendNotification() method. Your HelloWorld MBean can use this convenience
method when it needs to send a notification, and the super class will send it to all
appropriate listeners. Appropriate listeners are those that have registered with
the MBean and whose filter object accepts the particular type of notification.

Examination of the NotificationBroadcaster interface

The previous example used the NotificationBroadcastersSupport class. This
class provides subclasses with an implementation of the NotificationBroad-
caster interface. The super class implements the NotificationBroadcaster
interface shown next:

public interface NotificationBroadcaster

{
public void addNotificationListener (
NotificationListener listener,

46

2.6.2

CHAPTER 2
“Hello World,” the JMX way

NotificationFilter filter,
Object handback)
throws IllegalArgumentException;

public MBeanNotificationInfo[] getNotificationInfol();

public void removeNotificationListener (
NotificationListener listener)
throws ListenerNotFoundException;

}

MBeans implementing this interface provide other objects with a mechanism to
register for notifications by using the addNotificationListener () method. This
method accepts a NotificationListener object, a NotificationFilter ObjeCt,
and a handback object as parameters.

The NotificationListener parameter is an object that implements the Noti-
ficationListener interface, which specifies a handleNotification () method.
This method will be invoked as a callback when a notification needs to be deliv-
ered to a listener.

The NotificationFilter parameter is an optional argument that will allow
the MBean to filter which notifications to send to the listener based on the lis-
tener’s preferences created in the filter. The handback argument is sent back to
the client each time a notification is delivered.

Notice the similarity between this notification registration and delivery mech-
anism and the Java event model of listener registration.

Changes to the HelloAgent class

In order to send notifications, you need to have something to receive them. For
this small notification example, you’ll make your Helloagent class act as a notifi-
cation listener. You need to modify your code in a few ways. First, the HelloAgent
class needs to implement the NotificationListener interface. The Helloagent
will still create and register both the HTML adapter and the Helloworld MBean.
After it has created the MBeans, it can now register with the Belloworid MBean
as a notification listener interested in receiving notifications. The code changes
for the Helloagent class appear in listing 2.4 in bold.

package jmxbook.ch2; Implement
NotificationListener

import javax.management.*; interface

import com.sun.jdmk.comm.HtmlAdaptorServer;

public class HelloAgent implements NotificationListener

Using MBean notifications 47

private MBeanServer mbs = null;

public HelloAgent ()
{
mbs = MBeanServerFactory.createMBeanServer ("HelloAgent");
HtmlAdaptorServer adapter = new HtmlAdaptorServer();
HelloWorld hw = new HelloWorld();

ObjectName adapterName = null;
ObjectName helloWorldName = null;

try
{
adapterName = new ObjectName (
"HelloAgent :name=htmladapter,port=9092");
mbs.registerMBean (adapter, adapterName);
adapter.setPort (9092)
adapter.start ();

helloWorldName = new ObjectName (
"HelloAgent :name=helloWorldl");
mbs.registerMBean (hw, helloWorldName);

hw.addNotificationListener(this, null, null); 0 Register to
receive

) notifications
catch(Exception e)

{
e.printStackTrace();

}
}//constructor

Implemented
public void handleNotification (from listener

Notification notif, Object handback) interface
{
System.out.println("Receiving notification...");
System.out.println(notif.getType());
System.out.println(notif.getMessage ());

}

public static void main(String args[])

{
HelloAgent agent = new HelloAgent () ;

}

}//class
|

@ The first addition to the agent is the inclusion of the NotificationListener
interface. Recall that this interface declares a single method, handleNotifica-
tion (), which will be called when a notification is being delivered from a source
the listener has registered with.

48

2.7

CHAPTER 2
“Hello World,” the JMX way

After registering the MBean with the MBean server, the Helloagent class adds
itself to the Helloworld MBean as a listener. To do this, it passes itself as the
NotificationListener parameter to the MBean’s addNotificationListener ()
method (inherited from its super class, NotificationBroadcasterSupport).

As mentioned earlier, in order to receive notifications, an object must implement
the NotificationListener interface. The interface declares a single method,
handleNotification(), which is a callback method invoked by the sender to
deliver notifications to the listener. For this implementation, the Helloagent class
just prints out some of the members of the incoming notification.

Getting results

To test the notification example, you need to compile the HelloAgent.java and
HelloWorld.java files and execute the resulting Helloagent class. (Look back at
section 2.5 for a reminder.) Once the agent is running, open your web browser to
http://localhost:9092 to see the Agent View of your Helloagent class. To perform
the test and receive a notification, follow these steps:

1 Navigate to the MBean View of the Helloworld MBean by clicking on
the corresponding object name in the list. Look back at section 2.5.2 for
a refresher.

2 The Helloworld MBean sends a notification when its greeting is changed,
so enter a new value and click Apply. For example, enter I have changed
my greeting.

3 Look at the output window of your relloagent. You should see the following:
Receiving notification...

jmxbook.ch2.helloWorld.test
I have changed my greeting

The output contains your printed message, “Receiving notification...”, the noti-
fication type, and the message contained in the notification.

Summary

This chapter gave you some hands-on experience with much of the JMX frame-
work. In this chapter you developed a manageable resource, and created and ran
a simple JMX agent. We discussed how to register an MBean, ensure that it has a
unique name, and create an MBean server.

In addition, you worked with the HTML adapter that comes with the Sun ref-
erence implementation. By constructing the Helloworld example, you should
now understand that MBean development is simple from the JMX point of view.

Summary 49

MBeans expose resources with just a few lines of code. Part 2 of this book covers
instrumenting resources by walking you through numerous MBean examples.

Finally, to round out your JMX introduction, we gave you a crash course on
JMX notifications. We will discuss notifications in greater detail in chapter 6
and make a stronger case for why notifications are an essential part of manag-
ing resources.

In chapter 3, you'll begin to develop a JMX agent that you’ll enhance through-
out the remainder of the book. This agent will be used for many of the examples
in other chapters.

Building a foundation

m Building the agent for later MBean examples
m [ntroducing the RMI adapter from Sun
m Creating an exception utility class

51

52

3.1

3.1.1

CHAPTER 3
Building a foundation

This chapter’s purpose is to lay the groundwork for many of the examples
throughout the book. As you read the following chapters, most of your coding time
will be spent writing and working with MBeans. Most examples in this book are
executed within the chapter to demonstrate the working code. In all the examples,
you will need to have a JMX agent to contain your MBeans. In order to spare you
from repeatedly writing the same agent code, you'll construct your JMX agent in
this chapter to use throughout the book. In addition, as the book progresses, you
will add functionality to the agent by including other services or utilities.

The scope of the agent

Before you begin writing any code, you should understand that the agent you
will write in this chapter will end up closely resembling the Helloagent class from
chapter 2. In fact, there will be only one major difference. The important point
is that as the book moves along, you will add code to your agent as needed.
Therefore, because we have not discussed any new topics, your agent code will
closely resemble the Helloagent example.

Your agent will be defined by the class jmxbook.ch3.JMxBookAgent. At this
point in the book, it has two responsibilities:

m Create an MBean server

m Provide connectivity

Just like the Helloagent from the previous chapter, your JMxBookagent class must
contain an MBean server. In addition, it too will create an HTML adapter so that
you can examine and interact with MBeans residing on the agent. However, in
addition to the HTML adapter, you will add a Java Remote Method Invocation
(RMI) connector to the agent in order to provide your future code examples with
a programmatic way of interacting with the agent. Figure 3.1 illustrates the two
ways this agent will be used.

Looking at the figure, you can see that you will be able to interact with your
agent both through a web browser and by using a Java RMI client. You will con-
struct a factory class for creating RMI clients later in this chapter. Later examples
that need an RMI client will use this factory class to acquire it.

Using the HTML adapter

Adding the HTML adapter to your agent will be useful for some of the reasons
presented in chapter 2. It will give you a view into the agent, allowing you to see
a list of MBeans residing in the MBean server. Not only that, but as you wit-

3.1.2

The scope of the agent 53

Ji i Bmivh s guind
Agent L Cents et
' P———
Bgars Garecas N = el Al
(o) - Wermprme
" Bppdcar
¥ Conrpcin 4 trogemman:
s - Frertee
. B o
i B -
R, & L
o HIML Y Bl g - b:l H:\J
Imsbrurmenisbee Lo p Aiapher A HTTE "c-m
K
&
- Figure 3.1

The JMXBookAgent in action
with the HTML adapter and
RMI connector.

nessed in chapter 2, you will be able to manipulate MBeans, add more MBeans,
and remove MBeans from an agent. In future examples, you will typically use the
HTML adapter for testing example MBeans by viewing and accessing their
attributes and operations.

Using the RMI connector

The RMI connector serves the same purpose as the HTML adapter: it allows out-
side clients to contact and interact with a JMX agent. The RMI connector you will
be using is provided by Sun Microsystems as a contribution to its JMX RI.

The RMI connector comes in two parts: a server and a client. The server part
resides with the JMX agent in order to provide access to the MBean server. The
RMI client resides with other client-side processes that wish to contact the JMX
agent. The RMI client shields users from having to write Java RMI code.
Figure 3.2 illustrates how the RMI connector can be used to create MBeans from
remote locations.

In future examples, you will use the RMI connector to interact programmati-
cally with your agent. Because the HTML adapter does not work with all class
types, you will sometimes need to access the agent via example code. In these
cases, you will use the RMI client.

For the purposes of this chapter, we won’t discuss the features or API of the
RMI connector—we will only explain how to add it to the agent and use it.

54

3.2

3.2.1

CHAPTER 3
Building a foundation
A B gt
At Layw [ontr b tedd
Bend Gareled 1"-: Ly
T l. R -

1 - et Eiit] | ¥ Berved

L L
Insbsrmasriabon L
¥ e

Figure 3.2 The JMXBookAgent showing the different parts of the RMI connector
with example createMBean () method delegation from client to server.

Writing the JMXBookAgent class

Writing the JMxBookagent class is not that difficult (as illustrated by the Helloagent
from chapter 2). The process of completing the class is broken into four parts:

» Writing the class definition and constructor
» Adding the HTML adapter
» Adding the RMI connector
» Adding the nain () method

Class definition and constructor

The first step includes declaring the class and writing its constructor. Listing 3.1
shows the class body and constructor in the source file JMXBookAgent.java.
Notice that the package is jmxbook. ch3.

Listing 3.1 The first part of JMXBookAgent.java

package jmxbook.ch3;

import com.sun.jdmk.comm. *;
import javax.management.*;

public class JMXBookAgent
{

3.2.2

Writing the JMXBookAgent class 55

private MBeanServer server

null;

public JMXBookAgent () Create MBean

{ server
System.out.println ("\n\tCREATE the MBeanServer.");
server = MBeanServerFactory.createMBeanServer ("JMXBookAgent");

startHTMLAdapter () ; Add agent
startRMIConnector () ; connectivity

At this point, you need to import only two packages for the agent: javax.manage-
ment . * and com. sun. jdmk.comm. * (later in the book, you will add more packages
as necessary). The latter package includes the classes for the HTML adapter and
the RMI connector.

The constructor must initialize its MBean server. It does so using the
domain name JMxBookAgent. In addition, the constructor invokes two meth-
ods: one starts the HTML adapter, and the other starts the RMI connector.
The next two sections discuss the implementation of the connectivity invoked
by the constructor.

Adding agent connectivity

To make your agent more useful, you'll add an adapter and connector that allow
you to interact with the agent visually and programmatically. You need the HTML
adapter in order to perform tasks similar to those in chapter 2: it is a quick way to
view the contents of the agent (its MBeans). If you used the HTML adapter exclu-
sively, you would not be able to register and receive MBean notifications.

However, in order to work with notifications (and for later examples), you
need to interact with the agent programmatically. To do so, you will add the RMI
connector to the agent. It will let you connect to the agent using an RMI client
and directly through program code.

The next two sections walk you through adding the connectivity to the agent.

Adding the HTML adapter

You saw the code for adding the HTML adapter in chapter 2. In this chapter, this
code is broken out into its own method called startHTMLAdapter (). Listing 3.2
shows the method implementation.

56

CHAPTER 3
Building a foundation

protected void startHTMLAdapter ()

{
HtmlAdaptorServer adapter = new HtmlAdaptorServer();
ObjectName adapterName = null;

try

{
adapter.setPort (9092);
//create the HTML adapter
adapterName = new ObjectName (

"JMXBookAgent :name=html, port=9092");
server.registerMBean (adapter, adapterName);
adapter.start () ;

}
catch (Exception e)
{
ExceptionUtil.printException(e);
System.out.println ("Error Starting HTML Adapter for Agent");
}

Remember from the previous chapter that the HTML adapter is an MBean and
therefore must be registered with the agent like any other MBean. It needs an
ObjectName instance, which you provide with the domain of the agent and a few
descriptive properties. Once it is registered on the MBean server, you call its
start () method to initialize it. If any errors occur, you print them out to the
agent output.

Notice in the catch block that the method uses a class called ExceptionUtil;
it’s a utility class that you’ll write at the end of this chapter. It contains a single
static method, printException (), which prints MBeanExceptions and the excep-
tions wrapped within.

Adding the RMI connector
You have seen the HTML adapter created and registered twice in this book, but
you have yet to see any code for the RMI connector. (Remember, we aren’t cover-
ing the connector extensively in this chapter—we’re only showing how to use it
during a simple test. Later chapters use the connector to add and manipulate
MBeans in the agent. For a detailed discussion of the connector, you can jump
ahead to chapter 9.)

Listing 3.3 shows the startRMIConnector () method that is invoked by the agent
constructor. Its purpose is to create and start the RMI connector for this agent.

3.2.3

Writing the JMXBookAgent class ‘ 57

Listing 3.3 startRMIConnector() method that adds the RMI connector server
to the agent

protected void startRMIConnector ()

{
RmiConnectorServer connector = new RmiConnectorServer();
ObjectName connectorName = null;

try

{
connector.setPort (2099);
connectorName = new ObjectName (

"JMXBookAgent : name=RMIConnector") ;

server.registerMBean (connector, connectorName);
connector.start () ;

}

catch (Exception e)

{
ExceptionUtil.printException(e);

}

The implementation of this method is almost identical to the startHTML-
Adapter () method we already examined. First, you create the RmiConnec-
torserver instance (which is the connector MBean) and register it on the
MBeanServer USINg a New ObjectName instance. After registering the connector,
you invoke its start () method, preparing it to receive clients. After we examine
the main () method of the agent, you will create the RMI client factory class used
to create clients for the RMI connector.

Finishing with a main() method

Listing 3.4 shows the main () method used to start this agent from a command-
line prompt. It simply constructs an instance of the agent and print out messages
for the user.

Listing 3.4 The main() method of the JMXBookAgent class

public static void main(String[] args)
{

System.out.println ("\n>>> START of JMXBook Agent");

System.out.println ("\n>>> CREATE the agent...");
JMXBookAgent agent = new JMXBookAgent () ;
System.out.println ("\nAgent is Ready for Service...\n");

58

3.3

CHAPTER 3
Building a foundation

With the completion of the main () method, you have finished the agent code. As
mentioned earlier, you still need to provide a way to create an RMI client when
you want to interact with the agent using the RMI connector. The next section
presents a utility class called rRMIClientFactory that provides the solution.

Writing the RMIClientFactory class

The rMIClientFactory class is used as a convenient way to acquire an RMI client
to connect to your JMX agent. Currently, the factory class returns a client with all
the default values, which will connect to the agent. You will learn how to change
the defaults for the RMI connector in chapter 9. Listing 3.5 shows the class.

Listing 3.5 RMIClientFactory.java

package Jjmxbook.ch3;

import javax.management.*;
import com.sun.jdmk.comm.*;

public class RMIClientFactory
{

public static RmiConnectorClient getClient ()
{

RmiConnectorClient client = new RmiConnectorClient ();
RmiConnectorAddress address = new RmiConnectorAddress () ;
address.setPort (2099);
System.out.println ("\t\tTYPE\t= " +
address.getConnectorType ());
System.out.println ("\t\tPORT\t= " + address.getPort ());
System.out.println ("\t\tHOST\t= " + address.getHost ());
System.out.println ("\t\tSERVER\t= " + address.getName());
try

{
client.connect (address);
}
catch(Exception e)
{
ExceptionUtil.printException(e);
}

return client;

Writing the ExceptionUtil class 59

To create a client, the getClient () method creates an RmiConnectorClient object
and initializes it with an RmiConnectoraddress object. This method configures
the address object to locate the RMI server on port 2099, which you used when
starting the server.

Writing the ExceptionUtil class

ExceptionUtil is a simple class that lets you print out the entire exception hierar-
chy of an MBeanException exception class. MBeanException is the main exception
class used to wrap all exceptions stemming from operations on MBeans or
agents. Listing 3.6 shows the Exceptionutil class.

Listing 3.6 ExceptionUtil.java

package jmxbook.ch3;
import javax.management.*;

public class ExceptionUtil
{
public static void printException(Exception e)

{

StringBuffer exceptionName = new StringBuffer();
Exception exc = null;
System.out.println("-—-———-—- [Exception]-—————- " ;

e.printStackTrace();
if (e instanceof MBeanException)
{
boolean hasEmbeddedExceptions = true;
Exception embeddedExc = e;
while (hasEmbeddedExceptions)
{

embeddedExc = ((MBeanException)
embeddedExc) .getTargetException () ;
System.out.println("--————- [Embedded Exception]-—-————---— ")

embeddedExc.printStackTrace () ;

if (! (embeddedExc instanceof MBeanException))
{
hasEmbeddedExceptions = false;

You will see this class used in many of the examples throughout the book.

60

CHAPTER 3
Building a foundation

3.5 Running the agent

3.5.1

3.5.2

Now that you have constructed the agent and written a factory class that provides
RMI clients, it is time to test the agent. In this section, you will test the agent by
connecting to it with an HTML client and an RMI client.

Using one of the build environments created in chapter 2, compile the
JMXBookAgent, RMIClientFactory, and ExceptionUtil classes. With the code
compiled, you are ready to run the agent. To execute the agent, use the follow-
ing command:

java jmxbook.ch3.JMXBookAgent

You should see the following output from the agent:

>>> START of JMXBook Agent
>>> CREATE the agent...

CREATE the MBeanServer.
Agent 1is Ready for Service...

With the JMxBookAgent Tunning, you can now connect to it using the two methods
you have set up (HTML and RMI).

Connecting to the agent with the browser

To connect to the agent’s HTML adapter, open a web browser to http://local-
host:9092 (opening on the same machine). The HTML adapter should display
the Agent View in your browser. The Agent View should show you three MBeans:
the adapter, the connector, and MBeanServerDelegate. (In fact, you could use this
agent to redo the HelloWorld example in chapter 2.)

Connecting to the agent with an RMI client

To test the RMI connector, you need to write a little program to use an RMI client
that reaches the agent. You’ll take the Helloworld MBean from chapter 2 and
register it in the agent by using an RMI client. Listing 3.7 shows the Helloworld-
setup class, which does just that. You'll use setup classes like this one throughout
the book to register other MBeans, so this won’t be the last time you see this type
of simple program.

http://localhost:8082
http://localhost:8082

Running the agent ‘ 61

Listing 3.7 HelloWorldSetup.java

package Jjmxbook.ch3;

import javax.management.*;
import jmxbook.ch2.*;
import com.sun.jdmk.comm.*;

public class HelloWorldSetup
{
public HelloWorldSetup ()
{
try
{
RmiConnectorClient client = RMIClientFactory.getClient();
ObjectName hwName = new
ObjectName ("JMXBookAgent :name=helloWorld") ;

client.createMBean ("jmxbook.ch2.HelloWorld",
hwName) ;

client.invoke (hwName, "printGreeting", null, null);
}
catch(Exception e)
{
e.printStackTrace();

}

public static void main(String args[])
{
HelloWorldSetup setup = new HelloWorldSetup ();

Just a reminder: don’t worry about the particulars of the RMI client right now.
Keep in mind that it lets you invoke the methods of the MBean server contained
in the JMX agent. For instance, in the setup class, you invoke the createMBean ()
and invoke () methods. Both of these methods correspond directly to methods in
the MBeanServer APIL.

Because the agent is already running, compile and run the setup class. You
should see the following output:

TYPE = SUN RMI

PORT = 2099

HOST = t8100x0232

SERVER = name=RmiConnectorServer

Looking at the agent output, you should see an additional line:

Hello World! I am a Standard MBean.

62 CHAPTER 3
Building a foundation

3.6 Summary

In this chapter, we laid out the basis for many of the future examples in the book.
By creating the JMxBookAgent and RMIClientFactory classes, you will save time
and effort each time you need to use an example agent in later chapters. In addi-
tion, writing these classes provided the opportunity for us to introduce the RMI
connector, which you will also use in later chapters.

The agent you created in this chapter is very simple; it is on par with the sim-
ple agent created in chapter 2. However, the gMxBookAgent class is only in foun-
dation form for now; you will add to it as we progress to chapters that require the
agent to have more features.

With the groundwork laid for future examples, you are ready to move to
chapter 4. It begins the detailed discussion of MBeans by examining the Stan-
dard MBean type.

Part 2

Instrumenting
manageable resources

In part 1, you learned about the JMX architecture and how it provides a
simple, scalable management solution. Chapter 1 introduced you to the
power and benefits of JMX, and also described how JMX components work
together. You learned that JMX consists of three component layers: instru-
mentation, agent, and distributed. In chapter 2, you began using JMX for the
first time by constructing a working example using an MBean, a simple JMX
agent, and a simple notification. Now you are ready to begin dealing with each
component layer in more detail and depth.

Part 2 of this book explores the instrumentation layer. The four chapters in this
part of the book discuss different types of MBeans, as well as using notifications.

Chapter 4, “MBeans for Stable Resources,” covers the Standard MBean. In
this chapter, you will learn how to create and use Standard MBeans. Chapter 4
uses Standard MBeans to demonstrate how you can use MBeans to make your
applications more componentized and configurable.

Chapter 5, “MBeans for Changing Resources,” discusses the Dynamic
MBean. In this chapter you will learn the differences between Dynamic and
Standard MBeans, and how to create your own Dynamic MBeans. The exam-
ples in this chapter are centered around other Java technologies such as
Enterprise JavaBeans and the Jini network technology.

Chapter 6, “Communication with MBeans Using Notifications,” interrupts
the coverage of MBeans to discuss using JMX notifications. In chapter 6, you

64

PART 2
Instrumenting manageable resources

learn more about notifications and the important role they play in the life of
MBeans and application management.

Chapter 7, “MBeans on-the-fly,” covers the Model MBean. The Model
MBean is provided with a JMX implementation. You don’t create the Model
MBean class; rather, you instantiate it and configure it at runtime.

MBeans for
stable resouwrces

Understanding common development rules for
all MBeans

Examining rules specific to developing Standard
MBeans

Using the Standard MBean development
patterns

Exploring Standard MBean examples

65

66

4.1

4.1.1

CHAPTER 4
MBeans for stable resources

In this chapter, we will discuss the simplest type of MBean: the Standard MBean.
You created this type of MBean in chapter 2. Standard MBeans are intended for
resources that have well-known, stable interfaces. This chapter shows how you
can use Standard MBeans to configure application resources (a log utility and
application properties) and to break applications into components. If you need
the quickest way to implement a resource, the Standard MBean is for you. Stan-
dard MBeans expose a resource with an explicitly declared management inter-
face that is unchanging.

In addition, because this is the first of three chapters on MBean types, we also
discuss some of the common construction rules of all types of MBeans. After
completing this chapter, you will know much more about Standard MBeans,
including how to write them and when to use them.

Laying the MBean groundwork

As we just hinted, before diving into a discussion about writing Standard MBeans,
we first need to describe certain traits that are required across all MBean types.
Whether you are coding a Standard or Dynamic MBean, you must follow certain
rules. After covering these common rules, we will explore the unique traits of a
Standard MBean.

Common coding rules for all MBeans
When developing any MBean, you must adhere to the following rules:

= An MBean must be a concrete Java class. A concrete class is a Java class that is
not abstract, and can therefore be instantiated. Remember from chapter 2
that you dynamically loaded the Helloworid MBean into your simple JMX
agent using the HTML adapter. For the agent to successfully create the
MBean using reflection, the class name you used had to correspond to a
concrete class.

= An MBean must have a public constructor. No additional rules apply to the
constructor other than that it must be public. It can have arguments—and
the class can contain as many constructors as needed.

= An MBean must implement either its own MBean interface or the javax.man-
agement .DynamicMBean interface. An MBean interface is any interface that
follows a naming scheme classNameMBean. We will cover MBean interfaces
thoroughly in this chapter. MBeans using an MBean interface are Stan-
dard MBeans.

4.1.2

Laying the MBean groundwork 67

A Standard MBean is an MBean that implements its own MBean interface. As
mentioned earlier, the Helloworld MBean from chapter 2 was a Standard MBean.
It was a concrete class, had a public constructor, and implemented an interface
named HelloWorldMBean.

Enabling notifications

In addition to following the three rules we just listed, all MBeans can optionally
implement the javax.management .NotificationBroadcaster interface. This inter-
face allows MBeans to send notifications to interested listeners. Notifications are
Java objects sent from JMX components to other objects that have registered as
notification listeners. MBeans that implement the NotificationBroadcaster
interface gain methods that allow objects to register with them to receive notifica-
tions. The notification delivery mechanism is very similar to the Java event
model, and is covered in chapter 6.

Using Standard MBeans

Now that you know the rules that all MBeans must follow, let’s more closely exam-
ine the Standard MBean. The Standard MBean is an MBean that uses an explic-
itly declared management interface to interact with a manageable resource. A
management interface is the set of methods and attributes exposed by an MBean
that management applications can use to manage a resource (via an MBean).

Standard MBean attributes are class members exposed for management by
the use of getter and seiter methods. Standard MBean operations are the public
class methods in addition to the getters and setters. Operations and attributes
are discovered by introspection at the JMX agent level.

Once created, the Standard MBean’s management interface does not change.
In addition, more than any other MBean type, it embodies one of the major ben-
efits of using JMX: it is simple. Standard MBeans should be used when the inter-
face to a managed resource is well defined or unlikely to change.

For example, Standard MBeans are good for resources that are still being
developed, because the resource will have a well-known interface and the man-
agement interface can be written explicitly. If you plan to use an MBean to
expose part of a new application in development, you should use a Standard
MBean. The MBean is simple to develop, and you can create it concurrently
with your application. In chapter 5, you will learn about writing MBeans that
are not as straightforward as the Standard MBean. In the following sections,
you will see that the Standard MBean is the simplest way to expose a resource
for management.

68

CHAPTER 4
MBeans for stable resources

4.2 Composing the standard management interface

4.2.1

All information about an MBean must be gathered from its management inter-
face. In the previous section, you read that an MBean must implement an
MBean interface or the javax.management .DynamicMBean interface. Standard
MBeans are MBeans that implement a user-developed MBean interface.

An MBean interface is any interface that follows the naming convention
XMBean, where X is some implementing class name (for example, printerMBean).
An MBean interface declares methods that expose the attributes and operations
of a manageable resource.

NOTE One item of importance is that your MBean interfaces must be in the same
package as your implementation class. For example, if the PrinterMBean
interface was in the package jmxbook.ch6 and the Printer class was in
jmxbook . ch4, then you would not have a valid MBean.

Remember that a management interface includes the set of attributes and opera-
tions exposed by an MBean, allowing management applications to use the
MBean. In addition, a management interface includes an MBean’s constructors
and notifications. The following section covers the composition of an MBean’s
management interface.

Components of the management interface
The management interface of an MBean is composed of the four following items:

m Its public constructors

m Its attributes

» Its operations

» Its notifications
The next few sections cover the details of each of the four components of the
management interface of an MBean. The description of the management inter-
face pertains to all types of MBeans. MBeans differ in the way the management

interface is exposed, but all management interfaces are composed of the same
four parts.

Public constructors
As you witnessed in chapter 2 when using the HTML adapter via a web browser,
MBeans can be dynamically loaded into JMX agents. Agents do this using any of

Composing the standard management interface 69

the public constructors exposed by the MBean. Constructors are included in the
definition of the management interface because a particular constructor could
define specific behavior over the life of the MBean object. For instance, one con-
structor may tell the MBean to log all of its actions, and another may make it
silent. Any way of altering the behavior of an MBean is included as part of its
management interface. For Standard MBeans, agents must use introspection to
discover the public constructors.

Attributes

Attributes are a vital part of the management interface of an MBean. The
attributes describe the manageable resource. Remember, a manageable resource
is some application or resource exposed for management by an MBean. For
instance, an MBean managing a device such as a printer might have attributes
for the number of paper trays, job counts, and so forth.

With Standard MBeans, you expose attributes by declaring getter and setter
methods. For an attribute JobCount of a printer MBean, there would be a method
getJobCount (). Recall from chapter 2 that getter methods define read access to
an attribute, and setter methods define write access. If both a setter and a getter
exist, the MBean grants read/write access to that attribute.

Operations

Operations correspond to actions that can be initiated on the manageable
resource. For Standard MBeans, exposed operations are simply the remaining
operations that are not getters or setters. Staying with the printer example, in an
MBean managing a printer, you might find an operation like cancelPrintJob ().
Operations are methods like any other; they can have multiple parameters and
optionally return a value.

Notifications

Notifications allow MBeans to communicate with registered listeners. You
encountered them in chapter 2 when you added a notification to the Hello-
world example.

In order to emit notifications, an MBean must implement the javax.manage-
ment .NotificationBroadcaster interface. This interface provides methods for
sending notifications, as well as methods for other objects to register as listeners
on the implementing MBean. We will skip notifications for now, but we cover
them in detail in chapter 6.

70 CHAPTER 4
MBeans for stable resources

4.2.2 Example: a printer MBean interface

Now that you understand the four major parts of a management interface, let’s
look at an example of an MBean interface. Recall that a user-defined MBean
interface indicates that an MBean is a Standard MBean.

The following is the MBean interface for an MBean managing a printer.
Look through it before reading further, and try to determine the attributes and
operations it exposes:

public interface PrinterMBean

{
public int getPrintJobCount () ;
public String getPrinterName () ;
public String getPrintQuality();
public void setPrintQuality (int value);
public void cancelPrintJobs () ;
public void performSelfCheck();

}

The printerMBean interface exposes three attributes and two operations. You can
tell this by visually examining the interface. JMX agents use a process called intro-
spection to read the interface. Introspection uses Java reflection to examine the
MBean interface to determine its attributes and operations. After discovering all
the public methods in this interface, the agent uses a small set of rules to deter-
mine what the MBean has exposed as part of its management interface.

To find attributes, a JMX agent looks for any method following the getat-
tributeName () Or setAttributeName () naming scheme. In addition to the getat-
tributeName () pattern, you can optionally use the form isAttributeName(),
which must return a boolean value. However, if an attribute is exposed with a get-
ter method, it cannot also have an s method. Setter methods also have a unique
rule: they cannot be overloaded. For example, this interface would be invalid if
the method setPrintQuality(String value) was added, because it would
imply that the attribute printguality has two different types: string and int.

WARNING When you're exposing attributes in a Standard MBean, remember that
Java is case sensitive. For example, the method setPrintQuality ()
exposes an attribute PrintQuality, whereas setprintQuality () ex-
poses a different attribute: printQuality.

Table 4.1 breaks down the PrinterMBean interface into the parts of the manage-
ment interface it exposes.

4.3

Standard MBean inheritance patterns 71

Table 4.1 The exposed attributes and operations of the PrinterMBean interface.
Attributes are defined by the getter and setter methods. The operations are the
methods that are not attributes.

Declared method Exposed part of management interface
getPrintJobCount () Attribute Print JobCount with read access
getPrinterName () Attribute PrinterName with read access
getPrintQuality () Attribute PrintQuality with read access
setPrintQuality (int value) | Attribute PrintQuality with write access
cancelPrintJobs () Operation cancelPrintJobs
performSelfCheck () Operation performSelfCheck

The two parts of a management interface that an MBean interface does not
describe are the public constructors and optional notifications. Notifications are
described by a separate interface, NotificationBroadcaster, and will be covered
later (in chapter 6). Public constructors are found in the class that implements
the MBean interface and are discovered by introspection at the agent level.

The MBean interface makes an MBean a Standard MBean. It follows the
normal interface rules of the Java language with respect to inheritance and so
forth. However, depending on the level at which the interface is implemented, a
different management interface may be created for an MBean. The following
section describes the different inheritance schemes you can use to create a Stan-
dard MBean.

Standard MBean inheritance patterns

As we've repeatedly mentioned, a Standard MBean is an MBean that implements
its own MBean interface. However, you need to be able to recognize the design
patterns associated with a Standard MBean. Most likely you have experience with
Java, and you understand the ability of Java classes and interfaces to extend
other classes and interfaces. However, what effect does subclassing have on the
management interface of a Standard MBean?

This section breaks down all the possible inheritance scenarios and explains
how each affects the management interface of a Standard MBean. The inherit-
ance patterns are presented in this book because they can affect the manage-
ment interface you are trying to create.

72

4.3.1

4.3.2

CHAPTER 4
MBeans for stable resources

PrirferidBaan
=it Pearplalit ety) v

Prnis

by i

Figure 4.1

The simplest case: direct implementation of an MBean interface.
The resulting management interface is the methods contained in
the PrinterMBean interface.

= Pt gl s iy vl e

Direct implementation of an MBean interface

The first scenario deals with an MBean that manages a printer. The pattern is
described by figure 4.1, which shows the printer class implementing the printer-
MBean interface described earlier.

This is the simplest scenario: a Standard MBean is created by implementing
its own MBean interface. The management interface for the printer class con-
tains the methods and attributes exposed in the interface printerMBean. In this
pattern, the printerMBean interface exposes only one attribute, printQuality (it is
write only).

Inheriting the management interface

Similar to the previous case, a valid MBean can be created by extending another
valid Standard MBean. Figure 4.2 depicts the copierprinter MBean.

PreterblBean

raptPrA AN Ty T i

Frineer [t

ity inl Figure 4.2

Inheriting a management interface by
extending another Standard MBean.
FREPTA A Ry P v FRETA A M Ry P s The CopierPrinter MBean will have
a management interface identical to
that of the Printer MBean.

4.3.3

Standard MBean inheritance patterns 73

In this case, the class CopierPrinter does not directly implement an MBean inter-
face. However, its super class, Printer, does implement the PrinterMBean interface.
The copierprinter class therefore is a PrinterMBean: it inherits the management
interface of its super class.

This technique is useful if you want to change the behavior of an MBean but
keep the interface unchanged. When you inherit the interface, you cannot add to
it, but you can override methods in order to provide a new implementation in
the subclass.

Keep in mind that the copierPrinter class must still follow the other MBean
rules. Thus it must not be an abstract class, and it must provide a public con-
structor because constructors cannot be inherited.

Overriding the management interface

The previous case mentioned overriding methods from an inherited MBean
interface implementation. This scenario shows you how to override a manage-
ment interface entirely with a new one (see figure 4.3).

Remember that one of the rules for writing an MBean is that it can only
implement a single MBean interface. However, notice in this case that both the
Printer and CopierPrinter classes implement an MBean interface. In this sce-
nario, the CopierprinterMBean interface replaces the management interface of
the PrinterMBean interface. The copierPrinter class still inherits the methods
and implementation from its super class, but JMX agents will not recognize those
methods as part of the copierprinter MBean’s management interface. Only the

P Bgan CopesrPraviersEsan
=sstPreiCra gy ni v = COER GO (T
| | Figure 4.3
1 1 Overriding a management
e T —— interface inherited from a
qaity il - super class. The
. management interface of
the CopierPrinter
asPria i iy A vl SMNCOMCTURCRT b e MBean is declared by the
" CopierPrinterMBean
interface. Nothing from the
super class or the
P — PrinterMBean interface

B MY Mgt is used.

74

4.3.4

4.3.5

CHAPTER 4
MBeans for stable resources

methods and attributes exposed by the CopierprinterMBean interface will be con-
sidered part of the management interface.

Extending the management interface

As you know, Java interfaces can extend other Java interfaces. This scenario pre-
sents the case when an MBean interface extends another MBean interface. The
resulting management interface exposed is the combined methods of both inter-
faces. Figure 4.4 illustrates this concept with the printer MBean.

Just as in the previous scenario, the printer MBean can implement only a
single MBean interface. However, the printerMBean interface can extend other
MBean interfaces, adding more management capability. In this scenario, the
Printer class is a PrinterMBean, not a DeviceMBean. This MBean’s management
interface includes the methods and attributes exposed by both the DeviceMBean
and PrinterMBean interfaces, because a JMX agent will consider them part of the
single MBean interface, printerMBean, implemented by the printer class.

Combination of extending and overriding

By combining the last few scenarios, you can create the case shown in figure 4.5.

Looking at the figure, you can see that the copierprinter class inherits its
management interface and implements its own MBean interface. In addition, the
CopierPrinterMBean interface extends the PrinterMBean interface. The resulting
management interface in this case is the same as the previous scenario. The man-
agement interface is always taken from the most closely related MBean interface.
This means that if an MBean interface is implemented directly, it takes prece-
dence over an inherited one. However, because CopierPrinterMBean extends

CarncehBaan Primtier M Esan
spetl O eveiieel. il o vl 4Pt S Uiy i1 voed
L)
1
i
Bririmt Figure 4.4
Creating an MBean interface by
L. W extending an existing MBean

interface. The Printer MBean
PGl B vl management interface is

L CTH, prvpitevel i) vioid composed of the methods from
both the DeviceMBean and
PrinterMBean interfaces.

4.3.6

Standard MBean inheritance patterns 75

Heria ") toria 9 e L mior ¥
Dryvicafdifagn ":] PrrgariiBoan] CopsarPrimterfd Baan
il COL# il Y] voad AP T F ey Sty 151 eled R ey TR EOunl) el
AN £
i i
1 1
Prifilar :I_ Copi P
“bmal Al
“Suplity. i uua::: rl-'-1
LEDL el imt LN, el im
Figure 4.5 =
Creating a management S HPTRPraity(y | ei) woed + ROy Counticount i) voed
interface by extending an sinll OO prenievel inl] vioid saprriCusliby{gually inf] vosd
existing MBean interface L COLmmirel) wvied
and extending a MBean.

PrinterMBean, the management interface of the copierprinter class includes the
attributes and operations from both MBean interfaces.

Extending a non-MBean interface

As we showed in section 4.3.4, the MBean interface can extend another MBean inter-
face. It can also extend a non-MBean interface. Figure 4.6 depicts such a scenario.

When an MBean interface extends another interface that is not an MBean
interface, the resulting exposed attributes and operations are determined by
both interfaces because the MBean interface inherits all the methods of its par-
ent. It does not matter that the pevice interface does not follow the MBean
interface naming pattern.

D Prrtec i Baan
el COLeveifievel inli womd +pl Prive Sty ooand: inii wvoed
1
]
CoguarPririas
by il Figure 4.6
ACDLewel int Creating an MBean interface by
extending a non-MBean interface.
=l Brirb s By inll void The CopierPrinter management
il L COH ervelibevel) wiid interface will be composed of
methods from both the Device and
PrinterMBean interfaces.

76 CHAPTER 4
MBeans for stable resources

4.4 Standard MBeans in action

In the previous section, you learned what it takes to write Standard MBeans. You
know they must be concrete classes, have at least one public constructor, and fol-
low certain inheritance patterns. You also learned the components of the man-
agement interface of a Standard MBean. At this point, you should be ready and
eager to see some code examples.

The Standard MBean is straightforward and simple: you don’t need to create
complex data structures or algorithms to create a Standard MBean. Therefore,
you should not have any problems understanding the examples presented in the
next few sections. These examples are intended to help you understand how
MBeans can be used in your own applications.

For this section, consider the application that contains its own instance of the
MBeanServer class, or embedded JMX agent. Remember, a JMX agent is a Java
class that acts as the container of MBeans. Agents have a small footprint and can
be included easily into an application. When you include a JMX agent, the appli-
cation can use MBeans for many purposes. This section describes using Standard
MBeans to make your applications configurable and componentized. Figure 4.7
illustrates this concept.

You won’t see any UML diagrams for the remaining examples in this chapter.
Each MBean example implements its own MBean interface as described in the
inheritance patterns in the previous section.

Pl Ly wlﬂﬂ
Bgprd Spresi ':* - LI:#:
a N i d
.
Bllean S | L
LI
IF i | el
L
W Figure 4.7
Embedding a JMX agent in an
application. The application
sttt Liyer contains its own MBean
server, which it can use to
L HTEL -
ek Axinghir contain components of

functionality. Doing so allows
it to use and register its own
MBeans.

Standard MBeans in action 77

4.4.1 Making applications easily configurable

In chapter 1, you read that one of the benefits of using JMX in your applications
is that it can make them more configurable. With JMX, you can expose APIs from
your application for management. By exposing certain operations, you can use
MBeans to expose the behavior of your application at runtime. In other words,
you can use MBeans to expose an API that configures your application. The con-
figuration ability will give your applications more flexibility and can possibly save
you downtime. The next section describes using MBeans to encapsulate your
application properties.

Managing application properties

Many applications are configured by loading a set of properties from the file
system. Unless the application chooses to monitor and reload the properties
file, it can only be refreshed by being restarted. For many applications, it’s not
feasible to stop and start just for a minor reconfiguration. Applications that
have the ability to be reconfigured during runtime are more flexible, powerful,
and long lasting.

The PropertyManager Standard MBean example manages a set of properties.
An application can acquire its configuration by using this MBean, and users can
update the configuration by connecting to the embedded JMX agent. The first
step in creating this MBean is to define its MBean interface:

package Jjmxbook.ch4;
import java.util.*;

public interface PropertyManagerMBean
{ public String getProperty(String key);
public void setProperty(String key, String value);
public Enumeration keys();
public void setSource(String path);
}
Now that you know how an MBean interface describes a Standard MBean’s man-
agement interface, look at the propertyManagerMBean interface to determine the
management interface it describes. Judging by the fact that there is a getProp-
erty () method and a setProperty() method, you might think the interface
exposes a readable and writable attribute. However, the get method in this case is
an operation, not an exposed readable attribute; a getter method cannot accept
arguments. Likewise, the setProperty () method is not really a setter method—set-
ter methods can take only a single argument. Therefore, although acceptable, this

78 CHAPTER 4
MBeans for stable resources

interface is misleading to a human reader. By definition, this interface exposes
only one (writable) attribute: source. All other methods are exposed operations.
Listing 4.1 shows the implementation of the propertyManagerMBean interface.

Listing 4.1 PropertyManager.java

package Jjmxbook.ch4;

import java.util.*;
import java.io.*;

public class PropertyManager implements PropertyManagerMBean

{

private Properties props = null;

public PropertyManager (String path)
{
try
{
//load supplied property file
props = new Properties();
FileInputStream f = new FilelInputStream(path);
props.load(f);
f.close();
}

catch(Exception e)

{

e.printStackTrace();

public String getProperty(String key)

{
return props.getProperty(key);

}

public void setProperty(String key, String value)

{
props.setProperty(key, value);

}

public Enumeration keys ()

{

return props.keys();

}

public void setSource(String path)
{
try
{
props = new Properties();
FileInputStream f = new FilelInputStream(path);

Standard MBeans in action 79

props.load(£);
f.close();

}

catch(Exception e)

{
e.printStackTrace();

}
}

}//class
||

This MBean is straightforward and exposes only the methods present in the
java.util.properties class. The only attribute, source, is used to reset the entire
properties set with a new properties file.

Properties are the most obvious way to use MBeans to make applications con-
figurable. However, you can also use an MBean to configure a single part of your
application, such as database access.

Configuring a DataSource

Many applications need the services of a database. Java applications use the
JDBC API to open database connections by creating a Connection object or by
acquiring Connection objects from a Datasource object. In both cases, it might be
useful to configure the creation of database connections. You can do so by encap-
sulating the acquisition of database connections inside an MBean.

The following example is a simple Standard MBean that acquires database
connections from a DataSource object. It gets the Datasource object by using a
Java Naming and Directory Interface (JNDI) lookup; it could just create the con-
nection directly, as well. The following is the MBean interface for the pBSource
MBean (to learn more about using JNDI or JDBC, go to http://www.javasoft.com):

package jmxbook.ch4;
import java.sql.*;

public interface DBSourceMBean

{
public void resetDataSource(String name);
public void setAutoCommit (boolean commit);
public boolean getAutoCommit ();
public Connection getConnection();

}

As you can see, the DBsourceMBean interface appears to expose one read/write
attribute, autoCommit, and one readable attribute, Connection. It also exposes an
operation, resetDataSource (). Listing 4.2 shows the bBsource class.

http://www.javasoft.com

80 CHAPTER 4
MBeans for stable resources

Listing 4.2 DBSource.java

package Jjmxbook.chi4;

import java.sql.*;
import javax.sqgl.*;
import javax.naming.*;

public class DBSource

{

private DataSource ds = null;
private boolean commit = false;

public DBSource(String JNDIName)
{
try
{
//lookup data source using JNDI
Context ctx = new InitialContext ();
ds = (DataSource) ctx.lookup(JNDIName) ;
}
catch(Exception e)
{

e.printStackTrace();

}

public void resetDataSource(String name)
{
try
{
Context ctx = new InitialContext ();
ds = (DataSource) ctx.lookup(name);
}
catch(Exception e)

{

e.printStackTrace();

}

public Connection getConnection () Expose

{ getConnection()
Connection con = null; operation
try

{
con = ds.getConnection();
con.setAutoCommit (commit);
return con;

}

catch(Exception e)

{

Standard MBeans in action 81

e.printStackTrace();
con = null;
return null;

}

public boolean getAutoCommit ()
{

return commit;

}

public void setAutoCommit (boolean commit)

{

this.commit = commit;

@ The getconnection () method is unique because the implementation class does
not contain a Connection attribute. In fact, it really returns a connection from the
DataSource object. The getConnection () method is more like an operation than
an exposed attribute. This situation illustrates again the importance of carefully
naming methods for an MBean interface—for example, perhaps you should
name this method acquireConnection (). By naming methods thoughtfully, you
can avoid misunderstandings.

Testing the PropertyManager MBean

Before moving to the next section, let’s run one of these MBeans in the JMxBook-
Agent agent from chapter 3. (As we've mentioned, you will use this agent class at
various times in the book.)

You can register an MBean into your agent two ways: you can use either the
HTML adapter or the Remote Method Invocation (RMI) connector. You have
already seen how to use the HTML adapter, so let’s take this chance to use the
RMI connector to register an MBean in the agent. To do so, you need to write a
simple setup class that contacts an instance of the JMxBookagent and registers an
MBean. Listing 4.3 shows a setup class to create the PropertyManager MBean.

Listing 4.3 PropertyManagerSetup.java

package jmxbook.ch4d;

import javax.management.*;
import com.sun.jdmk.comm.*;
import jmxbook.ch3.*;

public class PropertyManagerSetup

82

4.4.2

CHAPTER 4
MBeans for stable resources

public PropertyManagerSetup ()
{
try
{
RmiConnectorClient client = RMIClientFactory.getClient ();
ObjectName propertyName = new
ObjectName ("JMXBookAgent :name=property");

client.createMBean ("jmxbook.ch4.PropertyManager",
propertyName);

}
catch(Exception e)
{

ExceptionUtil.printException(e);

}

public static void main(String args[])
{

PropertyManagerSetup setup = new PropertyManagerSetup();
}

The setup class uses the rRMIClientFactory class to acquire an RMI client with
which to contact your agent. Using the client, it invokes the createMBean ()
method of the MBeanserver. When you used the HTML adapter in chapter 2, you
caused the same thing to happen by using the browser.

Before you run the setup class, make sure you have an instance of the Jmx-
BookAgent running—use the following command to do so:

javac Jjmxbook.ch4.JMXBookAgent

After the agent successfully starts, execute the PropertyManagerSetup class to cre-
ate your PropertyManager MBean. Open your web browser to the address of the
agent’s HTML adapter, and you will see the new MBean registered in the agent.

The propertyManager and DBsource MBeans are both good examples of using
MBeans to make an application more configurable. The next section deals with
making an application componentized.

Breaking applications into components

Chapter 1 explains that it is possible to use JMX to break applications into man-
ageable components. Componentization is a development method that defines
interfaces between components of an application, allowing their implementa-
tions to be changed or even replaced. With Standard MBeans, you can define

Standard MBeans in action 83

unchanging MBean interfaces that an application uses to access certain imple-
mentations of functionality it needs. With the MBean interfaces staying the same
over time, you can change the MBean implementation as needed, preserving
access to the functionality. The next example demonstrates this concept.

Abstracting a data layer

We already showed how an application can encapsulate the creation of data-
base connections. Taking that concept a little further, an application can
abstract its entire data access layer by using JMX. Figure 4.8 illustrates the data
abstraction concept.

This example is presented as a Standard MBean because it would be devel-
oped with a well-known interface. It would be developed along with the applica-
tion, and its interface could be defined in advance. For this scenario to work, the
application needs to send and receive data to the data layer in a form indepen-
dent of the persistence mechanism. The interface to the data layer is dependent
on the application, so a full code example is not too useful. However, you could
expect the interface to resemble something like the following:

el o] it e Dibsed. edei

L= E g FRDE VRl R T DO 280
[T S A B SR S T
L L o - Figure 4.8
Dot WE2an Abstracting a data layer using
JMX. A Standard MBean
] shields the application from
B9 O the actual implementation of

. o the data layer.

84

CHAPTER 4
MBeans for stable resources

public interface DatalayerMBean

{
public boolean insertData(Object data);
public boolean updateData(Object data);
public boolean deleteData(Object data);
public boolean retrieveData(Object data);
}
The data object should contain enough information for the persistence imple-

mentation to fulfill its task.

The logging MBean

Up to this point, the examples have pertained to Java resources such as proper-
ties and JDBC connections. One example had to do with application configura-
tion, and the other introduced MBeans as components of an application. The
final example of this section combines these concepts.

Most applications use logs to keep records of activity and occurrences of

errors. In many cases, the log file also records developer debug statements for
possible analysis. Like data repositories, logs can be kept in many different
forms, such as a flat file or a database. By writing an MBean, you can both com-
ponentize the application’s logging system and expose the logging system to a
management tool. Exposing the logging mechanism allows you to tune it for cer-
tain behavior. For instance, using a management tool, you can tell the logging
MBean to record only critical errors.
By defining the log system as an MBean, you not only encapsulate its implemen-
tation, but also expose it for configuration. The following example creates such
an MBean. First, let’s look at its MBean interface, LoggerMBean. As you know, the
interface describes the MBean’s exposed attributes and operations:

package Jjmxbook.chi4;

public interface LoggerMBean
{
public void setLogLevel(int level);
public int getLogLevel () ;
public String retrievelLog(int linesback);
public void writeLog(String message, int type);

}

"Table 4.2 describes the management interface exposed by the LoggerMBean interface.

Standard MBeans in action

Table 4.2 The parts of the LoggerMBean interface. Attributes are
described by the getter and setter methods, and operations are
described by the remaining methods.

Declared method Part Description
setLogLevel () Attribute Declares write access to LogLevel
getLogLevel () Attribute Declares read access to LogLevel
retrievelog () Operation Declares an exposed operation
writeLog () Operation Declares an exposed operation

85

The Logger class implements the LoggerMBean with a flat-file implementation.
Listing 4.4 shows the Logger class.

Listing 4.4 Logger.java

package Jjmxbook.chi4;

import javax.management.*;

import java.io.*;
import java.util.*;

public class Logger implements LoggerMBean

{

public static final
public static final
public static final

private PrintWriter

private int logLevel

public Logger ()

{
try
{

int
int
int
out

ALL = 3;
ERRORS = 2;
NONE = 1;
= null;

Logger.ALL;

//open the initial log file

out = new PrintWriter (
new FileOutputStream
("record.log "));

}

catch(Exception e

{

)

e.printStackTrace();

}

public void setLogLevel (int level)

{
logLevel =

level;

86

4.4.3

CHAPTER 4
MBeans for stable resources

public int getLogLevel ()
{
return logLevel;

}

public String retrievelLog(int linesback)
{

//implementation here

return null;

}

public void writelLog(String message, int type)
{
try
{
if(type <= logLevel)
out.println(message);
}
catch(Exception e)
{
e.printStackTrace();
}
}

}//class
||

Breaking applications into components as Standard MBeans is a valuable develop-
ment advantage. In this manner, you can keep the interfaces between components
stable, and shield the application from the implementation of specific functionality.
Once the implementation is hidden, changing it will not impact the application.
For example, if an application was using a logging MBean like the previous exam-
ple, the logging implementation could persist messages to a file or a database. Nei-
ther method affects how an application would access its logging functionality.

MBeans using other MBeans

In the past two sections, we have discussed using Standard MBeans to compo-
nentize and configure your applications. We presented each of these concepts
with a single MBean: you used an MBean to manage a property set that an appli-
cation could use to access application settings, and you also used an MBean to
handle an application’s logging functionality.

You have created an application that uses MBeans to handle its configura-
tion and certain components. However, as part of the application, the MBean
components should have access to the configuration of the application. In this
scenario, your MBean components need access to another MBean. Figure 4.9
illustrates this concept using the Logger MBean and propertyManager MBean.

Standard MBeans in action 87

= =
ettt |Laye: Applicaticn
Conrecion Adapien Lﬂ'ﬂ".’-
-
a3 - b
Sgent Sernce Q &
| Figure 4.9
The Logger MBean accessing
A ran SrE -

the PropertyManager
- - % MBean. The Logger class can
use another MBean because it
has a reference to the MBean
server. It acquires this
reference by implementing the
MBeanRegistration
interface.

Progrtyblsnage

WiBeas Liogeyei Wikl

For one MBean to use another MBean, it must be able to contact the MBean
server. You could pass in an MBean as a parameter to another’s constructor, but
you don’t want to create an unnecessary dependency on the MBean. You can
implement an MBean to contain a reference to its MBean server two ways:

» Construct the MBean with an MBean server parameter.

» Implement the MBeanRegistration interface.

This section discusses the MBeanRegistration interface. This interface declares
methods that are invoked before and after registration and deregistration on the
MBean server. The following is the MBeanRegistration interface:

package javax.management;

public abstract interface MBeanRegistration
{
public void postDeregister();
public void postRegister (Boolean registrationDone);
public void preDeregister();
public ObjectName preRegister (MBeanServer server,
ObjectName name);
}
This interface contains two methods that are called in conjunction with the
MBean’s registration on a MBean server, and two methods that are called with
deregistration. These methods are invoked by the MBeanserver instance that is
being asked to perform the registration or deregistration of a particular MBean
instance. For example, if the Helloworid MBean from chapter 2 implemented
this interface, the MBean server would perform the following tasks when asked

by the HTML adapter to create another Helloworld MBean instance:

88

CHAPTER 4
MBeans for stable resources

1 Create the MBean instance using the appropriate constructor.
2 Invoke the preregister () method.
3 Register the MBean instance.

4 Invoke the postRegister () method.

The postRregister () method is invoked with a Boolean value passed as a parame-
ter. This value indicates whether the registration of the MBean was successful. If
the value is true, registration succeeded. The preregister () method allows the
MBean to find and use other MBeans. It takes two parameters: an MBeanServer
instance and an ObjectName instance. If the objectName parameter is passed as
null, the method should return an appropriate 0bjectName value to use with the
registration of this MBean.

Revisiting the Logger MBean, listing 4.5 shows how to implement the MBean-
Registration interface to provide the Logger class with a mechanism to get the
initial values for its attributes. The changes from the previous Logger MBean
class (listing 4.4) are shown in bold.

Listing 4.5 Logger.java

package Jjmxbook.ch4;

import javax.management.*;
import java.io.*;
import Jjava.util.*;

public class Logger implements LoggerMBean, MBeanRegistration

{

public static final int ALL = 3;
public static final int ERRORS = 2;
public static final int NONE =1;
private PrintWriter out = null;

private int logLevel = Logger.ALL;
private MBeanServer server = null;

public Logger ()
{

try
{
out = new PrintWriter (
new FileOutputStream (
"record.log"));

}
catch(Exception e)
{

e.printStackTrace();

Standard MBeans in action

}

public void setLogLevel(int level)
{
logLevel = level;

}

public int getLogLevel ()
{
return logLevel;

}

public String retrieveLog(int linesback)
{

//implementation here

return null;

}

public void writeLog(String message, int type)
{

try

{

if(type <= loglevel)
out.println(message);

}

catch(Exception e)

{

e.printStackTrace () ; Implement

MBeanRegistration
} interface
public void postDeregister() {}

public void postRegister(Boolean registrationDone) {}
public void preDeregister() {}

public ObjectName preRegister(
MBeanServer server, ObjectName name)

this.server = server;
try
{

ObjectName namel = new ObjectName (

"JMXBookAgent : name=props");

Object[] params = { "loglevel" };

String[] sig = { "java.lang.String" };

String value = (String)

server.invoke (namel, "getProperty", params, sig);
logLevel =
Integer.parselnt (value);

}
catch(Exception e)
{ \Y

89

90

CHAPTER 4
MBeans for stable resources

e.printStackTrace();
loglLevel = 0;
}

return name;

}

}//class
||

@ The methods that appear in bold are declared in the MBeanRregistration interface.

4.5

For the first three, the Logger MBean did not provide an implementation. How-
ever, the preregister () method is implemented to get its initial logLevel attribute
value from a propertyManager MBean present in the MBean server passed in as an
argument to this method.

To find the value for the 1ogLevel attribute, the Logger MBean must invoke the
getProperty () method of a registered propertyManager MBean. For this example,
the Logger MBean assumes that the object name Helloagent :name=props will cor-
respond to a PropertyManager MBean. In the code, the appropriate method signa-
ture is created to allow the MBean server to invoke the getProperty () method.
The Logger MBean invokes the MBean server’s invoke () method with the appro-
priate parameters.

WARNING When you're creating an MBean that depends on the existence of an-
other MBean, you need to implement some default behavior in case the
necessary MBean does not exist. For example, the Logger MBean must
ensure that its attributes have appropriate values if an exception occurs
when invoking methods on the PropertyManager MBean.

The MBeanRegistration interface is useful for acquiring a reference to the con-
taining MBean server. In addition, because it declares methods that are invoked
before an MBean is removed from the MBean server, implementing MBeans can
be informed when to clean up resources before the MBean is removed from the
MBean server.

Handling MBean errors

In each example in this chapter, there is an opportunity to catch an exception.
Each MBean contains a generic try-catch statement:

4.5.1

Handling MBean errors 91

try
{

//code
}

catch(Exception e)

{

e.printStackTrace();

}

You can see the drawbacks of this approach. Imagine you are using management
software to configure the propertyManager MBean you created in section 4.3.1.
You create that MBean by specifying a path to a properties file. During construc-
tion, the MBean attempts to open a file with that path and load it into a proper-
ties object. If that file does not exist, an exception is thrown and basically
ignored. From the management tool, you would never know what had occurred,
and your application’s configuration would be in error.

To adequately manage an application, you must know if your management
actions succeed or cause errors. Fortunately, JMX provides a way to avoid the sit-
uation we just described, by supporting runtime and declared exceptions.
Declared exceptions are declared in a throws statement. Runtime exceptions are
not expected and are not required to be in a try-catch statement.

Exceptions in JMX occur in two categories. First, exceptions occur as agent-
level components (such as MBeanServer) perform operations on an MBean. For
example, registration, lookup, and invoking methods on an MBean instance fall
into this category. Second, exceptions occur as defined by MBean code. These
include Java language exceptions and user-defined exceptions.

JMX supports a mechanism for handling exceptions in a meaningful way. The
last sections of this chapter discuss exceptions at the MBean level.

Throwing exceptions

Figure 4.10 depicts the class hierarchy for JMX exceptions. The main class is
JMException; all others are subclasses of it. It has three subclasses: operationsEx-
ception, ReflectionException, and MBeanException. Each of these exception
types has subclasses, as well.

You can see that JMX exceptions at the MBean level are broken down into
three categories, extending from one of three super classes:

m OperationsException—Subclasses define exceptions that occur when
invoking operations on an MBean.

m ReflectionException—Wraps standard reflection exceptions of the Java
language that occur when working with MBean classes.

92

CHAPTER 4
MBeans for stable resources

I Cippratorslyoepbon | I HefinctonDmephicn I I ilsarfaceptnon |
MF o ml

Corw Jwen Encagifions
| rstwrcebiaFansEoomnon |
| erooetontueton | ([Cwstictf corafiucegion |
it brte ot romcton | [_eepetcconticepton | bvvy Entamien
i I Throan by s eifiewn

Liridera Pl F i comoba I v gk b Ex oo !
I | | HeSwniassE e |
[atargaseeanfaceea |
|_Sessaiasatsntn | Figure 4.10 JMX exception hierarchy

m MBeanException—Wraps any other (user-defined or standard) exceptions
thrown from an MBean. The MBean server constructs and throws this
exception when an unknown exception is thrown by an MBean.

Table 4.3 describes the remaining exceptions. All these exceptions will propagate
from the MBean server, because it is the object that will detect (and possibly
wrap) the condition that causes a problem. Again, not all subclasses of JMExcep-

tion are listed here.

Table 4.3 JMX exceptions

Exception

Description

AttributeNotFoundException

Thrown when a specified attribute cannot be found (does
not exist for the MBean specified)

InvalidAttributeValueException

Thrown when the specified attribute contains an invalid
value for that attribute

InstrospectionException

Thrown if an error occurs when the MBean server is examin-
ing the management interface of an MBean

NotCompliantMBeanException

Occurs when attempting to register an MBean, if the MBean
does not follow the applicable rules

Table 4.3 JMX exceptions (continued)

Handling MBean errors 93

Exception

Description

MBeanRegistrationException

Wraps exceptions thrown by the preRegister () and
preDeregister () methods of the MBeanRegistra—
tion interface

ClassNotFoundException

Thrown if the MBean server cannot find a specified MBean
class when creating an MBean

InstantiationException

Thrown by the newInstance () method from the Class
class when trying to create an MBean instance

IllegalAccessException

Thrown by the Class. forName () method when the
MBean server is trying to create an MBean instance

NoSuchMethodException

Thrown when trying to invoke a non-existent method on an
MBean

4.5.2 Runtime exceptions

Runtime exceptions are handled in the same manner as other exceptions. Oper-
ations performed on MBeans occur in a try-catch statement inside the JMX
agent, allowing the agent to catch any runtime exceptions and wrap them in a
JMX exception. The JMX framework defines a subclass of java.lang.RuntimeEx-
ception called JMRuntimeException. In JMX, there are subclasses for runtime
exceptions at the agent level and the MBean level. Figure 4.11 shows the class

|_ v ling FoertemeE ssapman |

| AR e E b pl I
hmnwwﬂ.m] l HartieslrorE e | l i iSeatiL piepten I
Corw Jvn Wuriere Droapiiors
| Ll-mrm |
| Iradrar Dol s posian |
I r— T I Hery e Ly F o #gp Fa s
Treman by 5 MifEan Treman by w0 Bilman

Figure 4.11 JMX runtime exception hierarchy

94

4.6

CHAPTER 4
MBeans for stable resources

hierarchy of the JMX runtime exceptions for the MBean level. Note that JMX
wraps both runtime errors and runtime exceptions in its own runtime exception.

Like JMX exceptions, JMX runtime exceptions at the MBean level are broken
down into three categories:

® RuntimeOperationsException—Wraps Java runtime exceptions that occur
during operations on an MBean

® RuntimeErrorException—Wraps standard runtime errors of the Java lan-
guage that occur at the MBean level

® RuntimeMBeanException—Wraps any other (user-defined or standard) run-
time exceptions thrown from an MBean

Summary

This chapter introduced the Standard MBean. The Standard MBean uses an
explicitly declared management interface to interact with a manageable
resource. The explicitly declared interface—the MBean interface—makes the
Standard MBean a static, unchanging MBean used for well-known or pre-
defined resources.

The examples in this chapter covered the three following topics:

n Configuration—Using MBeans to make your applications more configurable.
The example was a Standard MBean used to manage a properties object.

n Componentization—Using MBeans to break your applications into compo-
nents, allowing you to alter or replace component implementations. The
Logger MBean demonstrated this concept.

» MBeans using MBeans—Combining both previous concepts, the Logger MBean
used the PropertyManager MBean to initialize one of its member variables.

At the end of this chapter, you got your first look at the exception hierarchy for
exceptions that occur when working with MBeans. JMX provides exceptions for
many situations that may occur when reflecting upon or invoking MBean
objects. In addition, JMX provides other exception classes to wrap core Java
exceptions and user-defined exceptions.

Chapter 5 introduces the Dynamic MBean. The Dynamic MBean is used to
manage evolving resources in situations where the Standard MBean may not
be appropriate.

MBeans for
changing resources

Exploring rules for creating Dynamic MBeans

Understanding dynamic MBean development
patterns

Using the MBean metadata classes
Managing a Jini service

95

96

5.1

5.2

CHAPTER 5
MBeans for changing resources

You learned in chapter 4 that Standard MBeans are perfect for managing new
resources or resources with well-known, static interfaces. Unfortunately, we all
know that resources often evolve over time. Indeed, certain APIs may vary with
each release.

Standard MBeans are not well suited for these situations because of their
explicitly declared management interfaces. However, the Dynamic MBean is
ideal for handling such cases because it defines its management interface at
runtime in a generic fashion. Dynamic MBeans use metadata classes to describe
their management interfaces. As a developer, you decide how much or how little
of a resource to expose by describing it with the metadata objects.

In this chapter, you will manage a Jini service with a Dynamic MBean. The
MBean will be responsible for changing how the Jini service advertises itself
across a network. In addition, you will provide a Dynamic MBean super class to
provide some code reuse for generating the metadata descriptions of future
resources. After reading this chapter, you will know how to build and when to use
Dynamic MBeans.

Working with the DynamicMBean interface

JMX agents recognize Dynamic MBeans because they must implement the
javax.management .DynamicMBean interface. Recall from chapter 4 that MBeans can-
not implement both their own MBean interface and the DynamicMBean interface.
This limitation ensures that an MBean cannot be both Standard and Dynamic.
The DynamicMBean interface is a predefined, standard interface that allows MBeans
to describe their management interface at runtime. Remember that an MBean’s
management interface is the group of attributes, operations, constructors, and
notifications that it exposes, enabling the management of a resource.

Because the interface to a Dynamic MBean does not change, you can use
Dynamic MBeans to shield other applications from the evolving interface of a
manageable resource. Figure 5.1 illustrates this scenario.

The best place to begin this chapter is a discussion of the javax.manage-
ment .DynamicMBean Interface. The next section breaks down the interface and
examines its methods one by one.

Examining the DynamicMBean interface

To be a Dynamic MBean, a class must implement the dynamicMBean interface. As
previously mentioned, the bynamicMBean interface declares predefined methods
that let an MBean expose the interface to its manageable resource at runtime. By

Examining the DynamicMBean interface 97

At |y

ErASTLTRET e L

GELA St e g e bt

el it Bimbe e abinbase| e —
[Progocal
Witea- - gueAiiteaesi S]] atirieies) e N
u AT D A B b Al Bl
L —
D.“li:. A=
Liyer Figure 5.1
R A Dynamic MBean insulating
Plnm— A erpinad an evolving implementation.
Mlarsged Hegsrcs TEETETEY-IWERT Y The interface to a Dynamic

Vieraash 3 MBean does not change, so

. 3, it can shield the changes to
a resource from a manage-
ment tool.

defining the management interface at runtime, Dynamic MBeans are flexible
enough to handle dynamic and evolving resources. The following code listing
shows the DynamicMBean interface. Notice that it contains methods for handling
attributes and operations, and for acquiring a description of the MBean:

package javax.management;

public interface DynamicMBean

{
public

public

public

public

public

public

Object getAttribute(String attribute)
throws AttributeNotFoundException, MBeanException,
ReflectionException;

void setAttribute(Attribute attribute)
throws AttributeNotFoundException,
InvalidAttributeValueException,
MBeanException,
ReflectionException;

AttributelList getAttributes(String[] attributes);
Attributelist setAttributes(AttributelList attributes);

Object invoke(String actionName, Object[] params,
String[] signature) throws MBeanException,
ReflectionExceptionn

MBeanInfo getMBeanInfol();

98

5.2.1

5.2.2

CHAPTER 5
MBeans for changing resources

The next several sections discuss the methods declared in this interface. You
might recognize some of the exceptions thrown by these methods from table 4.3
in chapter 4.

Acquiring the dynamic management interface

The DynamicMBean interface exposes the management interface of a resource in a
generic manner by using a standard JMX class: MBeanInfo. JMX agents use the
getMBeanInfo () method to get the description of the management interface of a
Dynamic MBean.

Unlike Standard MBeans, Dynamic MBeans do not use explicitly declared
methods to expose their management interface. Instead, the management inter-
face is described by the MBeanInfo value returned from the getMBeanInfo ()
method at runtime. The MBeanInfo object is used as a container for standard
JMX objects that describe various portions of the MBean’s management inter-
face. Therefore, the MBeanInfo instance contains all the information needed for a
management tool to interact with the managed resource.

NOTE Internally, the MBean server either acquires or constructs an MBeanIn-
fo object for each MBean it contains. These objects aid the MBean serv-
er when it needs to perform operations on its MBean.

We will closely examine the javax.management.MBeanInfo object shortly. First, we
need to finish discussing the methods of the bynamicMBean interface.

Working with dynamic MBean attributes

The last section revealed that the management interface of a Dynamic MBean is
described by the return value of its getMBeanInfo () method. However, once you
acquire the management interface, you still need the ability to access attributes
and invoke operations. Because Dynamic MBeans define their management
interface at runtime, there can be no explicit setter or getter methods for an
exposed attribute.

In order for Dynamic MBeans to provide support for managing attributes,
the DynamicMBean interface must provide a generic way of getting and setting any
exposed attributes. The DynamicMBean interface has the following methods for
getting attribute values: getattribute () and getAttributes (). In addition, it has
the following two setter methods: setattribute () and setAttributes ().

Examining the DynamicMBean interface 99

Getting attribute values
In order to get an attribute’s value, you need to know the name of the attribute.
This attribute name is provided in the MBeanInfo object returned from the getu-
BeanInfo () method. In the getattribute () method, you pass a single attribute
name. In the getattributes () method, you pass an array of attribute names.
The getattribute () method returns a value of type object in order to gener-
ically encapsulate the actual value of the exposed attribute. The other method,
getAttributes (), returns an instance of the AttributeList class. The attribute-
List class is a subclass of java.util.ArrayList and is a collection of Attribute
objects. Each attribute object encapsulates an attribute name and its value, and
provides support for an equals () method. Both AttributeList and Attribute
are in the javax.management package.

Setting attribute values
The setattribute () method accepts a single Attribute object as an argument. It
attempts to set the value of the MBean attribute with the name returned by the
getName () method from its attribute argument. The setattributes () method
acts exactly like setattribute (), but it operates over an AttributeList argument.

For all four methods, if an invalid attribute name is specified, an Attribute-
NotFoundException exception should be thrown. For the set methods, if an
invalid attribute value is specified, an InvalidAttributeValueException excep-
tion should be thrown. We say “should” because this is only an interface—the
actual implementation depends on the developer.

Before moving on, let’s summarize some of the information presented in
the last two sections. Table 5.1 provides a summary of setting and getting attrib-
ute values.

Table 5.1 Summary of information concerning setting and getting attribute values of
a Dynamic MBean

Dynamic MBean method Return value Incoming arguments
getAttribute () Object String attribute name
getAttributes () AttributelList String[] of attribute names
setAttribute () void Attribute
setAttributes () AttributeList AttributeList

Now, let’s move on and discuss how Dynamic MBeans expose operations.

100

5.2.3

5.3

CHAPTER 5
MBeans for changing resources

Invoking operations

So far, you have seen how to acquire the management interface from a Dynamic
MBean, and how to get and set attributes. The management interface is
described by the MBeanInfo object returned by the getMBeanInfo () method, and
attributes are managed via the getattribute(s)() and setAttribute(s)() meth-
ods. At this point, we need to explain how the DynamicMBean interface provides a
mechanism for invoking exposed MBean operations. Again, an MBean user
gains knowledge of MBean operations by first acquiring an MBeanInfo object by
invoking the getMBeanInfo () method of the Dynamic MBean.

For the same reason as attributes, operations cannot be explicitly defined by a
Dynamic MBean (its management interface is provided at runtime). Therefore,
another generic mechanism is needed to provide the ability to invoke Dynamic
MBean operations. The dynamicMBean interface declares the invoke () method to
provide such a mechanism.

The invoke () method takes three arguments:

® A string value containing the name of the method you want to invoke

® An array of object instances that are the parameter values to the method
being invoked

m An array of string values corresponding to the parameter class types of
the invoking method

The last two arguments (the arrays) contain their values in the order they appear
in the desired method declaration. For example, a method declared as setPrint-
Quality(Integer level) would be described with an array of one element con-
taining the Integer value, and another one-element array containing the value
java.lang.Integer. Dynamic MBeans analyze these arguments, invoke the
appropriate method, and return the result. The result of the underlying method
invocation is returned in the invoke () method as an object value.

Understanding the MBeanlinfo class

In the previous section, you learned the purposes of the methods of the pynamic-
MBean interface and how they are used to manage a Dynamic MBean. However,
the previous section only told you that the management interface of the MBean
is contained in the MBeanInfo object returned by the method getMBeanInfo().

5.3.1

Understanding the MBeanlInfo class 101

The MBeanInfo class is the container for other objects that describe portions
of the MBean’s management interface. The MBeanInfo class and the classes it
contains are collectively called MBean metadata classes.

The MBean metadata classes are created by Dynamic MBeans and also by the
MBean server. The MBean server uses these objects internally in order for it to
treat all MBeans equally regardless of the MBean type. In the case of Standard
MBeans, the MBean server uses introspection to create a set of metadata objects
that describe an MBean’s management interface. For other MBeans (like the
Dynamic MBean), the metadata objects are constructed by the MBean itself.

This section breaks down the MBeanInfo object and explains how Dynamic
MBeans use it to provide a description of their exposed management interface.

Metadata of the MBeanlinfo class

The MBeanInfo class is a standard JMX class containing classes that describe indi-
vidual parts of the overall management interface. Recall from chapter 4 that
management interfaces consist of exposed constructors, attributes, operations,
and optional notifications. The MBeanInfo contains a metadata object for each of
these parts. The following sections describe these metadata classes.

Table 5.2 identifies each metadata class and its corresponding management
interface part.

Table 5.2 The metadata classes and the parts of a management interface they rep-
resent. These classes are contained in the MBeanInfo object that is the return value
for the getMBeanInfo () method of the DynamicMBean interface.

Metadata class Exposed part of the management interface
MBeanFeatureInfo Super class to all other metadata classes
MBeanParameterInfo Arguments passed to methods and constructors
MBeanConstructorInfo Any exposed constructors
MBeanAttributeInfo Readable and writable attributes
MBeanOperationInfo Exposed MBean operations
MBeanNotificationInfo The notifications an MBean can emit

In addition to containing the metadata objects, an instance of MBeanInfo provides
the class name and description of the MBean. You can get these values by invok-
ing the getclassName () method or the getDescription () method. In fact, all the
metadata classes contain a description member variable that describes the meta-
data object. When writing Dynamic MBeans, you should use this description

102

5.3.2

5.3.3

5.3.4

CHAPTER 5
MBeans for changing resources

variable to adequately describe parts of the management interface. Management
software that interacts with your Dynamic MBeans can use the descriptions to
help users better understand how to use your MBeans.

The MBeanFeaturelnfo and MBeanParameterinfo classes

Before we examine the metadata classes that describe the management interface,
let’s look at their base class (MBeanFeatureInfo) and a support class (MBeanParam-
eterInfo). Every MBean metadata class is a subclass of the MBeanFeatureInfo
class. The class contains a name and a human-readable description of the fea-
ture. This ensures that every feature described by a subclass has both a name and
a description.

The MBeanParameterInfo class extends MBeanFeatureInfo and provides a
description of arguments to constructors and operations. MBeanParameterInfo
objects add a type field to the name and description fields provided by their
super class. The type field contains the name of the class type of a parameter.
With those three fields, you can adequately describe a method argument.

The MBeanConstructoriInfo class

The MBeanConstructorInfo class is a metadata class that describes a single
exposed constructor of an MBean. It is created by using a Constructor object
parameter or by using an array of MBeanParameterInfo objects that describe a con-
structor’s signature. Because a constructor is described solely by its signature, the
MBeanConstructorInfo class contains only one method (in addition to its inherited
methods)—getsignature (), which returns the constructor’s signature as an Array
of MBeanpParameterInfo objects. The following are the class’s two constructors:
public MBeanConstructorInfo(String description,

java.lang.reflect.Constructor
constructor)

public MBeanConstructorInfo(String name, String description,
MBeanParameterInfo[] signature)

The MBeanAttributelnfo class

The MBeanAttributeInfo class is a metadata class that describes an exposed
attribute of an MBean. Remember that attributes are exposed with readable
access, writable access, or both readable and writable access. In addition to
describing an attribute’s exposed access, the class contains the attribute’s name,
description, and type. The following are the two constructors for the MBeanat-
tributeInfo class:

5.3.5

Understanding the MBeanlInfo class 103

public MBeanAttributelInfo(String name, String description,
java.lang.reflect.Method getter,
java.lang.reflect.Method setter)

public MBeanAttributelInfo(String name, String type, String
description, boolean isReadable,
boolean isWritable, boolean isIs)
You create an instance of MBeanAttributeInfo by either specifying all the details
of an attribute (the second constructor) or passing in the Method objects for the
getter and setter methods for the attribute.

The constructor that accepts the Method arguments only uses them to get the
information it needs to describe the attribute. The Method parameters are not
stored for invocation when it is time to access the attribute.

Objects access information from an MBeanAttributeInfo class by calling one
of the provided convenience methods:

m getType ()—Returns the attribute’s class type (such as java.lang.String)

m isReadable ()—Returns a boolean value indicating whether this attribute
is readable

m isWiritable ()—Returns a boolean value indicating whether this attribute
is writable

m isIs()—Returns a boolean value indicating whether this attribute is acces-

sible using an is type method

The MBeanOperationinfo class

The MBeanoperationInfo class is the metadata class that encapsulates an opera-
tion exposed by an MBean. Just like some of the other metadata classes, it can be
constructed in two ways: by using a Method object or by passing in a signature and
a return value type. The following are its two constructors:

public MBeanOperationInfo(String description,
java.lang.reflect.Method method

public MBeanOperationInfo(String name, String description,
MBeanParameterInfo[] signature,
String type, int impact)
Notice that the second constructor takes an int argument called impact. The
MBeanOperationInfo class defines four public static final member variables
containing values for this argument. These values describe the impact of invok-
ing the specified operation:

104

5.3.6

CHAPTER 5
MBeans for changing resources

» 1NFO—The operation returns information, similar to a getter method.
» acrioN—The operation causes a change or action on the MBean.

m ACTION_INFO—The operation results in a combination of the InFo and
ACTION impact.

» uNkNOWN—The impact of the operation is unknown.

The MBeanoOperationInfo class provides a set of methods to access information
about the operation it describes. The getReturnType () method returns the class
type of the operation’s return value, returning void if the operation does not
have a return value. The get Impact () method returns an int value equal to one
of INFO, ACTION, ACTION_INFO, or UNKNOWN. Finally, the getsignature () method
returns an array of MBeanParameterInfo objects that describe the signature of the
exposed operation.

The MBeanNotificationinfo class

The final metadata class is MBeanNotificationInfo. This class describes the noti-
fications that a particular MBean can emit. We will avoid this class for now,
because it is covered in chapter 6. However, rest assured, it is much the same as
the previously described metadata classes.

Inheritance patterns

Unlike Standard MBeans, Dynamic MBeans cannot compose a management
interface by adding additional methods through different inheritance patterns.
This is true because the entire management interface of a Dynamic MBean is
exposed by the single method: getMBeanInfo () from the DynamicMBean interface.

An MBean is identified as being Dynamic if the DynamicMBean interface is
found anywhere up its inheritance hierarchy. Remember that MBeans cannot
implement both the DynamicMBean interface and their own MBean interface;
doing so will result in an exception when you attempt to register such an MBean.

Classes that extend a Dynamic MBean class have a special responsibility. As a
subclass to a DynamicMBean interface implementation, a class can pick and choose
which bynamicMBean methods to override. If a subclass changes the exposed man-
agement interface, it must also provide a new getMBeanInfo () implementation. It
is assumed that a Dynamic MBean’s getMBeanInfo () return value is an accurate
depiction of an MBean’s management interface.

Dynamic MBeans in action 105

5.5 Dynamic MBeans in action

5.5.1

Now that you have read about writing and working with the management inter-
face of a Dynamic MBean, it’s time to look at a few examples. The following exam-
ples involve the Jini network technology. Our discussion will mostly center around
working with JMX, not the Jini technologies. However, if you need more infor-
mation about Jini, go to http://www.javasoft.com.

Managing a Jini service

Jini network technology is another emerging Java technology. Programs that
want to use a Jini service use a discovery technique that hides the network trans-
portation layer and the location of the service.

Jini services make themselves available for discovery by registering with
lookup registries all across a network. Services use a broadcasting system to find
lookup registries and register on them. In turn, client programs find these ser-
vice registries to get references to Jini services. Once a client has a reference to
that service, it interacts with the service using Java Remote Method Invocation
(RMI). For example, a Java program can search and find a Jini service that pro-
vides the ability to print documents.

Client programs wishing to use Jini services need a way to know which service
will meet their needs. Jini services can advertise, or describe, their function and
capabilities. When registering on a service lookup registry, a Jini service con-
structs a service template object that contains information about the service. Spe-
cifically, the template contains the interface type of the service and a set of Entry
objects that describe attributes of the service. Entry objects could be something
like a name, address, or type. (To read more about this technology, go to http://
www.javasoft.com/jini.)

When the Jini service is created, it registers an MBean with a JMX agent. The
MBean is now available for a management application to configure that Jini ser-
vice without having to restart or bring down the service.

To start this example, imagine you have created a Jini service to perform a
business function like calculating payroll. The service would implement a remote
interface payroll, for example, that would allow you to invoke methods upon it
after discovery. In addition to the payroll interface, you will have the service
implement another remote interface, ManagedJINIService. This interface will
contain any methods you want to expose with the MBean created by the Jini ser-
vice. Figure 5.2 illustrates this relationship.

http://www.javasoft.com
http://www.javasoft.com
http://www.javasoft.com/jini
http://www.javasoft.com/jini

106

CHAPTER 5
MBeans for changing resources

&” AN B R AT i LS ATt

1
|
iktb 1
i
|

1

1

i

:

1

1 MBsan | golAttibutesStingl] stvitutes)
] +
1

1

1

1

1

___ -
i Agerit Layes | Distributed |

i | pLEw

1 e |

: Inzturmenfaticn Layer -h - 1

; W T T i :

I = T

i sobhiirbuteAlnbute atriute) i | [—
l it | "= Protcol ||

: 1] Adepler [Mimagement
;) i

¥ il | [

i L i

I T T E

| i i

()

Create MBean AR

\ | 7

Mansged JreSorace
Intgrface

S5

Jini Service

Figure 5.2 A Dynamic MBean managing a Jini service. The service creates the MBean when it is
initialized and removes the MBean as it is shut down. The MBean can be used to change the service’s
description to the world by adding/removing Jini Entry objects.

A good place to begin Jini service management via an MBean is its set of Entry
objects, which describe the service. You want to be able to add, modify, or delete
Entry attributes at runtime in order to describe the Jini service in a different way.
By changing the Entry objects, you change the way clients discover the Jini ser-
vice. The following is the ManagedJINIService interface:

package Jjmxbook.chb5;

import java.rmi.*;
import java.util.*;

public interface ManagedJINIService extends Remote
{

public void addEntries(Vector entry) throws RemoteException;

public void modifyEntries(Vector oldEntries, Vector newEntries)
throws RemoteException;

Dynamic MBeans in action 107

The ManagedJINIservice interface provides two operations:

® addEntries ()—Lets you add additional entries to the Jini service’s service
template

® modifyEntries ()—Lets you change existing Entry objects

For the sake of time and space, this book does not contain the code for the Jini
service we are describing. However, it does contain the code for the MBean used
to manage this service. Remember, the ManagedJINIService service (as it is called
because it implements the ManagedJINIService interface) creates an MBean
upon its creation. It should also destroy that MBean when it knows it is being
shut down.

Let’s begin the examination of the MBean that manages the Jini service. List-
ing 5.1 is the JINIServiceManager Dynamic MBean class.

Listing 5.1 JINIServiceManager.java

package jmxbook.chb5;

import net.jini.core.entry.*; Import packages
import net.jini.discovery.*; to support Jini
import net.jini.core.lookup.*; interaction

import Jjava.util.*;

import javax.management.*;
import java.rmi.*;

import java.lang.reflect.*;

public class JINIServiceManager implements DynamicMBean
{
private ManagedJINIService serviceRef = null;
private String jiniInterfaceName = null;
private Entry initialAttribute = null;
private String serviceName = null;

public JINIServiceManager (Entry att)
{

jiniInterfaceName = "Jjmxbook.ch5.ManagedJINIService";
serviceRef = (jmxbook.ch5.ManagedJINIService) Lookupserﬁce
lookUpService () ; reference

initialAttribute = att;
}

public Object getAttribute(String name) throws MBeanException,
AttributeNotFoundException, ReflectionException

throw new AttributeNotFoundException(name); ExpoueMBean

} attributes

public Attributelist getAttributes(String[] names)
{

108 CHAPTER 5
MBeans for changing resources

AttributelList rvalue = new AttributelList(); I
return rvalue;

}

public void setAttribute(Attribute att) throws MBeanException,
AttributeNotFoundException, ReflectionException,
InvalidAttributeValueException
{
throw new AttributeNotFoundException("No attributes can be set");

}

public Attributelist setAttributes(AttributelList list) A

{
AttributelList rvalue = new AttributelList ();
return rvalue;

}

public Object invoke(String actionName,
Object args|[], String sigl])
throws MBeanException, ReflectionException

try
{
String methodName = actionName;
Class types[] = new Class|[sig.length];
for(int 1 = 0; i < types.length; i++)
types[1] = Class.forName(sig[1]);
Method m =

serviceRef.getClass () .getMethod (methodName, types);
Object temp = m.invoke(serviceRef, args);
return temp;
}
catch(Exception e)

{

throw new MBeanException(e);

}

public MBeanInfo getMBeanInfo ()
{

MBeanConstructorInfo[] cons = new MBeanConstructorInfol[1];
MBeanNotificationInfo[] nots = null;
MBeanAttributeInfo[] atts = null;
MBeanOperationInfo[] ops = new MBeanOperationInfo[2];
try
{
Class conargs[] = { Class.forName("java.lang.String"),
Class.forName ("net.jini.core.entry.Entry") };

MBeanConstructorInfo cinfo =
new MBeanConstructorInfo("Main constructor",
this.getClass () .getConstructor(conargs));
cons[0] = cinfo;

Dynamic MBeans in action 109

}
catch(Exception e) {}

MBeanParameterInfo[] sig0 = new MBeanParameterInfol 1];
sig0[0] = new MBeanParameterInfo("entries",
"Java.util.Vector", "Entries to Add");

ops[0] = new MBeanOperationInfo (

"addEntries", "Used to add service attributes",
sig0, "void", MBeanOperationInfo.ACTION) ;

MBeanParameterInfo[] sigl = new MBeanParameterInfol 2];
sigl[0] = new MBeanParameterInfo("oldEntries",
"java.util.Vector", "Old Entries to modify");
sigl[1] = new MBeanParameterInfo("newEntries",
"Java.util.Vector", "New Entries");
ops[1] = new MBeanOperationInfo (

"modifyEntries", "Modify service attributes",
sigl, "void",
MBeanOperationInfo.ACTION) ;

MBeanInfo mbi =
new MBeanInfo("jmxbook.ch5.JINIServiceManager",
"Manages Service: " + initialAttribute.toString(),
atts, cons, ops, nots);
return mbi;

}

private Object lookUpService () i’ Find Jini
{ lookup service
try
{
Class[] interfaces = { Class.forName(jiniInterfaceName) };

Entry[] ents = new Entry[1];
ents[0] = initialAttribute;

ServiceTemplate template = new
ServiceTemplate (null, interfaces,ents);

ServiceRegistrar reg = RegistryFinder.getRegistry();
ServiceMatches matches = reg.lookup(template,10000);

Serviceltem item = matches.items[0];
return item.service;

}

catch(Exception e)

{

e.printStackTrace();

}

return null;

}

} //class

110

CHAPTER 5
MBeans for changing resources

@ The JinIserviceManager Dynamic MBean doesn’t provide much of an imple-

5.5.2

mentation for the get and set attribute methods. By examining the manage-
ment interface of this MBean exposed by its getMBeanInfo() method, you can
see that it does not expose any attributes. Therefore, the MBean should not sup-
port any methods that read or write attributes. In fact, both the getattribute ()
and setattribute() methods throw an AttributeNotFoundException exception
when invoked.

Because this MBean is intended to manage the Jini service that created it, it must
be able to find that service. The MBean’s constructor accepts a single argument:
an Entry object that initially identifies the Jini service. The MBean also expects
the Jini service to implement the jmxbook.ch5.ManagedJINIService interface. The
MBean uses the interface, combined with the Entry object, to identify the Jini
service. The lookUpservice () method uses an object called RegistryFinder to find
the nearest service registry. You should replace the implementation of this method
with your own.

This example does not expose any operations or attributes from the Jini ser-
vice; instead, it exposes the view of the Jini service.

Rebuilding a management interface at runtime

As described earlier in this chapter, Dynamic MBeans provide their management
interface at runtime. This ability equips Dynamic MBeans to manage evolving
resources over time. Developers can easily adapt Dynamic MBeans as their
resources change. However, wouldn’t it be useful to have an MBean that is truly
dynamic? Consider the Dynamic MBean that reads a flat file to determine which
of its manageable resource’s methods to expose.

The MBean could monitor its flat file and watch for changes. When it detects
a change, it could reload the file, rebuild its management interface (by creating a
new MBeanInfo return value for the getMBeanInfo () method), and be ready to
manage its resource in an entirely new way. However, this approach would pose a
few problems.

Each time you tried using this Dynamic MBean, the attribute or operation
you were trying to access could be different (or missing!). In fact, in order to
ensure that you would not be incorrectly using a management interface, you
would have to reacquire before every attempt.

JMX agents are not required by the JMX specification to ensure that a man-
agement interface does not change over the lifetime of an MBean. However, the

5.6

5.6.1

Creating utility classes 111

specification does state that the management interface should not change, in
order for management tools to better perform their function.

Creating utility classes

After examining only two Dynamic MBeans, you probably have noticed that it
can sometimes be a tedious task to implement the getMBeanInfo () method.
Depending on the management interface, you may spend some time writing the
getMBeanInfo () method that constructs the MBeanInfo object. It can be tiring
work constructing an object for every exposed constructor, operation, attribute,
and notification. It would be nice not to have to write that method for every
Dynamic MBean you create.

This section creates a super class for Dynamic MBeans that makes it easier to
create MBeanInfo objects.

Creating a dynamic MBean super class

After you have written a few Dynamic MBeans, you begin to want to avoid writ-
ing the code that creates the MBeanInfo object. One way to solve this problem is
to create methods that do it for you and reuse that code. You can do so by using
a super class for Dynamic MBeans that provides a generic implementation of the
DynamicMBean interface.

The super class contains generic getAttribute (), setAttribute(), and
invoke () method implementations. In addition, it needs a mechanism for gener-
ically creating an MBeanInfo object to return in the getMBeanInfo () method. The
DynamicMBeanSupport class in listing 5.2 is such a super class.

package Jjmxbook.chb5;

import javax.management.*; Implement
import Jjava.lang.reflect.*; javax.management.DynamicMBean

import java.util.*;

public class DynamicMBeanSupport implements DynamicMBean
{
protected MBeanInfo mbeanInfo = null;
protected Hashtable attributes = new Hashtable();
protected Hashtable notifications = new Hashtable();
protected Hashtable constructors = new Hashtable();
protected Hashtable operations = new Hashtable();;

//exposed fields
protected String description = "Description of the MBean";

112 CHAPTER 5
MBeans for changing resources

public DynamicMBeanSupport ()
{
addMBeanAttribute ("description" , "java.lang.String",
true, true, false, "Description of the MBean");
addMBeanConstructor (this.getClass () .getConstructors() [0],
"Default Constructor");
}
Begin building

public Object invoke(String method, Object argsl|], MBeaMnﬁ)oMed

String types[])
throws MBeanException, ReflectionException

try

Class c¢ = this.getClass();
Class sig[] = null;
if(types != null)
{
sig = new Class|[types.length];
for(int 1 = 0; 1 < types.length; i++)
{
sig[i] = Class.forName(types[i]);

}
Method m = c.getDeclaredMethod(method , sig);

Object returnObject = (Object) m.invoke(this, args);
return returnObject;
}
catch(Exception e)
{
e.printStackTrace();
return null;

}

public Object getAttribute(String name)
throws MBeanException, AttributeNotFoundException,
ReflectionException

try Implement
{ DynamicMBean
Class c¢ = this.getClass(); interface
Method m = c.getDeclaredMethod("get" + name, null);
return m.invoke((Object) this, null);

}

catch(Exception e)

{
e.printStackTrace();
return null;

Creating utility classes 113

public void setAttribute(Attribute attribute)
throws MBeanException,
AttributeNotFoundException, ReflectionException,
InvalidAttributeValueException

String fname = attribute.getName();

Implement
Object fvalue = attribute.getValue(); DynamicMBean
try interface
{
Class ¢ = this.getClass();
String type = getType(fname, false, true);
if(type == null)
throw new AttributeNotFoundException(fname);
Class[] types = { Class.forName(type) };
Method m = c.getDeclaredMethod("set" + fname, types);
Object[] args = { fvalue };
m.invoke ((Object) this, args);
}
catch(AttributeNotFoundException ae)
{
throw ae;
}
catch(Exception e)
{
e.printStackTrace(); Implement
} DynamicMBean
} interface

public AttributelList setAttributes(Attributelist attributes)
{
Attribute[] atts = (Attribute[]) attributes.toArray();
AttributelList list = new AttributelList();
for(int i = 0; 1 < atts.length; i++)
{
Attribute a = atts[i];

try{
this.setAttribute(a);
}catch(Exception e) { e.printStackTrace(); }
}//for

return attributes;

}

public AttributelList getAttributes(String[] names) " hﬂNement
{ DynamicMBean
AttributeList list = new AttributeList (); interface
for(int i = 0; i1 < names.length; i++)
{
try{

list.add(new Attribute(names[i],
this.getAttribute (names[i])));

114 CHAPTER 5
MBeans for changing resources

}catch(Exception e) { e.printStackTrace(); }
}
return list;

}

public MBeanInfo getMBeanInfo() <—— Add parts to
{ management
try interface
{
buildDynamicMBeanInfo (); <—— Build MBeaninfo
} object
catch(Exception e)
{
e.printStackTrace();
}
return mpbeanInfo;

}

protected void addMBeanOperation(String name,
String[] paramTypes,
String[] paramNames, String[] paramDescs, String desc,
String rtype, int type)

MBeanParameterInfo[] params = null;
if (paramTypes != null)
{
params = new MBeanParameterInfo[paramTypes.length];

for(int i = 0; i < paramTypes.length; i++)
{
params[i] = new MBeanParameterInfo(paramNames[i],
paramTypes[i], paramDescs[i]);

}

operations.put (name, new MBeanOperationInfo(name, desc,
params,
rtype, type));
}

protected void addMBeanAttribute(String fname, String ftype ,
boolean read, boolean write, boolean is,
String desc)

attributes.put (fname, new MBeanAttributelInfo (fname, ftype,
desc, read,write,is));

}

protected void addMBeanConstructor (Constructor c,
String desc)

this.constructors.put(c,
new MBeanConstructorInfo(desc, c));

Creating utility classes 115

private void buildDynamicMBeanInfo () throws Exception
{
MBeanOperationInfo[] ops =
new MBeanOperationInfo[operations.size() 1;
copyInto(ops, operations);

MBeanAttributeInfo[] atts =
new MBeanAttributelInfo[attributes.size()];
copyInto(atts, attributes);

MBeanConstructorInfo[] cons =
new MBeanConstructorInfo[constructors.size()];
copyInto(cons, constructors);

mbeanInfo = new MBeanInfo (
this.getClass () .getName (), description,
atts, cons, ops, null);

}

private void copyInto(Object[] array, Hashtable table)
{
Vector temp = new Vector (table.values());
temp.copyInto(array);

}

private String getType(String attName,
boolean read, boolean write)

boolean allowed = true;

if (attributes.containsKey(attName))
{
MBeanAttributeInfo temp = (MBeanAttributeInfo)
attributes.get (attName);
if(read)
{
if(!'temp.isReadable())
allowed = false;
}
if(write)
{
if(!'temp.isWritable())
allowed = false;

}

if(!'allowed)
return null;
else
return temp.getType();
}
else return null;
}
}//class

116

CHAPTER 5
MBeans for changing resources

@ The DynamicMBeanSupport class provides an implementation for all the methods

5.7

from the DynamicMBean interface. Subclasses can override them, but these imple-
mentations should be good enough for most situations. The getattribute() and
setAttribute () methods use introspection (using the java.lang.reflect pack-
age) to get and set the value of class member variables. In addition, the setat-
tribute () method invokes the getType () method to discover the type of a
member variable whether the requester has proper access to an attribute as
defined by the MBean’s management interface. If it is an invalid request, get-
Type () returns null. The invoke () method does something similar in that it also
uses introspection to invoke operations of the class.

The four methods that make using this class advantageous are addMBeanat-
tribute (), addMBeanConstructor (), addMBeanOperation (), and buildDynamic-
MBeanInfo (). The add methods allow subclasses to create their MBeanInfo object
by adding portions of it as needed. For instance, look in the constructor of the
class: it invokes the addMBeanAttribute () method in order to expose the
description field of this MBean. Of course, it is not necessary to expose this
field, but doing so serves as a good example. The constructor also adds itself to
the MBeanInfo object. Finally, the buildDynamicMBeanInfo () method is called to
put everything together in an MBeanInfo instance as needed.

Summary

This chapter introduced you to a more complex type of MBean: the Dynamic
MBean. You learned that Dynamic MBeans are useful when managing evolving
resources or resources with unstable interfaces. In addition, you learned that
Dynamic MBeans generate their management interface at runtime using a stan-
dard set of JMX metadata classes. In addition to writing Dynamic MBeans, you
created a super class that can save you time and effort in future Dynamic MBean
development.

Chapter 6 covers the JMX notification model surrounding MBeans. That
chapter will teach you about using standard JMX notifications, creating your own
notifications, and receiving notifications from MBeans.

Communication with
MBeans using notifications

m [ntroducing the notification framework
m Using notification filters

m Examining the AttributeChange notification
classes

117

118

6.1

CHAPTER 6
Communication with MBeans using notifications

Before we move on to the last type of MBean, it is time you learned more about the
JMX notification model. In chapters 4 and 5, we delayed covering JMX notifica-
tions in order to focus on the construction of the two basic types of MBeans. This
chapter will show you how to make MBeans more beneficial by adding notifica-
tions. JMX notifications can be used to inform other objects or processes of impor-
tant events, state changes, or statistical information from managed resources.

The JMX notification model is similar to the Java event model in that it pro-
vides a callback mechanism for interested listeners that have implemented specific
interfaces. In this case, the notification model allows MBeans to send notification
objects to interested listeners. Notifications are Java objects, like events; they con-
tain information populated by an MBean, and are sent to other objects that have
registered as listeners.

This chapter discusses sending and receiving notifications from MBeans. In
subsequent chapters, you will begin including notifications into examples
where appropriate.

Using MBean notifications

JMX is a powerful tool used to expose applications for management and moni-
toring. The first few chapters have given you a good feel for how you can use
JMX to expose your own resources for management. However, exposing resources
for management is only part of an application management solution. Manage-
ment applications need to be informed about the state, or critical events, of a
managed resource.

For example, imagine you have instrumented an application critical to your
business (recall that instrumentation is the process of exposing a resource through
MBeans). You are having success maintaining that application by using MBeans
and a management tool, but you come to work one day and the application has
crashed. The MBean should have been able to inform you that the application
had gone into an error state and needed help.

In addition, consider MBeans used to control customer service applications.
One particular MBean might need to send a notification when a specific cus-
tomer help flag is raised.

The JMX notification model can help in such situations. By using notifica-
tions, you let your MBeans speak to the other objects, applications, and so forth.
In turn, those notification receivers (or listeners) can take appropriate action: for
example, they can contact pagers or other applications.

Components of the JMX notification model 119

6.2 Components of the JMX notification model

6.2.1

If you have worked with the Java event model, then using the JMX notification
model will come easily. MBean events are wrapped as notification objects and
broadcast from MBeans. Notification listeners, like event listeners, register with
MBeans in order to receive notifications. The notification model supports send-
ing many different types of notifications, including user-defined notifications.
One noticeable difference between the notification model and the event model is
that notification listeners register only once with an MBean to receive all types of
notifications. In addition, when registering for notifications, listeners can
optionally provide a filter object that indicates the types of notifications in which
the listener is interested (we talk about notifications filters in a moment).
Table 6.1 lists the four major components of the JMX notification model.

Table 6.1 The four components of the JMX notification model. Some of these components are sim-
ilar to those found in the Java event model.

Component Description Section
Notification An object that implements the javax.management .Notification- 6.2.1
broadcaster Broadcaster interface, allowing it to send notifications

Notification An object emitted from broadcasters that contain information for a listener 6.2.3
Notification An object that implements the javax.management .Notification- 6.2.4
listener Listener interface, allowing it to receive notifications

Notification An object associated with a listener that can filter notifications, allowing only | 6.2.5
filter the desired notifications to be delivered to a listener

We discuss the four components in the following sections. After covering each
component, you will begin writing some examples.

Being a notification broadcaster

A notification broadcaster is an MBean that implements the javax.manage-
ment .NotificationBroadcaster interface. Classes can implement the interface or
inherit the implementation from a super class. In the Helloworld example from
chapter 2, the Belloworld MBean became a notification broadcaster when it
extended the javax.management.NotificationBroadcasterSupport class. This
support class provided the HelloWworld MBean with an implementation of the
NotificationBroadcaster Interface.

120

CHAPTER 6
Communication with MBeans using notifications

The NotificationBroadcaster interface
Figure 6.1 shows the UML diagram for the NotificationBroadcaster interface.
This section introduces the methods of the interface.

The interface contains methods for adding and removing notification listen-
ers. These methods allow objects to register as listeners for the notifications an
MBean can emit. Listeners provide a callback method that broadcasters invoke
in order to deliver a notification.

Notice in the addNotificationListener () method that one of the arguments
is the NotificationFilter class. This object is the filter mentioned previously,
and we discuss it in section 6.2.4. The last argument of this method is an object
instance called the handback. This value is sent back to the listener when a notifi-
cation is delivered and should never be modified by the broadcaster. Both the fil-
ter and handback objects are optional and can be null.

The handback object can be used to provide a broadcaster with a context for
the listener. For example, take the case of internationalization. Assume an
MBean is sending out notifications that contain messages intended for human
users. In order to internationalize this message, the MBean would need a resource
bundle or language file to provide a translation. Each listener that registers for
the notification could provide its own resource bundle that allows the MBean to

jarsa. lmng et

Hextafica ion Brosdcadie

AT g bl eSS e e |
Incerar Fobfowtonl aiener
Piger el b Pl
hinfaltieci Citpnc]

I el

v et]| M B s biabbeaters 1902 |
1Tt a0 Ao a0nd A vl
Figure 6.1

UML diagram of the
NotificationBroadcaster interface

6.2.2

Components of the JMX notification model 121

translate the notification message for each listener. Alternatively, you could leave
the handback object as null.

The last method in the interface, getNotificationInfo (), returns an array of
objects of type MBeanNotificationInfo. You should recognize this object from
chapter 5; it is a member of the set of metadata objects used to describe the
management interface of an MBean. It is used here separately to ensure that
broadcasters provide information about the types of notifications they emit. We
examine the MBeanNotificationInfo class in section 6.2.2.

The NotificationBroadcasterSupport class

The other way to implement the NotificationBroadcaster interface is to extend
the javax.management.NotificationBroadcasterSupport class. By extending this
class, you inherit an implementation of the interface.

In addition, the NotificationBroadcasterSupport class provides an extra
method called sendNotification(). The sendNotification () method provides a
mechanism for sending a Notification object to registered listeners. This
method attempts to send its notification argument to each registered listener
after first applying that listener’s filter object. If the filter indicates that the lis-
tener should receive that notification, then it is sent. A drawback of extending
this class is that you don’t have the opportunity to interact with the handback
object before sending a notification.

The final method from the NotificationBroadcaster Interface is getNotifi-
cationInfo (). A subclass of the NotificationBroadcasterSupport class should
override the getNotificationInfo () method to provide information about the
notifications it can broadcast. The return value of this method is an array of MBean-
NotificationInfo objects. This class is a member of the metadata classes covered
in chapter 5.

Describing notifications as
part of a management interface

In chapter 5, which discussed Dynamic MBeans, you were introduced to the
MBean metadata classes. These classes are used to describe the management
interfaces of MBeans. One of the metadata classes that we didn’t cover in detail
is MBeanNotificationInfo. Now that we are discussing notifications, we need to
examine this class.

The javax.management .MBeanNotificationInfo class is a metadata class used
by MBeans that are notification broadcasters. MBeans provide this class in the
following two ways:

122

6.2.3

CHAPTER 6
Communication with MBeans using notifications

® DynamicMBean.getMBeanInfo ()—If the MBean is a Dynamic MBean, it must
implement the getMBeanInfo () method. The MBeanInfo object returned by
this method can contain an array of MBeanNotificationInfo objects.

m NotificationBroadcaster.getNotificationInfo()—When implementing the
notification broadcaster interface, MBeans must implement this method.
This method returns an array of MBeanNotificationInfo objects.

An instance of the MBeanNotificationInfo class contains information about the
notifications that an MBean can emit. Just like the other metadata classes, it
extends the MBeanFeatureInfo class.

An MBeanNotificationInfo object contains three things: the Java class name
of the notification object being described (contained in the name class member
variable), the notification types that can be sent using that class, and a descrip-
tion. The name and description fields are inherited from the MBeanFeatureInfo
class. Each instance of MBeanNotificationInfo describes a specific Java class that
is used as a notification. The class will be either javax.management .Notification
or a subclass.

The class also contains a getNotifTypes () method that returns an array of
string objects whose values are used to describe the types of notifications that
could be sent using a particular notification class.

The #ype in this case does not refer to a Java class designation, but rather to a
dot-separated string that identifies a notification instance. The identification
string—its notification type—identifies a notification and conveys a sense of its
purpose. For example, for a monitoring application developed by Acme Company,
you might have a notification type like acme.notif.statechange. (Notification
types tend to follow the pattern company. resource.eventname. This 1s Only a sug-
gested format; no rule specifies the exact format for the notification type string.)

The Notification class

JMX provides a standard notification class, javax.management .Notification.
This class extends java.util.EventObject and is used as a super class for other
notification classes.

The Notification class contains six member variables that are all accessi-
ble through getter methods. Table 6.2 describes these class members and
their purposes.

The Notification class has several different constructors, each providing a
different set of initialization arguments for these class members.

Components of the JMX notification model 123

Table 6.2 The class members of the javax.management .Notification class

Class member Purpose

Message A String object representing a message. This could be the reason for
the notification.

SequenceNumber A number indicating the order in relation of events from the source. The
source populates this field if it intends to give listeners the ability to
sort incoming notifications. The notification model makes no guaranties
that notifications will be received in the order they were sent.

TimeStamp The timestamp of the notification, represented as a 1ong value.

Type The dot-separated St ring value indicating the type of the notification.
Not a class type. For example:acme .mbeanA.eventl.

UserData An object used to contain any data that a source wants to send to a
notification listener.

Source The source of the notification. This object contains an Ob jectName or
a reference to the object that generated the notification.

6.2.4 Being a notification listener

Up to now, we have examined notification broadcasters, the MBeanNotification-
Info class, and the Notification class. The last major component in the notifica-
tion framework is the notification listener. In JMX, objects interested in receiving
notifications must implement the javax.management .NotificationListener
interface. You may remember this interface from chapter 2, where you imple-
mented it in your HelloAgent class. Figure 6.2 shows the UML diagram for the
NotificationListener interface.

va lang Cibject

Pl et e, rilrerasr

ahardbe! etrbostary

nolfication Mo
v DA Ly Figure 6.2
UML diagram of the

NotificationListener interface

124

6.2.5

CHAPTER 6
Communication with MBeans using notifications

The NotificationListener interface contains a single method: handleNotifica-
tion (). It takes two arguments: an instance of Notification and an instance of
object. Notification broadcasters invoke this method when they are ready to
deliver a notification to the listener. The instance of Notification is the notifica-
tion being sent, and the object instance is the handback object registered by the
listener. Recall that when a listener registers to receive notifications using the add-
NotificationListener () method, it passes in an object instance named handback.

NOTE =~ When implementing the handleNotification () method from the
NotificationListener interface, you should have it return as soon as
possible. Notification broadcasters invoke this method synchronously,
meaning it will block until the method invocation is complete. Depend-
ing on the implementation and purpose of an MBean, this behavior
could present a problem. You can avoid it by implementing the method
that sends notifications (discussed later), which invoked the handleNo-
tification () method asynchronously.

The only component remaining is the notification filter. Because MBeans can
emit an infinite number of notification types, listeners can use a filter to ensure
they receive only the specific notification types in which they are interested.
Remember that listeners register once to receive all notifications from an MBean,
and therefore need to be able to filter out notifications that are unwanted.

Filtering notifications

As stated earlier, notification filters give notification listeners a way to sort
through a potential barrage of notifications to receive only those notifications
that are important to them. To be more accurate, notification broadcasters use a
registered listener’s filter to determine whether to send a notification to a lis-
tener. Recall from section 6.2.1 that one of the arguments passed to the addNoti-
ficationListener () method is an implementation of the javax.management.
NotificationFilter interface.

The NotificationFilter interface declares only one method: isNotification-
Enabled (). This method accepts a Notification object that is about to be sent and
returns a boolean value indicating whether the listener associated with this filter
wants to receive the notification. Implementers are free to choose any way of fil-
tering through notifications, but probably the best way to filter notifications is by
their type. JMX contains a class called NotificationFilterSupport that does just

A notification polling example 125

that. You provide this object with acceptable notification types by invoking its
enableType () method and passing it a string value notification type.

When you use filters, you usually assume that notification listeners have some
knowledge of the notification meanings for a particular MBean, because filters
must be able to decide whether they should accept a notification. In addition,
the filter argument of the addNotificationListener () method can be left null,
thereby indicating to the NotificationBroadcaster that a listener wants to
receive all notifications.

NOTE If you don’t want to create a filter object that depends on having knowl-
edge of notification types, you can alternatively have the isNotifica-
tionEnabled () method be a callback to the notification listener. The
listener can decide whether it wants a notification to be sent.

6.3 A notification polling example

Now that you have an understanding of all the components involved in the noti-
fication model, let’s put it all together in a short example. For this example, you
will create a Standard MBean. (Remember that a Standard MBean is an MBean
that implements an MBean interface that explicitly declares the MBean’s man-
agement interface.)

The MBean for this example runs in a loop in its own thread. With every
pass through the loop, it sends a notification. The following is the Polling-
MBean interface:

package jmxbook.ché6;
import javax.management.*;

public interface PollingMBean

{ public void start();
public void stop();

}
You can see that this MBean exposes only two operations—start () and stop () —
and no attributes. These operations will start or stop a loop that sends a notifica-
tion with each pass. Listing 6.1 shows the MBean that implements this interface;
it creates the class Po1ling. In addition, the Polling class extends Notification-
BroadcasterSupport in order to inherit an implementation of the Notification-
Broadcaster interface.

126 CHAPTER 6
Communication with MBeans using notifications

Listing 6.1 Polling.java

package Jjmxbook.ché6;
import javax.management.*;

public class Polling extends NotificationBroadcasterSupport <— Extend

implements PollingMBean, Runnable support class
{ for sending
private boolean stop = true; notifications

private int index = 0;

public Polling()
{
}

public void start()
{
try
{
stop = false;
Thread t = new Thread(this); Create Thread
t.start(); to run loop

}

catch(Exception e)

{

e.printStackTrace();

}

public void stop ()
{
stop = true;

}

public void run()
{
while(!stop)
{
try
{
Thread.sleep(1000);
System.out.println("Polling");
}
catch(Exception e)
{
e.printStackTrace();
}
Notification notif = new Notification(
"ch6.PollingMBean.counter", Create and send
this, index++); notification
sendNotification(notif);

Capturing MBean attribute changes 127

}//while

}

public MBeanNotificationInfo[] getNotificationInfo () (’ EXPose

{ notifications
String[] type = { "ché6.PollingMBean.counter" };
MBeanNotificationInfo[] info = new MBeanNotificationInfol[1 1];
info[0] = new MBeanNotificationInfo(type,

"javax.management .Notification",
"The Polling MBean counter");
return info;

}

}//class
||

@ As this MBean passes through its loop, it repeatedly executes these lines of code

6.4

that build and send an instance of the Notification class. To build notifications
in this example, you use the constructor of the Notification class that accepts
values for the notification type, source, and sequence number. After constructing
the notification, you send it using the sendNotification() method inherited
from the NotificationBroadcasterSupport super class.

Also inherited from the super class is the getNotificationInfo() method. You
don’t necessarily have to override this method, but you need to do so in order
for the MBean to accurately describe the notifications it sends. The super class
has no way of knowing what you intend to emit in the subclass. You must over-
ride this method in order to guarantee you are sending and describing the same
types of notifications.

Capturing MBean attribute changes

After completing the previous example, you should have a good understanding
of how the notification model works within JMX. Now it is time to move on to
more specific notification types that are found throughout JMX. Recall that noti-
fications can serve as events and usually contain information regarding an
MBean event. A common event that occurs in a JMX application is the changing
of MBean attributes.

For example, other components of an application might need to know when a
particular attribute changes in order to perform some related action. Because
attribute changes can be a common occurrence, JMX provides a standard notifi-
cation class to encapsulate attribute changes: the javax.management.Attribute-
ChangeNotification class.

128

6.4.1

CHAPTER 6
Communication with MBeans using notifications

The AttributeChangeNotification class extends the class Notification, and
therefore inherits its class members for the notification message, timestamp, and
so forth. However, it provides four additional fields that provide the receiver
with all the information about an MBean attribute change. Table 6.3 lists the
four additional class member variables by their access methods.

Table 6.3 The additional class members from the AttributeChangeNotification class

Class member Purpose
getAttributeName () Returns the name of the attribute that changed as a St ring object
getAttributeType () Returns the class type of the attribute that changed as a String object
getNewValue () Returns an Object instance containing the new value of the attribute
that changed
getOldvalue () Returns the Object instance containing the old value of the attribute
that changed

All AttributeChangeNotification notifications use the notification type jmx.at-
tribute.change. This type is defined by the public static class member variable
AttributeChangeNotification.ATTRIBUTE_CHANGE. This notification class pro-
vides a single constructor in which you pass all the arguments needed to popu-
late the notification shown here:
public AttributeChangeNotification(java.lang.Object source,
long sequenceNumber, long timeStamp, java.lang.String msg,
java.lang.String attributeName, java.lang.String attributeType,
java.lang.Object oldValue, java.lang.Object newValue)
With this new notification class comes a new concept surrounding filtering. All
attribute change notification types are jmx.attribute.change, so you need a dif-
ferent method of filtering. This is the case because even though many notifica-
tions of the same type may be received, they could be encapsulating different
attributes that have been altered. Filtering is needed because you may not want
to receive all attribute-change events from an MBean.

Filtering attribute change notifications

As with any notification, listeners should be able to filter out attribute change noti-
fications that are not desired. However, all AttributeChangeNotification notifica-
tions have the same type. Using the NotificationFilterSupport class examined
earlier won’t help, because it filters based on notification type. Therefore, if a lis-
tener only wanted to receive a notification for a specific attribute, the filter would
need to examine the contents of the attribute notifications, not the type.

6.4.2

Capturing MBean attribute changes 129

JMX provides another standard class that implements the NotificationFil-
ter Interface: the javax.management.AttributeChangeNotificationFilter class.
This filter class implements the NotificationFilter interface and works simi-
larly to the NotificationFiltersupport class. However, instead of enabling types
of notifications, listeners enable attribute names.

For instance, to indicate to the filter that you are interested in attribute change
notifications coming from the attribute named state, you would invoke the fil-
ter’s enableattribute () method and pass in the string value state.

Broadcasters use this filter just like any other by invoking the isNotifica-
tionEnabled() method, passing in the Notification to be sent, and receiving a
boolean value indicating a listener’s interest. The filter checks the notification to
see if it encapsulates an attribute change in which its listener is interested.

Revising the Polling MBean

To further examine the attribute change notification class, let’s modify the po11-
ing MBean to use an AttributeChangeNotification notification. The first pre-
sentation of this MBean had no attributes, so you need to add one. The
following interface declares a new attribute, interval, which indicates how long
to pause between sending notifications. The changes to the interface are in bold:

package Jjmxbook.ché6;
import javax.management.*;

public interface PollingMBean
{
public void start();
public void stop();
public void setInterval(long time);
}
The new method setInterval () accepts a long parameter used to set the amount
of sleep time between sending notifications in the main loop. Listing 6.2 shows
the new Polling MBean class. To demonstrate AttributeChangeNotification,
the MBean will emit one notification each time the setInterval () is invoked.

The changes to the class are in bold.

package Jjmxbook.ché6;
import javax.management.*;

public class Polling extends NotificationBroadcasterSupport
implements PollingMBean, Runnable

130

CHAPTER 6
Communication with MBeans using notifications

private boolean stop = true;

private int index = 0;
private long interval = 1000;

public Polling /()

{
}

public void setInterval(long interval)

{

}

long temp = this.interval;
this.interval = interval;
AttributeChangeNotification notif = new
AttributeChangeNotification (
this, 0, System.currentTimeMillis(),
"Attribute Change",
"interval", "long", new Long(temp),
new Long(interval));

sendNotification(notif);

public void start ()

{

}

try

{
stop = false;
Thread t = new Thread(this);
t.start();

}

catch(Exception e)

{

e.printStackTrace();

public void stop ()

{

}

stop = true;

public void run /()

{

while(!stop)
{
try
{
Thread.sleep(interval);
System.out.println("Polling");
}

catch(Exception e)

Create
AttributeChange
Notification

Capturing MBean attribute changes 131

e.printStackTrace();

}

Notification notif = new Notification(
"ch6.PollingMBean.counter",
this, index++);

sendNotification(notif);

}//while
}

public MBeanNotificationInfo[] getNotificationInfo ()
{
String[] type = { "ch6.PollingMBean.counter" };
String[] attChanges = {
AttributeChangeNotification.ATTRIBUTE_CHANGE };

MBeanNotificationInfo[] info = new MBeanNotificationInfo[2];

info[0] = new MBeanNotificationInfo(type,
"javax.management .Notification",
"The Polling MBean counter");

info[1] = new MBeanNotificationInfo(attChanges,
"javax.management .AttributeChangeNotification",
"The Polling MBean counter");

return info;
} Add notification
to management
}//class interface
|

@ In order to create an AttributeChangeNotification object, you need to store the

6.4.3

old value of the interval class member before changing it. The notification is cre-
ated using the old and new values of the interval member variable. After you cre-
ate the notification, it is sent the same way as the other notification in the main
loop (using the sendNotification () method).

In addition, the revised MBean adds another MBeanNotificationInfo object to the
array return value of the getNotificationInfo () method. This additional object is
the attribute change notification that is available to be received from this MBean.

Testing the Polling MBean

In order to round out your exposure to sending notifications, let’s run the latest
version of the po11ing MBean in the JMxBookAgent agent. Remember from previous
chapters that you created setup classes that registered MBeans in the agent. You
will do the same thing in this chapter. Listing 6.3 shows the pollingSetup class,
which contacts a JMxBookagent instance and registers a Pol1ing MBean with it.

132 CHAPTER 6
Communication with MBeans using notifications

Listing 6.3 PollingSetup.java

package Jjmxbook.ché6;

import javax.management.*;
import com.sun.jdmk.comm.*;
import jmxbook.ch3.*;

public class PollingSetup implements NotificationListener
{
public PollingSetup ()
{
try
{
RmiConnectorClient client = RMIClientFactory.getClient();
ObjectName pollingName = new
ObjectName ("JMXBookAgent :name=polling");

client.createMBean ("Jjmxbook.ch6.Polling", pollingName);
client.addNotificationListener(pollingName, this,
null, null);
}
catch(Exception e)
{
ExceptionUtil.printException(e);

}

public void handleNotification(Notification not, Object obj)
{

String type = not.getType();

System.out.println(type);

}

public static void main(String args[])
{
PollingSetup setup = new PollingSetup ();

This setup class follows the format of the ones you created previously. However,
in this case, after creating the MBean, it adds itself as a listener to receive any
notifications the MBean emits.

Before running the setup class, you need to make sure you have an instance of
the gMxBookAgent running. Use the following command to do so:

javac Jjmxbook.ch3.JMXBookAgent

After the agent successfully starts, execute the pollingSetup class to create your
Polling MBean. Next, open your browser to http://localhost:9092, and you will

http://localhost:9092

6.5

6.5.1

Registering as a notification listener 133

see the polling MBean registered in the agent. From the MBean View, you can
change the interval attribute and execute the start () operation. If you do both,
you should see output something like the following:

jmx.attribute.change

ch6.PollingMBean.counter

ch6.PollingMBean.counter

ch6.PollingMBean.counter

ch6.PollingMBean.counter
The attribute change notification was received when the interval attribute was
altered, and the series of counter notifications was received after the start ()
operation was executed.

Writing this setup class also showed you one way of registering for notifica-
tions. The setup class invoked the addNotificationListener () of the MBean
server. In the next section, we will summarize a few more details about register-
ing as a notification listener.

Registering as a notification listener

If you remember from chapter 2, the rHelloagent class registered itself as a noti-
fication listener when it created the final version of the Helloworid MBean. In
that class, you used a method from the MBean server to register for notifica-
tions from the MBean. However, that is only one way to register with an MBean
as a listener.

The next two sections describe how to register a listener with an MBean by
using methods from the MBean or methods from the MBean server.

Registering with an MBean

If you have a class that creates an MBean object and registers it on an MBean server
(using the registerMBean () method), then you can invoke methods on the refer-
ence at hand. If the MBean implements the NotificationBroadcaster interface
in order to send notifications, then it also defines a method addNotificationLis-
tener (). Because you have manually created this MBean, you can also invoke its
add listener method to add your own listener.

Notification objects received from an MBean after registering in this man-
ner have their source class member set to contain an actual object reference to
the MBean that emitted the notification. However, this is not the case if you reg-
ister as a listener via the MBean server, as you did in chapter 2.

http://localhost:9092

134

6.5.2

6.6

CHAPTER 6
Communication with MBeans using notifications

Registering with the MBean server

As just mentioned, the other way to register for notifications from an MBean is the
method you used in chapter 2: invoking the addNotificationListener () method
on the MBean server that contains the MBean. This method has the same signa-
ture as the same-named method in the NotificationBroadcaster interface, except
for one additional argument: an instance of the 0bjectName class.

This object name argument tells the MBean server the MBean in which to
register the listener. If the MBean does not exist, the method will throw an
InstanceNotFoundException exception. Notifications received after registering in
this manner will contain a source class member variable containing the object-
Name of the MBean.

Persisting MBean notifications

You should realize by now that using notifications with your MBeans is not diffi-
cult. Emitting notifications is a powerful tool and can be used for communica-
tion, alerts, and more. Because notifications can contain important information
and valuable data, it is a good idea to keep a record of them. In other words, you
might want to persist your notifications.

Notifications can be persisted by the notification listener or by the broad-
caster. For this chapter, we will consider the case of persisting notifications on the
broadcaster side. By doing it on the agent side, you can create a sort of historical
log of notification activity of MBean notifications. In fact, the next example
shows how to persist notifications at the MBean level. To persist notifications,
you can either create an MBean to act as a listener on every NotificationBroad-
caster in the agent, or you can have each MBean manage its own notification
persistence. We will discuss the latter option. Figure 6.3 illustrates the concept.

Normally, an MBean wanting to emit Notification objects would extend the
NotificationBroadcasterSupport class. Listing 6.4 shows a new broadcaster sup-
port class that MBeans can use to inherit the ability to emit notifications. In
addition, this class has the ability to store each notification sent by the MBean.
This example persists notifications to a database; it assumes a table named Noti-
fications already exists and has a column for each Notification class public
member variable.

Persisting MBean notifications 135

Figure 6.3
Using a super class to

send and persist
notifications sent from
an MBean. The super
class must ensure that
the notification will be
sent even if the persis-
tence attempt fails.

package jmxbook.ché6;

import
import
import

public

pr
Pr

pu
{

}

pu
{

}

pu
{

java.sqgl.*;
java.io.Serializable;
javax.management.*;

class NotificationBroadcasterPersister extends
NotificationBroadcasterSupport

ivate Connection con = null;
ivate boolean enable = false;
blic NotificationBroadcasterPersister(Connection con)

this.con = con;

blic void setStorage(boolean enable)

this.enable = enable;

blic boolean getStorage()

return enable;

136 CHAPTER 6
Communication with MBeans using notifications

public void sendNotification(Notification notif) Send

{ notification
try
{

String sgl = "insert into Notifications (message,
sequence_number, " + " source, timestamp, type,
user_data) values (?2,?2,7?2,2,2,2)";

PreparedStatement ps = con.prepareStatement (sql);

ps.setString(1, notif.getMessage());

ps.setLong(2, notif.getSequenceNumber ());

if (notif.getSource() != null &&

notif.getSource () instanceof Serializable)
ps.setObject (3,notif.getSource());

else

ps.setString(3, "No Source");

ps.setLong(4, notif.getTimeStamp ());

ps.setString(5, notif.getType());

if(notif.getUserData() != null &&

notif.getUserData () instanceof Serializable)
ps.setObject (6,notif.getUserData());

else

ps.setString(6, "No User Data");
ps.executeUpdate () ;
con.commit () ;

}

catch(Exception e)

{
e.printStackTrace();

}

super.sendNotification(notif);

@ The sendvotification() method executes some simple JDBC code to persist the
outgoing notification before sending it. Be sure to notice that an implementation
like this one assumes the appropriate database tables already exist.

6.7 Notifications from the MBean server

When we first looked at the HIML adapter in chapter 2, you discovered that your
MBeanServer contained an MBean that you did not create. That MBean was

6.7.1

Notifications from the MBean server 137

MBeanServerDelegate. Apart from providing you with some information about the
environment, this MBean serves to send notifications from the MBean server. An
MBeanServer Instance creates and registers this MBean in order to delegate the
notification delivery, allowing the MBeanServer to go back to managing MBeans.
The delegate MBean performs the following two notification-related tasks:

» Emits an MBeanServerNotification when necessary (as described in the
next section)

= Emits notifications that have been captured from other registered MBeans

Notification types sent from the MBean server

The MBean server’s purpose is to provide a mechanism for managing MBeans.
When working with an MBean server, you might find it important to know when
new MBeans are registered or existing ones are removed. The MBean server
emits the following notification types for these two events:

B Jjmx.mbean.registered

B Jjmx.mbean.unregistered

The two types correspond to registering and unregistering of MBeans. The impor-
tant question, though, is how to register to receive these notifications. You know
two facts that address this question: the MBean server delegates sending notifi-
cations to the MBeanserverDelegate MBean, and you can register to listen on any
MBean that sends notifications. In order for the delegate MBean to send notifi-
cations, it must be a notification broadcaster. Therefore, just as the previous sec-
tion described, you need to register as a listener with the delegate MBean. In
order to do that, you need its object name. Again, recall from chapter 2 that the
MBeanServerDelegate MBean’s ObjectName value is JMImplementation:type=
MBeanServerDelegate.

The notifications emitted by the MBean server are of the class MBeanServer-
Notification. This class extends the Notification class and provides an addi-
tional operation, getObjectName (), which returns the object name of the MBean
that caused the notification to be sent (by being registered or unregistered). The
class also defines two public final static members—REGISTRATION_NOTIFICATION
and UNREGISTRATION_NOTIFICATION—that correspond to the previously men-
tioned types.

In addition, JMX provides a filter for this type of notification. The MBean-
ServerNotificationFilter class extends the NotificationFilterSupport class and
provides methods that allow a listener to filter incoming MBeanServerNotification

138

6.8

CHAPTER 6
Communication with MBeans using notifications

objects based on the object name that caused them to be sent. This functionality
allows you to be informed when a particular MBean is registered or unregistered.

Summary

In this chapter, we discussed each of the components of the JMX notification
model. We showed that MBeans must implement the NotificationBroadcaster
interface in order to send notifications; this can be done directly or by extending
the NotificationBroadcasterSupport class. You learned that notifications must
be described by the MBeanNotificationInfo class, which is exposed by the man-
agement interface of an MBean. In addition, we examined the Notification
class and how its members provide useful information such as notification type,
source, timestamp, and so forth to notification listeners.

Along with sending notifications, this chapter also explained that classes
interested in receiving notifications must implement the NotificationListener
interface. In addition, notification listeners can register notification filters that
reduce incoming notifications to only those in which a receiving object is actually
interested. Filters are important because notification listeners would otherwise
receive all types of notifications from a broadcaster. In JMX, listeners need to
register only once to receive all notifications from a source.

Finally, we discussed some standard types of notifications that are already
present in the JMX framework, including the AttributeChangeNotification and
MBeanServerNotification classes. Attribute change notifications are sent by
MBeans when they want to indicate that an attribute of their management interface
has been altered. MBeanServerNotification notifications are sent by the MBean
server to indicate that a particular MBean has been registered or unregistered.

The next chapter covers the final MBean type presented in this book: the
Model MBean. Model MBeans are available for instantiation and configuration
in every JMX-compliant agent.

MBeans on-the-fly

= [ntroducing the Model MBean classes
m Examining the various features of the Model MBean
m Discussing different uses for Model MBeans

139

140

7.1

CHAPTER 7
MBeans on-the-fly

In chapters 4 and 5, we covered Standard and Dynamic MBeans. This chapter
discusses a new type of MBean: the Model MBean. The Model MBean is unique
because developers do not have to write an MBean class. The classes and inter-
face that make up the Model MBean are defined by the JMX specification and
are guaranteed to be available in every JMX-compliant agent. Model MBeans are
generic MBeans that can be instantiated in the MBean server and configured by
a user to manage any resource.

In addition to resource management, the Model MBean provides several fea-
tures that make it the most robust MBean, including MBean persistence, attribute
value caching, and more. This chapter discusses how you can use Model MBeans
to rapidly instrument a manageable resource.

Working with the Model MBean

Without considering the other features of the Model MBean (which we examine
in the next section), the Model MBean’s main difference from the Standard and
Dynamic MBeans is that you do not develop the MBean class—the Model
MBean is a required part of a JMX agent. The Model MBean is defined by the
class javax.management .modelmbean.RequiredModelMBean.

As is the case for the Dynamic MBean, the management interface for a Model
MBean is defined at runtime. In fact, the RequiredModelMBean class implements
the ModelMBean interface, which extends the DynamicMBean interface. However,
unlike usual Dynamic MBeans, the Model MBean’s management interface is
defined outside the MBean (by a management application or resource) and
inserted into the MBean via a setter method.

To better understand how this works, let’s walk through a few steps in a sam-
ple scenario that creates a Model MBean:

1 An application starts up and locates a JMX agent in order to expose itself
for management by registering an MBean with the agent.

2 The application calls the createMBean() method of the agent’s MBean
server, telling it to create an instance of the javax.management.modelm-
bean.RequiredModelMBean class.

3 After the MBean is created, the application sets an object in the MBean
to use as its managed resource.

4 The application creates an instance of the ModelMBeanInfoSupport class.
This object, like the MBeanInfo class from chapter 4, encapsulates the

7.2

7.2.1

Features of the Model MBean 141

management interface of the new Model MBean (this object describes
the Model MBean managed resource).

5 The application invokes an operation on the new Model MBean that sets
the ModelMBeanInfo ObjeCt.

At this point, the new Model MBean can be used to manage the application to
the extent that its management interface allows. Using the Model MBean not
only saves you development time, it also gives you the many features that come
with the MBean. The next section highlights some of the most important Model
MBean features and how they can be useful in a management environment.

Features of the Model MBean

The fact that Model MBeans can be created in any JMX-compliant agent is a
great advantage for managing applications. It means that without writing any
MBean code, you can instrument resources using a management tool interfacing
with a JMX agent. Essentially, you can model a resource by describing its man-
agement interface in a Model MBean at runtime, exposing as much or as little as
needed. That one advantage is enough to support the use of this type of MBean,
but the Model MBean also has much more to offer.

The Model MBean has many features available for use; this section will high-
light a few key ones. As you read this chapter, we’ll discuss all the features of the
Model MBean.

MBean persistence

One of the most valuable features of the Model MBean is its ability to persist
itself. For a Model MBean, this means that it will not need to reset its managed
resource and ModelMBeanInfoSupport objects. By using its persistence mecha-
nism, a Model MBean can survive the cycling of the JMX agent that contains it.
Each time a Model MBean is constructed, it checks to see if it can load its state
from a specified location. When configuring a Model MBean, you can specify
how often it should save its state.

The persistence mechanism of the Model MBean implementation provided
in the Sun Reference Implementation (RI) uses Java Object Serialization to write
the current state of the MBean’s Mode1MBeanInfo object out to a flat file location
specified when the MBean was created. Other JMX implementations could pro-
vide different persistence mechanisms for their Model MBean implementations,
such as JDBC.

142

7.2.2

CHAPTER 7
MBeans on-the-fly

Notification logging

Another valuable feature of the Model MBean is its ability to log each notifica-
tion it emits. The Model MBean allows you to specify a log file location where it
should write emitted notifications.

Using the notification logging mechanism lets you maintain an accurate record
of all notifications sent by a particular MBean. This record is useful for keeping an
audit trail of important management information from a particular resource.

7.2.3 Attribute value caching

7.2.4

7.2.5

A valuable performance feature built into the Model MBean is the ability to
cache attribute values. The ModelMBeanInfo object associated with a Model
MBean determines the attribute caching policy. For example, a Model MBean
can be configured to locally store the value of an attribute after it is first
acquired. Subsequent requests for this attribute can be satisfied with the local
copy. How often the cache is updated is determined by the caching policy associ-
ated with the specific attribute, and configured by the user.

This ability can greatly increase a program’s performance. If the operation
that acquired the value of an attribute is costly, you can configure the caching
policy to decrease the number of times the operation must be invoked to get the
attribute. For instance, if the Model MBean manages a remote resource that has
fairly static attributes, it could store their values locally in order to avoid repeat-
edly making a remote operation call to retrieve them.

Operation delegation

The Model MBean can have operations in its management interface that are
invoked on objects other than its managed resource. When exposing a particular
method for management, you can optionally include an object reference in
which to invoke the operation.

The delegation ability lets you expose operations that may interact with more
than just your single manageable resource. For instance, you can delegate an
exposed operation to an EJB, Java remote object, or any other object reference.
Currently, the Sun RI only supports object references—other implementations
(or your own subclass) could support the other types of delegation.

Generic notifications

The Model MBean also provides methods to send out generic, purely informa-
tional notifications. In the Model MBean implementation, there is a method that

7.3

Examining the ModelMBean interface 143

accepts a string argument to be sent out as a notification. The notification type
1S jmx.modelmbean.general.

Examining the ModelMBean interface

Now that we have examined the available features, let’s discuss configuring the
management interface of a Model MBean. Specifically, we need to explore the
interfaces and classes that surround your use of Model MBeans. As with the
Dynamic MBean, we’ll first cover the interface to a Model MBean. Like the
DynamicMBean interface, the javax.management .modelmbean.ModelMBean interface
provides the methods necessary to work with a Model MBean. Figure 7.1 shows
the ModelMBean interface with a UML diagram.

It is important to discuss the ModelMBean interface because it declares (or
inherits) the methods you use to configure, access, and manage a Model MBean.
These methods allow you to get and set attributes, invoke operations, and con-
figure the overall management interface exposed by the MBean. In addition, the
Model MBean provides the methods for MBean persistence and working with
MBean notifications. After we cover this interface, we will discuss how to build
the ModelMBeanInfo object for a Model MBean.

Cryrarmac biiiagn Ll L ipr
g Ll g i At B T e ey
g e ardirhs o BTarils rlrdea Hoblle mionl arsrer
AR aPEUTe e | et S A e Sy
AR Cunss airibaiea Serneg] | AaTbaielear P lang Oty maancbacs TXys |
el St dfrbule Aribede | ved ey Sned el prhcbic st Lelmm
S HEUASTI L] BTG AP, P | STl 8] AT Il e Bonh o | e
bl 1] ElenteTe Shng réd-bulirteme g |
[t | 4Tl e ATy Hamd e |
mgraiure Sringl| n raffnirfoaliond nifyTad SEing |
i Gt = Y Dol Teira o e e'n
nidyDy Afrisielhengelicddesioe |
- il
* rOR i Al
' rhirsiae SRSt |
"h Peruatentitean
%]
% o] i P
¥ vilorn(l vl N
i L
! £
L1 - i
4 ! '
Wi At Bean

44t i e i i Wandnn el
el araege i mouroeiTy. Dbped. rrhcs. S wod

Figure 7.1 UML diagram of the Mode1lMBean interface

144

CHAPTER 7
MBeans on-the-fly

7.3.1 Configuring a Model MBean

As you read in the previous sections, a Model MBean manages an existing object:
its managed resource. Developers choose how the MBean should use this object
in order to provide the necessary management ability to the underlying man-
aged resource. The Model MBean provides the following two methods that ini-
tialize the MBean for outside use:

B setManagedResource(Object resource, String resourceType)—This
method sets the MBean’s managed object. The object is the reference in
which the operations will be invoked and attributes accessed. The resource-
Type parameter tells the MBean what type of object reference is being
passed in. It can have the value ObjectReference, Handle, IOR, EJBHandle,
or RMIReference; however, the Sun RI Model MBean implementation
accepts only the objectReference type. Other JMX implementations may
implement the other types.

B setModelMBeanInfo (ModelMBeanInfo info)—The ModelMBeanInfo param-
eter is the metadata object collection that describes the management inter-
face of this Model MBean.

These two methods are very important for creating a Model MBean. They tell
the MBean how to behave and what to interact with. You will see later that not all
operations exposed through the ModelMBeanInfo object have to interact with the
value set via the setManagedresource () method, but in most cases they do. In sec-
tion 7.4, we will dissect the ModelMBeanInfoSupport class, which is the JMX RI
provided implementation of the ModelMBeanInfo interface, as we did the
Dynamic MBean’s MBeanInfo class. Doing so will help you better understand all
the features and configurations available to a Model MBean.

7.3.2 Acquiring and using the management interface

Looking back at figure 7.1, you can see that the ModelMBean interface also
extends the DynamicMBean interface. By extending this interface, all Model
MBeans are really Dynamic MBeans. That being so, a Model MBean defines its
management interface at runtime like any other Dynamic MBean. However,
where Dynamic MBeans are user-developed classes that construct their own
MBeanInfo objects to define their management interface, Model MBeans are
standard JMX classes and must have their MBeanInfo created and placed inside
them (using the setModelMBeanInfo () method described earlier).

This requirement creates an interesting situation for Model MBean users.
All MBeans are presented to clients in an identical format; in each case, the

7.3.3

7.3.4

74

Understanding the Model MBean metadata 145

management application works with an MBeanInfo object. However, in the case
of the Model MBean, its MBeanInfo object is actually the subclass of MBeanInfo:
the ModelMBeanInfosupport class. Management applications that know which
MBeans are Model MBeans can then use the more specific MBeanInfo class to
take advantage of the advanced capabilities of the Model MBean.

Registering for notifications

The second interface extended by the ModelMBean interface is ModelMBeanNotifi-
cationBroadcaster. This interface declares the notification-handling methods
for Model MBeans. The methods declared by this interface register and remove
notification listeners for Model MBean notifications. Model MBeans (based on
their configuration) emit AttributeChangeNotifications notifications and
generic informational notifications. In addition, the interface declares two send-
Notification () methods that Model MBeans must implement. One of the meth-
ods is the regular sendNotification () method that you have seen in the past,
and the other is an overloaded version that only accepts a String message to
send out in a generic notification. When a generic notification is sent, its type is
jmx.modelmbean.general. There is no need to list these methods here; you will
see them in use later.

MBean persistence

The final interface extended by the ModelMBean interface is PersistentMBean.
This interface declares two methods that initiate the persistence mechanism of a
Model MBean: 1oad() and store (). These methods are invoked based on the
configuration of the Model MBean stored in its ModelMBeanInfo object. The
load () method attempts to load an MBean state from a location specified in its
ModelMBeanInfo instance. Alternatively, the store () method persists the current
state of the MBean to a location specified in its ModelMBeanInfo instance. The
Model MBean implementation in the Sun RI uses Java object serialization to a
flat file for persistence.

Understanding the Model MBean metadata

As you just read, Model MBeans are Dynamic MBeans, and their management
interfaces are created at runtime. The previous section showed that you can
acquire and interact with the management interface the exact way you would a
Dynamic MBean. (Look back at chapter 5 for more about Dynamic MBeans.)
However, as stated earlier, if you know you are dealing with a Model MBean, you

146

74.1

CHAPTER 7
MBeans on-the-fly

can take advantage of its additional capabilities. The behavior and configuration
of these abilities lies within the ModelMBeanInfo object set in a Model MBean.
This section will walk you through this class and all the features available to con-
figure for a Model MBean.

Not only do Model MBeans use a subclass of the MBeanInfo class (ModelMBean-
Info) to contain their metadata, each metadata class covered in chapter 5 also
has a subclass used by Model MBeans. These subclasses provide the mechanisms
to define the policies governing the behavior of a Model MBean. Table 7.1 lists
the metadata classes and their parents.

Table 7.1 The metadata classes of the Model MBean used to describe its management interface

Class Super class Purpose
ModelMBeanAttributeInfo MBeanAttributeInfo Describes a Model MBean
attribute
ModelMBeanConstructorInfo MBeanConstructorInfo Describes a Model MBean
constructor

ModelMBeanNotificationInfo MBeanNotificationInfo Describes a Model MBean

notification
ModelMBeanOperationInfo MBeanOperationInfo Describes a Model MBean

operation
ModelMBeanInfo MBeanInfo Describes the policies of the

MBean and contains the
other metadata objects

We discussed the super classes of the Model MBean metadata classes in chapter 5,
so we will not cover their methods again. For more information about how the
metadata classes are used to describe exposed attribute, operations, and so forth,
see chapter 5. The next several sections will walk you through each of the new
metadata classes and what they offer to support the Model MBean.

Using descriptors

The next several subsections deal with the metadata objects that describe
attributes, operations, notifications, and constructors in a Model MBean’s man-
agement interface. But before we dive into the first class, it is important to
explore what they all have in common. Each metadata class contains an instance
of the javax.management .Descriptor interface: the javax.management .model-
mbean.DescriptorSupport class.

7.4.2

Understanding the Model MBean metadata 147

The pescriptor objects help the metadata classes provide the additional con-
figuration needed for the Model MBean’s additional functionality. The Descrip-
torsupport class implements the methods of the pescriptor interface to create a
class that can contain a number of field name—field value pairs. Each field name is
represented by a string object, and each field value is represented by an object
instance. The methods defined in a bescriptor object deal with getting, setting,
and removing these name-value pairs.

Each metadata object uses the descriptor to contain predefined fields that
describe a particular piece of functionality. As you will see, each metadata class
expects its Descriptor object to contain a field named descriptorType that indi-
cates what the descriptor is being used to describe. The descriptorType field is
expected to have the value MBean, attribute, operation, Or notification. There
are many more predefined fields for each metadata class, and we will discuss
each as we go along.

In addition to containing a Descriptor object, each metadata class imple-
ments the Descriptoraccess interface, which provides the classes with the setDe-
scriptor () and getDescriptor () methods. These metadata classes are treated
exactly like the classes they extend, except for their inclusion of Descriptor
objects. Therefore, the following sections will concentrate on their internal
Descriptor—its features, configuration, and uses. For more information about
their super classes, read the metadata section from chapter 5 (section 5.3).

Constructing a ModelMBeaninfoSupport object

As you already know, the ModelMBeanInfoSupport class extends the MBeanInfo
class and therefore provides all the functionality described in chapter 5. How-
ever, this subclass provides the behavioral configuration of a Model MBean by
use of its Descriptor object.

Table 7.2 displays the predefined attributes of the pescriptor object at the
MBean level.

Table 7.2 The MBean-level descriptor attributes

Descriptor attribute Possible values Default value Description
name User-defined mbeanName The name of the MBean
descriptorType mbean, attribute, mbean The type of descriptor

operation,

notification

displayName User-defined Classname A name for this MBean to be
used in the user display

148

CHAPTER 7
MBeans on-the-fly

Table 7.2 The MBean-level descriptor attributes (continued)

Descriptor attribute Possible values Default value Description
persistPolicy OnUpate, OnTimer, never How often to persist this MBean
NoMoreOftenThan,

Always, Never

persistPeriod Seconds Time value for a persist-
Policy value of NoMore-
OftenThan or OnTimer

persistLocation Directory value Directory of the persistent file

persistName Filename The filename of the
persistent state

log t, £ F t logs all notifications;
£ logs none
logfile Filename Fully qualified file path
for a log file
export User-defined F Lookup name of the MBean,

if it is to be exposed to an
external registry

visibility 1,2,3,4 1 1 means always visible;
4 means rarely visible

presentationString | XML format Creates a rendering of the
MBean for display purposes

You should be able to understand most of these attributes without much explana-
tion. For instance, the attribute displayName is used only by applications that dis-
play information about a Model MBean; the JMX agent would not use this field
to manage the MBean. The same is true for presentationString and visibil-
ity—the visibility attribute is intended for use by management applications to
provide some level of viewing access for different users.

Examining the remaining attributes, we are left with those that describe the
MBean’s persistence policy and notification logging, and one called export. In
this JMX RI, the export attribute is not used by the agent. However, it is intended
to be used when exposing an MBean to the outside world via some lookup regis-
try; the export value is the lookup name for this MBean.

JMX agents use the persistPolicy and persistPeriod attributes to determine
how often to persist their state, and they use the persistLocation and persist-
Name attributes to determine where to store it. Agents use these values to deter-
mine when to persist a Model MBean. Finally, you can use the 1og and logfile

7.4.3

Understanding the Model MBean metadata 149

attributes to set up a log file tracking all the notifications emitted by an MBean.
Doing so is useful because it lets you record the notification activity of your
MBeans for later retrieval and analysis.

As we cover each of the metadata objects, we will focus on their descriptors.
In their descriptors, you will see some of these attributes reproduced. If so, their
values take precedence over the value at the MBean level, but apply only to the
particular portion of the management interface being described.

The ModelMBeanAttributelnfo class

As you will recall, the MBeanInfo class (and therefore the ModelMBeanInfoSupport
class) can expose many attributes for management using the MBeanAttributeInfo
class. In the case of a Model MBean, the ModelMBeanAttributeInfo class is used.
Again, in this section, we will focus on the Descriptor object that this class con-
tains. Table 7.3 lists the predefined values of its descriptor.

Table 7.3 Attribute-level descriptor attributes

Descriptor attribute Possible values Description
name User-defined Attribute name
descriptorType mbean, attribute, opera- Type of descriptor

tion, notification

value Value of the attribute Current value of the attribute

default User-defined Default value of the attribute

getMethod Method name of the getter for Name of the method used to get the
this attribute value of this attribute

setMethod Method name of the setter for Name of the method used to set the
this attribute value of this attribute

prototcolMap Object that provides a mapping to a

different protocol

persistPolicy Update, OnTimer, NoMore— How often to persist this attribute
OftenThan, Always, Never

persistPeriod Seconds Same as the MBean level
currencyTimeLimit < 0 = never; O = always, How long an attribute value is valid
> 0 = a seconds value before needing to be refreshed
lastUpdatedTimeStamp | long value When the value was last updated
iterable T, F Whether the attribute value object

implements the Iterable interface

visibility 1to4 Same as the MBean level

150

CHAPTER 7
MBeans on-the-fly

Table 7.3 Attribute-level descriptor attributes (continued)

Descriptor attribute Possible values Description
presentationString XML format Same as the MBean level
displayName User-defined Display name for this attribute

You'll notice some duplicates from the MBean-level descriptor. As mentioned
earlier, any duplicates override the MBean-level values but apply only to this
particular attribute. The remaining attributes fall into three categories: describ-
ing the attribute, accessing the attribute, and storing the attribute value.

Describing the attribute

The descriptor attributes falling into this category are name, default, protocol-
Map, and iterable. The name value is simply the name of the attribute. The
default attribute provides the MBean attribute with a default value. Remember,
because the Descriptor class allows for name-object pairs, the default value can
be more than a string representation.

The iterable attribute indicates to a user whether the MBean attribute value
is an iterable collection. This is a quick way to determine if the MBean attribute
value is a list or some other class using the java.util.Iterable interface.

Finally, the protocolMap descriptor attribute is a unique attribute used only
for MBean attributes. It contains an object value that provides hints to a man-
agement application about how this MBean attribute value might be mapped to
a different protocol. For example, you could use the protocolMap attribute to
translate this value to Simple Network Management Protocol (SNMP) or a pro-
prietary protocol.

Accessing the attribute

To describe how the MBean attribute is accessed, you need to use the getMethod
and setMethod descriptor attributes. These two attributes contain the names of
the methods used to get and set the value of the MBean attribute. In contrast to
the other MBean types, these methods do not have to follow the naming scheme
of getName and setName, where Name is the name of the MBean attribute. These
method names can be any methods of the managed resource object value con-
tained in the Model MBean. Thus you can map an MBean attribute value to any
method available in your object. Operations specified as getters and setter must
also be described with an operation metadata object (shown in a moment).

7.4.4

Understanding the Model MBean metadata 151

Storing the attribute value

Each Model MBean attribute can be cached locally in the MBean. So, managed
resources’ attributes can be stored locally for quick retrieval. This behavior is
configured on a per-MBean-attribute basis using the following descriptor
attributes: value, currencyTimeLimit, and lastUpdatedTimeStamp.

The value attribute is the most current updated value of the MBean attribute.
However, if you are depending on this being an accurate reflection of the MBean
attribute value (because other processes besides the MBean could be changing
it), you need to know when it was last acquired. The currencyTimeLimit descrip-
tor attribute is used to configure how often the JMX agent will access this
attribute and update the descriptor value. It can have one of three integer val-
ues: less than zero (never update), 0 (always update), and greater than zero
(update every x seconds). In addition, the lastUpdatedTimeStamp descriptor
attribute provides the timestamp of when the MBean was last used to update the
attribute value.

Creating attributes not in the managed resource

Another interesting feature of Model MBeans is their ability to expose attributes
of the MBean and attributes of its managed resource. To the management user,
both attributes are from the same source (the resource being managed by the
MBean); but in reality, you can add an attribute to a Model MBean that is not
present in its managed resource. Essentially, such attributes have no getter or
setter methods and are static values presented in the management interface.

The ModelMBeanOperationinfo class

Like the ModelMBeanAttributeInfo class, the ModelMBeanOperationInfo class pro-
vides some unique behavioral configuration for Model MBeans. With the Model
MBean, you can expose operations for your management interface that belong
to objects other than the one contained as the Model MBean’s managed
resource. In addition, you can configure the MBean to cache the return value of
the operation. Table 7.4 lists the predefined descriptor attributes for operations.

Table 7.4 Operation-level descriptor attributes

Descriptor attribute Possible values Description
name User-defined Name of the MBean
descriptorType mbean, attribute, opera- Type of descriptor

tion, notification

152

CHAPTER 7
MBeans on-the-fly

Table 7.4 Operation-level descriptor attributes (continued)

Descriptor attribute Possible values Description
class Class containing the method Class where the method is defined
role getter, setter, opera- Role of this operation
tion, constructor
targetObject Object value Object on which to execute this
operation
targetType ObjectReference, EJBHan— | Type of Object held in the target—
dle, IOR, RMIReference Object attribute
displayName User-defined Name used for display purposes
lastReturnedvalue Return value of the method Cached return value for this operation
currencyTimeLimit Same as attribute level How long the return value is valid
lastReturnedTimeStamp | long value Timestamp of the last returned value
visibility 1to4 Same as MBean level
presentationString XML format Same as MBean level

Let’s examine the new descriptor attributes that help describe the exposed oper-
ation: class, role, targetObject, and targetType. The first two are simple
enough: class contains the class name that defines this method, and role indi-
cates the purpose of the method (setter, getter, operation, or constructor). The
targetObject and targetType attributes are used to specify an object other than
the Model MBean’s managed resource in which to invoke the operation. This
optional mechanism is useful if you want to delegate processing to other objects,
or if you have such a distributed resource that you want to spread out operations
among different application components. Currently, the Sun RI only supports
the ObjectReference targetType.

Operations for attributes

When exposing an attribute in a Model MBean, you optionally specify the meth-
ods used as its getter and setter in the managed resource. Because methods
invoked from a Model MBean can have configurable behavior, Model MBeans
expect these getter and setter methods to be added to their ModeMBeanInfo
objects with operation metadata. Therefore, when adding an attribute, you may
also be adding two additional operations. You will see this in the example at the
end of the chapter.

Understanding the Model MBean metadata

153

7.4.5 The ModelMBeanConstructorinfo class

The exposed constructor descriptor is similar to the exposed operation. In fact,
it does not define any new descriptor attributes. Table 7.5 displays its predefined

7.4.6

descriptor attributes.

Table 7.5 Constructor-level descriptor attributes

Descriptor attribute

Possible values

Description

Name of the constructor

name User-defined

descriptorType operation Must be operation

role constructor Indicates this operation is a constructor
displayName User-defined Name used for displays

class Class where the method is defined
visibility 1to4 Same as MBean level
presentationString XML format Same as MBean level

The ModelMBeanNotificationinfo class

The final metadata class is the ModelMBeanNotificationInfo class. It is used to
describe and configure individual notifications that can be emitted by a Model
MBean. The only behavior you can configure is if and where to log this notifica-
tion type. Table 7.6 lists the descriptor attributes associated with this class.

Table 7.6 Notification-level descriptor attributes

Descriptor attribute

Possible values

Description

User-defined

Name of the notification

name

descriptorType mbean, attribute, operation, | Type of descriptor
notification

severity 1to5 1=fatal, 2=server, 3=error,

4=warning, 5=info

messageld Unique key for the message text

messageText User-defined Text of the notification

log T, F Whether to log this notification

logFile Fully qualified filename Where to log this notification infor-

mation; if not specified here, the
MBean level value will be used

154

7.5

7.5.1

CHAPTER 7
MBeans on-the-fly

Table 7.6 Notification-level descriptor attributes (continued)

Descriptor attribute Possible values Description
visibility 1to4 Same as MBean level
presentationString XML format Same as MBean level

As you can see from the table, the descriptor provides attributes in order to store
the pertinent information about a notification. For example, you can specify a
generic notification severity, messageId, and messageText. The messageld 1S use-
ful when logging notifications: when you come back to analyze the log file, you
will be able to uniquely identify each message based on the notification id.

In addition, the 1og and logfile attributes specified here can override the ones
specified at the MBean level, but will apply only to this particular notification.

Model MBeans in action

These metadata classes should feel familiar to you after learning about the meta-
data classes for the Dynamic MBean. However, as noted, the Descriptor objects
enable the Model MBean’s additional features. Now that we have covered each
of the metadata objects and their descriptors, we can move into some examples.

Building ModelMBeaninfo objects

When building an instance of the ModelMBeanInfo class, you not only have to cre-
ate arrays of metadata objects, but you also have to create corresponding Descrip-
tor instances for the metadata. If you are modeling a resource with many
operations, attributes, and notifications, you will have to write many lines of
code. One way to help with this problem is to write a class similar to the Dynamic
MBean super class you wrote in chapter 5.

Listing 7.1 shows the Mode1MBeanInfoBuilder class. Like the DynamicMBeansup-
port class in chapter 5, this class contains methods that help you build the meta-
data objects of the Model MBean’s management interface. In addition, the
ModelMBeanInfoBuilder class has methods to help construct some of the bescrip-
tor instances you will need for Mode1MBeanInfo objects.

package Jjmxbook.ch7;

import javax.management.*;
import javax.management.modelmbean.*;

Model MBeans in action

import java.lang.reflect.*;

import java.util.*;

public class ModelMBeanInfoBuilder

{
protected Hashtable
protected Hashtable
protected Hashtable
protected Hashtable

attributes = new Hashtable();
notifications = new Hashtable();
constructors = new Hashtable();
operations = new Hashtable();;

public ModelMBeanInfoBuilder ()

{
}

public void addModelMBeanMethod(String name,

String[] paramTypes,

String[] paramNames,

String[] paramDescs,

String description, String rtype,
int type, Descriptor desc)

MBeanParameterInfo[] params = null;
if (paramTypes != null)
{
params = new MBeanParameterInfo[paramTypes.length];
for(int i = 0; i1 < paramTypes.length; i++)
{
params[i] = new MBeanParameterInfo(paramNames[i],
paramTypes[i], paramDescs[i]);

}

operations.put (name,
new ModelMBeanOperationInfo(name, description,

}

params, rtype, type, desc));

public void addModelMBeanNotification(String[] type,

notifications.put (className,

String className,
String description, Descriptor desc)

new ModelMBeanNotificationInfo(type,

}

className, description, desc));

public void addModelMBeanAttribute (String fname, String ftype,

attributes.put (

boolean read, boolean write,
boolean is,
String description, Descriptor desc)

fname, new ModelMBeanAttributeInfo (fname,
ftype,

Expose an
attribute

155

Expose an
operation

156

CHAPTER 7

MBeans on-the-fly

}

description, read,write,is, desc));

public void addModelMBeanConstructor (Constructor c,

}

String description,
Descriptor desc)

this.constructors.put (c,

public ModelMBeanInfo buildModelMBeanInfo(Descriptor desc)

throws Exception

ModelMBeanOperationInfo[] ops =

new ModelMBeanOperationInfo[operations.size() 1;

copyInto(ops, operations);

ModelMBeanAttributeInfo[] atts =

new ModelMBeanAttributeInfo[attributes.size() 1;

copyInto(atts, attributes);

ModelMBeanConstructorInfo[] cons =

new ModelMBeanConstructorInfo[constructors.size() 1;

copyInto(cons, constructors);

ModelMBeanNotificationInfo[] notifs =
new ModelMBeanNotificationInfo[notifications.size()];
copyInto(notifs, notifications);

System.out.println(ops);

return new ModelMBeanInfoSupport (

}

"javax.management .modelmbean.ModelMBeanInfo",
"description",
atts,
cons,
ops,
notifs, desc);

public Descriptor buildAttributeDescriptor (String name,

String displayName, String persistPolicy,
String persistPeriod, Object defaultValue,
String getter, String setter,

String currency)

Descriptor desc = new DescriptorSupport();
if (name != null)
desc.setField ("name", name);
desc.setField ("descriptorType", "attribute");
if (displayName != null)
desc.setField("displayName", displayName);

new ModelMBeanConstructorInfo(description, Build
c, desc)); MBeaninfo
object

}

Model MBeans in action

if(getter != null)

desc.setField ("getMethod", getter);
if(setter != null)

desc.setField("setMethod", setter);
if (currency != null)

desc.setField ("currencyTimeLimit", currency);
if (persistPolicy != null)

desc.setField ("persistPolicy", persistPolicy);
if (persistPeriod != null)

desc.setField ("persistPeriod", persistPeriod);
if (defaultValue != null)

desc.setField("default", defaultValue);
return desc;

public Descriptor buildOperationDescriptor (String name,

}

String displayName, String role,
Object targetObject, Object targetType,
String ownerClass, String currency)

Descriptor desc = new DescriptorSupport ();
if (name != null)
desc.setField ("name", name);

desc.setField("descriptorType", "operation");
if (displayName != null)
desc.setField("displayName", displayName);
if(role != null)
desc.setField("role", role);

if(targetObject != null)
desc.setField ("targetObject", targetObject);
if (targetType != null)
desc.setField ("targetType", targetType);
if (ownerClass != null)
desc.setField("class", ownerClass);
if(currency != null)

desc.setField("currencyTimeLimit", currency);

return desc;

public Descriptor buildMBeanDescriptor(String name,

String displayName,

String persistPolicy,

String persistPeriod,

String persistLocation,
String persistName,

String log, String logFile)

Descriptor desc = new DescriptorSupport ();
if(name != null)
desc.setField ("name", name);

157

158

CHAPTER 7
MBeans on-the-fly

desc.setField("descriptorType", "mbean") ;

if (displayName != null)
desc.setField("displayName", displayName) ;
if(persistLocation != null)

desc.setField ("persistLocation",
persistLocation);

if(persistName != null)

desc.setField ("persistName", persistName);

if(log != null)

desc.setField("log", log);

if (persistPolicy != null)

desc.setField ("persistPolicy", persistPolicy);

if(persistPeriod != null)

desc.setField ("persistPeriod", persistPeriod);

if(logFile != null)

desc.setField("logFile", logFile);

return desc;

}

private void copyInto(Object[] array, Hashtable table)
{

Vector temp = new Vector (table.values ());
temp.copyInto(array);

No fancy code exists in this class. The ModelMBeanInfoBuilder class serves as a
way to avoid repeating lines of code when creating ModelMBeanInfo objects. It
contains methods for creating the metadata objects for attributes, operations,
constructors, and notifications. In addition, the class contains methods for creat-
ing the Descriptor objects for the MBean, attribute, and operation metadata
classes. The descriptor methods don’t take all the predefined field names, but
you can add more as needed to the method, or you can add them after the new
Descriptor object is returned.

For a demonstration of using this utility class, look at listing 7.2. It shows the
ModeledClass class, which defines a simple class with two methods. ModeledClass
contains a main () method that you will use to test a Model MBean. The main ()
method uses the ModelMBeanInfoBuilder class to create a management interface
for a Model MBean.

Listing 7.2 ModeledClass.java

package jmxbook.ch7;

import javax.management.*;

Model MBeans in action

import javax.management.modelmbean.*;
import jmxbook.ch3.RMIClientFactory;
import com.sun.jdmk.comm.*;

public class ModeledClass implements Jjava.io.Serializable

{

private String attribute = "My Attribute";
public ModeledClass ()

{

}

public String getMyAttribute ()

{
System.out.println("Returning attribute to MBean");
return attribute;

}

public void printAttribute ()
{

System.out.println(attribute);
}

public static void main(String[] args) throws Exception
{
ModeledClass obj = new ModeledClass () ;
ModelMBeanInfoBuilder builder = new ModelMBeanInfoBuilder();

Descriptor attDesc =
builder.buildAttributeDescriptor ("MyAttribute",
null, "always", "10", null, "getMyAttribute",
null, "10");

builder.addModelMBeanAttribute ("MyAttribute",
"java.lang.String",
true, false, false, "", attDesc);

Descriptor opGetDesc = builder.buildOperationDescriptor (
"getMyAttribute", null, "getter", null, null,
"jmxbook.ch7.ModeledClass", "10");

builder.addModelMBeanMethod("getMyAttribute", null,
null, null, "",
"java.lang.String" , MBeanOperationInfo.INFO,
opGetDesc) ;

Descriptor opDesc = builder.buildOperationDescriptor (
"printAttribute",
null, "operation", null, null, Add attribute
"Jmxbook.ch7.ModeledClass", "10"); and getter

builder.addModelMBeanMethod("printAttribute", null,
null, null, "",
"void" , MBeanOperationInfo.ACTION, opDesc);

Descriptor mbeanDesc = builder.buildMBeanDescriptor (

159

160

CHAPTER 7
MBeans on-the-fly

"modeledClass",
uu, llalwaysll, "10", non ,"Modeledclass", Build MBean
null, null);

descriptor
ModelMBeanInfo info =

builder.buildModelMBeanInfo (mbeanDesc);
RmiConnectorClient client = RMIClientFactory.getClient ();
ObjectName mName = new ObjectName ("JMXBookAgent :name=Modeled") ;

client.createMBean (
"javax.management .modelmbean.RequiredModelMBean",
mName) ;

String[] sig = { "java.lang.Object", "java.lang.String" };
Object[] params = { obj, "ObjectReference" };
client.invoke (mName, "setManagedResource", params, sig);

sig = new String[1];

sig[0] = "javax.management.modelmbean.ModelMBeanInfo"
params = new Object[1];
params[0] = info;

client.invoke (mName, "setModelMBeanInfo", params, sig);

//store the MBean Set resource
client.invoke (mName, "store",null,null); and MBean info
} 7
} Persist MBean

The ModeledClass class contains the method getMyAttribute (), which the cre-
ated ModelMBean will use as an attribute. The class also contains the method
printaAttribute (), which will be modeled as an operation. The main () method is
used to create a test of a ModelMBean managing an instance of this class.

After creating an instance of the ModeledClass, the main () method uses the Model-
MBeanInfoBuilder utility class to build a Mode1MBeanInfo ObjeCt. The main () method
first adds the attribute Myattribute to the builder. To do this, it creates a Descrip-
tor object using the buildAttributeDescriptor () method, passing in the various
values to initialize its predefined fields. In this case, the main() method must
describe the attribute and indicate that its getter method is named getMyat-
tribute (). After the descriptor has been built, it is added to the builder to create
an attribute entry for the ModelMBeanInfo object under construction.

Because the attribute has been added, the main () method must now create an
operation entry in the builder for the attribute’s getter method, getMyat-
tribute (). You add operations to the builder much the way you add attributes: by
building the descriptor and then calling the correct add-metadata-object method.

Model MBeans in action 161

@ After all the operations and attributes are added to the builder object, the main ()

method builds an MBean Descriptor object in order to complete the ModelM-
BeanInfo object being constructed by the builder. Finally, the main () method calls
the buildModelMBeanInfo () method to acquire the constructed ModelMBeanInfo
object for creating a Model MBean.

© To create the Model MBean, the main () method acquires an RmiConnectorClient

7.5.2

in order to contact your JMxBookagent. Every Model MBean is defined by the class
javax .management .modelmbean.RequiredModelMBean. The main () method invokes
the createMBean () method and passes in an objectName and the RequiredModel-
MBean classname for the new MBean. After a Model MBean is registered in an
agent, it must be initialized with a managed resource, the object it will manage,
and an instance of ModelMBeanInfo that describes its management interface. To
set these objects in the Model MBean, the main () method invokes the setManage-
dResource () and setModelMBeanInfo () methods on the new Model MBean.

Modeling with Model MBeans

As you might gather even from this simple example, the main task in creating
Model MBeans is generating the ModelMBeanInfo objects to adequately describe
your needed behavior and management interfaces. Put differently, you need to
be able to model your resource for the Model MBean. This requirement high-
lights one of the advantages of using Model MBeans.

Imagine that you have to instrument 50 different resources for a JMX agent.
This seems like a daunting task if you are responsible for writing 50 different
MBeans, all of which need to be tied in to their manageable resources in a spe-
cific manner. Now consider the scenario if each interface to the resource is
described a flat file (properties, XML, and so forth). If you have a program that
can parse these files and generate ModelMBeanInfo objects, you can instrument
the resources in moments.

With Model MBeans, you can spend your time describing management inter-
faces and behavior, and then generate the code needed to create the MBean in
an agent. We do not present such a generation tool in this book, because each
environment will have specific requirements for the file or XML format needed
to generate Model MBean info. However, the ModelMBeanInfoBuilder class we've
presented in this chapter is a useful utility class.

162 CHAPTER 7
MBeans on-the-fly

7.6 Summary

In this chapter, you learned about the final MBean type presented in this book: the
Model MBean. Model MBeans offer MBean developers management and configu-
ration capabilities that the Standard and Dynamic MBeans do not. These features
include configurable attribute caching, notification logging, and persistence.

The next chapter begins part 2 of this book, which covers the agent layer of
JMX. Chapter 8 presents a detailed discussion of the MBean server.

Part 3

The [MX agent
and distributed layers

Bt 3 begins a detailed examination of the JMX agent layer. JMX agents
contain MBeans by using one or more MBean servers and also provide access
for management applications. Agents also provide a set of services that help
with the manipulation of MBeans. The chapters in this part of the book dis-
cuss these agent-related topics.

Chapter 8 covers the MBean server. It starts with a brief review of the over-
all agent architecture, and then undertakes a detailed discussion of the MBean-
server interface. The second half of the chapter covers the query capability
built into the MBean server, including the construction of queries and using
queries to retrieve MBeans.

Chapter 9 examines protocol adapters and connectors. Specifically, the
chapter covers the RMI connector contributed by Sun Microsystems in its JMX
Reference Implementation. In addition, chapter 9 walks you through writing
a Jini connector and TCP adapter.

Chapter 10 discusses the M-let agent service. This service can dynamically
load MBeans at runtime from remote locations outside an agent’s codebase. It
is useful for expanding an agent’s cLasspaTH as well as dynamically updating it
with new MBeans at runtime.

Chapter 11 covers another agent service: the relation service. The relation ser-
vice allows you to describe the relationships that may exist between MBeans. For
example, MBeans may all belong to a single workflow. They are related by the

164

PART 3
The JMX agent and distributed layers

order in which they must be used to complete the workflow. This chapter explains
this service using an example that manages a telephone routing application.

Chapter 12 explores the remaining two agent services: the monitoring ser-
vices and the timer service. The monitoring services are predefined MBeans that
can monitor other MBean attributes. The timer service gives the agent the abil-
ity to emit notifications at intervals.

Working with
an MBean server

m Exploring the MBean server APl methods

m |ntroducing the MBean server querying
mechanism

m Writing query examples

165

166

8.1

8.1.1

CHAPTER 8
Working with an MBean server

As you become more experienced with JMX and writing your own MBeans, you
may envision a time when you have a JMX agent containing dozens of MBeans of
different class types and purposes. Keeping track of all your MBeans, their pur-
poses, and their management interfaces can be difficult as the number of MBeans
in an agent increases. Fortunately, the MBeanserver class comes with a querying
mechanism that allows you to build and execute custom MBean queries to identify
specific MBeans.

You have used the MBean server in several of the previous chapters. In partic-
ular, you registered MBeans and used the HTML protocol adapter to access
information from an instance of the MBeanserver class. This chapter discusses the
MBean server in more detail, giving you a better understanding of its features.
Specifically, we will cover two main areas:

m The MBeanserver interface

» Using the MBean server querying mechanism to find MBeans

However, before we begin exploring these topics, let’s quickly review the overall
JMX agent architecture information from chapter 1.

JMX agent architecture in review

Remember from chapter 1 that a JMX agent is a Java process that contains a set of
MBeans and enables management applications to interact with them. JMX agents
contain one or more MBean servers that act as registries for MBeans. Remember
also that agents use one or more protocol adapters or connectors. Adapters and
connectors make JMX agents available to different management applications.

Figure 8.1 depicts the agent-level components. After reviewing the figure, if
you still have questions, look back to chapter 1.

Using protocol adapters and connectors

As you can see from figure 8.1, protocol adapters and connectors provide access
to the MBean server. Adapters and connectors help you to interact with the
MBean server as if you were working with it directly.

Management applications can interact with MBeans by using protocols such
as Simple Network Management Protocol (SNMP) or HTTP. Essentially, protocol
adapters let you use existing management applications to interact with JMX
agents. You can map your existing protocols into a JMX agent, allowing you to
interact with and manage its MBeans.

8.2

The MBeanServer interface 167

gl Layes Chnirbssded
. Ll
Turest Sapraice e
] L r—
B Conenaion
. - >
bondonng Service 8 "'. & &
a
o L et Pl
Dyrua—st BiSean (AR " Wrepred
- 4 Comcl

bondang) flrvere

N
Riplalaesiled Sl {‘g ¥

MBaar, Sarvel

L i
MBsar 1 MBsan2 WBsan 3 Protocel |y

L = &

L |

F . B
anaged Maraged Wa-aged
Rpscurce | | | Hecurce 2 | Resoece 3
Y a a Figure 8.1
I L The agent-level components

In addition, management applications can use connectors in order to reach the
MBean server with remote clients. For example, Sun provides a Remote Method
Invocation (RMI) connector for remote access over Java RMI. Connectors are
more useful when you're developing a management application. As mentioned,
connectors provide you with a client portion, which enables seemingly direct
calls into a JMX agent’s MBean server.

Both protocol adapters and connectors are important to this chapter because
each should provide a direct mapping to the methods of the MBeanServer inter-
face. One way or another, you should be exposed to these methods. You will
learn more about protocol adapters and connectors in chapter 9. Now it is time
to turn our focus to the MBean server.

The MBeanServer interface

As previously mentioned, the MBean server acts a registry for MBeans. In addi-
tion to being the repository for MBeans, an MBean server provides a set of ser-
vices for manipulating registered MBeans. For example, the MBean server gives
you access to MBean attributes and operations. In addition, the MBean server
provides more advanced services such as querying (discussed later in section 8.3)
and MBean relationships (covered in chapter 10).

168

8.21

CHAPTER 8
Working with an MBean server

Up to this point in the book, you have used methods of the MBean server as
necessary. However, you should have a good understanding of the entire set of
methods available in the MBeanserver class. The methods available for use in any
MBean server are declared by the MBeanserver interface. This interface declares
methods for creating, registering, manipulating, and finding MBeans (and more).
Each of the following sections will cover one method, set of overloaded methods,
or set of related methods. Objects used as input parameters and return types are in
the javax.management or java.lang package unless otherwise specified.

Rather than show the entire interface in a single diagram, the next several
sections focus on a few specific methods that are related. After learning about the
majority of methods in this chapter, you should look at the available javadoc API
for overloaded or additional methods not covered.

Registration methods

The first set of methods we’ll discuss deals with registering an MBean that you
have created but not registered in the MBean server. For example, you used the
registerMBean () method in chapter 2 to register your HellowWorld MBean.

Table 8.1 summarizes the registration methods.

Table 8.1 MBean registration-related methods of the MBeanServer interface

Method Purpose
registerMBean (Object mbean, Registers an already created MBean in the MBean
ObjectName name) server
isRegistered(ObjectName name) Checks to see if a particular MBean is registered on

the MBean server

unregisterMBean (ObjectName name) Removes an MBean from the MBean server

The registerMBean() method for existing objects

This method is intended for use when you have already created an MBean man-
ually in code. It is useful if you have objects that serve as application components
but also happen to be MBeans. At some point in their lifecycle, you might want
to expose them for management by registering them in an MBean server.

The registerMBean () method takes the constructed MBean and an appropri-
ate ObjectName instance for parameters. If the MBean conforms to the MBean
rules and the objectName instance is valid, the MBean server will register the
incoming MBean. For information on creating the different types of MBeans,
look back at chapters 4, 5, and 7.

The MBeanServer interface 169

The registerMBean () method returns an instance of the object Instance class.
An ObjectInstance object contains the objectName of an MBean and its class-
name. This method can throw the following exceptions (all contained in the
javax.management package):

m InstanceAlreadyExistsException—An MBean with the given ObjectName
value already exists in the MBean server.

m MBeanRegistrationException—The MBean being registered implements
the MBeanRegistration interface and threw an exception in one of the reg-
istration methods.

® NotCompliantMBeanException—The object is not a compliant JMX MBean.
See chapters 4 and 5 for the rules governing a compliant MBean.

B RuntimeOperationsException—1his exception class wraps an IllegalArgu-
mentException indicating that the object parameter is null or that the
object name is invalid or also null.

The isRegistered() method

If you need to know whether a particular MBean is registered, you can use the
isRegistered() method. You would use this method to check to see if a particu-
lar MBean has already been created, or to determine whether a particular
ObjectName value is already in use.

This method returns a boolean value indicating whether the supplied object-
Name Instance corresponds to one of the registered MBeans in the MBean server.
This method can throw a RuntimeOperationsException indicating that the
ObjectName value supplied is invalid or null.

The unregisterMBean() method

When you need to remove an MBean from the MBean server, you can use the
unregisterMBean () method. This method will unregister (remove) the MBean
that corresponds to the supplied 0bjectName instance. An InstanceNotFoundEx—
ception will be thrown if the 0bjectName instance does not correspond to a regis-
tered MBean. The following exceptions could arise from this method:

® InstanceNotFoundException—The requested MBean cannot be found in
the MBean server.

B MBeanRegistrationException—Ihe MBean being registered implements
the MBeanRegistration interface and threw an exception in one of the
deregistration methods.

170

CHAPTER 8
Working with an MBean server

B RuntimeOperationsException— lhis exception wraps an IllegalArgument-
Exception indicating that the object name is invalid or null.

8.2.2 Creation and registration methods

The registerMBean () method shown in the previous section registers an MBean
that is already created. The MBean server also has four methods that let you cre-
ate and register an MBean with one method call. Table 8.2 shows two of these
methods that we will discuss in the following sections.

Table 8.2 MBean creation-related methods of the MBeanServer interface

Method Purpose

createMBean (String className, Creates and registers a new MBean of the given class
ObjectName name)

createMBean (String className, Creates and registers a new MBean of the given class using
ObjectName name, ObjectName the class loader referenced by the given Ob jectName
loader) loader

The remaining two methods are overloaded, adding additional parameters; you
can look them up in the JMX javadoc available with the RI. Using the create-
MBean () methods tells the MBean server to instantiate a particular instance of an
MBean class as well as register the new instance. This process allows clients of a
JMX agent such as management applications or other programs to delegate the
creation of MBeans to the agent. Outside processes need only supply the correct
information and parameters, and the agent’s MBean server will do the rest.

The createMBean(String className, ObjectName name) method

The first createMBean () method accepts the MBean’s classname as a string
and an ObjectName instance for registering the new MBean. This method uses
Java reflection to instantiate an instance of the supplied classname. The class
must contain a default constructor (a no-argument public constructor). In
addition, the resulting MBean instance must conform to the MBean validation
rules described in chapters 3, 4, 6, and 7. Also, the supplied objectName must
be valid and unique. The various createMBean () methods can throw many
exceptions, including:

m ReflectionException—The exception wraps a ClassNotFoundException Or
any exception that occurs while trying to invoke the class’s constructor to
instantiate the MBean.

8.2.3

The MBeanServer interface 171

® InstanceAlreadyExistsException—An MBean with the given objectName
value already exists in the MBean server

m MBeanRegistrationException—The MBean being registered implements
the MBeanRegistration interface and threw an exception in one of the reg-
ister methods.

® NotCompliantMBeanException—1The object is not a compliant J]MX MBean.
See chapters 4 and 5 for the rules governing a compliant MBean.

B RuntimeOperationsException—1he exception wraps an IllegalArgument-
Exception indicating that the object parameter is null or that the object
name is invalid or also null.

m MBeanException—This exception wraps any exception being thrown by the
constructor of the MBean.

The createMBean(String className, ObjectName name,
ObjectName loader) method
This version of the createMBean () method provides the same result as the previ-
ous method, but it uses the class loader identified by the supplied objectName
instance. The class loader must be available in the MBean server and correspond
to the supplied objectName instance. (You will learn more about the class loader
version of this method when we discuss the M-let service in chapter 10. The M-
let service is one of the JMX agent services responsible for dynamic loading of
MBeans from remote locations; it can also be used for expanding the codebase
of a JMX agent.)

The exceptions for this method are similar to those of the previous method.
Check the javadoc for more information.

Notification methods

When dealing with notifications, you need to be able to add and remove notifica-
tion listeners. The MBeanServer interface declares two addNotificationLis-
tener () methods for adding listeners and two removeNotificationListener ()
methods for removing listeners. (For more information about using notifications,
look back at chapter 6.)

The addNotificationListener(ObjectName name, NotificationListener
listener, NotificationFilter filter, Object handback) method

The first addNotificationListener () method accepts an objectName correspond-
ing to the MBean emitting the notifications, a NotificationListener instance to
register as the listener, and a handback object to associate with the listener. You

172

CHAPTER 8
Working with an MBean server

should use this method when adding a listener from outside the agent—a man-
agement application or other program.

The ObjectName argument must correspond to a registered MBean that is a
NotificationBroadcaster. This method throws a single exception: an Instance-
NotFoundException indicating that the broadcaster MBean could not be found
given the objectName value.

The addNotificationListener(ObjectName name, ObjectName listener,
NotificationFilter filter, Object handback) method

The second version of the addNotificationListener () method takes two Object-
Name instances; the remaining arguments are the same as for the previous
method. You would use this method when one MBean needs to listen for another
MBean’s notifications. This technique has many uses: for example, you might
want to aggregate all notifications in one place, or you might have an MBean
that listens for notifications and persists the ones it receives.

The first objectName argument corresponds to the MBean emitting notifica-
tions, and the second corresponds to another MBean registered in the MBean
server. The second 0bjectName must correspond to a registered MBean that is
also a NotificationListener. This method has the same exceptions as the previ-
ous method.

The removeNotificationListener(ObjectName name,
NotificationListener listener) method
The removeNotificationListener () method accepts an ObjectName correspond-
ing to a registered MBean that is also a NotificationBroadcaster. The Notifica-
tionListener parameter indicates which listener the MBean must remove from
its listener list. After invoking this method successfully, a listener will not receive
any more notifications from this MBean.

The remove methods can throw an exception in addition to those thrown by
the add listener methods: the ListenerNotFoundException exception indicates
that the supplied listener could not be found on the supplied MBean.

The removeNotificationListener(ObjectName name,

ObjectName listener) method

Similar to the second add listener method, this method tells a registered MBean
NotificationBroadcaster to remove the NotificationListener registered with
the MBean server with the supplied objectName instance.

The MBeanServer interface 173

8.2.4 MBean manipulation

The following sections describe the methods declared to manipulate MBeans.
They include methods to get and set attributes, invoke MBean operations, and
gather other MBean information. The methods available to manipulate MBeans
produce the same results regardless of MBean type. All MBeans are described
with MBean metadata objects internally in the MBean; therefore, the MBean
type is not important when performing these methods. (For more information
about MBean metadata objects, look back to chapter 4.)

The Object getAttribute(ObjectName name, String attribute) method

This method returns the value of the attribute with the name supplied in the
String parameter from the MBean corresponding to the supplied MBean. The
ObjectName must refer to a registered MBean, and the string value must be a
readable attribute of that MBean. The value is returned as an instance of the
object class. In addition to some of the exceptions you have already seen (MBean-
Exception, InstanceNotFoundException, ReflectionException, and RuntimeOpera-
tionsException), this method throws the AttributeNotFoundException exception.
This exception indicates that the requested attribute could not be found on the
given MBean.

The AttributelList getAttributes(ObjectName name,
String[] attributes) method
The getattributes() method performs the same function as the previous
method, but operates over an array of attribute names (the string array param-
eter). The objectName must refer to a registered MBean, and the string values
must be readable attributes of that MBean. The return value of this method is an
instance of AttributeList. (The AttributeList class was covered in detail in
chapter 4.) It contains a set of Attribute objects, each of which contains the
name and value of an attribute.

In contrast to the getattribute () method, this method throws only three
exceptions: InstanceNotFoundException, ReflectionException, and RuntimeOp-

erationsException.

The void setAttribute(ObjectName name, Attribute attribute) method

The setattribute () method takes an objectName parameter and an Attribute
parameter. The objectName corresponds to a registered MBean. The attribute
object must contain the name of a writeable MBean attribute and the value to
which to set the attribute.

174

CHAPTER 8
Working with an MBean server

The setattribute () method throws InstanceNotFoundException, MBean-
Exception, AttributeNotFoundException, ReflectionException, and Runtime-
OperationsException. In addition to these exceptions, the method throws
InvalidAttributevalueException, indicating that the supplied attribute value
cannot be assigned to the MBean attribute.

The AttributeList setAttributes(ObjectName name, AttributeList list) method
This method operates like the previous method, but over an attributeList argu-
ment. The AttributeList parameter contains Attribute objects that contain
names and values for writeable MBean attributes. This method throws the
InstanceNotFoundException, ReflectionException, and RuntimeOperationsEx-
ception exceptions.

The Object invoke(ObjectName name, String method,

Object[] params, String[] sig) method

The MBeanserver interface declares the invoke () method in order to allow man-
agement applications to invoke the exposed operations of MBeans. To invoke an
MBean operation, you need to pass in its ObjectName, the method name, and two
arrays that contain the method’s signature and input parameters. The result of
the MBean operation will be returned as an instance of the object class. The
method name supplied by the string parameter must be a valid MBean opera-
tion. This method throws InstanceNotFoundException, MBeanException, and
ReflectionException.

The MBeaninfo getMBeaninfo(ObjectName name) method

The getMBeanInfo () method will return an instance of the MBeanInfo class that
describes the MBean corresponding to the supplied objectName instance. Man-
agement applications would use this method to discover everything about an
MBean. With all the information from the MBeanInfo object, applications can cre-
ate a view of the MBean for user interaction.

For more information about the MBeanInfo class and the other metadata
objects, look back at chapter 4. Remember that the MBean server uses the
MBean metadata objects (the MBeanInfo descriptions) to internally represent
MBeans. Therefore, every MBean is described in the same manner regardless of
its type.

In addition to the InstanceNotFoundException and ReflectionException
exceptions, this method throws the IntrospectionException exception indicat-
ing that an error occurred while the MBean server was using reflection to build
the MBeanInfo object for the MBean.

8.2.5

8.2.6

The MBeanServer interface 175

The Objectinstance getObjectinstance(ObjectName name) method

The getobjectInstance () method returns the objectInstance ObjeCt for the
MBean corresponding to the supplied objectName instance. The objectInstance
class contains both the objectName value and classname of a particular MBean.
This method only throws an InstanceNotFoundException exception.

The boolean isinstanceOf(ObjectName name, String classname) method
To determine if a particular MBean is an instance of a particular class, use the
isInstanceOf () method. This method takes an ObjectName instance of a particu-
lar MBean in the MBean server, and the string parameter specifies the class-
name in question. Only an InstanceNotFoundException exception is thrown from
this method.

MBean server information

Some methods declared in the MBeanserver interface are for informational pur-
poses. Two of these methods are declared in order to provide information about
the MBean server.

The Integer getMBeanCount() method
This method returns the number of MBeans registered in the MBean server.
The value is returned as an Integer object.

The String getDefaultDomain() method
The getbDefaultDomain () method returns the domain name that identifies this
MBean server.

Other methods

In addition to all the methods covered in the previous sections, there are some
remaining methods that don’t fall into any category. The following are utility
methods for deserializing data and instantiating objects.

The java.io.ObjectinputStream deserialize(ObjectName name,

byte[] data) methods

The MBeanserver interface actually declares three deserialize () methods, tak-
ing various additional parameters. The deserialize () methods take an array of
byte data and the name of a registered class loader. The result is returned in an
ObjectInputStrean stream. This method is a useful utility for deserializing
objects. For instance, you could use this method if you needed to load a persisted
state from a serialized object file.

176

8.3

CHAPTER 8
Working with an MBean server

The Object instantiate(String classname) method

The MBeanServer interface also declares four instantiate () methods. Each
accepts different parameters, but the result of each is an instance of the supplied
classname. The result is returned as an instance of the object class. This method
can be used to create objects from classnames instead of using reflection code in
your own MBeans.

Querying for MBeans

In a real-world situation, you may have a JMX agent that contains many MBeans.
Consider a JMX agent that contains MBeans for a set of applications, each of
which registers 10 MBeans in the agent. You could easily have 40 to 50 MBeans
residing in a single agent. If you need to work with the MBeans for a particular
application, you might not want to sort through the other applications’ MBeans.
In essence, when you interact with the agent through a management application,
you could have some trouble viewing only the MBeans you need.

Even if you can filter the MBeans by their object names, you still might want
to further restrict your MBean view by attribute values. For example, maybe each
of the MBeans for an application has an identical attribute whose value indicates
the component of the application that the MBean manages. It would be nice to
be able to view just the specific MBean you are looking for.

In fact, it would be useful to be able to build a view like the following: All
MBeans from application A that have an attribute count whose value is greater than 10
but less than 20, or that have an attribute owner whose value equals ABC.

Reading through that statement, you should notice the following impor-
tant points:

m The MBean view is restricted by object name.
» The restricted set then must have a certain attribute.
» The attribute must meet a numeric range.

» O, a different attribute must equal a string value.

JMX agents support a query mechanism that can build and execute complex
queries like this one. Queries are submitted to a JMX agent for the purpose of
retrieving a set of 0bjectInstance objects. In essence, a query identifies all the
MBeans that conform to the rules of a given query.

Querying for MBeans 177

8.3.1 The MBeanServer query methods
In section 8.2, we covered the methods of the MBeanServer interface. However,
we left out the two methods shown in table 8.3.

Table 8.3 The two remaining methods of the MBeanServer interface. These two methods are used
to query the MBean server for a set of qualifying MBean object names.

Method Return type Description
queryMBeans (ObjectName, java.util.Set Returns the set of Object Instance objects
QueryExp) identifying the set of MBeans that qualify,
given the QueryExp object
queryNames (ObjectName, java.util.Set Returns the set of Ob jectName objects iden-
QueryExp) tifying the set of MBeans that qualify, given

the QueryExp object

The two methods, queryMBeans () and queryNames (), both accept an ObjectName
instance and a QueryExp instance. The objectName instance defines the scope of
the query, and the gueryExp instance defines the constructed query expression.
The following sections describe the meaning of the parameters and how to use
these two methods.

The queryMBeans () method returns a set of objectInstance objects. The
ObjectInstance class contains the objectName of an MBean and the MBean’s
defining class type. The queryNames () method only returns a set of objectNames
of MBeans. Both methods execute queries in the same manner; only their return
type differs. You must choose to use one method over the other based purely on
the amount of information you needed returned.

Defining the scope of a query

We will discuss the gueryExp class in a moment—it represents a query like the
one we described in the first paragraph of section 8.3. However, let’s first exam-
ine the first argument to the query methods, the objectName instance.

When executing a query, you need to describe a set of MBeans in which to
apply the query. By defining the scope of a query, you are almost performing a
pre-query. Defining the scope of the query is the role of the objectName argu-
ment passed to the two query methods. Table 8.4 lists the possible values for
this parameter.

178

CHAPTER 8
Working with an MBean server

Table 8.4 Possible values for the ObjectName parameter passed into the two query methods of an
MBean server

Possible value Example Description

null null Indicates that the query should be applied to all MBeans
in the MBean server

Complete object | HelloWorld:type=a Indicates that the query should be applied to only a single
name String MBean (the MBean that has the Ob jectName instance
equal to the one passed to the query method)

Partial object Hello*:type=a, * Indicates that the query should be applied to all MBeans
name String whose Ob jectName matches the partial Ob jectName
passed to the query method

After examining the partial object name string in the previous table, you are
probably wondering what the rules are for specifying partial object names. The
following list contains the few rules for creating partial object names:

» * indicates a wildcard for any characters, including none at all.
m 7 represents any single character.

» Key properties (such as type=a) must always be complete, but the wildcard
* can appear in the list.

In other words, you can use wildcards anywhere in the domain name, but you
cannot use them in the value of a property in the property list. Just to clarify
these rules, a few examples are presented in the table 8.5.

Table 8.5 Further examples of partial object name values that conform to the pattern-matching rules

Partial object name value Matching MBeans
HelloAgent:* All MBeans in the domain HelloAgent
HelloAgent:type=a, * All MBeans in the domain HelloAgent whose names have at

least the property type=a

*:type=a All MBeans in any domain with the property type=a

Hello???:type=a All MBeans in a domain that begins with He11o plus any three
characters and that has a property t ype=a

ko x All MBeans

Once the scope of the query has defined a set of MBeans, the query will be applied
to each MBean in the set. The query will be applied to each MBean individually—
currently, JMX has no way of forming a query across multiple MBeans. A query

8.3.2

Querying for MBeans 179

building a condition across two MBeans is impossible to represent using this que-
rying service. For example, the following query is not supported: If MBean A has an
attribute MyAttribute, then return MBean B with attribute TheAttribute value of 5.
However, in chapter 11, we will discuss the relation service, which can provide for
MBean relationships.

Creating query expressions

Let’s revisit the query we described earlier: All MBeans from application A that have
an attribute count whose value is greater than 10 but less than 20, or that have an
attribute owner whose value equals ABC.

JMX provides the capability to perform many types of query expressions,
including the ones in this query. In our query, we have attribute values that must
be either greater than, less than, or equal to some value. In addition, the query
combines these expressions by using an AND and an OR type expression.

JMX provides the class javax.management .Query as a mechanism for objects to
build simple and complex queries. The guery class contains static methods to
build expressions and to relate expressions into more complex expressions. Each
method returns a type of expression, represented by one of the following classes:

B QueryExp
B ValueExp
B AttributeValueExp

B StringValueExp

The valueExp and stringValueExp classes represent an attribute value. The
AttributevalueExp represents the name of an attribute. The queryExp class rep-
resents a query expression constructed of one or more other expressions. You
should never need to create instances of the classes yourself; rather, you should
use the methods of the guery class to build expressions.

As you will see in a moment, some of the methods of the guery class take
other expressions as inputs in order to build more complex queries. For exam-
ple, examine the following code that builds the query MBeans with attribute count
greater than 10:

QueryExp exp = Query.gt(Query.attr("count"), Query.value(10));

The method gt () of the query class indicates that a greater-than expression is being
constructed. The code uses the attr () method to indicate that the attribute
involved in the greater-than expression is called count and then uses the value ()
method to indicate the second half of the greater-than expression.

180

CHAPTER 8
Working with an MBean server

Before we create any more examples, examine the following tables, which
show the methods of the query class. Each table breaks out a few methods of the
Query class into a category. Table 8.6 shows the methods that make new expres-
sions out of gueryExp objects that were created by other guery methods.

Table 8.6 Methods of the Query class that relate QueryExp objects. The objects are returned by
other Query methods.

Method Return type Description
and (QueryExp, QueryEXp) QueryExp Returns a new expression that is an AND of the
two input expressions
or (QueryExp, QueryExp) QueryExp Returns a new expression that is an OR of the
two input expressions
not (QueryExp, QueryExp) QueryExp Returns a new expression that is a NOT of the
input expression

Table 8.7 shows the query class methods that operate over string values and
indicate attributes or classnames of an MBean. These methods are used in con-
junction with valueExp objects to create QueryExp objects.

Table 8.7 Methods of the Query class that identify labels in an expression (attributes, classnames).

Method Return type Description
attr(String name) AttributeValueExp Returns a value that identifies an
attribute name
attr(String classname, AttributeValueExp Returns a value that identifies an
String name) attribute name for the given class
classattr(String name) AttributevValueExp Returns a value that identifies the

classname of an MBean

Table 8.8 shows the methods that return a valueExp object. valueExp objects indi-
cate the value for an MBean attribute that can be used in a QueryExp object.

Table 8.8 Methods of the Query class that return a ValueExp object indicating an attribute value
to be used in a query expression.

Method

Return type

Description

value (boolean)

ValueExp

Returns a ValueExp indicating a boolean value

value (double)

ValueExp

Returns a valueExp indicating a double value

Querying for MBeans 181

Table 8.8 Methods of the Query class that return a ValueExp object indicating an attribute value
to be used in a query expression. (continued)

Method Return type Description
value(float) ValueExp Returns a ValueExp indicating a f1loat value
value (int) ValueExp Returns a ValueExp indicating a int value
value (long) ValueExp Returns a valueExp indicating a 1ong value
value (java.lang.Number) ValueExp Returns a ValueExp indicating a Number value
value (String) ValueExp Returns a ValueExp indicating a String value

Finally, Table 8.9 shows the methods used to create objects that can be used to
form more complex query expressions. Arguments to these methods are value-
Exp objects—indicating that an expression is being created between two values.

Table 8.9 Methods of the Query class that create QueryExp objects (or subclasses) that can be
used in more complex query expressions.

Method Return type Description
between (ValueExp, QueryEXp Creates an expression that means one value is
ValueExp, ValueExp) between two other values
div(ValueExp, ValueExp Creates a new ValueExp by dividing the first value-
ValueExp) Exp by the second
minus (ValueExp, ValueExp Creates a new ValueExp by subtracting the second
ValueExp) ValueExp from the first
plus (ValueExp, ValueExp Creates a new ValueExp by adding the first value—
ValueExp) Exp to the second
times (ValueExp, ValueExp Creates a new ValueExp by multiplying the first
ValueExp) ValueExp by the second
eq(ValueExp, QueryExp Creates an expression that means the first valueExp
ValueExp) should be equal to the second
geq(ValueExp, QueryExp Creates an expression that means the first valueExp
ValueExp) should be greater than or equal to the second
gt (ValueExp, QueryExp Creates an expression that means the first valueExp
ValueExp) should be greater than the second
in(ValueExp, QueryExp Creates an expression that means the first valueExp
ValueExp[]) should be in the list of following ValueExp objects
leg(ValueExp, QueryExp Creates an expression that means the first valueExp
ValueExp) should less than or equal to the second

182

8.3.3

CHAPTER 8
Working with an MBean server

Table 8.9 Methods of the Query class that create QueryExp objects (or subclasses) that can be
used in more complex query expressions. (continued)

Method Return type Description
1t (ValueExp, QueryExp Creates an expression that means the first valueExp
ValueExp) should be less than the second
match(AttributeValue—- | QueryExp Creates an expression that means the first valueExp
Exp, StringValueExp) should match the st ring expression represented by

the second argument; for example, the second argu-
ment might be va*1u?

initialSubString(QueryExp Creates an expression that means the first valueExp
AttributevValueExp, should have a prefix matching the St ring expression
StringValueExp) represented by the second argument; for example, the

second argument might be va*1u?

anySubString(QueryExp Creates an expression that means the first valueExp
AttributeValueExp, should contain the St ring expression represented by
StringValueExp) the second argument; for example, the second argu-

ment might be va*1u?

finalSubString(QueryExp Creates an expression that means the first valueExp
AttributeValueExp, should have a suffix matching the st ring expression
StringValueExp) represented by the second argument; for example, the

second argument might be va*1u?

If you are overwhelmed with all these methods right now, don’t worry—the next
section presents several examples to get you started.

Constructing examples

Now that you have seen the methods of the guery class that are used to create
simple and complex queries, we can present some examples. To create meaning-
ful query examples, let’s first imagine the scenario in which the example queries
might exist. Each query will be described in a textual sentence, and then shown
in code using the methods of the guery class.

Imagine you have a JMX agent with the domain Hardware. The agent will con-
tain five MBeans that monitor different pieces of hardware (modem, printer, and
so forth). Each MBean has its own unique object name, but some MBeans have
common attributes. Table 8.10 lists the devices being monitored, along with the
object names and a few attributes of the MBeans.

Use this table as a reference as you develop the queries in the following para-
graphs. As you can see, you have five devices ranging from modems to a fax
machine. All the devices have a status attribute, and one has an error value.
The printer, fax, and copier all have identical attributes with varying values (as

Querying for MBeans 183

Table 8.10 Devices in a imaginary JMX agent used in the query examples in this section.

Device MBean object name Attributes and values

Modeml Hardware:type=com, location= status = OK, transferRate =
office, name=modeml 28800

Modem2 Hardware:type=com, location= status = ERROR, transferRate =
office, name=modem2 56000

Printer Hardware:type=paper, location= status = OK, paperCount = LOW,
network, name=printer inkLevel = HIGH

Fax Hardware:type=paper, location= status = OK, paperCount = NORV,
network, name=fax inkLevel = LOW

Copier Hardware:type=paper, location= status = OK, paperCount = LOW,
network, name=copier inkLevel = LOW

do the two modems). Each MBean object name provides some detailed informa-
tion about the devices as well, including location, type (modem or paper), and
name. These object name properties could be represented as attributes, but you
will leave them in the object name because doing so gives you a good way to
restrict the scope of a query.

Now that you are familiar with the set of MBeans involved in the examples,
let’s move on to the first query.

Query example 1

The first query is as follows: All hardware with a Low inkLevel. The results of this
query should return only MBeans that have an inkLevel attribute with a value of
Low. Remember, the MBean server’s methods for performing queries have two
arguments: the first argument (the object name) defines scope, and the second
argument is the actual query. Let’s define the scope first with the following par-
tial object name:

Hardware:*

This partial object name defines the scope of the query to be all MBeans with a
domain of Hardware.

The query expression itself is also simple. The following code constructs the
necessary query expression and invokes the query method from your imaginary
MBean server in the agent:

QueryExp query = Query.equals(Query.attr("inkLevel"),
Query.value("LOW"));

mbeanServer.queryMBeans (new ObjectName ("Hardware:*"), query);

184

CHAPTER 8
Working with an MBean server

The only two MBeans that meet the constraints of this query are the Fax and
Copier MBeans.

The next example creates another simple query, but also restricts the scope
using a partial object name.

Query example 2

The second query is as follows: All communication devices with a transfer rate greater
than 28800. The results of this query should be only modem MBeans with a
transferRate attribute greater than 28800. Again, the first thing you need to do
is define the query scope. The following is the partial object name to define the
scope of the query:

Hardware:type=com, *
This partial object name defines the scope of the query to be all MBeans with a

domain of Hardware and an object name property type set to com. The following
code constructs and executes the query:

QueryExp query = Query.gt(Query.attr("transferRate"),
Query.value(28800));

mbeanServer.queryMBeans (new ObjectName ("Hardware:type=com, *"),
query) ;

The two modem MBeans are in the scope of the query; however, only Modem2 has
a transfer rate greater than 28800, so it is the only MBean that satisfies this

query.
The next example creates a more complex expression by joining two expres-
sions together.

Query example 3

The third query is as follows: All hardware with a LOW inkLevel or LOW paper—
Count. Hirst, let’s show the partial object name to define the scope. This is the
same as in the first example:

Hardware:*
Now, here’s the code that constructs and executes the query:

QueryExp expl = Query.equals(Query.attr("inkLevel"),
Query.value("LOW"));

QueryExp exp2 = Query.equals(Query.attr("paperCount"),
Query.value("LOW"));

QueryExp finalExp = Query.or(expl, exp2);

mbeanServer.queryMBeans (new ObjectName ("Hardware:*"), finalExp);

Querying for MBeans 185

To construct this more complex query, you first create the subexpressions for
inkLevel and paperCount. Once you have those expressions, you can create a
final expression combining them with an OR. The resulting query expression
should return the printer, Fax, and copier MBeans, because either their
inkLevel Or paperCount attribute has a Low value.

The next example uses only a scope definition to get a result set.

Query example 4

The fourth query is as follows: All hardware located on the network. This example is
not really a query. It reads like a query, but because you have created MBeans
with detailed object names, you can simply execute the query method with only
an object name parameter:

mbeanServer.queryMBeans (new ObjectName ("Hardware:*,
location=network"),
null);

The resulting set of MBeans includes every MBean with location=network
included in its object name.
The next example puts everything together.

Query example 5

The final query is as follows: All hardware located on the network with a status of
ERROR that does not have a LOW inkLevel or LOW paperCount. With this example,
you will need to build a few subexpressions, but it should not be too difficult. The
following is the code for this query:

QueryExp statusQuery = Query.equals(Query.attr("status"),
Query.value("ERROR"));

QueryExp inkQuery = Query.equals(Query.attr("inkLevel"),
Query.value("LOW"));

QueryExp paperQuery = Query.equals(Query.attr("paperCount"),
Query.value("LOW"));

QueryExp orQuery = Query.or(inkQuery, paperQuery);
QueryExp notQuery = Query.not (orQuery);
QueryExp finalExp = Query.and(statusQuery, notQuery);

mbeanServer.queryMBeans (
new ObjectName ("Hardware:*,location=network"),
finalExp);

186

8.4

CHAPTER 8
Working with an MBean server

As you can see, with the query mechanism of the MBean server, you can build
complex and specific queries to return useful results about the MBean contained
in an agent.

Summary

This chapter began by focusing more closely on the MBean server than previous
chapters. You had already used the MBean server a little, but before we could
move on to more agent-level material, we needed to cover the MBeanserver inter-
face in greater detail. This chapter introduced you to every method in the inter-
face (except some overloaded versions), including their purpose and exceptions.

After we discussed the MBeanserver interface, you learned how to turn query
sentences into objects that can be used to filter through and identify MBeans in
the MBean server. The query capability of the MBean server is a powerful tool
when an MBean server contains a large number of MBeans. Using the querying
mechanism, you can retrieve specific MBeans without manually examining the
contents of each to discover the one you need. You learned not only how to con-
struct queries, but also how to refine their scope through the use of partial object
names. We presented several query examples to demonstrate how to build sim-
ple and complex expressions.

Chapter 9 focuses on using and building protocol adapters and connectors
for JMX agents. In that chapter, you will be exposed to the RMI connector con-
tributed by Sun Microsystems, and you will build your own Jini connector and
TCP adapter.

Communicating
with [MX agents

m Using the RMI adapter from Sun
m Creating a Jini connector
m Creating a TCP adapter

187

188

CHAPTER 9
Communicating with JMX agents

You had your first exposure to working with an MBean server by using the HTML
adapter you registered on the server. Previous chapters reminded you how JMX
uses protocol adapters and connectors to enable a JMX agent for use by the out-
side world.

You studied the overall agent architecture in chapter 1 and explored the
MBean server in greater detail in chapter 8. This chapter covers another compo-
nent of JMX agents: protocol adapters and connectors. In this chapter, we will
discuss two connectors that will enable you to distribute your agents across a net-
work using Java Remote Method Invocation (RMI) and the Jini network technol-
ogy. We will also spend some time discussing using TCP and Simple Network
Management Protocol (SNMP) to enable access to JMX agents.

By allowing clients of your agent to contact the agent from remote locations,
you greatly increase the agent’s usefulness. By using connectors and adapters,
you can collocate agents with managed resources and contact them from remote
locations. Thus you can use web browsers, hand-held devices, and so forth to stay
in contact with your managed resources.

As previously mentioned, such remote communication is particularly useful
in a monitoring context. You can install a JMX agent in a hosted application
environment and stay in communication with it over your network. This ability
lets you maintain reliable, real-time status. Figure 9.1 depicts this scenario; you
should recognize components of this figure from previous chapters.

At Lame

Cabrioded
L 3 —
5
Turas Sarvoe P fom
L . Rl . e
Cosnecior % Apphinn
-
. T -
oy Serviie ¥, E|
HTTI "
[y odevng bt Eeps l"l'|lII L, i Conrmciar | ‘.
L iy St 'El"
[EEETE
fr——
Hplsbgrahg Secvoe “3
a "
WBeas Serned
. A L I Figure 9.1
L i idapies ® Chani Contacting a JMX

| Py LoV a0 L iyt agent with a remote
client by using a
connector

9.1

9.2

9.2.1

Connecting by using RMI 189

When discussing protocol adapters and connectors as means of exposing your
JMX agents to management tools, it is important to understand the differences
between them.

Comparing connectors and protocol adapters

Protocol adapters and connectors are very similar in that they serve the same
overall purpose: to open a JMX agent to managing entities. The difference
between them is how they go about it. Protocol adapters generally must listen for
incoming messages that are constructed in a particular protocol like HTTP or
SNMP. In this sense, protocol adapters are made up of only one component that
resides in the agent at all times.

Connectors, on the other hand, are made up of two components: one compo-
nent resides in the JMX agent, and the other is used by client-side applications.
Clients use the client-side connector component to contact the server-side com-
ponent and communicate with a JMX agent. In this manner, connectors hide the
actual protocol being used to contact the agent; the entire process happens
between the connector’s two components.

Connecting by using RMI

Recall from chapter 2’s discussion of Sun Microsystems’ JMX Reference Imple-
mentation (RI) that the RI includes a jmx folder and a contrib folder. The contrib
folder contains the RMI connector that you included in the JMxBookagent from
chapter 3. This section is intended to make you more familiar with how the RMI
connector works. It is unsupported in the RI, but it is also contained in Sun
Microsystems’ commercial JMX product, the Java Dynamic Management Kit
(JDMK). (For more information about the JDMK, go to http://www.javasoft.com.)

Using the RMI connector

Figure 9.2 illustrates the components of the RMI connector. It is an MBean regis-
tered on an MBean server, just like the HTML adapter you have already used.
However, whereas you used a web browser previously to contact the HITML adapter,
the RMI connector comes with an RMI client.

You can use the RMI connector client to connect to the RMI server MBean
and invoke methods that correspond directly to methods on the MBean
server in which the MBean is registered. For example, after connecting to the
server with an RMI connector client rmiclient, you could invoke the method

http://www.javasoft.com

190

9.2.2

CHAPTER 9
Communicating with JMX agents

Agent Larpet Ciilrimieed
| Lorye
Bl Sy :\}3
PSS
Claemy
M| kdapier -

" [T TR = AN

ﬂ' e HH Chpri
P

Figure 9.2 The components of the RMI connector included in the JMX RI from Sun
Microsystems. The RMI connector uses both a server object and a client object.

rmiClient.getMBeanCount () to acquire the number of MBeans running on the
remote MBean server. You will find every method on the RMI client that you
would find in the MBeanServer interface.

Creating the RMI server MBean

The server portion of the RMI connector is contained in the RmiConnectorServer
class. To create the server, you need to perform the following three steps:

1 Create an instance of RmiConnectorserver using one of its four construc-
tors. The different constructors let you specify different values for the
server registration port and service name.

2 Register the connector and the MBean server.

3 Invoke the connector’s start () method. The start () method tells the
server to bind to an RMI registry and prepare itself to receive client calls.

Reexamining the JMXBookAgent class

When you created the JMxBookagent class in chapter 3, you gave it a startRMI-
Connector () method that added the RMI connector MBean to the agent. How-
ever, in that chapter, we did not discuss what took place in code. Listing 9.1
shows the method again; let’s examine it.

protected void startRMIConnector ()

{
RmiConnectorServer connector = new RmiConnectorServer();
ObjectName connectorName = null;

9.2.3

Connecting by using RMI 191

try
{
connectorName = new ObjectName (

"JMXBookAgent :name=RMIConnector") ;
server.registerMBean (connector, connectorName);
connector.start ();

}
catch (Exception e)
{
e.printStackTrace();

}

The gMxBookAgent class imports the com.sun. jdmk.comm package in order to
obtain the RmicConnectorserver class. It contains the classes contributed by Sun
Microsystems in Sun’s JMX RI.

The class uses the default constructor of the RmiConnectorserver class. The
constructor tells the server to use the default port and service name. However, as
mentioned previously, this is not the RmicConnectorserver class’s only constructor.
Table 9.1 lists the constructors and their arguments.

Table 9.1 The constructors of the RmiConnectorServer class

Constructor Description
RmiConnectorServer () The default constructor
RmiConnectorServer (int port) Specifies a new port for binding to an RMI registry
RmiConnectorServer (String name) Specifies a hame for the object registered on the
RMI registry
RmiConnectorServer (int port, Specifies both a new registry port and new remote
String name) object name

By using one of the other constructors, you can control the RMI registry the
server will bind to, and you can change the name of the remote object that will
be registered on the registry.

Connecting to the RMI server

Now that we have examined a basic agent that uses an RMI connector, let’s look
at the RMI connector client contained in the class RmiConnectorClient. As men-
tioned earlier, this class declares methods that correspond to every method

192 CHAPTER 9
Communicating with JMX agents

available on an MBean server. The following example shows you how to connect
to the RMI connector server running on the JMxBookAgent.

Reexamining the RMIClientFactory class

In chapter 3, you created the rRMIClientFactory class. Recall that you use this
class to acquire an RMI client in which to contact your JMxBookagent class.
Listing 9.2 lists the class again.

Listing 9.2 RMIClientFactory.java

package Jjmxbook.ch3;

import javax.management.*;
import com.sun.jdmk.comm.*;

public class RMIClientFactory
{

public static RmiConnectorClient getClient ()
{

RmiConnectorClient client = new RmiConnectorClient ();
RmiConnectorAddress address = new RmiConnectorAddress();
System.out.println ("\t\tTYPE\t= " +
address.getConnectorType ());
System.out.println ("\t\tPORT\t= " + address.getPort ());
System.out.println ("\t\tHOST\t= " + address.getHost ());
System.out.println ("\t\tSERVER\t= " + address.getName());
try

{
client.connect (address);
}
catch(Exception e)
{
e.printStackTrace();

}

return client;

To tell the RmiConnectorClient ObjeCt where to find the RmiConnectorServer, you
need to use the RmiConnectoraddress class. This class encapsulates host, port,
and lookup name values that tell the client object where to find the RMI registry
and look up the remote object of the RMI connector. If you created the Rmicon-
nectorServer using the default constructor, then you can create the address

9.2.4

Connecting by using RMI 193

object with its default constructor. Both classes contain the same default values
for host, port, and lookup name. The default values are the following:

m Hosi—Defaults to the local host value

m Pori—Default value is contained in the static variable serviceName.RMI
CONNECTOR_PORT

n Lookup name—Defaults to the value of serviceName.RMI_CONNECTOR_SERVER

After creating the RmiConnectorClient object, you invoke its connect () method.
This method tells the client object to make a connection with the server-side
component of the RMI connector. After successfully connecting to the agent, you
can return the client reference—ready for use.

Additional uses for the RMI connector

In addition to providing RMI connectivity to a JMX agent for invoking methods
on a remote MBean server, the RMI connector offers some other useful features.
The remaining features of the RMI connector are as follows:

» Remole notifications—1The RMI connector will transmit notifications emitted
from the remote server to the remote client.

m Connector heartbeal—Connector clients can emit a heartbeat to monitor the
connection to the connector server. Doing so allows agents and client to
retry or clean up bad connections.

m Client context checking—This feature allows the server to verify that a client
has the correct context before invoking requested operations.

Recall that the RMI connector is contributed unsupported to the Sun JMX RI.
The RMI connector is part of Sun’s commercial product, the JDMK. With that in
mind, the following sections briefly describe the three previously listed features
in more detail.

Retrieving notifications

The RMI connector provides two ways to receive notifications from a remote
MBean server. When an RMI connector client connects to an RMI connector
server, it can specify a notification receiving mode via the client’s setMode ()
method. The setMode () method takes a single parameter: either clientNotifi-
cationHandler.PUSH_MODE Or ClientNotificationHandler.PULL_MODE. The first
value indicates that notifications from the remote JMX agent will be pushed to
the RMI connector client, and the second value indicates that the RMI connector
client will pull notifications from the remote agent.

194

CHAPTER 9
Communicating with JMX agents

To receive notifications from a particular MBean, you simply invoke the add-
NotificationListener () method of the client. Because all Notification objects
are serializable, they can be transmitted over RMI to interested clients.

Connector heartbeat

The RMI connector uses a notification system to detect the health of the client
and/or server portions of the connector. When using an RmiConnectorClient
object, you can add a notification listener for receiving HeartBeatNotification
objects. A HeartBeatNotification object can indicate several conditions about a
connection to the RMI connector server, as listed in table 9.2. The values in the
Notification Type column are public static members of the HeartBeatNotifi-
cation class.

Table 9.2 Notification types used by a HeartBeatNotification notification

Notification type Description
CONNECTION_ESTABLISHED A connection has been made between the client and server.
CONNECTION_LOST A connection has died.

CONNECTION_REESTABLISHED A connection was temporarily unavailable, but is now connected.
CONNECTION_RETRYING The client is trying to reestablish a dead connection.
CONNECTION_TERMINATED The connection has been closed.

You acquire the condition value by invoking the getType () method of the notifi-
cation.

Client context checking

The last feature of the RMI connector covered in this chapter is the concept of a
client context checker. A context checker ensures that a client passes a pre-
defined test before it can invoke any methods on the remote MBean server.

The client must set an OperationalContext ObjeCt INnto its RmiConnectorClient
object. The connector client object will pass this context to the RMI connector
server, which uses it to decide whether to complete a client’s request on an MBean
server. To do so, the server uses an instance of the class MBeanServerChecker.

An MBeanServerChecker object encapsulates an MBeanServer object and con-
tains a check method for every method declared by the MBeanserver class. For
instance, for a client that attempted to invoke create Bean() on a remote MBean
server, the MBeanServerChecker would first invoke the method checkCreate ().
This method would verify the client’s operationalContext in some way and, if it

9.3

Connecting to agents using Jini 195

were valid, would invoke the method on the MBean server. To provide your own
implementation for the check methods, you would provide a subclass to the
MBeanServerChecker class.

Connecting to agents using Jini

The RMI connector we just discussed should give you a good idea what can be
accomplished by making your JMX agents remotely accessible. As you discov-
ered, the RMI connector not only gives you the ability to invoke MBean server
methods, but also lets you receive notifications.

However, you might have noticed one drawback to using the RMI connec-
tor: you must know the address of the RMI connector server. That is, you have
to be able to tell your Rmiconnectorclient object where to look up the remote
server object.

To get around this issue, you can build a Jini connector. By using Jini, you can
distribute a JMX agent just like the RMI connector does, without requiring clients
to know the exact location of the agent. Jini enables developers to write services
that can describe themselves and can be discovered by clients.

For instance, clients wishing to interact with a JMX agent can construct a Jini
connector client, enter a few search parameters, and locate the nearest matching
agent, as illustrated in figure 9.3.

Your Jini connector will advertise itself by using the value of the default
domain name of the MBean server in which it is registered. The Jini connector
client will do a search for agents by using the domain name as a search parameter.
Later, you can expand the search capabilities as needed. As the chapter continues,

EARE S o et
. o) Ly
AT herrled ‘_‘
[TETREY
=F !
Fma dapler

ey |]
(1 =

Figure 9.3 The Jini connector makes the JMX agent available to a greater client
audience by allowing itself to be discovered.

196

9.3.1

CHAPTER 9
Communicating with JMX agents

we will discuss more connector scenarios that use the Jini connector. The connec-
tor will be made up of three components: an MBean, a Jini service, and a Jini cli-
ent. The following section explores these three components in detail.

Components of the Jini connector

As the previous section mentioned, you need the following three components to
create this connector:

m MBean—The MBean allows the connector to be managed through the
MBean server (like the RMI connector and HTML adapter MBeans).

m Jini service—The service is created by the MBean. It allows clients to con-
nect to the agent.

m [Jini client—People use the client class to locate the Jini service from the agent.

The following sections describe the role each component plays in the connector.
Then, we will begin to examine the code.

The MBean

The role of the MBean in the connector is to set up and manage the Jini service.
The MBean gives the agent the capability to control the Jini service, including
setting up its description and deciding when to make the service available for
discovery. The MBean contains a reference to its MBean server, which allows the
Jini service to perform callbacks to the MBean server methods. (You will learn
more about this process when we examine the code.) The MBean component will
be defined by the JINIServerMBean interface and the JINIServer class (which
implements the JINIServerMBean interface).

The Jini service

The Jini service implements methods that correspond to each of the methods
found in the MBean server interface. As you will see in the code to follow, this
process allows the Jini client to forward its method invocations to the MBean
server via the Jini service. The Jini service is defined in a class named JINICon-
nectorImpl, which implements the interface JINIConnector. The interface is a
remote interface used in a Java RMI environment, enabling clients to make
remote invocations on the Jini service.

The connector client
Client-side objects use the Jini client to discover and use the Jini connector ser-
vice (and therefore use the JMX agent). Like the Jini service, it contains methods

9.3.2

Connecting to agents using Jini 197

that correspond to the methods of the MBeanserver interface. Invocations of
these methods are forwarded to the Jini service, which forwards them to the
MBean server of the JMX agent. In addition, the connector client shields the
developer from the process of finding the Jini service. The JINIConnectorClient
class defines the Jini client.

Writing the Jini connector

Now that we have discussed the components that form the Jini connector, let’s
begin writing the code. You will create the components in the order they were pre-
sented: the MBean, the Jini service, and then the Jini client. All the classes are in
the package jmxbook.ch9. After you write all the classes, we will go over what you
need to do to compile and run them. To test the connector; you will need to write
some code for your JMxBookagent class to include an instance of the Jini connector.

Writing the MBean

With the MBean, you must decide what attributes and operations you want to
expose in order to make the Jini service configurable and more useful. Table 9.3
lists the attributes and operations exposed by the JINIServerMBean interface.
Remember from chapter 4 that this type of interface indicates you are creating a
Standard MBean.

Table 9.3 Attributes and operations exposed by the JINIServerMBean interface

Attribute/operation Description
Domain Read-only attribute that indicates the domain of the agent that contains this
connector.
EntryName Read/write attribute that supplies the Jini service started by the MBean with

an identifier. This attribute is optional, but providing a value gives clients a way
to refine their search for the service (it makes the Jini service more unique).

Groups Read/write attribute that indicates which lookup service groups the Jini service
will register with. (For more information about the lookup service, go to http:/
www.javasoft.com.)

enableConnections Operation that tells the MBean to start the Jini service.

Table 9.3 gives a good view of what the MBean will be like. Now that you know
the exposed attributes and operations of the MBean, look at the JINIServer-
MBean interface:

package Jjmxbook.ch9;

public interface JINIServerMBean

http://www.javasoft.com
http://www.javasoft.com

198

CHAPTER 9
Communicating with JMX agents

public String getDomain () ;

public String getEntryName () ;

public void setEntryName (String name);
public String[] getGroups();

public void setGroups(String[] groups);
public void enableConnections();

}

After creating the interface, you need to implement it with the JINIServer
MBean class. Recall from the previous sections that the JiNIserver class will cre-
ate the Jini service when requested by the JMX agent. Listing 9.3 shows the
JInIserver class. (Starting with this class, you will notice a lot of Jini-related
packages and classes; this discussion goes into detail for many but not all of the
Jini-related issues. If you need to take time to read more about Jini, check the
documents at http://www.javasoft.com.)

Listing 9.3 JINIServer.java

package jmxbook.ch9;

import
import
import
import
import
import
import
import
import
import

public

javax.management.*;

java.rmi.*;

java.util.*;

net.jini.discovery.*;
net.jini.core.lookup.*;

net.jini.lookup.*; Import Jini
net.jini.lease.*; packages
net.jini.core.discovery.*;
net.jini.loockup.entry.*;
net.jini.core.entry.*;

class JINIServer implements JINIServerMBean, Implement
MBeanRegistration, necessary
ServiceIDListener interfaces

private MBeanServer mbs = null;
private JoinManager jm = null;
private ServiceID id = null;
private String domain = null;
private ObjectName name = null;

private String[] groups;
private Name entry = null;
private boolean enabled = false;

public JINIServer ()

{

groups = new String[1];
groups|[0] = "public";

http://www.javasoft.com
http://www.javasoft.com

Connecting to agents using Jini

public String getDomain ()
{
return domain;

}

public String getEntryName ()
{

return entry.name;

}

public void serviceIDNotify(ServiceID id)
{

this.id = id;
}

public ObjectName preRegister (MBeanServer server,
ObjectName name) throws Exception

this.mbs = server;
if (name == null)
{

name =

new ObjectName (mbs.getDefaultDomain () +
":connectorType=JINI");
}
this.domain = name.getDomain () ;
return name;

}

public void postRegister (Boolean registrationDone) {}
public void preDeregister () throws Exception {}
public void postDeregister () {}

public void setGroups(String groups[])
{
if (groups != null)
this.groups = groups;

}

public String[] getGroups ()
{
return groups;

}

public void enableConnections ()
{
createService () ;

}

public void setEntryName(String name)
{

Entry old = entry;

this.entry = new Name(name);

if(enabled)

199

200 CHAPTER 9
Communicating with JMX agents

Entry[] newlabels = { entry };
Entry[] labels = { old };

jm.modifyAttributes(labels, newlabels);

}

private void createService()
{
try
{
JINIConnector connector = Set up Jini (l\
new JINIConnectorImpl (this); service

Entry[] labels = { entry };

LookupDiscoveryManager mgr =
new LookupDiscoveryManager (groups, null, null);

jm = new JoinManager (connector, labels, this, Create
mgr, JoinManager
new LeaseRenewalManager());

enabled = true;

}

catch(Exception e)

{ Set up Jini
e.printStackTrace(); service

}

/*

call back methods () Implement
*)/ remaining methods
public Integer getMBeanCount () throws Exception

{
return mbs.getMBeanCount () ;

}

public ObjectInstance createMBean (String className,
ObjectName name) throws Exception

return mbs.createMBean(className, name);

@ These import statements import packages from the Jini toolkit. These packages
contain the classes needed to find lookup services and manage and describe Jini
services. All of these packages come with the downloadable Jini toolkit from
Sun Microsystems.

Connecting to agents using Jini 201

@ The JinIserver class implements the following three interfaces:

m JINIServerMBean—lhis MBean interface declares the exposed attributes
and operations for this MBean.

m MBeanRegistration—Recall from chapter 4 that this interface allows the
MBean to acquire a reference to the MBean server. For more information,
look back at that chapter.

m ServiceIDListener—This is a Jini interface that allows the Jini lookup ser-
vice to perform a callback and inform the listener (the interface imple-
menter) of the unique service id generated for a particular Jini service. It
declares only one method: public void serviceIDNotify ().

With a reference to the MBean server, the MBean can propagate correspond-
ing invocations from the Jini service to the MBean server. (More about this in
a moment.)

© The JinIserver class uses a Jini utility class, JoinManager, which handles the lookup,
registration, and management of lookup services for a particular Jini service.
You can see how it is created in the createService () method. The MBean keeps
a reference to this class in order to manage the attributes of the JINIConnec-
torImpl service.

O The createservice () method is where all the action takes place in this MBean.
This method is invoked when the JMX agent calls the enableConnections ()
method of the MBean. It is responsible for creating the Jini service class (JINI-
ConnectorImpl) and registering it with available Jini lookup services. We will
examine the JINIConnectorImpl class in the next code listing, but as you can
see, all you have to do is use the constructor that accepts a reference to this
MBean. The JINIConnectorImpl class will use that reference to make callbacks
to the MBean.

Once the service is created, it must be made available to possible clients. As
mentioned earlier; the JINIserver MBean uses a Jini utility class called JoinMan-
ager to handle all the logistics surrounding registration and management of a
service on a lookup service. (For more information about the JoinManager class,
refer to the javadocs bundled in the Jini download.)

O All the methods after this point correspond to methods in the MBean server.
These are the callback methods the Jini service invokes in order to perform an
operation on the MBeanserver instance residing in the JMX agent. For the sake of
space, only two methods are currently implemented: getMBeanCount () and cre-
ateMBean (). You will use the latter method in your tests later.

202

CHAPTER 9
Communicating with JMX agents

Writing the Jini service

Now that you’ve written the JINIServer MBean, let’s examine the JINIConnec-
torImpl class that the MBean uses to expose its JMX agent to Jini clients. With all
Jini services, JINIConnectorImpl must implement a remote interface that
declares the methods available to a client. The following code is the service inter-
face, JINIConnector:

package Jjmxbook.ch9;
import java.rmi.*;

import javax.management.*;

public interface JINIConnector extends Remote
{
public Integer getMBeanCount () throws JINIConnectorException;

public ObjectInstance createMBean (String className,
ObjectName name) throws JINIConnectorException;

}

As you can see, it contains only two methods. Recall from the previous code dis-
cussion that the Jini connector is left incomplete for the sake of space. For this
connector to be complete, all the methods of the MBean server must be made
available. This interface declares the methods available to your JINIConnector-
Client class (discussed in a moment). Remember, however, that all methods
declared in this interface will also be made available to the client, allowing the
user to invoke the corresponding methods on the remote MBean server.

Notice also that the interface declares the methods as throwing an instance of
the JINIConnectorException exception class. We'll define this exception class
shortly; basically, it extends java.rmi.RemoteException and wraps server-side
exceptions, enabling service clients to acquire the wrapped exception. You will
see it thrown from the Jini service code to follow, and also used in the Jini con-
nector client later.

Listing 9.4 shows the JINIConnectorImpl class. It contains the Jini service cre-
ated by the J1NTServer MBean.

package jmxbook.ch9;

import java.rmi.*;
import java.rmi.server.¥*;
import javax.management.*; Extend

UnicastRemoteObject class
public class JINIConnectorImpl extends

UnicastRemoteObject implements JINIConnector

Connecting to agents using Jini 203

private JINIServer server = null;

public JINIConnectorImpl (JINIServer server)
throws RemoteException

this.server = server; Store reference
to Jini service
}

public Integer getMBeanCount () throws JINIConnectorException
{

try

{

return server.getMBeanCount () ;

}

catch(Exception e)

{

throw new JINIConnectorException("getMBeanCount", e);

}

public ObjectInstance createMBean (String className,
ObjectName name) throws
JINIConnectorException

try
{
return server.createMBean(className, name);
}
catch(Exception e)
{

throw new JINIConnectorException("createMBean", e);

@ In order to be a Jini service, this class must be a remote class. That is, it must be
available in a Java RMI environment. Toward this end, it extends the UnicastRen-
oteobject class, which provides the service with the capabilities of a remote object.
In addition, it implements its remote interface, JINIConnector, which declares
the methods that will be available to clients.

@ The key feature of this class is that it contains a reference to the JINIServer
MBean from the JMX agent. This reference allows the service to make callbacks
to the MBean to perform the necessary invocations for a service client.

As you can see, the source is short. However, remember that you imple-
mented only two corresponding methods to the MBean server—to finish this

204

CHAPTER 9
Communicating with JMX agents

Jini service, you would need to write the final methods that correspond to the
remaining method of the MBean server. From the first two methods already
implemented, you should be able to tell that this is not a difficult task.

Before moving on to the Jini connector client, let’s look at the JINIConnec-
torException class to clarify its purpose. Listing 9.5 shows the exception class.

package jmxbook.ch9;
import java.rmi.*;

public class JINIConnectorException extends RemoteException

{
private Exception exception = null;

public JINIConnectorException(String message, Exception ex)
{

super (message, ex);

this.exception = ex;

}

public Exception getWrappedException ()
{
return exception;

}

This class extends RemoteException so that it can serve as the single exception
thrown from the remote interface JINIConnector. However, RemoteException
does not grant access to its wrapped exception, so this subclass does. In the con-
structor, the class stores the wrapped exception in a class member variable for
later retrieval by the getWrappedException () method.

This exception class will let the client decipher the exact type of the exception
being thrown from a service method (such as createMBean()) and throw the
appropriate type on the client side.

The last component to cover is the connector client. The following section
discusses the JINIConnectorClient class, which creates a Jini client.

Writing the Jini connector client

The first thing you will notice when examining the JINIConnectorClient class
(listing 9.6) is the large section of stubbed-out MBean server methods at the end.
The client does in fact implement the MBeanserver interface; it does so to pro-
vide client-side users with all the methods that would be available on the server

Connecting to agents using Jini 205

side. We've stubbed out all but two of these methods for the sake of space. The
remaining two MBeanServer methods are used to test the connector later. Exam-
ine the listing; the discussion follows.

Listing 9.6 JINIConnectorClient.java

package Jjmxbook.ch9;

import
import
import
import
import
import
import

public

pri
pri
pri

pub
{

}

javax.management. *;
jJava.rmi.*;
java.util.*;
net.jini.discovery.*;
net.jini.core.lookup.*;
net.jini.lookup.*;
java.io.*;

class JINIConnectorClient
implements DiscoverylListener, MBeanServer

vate ServiceTemplate template = null;
vate LookupDiscovery reg = null;
vate JINIConnector server =null;

lic JINIConnectorClient ()

System.setSecurityManager (new RMISecurityManager ());

Class[] cls = { JINIConnector.class };
template = new ServiceTemplate(null, cls, null);
tr .
(Y Begin search
for Jini service
reg = new LookupDiscovery(new String[] { "" });)

reg.addDiscoveryListener (this);

while(server == null)
Thread.sleep(1000);

}
catch(Exception e)
{

e.printStackTrace();

public void discovered(DiscoveryEvent event) h“NemeneNt
{ listener callback
if(server != null)
return;
ServiceRegistrar[] lookups = event.getRegistrars();
try

{

ServiceMatches items = lookups[0].lookup(template,

206 CHAPTER 9
Communicating with JMX agents

Integer.MAX_VALUE);
server = (JINIConnector) items.items[0].service;
System.out.println("service found");

}

catch(Exception e)

{

e.printStackTrace();

}

public void discarded(DiscoveryEvent event) {}

public Integer getMBeanCount () 9 Implement
{ getMBeanCount()
try method

{

return server.getMBeanCount () ;
}
catch(JINIConnectorException e)

{

return null;

}

public ObjectInstance createMBean (String className,
ObjectName name)
throws ReflectionException,
InstanceAlreadyExistsException,
MBeanRegistrationException, MBeanException,
NotCompliantMBeanException

Implement
createMBean()

try
{
return server.createMBean(className, name);
}
catch(JINIConnectorException e)
{
Exception ex = e.getWrappedException();
if (ex instanceof ReflectionException)

throw (ReflectionException) ex;
else if(ex instanceof InstanceAlreadyExistsException)
throw (InstanceAlreadyExistsException) ex;

else if(ex instanceof MBeanRegistrationException)
throw (MBeanRegistrationException) ex;

else if(ex instanceof MBeanException)
throw (MBeanException) ex;

else
throw (NotCompliantMBeanException) ex;

Connecting to agents using Jini

UNIMPLEMENTED METHODS BELOW (@) Implementremaining
*/ methods

public Object instantiate (String className)
throws ReflectionException,
MBeanException { return null; }
public Object instantiate(String className,
ObjectName loaderName)
throws ReflectionException, MBeanException,
InstanceNotFoundException { return null; }
public Object instantiate(String className, Object params|[],
String signaturel[])
throws ReflectionException, MBeanException
{ return null; }
public Object instantiate (String className,
ObjectName loaderName,
Object params[], String signaturel])
throws ReflectionException, MBeanException,
InstanceNotFoundException { return null; }
public ObjectInstance createMBean (String className,
ObjectName name,
ObjectName loaderName)
throws ReflectionException,
InstanceAlreadyExistsException,
MBeanRegistrationException, MBeanException,
NotCompliantMBeanException,
InstanceNotFoundException { return null; }
public ObjectInstance createMBean (String className,
ObjectName name,
Object params[], String signaturel])
throws ReflectionException,
InstanceAlreadyExistsException,
MBeanRegistrationException, MBeanException,
NotCompliantMBeanException { return null; }
public ObjectInstance createMBean (String className,
ObjectName name,
ObjectName loaderName, Object params|[],
String signaturel[])
throws ReflectionException,
InstanceAlreadyExistsException,
MBeanRegistrationException, MBeanException,
NotCompliantMBeanException,
InstanceNotFoundException { return null; }
public ObjectInstance registerMBean (Object object,
ObjectName name)
throws InstanceAlreadyExistsException,
MBeanRegistrationException,
NotCompliantMBeanException { return null; }
public void unregisterMBean (ObjectName name)
throws InstanceNotFoundException,
MBeanRegistrationException { return; }

207

208

CHAPTER 9

Communicating with JMX agents

public

public

public

public
public

public

public

public

public

public

public

public

public

public

ObjectInstance getObjectInstance (ObjectName name)
throws InstanceNotFoundException { return null; }
Set queryMBeans (ObjectName name, QueryExp query)
{ return null; }
Set queryNames (ObjectName name, QueryExp query)
{ return null; }
boolean isRegistered (ObjectName name) { return false; }
Object getAttribute (ObjectName name, String attribute)
throws MBeanException,
AttributeNotFoundException,
InstanceNotFoundException,
ReflectionException
{ return null; }
AttributelList getAttributes (ObjectName name,
String[] attributes)
throws InstanceNotFoundException,
ReflectionException { return null; }
void setAttribute (ObjectName name, Attribute attribute)
throws InstanceNotFoundException,
AttributeNotFoundException,
InvalidAttributeValueException,
MBeanException,
ReflectionException { return; }
AttributelList setAttributes (ObjectName name,
Attributelist attributes)
throws InstanceNotFoundException,
ReflectionException { return null; }
Object invoke (ObjectName name, String operationName,
Object params[], String signaturel[])
throws InstanceNotFoundException,
MBeanException,
ReflectionException { return null; }
String getDefaultDomain() { return null; }
void addNotificationListener (ObjectName name,
NotificationListener listener,
NotificationFilter filter,
Object handback)
throws InstanceNotFoundException
{ return; }
void addNotificationListener (ObjectName name,
ObjectName listener,
NotificationFilter filter,
Object handback)
throws InstanceNotFoundException
{ return; }
void removeNotificationListener (ObjectName name,
NotificationListener listener)
throws InstanceNotFoundException,
ListenerNotFoundException { return; }
void removeNotificationListener (ObjectName name,
ObjectName listener)

public

public

public

public

public

public

try

Connecting to agents using Jini

throws InstanceNotFoundException,
ListenerNotFoundException { return; }
MBeanInfo getMBeanInfo (ObjectName name)
throws InstanceNotFoundException,
IntrospectionException,
ReflectionException
{ return null; }
boolean isInstanceOf (ObjectName name, String className)
throws InstanceNotFoundException
{ return false; }
ObjectInputStream deserialize (ObjectName name,
byte[] data)
throws InstanceNotFoundException,
OperationsException { return null; }
ObjectInputStream deserialize (String className,
byte[] data)
throws OperationsException,
ReflectionException
{ return null; }
ObjectInputStream deserialize (String className,
ObjectName loaderName, byte[] data)
throws InstanceNotFoundException,

OperationsException, ReflectionException

{ return null; }

static void main(String args(]) @ Test in main()
method

JINIConnectorClient client = new JINIConnectorClient();
System.out.println(client.getMBeanCount ());
client.createMBean ("jmxbook.ch2.HelloWorld",

}

new ObjectName (
"JMXBookAgent :name=hwtest"));

catch(Exception e)

{

e.printStackTrace();

209

@ A good place to begin the examination of the code is the class constructor. The
constructor is responsible for creating the search parameters that will find the
Jini service portion of the Jini connector. It does so by creating an instance of the
class serviceTemplate. For now, the only parameter going into the template is
the interface type name jmxbook.ch9.JINIConnector.

210

(6]

CHAPTER 9
Communicating with JMX agents

After creating the template, the constructor starts a lookup service-finding
process by creating a LookupDiscoveryManager instance. This object actively
searches for Jini lookup services across the network. The constructor adds the
client class as a DiscoveryListener and will be notified via the discovered()
callback when a lookup service is found. When a lookup service is found, the cli-
ent is notified and can search that lookup service for an instance of the JINICon-
nector service.

As mentioned in the previous paragraph, the discovered () method is invoked by
the LookupDiscoveryManager when a lookup service is found. Now that the client
has a reference to a lookup service, it uses the serviceTemplate object created in
the constructor to search for the JINIConnector service. Service matches are
returned from the lookup service in a ServiceMatches object that contains an
array of serviceItem objects. A ServiceItem object contains the actual Jini ser-
vice that matched the search (in this case, an instance of JINIConnector). At this
point, your client acquires a reference to the Jini service for use. It stores the ref-
erence in a class member called server.

The getMBeancount () method is the first of two methods implemented on the cli-
ent side to correspond to remote MBean server methods. It simply invokes the
identically named method on the JINIConnector service and returns the result.

The final method implemented in the JINIConnectorClient class is create-
MBean () (which corresponds to the remote MBean server createMBean () method
that is identically declared). This method is singled out here as an example of
using the JINIConnectorException class.

When this method is invoked, like getMBeanCount (), it simply invokes the same
method on the JINIConnector service. However, unlike the getMBeanCount ()
method, it must be prepared to throw a variety of exceptions back to the user. To
accomplish this, you use the JINIConnectorClient exception class. When the
method catches a JINIConnectorException exception, it acquires the wrapped
server-side exception, casts it to the appropriate type (the getWrappedException ()
method returns the type Exception), and throws it.

Recall that we stubbed out the remaining methods declared in the MBeanServer
interface. They are included below the comment block in order to successfully
compile the connector client class.

We include a main () method to use in a quick test later. The main () method cre-
ates a JINIConnectorClient Instance and uses it to connect to a remote MBean
server, get the MBean count, and create an instance of the Helloworld MBean.

9.3.3

9.3.4

Connecting to agents using Jini 211

Outstanding issues

This connector example leaves out some important features. For instance, there
are important details to consider when implementing the connector’s notifica-
tion delivery mechanism. You should also make changes so that multiple agents
running this type of connector are distinguishable from each other.

Handling notifications

In a normal notification scenario, an agent directly invokes an object that has
registered as a notification listener in order to deliver notifications to it. How-
ever, in the distributed environment, the notification listener may be in a remote
location, and direct invocation may not be possible.

Therefore, the implementation of the addNotificationListener () methods
of the JINIConnectorcClient must be different than the usual server.method ()
invocation seen in the two methods you implemented. The add-listener methods
must take into account the distributed nature of the connector. The best way to
solve this problem is to have the JINIConnectorClient instance store the listener
reference locally and add itself as the notification listener instead. The client can
alternatively be a remote object; in that case the remote MBean can deliver noti-
fications to the client, which can distribute them as needed to local listeners.

Jini connector attributes

Consider the environment that has two active JMX agents, both of which are
using a Jini connector to allow remote clients to discover them. These two agents
need the ability to ensure that their respective Jini services (created by the Jini
connector) are uniquely identifiable. The JiNIserver MBean allows the agent to
set a single attribute for the service. The JiNIserver MBean should always con-
struct the Jini service using these attributes to be as unique as possible. In addi-
tion, the JINIConnectorClient needs code to allow a user to enter possible
attribute values when the client begins to search for the Jini service. This code
will let client users refine their search for a remote JMX agent.

Testing the Jini connector

We have covered all the components of the Jini connector; it is time to use it in
an example. To test the connector, you need to modify the JMxBookagent class.
For your agent, you will add the startJINIConnector () method. For the client,
you will use the JINIConnectorClient class’s main method. Typically, a client will
construct an instance of the JINIConnectorClient class to use. The following sec-
tion examines the startJINIConnector () method.

212

CHAPTER 9
Communicating with JMX agents

The startJINIConnector() method

In chapter 3, which introduced the JMxBookAgent class, you gave it a startRMI-
Connector () method that added the RMI connector MBean to the agent. How-
ever, in that chapter, we did not discuss what took place in the code. Listing 9.7
shows the startJINIConnector () method.

protected void startJINIConnector ()
{

ObjectName connectorName = null;

try
{

System.setSecurityManager (new RMISecurityManager ());

JINIServer jini = new JINIServer();
ObjectName jiniName = null;

jiniName =
new ObjectName ("JMXBookAgent:name=JINIConnector");
server.registerMBean(jini, JjiniName);
jini.enableConnections () ;
}
catch (Exception e)
{
e.printStackTrace () ;

}

The method creates an instance of the connector MBean (the JINTserver class)
and a new ObjectName instance for the MBean, and registers the MBean on the
MBean server. Finally, it calls the enableConnections () method of the MBean to
create and start the Jini service within.

Running the example

Now you have written all the code, you need to test this connector. To compile
and run the connector, however, you must download the latest Jini developer kit
from http://www.javasoft.com. Once you have it, complete the following steps to
test the connector:

1 Compile the jmxbook.ch9 package. You need the JMX JARs, the JMX_re-
moting.jar file from the contrib/jars folder, and the Jini JAR files in your
cLasspATH in order to compile the agent. To compile the connector
source files, you need the JMX JARs and the Jini JARS in your CLASSPATH.

http://www.javasoft.com

JMX and SNMP 213

In addition, you must use the rmic compiler to generate stubs for the
JINIConnectorImpl class.

2 Set up the Jini environment. Doing so involves starting an HTTP server,
starting the Java activation daemon (rmid), and starting a Jini lookup ser-
vice. Read the Jini documentation to see how to perform these steps.

3 Start the JMX agent. You will need to start the agent with a policy file indi-
cated by the -Djava.security.policy property in the java command.

4 Run the client class (JINIConnectorClient). Doing so will invoke the
class’s main () method. The method will use the g1nIConnector to find the
JMX agent, get its MBean count, and create a new HelloWorld MBean on
the agent.

The best way to see the results of this simple test is to open your browser (while
the agent is still running) to the location http://localhost:9092 (assuming you are
on the same machine as the agent). You should see all three adapter/connector
MBeans (HTML, RMI, and Jini) as well as a new EelloWorld MBean.

9.4 JMX and SNMP

9.4.1

A large number of vendors have distributed many devices with SNMP manage-
ment capabilities. It would be ideal if you could use this existing management
base with new applications and systems you are building today. For example, a
networking application could acquire knowledge of the health of the hardware it
requires before making routing decisions. For such situations, it makes sense to
use the SNMP technology already in place. Fortunately, due to the JMX architec-
ture, your JMX agents can expose MBeans using an SNMP adapter. This section
will review SNMP and provide information about using JMX with SNMP.

What is SNMP?

SNMP is a monitoring standard that has been in wide use for several years.
(SNMP stands for Simple Network Management Protocol, but most developers
might argue that it is not that simple.) Two versions of SNMP (vl and v2) already
exist, and a third version is being defined by the Internet Engineering Task
Force (IETF).

In an SNMP system, there are managed devices such as routers, hubs, comput-
ers, operating systems, and even applications. Basically, any device or system
that can expose information about itself can become a managed device. SNMP
agents exist to convert requests or messages from the SNMP protocol to a device.

http://localhost:9092
http://localhost:9092
http://localhost:9092

214

9.4.2

CHAPTER 9
Communicating with JMX agents

A network management system (NMS) sends information to and listens for infor-
mation from agents.

SNMP provides capabilities for the NMS to communicate with the managed
device. The SNMP API has two commands: read and write. The read command is
sent to the agent in order to get information about the current state of a man-
aged device. The write command is used to set the state on the managed device.
Likewise, the managed device can signal the NMS that something interesting has
occurred by sending an SNMP #rap. A trap is the SNMP equivalent of a JMX noti-
fication.

Recall from chapter 1 that information about managed devices is stored in a
Management Information Base (MIB). The MIB is a hierarchical representation
of information about devices. A managed device can be located on a MIB tree
using an object name or object identifier—for example, organization.dod.enter-
prise.myenterprise.variables.theProduct. An object identifier is a set of numbers
that translates to the textual name. (For more information about MIBs, read the
SNMP specifications at http://www.ietf.org.)

Due to incompatibilities between machines on the Internet, data must be
exchanged using a neutral representation. A standard called Abstract Syntax
Notation One (ASN.1) was developed to enable this exchange. Using this notation,
people created rules for defining the management information called the Struc-
ture of Management Information (SMI). SMI defines simple types such as integers,
octet strings, and object ids. It also defines application data types such as network
addresses, counters, gauges, time ticks, opaques, integers, and unsigned integers.

Using an SNMP protocol adapter

As with any protocol or transport technology, the flexible JMX architecture
enables agents to communicate with SNMP management applications. An SNMP
adapter translates data from an MBean to an SNMP MIB and uses the SNMP pro-
tocol to transport the information to interested listeners.

Sun Microsystems provides an implementation of an SNMP adapter with a
tool suite included with the JDMK. The toolkit provides the capability to develop
a JMX agent using an SNMP protocol adapter. Using a tool called mibgen, you
can generate MBeans that represent SNMP MIBs. The mibgen tool creates Java
objects for you using your existing MIB definitions. There is even a toolkit to
build an NMS using a management API.

The SNMP protocol adapter can work with SNMP vl and SNMP v2 protocols.
As the protocol adapter receives requests from the SNMP system, it maps the

http://www.ietf.org

9.5

9.5.1

Connecting by using a TCP adapter 215

requests to specific MBean operations and executes them. In addition, the proto-
col adapter can send an SNMP trap to an NMS in place of JMX notifications.

Using the SNMP protocol adapter, an NMS can access the MBeans in the
MBean server that represent various MIBs. SNMP does not support the richness
of JMX capabilities, but MBeans can be built that support all the capabilities of
SNMP. This means your MBeans may have more capabilities than can be
accessed using SNMP, but existing NMS systems can take advantage of the
exposed capabilities that adhere to the SNMP standard. Java Community Pro-
cess (JCP) efforts are underway to standardize the mappings between JMX and
existing SNMP standards.

For more information about the SNMP protocol adapter and the JDMK, visit
the JDMK product page on the Sun web site (http://java.sun.com/products/jdmk).

Connecting by using a TCP adapter

Up to this point, you have seen how you can distribute access to your JMX agents
with a number of different technologies. For example, you can use the RMI con-
nector provided by Sun, or you can use Jini to allow your agents to be discov-
ered. In this section, you will write a TCP protocol adapter.

Note that you won’t use any object serialization—we don’t want you to re-
create an RMI-like connector. Instead, the TCP adapter is a socket-based adapter
that allows any capable client to connect and send simple commands in order to
interact with your agent. This command approach allows non-Java clients to
connect to your agent and work with MBeans. For instance, a C++ program
could open a socket to your remote agent and acquire attribute values from
existing MBeans.

The TCP adapter presented in this section can create MBeans, get and set
attributes, and invoke operations. It places a few restrictions on the order and
manner that arguments are sent by the client, as you will see when we walk
through the code. The adapter is modeled as an MBean that creates a Server-
Socket object to listen to a particular port. Figure 9.4 illustrates the use of the
TCP adapter MBean.

When a client connects, the MBean creates a TcpAdapter object in a new
Thread to handle the client request, and continues listening.

Writing the code

To complete this new protocol adapter, you need to create three classes and
one interface:

http://java.sun.com/products/jdmk

216

CHAPTER 9
Communicating with JMX agents

Agent Larper Dol el

i Lyt
Agert Service -

BB Sareer =
Chert
TR Adagrer
S b B 4 L
[] . 2
Q‘ TCRP (w0

Figure 9.4 The TCPServer MBean handling incoming requests. Each time a
client connects, a new TCPAdapter object is created.

m 1CPserverMBean—MBean interface that declares the methods exposed for
the adapter

m TCPServer—Implements the MBean interface and creates the serversocket
m 1cpadapter—Created by the Tcpserver to handle each incoming client
m 1cpTester—Class used to test the TCP adapter

The first step to create the adapter is to write the MBean interface for the Tce-
server MBean. The MBean is a Standard MBean (look back to chapter 4 if nec-
essary), and its interface follows:

package Jjmxbook.ch9;

public interface TCPServerMBean

{
public void setPort(int port);
public int getPort();
public boolean start();
public boolean stop();
}
The tcpserverMBean interface declares two operations and one read/write
attribute. The port attribute is the port number to which the serversocket will lis-
ten for incoming clients. The start () method initiates the serverSocket and tells
the MBean to begin listening. Alternatively, the stop () method closes the server-
socket and stops the TcPserver MBean from receiving any new clients. Existing
clients will continue to have access to the agent until they close their connection.
Listing 9.8 shows the implementation of the TcPserverMBean interface in the
TCPServer class.

Connecting by using a TCP adapter ‘ 217

Listing 9.8 TCPServer.java

package Jjmxbook.ch9;

import javax.management.*;
import java.net.*;

public class TCPServer implements TCPServerMBean,

private
private
private
private

MBeanRegistration, Runnable

int port = 1555;

ServerSocket ss

boolean stopped = false; . hnﬂement
= null; MBeanReglstr‘atlon and
- null; Runnable interfaces

MBeanServer mbs

public TCPServer ()

{
}

public void setPort (int port)

{

this.port = port;

}

public int getPort ()

{

return port;

}

public boolean start()

{

stopped = false;
Thread t = new Thread
t.start ();

return true;

}

public boolean stop ()

{

stopped = true;
return true;

}

public void run()

{
try
{

System.out.println (

Ss =

new ServerSock

while(!stopped)

{

Socket client =
System.out.println("Client being accepted");

(this);
"Binding to port: " + port);
et (port);
Create
ServerSocket
instance

ss.accept () ;

218

CHAPTER 9
Communicating with JMX agents

Thread t = new Thread(new TCPAdapter(client, mbs))
t.start ();
}
Create TCPAdapter
object to handle
} new client

ss.close () ;

catch(Exception e)

{
e.printStackTrace();
stopped = true;

}

public void postDeregister ()

{}

public void postRegister (Boolean done)
{}

public void preDeregister ()

{}

public ObjectName preRegister (
MBeanServer server, ObjectName name)
{
this.mbs = server;
return name;

As you can see in the code, upon invocation of the start () method, the TCPServer
MBean runs continuously in a Thread until told to stop (via the stop () method).
Once inside the run () method, the MBean opens the serversocket object to the
specified port (the default value is 1555) and begins listening for clients.

When a socket is accepted, the MBean creates a new TCPAdapter instance,
gives it the new client and a reference to the MBeanserver, and runs it in a new
Thread. Each instance of the TcPadapter class needs a reference to the MBean-
server in order to work with MBeans on behalf of its client.

The real work of the TCP adapter is done in the TcpPadapter class. It defines
the commands clients can send, as well as the order in which it expects them to
be sent. Table 9.4 lists the possible commands that can be sent by a TCP client.

Table 9.4 The possible commands used by the TCP client

TCPAdapter variable Actual value

CREATE_MBEAN create mbean

ARGS args

Connecting by using a TCP adapter 219

Table 9.4 The possible commands used by the TCP client (continued)

TCPAdapter variable Actual value
GET_ATTRIBUTE get attribute
SET_ATTRIBUTE set attribute
INVOKE invoke
SHUTDOWN shutdown

Not every message sent from a client will be one of the commands from table 9.4.
Other messages might be a classname or argument value, for instance. Table 9.5
lists the tasks the TCP adapter can perform, along with the messages needed to
perform the tasks. The messages and commands are listed in the order they
must be received. Messages in bold are expected values from the client (for
example, classname is an actual classname string). Those in italic are optional.

Table 9.5 Commands to send to complete a function of the adapter

Adapter function Command order
Create an MBean CREATE_MBEAN, classname, objectname, ARGS, arglist, siglist
Get attribute GET_ATTRIBUTE, attname, objectname
Set attribute SET_ATTRIBUTE, attname, objectname, ARGS, arglist, siglist
Invoke an operation INVOKE, operation, objectname, ARGS, arglist, siglist

For each object name sent, the adapter expects the whole string value (such as a
String like JMXBookAgent : name=myValue). The arglist and siglist messages are
expected to be comma-separated lists of arguments. The arglist parameters
must correspond to the types in the siglist message. In addition, each object
value being passed in the arglist must be able to create an object from the
string value. This is similar to what the HTML adapter expects from clients.
Listing 9.9 shows the TcPAdapter class. After examining this class, you will
add the TCP adapter to your JMxBookAgent class and write a simple test program.

package Jjmxbook.ch9;

import java.net.*;
import javax.management.*;
import java.io.*;

220

CHAPTER 9
Communicating with JMX agents

import java.lang.reflect.*;

import java.util.*;

public class TCPAdapter implements Runnable

{

private
private
private
private

public
public
public
public
public
public

public
{
this.
this.
try
{
thi
thi

Sys
}

MBeanServer server = nul

Socket

socket =

null;

BufferedReader in = null

PrintW

static
static
static
static
static
static

TCPAdap

socket
server

s.out =
s.in =

new
tem.out

riter out

= null;

String SHUTDOWN
String CREATE_MBEAN

String GET_ATTRIBUTE
String SET_ATTRIBUTE

String INVOKE
String ARGS

1;

’

ter (Socket socket,

= socket;
= server;

new PrintWriter (

new BufferedReader (
InputStreamReader (socket.getInputStream()

.println(

catch(Exception e)

{

"shutdown";
"create mbean";
"get_attribute";
"set_attribute";
"invoke";
"args";

MBeanServer server)

socket.getOutputStream()

"TCP Adapter CREATED");

e.printStackTrace();

}

public void run ()

{

try
{
System.out.println("TCP adapter starting...");
String line = in.readLine();
while(!line.equals(SHUTDOWN)) () Read until
{ shutdown
if(line.equals(CREATE_MBEAN))

{

try

{
crea
out.
out.

}

teMBean (
println(
flush();

)
"SUCCESS"

catch(Exception e)

{

)i

)i

)

)i

Connecting by using a TCP adapter 221

e.printStackTrace();
out.println("ERROR " + e.getMessage());
out.flush{();

}
else if(line.equals(GET_ATTRIBUTE))
{
try
{
out.println(getAttribute());
out.flush{();
}
catch(Exception e)
{
e.printStackTrace();
out.println("ERROR " + e.getMessage());
out.flush();

}
else if(line.equals(SET_ATTRIBUTE))
{
try
{
setAttribute();
out.println("SUCCESS");
out.flush();
}
catch(Exception e)
{
e.printStackTrace();
out.println("ERROR " + e.getMessage());
out.flush();

}
else if(line.equals(INVOKE))
{
try
{
out.println(invoke ());
out.flush();
}
catch(Exception e)
{
e.printStackTrace();
out.println("ERROR " + e.getMessage());
out.flush();

}

line = in.readLine();

222

CHAPTER 9
Communicating with JMX agents

in.close();
out.close();
socket.close () ;

}

catch(Exception e)

{

e.printStackTrace () ;

}

private void createMBean ()

{

String classname = null;

throws Exception

String objectName = null;
String line = in.readLine();

String arglist = null;
String siglist = null;

classname = line;

objectName = in.readLine();

line = in.readLine();

if(line.equals(ARGS)) hnMement

{))) createMBean()
arglist = in.readLine();
siglist = in.readLine();

}

String[] sig = createSignature(siglist);

Object[] args = createObjectList (arglist, sig);

System.out.println("NOW CREATING MBEAN");

server.createMBean (classname, new ObjectName (objectName),
args, sig);

}

private String getAttribute () throws Exception

{

String attname = null;

String objectName = null;

String line = in.readLine();

attname = line;

objectName = in.readLine();

System.out.println("GETTING ATTRIBUTE " + attname
+ " FROM " + objectName);

Object obj = server.getAttribute (new ObjectName (objectName),

return obj.toString();
}

attname);

private void setAttribute () throws Exception

}

Connecting by using a TCP adapter

String attName = null;
String objectName = null;
String line = in.readLine();
String arglist null;
String siglist = null;

attName = line;

objectName = in.readLine();

line = in.readLine();

arglist = in.readLine();

siglist = in.readLine();

String[] sig = createSignature(siglist);

Object[] args = createObjectList(arglist, sig);

System.out.println("SETTING ATTRIBUTE " + attName

+ " FROM " + objectName);
server.setAttribute (new ObjectName (objectName),

new Attribute(attName, args[0]));

private String invoke () throws Exception

{

}

String operation = null;
String objectName = null;
String line = in.readLine();
String arglist = null;
String siglist = null;

operation = line;

objectName = in.readLine();

line = in.readLine();

if(line.equals(ARGS)) hnMement

{ ‘ ‘ ‘ invoke()
arglist = in.readLine();
siglist = in.readLine();

}

String[] sig = createSignature(siglist);

Object[] args = createObjectList (arglist, sig);

System.out.println("INVOKING OPERATION " + operation
+ " FROM " + objectName);

Object result = server.invoke(new ObjectName (objectName),
operation, args, sig);

return result.toString();

private String[] createSignature(String siglist)

{

if(siglist == null)
return null;

223

224 CHAPTER 9
Communicating with JMX agents

StringTokenizer toks = new StringTokenizer(siglist, ",");
String[] result = new String[toks.countTokens() 1;
int 1 = 0;

while(toks.hasMoreTokens ())
{
result|[i++] = toks.nextToken();

}

return result;

}

private Object[] createObjectList (String objects,
String[] sig) throws Exception

if (objects == null)
return null;

Object[] results = new Object[sig.length];
StringTokenizer toks = new StringTokenizer(objects, ",");
int i = 0;

while (toks.hasMoreTokens ())

{
String object = toks.nextToken();

Class conSig[] = { Class.forName(sig[i]) };
Object[] conParams = { object };

Class ¢ = Class.forName(sigl[i]);
Constructor con = c.getConstructor(conSig);
results[1] = con.newlInstance(conParams);
i++;

}

return results;

@ Once the TcPadapter object has been created by the Tcpserver MBean, it is con-
tinuously in its run () method until it reads the sauTpOWN message from the client.
Upon receiving that message, the adapter object closes the socket and stops com-
munication.

In the run () method, the adapter reads messages from the client until it finds
one of its four available tasks (CREATE_MBEAN, GET_ATTRIBUTE, SET_ATTRIBUTE, Or
INVOKE). When it reads a valid command, it invokes the appropriate private
method to complete the task. Because the output and input streams are class
variables, they can be used in every method.

@ The createMBean () method allows clients to create new MBeans in the agent. If
any exceptions occur during this process, the method fails and returns an error

Connecting by using a TCP adapter 225

to the client. When creating an MBean, clients should expect either the success
message or an error returned.

To complete this task, the client must send the classname of the MBean, a
string value for an object name, and the arguments and signature if a construc-
tor with arguments is to be used. If arguments are sent, the method breaks them
into the needed object and string arrays for the MBean server’s createMBean ()
method. After acquiring all the necessary information from the client, the cre-
ateMBean () method invokes the createMBean () method on the MBean server to
complete the task. If no exception is thrown, the task completes.

The invoke () method works similarly to the createMBean () method. For this
task, the adapter must gather the operation name, object name, and possible
arguments from the client in order to invoke an MBean operation. After doing
so, the invoke () method calls the invoke () method of the MBean server and
prepares the return value to be sent back to the client. The return value is put
into string form via the tostring () method to be sent over the socket. No object
serialization is used.

Adding the adapter to the JMXBookAgent class

Before you write the test program, let’s add the code to the JMxBookagent class
that will create TCP adapter when the agent is started. Listing 9.10 shows the
new startTCPAdapter () method for the agent class.

protected void startTCPAdapter ()
{

TCPServer tcp = new TCPServer();

ObjectName adapterName = null;
try
{

adapterName = new ObjectName (

"JMXBookAgent : name=TCPAdapter") ;
server.registerMBean (tcp, adapterName) ;
tcp.start () ;

}
catch (Exception e)
{
e.printStackTrace();

}

226

9.5.2

CHAPTER 9
Communicating with JMX agents

Be sure to invoke the new method from the agent’s constructor. In addition, you
will need to import the jmxbook.ch9 package. It is like all the other connectivity
methods of the agent—it creates the MBean, registers it on the MBean server,
and invokes its start () method. Use the HTML adapter (via a web browser) if you
need to change the port value of the adapter.

Testing the TCP adapter

With everything else completed, it is time to write a simple test program for the
TCP adapter (see listing 9.11). The test program is defined by the class TCPTester,
and it performs all four tasks available to the adapter.

Listing 9.11 TCPTester.java

package jmxbook.ch9;

import java.net.*;
import javax.management.*;
import java.io.*;

public class TCPTester
{

public TCPTester (String port) throws Exception

{
Socket s = new Socket("localhost", Integer.parselnt(port));
PrintWriter print = new PrintWriter (s.getOutputStream());

//create a Hello World MBean

print.println(TCPAdapter.CREATE_MBEAN);
print.flush();

print.println("jmxbook.ch2.HelloWorld");
print.flush();

print.println("JMXBookAgent :name=TCPCreatedHW");
print.flush();

print.println(TCPAdapter.ARGS);
print.flush();

print.println("This is my greeting");
print.flush();

print.println("java.lang.String");
print.flush();

BufferedReader in = new BufferedReader (
new InputStreamReader (
s.getInputStream()));

System.out.println(in.readLine());
Thread.sleep (10000);

//reset the greeting

Connecting by using a TCP adapter 227

print.println(TCPAdapter.SET_ATTRIBUTE);
print.flush();

print.println("Greeting");

print.flush();

print.println("JMXBookAgent:name=TCPCreatedHW");
print.flush();

print.println(TCPAdapter.ARGS);

print.flush();

print.println("This is my greeting after being changed");
print.flush();

print.println("java.lang.String");
print.flush();

Thread.sleep(10000);

//get the greeting

print.println(TCPAdapter.GET_ATTRIBUTE);
print.flush();

print.println("Greeting");

print.flush();

print.println("JMXBookAgent:name=TCPCreatedHW");
print.flush();

System.out.println(in.readLine());

//invoke printGreeting

print.println(TCPAdapter.INVOKE) ;

print.flush();

print.println("printGreeting");

print.flush();

print.println("JMXBookAgent:name=TCPCreatedHW");
print.flush();

print.println(TCPAdapter.SHUTDOWN) ;
print.flush();

System.out.println(in.readLine());
}

public static void main(String args[]) throws Exception
{
TCPTester t = new TCPTester(args[0]);

The output on the agent and from the test program should tell you everything
you need to know. In addition, you can check out the HTML adapter view to see
the results of running the test program.

228

CHAPTER 9
Communicating with JMX agents

9.6 Summary

Previous chapters made it clear how JMX uses protocol adapters and connectors
to provide connectivity to JMX agents through all manner of technologies and
protocols. This chapter covered the RMI connector more thoroughly, discussed
SNMP, and showed you how to write a Jini connector and a TCP adapter.

The RMI connector is contributed to developers in Sun Microsystems’ JMX
Reference Implementation. It lets you connect to remote JMX agents using Java
RMI. In addition, it provides excellent handling of remote notification delivery
and heartbeat functionality.

The Jini connector you wrote took the RMI connector one step further by
allowing you to connect to a JMX agent using the Jini network technology. The
connector still operates over Java RMI, but clients do not have to know the
address of a potential JMX agent. Using the Jini discovery mechanism, you were
able to provide an agent discovery capability to remote clients.

Finally, you created a TCP adapter to provide access to JMX agents from non-
Java clients. Even though the TCP adapter is limited by its inability to translate
complex objects to simple commands, it does provide the core functionality of a
JMX agent to TCP clients. In fact, the TCP adapter is much like the HTML adapter.

Chapter 9 not only provided you with the examples for agent connectivity,
it also showed you some guidelines for writing your own custom classes in order
to provide connectivity for other technologies or protocols that you have in
your environment.

Agent services provide important functionality to every JMX agent. Chapter 10
covers the first of four agent services that are present in every JMX-compliant
agent: the M-let service, which is used to load MBeans from remote locations
outside an agent’s codebase.

Advanced
MBean loading

m [ntroducing the M-let service
m Explaining the M-let MBean and M-let files

m Loading MBeans and expanding the codebase of
JMX agents

229

230

10.1

CHAPTER 10
Advanced MBean loading

This chapter is the first of three chapters that discuss the standard JMX agent
services. In this chapter, you will find coverage of a JMX agent’s ability to create
MBeans from dynamically loaded class files from remote locations.

When developing a Java application intended to run for an extended period
of time, you have probably encountered the need to restart the application to
include new classes in its cLasspaTH. In fact, think of any JMX agent that is run-
ning: you'll need to add MBeans of a new class type currently not in the agent’s
codebase. The Management Applet (M-let) service was designed to solve this
problem, as well as to provide other useful functionality.

Dynamic MBean loading, provided via the JMX M-let service, allows the
agent, other MBeans, and management applications to create MBeans by down-
loading class files from remote locations. In addition, the M-let service lets
agents expand their codebase at runtime.

Understanding the M-let service

Consider the situation of a JMX agent serving as a monitor to hosted applications
in the same environment. Now imagine that you add more applications to the
hosted environment, and that, for monitoring purposes, they require very special-
ized MBeans. Due to the nature of the applications already being monitored, you
don’t want to restart your JMX agent. Figure 10.1 illustrates such an environment.

How can you make the new MBeans available to the agent without having to
first stop the JMX agent and update its cLAsSPATH in order for new MBeans class
types to be loaded? In addition, you may need to add other classes to the agent’s
codebase without creating MBeans. Simply use the agent’s dynamic class-loading
service: the M-let service.

Rgee Liper CoefitsLa =g
Lirpsd =
Agern Beraces QS o Browie e
Prolpod Blarusperand
L s [Corais
5 Feiew
Wiean 1 Ml upee. s
S % Kk
- . | L | P
Emdteny Ewritrg '-e::u- '“:‘_'
[P] Epacroe 3 ik
Firen
Hpmzuree 1
Figure 10.1

JMX agent monitoring applications

10.2

10.2.1

Using the M-let service 231

As mentioned in the chapter introduction, JMX agents have the ability to load
remote class files and create MBeans. This agent service lets an agent use classes
that are not in its original startup CLASSPATH.

First, you place the new MBean class files in a downloadable location; then you
use the M-let loading service to access them. Now the agent can instantiate the
new MBeans without being restarted. In addition, the dynamic loading service
provides a mechanism to add to the agent’s codebase at runtime, allowing you to
make classes available without necessarily creating MBeans at the same time.

The next section starts the discussion of the JMX M-let service. This agent
service provides the mechanism to dynamically load classes into the agent.

Using the M-let service

You will notice that all the agent services provided in this and the next chapter
are also MBeans. This is the case so that the services can be instantiated and con-
figured as needed. The M-let agent service handles the dynamic loading of
MBeans; it must reside in every JMX agent compliant with the JMX specification.

To load new MBeans, users point the service to a remote M-let text file. An M-
let text file is an XML-like file that contains information about loading classes
and creating MBeans. The M-let service loads this file, processes the information
1t contains, and downloads the named classes in order to create one or more
MBeans. Figure 10.2 illustrates how the M-let service works.

Remember, because the M-let service is also a registered MBean in the agent,
it can be used by the agent itself, other MBeans, or remote management applica-
tions. The M-let service lets you load MBean classes and their resources from
remote locations by using M-let files; it also acts as a class loader, providing the
ability to expand an agent’s codebase.

Before we discuss the M-let service MBean, let’s examine the contents of an
M-let file.

Writing M-let files
This section will walk you through the possible contents of an M-let file. After
we cover this topic and the M-let MBean class, you will begin writing some con-
crete examples.

The M-let service finds M-let files by being provided a URL to the file. So,
there are no restrictions on the name of an M-let file.

CHAPTER 10
Advanced MBean loading

Aol L Cuniriabas

Layer]
WALt Sarvca Q . Brosmer-Baned
Protosed || | H:'er
[PR it
A B | |
PAZaan
| I i Saap | Cupardaad WLt Filg
M e i Btop 3 Dvpwricid Missisn Biced £
MBaan 1 MBSN T pamasn 4 1ALt Fibe Dusirtaon
Y 5N &
]] T e,
Exintirg Edubng Hew | i
oo 1 Eaazrcs 1 Aatiource L | :—L_'-ﬁ_}",-
- - i o
ek Serm
=
O

i
Figure 10.2 JMX agent creating MBeans by loading an M-let file

The contents of an M-let file closely resemble XML. If you have XML experi-
ence, you will recognize the content structure; if you don’t, it will still be easy
to understand.

The following is a simple entry from an M-let file. It does not contain all the

possible attributes, but it shows the MLET tag used to encapsulate an entire entry
in an M-let file:

<MLET CODE=jmxbook.ch2.HelloWorld ARCHIVE=test.jar
NAME=hello:type=HelloWorld>
</MLET>

This MLET entry tells the agent to load the test.jar file, look for the jmxbook.
ch2.HelloWorld class, and create and register a Hellonorld MBean with an object
name of hello:type=HelloWorld.

As you can see, the MLET tag contains attributes that specify a classname, a
location for the class, and an object name for a new MBean to be created. Every
M-let file can contain any number of MLET entries. Before going any further, let’s
examine each MLET tag attribute in the following sections.

Using the M-let service 233

The CODE attribute

CODE is a mandatory attribute used to specify the specific class that contains an
MBean implementation. In the previous simple example, the cob attribute
specified jmxbook.ch2.Hellonorld as the MBean class for the MLET entry. The
classname must include the package name, and the compiled class must be con-
tained in one of the JAR files specified in the ARCHIVE attribute.

The OBJECT attribute

The osJkcT attribute specifies a path to a serialized object file. This attribute is
only used in place of the cope attribute. The serialized object file must contain
the serialized form of an MBean to be loaded into the agent. Just like the cope
attribute value, the file must be contained in one of the JAR files listed in the
arcHIVE attribute. The attribute value can be a path and filename in order to
traverse a possible directory hierarchy in one of the JAR files.

The ARCHIVE attribute
The only other mandatory attribute is ARCHIVE. Its value is either a single JAR file
or a list of JAR files that contain the classes, objects, and resources needed to sup-
port a specified MBean class or serialized object file. If the value is a list of JAR
files, the list must be enclosed in quotation marks (") and the filenames must be
comma separated.

The agent will assume that all specified JAR files are in the same directory as
the M-let file, unless the MLET tag contains a CODEBASE attribute.

The CODEBASE attribute

This attribute is used to specify a codebase URL value for JAR files listed in the
ARCHIVE attribute. If this attribute is not specified, the JAR files are assumed to be
in the same directory as the M-let file.

Because the codebase is a URL value, you could specify any network-locatable
value. Thus an M-let file can be loaded from a remote location, and the JAR files
it lists can be in a different remote location. The value of this attribute should be
a fully qualified, reachable URL.

The NAME attribute

This attribute specifies a value for the object name for the agent to associate with
the new MBean this MLET entry describes. The value must have a domain and at
least one property value (see the previous MLET tag for a NaME example).

234

CHAPTER 10
Advanced MBean loading

The VERSION attribute

The verszoN attribute specifies a version number for the MBean and JAR files to
be loaded into the agent. The value of this attribute must be a dot-separated list
of decimal numbers (for example, 1.4).

The ARGLIST tag

This tag lets you specify a particular constructor for the M-let service to use
when instantiating the MBean described by this MLET tag. However, the use of
this tag is restricted to describing constructors with arguments that can be repre-
sented as String values. In the ARGLIST attribute, you use an additional attribute
to specify type—value pairs describing arguments to a constructor. The following
is an example:

<ARGLIST>

<ARG TYPE=java.lang.Integer VALUE=5 >

</ARGLIST>
The M-let service will parse an argument list to build a constructor signature. It will
look for a constructor with a matching signature to use to instantiate the MBean.

MLET tag rules

After being introduced to the possible attributes to an MLET tag entry, you should
recognize that each MLET entry must contain at least two attributes: it must con-
tain a CODE or OBJECT attribute, and an ARCHIVE attribute. In addition, remember
that each M-let file can contain as many MLET entries as you wish—there is no
upper limit. Table 10.1 summarizes the attributes.

Table 10.1 A summary of the available MLET tag attributes

MLET tag attribute Required Description

CODE Yes Required unless OBJECT is used; specifies the class of the MBean

OBJECT Yes Required unless CODE is used; specifies a serialized object

ARCHIVE Yes Specifies JAR files containing the MBean classes and resources

CODEBASE No Used if the ARCHIVE JAR files are not in the same directory as the
M-let file

NAME No Object name value for the new MBean

VERSION No Specifies a version number for the MBean and JAR files

Using table 10.1, you can quickly recall the mandatory attributes and their pur-
pose. Now that we have covered how to create M-let files, let’s examine the MLet

10.2.2

Using the M-let service 235

MBean. This MBean and its supporting classes and interfaces are contained in
the javax.management.loading package.

Examining the MLet MBean

The MLet MBean is implemented in the MLet class, which implements the MLet
MBean interface. In addition, the MLet class implements the MBeanRegistration
interface and extends the java.net.URLClassLoader class. Figure 10.3 shows a
UML diagram of the MLet MBean.

The java.net.URLClassLoader super class provides the MBean with the
implementation of a class loader for convenience. Shortly, you will see that this
super class provides the MLet MBean with its ability to load remote classes. Using
the M-let service boils down to understanding its available methods. The next
sections cover the methods available in the MLet MBean.

M-let methods

You have already examined the contents of the M-let file, and you know how to

interact with MBeans, so let’s move ahead and examine the methods of the MLet-

MBean Interface. This interface declares the methods the MLet MBean uses to

expose its attributes and operations. Table 10.2 lists the methods of the interface.
The following sections discuss the most commonly used methods in more detail.

Hred gy Tlrssloadie

vl nmorly Sy el sl Sueder

1
v reed LIRS lirin L st

Pl ! L~ Y ke Himgndrafon

Figure 10.3

UML diagram of the MLet
MBean interface and its
class hierarchy

236 CHAPTER 10
Advanced MBean loading

Table 10.2 The methods declared by the MLetMBean interface

Declared method Description

addURL (String url) Appends the specified URL to the list of URLs to be
searched for classes and resources

addURL (URL url) Appends the specified URL to the list of URLs to be
searched for classes and resources

getLibraryDirectory () Returns the directory in which native libraries are
stored before loading them into memory

getMBeansFromURL (String url) Tells the MBean to load an M-let file at the specified
URL

getMBeansFromURL (URL url) Tells the MBean to load an M-let file at the specified
URL

getResource (String name) Finds the specified resource

getResourceAsStream(String name) | Finds the specified resource and returns an Input-

St ream for reading it

getResources (String name) Finds all the resources with the specified name

getURLs () Returns the list of URLs being used to search for
classes and resources

setLibraryDirectory(String path) | Sets the native library directory

Adding URLs to the CLASSPATH
The MLetMBean interface declares two addurL () methods that add URLs to the
search list of URLs for finding classes and resources. These methods simply add
the specified URL to the internal list used by the MBean’s class loader. These two
methods (each taking a different form of a URL) add to the agent’s codebase,
allowing it to find more classes. You can use these methods to make more classes
available to the agent.

Later, in the examples, we will demonstrate how you can use the URL list to
load MBean classes without using an M-let file.

Creating MBeans

The interface declares two getMBeansFromURL () methods for loading M-let files.
When the MBean loads an M-let file, it loads all the classes and resources con-
tained in the listed JAR files. Just like the addurt () methods, the createMBean ()
method is overloaded to accept either a URL object or a string representation of
a URL.

Using the M-let service to load MBeans 237

Acquiring resources
Finally, the MBean interface declares several methods that expose the class
loader capability of the MBean’s super class. The resource acquisition methods
like getResource () are declared to expose some of the functionality inherited
from the MBean’s super class, java.net.URLClassLoader. You can use these
methods to acquire resources outside the normal cLasspaTH of the JMX agent
containing the MLet MBean.

You can use the resource-loading capability to download a new internationaliza-
tion file into the agent and thereby provide internationalized notification messages.

10.3 Using the M-Ilet service to load MBeans

Now that we have examined the M-let service, let’s create some examples. In this
section, you will build two examples. The first example loads MBeans with the
M-let service, using an M-let file. The second example shows you that by using
the M-let service to expand the agent’s codebase, you can also load MBeans with-
out using an M-let file.

10.3.1 Adding to the JMXBookAgent class

The first step in writing your M-let examples is to add the M-let service to your
JMxBookAgent class. You will do this by adding the method startMletService () to
the agent and invoking it in the agent’s constructor. Once you've made the agent
class changes, you will be able to use the agent for the examples. Listing 10.1
shows the startMletService () method.

protected void startMletService ()
{

ObjectName mletName = null;

try
{

mletName = new ObjectName ("JMXBookAgent:name=mlet");

server.createMBean ("javax.management.loading.MLet",
mletName) ;
}
catch(Exception e)
{
ExceptionUtil.printException(e);

}

238

10.3.2

CHAPTER 10
Advanced MBean loading

You use the MBean server’s createMBean () method to create an instance of the
MLet MBean. This MBean will be your focus for the M-let service examples. The
MBean is registered with the objectName value JMxBookAgent : name=mlet.

Example: using an M-let file

The first example involves the main feature of the M-let service: creating MBeans
by loading M-let files. You begin by creating an M-let file.

The example M-Ilet file
Using the attributes we examined earlier in section 10.2.2, you will create an M-
let file to load and create an instance of the Helloworld MBean you used in
chapter 2. The following is the MLET entry for the file:
<MLET CODE=jmxbook.ch2.HelloWorld
ARCHIVE=ch2. jar

NAME=MLetAgent :name=hellol>
</MLET>

This entry is saved in a file called ch10.mlet in your jmxbook/ch10 directory.

Setting up the environment

You need to ensure you have the correct environment before trying to load this
M-let file. Before you start the agent, make sure you don’t have the jmxbook.
ch2.HelloWorld class in your cLAsSPATH (but keep your jmxbook.ch10 package in
the cLasspatH). Next, create the ch2 jar file that contains the jmxbook.ch2.Hello-
orld class and copy it to the same directory as your M-let file. Use the following
command to create the JAR file (from the parent directory of your jmxbook pack-
age structure):

Jar —cvf ch2.jar jmxbook\ch2\HelloWorld.class

To be sure you do not have the relloworld class in the cLasspaTh, delete the class
file before executing your environment setup script. After your environment is
ready, you can start the JMxBookagent class with the following command:

java jmxbook.ch3.JMXBookAgent
For this example, you won’t see any output from the agent. After starting the

agent, open your web browser and connect to the agent’s HTML adapter.

Loading the M-let file
When you connect to the HTML adapter of the agent and select the MLet MBean,
the first thing you will notice is that the HTML adapter does not support all the

10.3.3

Using the M-let service to load MBeans 239

methods of the M-let MBean. Fortunately, it supports all the methods you need
for this example. Follow these steps to load the example M-let file:

1 Ifyou haven’t already, select the MLet MBean.
2 Put the cursor in the blank for the getMBeansFromURL () method.

3 Iype in the URL to your M-let file. In our case, the URL is file://c:/jmx-
book/ch10/ch10.mlet.

4 Click the button to execute the method. You should get a success message.

5 Go back to the Agent View, and you should see a new Helloworld MBean
registered in the MBean server.

Stop the agent. You will use it for again in the next example, which creates an
MBean without using an M-let file.

Reusing loaded classes

After you have loaded classes specified in an M-let file, they are available for
use again. However, you would need to specify the mLet MBean as the class
loader when creating an MBean from a previously loaded JAR file (from using an
M-let file).

In chapter 8, we discussed the MBean server’s overloaded version of the cre-
ateMBean () method, which adds an objectName parameter that specifies a class
loader. The overloaded method uses this class loader to search for the MBean
class needed to instantiate the requested MBean. The value of this parameter
should be the objectName value of the M-let service. The method invocation to
load another Helloworid MBean would look like the following:

ObjectName helloName = new ObjectName ("MLetAgent:name=hello2");

ObjectName mletName = new ObjectName ("MLetAgent:name=mlet");

mbeanServer.createMBean ("jmxbook.ch2.HelloWorld",
helloName, mletName);
This code results in a new Helloworld MBean with the specified objectName
value. The MBean server relies on the M-let service to act as the class loader for
the jmxbook.ch2.HelloWorld class.

Example: expanding the agent’s codebase

At this point, you might be telling yourself that you want to load classes from a
remote location without creating MBeans at the same time. Any time you want to
add classes or add to your codebase, you don’t want to have to create an MBean
(for instance, to use an M-let file to load a JAR file).

240

10.4

CHAPTER 10
Advanced MBean loading

As mentioned earlier, the M-let service provides for this situation by allowing
you to expand its codebase. By using its adduRL () methods, you can add to the
list of searchable URLSs for classes and resources. After URLs are added, you can
access classes at the new locations, even in order to create MBeans. For exam-
ple, follow these steps to create the Helloworld MBean again without using an
M-let file:

1 Make sure the agent process is stopped.
2 Restart the agent using the command from section 10.3.2.
3 Connect to the HTML adapter of the agent and select the MLet MBean.

4 Invoke the MBean’s addurL () method with the file URL pointing to the
ch2 jar file. In our case, this value is file://c:/jmxbook/ch10/ch2.jar.

5 After receiving the success message, go to the Admin View of the adapter.

6 Enter the appropriate parameters to create a HelloWorld MBean. For the

Class Loader entry, enter the objectName value for the M-let service:
MLetAgent :name=mlet.

7 Execute the create request. You should receive a success message.

8 Go back to the Agent View, and you should see the new HellowWorld
MBean in the MBean list.

If you experience any errors with the MBean create request, be sure you typed
in the correct value for the added URL pointing to the ch10.jar file. You can ver-
ify the value you entered by viewing the URLs attribute of the MLet MBean.

Wrapping the M-let service to
provide notifications

You should know enough about the M-let service now that you could begin
including it in your JMX applications to expand their codebases and increase
their usefulness. However, if you used the M-let service with any frequency, you
might notice that the service does not emit any notifications. For example, you
cannot emit a notification indicating that a remote class was loaded. If your
agent persists notifications for later analysis of the agent’s activity, you will prob-
ably want to include the activity of the M-let service. Otherwise, you will be miss-
ing valuable information from the activity log of your agent.

This section builds an MBean that wraps the M-let service to provide notifica-
tions for the M-let events that could occur. Figure 10.4 illustrates this idea.

10.4.1

Wrapping the M-let service to provide notifications

: Agend Lapsr B
¢ [SEECN.
MLt Secdce Vimppar |
Add Merw WEsan
| Diowricad
] =i LML

241

Copinbaitad |
Ly i
' o D
| Protoood i]
| Connecior i
| —

B 1 Doswrienddl ML ot Fila
Dep 1 Dosniced MEsan bawed on
R, &t Fis Dodridans
Fap) Motify o P -1 aveend

Figure 10.4 Using an MBean to wrap the M-let service to provide notifications

You wrap the M-let service as an MBean in order to shield users from any imple-
mentation change. Using this wrapped M-let service is the same as using the M-
let service. To create this MBean “wrapper,” you must write an MBean and a
notification class. Let’s begin with the notification class.

Writing the MLetNotification class

The notifications used in this example are defined by the MLetNotification
class. To keep it simple, the notification will contain the three notification types

shown in table 10.3.

Table 10.3 The notification types used by the MLet wrapper

Notification type

Description

jmxbook.mletwrapper.urlAdded

Indicates that a URL value was added successfully

Jjmxbook .mletwrapper.mbeanCreated

Indicates that an MBean was created successfully from
an M-let file

jmxbook.mletwrapper.error

Indicates that an error occurred in some M-let service
operation

242

CHAPTER 10
Advanced MBean loading

Three types will serve to create a good example; in practice, you could use more
notification types to add more specific notifications. With these three types
defined, let’s examine the code for your new MLetNotification class (listing 10.2).

Listing 10.2 MLetNotification.java

package jmxbook.chlO;

import javax.management.*;
import java.util.*;

public class MLetNotification extends Notification

{

public static final String URL_TYPE =
"Jmxbook.mletwrapper.urlAdded";

public static final String MBEAN_TYPE =
"Jmxbook.mletwrapper.mbeanAdded";

public static final String ERROR_TYPE =
"Jjmxbook.mletwrapper.error";

private String url = null;
private Set objectInstances = null;

public MLetNotification(String type, Object source,
long sequence)

super (type, source, sequence);

}

public void setObjectInstances(Set oi)
{

this.objectInstances = oi;
}

public void setURL(String url)
{
this.url = url;

}

public String getURL ()
{
return url;

}

public Set getObjectInstances ()
{

return objectInstances;

10.4.2

Wrapping the M-let service to provide notifications 243

Looking over the code for the notification class, you can see that it does not con-
tain anything complex. It declares the three notification types as public static
final member variables for convenience. In addition, it adds methods for setting
and getting a URL and an ObjectInstance object. The URL methods allow the
MLetWrapper MBean to send the URL that was added successfully or that caused
an error. The objectInstance variable will be set whenever an MBean is created
successfully using the M-let service.

Writing the MLetWrapper MBean

Now that the notification is defined, you can move on to the MLetWrapper MBean
class. This MBean is a Standard MBean (look back at chapter 3 for more informa-
tion about Standard MBeans); because you will wrap the M-let service entirely, the
new MLetWrapper MBean class will have the same management interface as the
MLet MBean.

The MLetwWrapper MBean class implements the MBean interface jmx-
book.chl0.MLetWrapperMBean. This MBean interface extends the javax.man-
agement .loading.MLetMBean interface. Thus an implementing MBean has the
same interface as the M-let service, ensuring that it has the same attributes
and operations.

In addition, the MLetwrapper MBean class implements the MBeanRegistration
interface to interact with the M-let service and extends the NotificationBroad-
castersupport class to provide support for sending notifications.

The following code shows the MLetWrapperMBean interface:

package jmxbook. chlO0;
import javax.management.loading.*;

public interface MLetWrapperMBean extends MLetMBean

{

}
The MLetwrapper MBean will emit notifications for every MBean it creates and
for every URL that is added. The basic behavior of the MBean is to delegate all
method calls to the M-let service and capture return values in order to generate
notifications. Listing 10.3 shows the MLetwrapper class.

package jmxbook.chlO0;

import javax.management.*;
import javax.management.loading.*;

244 CHAPTER 10
Advanced MBean loading

import java.util.*;
import java.io.*;
import java.net.*;

public class MLetWrapper extends NotificationBroadcasterSupport
implements MLetWrapperMBean, MBeanRegistration

private ObjectName mletName = null;
private MBeanServer mbs = null;

public MLetWrapper (String mletServiceName)
{
try
{
this.mletName = new ObjectName (mletServiceName) ;
}
catch(Exception e)
{
//do nothing
}

Store object
name of actual
M-let service

}

//MBeanRegistration methods
public void postDeregister () {}
public void preDeregister () {}
public ObjectName preRegister (MBeanServer server,
ObjectName name)
throws Exception

Find M-let

{ .
this.mbs = server; service

//check for the existence of the M-let service.
if (mletName == null || !mbs.isRegistered(mletName)

throw new
Exception("M-let service not present in MBean Server");

return name;

}

public void postRegister (Boolean done) {}
//MLetMBean methods

public Set getMBeansFromURL(String url)
throws ServiceNotFoundException

{
Set rvalue = null; /9

MLetNotification notif = null;

Object[] obj { url };
String[] sig = { "java.lang.String" };

try
{ v

}

}

catch(Exception e)

{

Wrapping the M-let service to provide notifications

rvalue = (Set) mbs.invoke(mletName,
"getMBeansFromURL",
obj, sig);
notif = new MLetNotification(MLetNotification.MBEAN_TYPE,
this, -1);
notif.setURL(url);
notif.setObjectInstances(rvalue);
sendNotification(notif);
Build and send
notification when
loading MBean

return rvalue;

notif = new MLetNotification(MLetNotification.ERROR_TYPE,
this, -1);

notif.setURL(url);

sendNotification(notif);

throw new ServiceNotFoundException(e.getMessage());

public Set getMBeansFromURL(URL url) throws

}

ServiceNotFoundException

Set rvalue = null;
MLetNotification notif = null;

Object[] obj = { url };
String[] sig = { "java.net.URL" };

try

{

}

rvalue = (Set) mbs.invoke(mletName,
"getMBeansFromURL", obj, sig);

notif = new MLetNotification(MLetNotification.MBEAN_TYPE,
this, -1);

notif.setURL(url.toString());

notif.setObjectInstances(rvalue);

sendNotification(notif);
return rvalue;

catch(Exception e)

{

notif = new MLetNotification(MLetNotification.ERROR_TYPE,
this, -1);

notif.setURL(url.toString());
sendNotification(notif);
throw new ServiceNotFoundException(e.getMessage());

public void addURL(String url) throws ServiceNotFoundException

245

246

CHAPTER 10
Advanced MBean loading

}

Set rvalue = null;
MLetNotification notif = null;

Object[] obj = { url };
String[] sig = { "java.lang.String" };

try
{
mbs.invoke (mletName, "addURL", obj, sig);
notif = new MLetNotification(MLetNotification.URL_TYPE,
this, -1);
notif.setURL(url);

sendNotification(notif);
}
catch(Exception e)

{

notif = new MLetNotification(MLetNotification.ERROR_TYPE,

this, -1);
notif.setURL(url);
sendNotification(notif);

public void addURL(URL url)

{

}

Set rvalue = null;
MLetNotification notif = null;

Object[] obj = { url };
String[] sig = { "java.net.URL" };

try
{
mbs.invoke (mletName, "addURL", obj, sig);
notif = new MLetNotification(MLetNotification.URL_TYPE,
this, -1);
notif.setURL(url.toString());

sendNotification(notif);
}
catch(Exception e)

{

notif = new MLetNotification(MLetNotification.ERROR_TYPE,

this, -1);
notif.setURL(url.toString());
sendNotification(notif);

public URL[] getURLs ()

{

try

Wrapping the M-let service to provide notifications ‘ 247

return (URL[])mbs.invoke(mletName, "getURLs", null, null);
}

catch(Exception e) Forward method
{ invocations to M-let
//do something service

return null;

}

public URL getResource(String name)
{
Object[] obj = { name };
String[] sig
try
{

{ "java.lang.String" };

return (URL) mbs.invoke(mletName, "getResource",
obj, sig);
}
catch(Exception e)
{
//do something
return null;

}

public InputStream getResourceAsStream(String name)
{
Object[] obj = { name };
String[] sig
try
{

1
—~

"java.lang.String" };

return (InputStream) mbs.invoke(mletName,
"getResourceAsStream",
obj, sig);
}
catch(Exception e)
{
//do something
return null;

}

public Enumeration getResources(String name)
{

Object[] obj = { name };

String[] sig

"java.lang.String" };

try
{
return (Enumeration) mbs.invoke(mletName,
"getResources", obj, sig);

248 CHAPTER 10
Advanced MBean loading

}
catch(Exception e)
{
//do something
return null;

}

public String getLibraryDirectory ()
{
try
{
return (String) mbs.invoke(mletName, "getLibraryDirectory",
null, null);
}
catch(Exception e)
{
//do something
return null;

}

public void setLibraryDirectory(String path)
{

Object[] obj = { path };

String[] sig = { "java.lang.String" };

try
{
mbs.invoke (mletName, "setLibraryDirectory", obj, sig);
}
catch(Exception e)
{
//do something

}

public MBeanNotificationInfo[] getNotificationInfo ()
{

MBeanNotificationInfo[] info = new MBeanNotificationInfol[1 1];

String[] types = { MLetNotification.MBEAN_TYPE,
MLetNotification.URL_TYPE,
MLetNotification.ERROR_TYPE };

info[0] = new MBeanNotificationInfo(types,
"jmxbook.chl0.MLetNotification",
"Notifications from the
MLetWrapper");

return info;

Wrapping the M-let service to provide notifications 249

© ® The only constructor of the MLetwrapper MBean accepts an object name string

10.4.3

value that should correspond to an instance of the M-let service already present
in the MBean server at the time of construction. The preRegister () method is
invoked before the MBean will be registered in the MBean server. In this method,
the MLetWrapper MBean attempts to locate the M-let service with the objectName
value specified in its constructor.

If the M-let service is not found, the preRegister () method throws an Excep-
tion in order to stop the registration process. The exception will ensure that an
MLetWrapper MBean will not operate without an M-let service in the agent.
Instead of throwing an Exception when it doesn’t find an M-let service, the
MBean could tell the MBean server to create one.

The getMBeansFromURL(URL url) method provides a pattern for the methods
that emit notifications (getMBeansFromURL() and addurL()). This method can
emit one of two possible notification types represented by the public final static
variables MLetNotification.MBEAN_TYPE and MLetNotification.ERROR_TYPE. The
method delegates the work to the M-let service MBean and, depending on the
result, sends either a success-type notification or an error-type notification.

If the method succeeds, it builds an MLetNotification with the returned set
of ObjectInstance objects and the URL that was specified as a parameter. For any
error, including exceptions thrown while working with the MBean server, the
getMBeansFromURL () method emits a notification populated with an error type
and the URL specified in the incoming parameter.

The geturLs () method demonstrates how the remaining methods are imple-
mented. They do not emit notifications—they only delegate the method call to
the M-let service and return the result where appropriate. In addition, these
methods capture any exception arising from the interaction with the MBean
server. If an exception is thrown by the MBean server, each method simply
catches it and returns (null where appropriate).

Using the MLetWrapper MBean

To register for notifications, you need to create and register the new MLetWrapper
MBean. However, instead of using the HTML adapter as you did for the examples
in section 10.3, you will write a setup class to register the new wrapper MBean in
your agent. Listing 10.4 shows the MLetwrapperSetup class. This class will use the
RMIClientFactory class from chapter 3 to contact the agent and create an instance
of the MLetWrapper MBean. It also adds itself as a notification listener.

250 CHAPTER 10
Advanced MBean loading

Listing 10.4 MLetWrapperSetup.java

package jmxbook.chlO0;

import javax.management.*;
import com.sun.jdmk.comm.*;
import jmxbook.ch3.*;

public class MLetWrapperSetup implements NotificationListener
{
public MLetWrapperSetup ()
{
try
{
RmiConnectorClient client = RMIClientFactory.getClient ();

Object[] args = { "JMXBookAgent:name=mlet" };
String[] sig = { "java.lang.String" };

ObjectName wrapperName =
new ObjectName ("JMXBookAgent:name=mletwrapper");
client.createMBean("jmxbook.chl0.MLetWrapper",
wrapperName, args, sig);
client.addNotificationListener (wrapperName, this,
null, null);

}
catch(Exception e)
{

ExceptionUtil.printException(e);

}

public void handleNotification(Notification not, Object obj)
{

String type = not.getTypel();

System.out.println(type);

public static void main(String args[])
{
MLetWrapperSetup setup = new MLetWrapperSetup () ;

You can add more code to the handleNotification() method to output more
information about the received notifications if desired. For now, the method only
prints out each notification type. After compiling this class, start the JMxBook-
Agent and execute the setup class with the following command:

java jmxbook.chl0.MLetWrapperSetup

10.5

Summary 251

The next section walks you through loading the relloworld MBean again, but
this time using the MLetwWrapper MBean.

Testing the MLetWrapper MBean
Testing the MLetwrapper MBean is a simple task. All you need to do is follow the
steps from the first example in section 10.3.2. Go back and follow those exact
steps to compile and start the MLetAgent. Then, follow the remaining steps as
you did before, but instead of interacting with the mLet MBean, use the MLet-
rapper MBean. It has the same attributes and operations as the MLet MBean, so
the steps will match.

If you successfully execute the getMBeansFromURL () and addURL () methods,
you should see the following output from the agent:

jmxbook.mletwrapper .mbeanAdded

Jjmxbook.mletwrapper.urlAdded
If you experience an error in one of the methods, you should see the following
notification type appear in the agent output:

jmxbook.mletwrapper.error

Summary

In this chapter, you learned about the first of the JMX agent services found in
compliant JMX agents: the M-let service. The M-let service gives JMX agents the
ability to dynamically load MBeans from remote locations outside the agent’s
codebase. In essence, the service lets you expand the crasspaTh of the agent,
while at the same time constructing MBeans described in an M-let file. The M-let
file is an XML-like file that describes to the service how to create the MBean con-
tained by each M-let entry in the file. This is a powerful advantage for JMX over
other management environments: using the M-let service, you can ensure that
your agent will remain running even through code updates.

At the end of this chapter, you wrote an example that demonstrates how you
might wrap the M-let service in another MBean to provide detailed notifica-
tions about its behavior. Using the wrapped service, you can ensure that other
parts of your JMX system are informed of new classes and MBean types available
to the agent.

Chapter 11 discusses the relation service, which helps you to create manage-
ment relationships between MBeans.

Working with
the relation service

Defining a relation

Understanding the components of the
relation service

Using the relation service in a real-world example

253

254

11.1

CHAPTER 11
Working with the relation service

In the previous chapter, we discussed the first agent service: the M-let service.
This chapter continues the coverage of agent services by examining the relation
service. Consider the fact that a typical JMX agent may contain numerous MBeans,
managing many resources. In fact, applications can expose components or
resources through the use of several MBeans.

Additionally, multiple MBeans might be needed to solve a particular problem.
For instance, imagine that you receive an alert telling you that your customer
service application needs attention. You use its MBean to read a new customer
query, but then you must use a different MBean to process the query. In manage-
ment environments like this, keeping track of MBeans may be difficult. MBean
management in cases of executing an ordered workflow is different than the
MBean querying problem presented in chapter 8. The MBean querying service
will help you find specific MBeans, but it cannot help you determine the order in
which specific MBeans should be used to complete a task (or even which exposed
operation to invoke).

This chapter will show you how to manage MBeans that are intended to have
relationships. They can be related by the resource they manage or by being
members of the same workflow. The JMX relation service provides a way to vali-
date and manage MBeans as related groups, called relations.

Using the JMX relation service

Relations are objects that contain information describing the relationship
between two MBeans. Each relation object must conform to a particular relation
type. A relation type is an object that resides in the relation service and allows the
service to validate relations. Relation types define the specific roles that MBeans
represent in a relationship.

The JMX relation service, like the M-let service described in chapter 10, is an
MBean registered in an agent. The service manages a group of registered relations
that users can query. Rather than look for many MBeans residing in an agent
that make a logical unit, you can query the relation service for an existing rela-
tion that will provide the MBean information you need (the objectName value).

In addition, the relation service maintains the consistency of registered rela-
tions against their particular relation types. As MBeans are added and removed
from an agent, the relation service will continuously check its registered relations
to ensure they still validate against their particular relation types. For example,
consider a relation type that defines a relation as having one MBean of type A
and one of type B. If an MBean of type A is removed from an existing relation of

11.1.1

Using the JMX relation service 255

that type, the relation will no longer validate. In this case, the relation service
will remove the relation from the group of registered relations. The relation ser-
vice is “aware” of the relations and the MBeans that correspond to the roles and
ensures that the integrity of the relations remains intact.

The service also acts as the source of notifications, providing information about
the relations it contains. If a relation is created, updated, or deleted, the relation
service will send a notification containing information about the modification.

Components of the relation service

In the previous section, we introduced some new terms: relation, relation type, and
role. These terms correspond to some of the classes that make up the relation ser-
vice. Throughout this chapter, we will use these terms and their classes to describe
the relation service and construct examples. Therefore, you need to have a good
understanding of these and other terms. This section will help you round out
your knowledge of the following terms:

m Relation service
m Relation type

m Role information
m Relation

m Role

The relation service is a complex agent service. When you’re working through
the examples in this chapter, you can come back to this section to refresh your
knowledge of these terms. Likewise, the relation framework being described may
be difficult to envision. As you work through the example step by step, these con-
cepts should become clearer.

Relation service

The relation service is an MBean that defines the methods used to create and
remove relation types and relations. In addition, the relation service provides
methods for finding a particular relation.

The relation service lets you create internal and external relations. Internal
relations are relations that exist only within the relation service MBean. This
type of relation only provides information about the MBeans that create a rela-
tionship. In contrast, external relations are registered with the relation service,
but also exist as MBeans registered in the agent. In this chapter, you will create
an external relation. This type of relation has some unique advantages that we
will expose shortly.

256

CHAPTER 11
Working with the relation service

Relation type

The relation type is an object that acts as a template for relations. It contains a
list of role information objects that describe the members of a relation. The rela-
tion service uses relation types to validate relations by examining the relation
type role information and comparing it to the role values in the relation. The
relation type is defined by the class javax.management .relation.RelationType.

Role information

As we mentioned earlier, role information objects are contained within Relation-
Type objects. The role information distinctly defines a member of a relation. An
instance of the RoleInfo class contains a unique name of a role as well as the mul-
tiplicity of the MBeans for that role. The role name cannot be null and must be
unique for a given relation type. The multiplicity defines the number of MBeans
that can be referenced by the role.

For example, a FamilyCar relation type might have a RoleInfo object wheels
with a multiplicity of four wheel MBeans, whereas a Tricycle relation type would
have a multiplicity of three wheel MBeans. In addition, a CookieJar relation type
might have a multiplicity of 0 to 100 cookie MBeans, depending on how hungry
you were.

A RoleInfo object also specifies two more constraints for a relation type: the
class name of the MBeans that can act as a role in a relation of the type that con-
tains the RoleInfo object, and the access mode of the role. The access mode
determines the read and write permissions of the role.

Relation

Relations are represented by the relation class. Every relation is an object rep-
resenting an instance of a particular relation type (not an actual instance of the
RelationType class, but the Relation class). The relation is an object, registered
in the relation service, that defines an association between existing MBeans in
an agent. A relation can reference several different classes of MBeans and
present them in such a way that the user can clearly understand the association
between them.

MBeans participating in a relation are said to be a role of a relation. A role is
validated against the RoleInfo object of the Relation’s relation type. As we men-
tioned earlier, a relation is either internal or external. An external relation
exposes methods that can operate of any number of its member MBeans; this
functionality provides a powerful way to manage your enterprise’s collection of
existing MBeans.

11.2

11.2.1

Using the relation service to manage a phone system 257

Role

The role class represents the roles of a relation; it consists of a role name and a
role value. The role value is a list of MBeans that are acting as a role in a given
relation. The role value must conform to the definition of its corresponding
RoleInfo object. The role name corresponds to the RoleInfo name defined in
the relation type of the rRelation instance.

Using the relation service
to manage a phone system

We've given you a lot of information to process all at once. A good example will
help you understand all these classes and terms. In this section, you will model a
real-world phone system using MBeans and their relationships. You’ll see how
relations are useful to associate MBeans and operate on them as a single unit.

The first thing we need to do is describe the scenario of the example. We will
describe a system modeled with MBeans that presents a problem, and use the
relation service to solve that problem.

Defining the scenario

Consider a system that sends and receives phone and fax messages. It consists of
an application that controls the incoming and outgoing calls and faxes. In this
system, the controller application can work with up to 10 phone cards and 1 fax
card. In addition, the application uses a routing table to control the flow of calls.
The routing table is the means by which the application makes decisions about
whether to put a phone or fax board in the receive or send state. Figure 11.1 illus-
trates this system.

As operators of this system, you want a way to disable a device card and update
the routing table in a single, efficient step. To do this, you will instrument the
application using a JMX environment. To manage the system, you will define the
following three types of MBeans:

» A phone card MBean
m A fax card MBean
= A routing table MBean

Managing phone and fax cards
To control the phone and fax devices, you need to define an MBean for each
card. For phone cards, you will create an MBean represented by the pPhonecard

258

11.2.2

CHAPTER 11
Working with the relation service

Prura S m
i
leMnea |I LersiR e s
v el [Wi Gl Vamen
{
¥
i bradaer
A pphahine
ma
- Figure 11.1

A controller application
maintains the state of
phone and fax cards.

class. Because your environment can have more than one phone card, each phone-
card MBean will have a unique card id. In this case, you will use an integer to
represent the slot number for the phone card. This example will use two Phone-
Card MBeans.

For fax cards, you will define the raxcard class. You can have only one fax card
present in a deployment, and it will be represented by a rFaxcard MBean. With
only one fax card to manage, this MBean does not need any special identifiers.

Both the phone and fax card MBeans will have a single exposed method
called disable (). This method prevents the card from sending or receiving calls
or faxes.

Managing a routing table

Keep in mind that upon disabling either type of card, you’ll need to notify the
controller application that it should no longer attempt to route calls to or from
the disabled card. To do so, you will expose a routing table MBean for disabling
the route. The RoutingTable MBean will expose two important operations. The
first operation allows the removal of the routing information for one of the
phone cards; it will accept an integer representing the phone card slot. The sec-
ond operation removes a fax card route from use.

The phone system management example

We have defined the system: it consists of some hardware devices and a compo-
nent of a software application. For the relation example you’ll create, assume
that this JMX environment already exists. There are two PhoneCard MBeans and

11.2.3

Using the relation service to manage a phone system 259

=gy = Faa ¥
BT gl
"'\. -
te FamCardt
G | L] =
i =
bl “y Pt e
A wean
_ - I
b x"mﬂ‘
L 2]
:_
g MoutingTabis Figure 11.2
aan Telephony system managed
T .
with MBeans

one FaxCard MBean registered in a JMX agent. In addition, you will register an
instance of the routingrable MBean. This system is described in figure 11.2.

Here lies the problem: disabling a device (phone or fax) takes two steps. First
you have to invoke the disable () method of a particular device MBean, and then
you must invoke the appropriate operation of the RoutingTable MBean to update
the routing table. If you treat this problem as representative of larger or more
complex systems, you can imagine more problematic scenarios. For instance, in
this example only two steps are necessary to perform the disable task, but what if
15 steps were required? To solve this problem, you will define an MBean rela-
tionship that can provide a mechanism to reduce this process to a single step,
essentially allowing you to treat multiple MBeans as a unit.

Defining an external relationship with an MBean

As we described earlier, it would be nice if you could define an MBean that would
behave like a single unit equivalent to the whole system. It would be useful to
expose such an MBean to a management system in an abstracted manner so that
the management system could effectively work with only one object, as opposed
to requiring a manager to deal with each individual MBean.

You will do this by defining a relationship between the Phonecard and FaxCard
MBeans and the RoutingTable MBean. The relation is represented by an MBean,
and users will only need to interact with it in order to update the phone system.
An external relation is said to be a relation MBean. A relation MBean is registered
as an MBean in an agent, and as a relation in the relation service. Figure 11.3
shows how a relation MBean can help your phone system.

The figure shows a relation MBean that exposes a method, disablePhoneCard
(integer). In the figure, the method is being invoked with an integer 1 that

260

CHAPTER 11
Working with the relation service

[———

LEY T oo Figure 11.3
L e R ¢ O Telephony system
remcrvmF asfinae managed using a

relation MBean

indicates the phone card in slot 1 should be disabled and then updates the rout-
ing table. The relation MBean looks up the corresponding phone card MBean
and calls its disable () method. The relation MBean next calls the appropriate
route-removal method on the RoutingTable MBean. Figure 11.4 displays the
JMX diagram relating all the MBeans. In this diagram, the relation MBean is
named CtlRelation. So, your two device MBeans and the RoutingTable MBean
have a relationship provided by the controller application represented by the
CtlRelation MBean.

The ct1Relation MBean will associate the PhoneCard, FaxCard, and Routing-
Table MBeans. You can see that the relation references 1 to 10 PhoneCards, 1 Fax-
card, and 1 RoutingTable MBean.

e st

Figure 11.4

Diagram showing the
phone system
relationship of your
MBeans

11.3

11.3.1

Constructing the MBean relationship 261

Up to this point, we have defined the problem and presented a solution. You
now need to write the code for all the MBeans, as well as the code for building
the relation and adding the relation service to your JuxBookagent class. The fol-
lowing sections will walk you through writing the code to build this example.

Constructing the MBean relationship

As you have in previous chapters, you will use the JMxBookagent class constructed
in chapter 3. You will add the relation service and your MBeans to the agent.
Finally, you will execute a test using the HTML adapter to disable the fax and
phone cards. To complete this example, you must write code to complete the
steps shown in the following list:

1 Create the MBeans. Before any relation can be created, the MBeans that
will participate in the relation must be created in the current agent.
These are Standard MBeans, and they must be registered in the agent.

2 Create the RelationType object that will declare the role information and
constraints about your relation.

3 Create role objects to participate in the new relation.
4 Create the relation object that corresponds to the situation described.

5 Add a method to your JMxBookagent class that adds the relation service to
the agent when it is started.

6 Write code that will add your new relation to the relation service for retrieval.

Let’s begin this process by writing the code for all your MBeans.

Creating the MBeans

The first step is to write the MBeans that model each component of the scenario,
including the phonecard, FaxCard, and RoutingTable MBeans. You will create
them as Standard MBeans. (For more information about Standard MBeans, refer
back to chapter 4.)

The listings in the following sections show the classes for these MBean
classes, as well as their interfaces.

Writing the PhoneCard MBean

Each MBean will be placed in the jmxbook.ch11 package. The phoneCardMBean
interface for the phonecard class is as follows. It declares a single method, dis-
able (), which disables the managed phone card from operation:

262 CHAPTER 11
Working with the relation service

package jmxbook.chll;

public interface PhoneCardMBean
{

public void disable();
}

Listing 11.1 shows the implementation of the phoneCardMBean interface by the
PhoneCard class.

Listing 11.1 PhoneCard.java

package jmxbook.chll;

public class PhoneCard implements PhoneCardMBean
{

private int cardNum=0;

public PhoneCard(int cardNum)
{
this.cardNum = cardNum;

}

public void disable ()
{
System.out.println("PhoneCardMBean: :PhoneCard #" +
cardNum+" has been disabled");

This MBean exposes one method and a constructor. The constructor takes an
int parameter that identifies the phone card slot this MBean represents. In the
constructor, you store a reference to this card’s slot number so that you can use it
when the disable () method is called. The disable () method would typically exe-
cute some code that would disable the phone card. You do not have an actual

phone card, so you will just display a message indicating the card number that is
being disabled.

Writing the FaxCard MBean
Next, let’s write the interface and implementation for the Faxcard MBean. The
interface for this class looks similar to the PhoneCardMBean interface:

package jmxbook.chll;

public interface FaxCardMBean
{

public void disable();
}

Listing 11.2 shows the MBean class. It is also a simple class, like Phonecard.

Constructing the MBean relationship ‘ 263

Listing 11.2 FaxCard.java

package jmxbook.chll;

public class FaxCard implements FaxCardMBean

{
public FaxCard() {}

public void disable ()

{
System.out.println(
"FaxCardMBean: :The FaxCard has been disabled");

Like the phonecard MBean, this class exposes a single method and a constructor.
Like the previous MBean, in the real world it would interface to a fax board and,
when called, take the card out of service. For this example, you will print an
informative message to the screen. Because you can have only one fax board per
system, you do not include a card number with this MBean.

Writing the RoutingTable MBean

Now that you have the code for the two types of device card MBeans, you need to
write the MBean that represents the routing table. The RoutingTable MBean
contains the routing information for both the fax and phone cards. The inter-
face for the RoutingTable MBean is as follows:

package jmxbook.chll;

public interface RoutingTableMBean
{
public void removePhoneRoute (Integer cardNum);
public void removeFaxRoute();
}
The interface exposes two methods: removePhoneRoute () and removeFaxRoute ().
The method for removing a phone route accepts a phone card number to iden-
tify the correct phone card. Listing 11.3 shows the implementation class, Rout-
ingTable.

Listing 11.3 RoutingTable.java

package jmxbook.chll;

public class RoutingTable implements RoutingTableMBean
{

264

CHAPTER 11
Working with the relation service

public RoutingTable () {}

public void removePhoneRoute (Integer cardNum)
{
System.out.println("RoutingTableMBean: :PhoneCard" +
cardNum.intValue () + " removed from "
+ " routing table");

}

public void removeFaxRoute ()
{
System.out.println("RoutingTableMBean: :FaxCard removed "
+ " from routing table");

This MBean manages a routing table that has both fax and phone board refer-
ences, so it includes two user methods. The first method removes a phone card
from the routing table and takes an integer as a parameter; this integer describes
the slot of a phone card. The second method removes the fax card from the rout-
ing table; it requires no parameter, because there can be only one fax card per sys-
tem. For this example, both methods will print a message to the screen, because
you do not really have a routing table implemented for the phone and fax cards.

Registering the MBeans in the agent

Now that you have created the MBeans, you need to write code that will add them
to the agent. The remaining code in this chapter comes from a main class built to
create and register MBeans in the agent. The methods being described will form
a class called RelationMain. This class will be similar to the setup classes you have
written in previous chapters. However, in addition to registering your MBeans,
this class will eventually contain the code that creates your relation. The method
in listing 11.4 is extracted from the RelationMain class. You can find the complete
source listing for this class on the book’s web site at http://www.manning.comy/.

public void createMBeans ()
{

try

{

//register the first PhoneCard
Object[] params = new Object[1l];
params[0] = new Integer(l);
String[] sig = new String[l];
sig[0] = "int";

http://www.manning.com/
http://www.manning.com/

Constructing the MBean relationship 265

System.out.println ("\n>>> REGISTERING PhoneCardl MBean");
ObjectName phoneCardlName = new
ObjectName ("JMXBookAgent :name=phoneCard, slot=1");

client.createMBean ("jmxbook.chll.PhoneCard",
phoneCardlName,
params,
sig);

//register the second PhoneCard

params[0] = new Integer(2);
System.out.println ("\n>>> REGISTERING PhoneCard2 MBean");
ObjectName phoneCard2Name = new
ObjectName ("JMXBookAgent :name=phoneCard, slot=2");
client.createMBean ("jmxbook.chll.PhoneCard",
phoneCard2Name,
params,
sig);

//register the FaxCard
System.out.println ("\n>>> REGISTERING FaxCard MBean");
ObjectName faxCardName = new

ObjectName ("JMXBookAgent :name=faxCard");

client.createMBean ("jmxbook.chll.FaxCard", faxCardName);

//register the RoutingTable
System.out.println ("\n>>> REGISTERING RoutingTable MBean");
ObjectName routingTableName = new
ObjectName ("JMXBookAgent:name=routingTable");
client.createMBean (" jmxbook.chll.RoutingTable",
routingTableName) ;

}
catch (Exception e)

{
e.printStackTrace();
System.out.println ("Error Registering MBeans");

In this method, you create four MBeans in the agent (two PhoneCard MBeans,
one FaxCard MBean, and one RoutingTable MBean). Notice that the create-
MBean () invocation for the phone cards requires more parameters than the fax or
routing table MBeans. This is the case because the Phonecard MBean constructor
requires an integer to define the slot number for the card.

Also note that an Integer object, not an int, is used as the parameter for
the constructor to the phone card. This is a different signature than that of the

266

11.3.2

CHAPTER 11
Working with the relation service

constructor defined in the object itself. The reflection capabilities used in the
agent will reconcile the object to the primitive type where required.

In addition, the client object being used is an RmiConnectorClient instance
acquired from the rRMIClientFactory class that you have been using throughout
the book. It is a global reference in the RelationMain class.

Now that the code for MBeans representing the system components is fin-
ished, you will proceed to define the objects required for the relation. We won’t
dissect particular classes and interfaces in the javax.management.relation pack-
age; rather, we will introduce them as we need them in code. In addition, the rela-
tion package contains more classes than we will discuss; you can examine the API
in the javadoc later.

Defining the relation

Now it is time to create the objects that will help you create the relationship we
have described for this scenario. Before you can create a Relation object, you
need to create a RelationType object. And before you can create the Relation-
Type, you must be able to populate it with an array of RoleInfo objects that
represent the role information of the relation type. In the next section, you
will create an array of role information needed to build your controller appli-
cation relationship.

Creating the Rolelnfo objects

For this example, you need to describe three roles: voiceProcessor, FaxProces-
sor, and callRouter. The VoiceProcessor role can include from 1 to 10 PhoneCard
MBeans. The FaxProcessor role is restricted to one FaxBoard MBean, and the
CallRouter is limited to one RoutingTable MBean. This follows the architectural
model as described in the example description.

The relation service will use this role information to ensure that the roles used
in a relation follow their constraints. Listing 11.5 is the createRoleInfoArray ()
method from the rRelationMain class. It creates the three named RoleInfo objects
and places them into an array. An array is used because that is the form needed
to later create the RelationType object for this example.

public RoleInfo[] createRoleInfoArray ()

{
RoleInfo[] roleInfoArray = new RoleInfo[3];

try

Constructing the MBean relationship 267

roleInfoArray[0]= new RoleInfo ("VoiceProcessor",
"jmxbook.chll.PhoneCard",
true,
true,
1,
10,
"The Role for Phone Card");

roleInfoArray[l] = new RoleInfo ("FaxProcessor",
"jmxbook.chll.FaxCard",
true,
true,
lI
1,
"The Role for Fax Card");

roleInfoArray[2] = new RoleInfo("CallRouter",
"jmxbook.chll.RoutingTable",
true,
true,
ll
1,
"The Role for Routing Table");
}
catch (Exception e)
{
System.out.println (
"Error Creating the Relation Service MBean");
e.printStackTrace();

}

return roleInfoArray;

The role information array describes the roles that will form the relation. Each
RoleInfo instance contains the role name and the MBean class name that can act
as this type of role. In addition, it describes whether the role is readable and
writeable (the two boolean values).

It also includes the minbegree and maxDegree values that describe the multi-
plicity of this role. The minDegree value (1 in the case of the voiceProcessor role)
indicates the minimum number of MBeans that can exist for this role. The
maxDegree value (10 in the case of the voiceProcessor role) indicates the maxi-
mum number of MBeans that can exist for this role. The last parameter to the
constructor is the description of the role. With the RoleInfo objects in hand, you
can create the RelationType object.

268

CHAPTER 11
Working with the relation service

Creating the RelationType object
Listing 11.6 shows the createRelationTypes () method from the RelationMain
class. Its responsibility is to take the RoleInfo objects you just created and create

a RelationType object to register in the relation service found in the JMxBook-
Agent class.

Listing 11.6 The createRelationTypes() method from the RelationMain class

public void createRelationTypes(RoleInfo[] roleInfoArray)
{
try
{
Object[] params = new Object[2];
params[0] = "myRelationType";
params[1l] = roleInfoArray;
String[] signature = new String[2];
signature[0] = "java.lang.String";
try {
signature[l] = (roleInfoArray.getClass()) .getName();
}
catch (Exception exc)
{
throw exc;
}

client.invoke (relationServiceName, "createRelationType",
params, signature);
}
catch (Exception e)
{
System.out.println("Error Creating the RelationType");
e.printStackTrace();

}

This method creates a relation type with an array of RoleInfo objects provided as
a parameter. After creating an instance of RelationType, the method registers it
in the relation service found in the agent connected by the client object (remem-
ber that the client object is a global instance of the RmiConnectorClient from
the RelationMain class).

The parameters needed to create a relation type in the relation service are
the name of the relation type and the array of RoleInfo objects. This method
uses a global objectName to find the relation service on the JMxBookAgent and
invoke its createRelationType () method, passing in the name and RoleInfo

11.3.3

Constructing the MBean relationship 269

array for the new type. If the relation type name already exists in the relation
service, an exception will be thrown indicating what happened. In this case, the
relation type is named myRelationType.

Creating the role objects

Once the relation type is added to the relation service, you can successfully cre-
ate a Relation object that represents an instance of that type. In order to create a
Relation instance, you must be able to specify the roles that participate in the
relation. Using the role information as a template, let’s define the roles.

Remember from the previous section that you have three roles for this exam-
ple: VoiceProcessor, FaxProcessor, and callRouter. Just like the RelationType,
you will need an array of Role objects in order to create the Relation instance.
You will create your role array list in the method shown in listing 11.7. This
method is also taken from the RelationMain class.

Listing 11.7 The createRoles() method from the RelationMain class

public void createRoles ()

{

ArrayList voiceRoleValue = new ArrayList();
ArrayList faxRoleValue = new ArrayList();
ArrayList routingTableRoleValue = new ArraylList();
try

{

voiceRoleValue.add(new

ObjectName ("JMXBookAgent :name=phoneCard, slot=1"));
voiceRoleValue.add(new

ObjectName ("JMXBookAgent :name=phoneCard, slot=2"));
Role voiceProcessorRole = new Role ("VoiceProcessor",

voiceRoleValue) ;

faxRoleValue.add (
new ObjectName ("JMXBookAgent :name=faxCard"));

Role faxProcessorRole =
new Role ("FaxProcessor", faxRoleValue);

routingTableRoleValue.add(new ObjectName (
"JMXBookAgent :name=routingTable"));

Role routingTableRole = new Role ("CallRouter",
routingTableRoleValue) ;

rolelList.add(voiceProcessorRole);
rolelList.add (faxProcessorRole);
roleList.add (routingTableRole);

270

11.3.4

CHAPTER 11
Working with the relation service

}

catch (Exception e)

{
System.out.println ("Error Creating Roles");
e.printStackTrace();

}

The role class’s constructor takes a role name and a role value that is a list of
ObjectName instances that reference the MBeans belonging to this role. The array
list of 0bjectName instances must match the names allowed by the roleInfo
objects you created earlier with the same name. Note that the voiceProcessor role
has two phonecard MBeans (the role could contain up to 10) and that the other
two roles contain a single objectName. This arrangement matches the roleInfo
classes created earlier. Once the roles are created, you add each of the roles to a
list to be used when you create your Relation object.

Creating the Relation MBean

Up to this point, you have modeled all the scenario devices with MBeans and
created a RelationType and Role instances. Now it is time to create the Relation
object. As mentioned earlier in the chapter, relations can be either internal or
external. You're creating an external relation, so you must create a relation
MBean. A relation MBean implements the RelationSupportMBean interface and
represents the actual relationship between existing MBeans participating as roles.
External relations are useful because they can perform operations on their role
values (the participating MBeans). The relation MBean will associate the roles
and expose methods that work on those associations.

The relationsupport class provides methods that the relation service will use
to validate the relation against its relation type. You will see this process shortly.

The ct1RelationMBean interface is as follows:

package jmxbook.chll;

import javax.management.*;
import javax.management.relation.*;

public interface CtlRelationMBean extends RelationSupportMBean

{
public void disablePhoneCard (int cardNum)throws MBeanException;
public void disableFaxCard()throws MBeanException;

}

Constructing the MBean relationship 271

This interface defines two methods that will be exposed in the external relation.
The first method disables the phone card, and the second method disables the
fax card. Invoking these methods will cause the relation MBean to look up the
device MBean (phone or fax) and disable it. The relation MBean will also update
the routing table by using the RoutingTable MBean. Notice the use of the Rela-
tionSupportMBean interface, which exposes certain operations so that the relation
service can access the roles of the relation represented by this MBean. The rela-
tion service needs access to this information so that it can validate relations rep-
resented by this MBean. Listing 11.8 shows the MBean implementation.

Listing 11.8 CtlIRelation.java

package jmxbook.chll;

import javax.management.*;
import javax.management.relation.*;
import java.util.*;

public class CtlRelation extends RelationSupport
implements CtlRelationMBean, MBeanRegistration

private MBeanServer server = null;

public CtlRelation(String relationId,
ObjectName relationServiceName,
String relationTypeName,
RolelList rolelList)
throws InvalidRoleValueException, IllegalArgumentException

super (relationId, relationServiceName, Set up MBean in
relationTypeName, rolelList); constructor
}

public void disablePhoneCard(int cardNum)
throws MBeanException

System.out.println ("Relation MBean::Disabling Phone Card");
try
{
ObjectName phoneCardName = new ObjectName (
"JMXBookAgent :name=phoneCard, slot="+cardNum) ;
ObjectName routingTableName = new ObjectName (
"JMXBookAgent :name=routingTable") ;

server.invoke (phoneCardName, "disable", null, null);

Object[] params = new Object[l];
params[0] = new Integer (cardNum) ; di blP:ﬁ?:mirt
String[] sig = new String[1]; isablePhoneCard()

sig[0] = "java.lang.Integer"; method v

272

CHAPTER 11
Working with the relation service

server.invoke (routingTableName, "removePhoneRoute", JAN
params, sig);

}

catch (Exception e) /0
{

System.out.println("Relation MBean::Error Removing "
+" Phone Card:"+e);
throw new MBeanException (e);

}

public void disableFaxCard() throws MBeanException
{
System.out.println("Relation MBean::Disabling Fax Card");
try
{
ObjectName faxCardName = new ObjectName (
"JMXBookAgent :name=faxCard") ;
ObjectName routingTableName = new ObjectName (
"JMXBookAgent :name=routingTable") ;

server.invoke (faxCardName, "disable", null, null);

server.invoke (routingTableName, "removeFaxRoute", null, null);
}
catch (Exception e)
{

System.out.println("Relation MBean::"

+ "Error Removing Fax Card:"+e);
throw new MBeanException (e);

}

public ObjectName preRegister (MBeanServer server,
ObjectName name)
throws Exception

this.server = server;
return name;

@ The ctirelation class is the MBean class in the scenario description that allows
the user to disable device cards and update the routing table in a single step. It
extends the RelationSupport class in order to provide an implementation for the
RelationSupportMBean interface extended by the ct1RelationMBean interface. The
RelationSupport methods provide a mechanism for the relation service to vali-
date this external relation against its relation type.

Constructing the MBean relationship 273

The constructor of this MBean requires the parameters needed to call the
constructor of its super class. The constructor requires an id for the relation, the
relation service’s ObjectName value, the name of the relation type, and a role list.
The id for the relation must be a unique value that identifies the relation within
the relation service. The relation type name corresponds to the name of the rela-
tion type, which describes the constraints for this relation. The roles that partic-
ipate in this relation are contained within the role list passed to the constructor.
The role objects will be validated against the rRoleInfo objects once this relation
is added to the relation service.

® Notice that this MBean implements the MBeanRegistration interface in order to
get a handle on the MBean server that contains it. This implementation allows
the MBean to interact with the MBeans participating as roles in the relation. This
MBean needs to contact a particular PhoneCard or FaxCard MBean and the Rout-
ingTable MBean.

The first method exposed for the user is disablePhoneCard (). In this method
and the disableFaxCard () method, the ct1Relation MBean contacts the correct
participating MBean in order to disable a particular device and update the rout-
ing table. The disablePhoneCard () method takes an Integer as a parameter in
order to look up the appropriate Phonecard MBean.

11.3.5 Adding the relation service to the JMXBookAgent class

Now that all the code is written to instantiate the Relation, you need to add the
relation service to your JMxBookAgent before you can execute your test. Listing 11.9
is a method added to the JMxBookagent class definition that will be invoked by
the JMxBookAgent constructor. You will need to modify the constructor to invoke
the new method.

public void createRelationService()
{

ObjectName relationServiceName = null;

try
{
relationServiceName = new ObjectName (
"JMXBookAgent :name=relationService");

Object[] params = new Object[1l];
params[0] = new Boolean (true);
String[] signature = new String[l];
signature[0] = "boolean";

274 CHAPTER 11
Working with the relation service

server.createMBean ("javax.management.relation."
+"RelationService",
relationServiceName,
params,
signature) ;
}
catch (Exception e)
{
System.out.println ("Error Creating the Relation"
+ " Service MBean");
e.printStackTrace();

}

You create the relation service by registering the rRelationservice MBean (javax.
management .relation.RelationService) with the JMxBookAgent. The MBean con-
structor takes a single argument, a boolean, which indicates whether the service
should immediately purge a relation that has become invalid due to an invalid
Role. Remember, a relation is invalid when a participating MBean of the relation
is removed from the agent. If you set this value to true, whenever the relation
service notices that an MBean associated with a relation has been unregistered, it
will also remove the MBean reference from the role values. If the role is no
longer valid according to the cardinality of the roleInfo, the relation will also be
removed. If you set this boolean value to false, the relation will be purged only if
the purgeRelations () method is called on the RelationService MBean.

11.3.6 Adding a new relation to the relation service

You have created all the necessary MBeans and set up the services to start a rela-
tion. The final step is to instantiate an instance of the ctlrelation MBean and
add it to the relation service (as well as register it in the agent). Listing 11.10 cre-
ates the relation by using the addrelation () method of the rRelationservice
MBean. Again, the listing is from the rRelationMain class that will execute the
entire example.

public void createRelation|()
{
System.out.println ("\n>>> CREATE EXTERNAL RELATION of "
+ " type myRelationType");
try
{

//register the relation MBean

Constructing the MBean relationship 275

ObjectName relationMBeanName = new ObjectName (
"JMXBookAgent : type=RelationMBean") ;

Object[] params = new Object[4];

params[0] = "RelationIdl";

params[l] = relationServiceName;

params[2] = "myRelationType";

params[3] = rolelList;

String[] sig = new String[4];

sig[0] = "java.lang.String";

sig[l] = relationServiceName.getClass () .getName () ;
sig[2] = "java.lang.String";

sig[3] = rolelList.getClass () .getName () ;

Create relation
client.createMBean ("jmxbook.chll.CtlRelation", MBean
relationMBeanName, params, sig);

//add the new relation

params = new Object[1l];

sig = new String[l];

params[0] = relationMBeanName ;

sig[0] = "javax.management.ObjectName";

Invoke
client.invoke(relationServiceName, "addRelation", k/!) addeaﬁonO

params, sig); method of

) MBeanServer

catch (Exception e)

{
System.out.println ("Could not create the relation");
e.printStackTrace () ;

@ The first thing you do in this method is instantiate the ct1Relation MBean and
add it to the JMxBookAgent. You pass the arguments to use in its constructor to
the createMBean () method of the client object. Remember that you must pass it
a relation unique id, the relation service objectName value, and the list of role
objects participating in the relation.

® The addrelation() method in the relation service can throw exceptions for sev-
eral reasons. If the relation service is not registered or a role does not exist in the
relation type, an exception will be thrown. If the id chosen is already used by
another relation, or if the relation type does not exist in the relation service, an
exception will occur.
The relation service will do validity checks when the relation is added to
ensure that the multiplicity for the roles matches that defined in the roleInfo

276

11.3.7

CHAPTER 11
Working with the relation service

objects. In addition, it will ensure that the MBeans referenced in the roles are the
expected ones, and that they exist in the MBean server. The relation service will
also ensure that the same role name is not used for two different roles. If any of
these criteria are not met, the service will throw an exception when you attempt
to add the relation to the service.

The RelationMain main() method

The last listing from the RelationMain class is its main () method. The rRelation-
Main class now contains methods to create the relation type, role information,
and roles, and also to create the relation service within a running JMxBookAgent.
The main () method coordinates the steps in the correct order. Listing 11.11 shows
the main () method.

Listing 11.11 Class definition and main() method from RelationMain

package jmxbook.chll;

import jmxbook.ch3.RMIClientFactory;
import java.util.*;

import java.io.*;

import java.net.*;

import com.sun.jdmk.comm.*;

import javax.management.*;

import javax.management.relation.*;

public class RelationMain

{

ObjectName relationServiceName = null;
Role voiceProcessorRole = null;
Role faxProcessorRole = null;
Rolelist rolelList = new RolelList();
RmiConnectorClient client = null;

public RelationMain ()
{
client = RMIClientFactory.getClient ();
try
{
relationServiceName=new
ObjectName ("JMXBookAgent :name=relationService");
}
catch (Exception e)
{
e.printStackTrace();
System.exit (0);

Running the example 277

public static void main(String[] args)
{

System.out.println ("\n>>> START of Relation Service example");
RelationMain example = new RelationMain () ;

example.createMBeans () ;
RoleInfo[] roleInfo = example.createRoleInfoArray();
example.createRoles () ;
example.createRelationTypes (roleInfo);
example.createRelation () ;

System.exit (0);
}
}

11.4 Running the example

11.4.1

11.4.2

You need to perform two tasks to complete the example: run the JvxBookagent
class and the RelationMain class. To run both, execute the following commands
in this order:

java jmxbook.ch3.JMXBookAgent
java jmxbook.chll.RelationMain

With the agent still running, and having executed the RelationMain class, it is
time to examine what has occurred.

Viewing the MBeans

The easiest way to see if the MBeans are registered in the agent is to connect to the
agent using the HTML adapter. You should see something similar to figure 11.5
when you connect to the agent using the URL http://localhost:9092. If you don’t
see the correct MBeans, go back and verify all the MBean creation code. Also
check your agent for exceptions. (To review how to use the HTML adapter, see
chapter 2, where it is described in detail.)

Notice that MBeans now exist for the fax card, two phone cards, and the rout-
ing table. Also present are the relation service MBean and the ctlRelation
MBean (under the object name “type=RelationMBean”). Click on your relation
MBean and view its available methods.

Viewing exposed methods

After clicking on the correct link, you should see the screens shown in figures 11.6
and 11.7.

http://localhost:9092
http://localhost:9092
http://localhost:9092

278 CHAPTER 11
Working with the relation service

Ageml View
Fltr b sbiperd s

T e e b ooa e b Tl Real gy
T e - oot T T i s

List o raguiared SiHe me by dommm

u TP s [

= B0 et
= L

Py Figure 11.5
Agent View presented by
- el the JMXBookAgent’s
o HTML adapter
Willeam View DA M|

u Nl M THECE g b= i a0
= MBew- Aol -] O e

Pt gl o v sl
Bk S e A [P | b |

R st

B T e LN -

ksl B, it

N T Senanna Vs
. ! ol e e
Alblsirs o gy i, B cla B i I ey e g i mmi
e FESpee] S
P Mt o DM
I Sl el e
LR e LI FE = My L iy m-ﬂ.-—-:r-'\r.'-'-rl’#um-'.
S el M e Crd k=S e e 1
Brbmedil P ST I T 4
i e 1 B e | e s B 1 il
Bl v o0 i S LR R L L= ALY o B Y Wl e LY
B T 1w] el i D
By g en Pk WD S M Saperiad
L, -4}
Thr ot W B s e s

e o el T wd

| pem et |

- -

Figure 11.6 The top half of the MBean View for the Ct 1Relation MBean

Running the example 279

The first half of the screen, shown in figure 11.6, lists the attributes of the MBean.
Notice the section labeled ReferencedMBeans. There is a RoutingTable MBean
with the role name CallRouter, a FaxCard MBean with the role FaxProcessor, and
two PhoneCard MBeans with the role voiceProcessor.

These values match those you defined in your code. Now let’s look at opera-
tions that are exposed for the MBean. Scrolling down the screen, you'll expose
the list of operations for the MBean as shown in figure 11.7.

You can see your two methods exposed for disabling card devices: the dis-
ableFaxCard () method and the disablePhoneCard () method.

For a test, let’s disable the phone card in slot 2.

11.4.3 Disabling a phone card

To disable the phone card in slot 2, you invoke the disablePhoneCard() method
and pass in the number 2. Your relation MBean will disable the phone card and

BBer o WF e it wlaps

— PR T i rw s Figure 11.7
PR The bottom
half of the
MBean View
from the
CtlRelation
prtun | | kg v T MBean

280

11.5

CHAPTER 11
Working with the relation service

remove it from the routing table. You should see the success message shown in
figure 11.8.

The web browser indicates that the phone card was disabled successfully. If it
was not successfully disabled, you would see an exception notice returned. In
addition to the web browser output, you should see the standard output from the
JMXBookAgent similar to that in figure 11.9.

Notice that the first line of output is from the relation MBean; it reports that
it is disabling a phone card. The next output line comes from the phonecard
MBean itself; it indicates that it is the phone card in slot 2 and that it’s being dis-
abled. Finally, the report from the rRoutingTable MBean indicates that the route
for phone card 2 is being removed from the table.

Summary

This chapter introduced you to the relation service. The relation service provides
a mechanism to conceptually relate MBeans. You can create relations modeled as
MBeans to provide a way of working with MBeans as a group. Doing so increases
the flexibility and usability of your management system.

If a user can collect a series of MBeans together in a logical unit and can oper-
ate on that logical unit, the management system can be developed to behave in a

di=ablePhone “ard successfol

Figure 11.8

Web browser view of
disabling phone card 2
via the relation MBean

ket Rawdy 1 . i Figure 11.9

Ealatdion ulewn; ;Digabling Frone Card Agent standard output

b ot B, == e E o o A ting table of disabling phone card
- 2 via the relation MBean

Summary 281

tashion that more readily models a real-world scenario. Typically, operators like
to work at a logical level that closely resembles the business model they under-
stand, as opposed to being required to have intimate knowledge of the internal
implementation of the individual components. The relation MBean provides
that capability.

Chapter 12 discusses the two remaining agent services: the monitoring and
timer services.

More agent services:
monitors and timers

m Examining the monitoring services provided
by JMX

m [ntroducing the JMX timer service

m Extending the monitoring service to correct
application faults

283

284

12.1

CHAPTER 12
More agent services: monitors and timers

In the previous two chapters, we covered two important agent services: the rela-
tion service and the M-let service. This chapter continues coverage of agent ser-
vices by examining the remaining two services: monitoring services and the
timer service. Monitoring services are a valuable resource when you want to be
informed of a state or behavioral change in a managed resource. The standard
JMX monitors can observe MBean attributes and emit notifications when neces-
sary to inform other objects or processes of a change. JMX-compliant agents pro-
vide three types of monitors, built as MBeans, which can monitor string and
numeric MBean attributes.

In addition to the monitoring services, compliant agents provide a timer ser-
vice. The JMX timer service allows users to send user-defined notifications at a
given time, or at given intervals.

A robust management environment needs to be able to monitor itself and
communicate with interested observers about its health, behavior, and important
statistics. Using these last two agent services will increase the usefulness of your
JMX environments. This chapter discusses all three JMX monitoring MBeans
and the timer service. We’ll examine their classes and purpose, and present some
examples. Up first are the monitoring services.

Monitoring MBean attributes with JMX

JMX-compliant agents provide a set of Standard MBeans that together are con-
sidered the JMX monitoring services. Because these monitors are implemented
as MBeans, users can instantiate and change them at runtime as needed. The
monitored targets of these monitoring MBeans are other MBean attributes.
Monitoring MBeans watch MBean attributes for predefined events and send
notifications based on their own configuration. You can use these monitors to
keep informed about state changes, workflow completions, or error messages.

For example, you can monitor something as critical as an MBean managing a
real-time application’s state, or as simple as a log file being rolled over. J]MX mon-
itors watch MBean attributes (the observed value) at user-configurable intervals
(the granularity period). Each monitor creates a value called a derived gauge based
on its observations of the observed MBean attribute, which it uses to determine
whether to send and what type of notifications to send to its listeners.

Table 12.1 describes the three monitor types along with their main classes.
You can see from the monitor classnames that we will be examining classes in a
new package, javax.management .monitor. Based on the remaining information in
table 12.1, you probably have more questions. However, before we move on to

12.1.1

Monitoring MBean attributes with JMX 285

Table 12.1 The three JMX monitor types

Monitor type Classname Description
String javax.management .monitor.StringMonitor Monitors a st ring attribute
of an MBean
Gauge javax.management .monitor.GaugeMonitor Monitors MBean attributes of

type Float or Double that
can move within a set range of
values (increasing or decreas-
ing)

Counter javax.management .monitor.CounterMonitor Monitors MBean attributes of
type Byte, Integer, Short,
or Long that act as incremen-
tal counters

the specifics and examples of each monitor, we need to examine two things they
all have in common: their super class and notification class.

The monitoring foundation

All JMX monitor MBeans have a common monitor base class and emit notifica-
tion types contained in a common notification class. Before we examine each
specific monitor type, we need to discuss these two classes. The following section
covers the javax.management .monitor.Monitor class, which is the base class for all
the provided JMX monitors.

The Monitor class

As already mentioned, this Monitor class (javax.management .monitor package) 1S
the base class for JMX monitor MBeans. It defines common methods that all
monitors need to function properly. In addition, it is defined as an MBean,
allowing subclasses to interact with the MBean server to monitor observed
MBean attributes.

The Monitor class also extends the NotificationBroadcasterSupport class
and implements the MBeanRegistration interface. This ensures that all subclasses
can emit notifications, and that they have a reference to the MBeanServer instance
to which they belong (the reference is gained from the preregister () method
invocation of the MBeanregistration interface; we discussed this interface in pre-
vious chapters).

However, the Monitor class is declared as an abstract class; therefore you must
extend it in order to use it. Let’s look at the methods of the class before we move

286

CHAPTER 12
More agent services: monitors and timers

forward. Table 12.2 lists its available methods. Notice that the table leaves out
the methods implemented from the MBeanRegistration interface.

Table 12.2 The methods defined by the javax.management .monitor.Monitor class. This
class is the base class for all JMX monitor MBeans.

Method

Description

long getGranularityPeriod()

Returns the observation interval of this monitor.

String getObservedAttribute ()

Returns the name of the observed attribute.

ObjectName getObservedObject ()

Returns the object name of the observed MBean.

boolean isActive()

Determines if this monitor has been started.

void setGranularityPeriod(long
period)

Sets the observation interval of this monitor.

void setObservedAttribute (
String name)

Sets the name of the attribute that will be monitored
from the given MBean (set in the next method).

void setObservedObject (Object-—
Name name)

Sets the MBean that contains an attribute to observe.
Only the object name of the MBean is needed; the
monitor will interact with the MBean server to get the
attribute value when set.

abstract start ()

Starts observation of the set attribute.

abstract stop()

Stops observation of the set attribute.

All these methods are declared in the javax.management .monitor.MonitorMBean
interface. Because this class implements its own MBean interface, it would be a
Standard MBean if it were not an abstract class. (For more information about
Standard MBeans, look back at chapter 4.)

Notice that two of the methods are undefined (declared abstract): stop () and
start (). These two methods are implemented by subclasses, allowing each sub-
class to determine how the MBean monitors its observed value. As you might
expect, these methods correspond to starting and stopping the monitor.

We should highlight two methods from this class: setObservedobject () and
setObservedattribute (). The first method tells the monitor which MBean in the
MBean server to observe. You need only pass it an object name—it will use this
object name value, combined with the attribute name set by the setobservedat-
tribute () method, to find the value of an MBean attribute. It does so at every
monitoring interval (granularity period).

Also note that each monitor subclass provided by JMX monitors an attribute
of a particular type, such as string or bouble. However, the monitor MBeans do

Monitoring MBean attributes with JMX 287

not validate the type of the attribute, only the type of the value returned from
the getattribute () method of the MBean server. In essence, this process lets
you monitor an attribute whose value type is determined by its getter method
(and possibly is different from the attribute’s declared type).

The MonitorNotification class
Now let’s examine the notification class used by all monitors: javax.manage-
ment .monitor.MonitorNotification. This section will describe the notification
class and some of the common notification types it contains. Sections discussing
a specific monitor MBean will add any further notification types as they pertain
to the particular monitor MBean. All of the notification types are presented as
class member variables in the common notification class, but we will cover each
type only as we need to. If you need to refresh your knowledge of the JMX notifi-
cation mechanism, please look back at chapter 6.

The MonitorNotification class extends the basic javax.management .Notifi-
cation class and therefore inherits the basic notification methods. In addition, it
defines four more methods:

® public Object getDerivedGauge ()—Returns the value computed from the
monitor’s last observation from the observed MBean attribute

®m public String getObservedAttribute ()—Returns the name of the observed
MBean attribute

®m public ObjectName getObservedObject ()—Returns the Object name of the
observed MBean

® public Object getTrigger ()—Returns the value (of the observed attribute)
that triggered this notification to be sent

Remember that instances of this class are sent from monitors based on certain
observed events (which are configured in the specific monitor)—that is why these
methods are declared in this class. These methods give the listener much of the
information it needs to make informed decisions. The last piece of information a
listener would need from a notification is its notification type.

Recall that a notification type is a dot-separated String value that indicates the
purpose of a notification. Each monitor MBean uses its own specific notification
types, but the MonitorNotification class provides four types that are shared across
all monitor MBeans. The MonitorNotification class also declares some public
static final class members to denote the type values. Table 12.3 lists the types,
along with their class members and short descriptions of when they should occur.

288

12.1.2

CHAPTER 12
More agent services: monitors and timers

Table 12.3 Notification types that are common across all monitor MBeans, and the class members
that represent them in the MonitorNotification class.

Notification type Public static final class member Description
jmx .moni-— OBSERVED_ATTRIBUTE_ERROR The attribute is not found in
tor.error.attribute the observed MBean.
jmx .moni-— OBSERVED_ATTRIBUTE_TYPE_ERROR | The attribute value type is not
tor.error.type correct.
jmx .moni- OBSERVED_OBJECT_ERROR The observed MBean cannot
tor.error.object be found.
jmx .moni- RUNTIME_ERROR A runtime error has occurred
tor.error.runtime during monitoring.

If you look at the API reference for the MonitorNotification class, you will see
more notification types than are listed in table 12.3. However, the remaining
types are common to a subset of the JMX monitor MBeans, so we’ll list them in
the appropriate section.

Now that we have covered the foundations of the monitor MBeans available
in all agents, it is time to look at the individual MBeans.

Monitoring String values

The first monitoring MBean we will discuss is the String monitor; which is repre-
sented by the class javax.management.monitor.StringMonitor. As mentioned in
the previous section, all monitor MBeans extend the base class Monitor—the
StringMonitor class is no exception.

This monitor type is the simplest of the three we will cover. A String monitor
is used to observe an MBean attribute with a String value. The monitor com-
pares the observed attribute with a preconfigured string pattern. This pattern is
an actual string value; no wildcards can be used. The monitor can gather two
events from its observed attribute:

» The observed string attribute matches the monitor’s pattern.

» The observed string does not match the monitor’s pattern.

However, even though the String monitor takes an observation at every observa-
tion interval, it may not observe an event. These two events are significant only if
the observed attribute’s value is different than the value from the previous obser-
vation interval. That means the monitor is interested only when the observed
attribute changes to a match or a mismatch (unless it is the first observation by
the monitor).

Monitoring MBean attributes with JMX 289

Remember that all monitors create a derived gauge value based on the value
of their observations. In the string monitor case, the derived gauge value is
always the value of the observed attribute.

Using the String monitor

You will develop a working example of this monitor after we discuss the remain-
ing two monitors. However, we will mention its important methods now. A
stringMonitor MBean’s behavior is based on three values configured by the user.
These values are configured by the invocation of the following methods:

m setStringToCompare(String)—Sets the internal string value to compare
with the observed attribute

B setNotifyDiffer(boolean)—Iells the monitor to send a notification when
the observed attribute changes to a non-matching value

m setNotifiyMatch(boolean)—TIells the monitor to send a notification when
the observed attribute changes to a matching value

After setting the monitor MBean’s stringToCompare attribute (and after config-
uring the observed MBean and attribute), you can invoke the monitor’s start ()
method to begin observations. Remember, the monitor will send notifications
(based on its configuration) only when the attribute transitions from a match to a
non-match or vice versa. It will not continuously send notifications if the value
always matches or always differs.

StringMonitor notifications
Based on the two events described in section 12.1.2, String monitors can send
two more notification types in addition to the common notification types
described in section 12.1.1. Recall that all monitors use the MonitorNotification
class for sending notifications.

The following two types could be sent from a stringMonitor MBean that’s
operating normally:

B jmx.monitor.string.matches—Indicates that the monitor’s observed attribute
has changed to a matching value

B jmx.monitor.string.differs—Indicates that the monitor’s observed attribute
has changed to a differing value

You will see an example of the String monitor shortly. The next section covers
the Gauge monitor MBean.

290 CHAPTER 12
More agent services: monitors and timers

12.1.3 Monitoring a value range

The GaugeMonitor class is said to cover a range of values because it is observing
an MBean attribute that could possibly cross a predefined threshold in the mon-
itor. In order to prevent a possible flood of notifications, the Gauge monitor
uses a range of values to cover the threshold. In this way, notifications won’t be
sent out when the observed attribute makes many small changes repeatedly over
the threshold.

You accomplish such monitoring by configuring a GaugeMonitor MBean with
a low threshold value and a high threshold value. The monitor sends notifica-
tions the first time the derived gauge (computed from the observed attribute
value) crosses the low or high threshold after crossing the opposite threshold
(unless it is the first occurrence of either).

For example, if the observed derived gauge crosses the high threshold, a noti-
fication is sent. If it then goes below the high threshold, and then rises above it
again, no notification is sent. The observed attribute must first decrease below
the low threshold (a notification could be sent for this event) and then cross the
high threshold again in order for another high-threshold notification to be sent.

Computing the derived gauge

The Gauge monitor can compute its derived gauge value two ways. First, the
derived gauge can be the value of the observed attribute at the current observa-
tion interval. Second, you can configure the GaugeMonitor MBean to compute its
derived gauge by comparing the last two values of the observed attribute. The
two values are stored from the last two observation intervals. Therefore, the
derived gauge value is equal to the observed attribute’s last observed value
minus the observed value from the previous interval:

Derived Gauge = value now - value before

If the GaugeMonitor MBean is in its first observation interval, the derived gauge
for the monitor is zero.

Using the Gauge monitor
Just like the String monitor, the Gauge monitor must be configured properly in
order to operate. Table 12.4 lists the methods that implement the features
described in the previous discussion of the Gauge monitor’s behavior.

Note that table 12.4 shows only setter methods for the GaugeMonitor MBean’s
exposed attributes. However, the class also defines getter methods for the same
attributes. For more information, look at the API reference for the GaugeMonitor class.

Monitoring MBean attributes with JMX 291

Table 12.4 The important methods of the GaugeMonitor class and their purpose. For each setter
method, there is a corresponding getter method.

Method Purpose
setThresholds (Number high, Sets the high and low threshold values for the monitor using
Number low) the java.lang.Number class
setDifferenceMode (boolean) If true, tells the MBean to compute its derived gauge using the

subtraction scenario already described

setNotifyHigh (boolean) Tells the monitor to send notifications when a high-threshold
event occurs

setNotifyLow(boolean) Tells the monitor to send notifications when a low-threshold
event occurs

Only two constraints exist on a GaugeMonitor MBean. First, the high and low
threshold values must be of the same type as the observed attribute’s value. Sec-
ond, the high threshold value must be greater than or equal to the low thresh-
old value. (Recall that Gauge monitors operate on Float and Double attribute
value types.)

GaugeMonitor notifications
In our discussion of the MonitorNotification class, we left out one common noti-
fication type defined by that class. Both the GaugeMonitor class and the following
CounterMonitor class can send notifications with the typ€ jmx.monitor.error.
threshold. However, this type has a different meaning for the two monitors. For
the Gauge monitor, it means that either the low or high threshold value is not
the same type as the observed attribute value. The Counter monitor is explained
in the next section.

In addition to the common notification type, the Gauge monitor can send out
two more notification types:

® jmx.monitor.gauge.high—Sent when the derived gauge has exceeded the
high threshold value

® jmx.monitor.gauge.low—Sent when the derived gauge has exceeded the
low threshold value

The following section discusses the final monitor MBean: the previously men-
tioned CounterMonitor.

292 CHAPTER 12
More agent services: monitors and timers

12.1.4 Monitoring a counted value

The final monitor MBean we’ll discuss is the counterMonitor MBean. The Coun-
terMonitor class defines an object that observes a numeric MBean attribute,
watching for it to exceed a threshold value. The observed attribute is assumed to
be positive and to have an increasing value (because it is a counter).

The observed counter attribute is allowed to have a maximum value that,
when reached, causes the counter to roll over to its starting position. In order for
the counter to roll over, the Counter monitor must know the maximum value,
which it stores as its modulus value.

The Counter monitor will send a notification each time the observed counter
crosses its threshold value. This does not mean a notification will be sent for
every observation interval where the counter is above the threshold—the
counter must go below the threshold after each notification in order to send
another notification.

The Counter monitor also supports an offset value that is added to the
threshold value when the observed counter exceeds the threshold. This offset
allows users to monitor a counter moving through increments. After the counter
has exceeded the threshold value, if the monitor contains an offset value, the
monitor will keep adding the offset value to the threshold value until it is greater
than the counter. If the monitor also contains a modulus value (the observed
counter’s maximum value before rollover), and if adding the offset value exceeds
the modulus, the threshold will reset to its original value.

Computing the derived gauge
Just like the previous monitor, the counterMonitor MBean can compute its
derived gauge two ways. The method it uses depends on the monitor’s configu-
ration by the user. If the monitor’s DifferenceMode attribute is true, then the
derived gauge is calculated like the GaugeMonitor MBean’s. That is, the monitor
subtracts the previous observed counter value from the current value. If the
result is negative, the monitor will then add the modulus value. Otherwise, if the
result is positive, it is the final value of the derived gauge.

If the pifferenceMode is false, the derived gauge value is simply the value of
the counter in the latest observation interval.

Using the Counter monitor

Table 12.5 lists the methods of the counterMonitor MBean class that support the
behavior described in the previous section. Like the previous tables, this one
doesn’t include the getter methods.

12.2

Monitor examples 293

Table 12.5 The important methods of the CounterMonitor class and their purpose. For each set-
ter method, there is a corresponding getter method.

Method Purpose

setDifferenceMode (boolean) Tells the monitor which method to use (see previous descrip-
tion) to compute its derived gauge

setModulus (Number) Sets the observed counter’'s maximum value

setNotify (boolean) Tells the MBean whether to send notifications

setOffset (Number) Sets the offset value of the monitor

setThreshold(Number) Sets the threshold value of the monitor for comparison to the

observed counter

The final aspect of the Counter monitor to discuss is its notification types.

CounterMonitor notifications

The counterMonitor class shares a common notification type with the GaugeMoni-
tor: the typ€ jmx.monitor.error.threshold. This type indicates that the moni-
tor’s threshold, offset, or modulus is not the same type as the observed counter
attribute value.

In addition to the common notification types, the CounterMonitor class adds
the notification typeé jmx.monitor.counter.threshold. This notification type
indicates that the observed counter attribute has reached or exceeded the moni-
tor’s threshold value.

Monitor examples

We have discussed each monitor MBean’s behavior and important methods and
examined the StringMonitor, GaugeMonitor, and CounterMonitor classes. Now it
is time to work through some examples.

To test these monitors, you need to create a subject MBean to monitor. You
will use the JMxBookagent class as your agent to contain your monitors and the
subject MBean. Your monitoring subject MBean will be called observableobject;
it implements the interface observableobjectMBean. The following section cre-
ates the MBean and the agent.

You will also create a simple startup program—the MonitoringSetup class—
that uses the RMI connector to create three monitors and to act as a notification
listener for each. In addition, the MonitoringSetup class will add the observable-
Object to the agent. After you create all the MBeans, you will use the HTML

294

12.2.1

CHAPTER 12
More agent services: monitors and timers

adapter to change the values of the target MBean in order to produce events in
the monitoring MBeans.

Creating the example agent and MBean

The first thing you need to do is make the observableobject MBean. Remember
that this MBean will be the target of all the monitor MBeans. Your MBean in this
case 1s a Standard MBean, because it will implement its own MBean interface.
This MBean is designed to be observable by all three types of JMX standard mon-
itors (String, Gauge, and Counter), so you will give it an attribute applicable to
all three types of monitors. Here is the MBean interface for the MBean:

package jmxbook.chl2;

public interface ObservableObjectMBean

{

public String getString();

public void setString(String value);
public Float getGauge();

public void setGauge(Float wvalue);
public Integer getCounter();

public void setCounter(Integer value);

}

As you can tell, this MBean will have three read/write attributes. Each attribute
corresponds to the particular type of monitor that will test it. The initial values
for these attributes will be set through the HTML adapter of the agent.

Listing 12.1 shows the implementing MBean class for the oObservableobject-
MBean. It is a simple class, so we won’t examine it too closely. It stores the
attributes passed to the setter methods and returns the attributes through the
getter methods.

package jmxbook.chl2;

public class ObservableObject implements ObservableObjectMBean
{

private Integer counter = null;
private Float gauge = null;
private String string = null;

public ObservableObject ()
{
counter = new Integer (
gauge = new Float (0

string "abc";

0
).

’

}

Monitor examples 295

public String getString()
{
return string;

}

public void setString(String value)

{
string = value;

}

public Float getGauge ()
{
return gauge;

}

public void setGauge(Float value)
{
gauge = value;

}

public Integer getCounter ()
{

return counter;

}

public void setCounter (Integer value)
{

counter = value;

All changes to the MBean’s attribute take place via the HTML adapter. Once you
have the agent created and running, you will alter the values of this target MBean
and watch the different types of notifications that are received from the monitors.

The next thing you need to do is write the Monitoringsetup class. Recall that
this class will register your target MBean and an MBean for each type of monitor
MBean. In addition, this simple program will remain active to act as a notifica-
tion listener to the monitors. Listing 12.2 shows the Monitoringsetup class.

Listing 12.2 MonitoringSetup.java

package jmxbook.chl2;

import jmxbook.ch3.*;

import javax.management.*;

import javax.management.monitor.*;
import com.sun.jdmk.comm.*;

public class MonitoringSetup implements NotificationListener

296 CHAPTER 12
More agent services: monitors and timers

public MonitoringSetup ()
{

try

{

RmiConnectorClient client = RMIClientFactory.getClient () ;

ObjectName sm = new ObjectName ("JMXBookAgent:name=string");
client.createMBean ("javax.management.monitor.StringMonitor",
sm) ;

client.addNotificationListener(sm, this, null, null);

ObjectName gm = new ObjectName ("JMXBookAgent:name=gauge") ;

client.createMBean ("javax.management.monitor.GaugeMonitor",
gm) ;
client.addNotificationListener(gm, this, null, null);
ObjectName cm = new ObjectName ("JMXBookAgent:name=counter");
client.createMBean ("javax.management.monitor.CounterMonitor",
cm) ;

client.addNotificationListener(cm, this, null, null);

ObjectName oo = new ObjectName ("JMXBookAgent:name=subject");
client.createMBean ("jmxbook.chl2.0ObservableObject", oo);

}
catch(Exception e)
{

ExceptionUtil.printException(e);

}

public void handleNotification(Notification not, Object obj)
{

String type = not.getType();

System.out.println(type);
}

public static void main(String args[])
{

MonitoringSetup setup = new MonitoringSetup () ;

This setup class registers all four MBeans exactly like the other setup classes you
have already examined. It does not contain any code that differs from what you
have seen, so we leave the examination for you.

After successfully starting the agent and running the Monitoringsetup class,
you need to open a web browser to http://localhost:9092. You should see the
Agent View page presented by the HTML adapter. In addition to the MBean-

http://localhost:9092
http://localhost:9092
http://localhost:9092

12.2.2

Monitor examples 297

serverDelegate MBean, you should see the observableobject MBean (the sub-
ject MBean) and the three monitor MBeans. If you do not see all the MBeans in
the Agent View, refresh the page after a few moments.

To test the monitors, you need to set a few attributes for each one so it can
observe your subject MBean. The following sections explain what you need to do.

Testing the String monitor

The stringMonitor MBean operates over the string attribute of the observable-
Object MBean. Table 12.6 lists the attributes of the stringMonitor MBean that
you need to set, along with the appropriate values.

Table 12.6 The attributes you need to configure in the StringMonitor MBean in order to monitor
the String attribute of the ObservableObject MBean.

Monitor attribute Value Description

NotifyDiffer true Tells the MBean to send notifications
when the observed attribute differs from
the monitor’s value

NotifyMatch true Tells the MBean to send notifications
when the observed attribute differs from
the monitor’s value

ObservedAttribute | String Name of the observed attribute from
the subject MBean

ObservedObject JMXBookAgent :name=subject | Object name of the subject MBean that
will be monitored by this String monitor

StringToCompare Abc The value the monitor will compare to
the observed attribute (you can pick any
value)

Select the stringMonitor in the HTML adapter and set the attributes as described in
table 12.6 (don’t forget to click the Apply button). After all the values are set, click
the Start button to invoke the start () method. To receive notifications from the
String monitor, set the string attribute of your subject MBean to match the value
set in the String monitor. You should see the following appear in the agent output:

jmx.monitor.string.matches

If you again return to the stringMonitor MBean View, you can see that the String
monitor’s derived gauge is equal to the value set in the subject MBean’s string
attribute. Now go back and change the string parameter of the subject MBean

298

12.2.3

CHAPTER 12
More agent services: monitors and timers

to a value different than the value in the String monitor. You should eventually
see the following notification type appear in the agent output:

jmx.monitor.string.differs

Play around with the different attributes of the String monitor before moving on
the next section, which discusses the GaugeMonitor MBean.

Testing the Gauge monitor

The GaugeMonitor MBean operates over the Gauge attribute of the Observableob-
ject MBean. Table 12.7 lists the attributes of the GaugeMonitor MBean that you
need to set, along with appropriate values.

Table 12.7 The attributes you need to configure in the GaugeMonitor MBean in order to monitor
the Gauge attribute of the ObservableObject MBean.

Monitor attribute Value Description

NotifyHigh true Tells the MBean to send a notification if
the observed attribute reaches or
exceeds the high threshold

NotifyLow true Tells the MBean to send a notification if
the observed attribute reaches or
moves below the low threshold

ObservedAttribute | Gauge Name of the observed attribute from
the subject MBean

ObservedObject JMXBookAgent :name=subject | Object name of the subject MBean that
will be monitored by this Gauge monitor

HighThreshold 4.1 High threshold value

LowThreshold 2.1 Low threshold value

You will test this monitor just like the previous MBean. Select the GaugeMonitor
in the HTML adapter and set the attributes as described in table 12.7, and then
invoke the start () method by clicking the Start button. Now go back to the
ObservableObject and set the Gauge attribute to a value above the high threshold
of the Gauge monitor. You should see the following appear in the agent output:

jmx .monitor.gauge.high

Once again, go back to the observableobject MBean and change the Gauge
attribute to a value below the low threshold value of the GaugeMonitor MBean.
The agent will receive the following notification type:

jmx .monitor.gauge.low

12.2.4

Monitor examples 299

Spend some time working with the Gauge monitor so you fully understand its
derived gauge value; you can see that value in the monitor’s MBean View. Then
move on to the following section, which discusses the Counter monitor.

Testing the Counter monitor

The counterMonitor MBean operates over the Counter attribute of the observ-
ableObject MBean. Table 12.8 lists the attributes of the counterMonitor MBean
that you need to set, along with appropriate values.

Table 12.8 The attributes you need to configure in the CounterMonitor MBean in order to moni-
tor the Counter attribute of the ObservableObject MBean.

Monitor attribute Value Description
Notify true Tells the MBean to send a notification if
the observed attribute reaches or exceeds
the threshold
ObservedAttribute | Counter Name of the observed attribute from the

subject MBean

ObservedObject JMXBookAgent :name=subject | Object name of the subject MBean that
will be monitored by this Gauge monitor

Threshold 3 Threshold value

Offset 3 Value of the offset that will be added to
the threshold each time the observed
attribute reaches or exceeds the threshold

DifferenceMode False Tells the monitor not to compute the
derived gauge as simply the value of the
observed attribute

Select the subject MBean again and set its Counter attribute to 4 (a value above
the threshold of the counterMonitor MBean). You should see the following notifi-
cation type in the agent output:

jmx .monitor.counter.threshold

After receiving this notification, go back and look at the MBean View of the counter-
Monitor MBean and notice that the threshold is now 6. The monitor has incre-
mented the threshold with the offset value. Every time the observed attribute
reaches or exceeds the threshold, the monitor increases the threshold with the offset.

With that last test, we have completed our coverage of the JMX monitoring
services. Because the monitoring services are considered a mandatory part of

300

12.3

CHAPTER 12
More agent services: monitors and timers

JMX agents as defined by the JMX specification, you can always use them with
your JMX applications. The next section discusses the final agent service defined
by the JMX specification that must be present in all JMX agents.

Taking corrective measures

Monitors are typically used to send alerts that inform listeners about critical
events, state changes, and so forth, so that other processes or users can take a par-
ticular action. In chapter 1, we stated that an ideal management environment
would be able to take corrective action on its own (and still inform its listeners
about the triggering event). One way to do this is to subclass a JMX monitor (or
use one) and, upon observing the triggering event, take appropriate action before
involving an outside process via a notification.

To demonstrate this idea, you will do something a little simpler. The correc-
tiveStringMonitor MBean subclasses the JMX stringMonitor MBean and adds
the functionality that if the observed attribute reaches the “differs” state, a partic-
ular method on a particular MBean will be invoked. This added functionality is
little more than you can accomplish by receiving the monitor notification and
executing a method, but it demonstrates how you can configure an MBean to take
some corrective measures before sending out an alerting notification to a user.

The following code is the correctiveStringMonitor MBean. It declares one
additional method that allows users to set the objectName value and method
name that should be invoked when the observed string differs:

package jmxbook.chl2;

import javax.management.*;
import javax.management.monitor.*;

public interface CorrectiveStringMonitorMBean extends
StringMonitorMBean
{
public void setExecutableMethodOnDiffer (
ObjectName name, String methodName) ;

}
Notice that the interface also extends the stringMonitorMBean interface. It does so
to ensure that the CorrectivestringMonitor MBean includes the management

interface of the stringMonitor MBean. Listing 12.3 shows the MBean class imple-
menting the interface.

Taking corrective measures 301

Listing 12.3 CorrectiveStringMonitorMBean.java

package jmxbook.chl2;

import javax.management.*;
import javax.management.monitor.*;

public class CorrectiveStringMonitor extends StringMonitor
implements CorrectiveStringMonitorMBean

private ObjectName executeName = null;
private String executeMethod = null;

public CorrectiveStringMonitor ()
{
super () ;

}

public void setExecutableMethodOnDiffer (
ObjectName name, String methodName)

this.executeName = name;
this.executeMethod = methodName;

}

public void sendNotification(Notification not)
{
if(not.getType () .equals (
MonitorNotification.STRING_TO_COMPARE_VALUE_DIFFERED))

try
{
server.invoke (executeName, executeMethod, null, null);
}
catch(Exception e)

{

Override
e.printStackTrace(); sendNotification()
} to take

} corrective step

super.sendNotification(not);

o The CorrectiveStringMonitor class overrides its parent’s sendNotification ()
method in order to watch for the string-differ notification. For this demonstra-
tion, this notification tells the MBean to take its corrective measure. When an
instance of the class notices a notification being sent of the differ type, it invokes

302

12.4

12.4.1

CHAPTER 12
More agent services: monitors and timers

the method on the MBean with the given objectName value. Notice that the class
uses the server MBeanServer reference from its parent.

This class may be overly simple, but it highlights the possibility of implement-
ing MBeans that can be preconfigured to take corrective steps when system errors
occur. By using JMX monitors to observe managed attributes, you can design
MBeans to reroute messaging, reconfigure services, or start new processes.

Sending dated notifications: the timer service

Now that we have discussed the JMX monitoring services, let’s switch gears and
cover the JMX timer service. The timer service is an MBean class available to
every JMX agent that emits user-defined notifications at specific times. Each
notification from the timer service contains a date and time when it should be
emitted. Alternatively, the timer service can continue to send a particular notifi-
cation at intervals once a date has been reached.

Other MBeans can use a service such as the timer to send notifications of any
type. For instance, if an MBean is not a NotificationBroadcaster, it cannot emit
notifications. However, by using the timer service, it can send notifications at will.
Such a scenario does not take into account the timing abilities of the timer, but it
shows a simple use of the service.

In this part of this chapter we will examine the classes in the javax.manage-
ment .timer package, including the Timer MBean and its notification class. You
will also create some examples showing the various features of the timer service.

Examining the timer

The first class we need to discuss 1s javax.management.timer.Timer. The Timer
class is a JMX class that defines a Standard MBean containing the JMX timer ser-
vice. Before we begin examining individual methods, you need to understand
more about how the timer works.

Timer behavior

As you read in the introductory section, the timer service is an MBean that emits
dated notifications once, or repeatedly at intervals. The timer service is given the
dated notifications by the user. Every notification emitted by a Timer MBean is
an instance of the class TimerNotification, but the notification type is user
defined. In this manner, many notification types are emitted by the service even
though they are all of the same Java type.

Sending dated notifications: the timer service 303

Users add notifications to the timer by invoking one of its addNotification ()
methods. (We will examine these methods more closely in a moment.) Through
these methods, a user configures the behavior of the timer surrounding a partic-
ular notification.

For example, you add a notification to the timer by specifying a notification
type, a message, user data, and a date. Apart from the normal notification data
(type, message, and user data) the date is the only behavior-controlling parame-
ter: it tells the timer to send a notification with the provided data on the pro-
vided date. In addition to the date, you can specify the following:

» Period—If specified, indicates that a notification is to be sent repeatedly.
This value supplies the timer with an interval in milliseconds between noti-
fication occurrences. If no period is given, the timer assumes that the noti-
fication should be sent only once.

m Number of occurrences—Tells the timer how many times to send a particular
notification once its date has been reached.

Each notification added to a Timer MBean should have a date later than the
current date (where date refers to date and time). If you add a notification with
an earlier date, one of three things will happen, depending on the configuration
supplied with the notification:

» If a period was specified for the notification, the timer will keep adding the
period to the notification date until the date is later than the current date.
When the date is corrected, the notification is added to the timer for sending.

» If a period and a number of occurrences were specified for the notifica-
tion, then the timer will add the period value to the date as many times as
the number of occurrences value will allow. Each time the period value is
added to the date, the number of occurrences is reduced by one. If the
number of occurrences is reduced to zero, and the date is still earlier than
the current date, an IllegalArgumentException is thrown.

® An IllegalArgumentException is thrown if no period was specified for the
notification. Without a period value, the timer cannot correct the date.

When a notification is finally added to the timer’s notification list, a unique id is
returned to the user. This id identifies the newly added notification and is sent
with each emitted occurrence of the notification. In addition, this id should be
used when retrieving information about a notification to be sent via the other
Timer methods. You will see this as we examine the methods of the Timer class.

304

CHAPTER 12
More agent services: monitors and timers

One last interesting part of the timer’s behavior is best described with an
example. You start and stop Timer MBeans the same way as monitor MBeans: by
using the start () and stop () methods. Imagine that you add many notifications
to a Timer MBean before you invoke its start () method, and some of the added
notifications’ dates have already been reached. You can configure the timer to
send all past notifications by setting its sendpastNotifications attribute to true.

If the timer’s SendPastNotifications attribute is true, all one-time notifica-
tions with a date before the current date are sent. The timer then sends all peri-
odic notifications that could not be sent by updating their dates with previously
described updating rules. If a periodic notification with an earlier date must be
sent, then it will be sent as many times as it would have been if it had a correct
date. The sendpastNotifications attribute only applies to notifications whose
time has come and passed before the timer was started. The timer will ignore
any notification added with a date earlier than the date when the addNotifica-
tion () method was invoked.

The Timer class

Now that you understand the Timer MBean’s behavior, let’s examine some of the
methods available in the Timer class. Rather than examine every method from
the Timer class, we've listed them in table 12.9. Most of the methods in the table
correspond to pieces of the behavior described in the previous section.

Table 12.9 The public methods of the Timer class

Method Description

Integer addNotification(String Adds a notification with the specified date. This notifi-
type, String message, Object user—| cation will be sent only once.
data, Date date)

Integer addNotification(String Adds a notification with the specified date and period.
type, String message, Object user— | This notification will be sent once every period after the
data, Date date, long period) start date.

Integer addNotification(String Same as the previous method, but the notification will

type, String message, Object user-| be sentonly nbOccurrences times.
data, Date date, long period, long

nbOccurrences)

Vector getAllNotificationIDs () Returns all the notification ids contained in the timer.
Date getDate(Integer id) Returns the date for the notification with the id specified.
Long getNbOccurrences Returns the number of occurrences for the notification

(Integer id) with the id specified.

12.5

Using the timer service 305

Table 12.9 The public methods of the Timer class (continued)

Method

Description

Vector getNotificationIDs (
type)

String

Returns the ids of all the notifications with the supplied
notification type.

String getNotificationMessage
(Integer id)

Returns the message for the notification with the id
specified.

String getNotificationType(Inte-

ger id)

Returns the type for the notification with the id specified.

Object getNotificationUserData
(Integer id)

Returns the user data for the notification with the id
specified.

Long getPeriod(Integer id)

Returns the period for the notification with the id specified.

boolean getSendPastNotifications ()

Returns the value of the SendPastNotifications
attribute.

void removeNotification(Integer Removes the notification with the id supplied.
id)
void removeNotifications(String Removes notifications with the specified notification

type)

type.

void setSendPastNotifications
(boolean value)

Sets the SendPastNotifications attribute.

void start ()

Starts the timer.

void stop ()

Stops the timer.

As you can tell, the timer service is a fairly simple concept, and we don’t need
to cover each method. The best way to get a better understanding of the timer
is to write an example. The following section presents an example of using the

timer service.

Using the timer service

To build a working example of the timer service, you will again use your Jux-
BookAgent class. Listing 12.4 shows a new method to add to the JMxBookagent
class. The startTimerService () method creates and registers a timer service for

your agent.

Listing 12.4 The startTimerService() of the JMXBookAgent class

protected void startTimerService ()

{

Timer timer = new Timer ();

306

CHAPTER 12
More agent services: monitors and timers

ObjectName timerName = null;
try
{
timerName =
new ObjectName ("JMXBookAgent:name=timer");

server.registerMBean(timer, timerName);
timer.setSendPastNotifications(true);

//start timer
timer.start ();

}

catch(Exception e)

{

ExceptionUtil.printException(e);

After creating and registering a Timer MBean, you set its sendPastNotifications
attribute to true. Recall that a true value for this attribute tells the MBean, once
started, to send any notification whose date has already passed. By setting it to
true, you are assured that your notifications will be sent. In addition to adding
this method, you need to import the javax.management.timer package and
invoke the method from the agent’s constructor.

Listing 12.5 shows the Timersetup class, which is used to test the newly added
timer service. This setup class adds an instance of the Timer MBean to your
agent. In addition, it adds two notification types to the Timer MBean.

Listing 12.5 TimerSetup.java

package jmxbook.chl2;

import jmxbook.ch3.*;
import javax.management.*;
import com.sun.jdmk.comm.*;
import java.util.*;

public class TimerSetup implements NotificationListener
{
public TimerSetup ()
{
try
{
RmiConnectorClient client = RMIClientFactory.getClient ();
ObjectName timerName = new ObjectName (
"JMXBookAgent :name=timer") ;

Using the timer service 307

Object[] args2

{ "chl2.timer.periodic", "message", "data",
new Date(), new Long(6000) };
String[] sig2 { "java.lang.String", "java.lang.String",
"java.lang.Object", "java.util.Date", "long" };

client.invoke(timerName, "addNotification", args2, sig2);

Object[] args3 { "chl2.timer.periodic20", "message", "data",
new Date (), new Long(2000), new Long(20) }s
String[] sig3 = { "java.lang.String", "java.lang.String",

"java.lang.Object", "java.util.Date",
"long"’ "long" };

client.invoke(timerName, "addNotification", args3, sig3);

client.addNotificationListener(timerName, this, null, null);
}
catch(Exception e)

{

ExceptionUtil.printException(e);

}

public void handleNotification(Notification not, Object obj)
{

String type = not.getType();

System.out.println(type);
}

public static void main(String args[])
{

TimerSetup setup = new TimerSetup();

You use two of the three overloaded addNotification () methods to add a notifi-
cation. You add a repeating notification to be sent every six seconds and a
repeating notification to be sent every two seconds with 20 occurrences. The
notification types are chl2.timer.periodic and chl2.timer.periodic20. All noti-
fications are added with the current date as their sending date.

12.5.1 Testing the timer service

After running the new JMxBookAgent and the Timersetup class, you should expect
something like the following for output:
chl2.timer.periodic20

chl2.timer.periodic
chl2.timer.periodic20

308

12.6

CHAPTER 12
More agent services: monitors and timers

chl2.timer.periodic20
chl2.timer.periodic
chl2.timer.periodic20
chl2.timer.periodic20
chl2.timer.periodic20
chl2.timer.periodic

This is just a sample of the generated output. The notification type ch12.timer.peri-
odic should print out every six seconds, and the ch12.timer.periodicl2 type should
print out 20 times, once every two seconds.

Summary

This chapter finished the agent services portion of the book by discussing the
monitoring and timer services that are present in all JMX-compliant agents. This
chapter showed how you can use the monitoring services to observe MBean
attributes with string and numeric value types. In addition, you can use the
monitors to send notifications based on the events generated from observing
their target MBean attributes. The chapter presented all three monitor types:
String, Gauge, and Counter. In addition, we presented an example that demon-
strates how you might use monitors to take corrective action upon observing a
certain condition in the watched MBean attribute.

The second half of the chapter examined the timer service. The timer service
allows you to emit custom notification types at predefined intervals. You can tell
the timer to send the dated notifications once, or to send them periodically after
their due date has been reached. In addition, if notifications have passed their
due dates before the timer has started, you can optionally ask the timer to send
all past-due notifications so that none are lost.

This chapter concludes the third part of the book. Part 4 of the book discusses
using JMX with Java J2EE.

Part 4

Using [MX with
the [2EE platform

Et 4 of this book presents some examples of using JMX with the J2EE plat-
form. As both JMX and J2EE are adopted by the developer community, you
will begin to see JMX used to manage and support enterprise applications.
Toward this end, we present two chapters in this part that discuss the Java
Message Service and Enterprise JavaBeans.

Chapter 13 begins the coverage by introducing using JMX with the Java
Message Service. This chapter examines a home theater system that com-
bines the two technologies. In this chapter, you use the Publish-Subscribe
mode of JMX combined with an MBean to provide macros for an automated
lighting system.

Chapter 14 uses JMX with Enterprise JavaBeans. In this chapter, you use
MBeans to provide visibility into the user login component of an application.
From a management console, you can disable a user’s account and retrieve the
number of login attempts.

Using JMX with the
Java Message Service

Introducing the Java Massage Service
Exploring ways to use JMX and JMS together
Creating a JMS subscriber MBean
Publishing a JMS message from an MBean

311

312

13.1

13.2

CHAPTER 13
Using JMX with the Java Message Service

In this chapter, you will combine JMX technology with the Java Message Service
(JMS). JMS is part of the J2EE platform and provides enterprise messaging for J2EE
applications. This chapter uses a simple example to show how you can add func-
tionality to JMS applications using MBeans. In addition, the example shows how
MBeans can give you a view into the messaging of a JMS application for diagnostics
and management.

The Java Message Service

Enterprise messaging is an essential tool for building enterprise applications. It
provides a standard way for applications to communicate in an asynchronous
tashion. JMS supports two models of messaging: Point-to-Point and Publish-
Subscribe. Point-to-Point messaging lets a sender send a message to a single
recipient, whereas Publish-Subscribe allows a sender to “broadcast” a message to
several recipients. In both cases, the message sender and message receiver behave
in an asynchronous manner, meaning that the receiver does not necessarily have
to be present when the message is sent.

In the Point-to-Point model, the message is queued for later consumption. In
Publish-Subscribe mode, a consumer can choose two different types of subscrip-
tion. A durable subscription ensures a consumer will receive all messages that are
published, because all published messages will be queued by the JMS provider
until retrieved. Alternatively, with a normal subscription, the subscriber must be
present and subscribed to receive published messages. In this chapter, we will use
Publish-Subscribe with a normal subscription.

In Publish-Subscribe mode, applications observe topics. A topic is the destina-
tion for a set of messages. JMS clients publish and/or subscribe to a particular
topic for message connectivity.

JMS implementations adhere to the interfaces defined in the J2EE platform.
When developing JMS applications, you write your code according to the inter-
faces. The only difference between JMS implementations is the way you deploy
your applications. (If you need more information about JMS, go to http://
www.javasoft.com.)

Combining JMX with JMS

Combining JMS and JMX opens many possibilities for Java applications. Using
JMS, you can transform your management system so that it acts as a driver for
your applications. It can also receive messages indicating the health of an

http://www.javasoft.com
http://www.javasoft.com

13.3

Driving a home theater system 313

application. With an application built using JMS in the Publish-Subscribe mode,
you can use JMX to build a management application that uses the messaging
capabilities in a non-intrusive manner.

For example, imagine that an integration workflow tool drives a set of applica-
tions in a sequenced manner by using JMS messaging to signal the start of the
next step in a workflow. If the tool uses the Publish-Subscribe method for driving
the workflow, you can create an MBean that subscribes to the messages sent out
by the tool. In this manner; you can monitor the status of the tool and workflow
without interfering or accessing it directly. An MBean used this way can acquire
knowledge of the internal operations of the workflow tool without your having to
write any special access code. The MBean can be a generic JMS subscriber, and
therefore can work with many different types of message-publishing applications.

In addition, you can rapidly construct a management application that takes
control of the workflow system for cases of debugging or testing. A management
application can start workflows directly from the management system, or even
change the operation of the workflow by publishing its own messages. JMS pro-
vides a convenient mechanism for you to integrate your management system
with other applications.

Driving a home theater system

To demonstrate how you can combine JMX with a JMS application, we will describe
an automated home theater system. Suppose you work for a company that devel-
ops home theater control applications. Your company is a value-added provider
of a lighting control system. The lighting control system uses JMS messaging to
drive components based on control commands received from a remote control.
The software that receives the lighting commands also allows macros to be defined.
Macro capability allows scenes to be defined and executed—for example, a “roman-
tic” macro might dim the lights and play soft music.

JMX is used not only to provide the macro capability, but also to provide man-
agement access into the home theater system. The application uses a controller
MBean that listens for all messages from the lighting system and publishes
device control messages that execute different functions that make up a macro.
These messages are published to a message bus using JMS. Figure 13.1 shows the
architecture for this application.

As you can see, the controller MBean will subscribe to control messages just
like the lighting control command processor. When receiving a particular message,
it will check to see if it has a macro defined for that message. If so, it will then

314

CHAPTER 13
Using JMX with the Java Message Service

] .
Lol
Errmorsl Carsl
L - P T
- e
i W e Ligfsl M Earaie
gl Sgraid Sagnial
Fros gy Tr @il Trmrniligy
i o L
i Lightey, T Thais [i JEX Agent
" Fucienl [LoTP— e .
frems [Er
. Wi
r Coimdindled
T -
L W
Fa Lgrasg
L= _
Ll]

Lig=ang Cantrel Sywtam

Figure 13.1 Lighting control system with JMX management application

publish messages that provide the added functionality. The lighting controller
does not even know the added functionality exists—the MBean is truly a non-
intrusive solution.

For this example, you want to add functionality to the system when the home-
owner sends the MOVIELIGHTSOn command. The MOVIELIGHTSOn message sets the
lights to a certain level, and also tells the controller MBean to publish a command
to lower the projection screen and turn on the surround-sound system. Similarly,
upon receipt of the MOVIELIGHTSOff command, the MBean raises the projection
screen and turns off the surround-sound system.

Based on figure 13.1, this example needs one MBean, a JMS subscriber; and a
JMS publisher. For debugging capabilities, the JMS subscriber will act as the IR
signal transmitter that sends the final messages to the appropriate devices. For
our purposes, this process will print the messages to standard out. The JMS pub-
lisher will send the control messages that simulate the IR signal processor that
forwards commands received from the remote control.

The MBean will listen for commands published to the message bus of the
lighting control system. Upon receipt of a recognized command, the MBean will
determine the appropriate macro to execute and issue the messages needed to
complete it. Not only will the MBean perform valuable functions in the home

13.3.1

Driving a home theater system 315

theater system, but it will also provide access into the system for outside manage-
ment tools.

Writing the example

For this example, you will use the JBoss open-source J2EE container as the pro-
vider for JMS. You will configure the JBoss environment after writing all the code.
For this JMS system, you need to configure two {opics for message publishing. The
system has one topic called controlMessages and another called deviceMessages.

The MBean will subscribe to the controlMessages topic in order to observe
lighting commands from the remote control. The debugging client (IR signal
transmitter) for the devices will subscribe to the deviceMessages topic. When the
MBean recognizes the MOVIELIGHTSOn control message, it will publish the sur-
roundon and ScreenDown messages to the deviceMessages tOpiC. Alternatively,
when the MBean sees the MOVIELIGHETSOff message, it will send the surroundoff
and screenUp device messages.

The following list shows the tasks you must complete to construct this example:

» Create the application’s MBean.

m Construct the IR signal transmitter (your debugger).

» Write the setup class to register the MBean in a JMX agent.
» Construct the IR signal processor (your publisher).

The next section begins the example by constructing the controller MBean.

Constructing the main controller MBean

The MBean for this application will listen to all messages published to the con-
trolMessages topic. It will make decisions based on the messages received and
publish messages to each device in order to complete a designated macro. In
addition, its management interface will provide direct access to its macros for a
management application. Listing 13.1 shows the interface for the MBean.

package jmxbook.chl3;

public interface JMSControllerMBean
{
public void turnOnHomeTheater () ;
public void turnOffHomeTheater();
}

316

CHAPTER 13
Using JMX with the Java Message Service

The two methods declared by this interface represent the two macros you have
defined for the MBean. The turnonHomeTheater () method makes the MBean
publish the messages that cause the sound system to activate and the projector
screen to drop. The turnoffHomeTheater () method sends the messages to deacti-
vate the sound system and raise the screen. These two methods grant manage-
ment applications the ability to invoke their macros without the use of messages
from the lighting application (remote control).

Listing 13.2 shows the class for the controller MBean. It implements the Jvx-
ControllerMBean interface as well as the MessageListener interface from the
javax. jmx package. The MessageListener interface declares the onMessage ()
method that is invoked when a message is sent to the topic to which the MBean
1s subscribed (controlMessages).

Listing 13.2 JMSController.java

package jmxbook.chl3;

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;

import javax.jms.TopicPublisher;
import javax.jms.TopicConnectionFactory;
import javax.jms.TopicConnection;
import javax.jms.TopicSession;
import javax.jms.TopicSubscriber;
import javax.jms.Topic;

import javax.jms.Message;

import javax.jms.TextMessage;
import javax.jms.Session;

import javax.jms.MessageListener;
import javax.jms.JMSException;

public class JMSController implements MessagelListener,

JMSControllerMBean
{

private TopicConnection topicConnection=null;
private TopicSession topicSession=null;
private TopicSubscriber topicSubscriber=null;
private Topic topic=null;
private TopicConnectionFactory topicFactory=null;
private int count_=0;
private Context context=null;

public JMSController () throws JMSException, NamingException
{
String factoryJNDI="TopicConnectionFactory";
String topicINDI="topic/controlMessages";

}

public void onMessage (Message m)

{

Driving a home theater system

// Get the initial context A
System.out.println ("Getting Initial Context:");
context = new InitialContext ();

System.out.println ("Got Initial Context:"+context);

// Get the connection factory
System.out.println ("Getting Topic Factory:");
topicFactory = (TopicConnectionFactory)

context.lookup (factoryJNDI) ;
System.out.println ("Got Topic Factory:"+topicFactory);

// Create the connection
topicConnection = topicFactory.createTopicConnection();

// Create the session
topicSession=topicConnection.createTopicSession (false,
Session.AUTO_ACKNOWLEDGE) ;

// Look up the destination
topic = (Topic)context.lookup (topicJINDI) ;

Create a
// Create a subscriber subscriber
topicSubscriber =
topicSession.createSubscriber (topic);

// Set the message listener,

// which is this class since we implement
// the MessageListener interface
topicSubscriber.setMessagelistener (this);

topicConnection.start ();

Topic topic=null;

TopicPublisher topicPublisher=null;

TopicSession sendTopicSession=null;

TextMessage message=null;

String msg=null;

String msg2=null;

try Process

{ message
msg = ((TextMessage)m) .getText ();

if(msg.equals ("MOVIELIGHTSOn"))
{
msg="SurroundOn";
msg2="ScreenDown";
publishMessages (msg,msg2) ;
}
else if(msg.equals ("MOVIELIGHTSOff"))
{
msg="SurroundOff";
msg2="ScreenUp"; v

317

318

CHAPTER 13
Using JMX with the Java Message Service

publishMessages (msg, msg2) ;
}

else
{
System.out.println ("This message is not handled" +
" Dby this MBean");
return;

}

catch (Exception ex)

{

System.err.println ("Could not handle message: " + ex);
ex.printStackTrace();

}

public void publishMessages (String msg, String msg2)
{

Topic topic=null;
TopicPublisher topicPublisher=null;
TopicSession sendTopicSession=null;
TextMessage message=null;
Post
try messages

{
System.out.println ("Will publish "+msg
+" Message to Device topic");
// Look up the destination
topic = (Topic)context.lookup ("/topic/deviceMessages");
System.out.println ("Found the deviceMessages Topic");
// Create a publisher
sendTopicSession = topicConnection.createTopicSession(
false, Session.AUTO_ACKNOWLEDGE) ;

topicPublisher = sendTopicSession.createPublisher (topic);

// Create a message
message = sendTopicSession.createTextMessage () ;
message.setText (msqg) ;
// Publish the message
topicPublisher.publish (topic, message);
System.out.println ("Published "+msg

+" to deviceMessages Topic");

// Create a message
message = sendTopicSession.createTextMessage () ;
message.setText (msg2) ;
// Publish the message
topicPublisher.publish (topic, message);
System.out.println ("Published "+msg2

+" to deviceMessages Topic");

Driving a home theater system 319

catch (Exception ex)

{
System.err.println ("Could not handle message: " + ex);
ex.printStackTrace () ;

}

public void close() throws JMSException {
topicSession.close();
topicConnection.close () ;

}

public void turnOnHomeTheater ()

{
System.out.println ("Turning On Home Theater Systen");
publishMessages ("SurroundOn", "ScreenDown") ;

} Expose
public void turnOffHomeTheater () macro
; methods
System.out.println ("Turning Off Home Theater System");
publishMessages ("SurroundOff", "ScreenUp") ;
}
}
|

@ In the constructor, the MBean attempts to subscribe to the controlMessages topic
in the JMS container. The first step to do this is to get the Java Naming and Direc-
tory Interface (JNDI) context in order to access the classes required to connect to
the JMS messaging provider. After getting a Context object, the MBean looks up
an instance of the TopicConnectionFactory class for the controlMessages tOpiC.
From the topic factory, the MBean creates a topic connection, which it uses to
create a TopicSession object. The session will allow the MBean to receive messages
on the topic in which it is interested. In this example, it is listening for MovIE-
LIGHTSOn and MOVIELIGHTSOff.

After it creates a topic session, the MBean looks up the actual Topic object using
its Context instance and JNDI name. After acquiring the Topic instance, the MBean
creates a TopicSubscriber from its TopicSession instance. The MBean tells the
subscriber which class to call back when JMS messages arrive. In this case, the class
to be called is the MBean itself. The MBean uses the setMessageListener () method
of the subscriber to indicate this. When messages arrive to the subscriber, it will
invoke the onMessages () method implemented from the MessageListener interface.

After the connections are established and the subscriber is configured, the
connection must be started using the start () method in order to have messages

320

CHAPTER 13
Using JMX with the Java Message Service

received. At this point, the MBean is ready to receive messages from the JMS
message bus.

The onMessage () method handles messages as they are published to the MBean.
Remember that this MBean is interested in only two messages. If either the MovIE-
LIGHTSOn Or MOVIELIGHTSOff message is received, the MBean will execute a macro.
If any other message is received, the MBean will print a message indicating that
it is not interested. To complete a macro, the MBean will invoke its publishMes-
sages () method, passing in the two messages to be sent.

The publishMessages () method uses the JMS bus to send device control messages.
In this method, the MBean looks up the topic in which it will publish messages.
After the topic lookup, it creates a topicPublisher so that it can publish the mes-
sage. After acquiring the topicPublisher, it needs to create a message to publish.
In this case, it will only be using a text message returned from a call to the Topic-
session object. Before publishing the message, it sets the value of the text mes-
sage using the setText () method. After it has the topic, message, and publisher,
it can publish the message. Using the publish() method in the topicPublisher,
the MBean publishes both messages to the deviceMessages topic.

Finally, the MBean implements the two methods exposed by its MBean interface.
These methods are directly accessible from the management system by connect-
ing the JMX agent containing the MBean. If you want to turn on or off the home
theater system, you can do so from a management application. These methods
will be useful for testing or diagnosing problems with the message bus.

Constructing the debugging device message listener

(the IR signal transmitter)

Now it is time to write the subscriber class that simulates the IR signal transmit-
ter. This class, shown in listing 13.3, subscribes to the deviceMessages topic and
prints to the screen when it receives messages. This class looks very similar to the
previous MBean class. It will be executed from the command line.

package jmxbook.chl3;

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;

import javax.jms.TopicPublisher;
import javax.jms.TopicConnectionFactory;
import javax.jms.TopicConnection;

Driving a home theater system

import javax.jms.TopicSession;

import javax.jms.TopicSubscriber;

import javax.jms.Topic;
import javax.jms.Message;

import javax.jms.TextMessage;

import javax.jms.Session;
import javax.jms.MessageListener;
import javax.jms.JMSException;

public class DebugSubscriber implements MessageListener

{

private TopicConnection
private TopicSession
private TopicSubscriber

topicConnection=null;
topicSession=null;
topicSubscriber=null;

private Topic topic=null;
private TopicConnectionFactory topicFactory=null;
private int count_=0;

private Context context=null;

public DebugSubscriber () throws JMSException, NamingException

{

String factoryJNDI="TopicConnectionFactory";
String topicINDI="topic/deviceMessages";

// Get the initial context

System.out.println ("Getting Initial Context:");
context = new InitialContext ();
System.out.println ("Got Initial Context:"+context);

// Get the connection factory
System.out.println ("Getting Topic Factory:");
topicFactory=(TopicConnectionFactory)

context.lookup (factoryJNDI) ;
System.out.println ("Got Topic Factory:"+topicFactory);

// Create the connection
topicConnection = topicFactory.createTopicConnection () ;

// Create the session
topicSession=topicConnection.createTopicSession (false,
Session.AUTO_ACKNOWLEDGE) ;

// Look up the destination
topic = (Topic)context.lookup (topicJINDI) ;

// Create a subscriber
topicSubscriber = topicSession.createSubscriber (topic);

// Set the message listener,

// which is this class since we implement
// the MessageListener interface
topicSubscriber.setMessagelListener (this);

System.out.println ("DeviceSubscriber subscribed to topic: "
+ topicJdNDI) ;

321

322 CHAPTER 13
Using JMX with the Java Message Service

// OBS! For the message listener to receive any messages

// the connection has to be started
topicConnection.start ();

}
public void onMessage (Message m) {

try {
String msg = ((TextMessage)m) .getText ();
System.out.println ("DeviceSubscriber got message:

}

catch (Exception ex) {
System.err.println ("Device Could not handle message:
ex.printStackTrace();

}

public void close() throws JMSException {
topicSession.close();
topicConnection.close () ;

}

public static void main(String[] args) {
DebugSubscriber subscriber=null;

try{
System.out.println ("Starting Debugging Subscriber");
subscriber=new DebugSubscriber () ;

}

catch (Exception e) {

+ msqg);

+ ex);

System.out.println ("Error Starting Device DebugClient");

e.printStackTrace();

This class operates similarly to the MBean you just wrote. It looks up a particular
topic, subscribes to it, and begins to listen for applicable messages. When a mes-
sage 1s received, the onMessage () method from the MessageListener interface is
invoked. If this class represented an actual device controller for the example, the
onMessage () method would contain the code for communicating the messages to
the appropriate devices. In this case, the method simply prints the message to
standard out. In addition, this class’s main () method creates an instance of the

class and prints an error if the subscription fails.

Driving a home theater system 323

Registering the MBean in the JMXBookAgent

Recall from previous chapters that you have created setup classes in order to
place MBeans into your JMxBookAgent agent. Listing 13.4 shows the Jussetup
class, which registers an instance of the JMscontroller MBean.

Listing 13.4 JMSSetup.java

package jmxbook.chl3;

import jmxbook.ch3.RMIClientFactory;
import java.util.*;

import java.io.*;

import java.net.*;

import com.sun.jdmk.comm.*;

import javax.management.Attribute;

import javax.management.ObjectName;

import javax.management.MBeanServer;

import javax.management.MBeanServerFactory;
import javax.management.MBeanInfo;

import javax.management.MBeanAttributeInfo;
import javax.management.MBeanConstructorInfo;
import javax.management.MBeanOperationInfo;
import javax.management.MBeanNotificationInfo;
import javax.management.MBeanParameterInfo;

import javax.management.MalformedObjectNameException;
import javax.management.MBeanException;

public class JMSSetup
{

private RmiConnectorClient client = null;

public JMSSetup ()

{
System.out.println ("\n\tCONNECT to the MBeanServer.");
client = RMIClientFactory.getClient ();
System.out.println ("\n\tGot RMI Client.");

}

public void createMBeans ()
{
try
{
System.out.println ("\n>>> REGISTERING JMS MBean");
//register the JMS Controller MBean
System.out.println ("\n>>> REGISTERING JMS Controller MBean");
ObjectName JMSBeanName=new ObjectName (
"JMXBookAgent :name=JMS_Controller_Bean");
client.createMBean ("jmxbook.chl3.JMSController",
JMSBeanName) ;

324

CHAPTER 13
Using JMX with the Java Message Service

catch (Exception e)
{
e.printStackTrace();
System.out.println ("Error Registering MBeans");

}

public void close()
{
client.disconnect ();

}

public static void main(String[] args)

{
System.out .println ("\N~~r~~~rrrss s ")
System.out.println ("\n>>> START of JMS MBean example");
JMSSetup agent = new JMSSetup ();
agent.createMBeans () ;
agent.close();

System.exit (0);

By this chapter, you have seen similar code many times. This class registers the
JMsController MBean in the agent by providing an objectName and the class-
name of the MBean.

Writing the MOVIELIGHTSOn and MOVIELIGHTSOff publisher

Now that you have written the MBean and subscriber code, you need a way to
publish the control commands to the JMS bus. The class in listing 13.5 publishes
three messages: MOVIELIGHTSOn, MOVIELIGHTSOf £, and doNOTHING. This class repre-
sents the IR signal process receiving commands from a remote control.

Listing 13.5 JMSPublisher.java

package jmxbook.chl3;

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;

import javax.jms.TopicConnectionFactory;
import javax.jms.TopicConnection;

import javax.jms.TopicSession;

import javax.jms.TopicPublisher;

import javax.jms.Topic;

import javax.jms.TextMessage;

Driving a home theater system

import javax.jms.Session;
import javax.jms.JMSException;

public class JMSPublisher

{

private TopicConnection topicConnection=null;
private TopicSession topicSession=null;
private TopicPublisher topicPublisher=null;
private Topic topic=null;

private TopicConnectionFactory topicFactory = null;

public JMSPublisher(String factoryJNDI, String topicJNDI)
throws JMSException, NamingException {
// Get the initial context
Context context = new InitialContext ();

// Get the connection factory
topicFactory=(TopicConnectionFactory)
context.lookup (factoryJNDI) ;

// Create the connection
topicConnection = topicFactory.createTopicConnection();

// Create the session
topicSession=topicConnection.createTopicSession (false,
Session.AUTO_ACKNOWLEDGE) ;

// Look up the destination
topic = (Topic)context.lookup (topicJINDI) ;

// Create a publisher
topicPublisher = topicSession.createPublisher (topic);

}

public void publish(String msg) throws JMSException {

// Create a message
TextMessage message = topicSession.createTextMessage () ;
message.setText (msqg) ;

// Publish the message
topicPublisher.publish (topic, message);

}

public void close() throws JMSException {
topicSession.close();
topicConnection.close () ;

}

public static void main(String[] args) {
JMSPublisher publisher=null;
try{
publisher= new JMSPublisher ("TopicConnectionFactory",
"topic/controlMessages");

String msg = "MOVIELIGHTSOn";

325

326

13.4

CHAPTER 13
Using JMX with the Java Message Service

System.out.println ("Publishing message: "+msgqg);

publisher.publish (msg) ;
try{Thread.sleep (2000); }catch (InterruptedException e) {}

msg = "MOVIELIGHTSOff";

System.out.println ("Publishing message: "+msg);

publisher.publish (msg) ;
try{Thread.sleep (2000); }catch (InterruptedException e) {}

msg = "doNothing";

System.out.println ("Publishing message: "+msg);

publisher.publish (msqg) ;

// Close down your publisher
publisher.close();

}
catch (Exception ex) {
System.err.println ("An exception occurred "
+ "while testing Publisher: " + ex);
ex.printStackTrace();

}

You will use this class to publish the control messages in which the MBean is
interested, allowing you to test the system. This class simulates the sending of
messages from the remote control of the home theater system. Looking at its
main () method, you can see that it publishes three messages. The first message is
MOVIELIGHTSOn; after sleeping for two seconds, the class publishes the MOVIE-
LIGHTSOff message. The third message it publishes is doNothing; the subscriber
MBean should print out a message indicating that it contains no macro for this
type of message.

Running the example

Now that you have built the MBean and other necessary classes, let’s run the
example. You will need to have the JBoss J2EE container running to provide the
JMS message bus. Additionally, you must start an instance of the JMxBookAgent
class. After running the agent, execute the setup class to register the MBean.
The following list shows the tasks you must perform to run the example:

» Start and configure the JBoss server.

m Start the agent and register the MBean.

» Run the debugger (IR signal transmitter).

m Publish the control messages (the IR signal processor).

13.4.1

Running the example 327

The first task to tackle is configuring the JBoss server.

Starting and configuring the JBoss server

Starting the JBoss server is simple. You can download the free JBoss server from
http://www.jboss.org (you should download version 2.4 to run the examples in
this book). After installing the server, go to the bin directory of the JBoss home
directory and execute the run.bat file. Doing so will produce several screens of
output to the JBoss console.

After the JBoss server has started, you need to set up the topics for the JMS
message bus. JBoss uses JMX as the backbone of its architecture. Therefore, you
can access the JBoss configuration using your web browser (most likely http:/
localhost:8082 will work) to contact the server’s HTML adapter. Figure 13.2
shows the main view page of the MBean server running in JBoss. Notice the sec-
tion under the heading JBossMQ. You can add topics by clicking on the ser-
vice=Server link.

te L8 e fpm e e =

B || ey .
Lirks ks Vbl by b | Colban Pl ot 2 Proaniomeny Lirky | DOk s e P @ D Ay @ [D1 a2 T nachobo i =

-

Bt

= . @ & 4 @4 ¥4 IS L 4 =B . & "

Fmman g (e Hen fawt Cpmsie sy = [frman

o T T ﬂ‘m

JHas

P |

M0

Figure 13.2 Main view of the JBoss JMX agent

http://www.jboss.org
http://localhost:8082
http://localhost:8082
http://localhost:8082

328

CHAPTER 13
Using JMX with the Java Message Service

[DB pe P Des b [«
. - o = = =
o N N~] = N R A

L TG T T T P —— T — ﬂ]

Lrin @) ok b i | Gl S0 'k | St Lk 08 Lo 'l P Dt e 016 e @ o ikl | O Sl e

=
=
wsoigprian of devisuy Jopar

rad wirogTapss |-u.'.-q,. g] |

[sirigpnas of dawapibaess

el i e |-un.-'.—r.u.-rq-.

I simigress o J1sd e T4

ropd| e Tag | | g Ty foordiie g
[t

[rwnrrupian ol cymad rijwese

rol ot II.IIJJ'\.‘ g |

[P, of e

r.llinllh'l

) D g —

Figure 13.3 Creating the controlMessages topic

Clicking on the service=Server link causes the screen in figure 13.3 to appear. On
this screen, you can add a new topic by clicking the createTopic button. You need
to create both the deviceMessages and controlMessages topics. Figure 13.3 shows
how you would create the controlMessages topic.

After you create both topics, you will notice a change on the main Agent
View. If you look under the JBossMQ) heading, you will see two new topics. Fig-
ure 13.4 shows the updated main page of the JBoss server, including the two
topics you created.

Your JBoss J2EE messaging provider is ready to handle the Publish-Subscribe
messaging you require.

Now that you have the JMS messaging operational and configured, you need
to run your own JMX agent. The JMxBookAgent process must include the JAR files
from the JBoss JMS provider in order to execute your examples.

Running the example 329

e [8 Yo=s P [jpep -
T E| 3 a & x| Ly o =, (a g
[[= P, = Semch Faoim iy [L= L& [avan

o] e T Vi 7PN x| e

Lrki] i b o | Gl P el) Dottt b | D ot el P | Db Sty)07 i | P Ml] Tomtitd b -

o i &l
JHaaulA)
. :
L]
o JCHK
:-] _!i—

Figure 13.4 JBoss Agent View after creating the message topics

13.4.2 Starting the agent and registering the MBean

This section defines the command scripts needed to set up your environment and
run the examples. However, before executing anything, you must create a resources
folder in the location where you plan to run the example. In the resources folder,
create a file called jndi.properties that contains the following items:
java.naming.factory.initial=org. jnp.interfaces.NamingContextFactory
java.naming. factory.url.pkgs=org.jnp.interfaces
java.naming.provider.url=localhost
Listing 13.6 shows a command script that adds the necessary JAR files to the
classpath of the JMxBookagent in order to support the JMS client. It will let you
connect to the JMS server running in the JBoss container. In addition to setting
the environment, the command script starts the JMX agent.

330 CHAPTER 13
Using JMX with the Java Message Service

Listing 13.6 runSubscriber.bat

@echo OFF

set CLIENT_CLASS_DIR=c:\JMXbook\build
set JNDI_RESOURCE_DIR=resources
set JBOSS_DIST=d:\JBoss-2.4.4

REM Required libs to run JMS client

set CLASSPATH=%JBOSS_DIST%\client\jbossmg-client.jar

set CLASSPATH=%CLASSPATHS%; $JBOSS_DIST%\client\jnp-client.jar

set CLASSPATH=%CLASSPATHS%; $JBOSS_DIST%\client\jta-specl_0_1.jar

set CLASSPATH=%CLASSPATH%; $JBOSS_DIST%\client\jboss-j2ee. jar

set CLASSPATH=%CLASSPATHS%; $JBOSS_DIST%\lib\ext\oswego-concurrent. jar
set CLASSPATH=%CLASSPATH%; $JBOSS_DIST%\client\log4j.jar

set CLASSPATH=%CLASSPATHS; $JMX_HOMES%\ jmx\1ib\ jmxri. jar

set CLASSPATH=%CLASSPATHS%; $JMX_HOMES%\ jmx\1ib\jmxtools. jar

set CLASSPATH=%CLASSPATHS%; $JMX_HOME%\contrib
\remoting\jar\Jjmx_remoting. jar

set CLASSPATH=%CLASSPATHS%; $JBOSS_DIST%\1lib\ext\jboss-j2ee.jar

set CLASSPATH=%CLASSPATHS%;% CLIENT_CLASS_DIR %$\build

REM Aggregated classpath
set CLASSPATH=%CLASSPATH%; $CLIENT_CLASS_DIR%; $JNDI_RESOURCE_DIRS%

echo "Running with classpath $CLASSPATHS"
$JAVA_HOMES$\bin\java -classpath $CLASSPATH% jmxbook.ch3.JMXBookAgent
|

In the previous listing (and the following), you should replace the variables
Jvx_HoME with the values for your specific environment.

Executing this script starts the agent with the proper JARs to enable your
MBean to subscribe and publish to the JMS message bus in the JBoss server. You
will notice a reference to the JAR files in the JBoss distribution. After running the
JMX agent, you need to register the MBean in the agent. The following com-
mand does this:

java jmxbook.chl3.JMSSetup

You should now have the JBoss J2EE application server running in one window
and JMxBookAgent in a second window. The MBean you wrote should be sub-
scribed to the topics in which it is interested. The output from your JMX agent
console will look like that shown in figure 13.5.

The JMS bus is operational, your agent is running your MBean, and the
MBean is subscribed to the control messages. The next thing you need to do is to
run the debugger subscriber that simulates the IR signal transmitter.

Running the example ‘ 331

-" “: JFIF

"‘-"1'1":.":'-"“':1'-;:!';'.'..':}’_"*;}'“‘11

e A
"ﬁ{:. "-\a:s;.“-“: R T e e D G

mep BTENT of Jhlewh bgevl
rkk CRENTE The agasr. ..

TRIATE tha SlamvEever.
Mgt bh Maiddly Far BEEidE, o
=:'|-I Imitial coacawt:
mlmﬁulﬂr I'I'\-!llll-'l- - Rt | |t I A e D

Figure 13.5 Output from your JMX agent, showing the MBean subscribed to a JMS topic.

13.4.3 Running the debugger subscriber

The IR signal transmitter simulator class is also started with a command script,
shown in listing 13.7. It sets up the classpath to include the JMS JARs from the
JBoss provider before starting the class process.

Listing 13.7 runDeviceDebug.bat

@echo OFF
set CLIENT_CLASS_DIR=c:\JMXbook\build

REM Directory where jndi.properties is located
set JNDI_RESOURCE_DIR=resources

set JBOSS_DIST=d:\JBoss-2.4.4

REM Required libs to run client

set CLASSPATH=%JBOSS_DIST%\client\jbossmg-
client.jar;$JBOSS_DIST%\client\jnp-client. jar

set CLASSPATH=%CLASSPATH%; $JBOSS_DIST%\client\jta-
specl_0_1.jar;%$JBOSS_DIST%\client\jboss-j2ee. jar

set CLASSPATH=%CLASSPATHS%; $JBOSS_DIST%\lib\ext\oswego—
concurrent. jar; $JBOSS_DIST%\client\log4j.jar

REM Aggregated classpath
set CLASSPATH=%CLASSPATHS%; $CLIENT_CLASS_DIR%; $JNDI_RESOURCE_DIRS%

echo "Running with classpath $CLASSPATHS"
$JAVA_HOME%\bin\java -classpath $CLASSPATHS
jmxbook.chl3.DebugSubscriber

332

13.4.4

CHAPTER 13
Using JMX with the Java Message Service

After executing this command script, you now have everything running for your
test application. In order to see things work, you need to publish control mes-
sages to the message bus. The next section describes the process of running the
JMsPublisher class that you built to publish control messages.

Publishing the control messages

Your publisher class will publish three messages to the message bus. The first two
messages drive your MBean functionality, and the third message causes your
MBean to print a message to the screen indicating that it is not interested in the
message. Listing 13.8 shows the command script required to run the publisher.
Again, notice the reference to the JMS JARs from the JBoss provider.

Listing 13.8 runPublisher.bat

@echo OFF

REM JMSPublisher class
set CLIENT_CLASS_DIR=c:\JMXbook\build

REM Directory where jndi.properties is located
set JNDI_RESOURCE_DIR=resources

set JBOSS_DIST=d:\JBoss-2.4.4

REM Required libs to run client

set CLASSPATH=%JBOSS_DIST%\client\jbossmg-

client.jar; $JBOSS_DIST%\client\jnp-client. jar

set CLASSPATH=%CLASSPATH%; $JBOSS_DIST%\client\jta-
specl_0_1.jar;%$JBOSS_DIST%\client\jboss-j2ee. jar

set CLASSPATH=%CLASSPATHS%; $JBOSS_DIST%\1lib\ext\oswego-
concurrent.jar; $JBOSS_DIST%\client\log4j.jar

REM Aggregated classpath
set CLASSPATH=%CLASSPATH%; $CLIENT_CLASS_DIR%; $JNDI_RESOURCE_DIR%

echo "Running with classpath $CLASSPATHS"
$JAVA_HOMES$\bin\java -classpath $CLASSPATH%
jmxbook.chl3.JMSPublisher

Congratulations—you just successfully integrated JMX with JMS.

13.5 Summary

This chapter presented the idea of integrating JMX MBeans into your Java Mes-
sage Service applications. Due to the non-intrusive nature of JMX, you can build
a window into your JMS applications using JMX MBeans. By writing MBeans that

Summary 333

can subscribe to JMS messages, you can listen to the activity of an operating JMS
application. These messages can provide a management application with statisti-
cal or health information about the JMS application.

More importantly, you can use MBeans to give management applications
direct access to the JMS message bus. Using MBeans, a management applica-
tion can send and receive JMS messages. With MBeans providing message
capabilities (sending and receiving), you can debug portions of your JMS appli-
cations; in addition, MBeans can become the drivers for certain workflows
within the application.

MBeans can also expose the methods of an object that are usually invoked in
response to JMS messages. By exposing these operations, you give a manage-
ment system the ability to directly invoke portions of the application without the
need to send a message. This technique can be useful for debugging, application
configuration, or handling special cases within the application.

The next chapter discusses another J2EE technology: Enterprise Java-
Beans. In chapter 14, we describe why and how to integrate MBeans into your
EJB applications.

Using JTMX with
Enterprise JavaBeans

m Exploring the benefits of using JMX with
Enterprise Java Beans

m Using JMX to manage user logins for systems
built with EJBs

m Managing the lifecycle of EJBs using JMX
MBeans in a workflow manager

335

336

CHAPTER 14
Using JMX with Enterprise JavaBeans

In the previous chapter, you learned about using JMX with the Java Message Ser-
vice (JMS), one of the components of the J2EE platform. In this chapter, you will
learn about using JMX with Enterprise JavaBeans (E]JB), a technology that enables
you to access and manipulate enterprise data.

When people speak of J2EE, Enterprise JavaBeans immediately come to mind,
because E]Bs are the most robust, scalable way to create enterprise applications.
However, like other applications, EJB applications can suffer from a lack of man-
agement and inability to be configured at runtime. Without additional custom
development, EJB applications often cannot easily provide a high level of obser-
vation and modification at runtime.

By combining JMX with your EJBs, you can provide a distributed, simple way to
gather information about, alter the behavior of, and monitor your enterprise appli-
cations. Using JMX, you can easily tap into the functionality of an EJB; in return for
a little additional work, you gain significant advantages. As in chapter 13, which
demonstrated this same advantage by using JMX with JMS, you can use JMX to
open a window into the enterprise application.

Note that this chapter won’t help you understand EJBs completely if you don’t
already have some exposure to them. For more information about EJBs, go to
http://www.javasoft.com.

14.1 An EJB review

14.1.1

As we just stated, this chapter isn’t an EJB tutorial. However, before diving into
working with EJBs and JMX, we do need to review a little information about EJBs.
If you have no experience with EJBs, we suggest you check out some of the docu-
mentation at http://www.javasoft.com.

The EJB model

As we’ve mentioned, EJBs are an ideal way for applications to access enterprise
data. The EJB specification defines a pattern for creating EJBs such that they can
be deployed in different containers without any code modification. The EJB con-
tainer provides services such as database persistence and an execution JVM. To
contain the EJBs in this chapter, you will again be using JBoss.

The EJB specification currently defines three types of E]JBs: session beans,
entity beans, and message-driven beans. Each type of EJB gives you different
capabilities for reading or manipulating data.

http://www.javasoft.com
http://www.javasoft.com
http://www.javasoft.com
http://www.javasoft.com

14.1.2

An EJB review 337

Session beans

A session bean exposes operations to the user. The session bean exists in mem-
ory until the client removes the bean or disconnects from the server, terminating
the session. A session bean can either be stateless or stateful. A stateless session
bean exposes service APIs without ever storing a state—many people equate the
exposed methods on this type of bean to using static methods. A stateful ses-
sion bean, as its name implies, stores a state temporarily during its execution.
However, even though it has a state, it is not persisted and is therefore discarded
when the bean is removed or the client terminates the connection.

Entity beans
An entity bean provides access to persistent enterprise data. The bean is mapped
to a row in a database table. For example, a purchase order management system
would typically use an entity bean to provide access to an individual purchase order.
Combining session beans with entity beans using common software patterns
provides a robust solution for accessing data. For example, a session bean could
expose an interface that would provide employee information. The session
bean could return an EmployeeInfo object that would be built from an Employee-
Address Object and an EmployeeSalary ObjeCt. The EmployeeAddress Object and
the Employeesalary object would be persistent entity beans. The session bean
would build the information object by combining the data that came from both
entity beans.

Message-driven beans

Message-driven beans are used to handle messages from JMS. These beans are
similar to stateless session beans in that they do not keep a client’s state and retain
no data between operations. Message-driven beans are used specifically to handle
JMS messages in an asynchronous matter to avoid tying up application resources.

Why combine JMX with EJBs?

Combining EJBs with a JMX management system provides a powerful way to
monitor data flow and manage an enterprise application. If your management
system has visibility into the enterprise business model, you can present data in a
fashion that might make certain decision processes simpler and more efficient.
You can build additional client access into your back-end EJBs, but doing so takes
time and additional resources for development and testing. By using JMX, you
can quickly instrument your EJBs in order to provide direct access to their func-
tionality and data.

338 CHAPTER 14
Using JMX with Enterprise JavaBeans

For example, suppose you have built an order management system using EJBs.
These beans provide the persistence layer and the access mechanism for manipu-
lating your purchase order data. If you wanted your important customers to
receive special treatment based on order size, you could tie MBeans into the E]Bs
that could introspect on the data and send alerts to a manager when the dollar
value of an order exceeded a particular level. Figure 14.1 illustrates this concept.

Such a system could ensure that large orders received the special treatment
they needed faster than a manual review process could provide. Using JMX, this
application would be quicker, simpler, and more manageable.

14.1.3 Accessing enterprise data with JMX
MBeans can get enterprise information two ways:

= An MBean can retrieve data directly from an EJB by invoking its access
methods.

= An MBean can receive data being pushed from EJBs.

=

ol i i 117
et Consnie
Bt PO O §1 55

----------------k----

Pt iriersg et

JBoss Enterprise Java Bean Containsr

Figure 14.1 MBeans accessing back-end EJBs

An EJB review 339

Suppose you have been hired to develop a point-of-sale system and a back-office
system that will allow visibility to data throughout the day. The store manager
may want to monitor the cash and credit sales on a particular cash register at a
given time of day, and this information needs to be presented on the manager’s
console upon request.

For this situation, you could develop MBeans that access the application
entity beans for each of the registers and display that information to the man-
ager. In this case, the MBeans retrieve the information directly from the entity
beans (see figure 14.2).

However, the manager would also like to know when the cash amount in the till
has reached a particular level, so he can remove the money and put it in the safe.
In this case, the entity bean can signal your MBean when the cash level is reached,
at which time the MBean will automatically signal the manager that the till needs
to be emptied. By pushing data to an MBean, the EJB can use the MBean’s ability
to send notifications to outside listeners.

i i 1!
ook

PO i

P i il

o T ey 8 - L
Figure 14.2

JBoss Erterprive Java Bean Container MBeans retrieving
data from an EJB

340

14.2

14.2.1

14.2.2

CHAPTER 14
Using JMX with Enterprise JavaBeans

Example: managing user logins

Now that we have discussed some ways of using JMX with Enterprise JavaBeans,
let’s develop some examples. A friend called us recently with the following inter-
esting dilemma, which can be resolved through the use of JMX.

The problem

Our friend was building an enterprise system that provided inventory tracking.
He was working with an EJB system that uses entity beans to work with the appli-
cation data. The E]Bs ran in a J2EE-compliant container, and he provided a UI via
a web browser. In addition, session beans provided the link between the user
interface and the entity beans.

To ensure that a user could not log in from two browsers simultaneously, our
friend needed a way to track the number of times a particular user attempted to
log in to the system. In addition, he wanted to be able to enable or disable the
login rights for a particular user. This capability lets an application administra-
tor manage the set of users that can log in to the application.

Our friend had decided to write additional functionality into the system to
create an administration application, but then did not have the time or desire to
do so.

The JMX solution

Combining MBeans with entity E]Bs can easily solve this problem. The next sev-
eral sections construct an example to solve our friend’s problem.

First, you will need to build an entity bean that tracks the number of logins
for a user and is capable of disabling or enabling the user’s account. Then, you
can build an MBean that uses the entity E]JB to retrieve the number of logins for
a user, or to disable and enable a user account. In essence, the MBean will expose
the entity bean’s business methods as a management interface.

From the management console (the web browser), our friend will then be able
to query user login attempts and get and set a user’s permissions.

NOTE To simplify this example, you will not build the persistence mechanism,
but will rely on the activate and passivate capabilities of the EJB contain-
er to persist your data. If you would like to learn more about building
persistence in E]Bs, begin by looking at some of the examples provided
in the JBoss server’s free distribution.

14.3

Developing the login monitor 341

- - 0
_;I £ = - L& .8 £ &
Logim Scrssm B
wser tiaene [—
ra]
Varsgeanl oo
T 1 B
Linar Losgin
S TR,
k|
Eglrrvr rmbae of logm:
- " '
LTEFgnli) Fracie T3 Abbis i fo Mkl Liasivals
Entity L
Ban
JBorss EAIer [orie Jusa Beean SO0k Figure 14.3
- AR et Combining an entity EJB
— with JMX MBean

Figure 14.3 shows how the pieces of our solution fit together.

The entity bean runs in the JBoss container and accepts login requests
from the UserLogin screen. Each time users successfully log in, their login count
is incremented.

An MBean running in a JMX agent can request the login count from the entity
bean and expose it in the management console. In addition, the MBean exposes
the operations of the EJB that enables and disables a user’s login permission.

Developing the login monitor

Now that we have explained the example, it is time to write some code. The fol-
lowing list shows all the tasks we will be discussing as you build the solution to
this problem:

» Creating the application’s entity bean
» Constructing the MBean
» Creating a client test class
After you complete these three tasks, we will move on to setting up the application

environment in JBoss and deploying the EJB. The first thing you need to do is
construct the entity bean that users will contact when logging in to the application.

342 CHAPTER 14
Using JMX with Enterprise JavaBeans

14.3.1 Constructing the user information entity bean

The single entity bean—the user information EJB—will provide the persistence
mechanism for the user data. Remember from the problem description that this
EJB counts the number of user logins and provides permissions for the user.
Every entity bean needs a primary key, which references the EJB’s row in the data-
base. For the user information EJB, the primary key is a user name value.

The home interface

Listing 14.1 is the home interface for the entity bean. The home interface declares
methods for creating and locating this type of EJB. (Again, for more information
about using and constructing E]Bs, go to http://www.javasoft.com.)

package jmxbook.chl4;

import javax.ejb.*;
import java.rmi.*;
import java.util.*;

public interface UserInfoHome extends EJBHome
{
public UserInfo create(String userName)
throws CreateException, RemoteException;
public UserInfo findByPrimaryKey(String userName)
throws FinderException, RemoteException;

The home interface provides a create () method for creating a new instance of
the EJB and a findByPrimaryKey () method for locating an existing instance.
Because the EJB’s primary key is a user name, it is passed in to both the create ()
and findByPrimaryKey () methods.

The remote interface

Listing 14.2 shows the remote interface for the entity bean. The remote interface
declares the methods an EJB client uses to interact with an entity bean. The EJB
create () and findByPrimaryKey () methods of the home interface return an
instance of the EJB’s remote interface. The remote interface declares the busi-
ness methods of the application.

http://www.javasoft.com.

Developing the login monitor ‘ 343

Listing 14.2 Userinfo.java

package jmxbook.chl4;

import java.rmi.*;
import javax.ejb.*;

public interface UserInfo extends EJBObject
{
public int getNumberOfLogins () throws RemoteException;
public boolean login() throws RemoteException;
public void logout () throws RemoteException;
public void setLoginAllowed(boolean isAllowed)
throws RemoteException;

The methods of a remote interface are used to manipulate the data represented
by the entity bean. Every EJB remote interface declares the methods that will
implement business logic. This remote interface declares a 1ogin () method and a
logout () method that are invoked when the user performs the applicable action.
The setLoginallowed() method sets the login permissions for the user. For this
example, the only permission for a user is whether the user can successfully log
in. Essentially, this method disables or enables the user’s account.

By writing the two interfaces for your EJB, you have declared the methods for
creating, finding, and manipulating the E]B.

UserinfoBean code

Listing 14.3 shows the entity bean implementation. This class must implement
all the methods necessary to adhere to the EJB specification, as well as the meth-
ods necessary for the business logic declared in the remote interface. Typically,
the entity bean implementation would provide the persistence mechanism; but
in this case, you will store the data in the object and rely on the container activa-
tion to maintain it in memory.

Listing 14.3 UserinfoBean.java

package jmxbook.chl4;

import java.io.*;

import java.sqgl.*;

import java.util.*;

import javax.ejb.*;

import javax.naming.*;
import javax.management.*;
import javax.sqgl.*;

344 CHAPTER 14
Using JMX with Enterprise JavaBeans

import java.rmi.*;

import jmxbook.ch3.RMIClientFactory;
import com.sun.jdmk.comm.*;

public class UserInfoBean implements EntityBean
{

private EntityContext ctx = null;

private String userName = null;

private int count=0;

private boolean loginIsAllowed=true;

public int getNumberOfLogins () { Retrieve
System.out.println ("Return Number Of Queries:"+count); |0ﬂn
return count; count
}
public boolean login()throws RemoteException{
if (!loginIsAllowed) {
System.out.println ("User does not have "
+ "permissions to login");
return false; Inc,rease
) login
this.count++; count
System.out.println ("User has successfully logged in");
return true;
}
public void logout () throws RemoteException{
System.out.println ("User has successfully logged out");
}
public void setLoginAllowed (boolean isAllowed) { Disable
this.loginIsAllowed=isAllowed; orenable
System.out.println("Setting login isAllowed:"+loginIsAllowed); user’s
} account

public void ejbLoad() {
System.out.println ("EJBLoad: :Loading New UserInfo Bean:");
}

public void ejbStore () {
System.out.println ("EJBStore::Storing UserInfo Bean:"+userName) ;

}

public String ejbCreate(String userName) throws CreateException({
System.out.println ("EJBCreate::Creating New UserInfo"
+ " Bean for:"+userName) ;
return userName;

}

public void ejbPostCreate(String userName)

{

System.out.println("Post create called");

Developing the login monitor 345

public void ejbRemove ()
{
System.out.println ("EJBCreate: :Removing New UserInfo Bean");

}

public String ejbFindByPrimaryKey(String userName)
throws FinderException, RemoteException

System.out.println ("find::Current Count:" + count++);
this.userName=userName;
return userName;

}

public void setEntityContext (EntityContext ctx)
{
this.ctx = ctx;

}

public void unsetEntityContext ()
{

this.ctx = null;

}

public void ejbActivate ()
{
System.out.println("Activate called:"+userName);

}

public void ejbPassivate ()
{

System.out.println("Passivate called");

You can see from the listing that the entity bean saves the number of logins for a
particular user. It also contains the permissions to log in (in this case, a boolean).

The 1ogin () method checks to see if the user has login permission and returns
that status to the calling program. It also increments the number of logins the
user has completed.

As stated earlier, the setLoginAllowed () method enables or disables a user’s
account, based on the value of the boolean input parameter.

The methods that appear after the setLoginallowed() method are required
by the EJB specification, but you don’t need to provide an implementation for
this example. All in all, the code for the entity bean is quite simple—it just con-
tains some information and behavior about the login process for an application.

That concludes the construction of the EJB. Now it is time to move on to the
construction of the MBean you will use to interact with the UserInfo EJB.

346 CHAPTER 14
Using JMX with Enterprise JavaBeans

14.3.2 Constructing the user information management MBean

By using an MBean to access the EJB, you have an elegant way to manage the login
process of particular users. The MBean will be able to disable and enable user
accounts, as well as retrieve information from the account.

The MBean interface
Listing 14.4 shows the MBean interface for the UserInfoMgr MBean class.

Listing 14.4 UserinfoMgrMBean.java

package jmxbook.chl4;
public interface UserInfoMgrMBean({

public int getQueryCount (String userName) ;
public void allowLogin(String userName,boolean isAllowed);

The MBean will expose two methods in its management:

® getQueryCount ()—Exposes a read-only attribute that stores the number of
successful logins for a particular user.

® allowLogin ()—Exposes an operation to enable or disable a user’s account.
This method takes a user name and a boolean (the boolean value indicates
the account status change).

UserinfoMgr MBean code

Listing 14.5 shows the MBean implementation class. This MBean is different
from others you have created in that it uses a main () method to register itself
into your JMxBookAgent class. In this chapter, you do not need a process to
receive any notification, so you don’t necessarily need a separate class to register
this MBean in the agent.

Listing 14.5 UserinfoMgr.java

package jmxbook.chl4;

import com.sun.jdmk.comm.*;
import javax.management.*;
import jmxbook.ch3.RMIClientFactory;

import javax.naming.*;
import java.util.Hashtable;
import javax.rmi.PortableRemoteObject;

Developing the login monitor

public class UserInfoMgr implements UserInfoMgrMBean({

public UserInfoMgr () {

}

public UserInfo getUserInfo(String userName) {

}

System.out.println ("Creating UserInfoMgr MBean");

int count=0;
UserInfo userInfo=null;

System.out.println ("Getting UserQueryInfo:");
System.setProperty ("java.naming.factory.initial",
"org.jnp.interfaces.NamingContextFactory");
System.setProperty ("java.naming.provider.url",
"localhost:1099");

try{
InitialContext jndiContext = new InitialContext ();
System.out.println ("Got context");
Object ref = jndiContext.lookup ("jmxbook/chl4d/UserInfo");
System.out.println ("Got reference");
UserInfoHome home = (UserInfoHome)

PortableRemoteObject.narrow (ref, UserInfoHome.class);
userInfo=home.findByPrimaryKey (userName) ;

}

catch (Exception e) {
. . Look up
System.out.println(e.toString()); HB
}

return userInfo;

public int getQueryCount (String userName) {

}

int count=0;
UserInfo userInfo=null;
tryf

userInfo=getUserInfo (userName) ;
count=userInfo.getNumberOfLogins () ;
System.out.println ("Number of Logins:"+count);

}

catch (Exception e) {
System.out.println(e.toString());

}

return count;

public void allowLogin(String userName, boolean isAllowed) {

UserInfo userInfo=null;

tryf
userInfo=getUserInfo (userName) ;
userInfo.setLoginAllowed (isAllowed) ;
System.out.println ("Set isLoginAllowed:"+isAllowed);

347

348

CHAPTER 14
Using JMX with Enterprise JavaBeans

}
catch (Exception e) {
System.out.println(e.toString());

}

public static void main(String[] args) {
System.out.println ("\n\tCONNECT to the MBeanServer.");
RmiConnectorClient client = RMIClientFactory.getClient ();
System.out.println ("\n\tGot RMI Client.");

try{
//register the JMX_MBean
Object[] params = new Object[0];
String[] sig = new String[0];
System.out.println ("\n>>> REGISTERING JMX MBean");

//register the JMX Controller MBean

System.out.println ("\n>>> REGISTERING JMX Controller MBean");

ObjectName JMXBeanName = new ObjectName (
"JMXBookAgent :name=EJB_UserInfo_Bean");
client.createMBean ("jmxbook.chl4.UserInfoMgr",
JMXBeanName) ;
client.disconnect ();

Register MBean with
) JMXBookAgent

catch (Exception e)
{
e.printStackTrace();
System.out.println ("Error Registering MBeans");

@ In order for the methods exposed in the MBean’s management interface to
accomplish their tasks, the MBean must be able to look up the EJB that represents
the user name and was passed in as a parameter. The getUserInfo() method
accepts a user name as an argument and returns a UserInfo EJB reference.
Remember from the entity bean implementation that the userInfo object is the
remote interface instance that contains the business methods of the entity bean.
The getUserInfo () method obtains a reference to the remote object using the
naming service from the application server containing the EJB. It then obtains
the entity bean for the particular user using the user name as the primary key.
Once you have the entity bean for a user, you can either get the number of suc-

cessful logins or modify the login permissions for that user.

Developing the login monitor 349

® The main() method for this MBean allows you to register the MBean with the
JMXBookAgent agent that you developed in chapter 3. You should recognize this
code: it’s identical to code used other times you've needed to register MBeans in
the agent.

14.3.3 Writing the user login client test class

Up to this point, you have completed the EJB and the MBean that will grant
management access to it. Now you need to develop a client class so that you can
simulate a login attempt from a user. The test class will need to locate the entity
bean and attempt to call its 1ogin () method. The test class will then print the
status of the login attempt to standard out. The UserLogin test class is shown in
listing 14.6.

Listing 14.6 UserlLogin.java

package jmxbook.chl4;

import javax.naming.*;
import java.util.Hashtable;
import javax.rmi.PortableRemoteObject;

public class UserLogin{

public static void main(String[] args)
{
System.setProperty ("java.naming. factory.initial",
"org.jnp.interfaces.NamingContextFactory");
System.setProperty ("java.naming.provider.url", "localhost:1099");

tryf
// Get a naming context
InitialContext jndiContext = new InitialContext ();
System.out.println ("Got context");

// Get a reference to the UserInfo Bean
Object ref = jndiContext.lookup ("jmxbook/chld/UserInfo");
System.out.println ("Got reference");

// Get a reference from this to the Bean's Home interface
UserInfoHome home = (UserInfoHome)
PortableRemoteObject.narrow (ref, UserInfoHome.class);

UserInfo userInfo=home.findByPrimaryKey (args[0]);

if (userInfo==null) {
System.out.println("No Existing userInfo Found:");
return;

}

else{
System.out.println("Existing userInfo Found:");

350

14.4

14.4.1

CHAPTER 14
Using JMX with Enterprise JavaBeans

boolean success=userInfo.login();
if (!success) {
System.out.println ("User Login not successful: Permission "
+ " denied");
}
else{
System.out.println("User Successfully Logged in");

}
}

catch (Exception e)
{

System.out.println(e.toString());
}

In this class, you locate the home interface reference to the user information EJB
from the Java Naming and Directory Interface (JNDI) service of the application
server containing the userInfo EJB. Once you have the home reference to the
EJB, you can locate the actual EJB object for the particular user using the find-
ByPrimaryKey () method. After acquiring a reference to the EJB, you can attempt
a login () and print the status of the attempt to the standard out.

The userLogin class is the last piece of code you need to write for this exam-
ple. In the next section, you'll run the Login Monitor as well as this test class.

Running the Login Monitor

You must have the JBoss J2EE container running to provide the EJB container
needed for this example. Additionally, you will need to start an instance of your
JMxBookAgent class. After running the agent, you must register the MBean.

The following list summarizes the activities in this section:

m Deploying the EJB class files in an application server
m Starting the JMxBookagent class and registering the MBean

» Running the UserLogin test class

Deploying your entity bean in the JBoss server

You already configured the JBoss server in chapter 13. If the server is not run-
ning, restart it. In order for the server to recognize your new EJB, you need to
create a deployment descriptor. (For more about deployment descriptors, see
http://www.javasoft.com.)

Running the Login Monitor 351

BN 0 ko - D bt 1 machacacli VeslePUSI T IMY

; —'_.""*:I Figure 14.4
) e Directory structure under the
1 ek build directory for deployment
i [i of the entity bean.

You need to create the following two XML files in a META-INF directory at the
same level as the jmxbook directory containing the class files from the example:

m ¢jb-jarxml—A standard deployment descriptor that defines the specifics of
the bean. Because it is independent of the container that is deploying the
EJB, it can be used with any container.

m jboss.xml—A JBoss-specific deployment descriptor that tells JBoss which
entity to deploy and how to deploy it

Your directory structure should look like that in figure 14.4.

Writing Ejb-jar.xml
Listing 14.7 shows the ejb-jar.xml file required to describe this entity bean.

Listing 14.7 The ejb-jar.xml entity bean description

<?xml version="1.0"?>

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise
JavaBeans 1.1//EN" "http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd">

<ejb-jar>
<display-name>JMXBook</display—-name>
<enterprise-beans>

<entity>
<description>Example MBean</description>
<ejb-name>UserInfoBean</ejb-name>
<home>jmxbook.chl4.UserInfoHome</home>
<remote>jmxbook.chl4.UserInfo</remote>
<ejb-class>jmxbook.chl4.UserInfoBean</ejb-class>

352

CHAPTER 14
Using JMX with Enterprise JavaBeans

<persistence-type>Bean</persistence-type>
<prim-key-class>java.lang.String</prim-key-class>
<reentrant>False</reentrant>

</entity>

</enterprise-beans>

<assembly-descriptor>
<container-transaction>
<method>
<ejb-name>UserInfoBean</ejb-name>
<method-name>*</method-name>
</method>
<trans-attribute>Required</trans—-attribute>
</container-transaction>
</assembly-descriptor>
</ejb-jar>

This XML file describes the entity bean and how it is to be deployed. A display
name for the bean is given along with a description and the actual name of the
bean. The home, remote, and EJB class names are listed in this XML.

Writing jboss.xml

Listing 14.8 shows the jboss.xml descriptor that is specific to the container you
are using.

Listing 14.8 The jboss.xml entity bean description

<?xml version="1.0" encoding="Cpl252"7?>

<jboss>
<secure>false</secure>
<container-configurations />
<resource-managers />
<enterprise-beans>
<entity>
<ejb-name>UserInfoBean</ejb-name>
<jndi-name>jmxbook/chl4/UserInfo</jndi-name>
<configuration-name></configuration-name>
</entity>
</enterprise-beans>
</jboss>

The format and tags in this file are specific to the JBoss container and provide
it with a description of the EJB to deploy. The file also contains some configu-
ration information such as the JNDI name and security information. (You can

Running the Login Monitor 353

find more information about the structure of the JBoss descriptors with the
JBoss documentation.)

Creating a JAR file
Now that you have the deployment descriptors ready, it is time to create the JAR
file for deployment into the container:

1 From the build directory that contains the class files and the XML files,
run the command jar -cvf chl4.jar.

2 Copy the JAR file to the deploy directory under the JBoss main directory.

Moving the JAR file to this location should automatically deploy the bean. The
output from the JBoss console should look like that in figure 14.5. The last two
lines in the figure indicate that the ch14.jar file was successfully deployed.

If you connect to the JMX server in the JBoss container, you should see that
your bean is deployed. Figure 14.6 should look similar to your console.

2 \'.Illﬂuw.-_.
Ind), W e n il el b O ety | DTt
|lﬂ:|.nu-n--.-1- W iy || L i
IR, B =GN Ty | Glwwiind'] il it Toiie"y "W RGN i iey Beiaasd Tl Jred PR e G e iy
IR B g A oy | L ted
IRFT , B gyt § !-'l.rlm-g
IR, B mealel)| $twtad
I, et vk) Lriat1 A
|H¢ S| Tratad
|Hu,u.i--.lmn-) P
I, daiete iyt | Wik ey Dk o2 ol b iy
e L e D v pepep o o o, il Doy | 1B
IRET) J-u'll:ll:lmlm-rl- dafte dap ey of T4 -r'-'tl'-'.'hn ool o e oy 11 B s
I D), EAR T | ooy) .l-11-l-|:-1|-'|-;| k] d-m-l.:-_. EAR ot o D T2 A 8 e o1 b e

W, ik | e it vkl e sl RFroe di " o -:ﬁ"ll-] EreETT 1rded gt inl L
Iniﬂl S J. FIN D DTy Losghdi T I o, Mieiell, Tiongeyi . Toageli b, L i L l.lil
Taabth, S| e et i Ty Tie P i dellig i N A el
G, J-vh\.i"-:-lm—- g e e N P Yk e e e v s T iy -'a-:
IHRT, IJ-I'[\-rr.llmrl Aty im0 dep oy B 'hl-r D e Tl o e D B hrml L
IR, ARt alata | Lowding Minervs Bomaeron ddapter for JO8C LT drives
BT, Easartalita)| Begunred |1cinen Trms et Lo chp loprmaert cheior i
htt e, W el Wt TTIAg coerlig proeTy Dv i

o DL A

stk M reenlrl | BT T e oy | Paed

P W el | Bt srittimg -cla-'rh:r ety e

TR, M mawrvalrl | Boand comsction Teciory Tor remercs sdapter Hiaeres 3080 Look] Trameection Bemaronkd e
o " e D el

[- T P R A RS P |

I, S l\.--\.-.r-; Tl iy

B, SRk i L do) Tl

i Illll:v—ﬂhr arvion] Fharting

e T e L Y

e Iiil M) tet 1

Iluiltl Bt Tfervion] Ml farics "Mall’ basmd 1o s nMail

imf, i T hige] fraeted

L] .l.-n-.u-ru-ﬂml_ Tl P st

WD D 1) Mgl ol 8 Plarted in Dmels,d

BET ool -rn-lln-r"l' sty daw ey of T oo o3 4, A by Sohl AL e

WD, ol Lo | Dawloy 208K aewlication: £ lanD e Ooes-2. 4. 4/ dm loychld, e

WD, Divlap o | Craats mel1orticn dhid, e

w0, Ml lcnde | 1A0tsl] KM enedils ol e

IO, ot | i Ty | B iy 0T 1 T 1, LI T e P e PR R
L T e, [) e P e

IR, K g | il A et bl | bl Pl L | Cathon g] oty istbepi | 3 LarLindl

D U Irfeliean | Dmitializing

WL U Trfolian | Imitialized

D, U Drrfolbeen | Tterting

b Devfodemn | £1 w1l

IO, ot | b e Ty | B Dbl g 11 S higwn 1 T T D 1= o g i | oy B A, e
|lﬂ;. L e B - T T T T T e I e e s I = e = P t';

Figure 14.5 Console output from the JBoss deployment step

354

14.4.2

CHAPTER 14
Using JMX with Enterprise JavaBeans

FEREE F F F F F B

JUA

¥ F F ¥ ¥ #

Sl mplevreral srm

5] e B T

Basrarity Figure 14.6
® i1 JBoss JMX console with
entity bean deployed

Notice under the Management portion of the console the presence of your user-
Info entity bean. The management console will let you destroy, stop, start, or ini-
tialize the entity bean. At this point you can experiment with the bean, if you like.

Registering with the agent

Now that the entity bean is deployed and running, you will start your agent from
chapter 3 and register the MBean that manages the entity bean data. Refer back to
chapter 3 if you need to refresh yourself about starting the JMxBookagent. Recall
that the MBean contains a main () method that registers an instance of the MBean
with the agent. Executing this class from a command line will register the MBean
in the agent:

java jmxbook.chl4.UserInfoMgr

After registering the MBean, connect to the JMxBookagent’s HIML adapter
using your web browser (http://localhost:9092). You should be able to see the
exposed methods of the MBean. Figure 14.7 shows the console output with the
methods for the MBean.

You should see the two methods of your MBean as indicated in the figure.
The first method, allowLogin (), takes a string username and a boolean parame-
ter. This method allows or denies the user login capabilities. The second

http://localhost:9092
http://localhost:9092
http://localhost:9092

14.4.3

Running the Login Monitor 355

[P r———

i ol ¥1Hsan soorilbo e

il

Lhie el Wi s i

wkd g

i g | ra lag

o = e AT EEeriE s o

el

Figure 14.7

Output from the agent
when the UserInfoMgr
MBean is registered

e

method, getQueryCount (), retrieves the number of logins for the user specified
by the username parameter.

Counting user login attempts

At this point, you are ready for your first test. To simulate an attempted user
login, you need to execute the UserLogin class. Every time you execute the class,
another attempt will be performed. The first login attempt for a user will create
the entity bean if it does not exist, and the login permissions will be set to true.
The number of logins will be set to 1 during the creation call. Figure 14.8 shows
the command line and output from the first execution of the UserLogin program.

D projectsjnxbooks java
not context

laot reference

Existing userInfo Found:
Uzer successfully Logged

D :wprojectsh jmcbook:java
aot context

ot reference

Existing userInfo Found:
Uzer Successfully Logged

D :.projectsyjmbooks java
a0t context

ot reference

Existing userInfo Found:
User Successfully Logged

D :.projects®,jm«books

¥% C:\WINNT\System32\cmd. exe

Jmbook. chid. UserlLogin mark

in

jmxbook. chid.Userlogin ben

in

jm<bock. chi4.UserLogin mark

it Figure 14.8
Console from the
UserLogin attempt

356

14.4.4

14.5

CHAPTER 14
Using JMX with Enterprise JavaBeans

:|'I11II|||'|.'.{'-|||||: Sspecess il

Figure 14.9
Output from the
MBean query for
the login count

When we tested this example, we ran several sample logins. We logged in using the
name “mark” and then logged in using the name “ben”. Finally, we logged in a
second time using the name “mark”. We assumed that if all went well, the login
count for Ben would be 1 and the login count for Mark would be 2.

Figure 14.9 shows the output from the JMX console when querying the
MBean for the login count for user mark. You can see that Mark has logged in
successfully twice.

You can see that the number of logins for user Mark is as expected. Now that
you have seen that you can track the number of logins per user, you will turn off
the login capabilities of user Ben.

Removing login privileges

Let’s assume that Ben has exceeded his allowed logins for the week, and you
wish to turn off his account for a while. Using the JMX management console, you
can deactivate his account by invoking the allowLogin () method and passing in
a boolean value of false. Figure 14.10 illustrates this process.

When you click the allowLogins button, you should see a success status page.
Now you can try to log in using the user name “ben”, and you should be denied.
Run the command to log in for Ben, and you will see that the status returned is
false. Also, if you look at the count of logins for Ben, you will see that it
remains at 1.

Example: managing EJBs

In the previous example, we showed you how to create an MBean to contact a
specific EJB to perform a specific task. To complete the example, you had to take
specific steps to create and register the MBean in a JMX agent. Now consider an
EJB that, when created, registers an MBean with a local MBean server contained
in the application server hosting the EJB container. The MBean would be specif-

14.5.1

Example: managing EJBs 357

MBean description:

Information on the management interface of the MMBean

List of MBean atiributes:

No Attributes

List of MBean operations:

Description of allowl ogin

void (java lang, Stringp aram Iben
(boolean)param1 © True

Ly

Description of getQuery(ount

mt getCueryCount | {javalang. String)param I

Figure 14.10 Disabling login capabilities for user Ben

ically designed to manage this EJB type and would contain all the information it
needs to find and interact with it.

When a situation arises where you need to access an attribute on the EJB, you
can look up its corresponding MBean. In addition, if each EJB type creates its
own type of MBean, you will have an accurate count of the number of E]Bs being
used. You want your MBean to exist only as long as the EJB exists. So, the EJB
will create and register its MBean upon creation. When the EJB is removed, it
will also remove its MBean. You can implement this feature by adding the appro-
priate code to the ejbLoad () and e jbbestroy () methods of the E]B.

Constructing the workflow entity bean

This example creates an entity bean like the one described in the previous sec-
tion. Recall that an entity bean is an EJB that is persistent and represents specific
data in a database. Imagine an application that provides business processes for
users. A business process in this case is a workflow that a user goes through to
accomplish a task. The following example creates a workflow EJB that acts as a
specific user’s current state in a workflow.

358

CHAPTER 14
Using JMX with Enterprise JavaBeans

This entity bean represents a row in a relational database table with two col-
umns: clientid and state. The EJB consists of its home interface, its remote inter-
face, and the main bean class, which are named workflowHome, Workflow, and
WorkflowBean, respectively.

The home interface
The following is workflow EJB’s home interface:

package jmxbook.chl4;

import javax.ejb.*;
import java.rmi.*;
import java.util.*;

public interface WorkflowHome extends EJBHome
{
public Workflow create(String clientID) throws CreateException,
RemoteException;
public Workflow findByPrimaryKey(String clientID)
throws FinderException,
RemoteException;
}
The EJB home interface enables clients to look up or create a WorkflowBean for
use. The home interface gives you one method for creating a workflowBean
instance and one method for looking up an existing instance. Both methods take
a string clientID as an argument. In our scenario, this parameter represents a
unique user ID for this particular workflow process.
The MBean that manages this E]JB will always use the lookup method rather
than the create method, because the EJB has to exist in order to create the MBean.

The remote interface

The following is the remote interface for the EJB:

package jmxbook.chl4;

import java.rmi.*;

import javax.ejb.*;

public interface Workflow extends EJBObject

{
public void advanceState () throws RemoteException;
public String getState () throws RemoteException;

public void setState(String state) throws RemoteException;

}

The EJB remote interface declares the methods that EJB uses to interact with the
bean. The advancestate () method tells the workflow EJB to move the workflow to
the next step in the overall process, the getstate () method returns the current

Example: managing EJBs 359

state of the workflow, and the setstate () method tells the workflow bean to jump
ahead to a certain state. Notice that the state value is represented by a string. The
MBean that the EJB creates will expose these methods as its management interface.

The WorkflowBean class

Listing 14.9 contains the code for the workflowBean class. It implements meth-
ods that correspond to both the home and remote interfaces (although it doesn’t
implement these interfaces). After discussing the code for the EJB, we will begin
examining the code for the MBean of this EJB.

Listing 14.9 WorkflowBean.java

package jmxbook.chl4;

import java.io.*;

import java.sql.*;

import java.util.*;

import javax.ejb.*;

import javax.naming.*;
import javax.sqgl.*;

import javax.management.*;

public class WorkflowBean implements EntityBean
{

private DataSource ds = null;

private EntityContext ctx = null;

private String clientID = null;

private int state = -1;

public void advanceState ()

{

state++;

}

public String getState ()

{ Implement
return state + ""; business
} methods

public void setState(String state)
{

this.state = Integer.parselInt(state);
}
public void ejbLoad() @ Load EJB
{
Connection conn = null;
PreparedStatement ps = null;
clientID = (String) ctx.getPrimaryKey () ;

try

360 CHAPTER 14
Using JMX with Enterprise JavaBeans

conn = getConnection();

ps = conn.prepareStatement ("select state from workflows " +
" where clientid = 2");

ps.setString(1, clientID);

ps.executeQuery () ;

ResultSet rs = ps.getResultSet();
if(rs.next ())
{

state = rs.getInt(1);

installEJBMBean () ;
}

else

{
throw new NoSuchEntityException("Could not find data");

}
catch (Exception e)

{

throw new EJBException(e);

}
finally

{

cleanup(conn, ps);

}

public void ejbStore ()
{

Connection conn = null;

PreparedStatement ps = null;
try
{
conn = getConnection();
ps =
conn.prepareStatement ("update workflows set state = ? " +

" where clientID = 2");
ps.setInt(1, state);
ps.setString(2, clientID);
ps.executeUpdate () ;

}
catch(Exception e)
{
throw new EJBException (e);
}
finally
{

cleanup(conn, ps);

Example: managing EJBs 361

public String ejbCreate(String clientID) throws CreateException

{

this.clientID = clientID;
Connection conn = null;
PreparedStatement ps = null;

try
{
conn = getConnection();
ps = conn.prepareStatement ("insert into workflows " +
" (clientID, state) wvalues (2?2, ?2)");
ps.setString(1, clientID);
ps.setInt(2, 0);
ps.executeUpdate () ;

return clientID;
}
catch (Exception e)
{
e.printStackTrace();
throw new CreateException("Error, possible duplicate Key");
}
finally
{

cleanup(conn, ps);

}

public void ejbPostCreate(String clientID)

{

System.out.println("Post create called");

}

public void ejbRemove() € Remove EJB

{
Connection conn = null;
PreparedStatement ps = null;

try
{

removeEJBMBean () ;

conn = getConnection();
clientID = (String) ctx.getPrimaryKey();

ps = conn.prepareStatement ("delete from workflows where " +
"clientID = ?");
ps.setString(1, clientID);
ps.executeUpdate () ;
}
catch (Exception e)

{

throw new EJBException (e);

362 CHAPTER 14
Using JMX with Enterprise JavaBeans

finally
{

cleanup(conn, ps);

}

public String ejbFindByPrimaryKey(String clientID)
throws ObjectNotFoundException

Connection conn = null;

PreparedStatement ps = null;
try
{
conn = getConnection();
ps = conn.prepareStatement ("select state from workflows " +

" where clientid = 2");
ps.setString(1, clientID);
ps.executeQuery () ;
ResultSet rs = ps.getResultSet();

if(rs.next ())
{

state = rs.getInt(1);
}

else

{
throw new ObjectNotFoundException("No EJB Found");

}
catch(Exception e)
{
throw new EJBException (e);
}
finally
{

cleanup(conn, ps);

}

return clientID;

}

public void setEntityContext (EntityContext ctx)
{

this.ctx = ctx;

}

public void unsetEntityContext ()
{
this.ctx = null;

}

public void ejbActivate ()

Example: managing EJBs

System.out.println("Activate called");

}

public void ejbPassivate ()

{

System.out.println("Passivate called");

}

private Connection getConnection() throws Exception

{

InitialContext newCTX = null;

try

{

}

if(ds != null)
return ds.getConnection();

newCTX = new InitialContext ();
ds = (javax.sqgl.DataSource)
newCTX.lookup ("exampleDataSource");

return ds.getConnection();

catch(Exception e)

{

}

throw new EJBException(e);

private void installEJBMBean () ‘, Reghter
{ MBean
try
{
MBeanServer mbs = getMBeanServer () ;

}

WorkflowManager wm = new WorkflowManager (clientID,
"workflowBean ");
ObjectName obn = new ObjectName (mbs.getDefaultDomain (),
"clientID", clientID);

mbs.registerMBean(wm , obn);

catch(Exception e)

{

}

e.printStackTrace () ;

private void removeEJBMBean () G’ Remove

{

MBean

try

{

MBeanServer mbs = getMBeanServer();

363

364 CHAPTER 14
Using JMX with Enterprise JavaBeans

ObjectName obn = new ObjectName (mbs.getDefaultDomain (),
"clientID", clientID);
mbs.unregisterMBean(obn);

}

catch(Exception e)

{

e.printStackTrace () ;
}
}

private MBeanServer getMBeanServer ()

{

// Stubbed out code for locating MBeanServer

return null;

}

private void cleanup(Connection dbconn , Statement stmt)
{
try
{
stmt.close();
dbconn.close();
}
catch(Exception e)
{
e.printStackTrace();
}
}

}//class
||

@ The first three methods you see when examining the EJB code are declared in the
EJB’s remote interface. The advancestate (), getState(), and setstate () meth-
ods are implemented here and will be exposed by the MBean the EJB creates
later. The three methods do nothing more than manage the state of the workflow,
represented by the int class member state.

@ The cibLoad () method is found in every entity EJB. It is invoked when it is time
for the bean instance to be initialized with the data set it represents. Notice that
this EJB is managing its own persistence and therefore must interact with a data-
base to acquire its information. The ejbLoad () method acquires the clientID that
an EJB client has associated with it, and selects the state from a database using a
connection acquired from a DataSource object. After the EJB has initialized itself,
it is time to initialize its MBean. You haven’t seen the code for the MBean yet,
but the class is called workflowManager. The EJB invokes the installEJBMBean ()
method, which it implements to create a WorkflowManager MBean instance.

Example: managing EJBs 365

© At some point, an EJB client will complete this workflow or abort it and must

14.5.2

remove the EJB from existence. It does so by calling the ejbremove () method. This
method does two things. First, it invokes the removeEJBMBean () method, which
unregisters the MBean that was exposing the EJB for management. This way, even
if the remaining operations of this method fail, the MBean will not exist. The sec-
ond task for ejbremove () is to delete its persistent state from the database.

These next few methods are the reason you wrote this Enterprise JavaBean. The
installEJBMBean () EJB method creates and initializes a workflowManager MBean
to expose the remote interface methods from this EJB. To do this, the EJB must
create an instance of the MBean. It does so by calling the constructor that takes
two arguments: a string value acting as the clientid value that initialized the
EJB, and a string value that represents the J]NDI name used to look up the home
interface of this EJB. Once the WorkflowManager MBean looks up the home inter-
face, it can use the clientid value to find the appropriate WorkflowBean EJB to
expose for management.

After creating a workflowManager MBean instance, the EJB must register it on
a MBean server. How to acquire an MBean server depends on the application
server containing your application. To encapsulate the MBean server discovery,
the EJB provides a getMBeanserver () method, which stubs out the code necessary
to acquire the MBean server.

After acquiring an MBeanServer instance, the EJB must register its new Work-
flowManager MBean. Recall that the objectName class is a JMX class that acts as a
key on the MBean server to a particular MBean instance. It contains a domain
name and a property list that makes it unique across the MBeanServer instance. To
create an instance of the objectName class, you use the constructor that accepts a
domain name and a single key and value argument. Now that you have an MBean
instance, an MBeanServer instance, and an ObjectName instance, you can register
the MBean by invoking the MBean server’s registerMBean () method.

The e jbRemove () method invokes the removeEJBMBean () method before it deletes
its state from the database. The removeEJBMBean () method looks up an instance of
the MBeanServer (just like the install method) by invoking the getMBeanServer ()

method. It also creates an instance of objectName that represents the EJB’s MBean,
and calls the unregisterMBean () method to remove it.

Constructing the WorkflowManager MBean

Let’s recap what you have accomplished. You have created an entity bean that rep-
resents a client’s state as it moves through a business workflow. The workflow EJB,

366

CHAPTER 14
Using JMX with Enterprise JavaBeans

when initialized, creates a workflowManager MBean to expose the EJB’s remote
interface for management. In addition, when the EJB is removed, it removes its
associated MBean.

At this point, all you have left to do is to create the workflowManager class.
The workflowManager class implements the Dynamic MBean for workflow man-
agement. Because the EJB’s remote interface declares the exposed operations,
it would be simple to turn that interface into the MBean interface of a Stan-
dard MBean.

However, if you changed the remote interface, you would invalidate all the
interfaces to the MBean as well. In addition, what if you are creating MBeans for
previously created EJBs? The Standard MBean does not provide a good way to
“upgrade” if its management interface needs to change.

WorkflowManager code
The code in listing 14.10 is the implementation of the workflowManager Dynamic
MBean. This MBean will expose the methods that were declared in the EJB’s

remote interface. Specifically, it exposes the advancestate () operation and the
State attribute.

Listing 14.10 WorkflowManager.java

package jmxbook.chl4;

import javax.management.*;
import javax.naming.*;
import java.rmi.*;

import java.lang.reflect.*;

public class WorkflowManager implements DynamicMBean

{

private String clientID null; Construct
private Workflow ejb = null; MBean

public WorkflowManager (String clientID, String JNDIName)
throws Exception

{
this.clientID = clientID;

WorkflowHome home = lookUpHome () ;

ejb = (Workflow) home.findByPrimaryKey(clientID);
}
public MBeanInfo getMBeanInfo () g Create
{ management

try interface

{
MBeanAttributeInfo[] atts = new MBeanAttributeInfol[1];
atts[0] =

Example: managing EJBs 367

new MBeanAttributeInfo("State", "java.lang.String",
"Workflow state of client " + clientID,
true, true, false);

MBeanOperationInfo[] ops = new MBeanOperationInfol 1];
MBeanParameterInfo[] sig = new MBeanParameterInfo[0];
ops[0] = new MBeanOperationInfo("advanceState",

"Advance the workflow", sig,
"void", MBeanOperationInfo.ACTION);

Class consig[] = { Class.forName("java.lang.String"),
Class.forName ("java.lang.String") };
Constructor construct =
this.getClass () .getConstructor(consig);
MBeanConstructorInfo cons[] = new MBeanConstructorInfo[1];
cons[0] =
new MBeanConstructorInfo("Constructor", construct);

MBeanInfo mbi = new MBeanInfo(this.getClass () .getName (),
"Manages Workflow Entity EJB",
atts, cons, ops, null);

return mbi;

}

catch(Exception e)

{

e.printStackTrace();

}

return null;

}

public void setAttribute(Attribute att)
throws AttributeNotFoundException,
MBeanException,
ReflectionException,
InvalidAttributeValueException

if (att.getName () .equals("State"))
{
try
{
ejb.setState((String) att.getValue());
}catch (RemoteException re)

{

throw new MBeanException(re);

}

public Attributelist setAttributes(Attributelist list)

{
Attributelist rvalue = new AttributelList ();

368 CHAPTER 14
Using JMX with Enterprise JavaBeans

try
{

Attribute[] values = (Attribute[]) list.toArray();

for(int i = 0; i< values.length; i++)
{
setAttribute(values[i]);
rvalue.add(values[1]);
}//for

}

catch(Exception e)

{

e.printStackTrace();

}

return rvalue;

}

public Object getAttribute(String name)
throws AttributeNotFoundException,
MBeanException,
ReflectionException

try
{
if (name.equals("State"))
{
Object temp = ejb.getState();
return temp;

}
else
throw new AttributeNotFoundException(name);

}

catch(Exception e)

{

throw new MBeanException(e);

}

public Attributelist getAttributes(String[] names)

{
AttributeList rvalue = new AttributelList ();

try
{

String[] list = names;

for(int i = 0; i< list.length; i++)
{
String attName = list[i];
rvalue.add(new Attribute(attName,
getAttribute (attName)));

Example: managing EJBs 369

}//for
}

catch(Exception e)
{
e.printStackTrace();

}

return rvalue;

}

private WorkflowHome lookUpHome () throws Exception e Look up EJB
{

Context ctx = new InitialContext ();

return (WorkflowHome) ctx.lookup("workflow"); hnMement
} invoke()

public Object invoke(String actionName, Object[] args, method

String[] sig)
throws MBeanException, ReflectionException

try
{
String methodName = actionName;
Class types[] = new Class|[sig.length];

for(int 1 = 0; 1 < types.length; i++)
types[i] = Class.forName(sig[1]);

Method m = ejb.getClass () .getMethod(methodName, types);
Object temp = m.invoke(ejb, args);
return temp;

}

catch(Exception e)

{

throw new MBeanException(e);

@ The single constructor for this MBean accepts a string object that is the clientid
of the entity EJB, and a JNDI name used to look up the home interface of the EJB
that created the MBean. After storing the clientid in a class member variable, the
constructor invokes the lookUpHome () method to find the EJB home interface. Once
it has a reference to the home interface, the constructor can invoke the findBy-
PrimaryKey () method it provides. The findByPrimaryKey () method accepts the
clientid and returns a reference to the EJB remote interface. The MBean now
has a handle on the resource it exposes for management.

370

CHAPTER 14
Using JMX with Enterprise JavaBeans

@ The getMBeanInfo () method, declared by the bynamicMBean interface, defines the

management interface for this MBean. Your workflowManager MBean creates its
MBeanInfo object around the methods in the workflow EJB’s remote interface.
This MBeanInfo object exposes one operation, advancestate (), and one read/write
attribute, state. (We describe the MBeanInfo object and how to use the metadata
classes in chapter 4.)

© The MBean’s constructor called the 1ookUpHome () method in order to get a refer-

14.5.3

ence to the EJB’s home interface. Because the MBean was provided with a JNDI
name for the home interface, it simply makes a call to the JNDI lookup mecha-
nism to find the home object reference.

This MBean implements the methods declared by the DynamicMBean interface
specifically for its EJB. For example, the getattribute () method compares the
incoming attribute name to see if it is State (the setattribute () method does the
same). The implementations of both setattributes() and getAttributes() can
be reused because they just operate over a collection and call the getattribute ()
or setattribute () method. In addition, the invoke () method is implemented in
a resource-generic manner.

The invoke () method uses its incoming parameter values to acquire a java.
lang.reflect.Method object from the EJB reference. After acquiring the Method
instance, the invoke () method invokes it and returns its return value. It’s impor-
tant to note what is left out of this method: invoke () blindly attempts to find a
method from the EJB that matches the parameters passed to it. However, what if
a management tools passes in a method name and description that is not part of
the MBean’s MBeanInfo object, but is in fact implemented by the E]B? The invoke ()
implementation would allow MBean users to invoke methods not described by
the MBeanInfo object value (even if there is only a small chance of that happening).

Each method implemented from the DynamicMBean interface should check
requests against the MBean’s management interface (described by the return
value of the getMBeanInfo () method). That is, each method should make sure
the requested operation or attribute is exposed in the manner in which the
incoming request wishes to use it. Dynamic MBeans must guarantee that their
implementation matches the management interface returned by their getMBean-
Info () method.

Running the workflow manager

To test this example, you need to deploy the EJB as you did in the previous
example. In addition, before this EJB is created in memory, you must have a JMX
agent already running for the EJB to register its MBean. You can rewrite the EJB

14.5.4

Example: managing EJBs 371

code to look for an instance of the JMxBookagent class, or you can have it use the
MBean server in | Boss.

Generating EJB managers

When creating MBeans for managing EJBs, you usually expose the methods from
the EJB’s remote interface. If this will typically be the case for your own JMX
development, consider writing a utility class that can generate MBeans from an
EJB remote interface. A utility class could generate Java source for MBeans, or it
could generate ModelMBeanInfo to place in Model MBeans of a JMX agent.

Listing 14.11 shows a class that generates MBean source files based on the
remote interface from an EJB. The generated MBeans are Dynamic MBeans that
extend the DynamicMBeanSupport class you developed in chapter 4. We won’t spend
time discussing this class, but rather we will leave it as an exercise for you to do
with as you please.

Listing 14.11 EJBMBeanGenerator.java

package jmxbook.chl4;

import java.io.*;
import java.util.*;
import java.lang.reflect.*;

public class EJBMBeanGenerator

{
private String remoteInterface = null;
private String remotelInterfaceClass = null;
private Hashtable atts = null;
private Hashtable attTypes = null;
private Hashtable opsArgTypes = null;

private Hashtable opsReturns = null;

private Vector ops = null; Init generator
private Vector opNames = null; with EJB
private PrintWriter out = null; interface

public EJBMBeanGenerator (String remoteInterfaceClassName)
{
remoteInterfaceClass = remoteInterfaceClassName;
remoteInterface = remotelInterfaceClassName.substring(
remotelInterfaceClassName.lastIndexOf(".") + 1);

}

public void buildMBean(String location)
{

try

{

Class remote = Class.forName(remotelInterfaceClass);

buildAttributesAndOperations (remote);

372 CHAPTER 14
Using JMX with Enterprise JavaBeans

out = new PrintWriter(new FileOutputStream(location +
"/" + remotelInterface + "Manager.java"));

writeClassTop () ;
writeConstructor();
writeLookupEJB () ;
writeClassEnd() ;

out.flush();
out.close();

}
catch(Exception e)
{
e.printStackTrace();
}//catch
}

private void writeClassTop ()

{

out.println("import Jjavax.management.*;");
out.println("import java.rmi.*;");

out.println("import " + remotelnterfaceClass + ";");
out.println("import javax.naming.*; ");

out.println("import java.lang.reflect.*; ");
out.println();

out.println("public class " + remoteInterface +
"Manager extends jmxbook.ch5.DynamicMBeanSupport ");
out.println("{");

out.println();

out.println(" private String jndiName = null;");
out.println(" private Object pk = null;");
out.println(" private " + remotelInterface +

" remotelnterface = null;");

out.println();

}

private void writeClassEnd()
{

out.println("} //class");
}

private void writeConstructor ()

{

out.println();

out.println(" public " + remoteInterface +
"Manager (Object pk, String lookupName)

throws Exception ");

out.println(" {")i

out.println(" jndiName = lookupName; ");
out.println(" " + remoteInterfaceClass

+ "Home home = (" + remotelInterfaceClass + "Home)

lookupEJdB(); ");

Example: managing EJBs

out.println(" remotelInterface = ("

+ remoteInterfaceClass + ")

home. findByPrimaryKey ((String) pk); ");
out.println(" ");

out.println();

Enumeration enum = atts.keys|();

int index = 0;

while (enum.hasMoreElements ())

{

String attName = (String) enum.nextElement ();
String rw = (String) atts.get(attName);
String desc = "MBean attribute";
String type = (String) attTypes.get (attName);
boolean readable =
(rw.indexOf("r") == -1) ? false:true;
boolean writeable =
(rw.indexOf("w") == -1) ? false:true;
out.println(" addMBeanAttribute (\"" + attName
+ "\"’ \" " + type + "\"’ n + readable + ", n
+ writeable + ", false ,\"" + desc + "\");");
index++;
}//while
enum = ops.elements();
index = 0;
out.println(" String[] types = null;");
out.println(" String[] argNames = null;");
out.println(" String[] argDescs = null;");

while(enum.hasMoreElements ())

{

String opName = (String) enum.nextElement ();

String rType = (String) opsReturns.get (opName);

String desc = "MBean operation";

String[] types = (String[]) opsArgTypes.get (opName);

String[] argNames = new String[types.length];
String[] argDescs = new String[types.length];
for(int j=0; j < types.length; Jj++)
{

argNames[j] = "arg" + 3J;

argDescs[j] = "Description";

}

out.println(" types = new String["
+ types.length + " 1;");
out.println(" argNames = new String["
+ types.length + " 1;");
out.println(" argDescs = new String["
+ types.length + " 1;");

for(int k = 0; k < types.length; k++)
{

373

374 CHAPTER 14
Using JMX with Enterprise JavaBeans

out.println(" types[" + k + "] ="
+ types[k] + ";");

out.println(" argNames[" + k + "] ="
+ argNames[k] + ";");

out.println(" argDescs[" + k + "] ="

+ argDescs[k 1 + ";");

}

out.println(" addMBeanOperation(\""
+ opName + "\", types , argNames, argDescs, \""
+ desc + "\", \"" + rType + "\" , "
+ MBeanOperationInfo.UNKNOWN);");
index++;
}//while

out.println(" ")
out.println();

}

private void writeLookupEJB ()
{
out.println();
out.println
out.println
out.println

(

("private Object lookupEJB () throws Exception");

(G {")i

(G Context ctx = new InitialContext ();");
out.println (

P

(

(

" return (" + remotelnterface +")
ctx.lookup(jndiName);");
out.println(") Build exposed
out.println(); management
} interface

private void buildAttributesAndOperations(Class c)

{
Method[] methods = c.getMethods();

atts = new Hashtable () ;
attTypes = new Hashtable();
ops = new Vector();

opsReturns = new Hashtable();

opsArgTypes= new Hashtable();

for(int i = 0; i < methods.length; i++)
{

Method m = methods[i];

String name = m.getName () ;

boolean attributeSet = false;
boolean attributeGet = false;
if (name.startsWith("set"))
{
atts.put (name.substring(3), "w");

attributeSet = true;

Summary 375

else if(name.startsWith("get"))
{
if (atts.containsKey(name.substring(3)))
atts.put (name.substring(3), "rw");
else
atts.put (name.substring(3), "r");

attributeGet = true;
}
else
{
ops.addElement (name);
if(m.getReturnType() != null)
opsReturns.put (name, m.getReturnType () .getName ());
Class[] sig = m.getParameterTypes|();
String[] params = new String[sig.length];
for(int k = 0; k < sig.length; k++)
params[k] = sig[k].getName () ;

opsArgTypes.put (name, params);

}

if(attributeSet)
attTypes.put (name.substring(3),

m.getReturnType () .getName ());
else if (attributeGet)
attTypes.put (name.substring(3), "java.lang.String");
}//for

}

public static void main(String args[])
{

String classname = args[0];

String location = args[l];

EJBMBeanGenerator emg = new EJBMBeanGenerator (classname);
emg.buildMBean (location);

}

}//class

14.6 Summary

This chapter presented the idea of combining JMX MBeans with your Enterprise
JavaBeans applications. E]JBs deliver access and manipulation of enterprise data
and are the foundation for robust enterprise applications. However, EJBs do not
provide capabilities for managing EJB configurations or for EJB monitoring. By
integrating an MBean into each EJB, JMX can provide a window into an EJB
application and allow for back-end configuration and monitoring.

376

CHAPTER 14
Using JMX with Enterprise JavaBeans

MBeans can be combined with EJBs two ways. First, the MBean exposes the
business methods of an EJB as its management interface. JMX users can now
invoke these methods without going directly through the EJB application. In
addition, operations that serve analysis or management purposes can be shown
exclusively through the MBean to separate the management capabilities from
the business application. Second, EJBs can use MBeans’ notification capability to
inform other processes of application errors, events, or information.

This chapter showed you how to integrate an MBean into an EJB application
without the EJB having any knowledge of the JMX environment accessing it. In
addition, we explained how to create an EJB that instantiates its own MBean and
registers it on a local MBean server for management. Both of these integration
methods have their advantages, and you should be able to use them in your
future EJB development to provide management and monitoring capabilities in
enterprise applications.

Open MBeans

377

378

Al

A2

APPENDIX A
Open MBeans

If you have some knowledge of JMX or have read the JMX specification, you might
have wondered where the Open MBean was among the chapters covering the
other MBean types. At the time we’re writing this book, the Open MBean is an
optional, and not completely defined, part of the JMX specification. Without com-
plete knowledge of the Open MBean, we couldn’t devote a complete chapter to it.

However, we can write a pretty fair appendix about what is covered in the
JMX specification describing the Open MBean. This appendix contains the
material found in the spec, but does not include any working examples. Be
aware that the information presented in this appendix may change, and perhaps
has already.

What is an Open MBean?

Open MBeans are designed to be the most flexible and most richly self-descriptive
MBeans. They are built around a small set of basic data types that are used for all
parameters, return types, and attributes. Open MBeans are intended to provide
very meaningful descriptions of all their attributes and operations. These
descriptions should be of such detail that they might include possible values for
MBean attributes.

An Open MBean implements the DynamicMBean interface. What sets Open
MBeans apart from Dynamic MBeans is the quality of their metadata. The Open
MBean metadata is a rich description of its predefined data types. All Open
MBeans behave identically to Dynamic MBeans, except for their sole use of the
Open MBean basic data types (described shortly). It is the developer’s responsi-
bility to ensure that the Open MBean uses only the set of basic data types for
every operation parameter, return type, and attribute of the MBean. Finally, an
Open MBean is identifiable by its use of the openMBeanInfo object as a return
type from the getMBeanInfo () method of the DynamicMBean interface.

Open MBeans would be useful in a management environment because users
would know ahead of time all the possible object types needed to interact with
the MBean. With Open MBeans, there would be no need for recompiling or
additional class loading.

Basic data types

The following list shows the set of objects that makes up the basic data types for
the Open MBean. The basic data type set includes the Java wrapper classes for
primitive types, plus some additional object types:

A3

A.3.1

Creating more complex data structures 379

java.lang.Void
java.lang.Boolean
java.lang.Byte
java.lang.Character
java.lang.String
java.lang.Short
java.lang.Integer
java.lang.Long
java.lang.Float
java.lang.Double
javax.management .ObjectName

javax.management .openmbean.CompositeData

javax.management .openmbean.TabularData

You could expect all these classes to be present in a management environment. All
the primitive wrapper classes are present in all Java virtual machines. And, the
ObjectName class and openmbean package would be present in all JMX-compliant
environments.

The three new data types need some explanation. The Compositedata and
TabularData types are both Java interfaces used to define more complex data
structures. Objects that implement these interfaces create aggregates of the
other basic data types. These values can also be used in arrays. The next section
discusses the compositeData and TabularData interfaces in more detail.

Creating more complex data structures

MBeans that could only operate using primitive data types would quickly run out
of options when trying to model and manage complex resources. To help rem-
edy this problem and maintain an open, flexible MBean, the Open MBean uses
the CompositeData and TabularData interfaces to compose more complex data
structures. Objects of these types create aggregate structures made up of the
other basic data types, including themselves. This means that management
applications can interact with data sets of any structure from Open MBeans. In
addition, both compositeData and TabularData types are created with descriptors
that contain detailed information about the data they contain.

The CompositeData interface

You can think of a compositeData object as a hashtable-like object that stores key-
value pairs. CompositeData values contain a string key that corresponds to an

380

A.3.2

A4

APPENDIX A
Open MBeans

object value of one of the basic data types of the Open MBean. In addition, a com-
positeData instance is immutable: once it’s created, you cannot add more pairs
or change the values of others that it already contains.

The compositeData class contains methods to return values based on a specific
key or to enumerate all the values.

The TabularData interface

TabularData objects contain sets of CompositeData values as rows. Each composite-
Data object represents a single row in a TabularData instance. Unlike Composite-
Data objects, TabularData objects are not immutable—you can add and remove
rows at any time. However, every row in the TabularData structure must have the
same description as all the others. Descriptions are important in the Open MBean
world, and each compositebata instance contains a descriptive object explaining
the meaning and purpose of the data it contains. This means that an instance of
the TabularData type contains rows of the same CompositeData description.

TabularData objects also support methods for adding, removing, finding, and
enumerating the rows they contain.

Describing Open MBean data types

In order for a management user (or management code) to be able to get the max-
imum meaning from primitive types, and to be able to understand the more com-
plex types such as compositebata and Tabularbata, Open MBeans use description
classes to describe the basic data types.

These description classes are known as the open types, and they describe the
basic data types used by all Open MBeans. Every open type class is a subclass of
the openType class. There is an openType subclass for each category of classes for
the basic data types (primitive, composite, tabular, and arrays). The openType
class defines methods that provide a data type name, description, and actual
classname. The following are the openType subclasses:

® simpleType—Describes the primitive data types and the objectName class
m ArrayType—Describes arrays of the basic data types

m CompositeType—Describes the CompositeData class data type

m TabularType—Describes the TabularData class data type

The simpleType class provides static instances of the simpleType class that give
the name, description, and classname of each of the primitive and objectName

A5

Open MBean metadata 381

data types. The arrayType includes the description of the type it contains as well
as its number of elements.

The compositeType and TabularType classes are recursive descriptions com-
posed of the other open type descriptive classes. The name and description
inherited from the openType super class describe the overall structure. Using the
CompositeType class, you can acquire the open type class for each of its members.
Likewise, the TabularType open type class allows you to describe each composite-
Type member it contains.

Using the open type classes, a developer or manager can name and richly
describe all the attributes, operation arguments, and operation return types of
an Open MBean.

Open MBean metadata

Because an Open MBean implements the DynamicMBean interface, it needs to be
able to build its management interface at runtime. (For more information about
this requirement, go back to chapter 5, which discusses the Dynamic MBean.)

Open MBeans provide their management interface by using subclasses of the
MBean metadata objects used by Dynamic MBeans. In fact, Open MBeans are
identifiable by their use of the openMBeanInfo class as a return value from the
getMBeanInfo () method of the DynamicMBean interface.

Table A.1 lists the metadata interfaces used by the Open MBean.

Table A.1 The metadata interfaces and the parts of a management interface they repre-
sent. These classes are contained in the OpenMBeanInfo object that is the return value for
the getMBeanInfo () method of the DynamicMBean interface.

Metadata interface Description

OpenMBeanParameterInfo Describes arguments passed to methods and constructors

OpenMBeanConstructorInfo Describes any exposed constructors

OpenMBeanAttributeInfo Describes readable and writable attributes

OpenMBeanOperationInfo Describes exposed MBean operations

The table does not list any interface for notifications, because Open MBeans use
the MBeanNotificationInfo class. This is the one metadata class that does not
have an Open MBean subclass; Open MBeans still use the MBeanNotification-
Info class to describe their notifications.

All metadata classes inherit the getDescription () method, which they must
implement to return a non-null value. This requirement forces every meta object

382

A.5.1

A.5.2

A.5.3

APPENDIX A
Open MBeans

to provide some measure of assistance to management users. The description
should provide meaningful information such as the possible values of an attribute
or the effect of an operation.

The following sections provide more detail about each of the support classes
that implement the interfaces listed in table A.1.

The OpenMBeaninfoSupport class

The openMBeanInfosupport class implements the openMBeanInfo interface and
extends the MBeanInfo class. Toward this end, it inherits the name and descrip-
tion methods used to describe the overall MBean.

The support class overrides the methods that return arrays of metadata objects
for attributes, operations, and constructors. It does so in order to return the
appropriate Open MBean metadata objects instead of the usual metadata. Open
MBeans use the normal MBeanNotificationInfo object to describe notifications,
so no new implementation is provided in the support class.

The OpenMBeanOperationSupport and
OpenMBeanConstructorSupport classes

These two subclasses represent operations and constructors, respectively. Both
classes override the getSignature () method in order to provide the correct Open
MBean metadata return type.

The openMBeanOperationSupport class adds an additional method, getReturn-
openType (), which returns the open type descriptor object that describes the object
being returned from an operation. In addition, the getImpact () method of the
OpenMBeanOperationSupport class must return anything except UNKNOWN (see the
MBeanOperationInfo class in chapter 5 for more details).

The OpenMBeanAttributeSupport and
OpenMBeanParameterSupport classes

Like the openMBeanOperationSupport class, both the openMBeanAttributeSupport
and OpenMBeanParameterSupport classes prOVide a new method, getOpenType (),
which is used to describe the type of parameter or attribute they represent. The
return type of the getopenType () method is one of the four open-type classes pre-
viously described.

In addition, both classes implement the getDefaultvalue () and getLegalval-
ues () methods. The getDefaultvalue () method returns a value that is applicable
to the type returned by the getType () method of each class. The getLegalval-
ues () method returns an array of objects that must be compatible with the type

A.6

Summary 383

returned by the getType () method. Legal value lists can indicate the possible val-
ues for parameters or the expected values of an attribute.

Summary

The Open MBean is being designed to be the most flexible and richly self-
describing MBean in a JMX environment. Open MBeans provide developers
with enough classes to adequately describe an MBean’s attributes and operations
so that any management platform can make sense of them. At the time we’re
writing this book, the Open MBean is an optional part of the JMX specification
and is incomplete.

Using Anit

385

386

B.1

B.2

APPENDIX B
Using Ant

When we wrote the examples for this book, we used Ant from the Jakarta imple-
mentation provided by Apache Organization to provide build capabilities. Ant is
an open source tool for automating build processes.

This appendix is not a discussion of the advantages of Ant; it is a no-nonsense
guide to configuring and using it to build the book’s examples. For more infor-
mation about Ant—its usefulness, complete capabilities, and so forth—please
read Java Development with Ant by Erik Hatcher and Steve Loughran (you can
find it at http://www.manning.com/hatcher).

Downloading and installing Ant

This book uses Ant version 1.4.1, downloadable from the Apache Organization
web site, under the Jakarta project area. From this web site, you can download
the documentation and installation executables. You can find out more about
Ant at http://jakarta.apacke.org/ant/index.html.

Download the executables from the http://www.jakarta.org/builds/jakarta-ant/
v1.4.1/bin directory. Choose the packaging you require for either the Unix or
Windows distribution. We developed the examples on Windows, so we chose the
Windows distribution—specifically, the http://www.jakarta.org/builds/jakarta-ant/
vl.4.1/bin/jakarta-ant-1.4.1-bin.zip file.

Extract the zip file to a location of your choice and add its bin directory to
your pATH. For example, in Windows, edit the system properties from the Control
Panel and add the bin directory to the pATH environment variable.

You also need to add a system environment variable called Java_soME and set
its value to the location of your Java bin directory containing your Java compiler
and runtime (on Windows, you can do this from the system properties under the
Control Panel). For example, if you installed your Java compiler under the
c:\jdk1-3 directory, you would set JavA_HOME to c:\jdk1-3. The pPATH and Java_HOME
variables tell the Ant system where to find the Java tools it needs to run.

Setting up the build file

Ant uses an XML file to describe the build commands for an environment. Ant
provides a rich set of commands in which to build a flexible and powerful build
environment. In this appendix, we focus only on the commands we used for
building our examples. The Manning book referenced at the beginning of this
appendix is an excellent source of information on additional Ant commands.

http://www.manning.com
http://www.manning.com
http://jakarta.apacke.org/ant/index.html
http://www.jakarta.org/builds/jakarta-ant/v1.4.1/bin
http://www.jakarta.org/builds/jakarta-ant/v1.4.1/bin
http://www.jakarta.org/builds/jakarta-ant/v1.4.1/bin
http://www.jakarta.org/builds/jakarta-ant/v1.4.1/bin/jakarta-ant-1.4.1-bin.zip
http://www.jakarta.org/builds/jakarta-ant/v1.4.1/bin/jakarta-ant-1.4.1-bin.zip

Setting up the build file 387

You want to be able to compile your Java source files and clean the build
directories. You will set up a simple build.xml file to describe these tasks, as
shown in listing B.1. Place this file in the location in which you will run Ant.

Listing B.1 build.xml

<project name="JMXBook" default="compile" basedir=".">
<!-- set global properties for this build -->
<property name="src" value="."/>

<property name="build" value="build"/>

<target name="init">

<!-- Create the time stamp -->
<tstamp/>
<!-- Create the build directory structure used by compile --—>
<mkdir dir="${build}"/>
</target>
<!-— ============[Compile the Build]=============== -->
<target name="compile" depends="init">
<!-- Compile the java code from ${src} into ${build} -->
<javac srcdir="${src}" destdir="${build}" />
</target>
<!—— ============[Compile the Build]=============== -->
<!-— =============[(Clean the Installation]=============== -->
<target name="clean">
<!-- Delete the ${build} directory trees —-->
<delete dir="${build}"/>
</target>
<!—— =============[(Clean the Build]=============== —->
</project>

When invoked, Ant will examine this XML file to perform the tasks being asked
of it. The next two sections will walk you through the important parts of the XML
file so you can tailor it to your specific environment.

B.2.1 Compiling

The first element of the XML file, <project>, describes the project related to this
XML file. In this case, you define the project as the JvxBook project. This element
also lets you indicate that Ant should run the compile directive by default. So,
you can just type Ant at the command line, and the compile section of the XML
will be executed.

388

B.2.2

APPENDIX B
Using Ant

Looking at the compile section (the <target> element with name="compile"),
notice that it depends on the init directive. Before Ant can execute the compile
commands, it must first execute the dependencies in the init target section.

The init section is at the beginning of the XML file, and the first thing it
directs is a timestamp to be generated. The timestamp will keep track of files
that are out of date and will help Ant synchronize them during the compile
stage. The init section also creates a build directory for all the compiled classes
and prevents clutter in the source directories by keeping out class files.

After Ant completes the init target section, it can continue processing the
compile section. It calls the javac compiler against the source files from the src
directory. The class files are placed in the directory specified by the build prop-
erty. Both src and build property values are defined near the top of the XML file
using the <property> element.

Cleaning

The clean target section simply deletes the directory defined by the build property.
Use the following command from the prompt to clean up your build environment:

ant clean

mdex

A

C

abstracting a data layer 83
adapters 13
HTML adapter 24-26, 29-33, 35-42, 46, 48,
52-56, 60, 66, 68, 81-82, 87, 136,
188-189, 196, 219, 226-227, 238, 240,
249, 261, 294-298, 327, 354
TCP 13, 186, 215-216, 218-220, 225-226, 228
addNotificationListener() 46-47, 120, 124-125,
133-134, 172, 194, 211
addRelation() 275
addURL() 236, 240, 249, 251
agent layer 14, 17-18, 22, 24-25, 29
agent services
M-let service 163, 171, 230-241, 243-244, 247,
249, 251, 254
relation service 179, 251, 254-257, 259, 261,
266-277, 280, 284
agents
defined 12
definition 12
domain 33, 175
in architecture 10-20
see HelloAgent
JMXBook agent
see JMXBookAgent
Ant 385-388
application architecture 20
attribute change notifications 127
filtering 128
AttributeChangeNotification class 127-131, 138
AttributeChangeNotificationFilter class 129
AttributeList 97, 99, 107-108, 113, 173-174, 208,
367-368
AttributeValueExp 179-180, 182

classpath 26
componentization 10, 82, 94
configurable applications 77
configuring a DataSource 79
connectors 13
JINI 163, 186, 195-197, 202, 204, 209,
211, 228
RMI 13, 25, 53-58, 60, 62, 81, 163, 167, 186,
189-196, 212, 215, 228, 293
contrib folder 25, 189, 212, 330
CounterMonitor 285, 291-293, 296, 299
createMBean() 34, 54, 61
createMBeans() method from Relation-
Main.java source 265
createRelation() method from Relation-
Main.java source 275
createRelationServie() method from JMXBook-
Agent.java source 274
HelloAgent.java source 30
HelloWorldSetup.java source 61
JINIConnector.java source 202
JINIConnectorConnector.java source 206-209
JINIConnectorImpl.java source 202
JINIServer.java source 198
JMSSetup.java source 323-324
JMXBookAgent.java source 54
main() method from RelationMain.java
source 277
MletWrapperSetup.java source 250
ModeledClass.java source 158
MonitoringSetup.java source 295
PollingSetup.java source 132
PropertyManager MBean example 82

389

390 INDEX

createMBean() (continued)
startMletService() method from JMXBook-
Agent.java source 237
TCPAdapter.java source 222
UserInfoMgr.java source 348
working with MBean Server 168-169
working with Model MBean 138, 161
working with the Jini service 201-204, 210
working with the M-let service 236, 238-239
working with the relation service 264, 275
working with the TCP adapter example
222,225
createRelationService() 273
CtlRelation java 271

D

DebugSubscriber.java 320
deployment descriptor 351
derived gauge 290, 292
Descriptor interface 146
DescriptorAccess interface 147
descriptors 146
currency TimeLimit 149, 151-152, 157
default 32-34, 37, 42, 58, 90, 149-150, 157,
170, 191-193, 195, 218, 387
descriptorlype 147, 149, 151, 153, 156-158
displayName 147-148, 150, 152-153, 156-158
export 148
getMethod 108, 149-150, 157, 369
interface 146-147
iterable 149-150
lastReturnedTimeStamp 152
lastReturnedValue 152
lastUpdatedTimeStamp 149, 151
log 15, 66, 69, 84-85, 88, 134, 142, 148,
153-154, 157-158, 240, 284
logfile 148, 154
messageid 153-154
message Text 153
persistLocation 148, 157-158
persistName 148, 157-158
persistPeriod 148, 156-158
persistPolicy 148-149, 156-158
predefined fields 147
presentationString 148, 152-154
protocolMap 149
role 4, 64, 152-153, 157, 177, 196, 255-257,
261, 266-267, 269-270, 274-276, 279
setMethod 149-150, 157
targetObject 152, 157

targetType 152, 157

value 147-149

visibility 16, 148-149, 152-154, 309, 337, 339
deserialize() 175
distributed layer 16-17, 22
domain name 31, 33-34, 37, 55, 178, 195, 365
Dynamic MBean 17, 66, 94, 230

attributes 98-99

inheritance patterns 104

invoking operations 100

similarities to Model MBean 140, 143-145,

154, 162

using with Jini service 105-107, 110

using with notifications 121-122

utility class 110-111, 116

working with 95-98

working with EJBs 366, 370-371

working with MBeanInfo class 100-102

working with M-let service 230, 366, 370, 379
DynamicMBean interface 66, 68, 96-101, 104,

107, 111-113, 116, 122, 140, 143-144, 366,
370, 378, 381

DynamicMBeanSupport class 111-112, 116, 154
DynamicMBeanSupport.java 111

E

EJB home interface 342, 358-359
EJB methods
ejbLoad() 364
ejbRemove() 365
findByPrimaryKey() 369
lookupHome() 369
EJB remote interface 342, 358-359
Enterprise JavaBeans 142, 336, 338, 340-343,
345-352, 356-359, 361-362, 364-367,
369-371
enterprise messaging 312
entity beans 336-337
exceptions
InstanceAlreadyExistsException 35, 169, 171,
206-207
InstanceNotFoundException 134, 169,
172-175, 207-209
MBeanException 59, 91-92, 97, 107-108,
112-113, 171, 173-174, 206-208,
270-272, 323, 367-369
MBeanRegistrationException 93, 169, 171,
206-207
NotCompliantMBeanException 92, 169, 171,
206-207

ReflectionException 91, 97, 107-108, 112-113,
170, 173-174, 206-209, 367-369
RuntimeOperationsException 94, 169-171,
173-174
external relation 259

F

INDEX 391

using with relation service example 261, 277-278

using with TCP adapter 226-228

working with the HelloAgent class 46

working with the HTML Adapter 36-40, 43
HTMLAdapter 277-278

FaxCard.java 263

G

GaugeMonitor 285, 290-293, 296, 298-299

getAttribute() 98-99, 110-111, 116, 173, 222,
287, 370

getAttributes() 98-99, 173, 370

getDefaultDomain() 175, 199, 208, 363-364

getDescriptor() 147

getMBeanCount() 175, 190, 200-203, 206,
209-210

getMBeanlInfo() 97-101, 104, 108, 110-111, 114,
122, 174, 366, 370-371, 378, 381

getMBeansFromURL() 236, 239, 249, 251

getNotificationInfo() 46, 121-122, 127, 131, 248

getNotif Types() 122

getter methods 27

H

handback object 46-47, 120-121, 124, 171-172,
208
handleNotification() 46-48, 124, 250
Hello World example 26
HelloWorld class 26-30, 32, 34-35, 37-48,
60-61, 66-67, 69, 87, 119, 133, 168, 178,
209-210, 213, 226, 232-233, 238-240, 251
printGreeting() 27-28, 40, 44, 61, 227
HelloAgent 28-36, 38, 40-42, 46-48, 52, 54,
89-90, 123, 133, 178
HelloWorldMBean interface 27-28, 40-42, 44, 67
home theater system 313, 319
HTML adapter 24-26, 48, 66, 68, 87, 196, 219
admin view 4041
running the JMXBookAgent class 52-56, 60,
238, 240, 354
testing the PropertyManagerMBean 81-82, 87
using JBoss server 327
using MLetWrapper MBean instead of HTML
Adapter 249
using with JMX agent 29-33, 36, 137, 188-189
using with monitor service example 294-298

ideal management environment 6

instantiate() 176

instrumentation 7, 9-10, 13-14, 18, 21-22,
24-25, 63, 118, 140-141, 161, 257

Internet bike shop 4-5

Internet Engineering Task Force (IETF) 213

isInstanceOf() 175

isRegistered() 169

J

J2EE 21, 308-309, 312, 315, 326, 328, 330, 333,
336, 340, 350

Java Dynamic Management Kit (JDMK) 214

Java Message Service 311-315, 319-320, 323-324,
326-333, 335-336, 377, 385

Java Naming and Directory Interface (JNDI) 350

JBoss server 326-332

JBossMQ 327-328

JINI 96, 105-107, 109-110, 163, 186, 188,
195-205, 209-213, 215, 228

Jini 12-13, 17

JINI Connector

testing 211

Jini DiscoveryListener 210

Jini LookupDiscoveryManager 210

Jini ServiceIDListener 201

Jini toolkit 200

JINIConnector class 196, 200, 202-206, 209-210,
212-213

JINIConnectorClient.java 205

JINIConnectorException.java 204

JINIConnectorImpl.java 202

JINIServer class 196, 198, 201-203, 211-212

JINIServerjava 198

JINIServerMBean class 196-198, 201

JINIServiceManager.java 107

JMS Durable subscription 312

JMS subscriber 313

JMSController.java 316

JMSControllerMBean.java 315

JMSPublisher.java 324

JMSSetup.java 323

392 INDEX

JMX
advantages 10, 82, 94
JMX Architechture
agent layer 14, 17, 20, 22, 24-25, 29, 162-163
distributed layer 16-17, 22
instrumentation layer 14, 18, 22, 24-25, 63
JMX benefits 9-10
JMX Exception hierarchy 92
JMX Reference Implementation 24-25, 53,
141-142, 144-145, 148, 152, 163, 170,
189-191, 193
JMXBookAgent 189-192, 197, 219
agent services 293, 296
building TCP Adapter 225-227
connecting using Jini 209, 211-212
creating 52-57
creating Model MBeans 161
running 60-62
testing the Polling MBean 131-132
testing the PropertyManager MBean 81-82
user login monitor example 346, 348-350, 354
using with M-let service 237-238, 250
using with relation service 261, 265, 268-269,
271-278
working with Java Message Service 324, 328-330

L

load() 6, 8, 11, 41-42, 78-79, 91, 141, 145, 175,
207, 209, 231-232, 235-239, 251, 359
Logger.java 85, 88

manageable resource 11-14, 24-26, 35, 67-69,
94, 96, 110, 140, 142, 161
Managed]INIService class 105-107, 110
management applet 230
management application 13
MBean
common rules 66, 67
definition 12, 271, 272, 294
Dynamic 95-107, 110-112, 116
errors 90
Model 139-154, 158-162
Open 385
querying 165-180, 182-186
relationships 254-267, 270-280
Standard 68-77, 79, 81-84, 86-88, 90-94
with EJB 338-341, 345-351, 354-356,
358-359, 363-366, 369-371

with JMS 312-320, 322-324, 326-327, 329-332
MBean Server 12-14
agent layer 17-18
embedding agent in application 76
HTML adapter Admin View 40
Logger MBean example 90
MBean accessing another MBean 87
MBean Exceptions 92-93
MBeanServer interface 167-168
notification methods 172
query methods 177-178, 183, 186
register/unregister MBeans 41, 43, 48, 49
registration and creation methods 168-171
running in JBoss 327
server and MBean information methods
174-175, 210
using in JMXBookAgent 52-53, 55-56, 61
using Jini connector 195-197, 201-204,
210, 212
using JMX as application layer 20-21
using RMI connector 189-190, 192-195
using TCP Adapter 225-226
working with Dynamic MBeans 98, 101
working with EJBs 356, 365
working with JMX monitoring 285-287
working with MBean server 165-166
working with MLET MBean 238-239, 249
working with Model MBeans 140, 162
working with notifications 133-134, 136-137
working with SNMP 215
working with the HTML adapter 37-39, 188
working with the relation service 273, 276
writing first MBean 24, 26
writing Hello World 29-32, 34-35
MBeanAttributeInfo class 101-103, 108, 114-115,
146, 149, 323, 366-367
MBeanConstructorInfo class 101-102, 108,
114-115, 146, 323, 367
MBeanFeaturelnfo class 101-102, 122
MBeanlInfo class 101
MBeanNotificationInfo 46, 101, 104, 108,
121-123, 127, 131, 138, 146, 248, 323,
381-382
MBeanOperationlnfo class 101, 103-104,
108-109, 114-115, 146, 159, 323, 367, 382
MBeanParameterInfo class 101-104, 109, 114,
155, 323, 367
MBeanRegistration interface 87-90, 93, 169,
171, 198, 201, 217, 235, 243-244, 271, 273,
285-286

MBeanServer
interface 163, 166-168, 170-171, 174-177,
186, 190, 197, 204, 210
creation and registration methods 170
MBean manipulation methods 173
notification methods 172
registration methods 168
queries 176
registration 35, 133, 168-170, 365
MBeanServer interface
MBean server information methods 175
other methods 175
MBeanServerFactory 30-31, 47, 55, 323
message 123
message driven beans 336-337
metadata 101-104
MIB 5, 214
M-let file 231
ARCHIVE attribute 233
ARGLIST attribute 234
CODE attribute 233
CODEBASE attribute 233
example file 238
NAME attribute 233
OBJECT attribute 233
rules 234
VERSION attribute 234
M-let service 17, 163, 171, 230-241, 243-244,
247, 249, 251, 254, 284
expanding the codebase 236, 239
reusing loaded classes 239
wrapping for notifications 240
mlet tag attribute
ARCHIVE attribute 233
ARGLIST tag 234
CODE attribute 233
CODEBASE attribute 233
NAME attribute 233
VERSION attribute 234
mlet tag rules 234
MLetMBean 235-236, 243-244
MLetNotification.java 242
MLetWrapper.java 243
MLetWrapperSetup.java 250
Model MBean 12, 26, 64, 138, 140-154, 158,
161-162, 371
attribute cache 142
features 141
generic notifications 143, 145
notification log 142
operation delegating 142

INDEX 393

persistence 141, 145
ModeledClass.java 158
ModelMBean interface 140, 143-145, 160
ModelMBeanAttributeInfo class 146, 149, 151,
155-156
ModelMBeanConstructorInfo class 146, 153, 156
ModelMBeanInfo interface 141-146, 154, 156,
158, 160-161, 871
ModelMBeanInfoBuilder.java 154
ModelMBeanInfoSupport class 140-141, 144-145,
147, 149, 156
ModelMBeanNotificationBroadcaster class 145
ModelMBeanNotificationInfo class 146, 153,
155-156
ModelMBeanOperationInfo class 146, 151,
155-156
Monitor class 285
monitor examples 293
monitoring MBean attributes 284
MonitoringSetup.java 295
MonitorMBean interface 286
MonitorNotification class 287-289, 291
monitors
Counter monitor 285, 291-293, 296, 299
Gauge monitor 285, 290-293, 296, 298-299
MBean attributes 284
String monitor 285, 288-289, 293, 296-297
monitors and timers 283, 311, 335, 377, 385
MOVIELIGHTSOff 314-315, 317, 319-320,
324, 326
MOVIELIGHTSOn 314-315, 317, 319-320,
324-326

N

Network Management System (NMS) 214

Notification class 122

notification model 119

notification type 123

NotificationBroadcaster 43, 45, 67, 69, 71,
119-122, 125, 133-134, 138, 172, 302

NotificationBroadcasterPersister.java 135

NotificationBroadcasterSupport 44—45, 48, 119,
121, 125-127, 129, 134-135, 138,
243-244, 285

NotificationFilter 46, 120, 124, 129,
171-172, 208

NotificationListener 43, 45-48, 119, 123-124,
132, 138, 171-172, 208, 250, 295, 306

notifications 9-11, 13, 19-20, 37, 43-44, 118

attribute change notifications 128-129, 138

394 INDEX

notifications (continued)

components of notification model 119

describing notifications 121-122

filtering notifications 124-125

generic notifications 142

HelloWorld MBean example 43—45

MBeanNotificationInfo class 104, 111, 116,
120-121

MBeanServer interface 171-172

members of Notification class 122

notification logging 142

notification polling example 127, 129-133

NotificationBroadcaster interface 46, 67, 138

NotificationListener interface 123-124, 138

notifications from MBean Server 136-137

persisting notifications 134-136

registering as listener 133-134

standard management interface 67-71, 101

using with EJBs 339

using with Jini connector 195, 211

using with M-let service 240-243, 249-251

using with ModelMBeans 142-149,
153-156, 158

using with monitors 284-285, 289-293, 295,
297-299

using with relation service 255

using with RMI connector 187, 193-194

using with SNMP 215

using with the timer service 302-308

working with DynamicMBean interface 96, 101,
104, 111, 116

working with HelloAgent class 4648

writing JMXBookAgent class 55

working with M-let service 238-240, 249
working with Model MBeans 161
working with monitors 286-287, 296, 302
working with relation service 254, 268, 270,
272-273
working with TCP adapter 219
ObservableObject.java 294

P

phone system example 257-258
PhoneCard.java 262
Point-to-Point 312

Point-to-Point Messaging 312
Polling.java 126, 129
PollingSetup.java 132
PrinterMBean interface 70
PropertyManager.java 78
PropertyManagerSetup.java 81
protocol adapters and connectors 189
protocols 9, 12-17, 166, 214
Publish-Subscribe 312-313, 328
Publish-Subscribe Messaging 312

Q

queries 176
creating expressions 179
defining the scope 177
examples 182
methods 180-181
QueryExp 177, 179-185, 208
Querying 176

0 queryMBeans() 177
queryNames() 177

OBJECT attribute 233
object serialization 141 R

ObjectInstance 169, 175-177, 200, 202-203,

206-208, 243, 249

ObjectName 26, 32-37, 90

identifying MBeans 41

registering/unregistering MBeans 42, 134

using with notifications 45-47, 123, 137

working with adapters/connectors 56-57

working with an MBean server 168-175

working with EJBs 365

working with Java Message Service 324

working with Jini service 212

working with MBeanServer queries 177-176,
184-185

registerMBean() 35, 133, 168-170, 365
Relation service 179, 251, 254-257, 259, 261,
266-277, 280, 284
external relations 255-256, 259, 270-272
internal relations 256
relation type 254-257, 266, 268-270, 272-273,
275-276
relations 253-257, 261, 266-267,
269-274, 277
role information 255-257, 266-268, 270,
2738-274, 277
roles 255-257, 261, 267, 269-270, 273-276

RelationMain class 264, 266, 268-269, 274,
276-277

RelationMain.java 264, 266

RelationService MBean 274

RelationSupport class 272

RelationType class 256, 261, 266-270

removeNotificationListener() 172

RequiredModelMBean class 140, 160-161

resource management 4

RMI 10, 12-13, 16-17, 25, 52-58, 60-62, 81-82,
105, 163, 167, 186, 188-196, 203, 212-213,
215, 228, 293, 323, 348

RMI Connector

heartbeat 193-194
notifications 193

RMI_CONNECTOR_PORT 193

RMIClientFactory 58, 60-62, 82, 132, 159-160,
192, 249-250, 266, 276, 296, 306, 323, 344,
346, 348

RMIClientFactory class 58, 60-62, 82, 132,
159-160, 192, 249-250, 266, 276, 296,
306, 323, 344, 346, 348

RmiConnectorServer class 57, 61, 190-192

RoutingTable java 263

runDeviceDebug.cmd 331

runPublisher.cmd 332

runSubscriber.cmd 330

S

sendNotification() 45, 121, 127, 131, 136, 145

SequenceNumber 123

session beans 336-337

stateful session 337
stateless session 337

setAttribute() 98-99, 110-111, 116, 173-174,
222, 370

setAttributes() 98-99, 370

setDescriptor() 147

setManagedResource() 144, 160-161

setModelMBeanInfo() 144, 160-161

setObservedAttribute() 286

setObservedObject() 286

setter methods 27

SNMP 5, 7,9-10, 12-13, 16-17, 150, 166, 189,
213-215

SNMP Protocol Adapte 214

SNMP trap 214

source 123

Standard MBean 26-28, 38, 76, 79, 82, 94, 96,
125, 243, 261, 366

INDEX 395

breaking applications into components 82, 86
comparing to dynamic MBeans 98, 101, 104
inheritance patterns 71-72
part of standard management interface 66-71
PropertyManager example 77
using with TCP connector 216
working with monitors 284, 286, 294, 302
writing Jini connector 197
startHTMLAdapter() 55-57
start]JINIConnector() 211-212
startMletService() 237
startRMIConnector() 55-57, 190, 212
start TCPAdapter() 225
start TimerService() 305
store() 4-5, 24, 131, 134, 142, 145, 148, 154, 160,
203, 211, 244, 262, 339, 343
String monitor 289, 297
StringMonitor class 285, 288-289, 293, 296-297
StringValueExp 179, 182

T

TCP 13, 186, 215-216, 218-220, 225-226, 228
TCP protocol adapter 215
TCPAdapter.java 219

TCPServerjava 217

TCPTesterjava 226

TestRMI class 61

TestRMI java 61

Timer class 302-304

Timer MBean 302-304, 306

timer number of occurrences 303-304
timer period 303-304

timer service 302

TimerNotification class 302
TimerSetup.java 306

timestamp 123

u

unregisterMBean() 169, 365

\

ValueExp 179-182

w

web browser 35, 280
wildcards 178

	brief contents
	contents
	preface
	acknowledgments
	about this book
	Chapter roadmap
	How to use this book
	Source code
	Author Online

	about the cover illustration
	Part 1 – Getting started
	Resource management and JMX
	1.1 Resource management
	1.1.1 Today’s management environment
	1.1.2 The ideal management environment
	1.1.3 Management for the real world

	1.2 Providing a Java solution: Java Management Extensions
	1.2.1 Benefits of using JMX
	1.2.2 Essential JMX terms

	1.3 The JMX architecture
	1.3.1 Example: managing the bicycle shop server
	1.3.2 The distributed layer
	1.3.3 The agent layer
	1.3.4 The instrumentation layer
	1.3.5 Notifications

	1.4 Using JMX as an application architecture
	1.5 JMX in use today
	1.6 Developing with JMX
	1.7 Summary

	“Hello World,” the JMX way
	2.1 Getting started
	2.1.1 A JMX architecture refresher
	2.1.2 Setting up the development environment

	2.2 Managing your first resource
	2.2.1 Writing the HelloWorld MBean

	2.3 Creating a JMX agent
	2.3.1 Writing the HelloAgent class
	2.3.2 More about object names

	2.4 Running the agent
	2.4.1 Compiling the agent
	2.4.2 Running the agent
	2.4.3 Contacting the agent

	2.5 Working with the HTML adapter
	2.5.1 Agent View
	2.5.2 MBean View
	2.5.3 Admin View
	2.5.4 Registering/unregistering MBeans on the HelloAgent

	2.6 Using MBean notifications
	2.6.1 Adding notification code to the HelloWorld MBean
	2.6.2 Changes to the HelloAgent class

	2.7 Summary

	Building a foundation
	3.1 The scope of the agent
	3.1.1 Using the HTML adapter
	3.1.2 Using the RMI connector

	3.2 Writing the JMXBookAgent class
	3.2.1 Class definition and constructor
	3.2.2 Adding agent connectivity
	3.2.3 Finishing with a main() method

	3.3 Writing the RMIClientFactory class
	3.4 Writing the ExceptionUtil class
	3.5 Running the agent
	3.5.1 Connecting to the agent with the browser
	3.5.2 Connecting to the agent with an RMI client

	3.6 Summary

	Part 2 – Instrumenting manageable resources
	MBeans for stable resources
	4.1 Laying the MBean groundwork
	4.1.1 Common coding rules for all MBeans
	4.1.2 Using Standard MBeans

	4.2 Composing the standard management interface
	4.2.1 Components of the management interface
	4.2.2 Example: a printer MBean interface

	4.3 Standard MBean inheritance patterns
	4.3.1 Direct implementation of an MBean interface
	4.3.2 Inheriting the management interface
	4.3.3 Overriding the management interface
	4.3.4 Extending the management interface
	4.3.5 Combination of extending and overriding
	4.3.6 Extending a non-MBean interface

	4.4 Standard MBeans in action
	4.4.1 Making applications easily configurable
	4.4.2 Breaking applications into components
	4.4.3 MBeans using other MBeans

	4.5 Handling MBean errors
	4.5.1 Throwing exceptions
	4.5.2 Runtime exceptions

	4.6 Summary

	MBeans for changing resources
	5.1 Working with the DynamicMBean interface
	5.2 Examining the DynamicMBean interface
	5.2.1 Acquiring the dynamic management interface
	5.2.2 Working with dynamic MBean attributes
	5.2.3 Invoking operations

	5.3 Understanding the MBeanInfo class
	5.3.1 Metadata of the MBeanInfo class
	5.3.2 The MBeanFeatureInfo and MBeanParameterInfo classes
	5.3.3 The MBeanConstructorInfo class
	5.3.4 The MBeanAttributeInfo class
	5.3.5 The MBeanOperationInfo class
	5.3.6 The MBeanNotificationInfo class

	5.4 Inheritance patterns
	5.5 Dynamic MBeans in action
	5.5.1 Managing a Jini service
	5.5.2 Rebuilding a management interface at runtime

	5.6 Creating utility classes
	5.6.1 Creating a dynamic MBean super class

	5.7 Summary

	Communication with MBeans using notifications
	6.1 Using MBean notifications
	6.2 Components of the JMX notification model
	6.2.1 Being a notification broadcaster
	6.2.2 Describing notifications as part of a management interface
	6.2.3 The Notification class
	6.2.4 Being a notification listener
	6.2.5 Filtering notifications

	6.3 A notification polling example
	6.4 Capturing MBean attribute changes
	6.4.1 Filtering attribute change notifications
	6.4.2 Revising the Polling MBean
	6.4.3 Testing the Polling MBean

	6.5 Registering as a notification listener
	6.5.1 Registering with an MBean
	6.5.2 Registering with the MBean server

	6.6 Persisting MBean notifications
	6.7 Notifications from the MBean server
	6.7.1 Notification types sent from the MBean server

	6.8 Summary

	MBeans on-the-fly
	7.1 Working with the Model MBean
	7.2 Features of the Model MBean
	7.2.1 MBean persistence
	7.2.2 Notification logging
	7.2.3 Attribute value caching
	7.2.4 Operation delegation
	7.2.5 Generic notifications

	7.3 Examining the ModelMBean interface
	7.3.1 Configuring a Model MBean
	7.3.2 Acquiring and using the management interface
	7.3.3 Registering for notifications
	7.3.4 MBean persistence

	7.4 Understanding the Model MBean metadata
	7.4.1 Using descriptors
	7.4.2 Constructing a ModelMBeanInfoSupport object
	7.4.3 The ModelMBeanAttributeInfo class
	7.4.4 The ModelMBeanOperationInfo class
	7.4.5 The ModelMBeanConstructorInfo class
	7.4.6 The ModelMBeanNotificationInfo class

	7.5 Model MBeans in action
	7.5.1 Building ModelMBeanInfo objects
	7.5.2 Modeling with Model MBeans

	7.6 Summary

	Part 3 – The JMX agent and distributed layers
	Working with an MBean server
	8.1 JMX agent architecture in review
	8.1.1 Using protocol adapters and connectors

	8.2 The MBeanServer interface
	8.2.1 Registration methods
	8.2.2 Creation and registration methods
	8.2.3 Notification methods
	8.2.4 MBean manipulation
	8.2.5 MBean server information
	8.2.6 Other methods

	8.3 Querying for MBeans
	8.3.1 The MBeanServer query methods
	8.3.2 Creating query expressions
	8.3.3 Constructing examples

	8.4 Summary

	Communicating with JMX agents
	9.1 Comparing connectors and protocol adapters
	9.2 Connecting by using RMI
	9.2.1 Using the RMI connector
	9.2.2 Creating the RMI server MBean
	9.2.3 Connecting to the RMI server
	9.2.4 Additional uses for the RMI connector

	9.3 Connecting to agents using Jini
	9.3.1 Components of the Jini connector
	9.3.2 Writing the Jini connector
	9.3.3 Outstanding issues
	9.3.4 Testing the Jini connector

	9.4 JMX and SNMP
	9.4.1 What is SNMP?
	9.4.2 Using an SNMP protocol adapter

	9.5 Connecting by using a TCP adapter
	9.5.1 Writing the code
	9.5.2 Testing the TCP adapter

	9.6 Summary

	Advanced MBean loading
	10.1 Understanding the M-let service
	10.2 Using the M-let service
	10.2.1 Writing M-let files
	10.2.2 Examining the MLet MBean

	10.3 Using the M-let service to load MBeans
	10.3.1 Adding to the JMXBookAgent class
	10.3.2 Example: using an M-let file
	10.3.3 Example: expanding the agent’s codebase

	10.4 Wrapping the M-let service to provide notifications
	10.4.1 Writing the MLetNotification class
	10.4.2 Writing the MLetWrapper MBean
	10.4.3 Using the MLetWrapper MBean

	10.5 Summary

	Working with the relation service
	11.1 Using the JMX relation service
	11.1.1 Components of the relation service

	11.2 Using the relation service to manage a phone system
	11.2.1 Defining the scenario
	11.2.2 The phone system management example
	11.2.3 Defining an external relationship with an MBean

	11.3 Constructing the MBean relationship
	11.3.1 Creating the MBeans
	11.3.2 Defining the relation
	11.3.3 Creating the role objects
	11.3.4 Creating the Relation MBean
	11.3.5 Adding the relation service to the JMXBookAgent class
	11.3.6 Adding a new relation to the relation service
	11.3.7 The RelationMain main() method

	11.4 Running the example
	11.4.1 Viewing the MBeans
	11.4.2 Viewing exposed methods
	11.4.3 Disabling a phone card

	11.5 Summary

	More agent services: monitors and timers
	12.1 Monitoring MBean attributes with JMX
	12.1.1 The monitoring foundation
	12.1.2 Monitoring String values
	12.1.3 Monitoring a value range
	12.1.4 Monitoring a counted value

	12.2 Monitor examples
	12.2.1 Creating the example agent and MBean
	12.2.2 Testing the String monitor
	12.2.3 Testing the Gauge monitor
	12.2.4 Testing the Counter monitor

	12.3 Taking corrective measures
	12.4 Sending dated notifications: the timer service
	12.4.1 Examining the timer

	12.5 Using the timer service
	12.5.1 Testing the timer service

	12.6 Summary

	Part 4 – Using JMX with the J2EE platform
	Using JMX with the Java Message Service
	13.1 The Java Message Service
	13.2 Combining JMX with JMS
	13.3 Driving a home theater system
	13.3.1 Writing the example

	13.4 Running the example
	13.4.1 Starting and configuring the JBoss server
	13.4.2 Starting the agent and registering the MBean
	13.4.3 Running the debugger subscriber
	13.4.4 Publishing the control messages

	13.5 Summary

	Using JMX with Enterprise JavaBeans
	14.1 An EJB review
	14.1.1 The EJB model
	14.1.2 Why combine JMX with EJBs?
	14.1.3 Accessing enterprise data with JMX

	14.2 Example: managing user logins
	14.2.1 The problem
	14.2.2 The JMX solution

	14.3 Developing the login monitor
	14.3.1 Constructing the user information entity bean
	14.3.2 Constructing the user information management MBean
	14.3.3 Writing the user login client test class

	14.4 Running the Login Monitor
	14.4.1 Deploying your entity bean in the JBoss server
	14.4.2 Registering with the agent
	14.4.3 Counting user login attempts
	14.4.4 Removing login privileges

	14.5 Example: managing EJBs
	14.5.1 Constructing the workflow entity bean
	14.5.2 Constructing the WorkflowManager MBean
	14.5.3 Running the workflow manager
	14.5.4 Generating EJB managers

	14.6 Summary

	Open MBeans
	A.1 What is an Open MBean?
	A.2 Basic data types
	A.3 Creating more complex data structures
	A.3.1 The CompositeData interface
	A.3.2 The TabularData interface

	A.4 Describing Open MBean data types
	A.5 Open MBean metadata
	A.5.1 The OpenMBeanInfoSupport class
	A.5.2 The OpenMBeanOperationSupport and OpenMBeanConstructorSupport classes
	A.5.3 The OpenMBeanAttributeSupport and OpenMBeanParameterSupport classes

	A.6 Summary

	Using Ant
	B.1 Downloading and installing Ant
	B.2 Setting up the build file
	B.2.1 Compiling
	B.2.2 Cleaning

	index
	A
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

