Java"” Servlet Programming

vww allitebooks.cond

http://www.allitebooks.org

THE

JAVA.
SERIES

Exploring Java"
Java" Threads
Java" Network Programming
Java” Virtual Machine
Java” AWT Reference
Java"” Language Reference
Java” Fundamental Classes Reference
Database Programming with JDBC" and Java"
Java" Distributed Computing
Developing Java Beans"
Java® Security
Java” Cryptography
Java®" Swing

Java" Servlet Programming

Also from O’Reilly

Java” in a Nutshell
Java® in a Nutshell, Deluxe Edition

Java” Examples in a Nutshell

vww allitebooks.cond

http://www.allitebooks.org

Java Servlet Programming

Jason Hunter
with William Crawford

O’REILLY"

Beijing « Cambridge + Farnham « Kéln « Paris « Sebastopol « Taipei « Tokyo

vww allitebooks.cond

http://www.allitebooks.org

Java™ Serviet Programming
by Jason Hunter with William Crawford

Copyright © 1998 O’Reilly & Associates, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly & Associates, Inc., 101 Morris Street, Sebastopol, CA 95472.
Editor: Paula Ferguson

Production Editor: Paula Carroll

Editorial and Production Services: Benchmark Productions, Inc.

Printing History:
October 1998: First Edition

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered
trademarks and The Java™ Series is a trademark of O’Reilly & Associates, Inc. The association
of the image of a copper teakettle with the topic of Java™ Servlet programming is a trademark
of O’Reilly & Associates, Inc. Java™ and all Java-based trademarks and logos are trademarks
or registered trademarks of Sun Microsystems, Inc., in the United States and other countries.
O’Reilly & Associates, Inc. is independent of Sun Microsystems.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O’Reilly &
Associates, Inc. was aware of a trademark claim, the designations have been printed in caps
or initial caps.

While every precaution has been taken in the preparation of this book, the publisher assumes
no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

ISBN: 1-56592-391-X [1/00]
(M]

vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

PrOFACE ettt ix
L. IRErOdUCLION ... 1
History of Web APPIICAtIONSovveviiviiviiniiniiiiiiiiicneneeeeeeeeeneeeseens 1
SUPPOTL fOr SETVIELS .uviiuiiiiiniiiiiiciiiicic s 7
The Power Of SEIVIELScvviviviiriiniiniiiiiiicicc s 10

2. HTTP Servlet BASICSciciiieieicicieiesesesesssessassasesenns 14
HTTP BASICS wevvevvirriiiiiniiniinictiiiiiniiieieteseiesessesnese e eseeseesssssssssassssssessesnossonees 14
The ServIet APT ...ttt ne 17
Page GENETAtION ...cveieieieiicieieeetee ettt 19
Server-Side INCIUAESoveiiiiiiiiiiiiiiiiiitc e 27
Servlet Chaining and Filters ...t 30
JAVaSEIver PAges ... 37
MOVINE ON ittt b s es e snesnes 46

3. The Servlet Life Cycle ... 48
The Servlet AIteINALIVEcveierierierintintinieteieieeeeeeeeee e ene 48
Servlet Reloadingcoccuciciiiiiiiiniiiiiiciiiciic e 55
Init and DESLIOYcoviiiiiiiiiiiiiiciittr e 56
Single-Thread Model ...t 62
Background Processing ...t 64
Last Modified TImMEScoevveiiirininiiiiniiiiiiicnceeeneeseresesesseeeseesnesees 67

http://www.allitebooks.org

vi

TABLE OF CONTENTS

Retrieving INfOrmation ... cenecencncneeecseneeseesesseasenenans 70
Initialization Parameterscccceeveereeriiennieniiinienieiteneeneeeeeseeeseeseesssneenee 72
The SEIVET .utiviiiiiiiiiiiiiiiitcictrc ettt sas s e saesssenae 74
The CHENT eeieieeeeeieeeeeeeeee ettt st te st st e e seesee et eseesst e seeseesneenee 79
The REQUESE ..cviiiiiniiiiiiciictictitte e ene 84
Sending HTML INformation ... 124
The Structure of @ RESPONSEcoveuiiiiiiiiiiiiiicitiicccne 124
Sending a Normal ReSponseccocveiviiiiiiininininiciciccccennenns 125
Using Persistent CONNECHONScviviiriiniiiieieiinieninienineeeeeeeeene s 127
HTML GENETAON ..coviirriiriiiiiiiiiitenicnitiniesiesneesssesssessseesssesssessssesssessassnns 129
StALUS COAES envieeneirriieeeeiereeeeteereeete st et e tesee st eseessseseneesneessessneesneessesane 142
HTTP HEAECTS euvereiiiiiiiiiiiiiiiinieiitestenteiteneesit et e ssseesseessne st esaessnesnne 145
When Things Go WIONg ... 151
Sending Multimedia CONLENt ... 159
IMAZES et e 159
Compressed CONLENT ..c.eceiiiiiiiiniiniiiiiee e 188
Server PUSH ..couiiiiiiiiiiiiiiiiiiiiiticicr e 191
SeSSTON TrACKING ..ot 195
USer AULROTIZATION ..eeetieiiereiiereeriieeeteneeeeeeseesee st eseeesseseseesseesseesneesneesnesnne 196
Hidden Form Fields ...ttt seeeseesneene 197
L8 2 B A L0 T 200
PersiStent COOKIESceevieereerreereeeiereteneeesteesteeeesereeseessseseseesneessessneesneesnesnne 202
The Session Tracking APT ... 206
S@CUTILY oottt ettt et 221
HTTP AUthentiCationcoccevieniciniinicniiinienieineiieniesneessessesnsesssesssesns 222
Digital CertifiCatesccoovviivininiiniiniiiniccc s 232
Secure Sockets Layer (SSL) ...ooviviniiniiiieiiiiiininniieeecec s 234
Running Servlets SECUTELYcoviviiiiiiniiiiiiiiiiciccne 237
Database CONMECLIVILY ... aees 242
Relational Databasescccceeveeeverrerrienreerreenieerieneeeseeeseessseeseessseesneesneesssesnne 243

TRE JDBC AP ooorreeveeeeeeeeeeeeseeeeessssssessesssssssessssssssssessssssssssessssssssssssssssssn 246

http://www.allitebooks.org

TABLE OF CONTENTS vii

10.

11.

12.

13.

Reusing Database ODJectsovviviviiniiiiiieiiiicininiiccece s 259
TTANSACHONS «vovveuvenrenienieiieieitietieteetet ettt b b ss s e e ersereebeesebens 261
Advanced JDBC Techniques ...t 272
Applet-Servlet Communicationoivenencincunceennnnn. 277
Communication OPLONS ...ccevevirririiriiniiiieieieee e ereans 277
DAYtime SEIVET ..cueiiiviiiiiiiiiiiiiiciecc s 284
CRAL SEIVET viviiiiiiiicicc e 317
Interservlet COMMUNICALION ... 337
Servliet Manipulation ... 337
SETVIEt REUSE ..vovierinrirctieniciectcttttc e 342
Servlet CollabOTation ..ot 349
RECAP vttt e 363
Internationalization ... s 365
Western European Languagescooeviiniiiiniininnicniiicnecicncieneceene 366
Conforming to Local CUStOMSceeveueiereniiiiniititctiecetcencseteeeteseereeenenees 369
Non-Western European Languagesccoeeeeniieieniieienieneenieneeneneenienneens 371
Multiple Languagescccoceevvevueiiiniiniiniiniiicniiice e 376
Dynamic Language Negotiationcceceeieeieieeienenenieieieteieee e 379
HTML FOIMIS uviitiiiietieiintieieiectciecteteee ettt et ereeseese s s s sseesne s ese 389
Receiving Multilingual INput ..o 395
Odds and Ends ...t sssaenas 397
Parsing Parametersccocoeeieeiinienieieieietee e 397
Sending Email ... 401
Using Regular EXPressions ... 404
Executing Programs ...t 407
Using Native Methods ... 412
Acting as an RMI CHENL ...cuevieviiiiiniiiiiiiiiiiciciciencnc e 413
DEDUGEZING «overviiiiiiiiiiiiii s 415

http://www.allitebooks.org

viii TABLE OF CONTENTS
A. Servlet API Quick Reference ... eoeencnereeecncneeescenennes 425
B. HTTP Servlet API Quick Referenceeeecencneneeencnenn. 447
C. HTTP Status Codes ... senees 472
D. Character ENLILIES ... ssenees 478
El. CRATSELS .o 484

TUACX e 487

er Edition
Ul rights reserved.

http://www.allitebooks.org

Preface

In late 1996, Java on the server side was coming on strong. Several major software
vendors were marketing technologies specifically aimed at helping server-side Java
developers do their jobs more efficiently. Most of these products provided a pre
built infrastructure that could lift the developer’s attention from the raw socket
level into the more productive application level. For example, Netscape intro-
duced something it named “server-side applets”; the World Wide Web Consortium
included extensible modules called “resources” with its Java-based Jigsaw web
server; and with its WebSite server, O’Reilly Software promoted the use of a tech-
nology it (only coincidentally) dubbed “servlets.” The drawback: each of these
technologies was tied to a particular server and designed for very specific tasks.

Then, in early 1997, JavaSoft (a company that has since been reintegrated into Sun
Microsystems as the Java Software division) finalized Java servlets. This action
consolidated the scattered technologies into a single, standard, generic mecha-
nism for developing modular server-side Java code. Servlets were designed to work
with both Java-based and non-Java-based servers. Support for servlets has since
been implemented in nearly every web server, from Apache to Zeus, and in many
non-web servers as well.

Servlets have been quick to gain acceptance because, unlike many new technolo-
gies that must first explain the problem or task they were created to solve, servlets
are a clear solution to a well-recognized and widespread need: generating dynamic
web content. From corporations down to individual web programmers, people
who struggled with the maintenance and performance problems of CGI-based web
programming are turning to servlets for their power, portability, and efficiency.
Others, who were perhaps intimidated by CGI programming’s apparent reliance
on manual HTTP communication and the Perl and C languages, are looking to
servlets as a manageable first step into the world of web programming.

ix
er Edition
Ul rights reserved.

http://www.allitebooks.org

X PREFACE

This book explains everything you need to know about Java servlet programming.
The first five chapters cover the basics: what servlets are, what they do, and how
they work. The following eight chapters are where the true meat is—they explore
the things you are likely to do with servlets. You’ll find numerous examples, several
suggestions, a few warnings, and even a couple of true hacks that somehow made it
past technical review.

We cover Version 2.0 of the Servlet API, which was introduced as part of the Java
Web Server 1.1 in December 1997 and clarified by the release of the Java Servlet
Development Kit 2.0 in April 1998. Changes in the API from Version 1.0, finalized
in June 1997, are noted throughout the text.

Audience

Is this book for you? It is if you’re interested in extending the functionality of a
server—such as extending a web server to generate dynamic content. Specifically,
this book was written to help:

CGlI programmers
CGI is a popular but somewhat crude method of extending the functionality
of a web server. Servlets provide an elegant, efficient alternative.

NSAPI, ISAPI, ASP, and Server-Side JavaScript programmers
Each of these technologies can be used as a CGI alternative, but each has limi-
tations regarding portability, security, and/or performance. Servlets tend to
excel in each of these areas.

Java applet programmers
It has always been difficult for an applet to talk to a server. Servlets make it
easier by giving the applet an easy-to-connect-to, Java-based agent on the
server.

Authors of web pages with server-side includes
Pages that use server-side includes to call CGI programs can use <SERVLET>
tags to add content more efficiently to a page.

Authors of web pages with different appearances

By this we mean pages that must be available in different languages, have to be
converted for transmission over a low-bandwidth connection, or need to be
modified in some manner before they are sent to the client. Servlets provide
something called servlet chaining that can be used for processing of this type.
Each servlet in a servlet chain knows how to catch, process, and return a
specific kind of content. Thus, servlets can be linked together to do language
translation, change large color images to small black-and-white ones, convert
images in esoteric formats to standard GIF or JPEG images, or nearly anything
else you can think of.

http://www.allitebooks.org

PREFACE xi

What You Need to Know

When we first started writing this book, we found to our surprise that one of the
hardest things was determining what to assume about you, the reader. Are you
familiar with Java? Have you done CGI or other web application programming
before? Or are you getting your feet wet with servlets? Do you understand HTTP
and HTML, or do those acronyms seem perfectly interchangeable? No matter
what experience level we imagined, it was sure to be too simplistic for some and
too advanced for others.

In the end, this book was written with the notion that it should contain predomi-
nantly original material: it could leave out exhaustive descriptions of topics and
concepts that are well described online or in other books. Scattered throughout
the text, you’ll find several references to these external sources of information.

Of course, external references only get you so far. This book expects you are
comfortable with the Java programming language and basic object-oriented
programming techniques. If you are coming to servlets from another language, we
suggest you prepare yourself by reading a book on general Java programming,
such as Exploring Java, by Patrick Niemeyer and Joshua Peck (O’Reilly). You may
want to skim quickly the sections on applets and AWT (graphical) programming
and spend extra time on network and multithreaded programming. If you want to
get started with servlets right away and learn Java as you go, we suggest you read
this book with a copy of Java in a Nutshell, by David Flanagan (O’Reilly), or
another Java reference book, at your side.

This book does not assume you have extensive experience with web programming,
HTTP, and HTML. But neither does it provide a full introduction to or exhaus-
tive description of these technologies. We’ll cover the basics necessary for effective
servlet development and leave the finer points (such as a complete list of HTML
tags and HTTP 1.1 headers) to other sources.

About the Examples

In this book you’ll find nearly 100 servlet examples. The code for these servlets is
all contained within the text, but you may prefer to download the examples rather
than type them in by hand. You can find the code online and packaged for down-
load at http://www.oreilly.com/catalog/jserviet/. You can also see many of the servlets
in action at http://www.servlets.com.

All the examples have been tested using Sun’s Java Web Server 1.1.1, running in
the Java Virtual Machine (JVM) bundled with the Java Development Kit (JDK) 1.
1.5, on both Windows and Unix. A few examples require alternate configura-
tions, and this has been noted in the text. The Java Web Server is free for

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Xii PREFACE

education use and has a 30-day trial period for all other use. You can download a
copy from http://java.sun.com/products. The Java Development Kit is freely down-
loadable from http://java.sun.com/products/jdk or, for educational use, from Attp://
www.sun.com/products-n-solutions/edu/java/. The Java Servlet Development Kit
(JSDK) is available separately from the JDK; you can find it at http:// java.sun.com/
products/servlet/.

This book also contains a set of utility classes—they are used by the servlet exam-
ples, and you may find them helpful for your own general-purpose servlet
development. These classes are contained in the com.oreilly.servlet package.
Among other things, there are classes to help servlets parse parameters, handle file
uploads, generate multipart responses (server push), negotiate locales for interna-
tionalization, return files, manage socket connections, and act as RMI servers.
There’s even a class to help applets communicate with servlets. The source code
for the com.oreilly.servlet package is contained within the text; the latest
version is also available online (with javadoc documentation) from Attp://www.
oreilly.com/catalog/jservlet/ and hitp://www.servlets.com.

Organization
This book consists of 13 chapters and 5 appendices, as follows:

Chapter 1, Introduction
Explains the role and advantage of Java servlets in web application
development.

Chapter 2, HTTP Servlet Basics
Provides a quick introduction to the things an HTTP servlet can do: page
generation, server-side includes, servlet chaining, and JavaServer Pages.

Chapter 3, The Servlet Life Cycle
Explains the details of how and when a servlet is loaded, how and when it is
executed, how threads are managed, and how to handle the synchronization
issues in a multithreaded system. Persistent state capabilities are also covered.

Chapter 4, Retrieving Information
Introduces the most common methods a servlet uses to receive information—
about the client, the server, the client’s request, and itself.

Chapter b, Sending HTML Information
Describes how a servlet can generate HTML, return errors and other status
codes, redirect requests, write data to the server log, and send custom HTTP
header information.

Chapter 6, Sending Multimedia Content
Looks at some of the interesting things a servlet can return: dynamically
generated images, compressed content, and multipart responses.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

PREFACE Xiil

Chapter 7, Session Tracking
Shows how to build a sense of state on top of the stateless HI'TP protocol. The
first half of the chapter demonstrates the traditional session-tracking tech-
niques used by CGI developers; the second half shows how to use the built-in
support for session tracking in the Servlet API.

Chapter 8, Security
Explains the security issues involved with distributed computing and demon-
strates how to maintain security with servlets.

Chapter 9, Database Connectivity
Shows how servlets can be wused for high-performance web-database
connectivity.

Chapter 10, Applet-Serviet Commumnication
Describes how servlets can be of use to applet developers who need to commu-
nicate with the server.

Chapter 11, Interservlet Communication
Discusses why servlets need to communicate with each other and how it can be
accomplished.

Chapter 12, Internationalization
Shows how a servlet can generate multilingual content.

Chapter 13, Odds and Ends
Presents a junk drawer full of useful servlet examples and tips that don’t really
belong anywhere else.

Appendix A, Servlet API Quick Reference
Contains a full description of the classes, methods, and variables in the
javax.servlet package.

Appendix B, HT'TP Servlet API Quick Reference
Contains a full description of the classes, methods, and variables in the
javax.servlet.http package.

Appendix C, HTTP Status Codes
Lists the status codes specified by HTTP, along with the mnemonic constants
used by servlets.

Appendix D, Character Entities
Lists the character entities defined in HTML, along with their equivalent
Unicode escape values.

Appendix E, Charsets
Lists the suggested charsets servlets may use to generate content in several
different languages.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Xiv PREFACE

Please feel free to read the chapters of this book in whatever order you like.
Reading straight through from front to back ensures that you won’t encounter any
surprises, as efforts have been taken to avoid forward references. If you want to
skip around, however, you can do so easily enough, especially after Chapter 5—the
rest of the chapters all tend to stand alone. One last suggestion: read the “Debug-
ging” section of Chapter 13 if at any time you find a piece of code that doesn’t
work as expected.

Conventions Used in This Book

Italic is used for:

e Pathnames, filenames, and program names
* New terms where they are defined

e Internet addresses, such as domain names and URLs
Boldface is used for:

* Particular keys on a computer keyboard

e Names of user interface buttons and menus
Constant Width is used for:

* Anything that appears literally in a Java program, including keywords, data
types, constants, method names, variables, class names, and interface names

¢ Command lines and options that should be typed verbatim on the screen
e All Java code listings

e HTML documents, tags, and attributes
Constant Width Italic is used for:

* General placeholders that indicate that an item is replaced by some actual
value in your own program

Request for Comments

Please help us to improve future editions of this book by reporting any errors,
inaccuracies, bugs, misleading or confusing statements, and plain old typos that
you find anywhere in this book. Email your bug reports and comments to us at:
bookquestions@oreilly.com. (Before sending a bug report, however, you may want to
check for an errata list at http://www.oveilly.com/catalog/jserviet/ to see if the bug has
already been submitted.)

Please also let us know what we can do to make this book more useful to you. We
take your comments seriously and will try to incorporate reasonable suggestions
into future editions.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

PREFACE XV

Acknowledgments

The authors would like to say a big thank you to the book’s technical reviewers,
whose constructive criticism has done much to improve this work: Mike Slinn,
Mike Hogarth, James Duncan Davidson, Dan Pritchett, Dave McMurdie, and Rob
Clark. We’re still in shock that it took one reviewer just three days to read what
took us a full year to write!

Jason Hunter

In a sense, this book began March 20, 1997, at the Computer Literacy bookstore in
San Jose, California. There—after a hilarious talk by Larry Wall and Randall
Schwartz, where Larry explained how he manages to automate his house using
Perl—I met the esteemed Tim O’Reilly for the first time. I introduced myself and
brazenly told him that some day (far in the future, I thought) I had plans to write
an O’Reilly book. I felt like I was telling Steven Spielberg I planned to star in one
of his movies. To my complete and utter surprise, Tim replied, “On what topic?”
So began the roller coaster ride that resulted in this book.

There have been several high points I fondly remember: meeting my editor (cool,
she’s young, too!), signing the official contract (did you know that all of O’Reilly’s
official paper has animals on it?), writing the first sentence (over and over),
printing the first chapter (and having it look just like an O’Reilly book), and then
watching as the printouts piled higher and higher, until eventually there was
nothing more to write (well, except the acknowledgments).

There have been a fair number of trying times as well. At one point, when the
book was about half finished, I realized the Servlet API was changing faster than I
could keep up. I believe in the saying, “If at first you don’t succeed, ask for help,”
so after a quick talent search I asked William Crawford, who was already working
on Java Enterprise in a Nulshell, if he could help speed the book to completion. He
graciously agreed and in the end wrote two chapters, as well as portions of the
appendices.

There are many others who have helped in the writing of this book, both directly
and indirectly. I'd like to say thank you to Paula Ferguson, the book’s editor, and
Mike Loukides, the Java series editor, for their efforts to ensure (and improve) the
quality of this book. And to Tim O’Reilly for giving me the chance to fulfill a
dream.

Thanks also to my managers at Silicon Graphics, Kathy Tansill and Walt Johnson,
for providing me with more encouragement and flexibility than I had any right to
expect.

I can’t say thank you enough to the engineers at Sun who were tremendously
helpful in answering questions, keeping me updated on changes in the Servlet
API, and promptly fixing almost every bug I reported: James Duncan Davidson

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

XVi PREFACE

(who looks the spitting image of James Gosling), Jim Driscoll, Rob Clark, and Dave
Brownell.

Thanks also to the members of the jserv-interest mailing list, whose questions and
answers have shaped the content of this book; Will Ramey, an old friend who
didn’t let friendship blind his critical eye; Mike Engber, the man to whom I turned
when I had run out of elegant workarounds and was ready to accept the crazy
things he comes up with; Dave Vandegrift, the first person to read many of the
chapters; Bill Day, author of Java Media Players, who helped intangibly by going
through the book writing process in parallel with me; Michael O’Connell and Jill
Steinberg, editors at JavaWorld, where I did my first professional writing; Doug
Young, who shared with me the tricks he learned writing seven technical books of
his own; and Shoji Kuwabara, Mieko Aono, Song Yung, Matthew Kim, and Alex-
andr Pashintsev for their help translating “Hello World” for Chapter 12.

Finally, thanks to Mom and Dad, for their love and support and for the time they
spent long ago teaching me the basics of writing. And a special thanks to my girl-
friend, Kristi Taylor, who made the small time away from work a pleasure.

And Grandpa, I wish you could have seen this.

Jason Hunter
July 1998

William Crawford

First and foremost, thanks to Shelley Norton, Dr. Isaac Kohane, Dr. James Fackler,
and Dr. Richard Kitz (plus a supporting cast whose contributions were invalu-
able), whose assistance and early support have made everything since possible.
Also, to Martin Streeter of Invantage, Inc., for his support during this project.

Without Rob Leith, Roger Stacey, and Fred Strebeigh, I would probably still be
stuck in the passive voice. Dale Dougherty offered me money in exchange for
words, a twist of events that I still haven’t gotten over. Andy Kwak, Joel Pomerantz,
and Matthew Proto, brave souls all, were willing to read drafts and listen to
complaints at one o’clock in the morning.

And, of course, to Mom and Dad for their years of support, and to my sister Faith
for (usually) letting me get away with being a nerd.

William Crawford
July 1998

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

In this chapter:

* History of Web
Applications

* Support for Servlets

® The Power of Servlets

Introduction

The rise of server-side Java applications is one of the latest and most exciting
trends in Java programming. The Java language was originally intended for use in
small, embedded devices. It was first hyped as a language for developing elaborate
clientside web content in the form of applets. Until recently, Java’s potential as a
server-side development platform had been sadly overlooked. Now, Java is coming
into its own as a language ideally suited for server-side development.

Businesses in particular have been quick to recognize Java’s potential on the
server—Java is inherently suited for large client/server applications. The cross-
platform nature of Java is extremely useful for organizations that have a heteroge-
neous collection of servers running various flavors of the Unix and Windows
operating systems. Java’s modern, object-oriented, memory-protected design
allows developers to cut development cycles and increase reliability. In addition,
Java’s built-in support for networking and enterprise APIs provides access to legacy
data, easing the transition from older client/server systems.

Java servlets are a key component of server-side Java development. A servlet is a
small, pluggable extension to a server that enhances the server’s functionality.
Servlets allow developers to extend and customize any Java-enabled server—a web
server, a mail server, an application server, or any custom server—with a hitherto
unknown degree of portability, flexibility, and ease. But before we go into any
more detail, let’s put things into perspective.

History of Web Applications

While servlets can be used to extend the functionality of any Java-enabled server,
today they are most often used to extend web servers, providing a powerful, effi-
cient replacement for CGI scripts. When you use a servlet to create dynamic

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

2 CHAPTER 1: INTRODUCTION

content for a web page or otherwise extend the functionality of a web server, you
are in effect creating a web application. While a web page merely displays static
content and lets the user navigate through that content, a web application
provides a more interactive experience. A web application can be as simple as a
keyword search on a document archive or as complex as an electronic storefront.
Web applications are being deployed on the Internet and on corporate intranets
and extranets, where they have the potential to increase productivity and change
the way that companies, large and small, do business.

To understand the power of servlets, we need to step back and look at some of the
other approaches that can be used to create web applications.

Common Gateway Interface

The Common Gateway Interface, normally referred to as CGI, was one of the first
practical techniques for creating dynamic content. With CGI, a web server passes
certain requests to an external program. The output of this program is then sent
to the client in place of a static file. The advent of CGI made it possible to imple-
ment all sorts of new functionality in web pages, and CGI quickly became a de
facto standard, implemented on dozens of web servers.

It’s interesting to note that the ability of CGI programs to create dynamic web
pages is a side effect of its intended purpose: to define a standard method for an
information server to talk with external applications. This origin explains why CGI
has perhaps the worst life cycle imaginable. When a server receives a request that
accesses a CGI program, it must create a new process to run the CGI program and
then pass to it, via environment variables and standard input, every bit of informa-
tion that might be necessary to generate a response. Creating a process for every
such request requires time and significant server resources, which limits the
number of requests a server can handle concurrently. Figure 1-1 shows the CGI
life cycle.

(Gl-based Weh Server

Main Process

Request for (G1T—————»—o ———»| Child Process for CGI1 |
Request for (612 ——— — | Child Process for (612 }
Request for (GIT —————so ——»{ Child Process for (611

Figure 1-1. The CGI life cycle

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

HisTORY OF WEB APPLICATIONS 3

Even though a CGI program can be written in almost any language, the Perl
programming language has become the predominant choice. Its advanced text-
processing capabilities are a big help in managing the details of the CGI interface.
Writing a CGI script in Perl gives it a semblance of platform independence, but it
also requires that each request start a separate Perl interpreter, which takes even
more time and requires extra resources.

Another often-overlooked problem with CGI is that a CGI program cannot
interact with the web server or take advantage of the server’s abilities once it
begins execution because it is running in a separate process. For example, a CGI
script cannot write to the server’s log file.

For more information on CGI programming, see CGI Programming on the World
Wide Web by Shishir Gundavaram (O’Reilly).

FastCGI

A company named Open Market developed an alternative to standard CGI named
FastCGI. In many ways, FastCGI works just like CGI—the important difference is
that FastCGI creates a single persistent process for each FastCGI program, as
shown in Figure 1-2. This eliminates the need to create a new process for each
request.

FastCGl-based Web Server

Main Process
Request for (GIT ——————o -—————>{ Single Child Process for CGI1

Request for (612 ————

Request for CGI1 . e Single Child Process for (GI2

Figure 1-2. The FastCGI life cycle

Although FastCGI is a step in the right direction, it still has a problem with process
proliferation: there is at least one process for each FastCGI program. If a FastCGI
program is to handle concurrent requests, it needs a pool of processes, one per
request. Considering that each process may be executing a Perl interpreter, this
approach does not scale as well as you might hope. (Although, to its credit, FastCGI
can distribute its processes across multiple servers.) Another problem with FastCGI
is that it does nothing to help the FastCGI program more closely interact with the
server. As of this writing, the FastCGI approach has not been implemented by some

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

4 CHAPTER 1: INTRODUCTION

of the more popular servers, including Microsoft’s Internet Information Server.
Finally, FastCGI programs are only as portable as the language in which they’re
written.

For more information on FastCGlI, see http://www.fastcgi.com/.

mod_perl

If you are using the Apache web server, another option for improving CGI perfor-
mance is using mod_perl. mod_perl is a module for the Apache server that embeds a
copy of the Perl interpreter into the Apache httpd executable, providing complete
access to Perl functionality within Apache. The effect is that your CGI scripts are
precompiled by the server and executed without forking, thus running much
more quickly and efficiently. For more information on mod_perl, see http://perl.
apache.org/.

PerlEx

PerlEx, developed by ActiveState, improves the performance of CGI scripts written
in Perl that run on Windows NT web servers (Microsoft’s Internet Information
Server, O’Reilly’s WebSite Professional, and Netscape’s FastTrack Server and
Enterprise Server). PerlEx uses the web server’s native API to achieve its perfor-
mance gains. For more information, see hitp://www.activestate.com/plex/.

Other Solutions

CGI/Perl has the advantage of being a more-or-less platform-independent way to
produce dynamic web content. Other well-known technologies for creating web
applications, such as ASP and server-side JavaScript, are proprietary solutions that
work only with certain web servers.

Server Extension APIs

Several companies have created proprietary server extension APIs for their web
servers. For example, Netscape provides an internal API called NSAPI (now
becoming WAI) and Microsoft provides ISAPI. Using one of these APIs, you can
write server extensions that enhance or change the base functionality of the server,
allowing the server to handle tasks that were once relegated to external CGI
programs. As you can see in Figure 1-3, server extensions exist within the main
process of a web server.

Because server-specific APIs use linked C or C++ code, server extensions can run
extremely fast and make full use of the server’s resources. Server extensions,
however, are not a perfect solution by any means. Besides being difficult to
develop and maintain, they pose significant security and reliability hazards: a

er Edition
Ul rights reserved.

http://www.allitebooks.org

HisTORY OF WEB APPLICATIONS 5

Web Server with Server Extension API

Main Process
Request for

ServerExtension] ———> | ServerExtension]
Request for "

ServerExtension2 _

Request for - ServerExtension?2
ServerExtension]

Figure 1-3. The server extension life cycle

crashed server extension can bring down the entire server. And, of course, propri-
etary server extensions are inextricably tied to the server API for which they were
written—and often tied to a particular operating system as well.

Active Server Pages

Microsoft has developed a technique for generating dynamic web content called
Active Server Pages, or sometimes just ASP. With ASP, an HTML page on the web
server can contain snippets of embedded code (usually VBScript or JScript—
although it’s possible to use nearly any language). This code is read and executed
by the web server before it sends the page to the client. ASP is optimized for gener-
ating small portions of dynamic content.

Support for ASP is built into Microsoft Internet Information Server Version 3.0
and above, available for free from http://www.microsoft.com/iis. Support for other
web servers is available as a commercial product from ChililSoft at Attp://www.
chilisoft.com.

For more information on programming Active Server Pages, see http://www.
microsoft.com/workshop/server/default.asp and http://www.activeserverpages.com,.

Server-side JavaScript

Netscape too has a technique for server-side scripting, which it calls server-side
JavaScript, or SSJS for short. Like ASP, SSJS allows snippets of code to be
embedded in HTML pages to generate dynamic web content. The difference is
that SSJS uses JavaScript as the scripting language. With SSJS, web pages are
precompiled to improve performance.

Support for server-side JavaScript is available only with Netscape FastTrack Server
and Enterprise Server Version 2.0 and above.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

6 CHAPTER 1: INTRODUCTION

For more information on programming with server-side JavaScript, see http://
developer. netscape.com/tech/javascript/ssjs/ssjs. html.

Java Servlets

Enter Java servlets. As was said earlier, a servlet is a generic server extension—a
Java class that can be loaded dynamically to expand the functionality of a server.
Servlets are commonly used with web servers, where they can take the place of CGI
scripts. A servlet is similar to a proprietary server extension, except that it runs
inside a Java Virtual Machine (JVM) on the server (see Figure 1-4), so it is safe and
portable. Servlets operate solely within the domain of the server: unlike applets,
they do not require support for Java in the web browser.

Java Servlet-based Web Server
Main Process

VM
Request for Servletl ——— Troad

Request for Servlet? ———-. “V,,.--""'Thread

) T Serviet2
Request for Servlet] ———

Figure 1-4. The servlet life cycle

Unlike CGI and FastCGI, which use multiple processes to handle separate
programs and/or separate requests, servlets are all handled by separate threads
within the web server process. This means that servlets are also efficient and scal-
able. Because servlets run within the web server, they can interact very closely with
the server to do things that are not possible with CGI scripts.

Another advantage of servlets is that they are portable: both across operating
systems as we are used to with Java and also across web servers. As you’ll see
shortly, all of the major web servers support servlets. We believe that Java servlets
offer the best possible platform for web application development, and we’ll have
much more to say about this later in the chapter.

Although servlets are most commonly used as a replacement for CGI scripts on a
web server, they can extend any sort of server. Imagine, for example, a Java-based
FTP server that handles each command with a separate servlet. New commands
can be added by simply plugging in new servlets. Or, imagine a mail server that

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

SUPPORT FOR SERVLETS 7

allows servlets to extend its functionality, perhaps by performing a virus scan on all
attached documents or handling mail filtering tasks.

This book emphasizes the use of servlets as a replacement for CGI programs. We
believe that, at least in the near term, most servlet developers will design and
deploy servlets for use with HTTP servers. In the long term, however, other uses
are likely to catch on, so this book takes pains to point out what functionality is
applicable to generic servlets and what applies only to HTTP servlets. Whatever
you hope to do with servlets, this book can help you with your task.

Support for Servlets

Like Java itself, servlets were designed for portability. Servlets are supported on all
platforms that support Java, and servlets work with all the major web servers.” Java
servlets, as defined by the Java Software division of Sun Microsystems (formerly
known as JavaSoft), are the first standard extension to Java. This means that serv-
lets are officially blessed by Sun and are part of the Java language, but they are not
part of the core Java API. Therefore, although they may work with any Java Virtual
Machine (JVM), servlet classes need not be bundled with all JVMs. More informa-
tion about the Java Extension Framework is available at http//java.sun.com/
products/jdk/1.2/docs/guide/extensions.

To make it easy for you to develop servlets, Sun has made publicly available a set of
classes that provide basic servlet support. The javax.servlet and javax.
servlet.http packages constitute this Servlet API. Version 2.0 of these classes
comes bundled with the Java Servlet Development Kit (JSDK) for use with the Java
Development Kit version 1.1 and above; the JDSK is available for download from
hitp://java.sun.com/products/servlet/.t

Many web server vendors have incorporated these classes into their servers to
provide servlet support, and several have also provided additional functionality.
Sun’s Java Web Server, for instance, includes a proprietary interface to the server’s
security features.

It doesn’t much matter where you get the servlet classes, as long as you have them on
your system, since you need them to compile your servlets. In addition to the servlet
classes, you need a servlet engine, so that you can test and deploy your servlets. Your

* Note that several web server vendors have their own server-side Java implementations, some of which
have also been given the name “servlets”. These are generally incompatible with Java servlets as de-
fined by Sun. Most of these vendors are converting their Java support to standard servlets, or are in-
troducing standard servlet support in parallel, to allow backward compatibility.

1 At one point it was planned the contents of the JSDK would come bundled as part of JDK 1.2. How-
ever, it was later decided to keep the servlet classes separate from the JDK, to better allow for timely
revisions and corrections to the J[SDK.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

8 CHAPTER 1: INTRODUCTION

choice of servlet engine depends in part on the web server(s) you are running.
There are three flavors of servlet engines: standalone, add-on, and embeddable.

Standalone Servlet Engines

A standalone engine is a server that includes built-in support for servlets. Such an
engine has the advantage that everything works right out of the box. One disad-
vantage, however, is that you have to wait for a new release of the web server to get
the latest servlet support. Because servlets are still fairly new, this sort of server is
still a bit of a rarity. As the various vendors upgrade their web servers, we expect
that many of the servers will provide built-in support for servlets.

Standalone engines in web servers include the following:

* Sun’s Java Web Server (formerly called “Jeeves”), unofficially considered the
reference implementation for how a servlet engine should support servlets.
Written entirely in Java (except for two native code libraries that enhance its
functionality but are not needed). See http://java.sun.com/products/.

* The World Wide Web Consortium’s Jigsaw Server, freely available and also
written entirely in Java. See http://www.w3.o0rg/Jigsaw.

* O’Reilly’s WebSite Professional (Version 2.1 and later), the first server not
written in Java to provide built-in servlet support. See http://website.oreilly.com.

* Netscape’s Enterprise Server (Version 3.51 and later), the most popular web
server to provide builtin servlet support. Unfortunately, Version 3.51 sup-
ports only the early Servlet API 1.0 and suffers from a number of bugs so sig-
nificant it’s almost unusable. For the time being, use an add-on servlet engine
with Netscape servers instead. See http://home.netscape.com/download.

* Lotus’s Domino Go Webserver (Version 4.6 and later), another popular web
server with built-in servlet support. Version 4.6.x supports only the early Serv-
let API 1.0; however, Lotus claims to be replacing its proprietary GWAPI server
extension technology with Java servlets, so it’s likely that future versions of the
Domino Go Webserver will include robust servlet support. See http://www.
lotus.com/dominogowebserver/.

Application servers are a fertile new area of development. An application server
offers server-side support for developing enterprise-based applications. Here are
two application servers that include servlet engines:

* WebLogic’s Tengah Application Server, a high-end server written entirely in
Java. See http://www.weblogic.com/products/tengahindex. html.

¢ ATG’s Dynamo Application Server 3, another high-end server written entirely
in Java. See http://www.atg.com/.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

SUPPORT FOR SERVLETS 9

Add-on Servlet Engines

An add-on servlet engine functions as a plug-in to an existing server—it adds
servlet support to a server that was not originally designed with servlets in mind.
Add-on servlet engines have been written for many servers including Apache,
Netscape’s FastTrack Server and Enterprise Server, Microsoft’s Internet Informa-
tion Server and Personal Web Server, O’Reilly’s WebSite, Lotus Domino’s Go
Webserver, StarNine’s WebSTAR, and Apple’s AppleShare IP. This type of engine
acts as a stopgap solution until a future server release incorporates servlet support.
A plug-in also can be used with a server that provides a poor or outdated servlet
implementation.

Add-on servlet engines include these:

® The Java-Apache project’s JServ module, a freely available servlet engine that
adds servlet support to the extremely popular Apache server. See http://java.
apache.org/.

* Live Software’s JRun, a freely available plug-in designed to support the full
Servlet API on all the popular web servers on all the popular operating systems.
The latest version even features a basic web server for development purposes.
See http://www.livesoftware.com/products/jrun/.

e IBM’s WebSphere Application Server (formerly known as ServletExpress), a
plug-in that is being called an application server. It is designed to support the
full Servlet API on several popular web servers on several popular operating
systems. See http://www.software.ibm.com/webservers/.

¢ New Atlanta’s ServletExec, a plug-in designed to support the full Servlet API
on several web servers on several operating systems. See http://www.newatlanta.
com/.

® Gefion Software’s WAICoolRunner, a freely available plug-in that supports
most of the Servlet API on Netscape’s FastTrack Server and Enterprise Server
versions 3.x and later, written in Java using Netscape’s WAI interface. See
hitp://www.gefionsoftware.com/WAICoolRunner/.

¢ Unicom’s Servlet CGI Development Kit, a freely available framework that sup-
ports servlets on top of CGI. What it lacks in efficiency it makes up for in ubig-
uity. See http://www.unicom.net/java/.

Embeddable Servlet Engines

An embeddable engine is generally a lightweight servlet deployment platform that
can be embedded in another application. That application becomes the true
Server.

Embeddable servlet engines include the following:

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

10 CHAPTER 1: INTRODUCTION

* Sun’s JavaServer Engine, a high-quality, high-end framework for designing
and building Java servers. Sun’s Java Web Server and IBM’s WebSphere Appli-
cation Server were built using the Java Server Engine. See http://java.sun.com/
products/javaserverengine/.

¢ Jef Poskanzer’s Acme.Serve, a freely available, simple web server that runs serv-
lets “more or less compatible” with the Servlet APIL. See http://www.acme.com/
java/software/Package-Acme.Serve. html.

e Paralogic’s WebCore, a freely available but unsupported embeddable web
server, written entirely in Java. It incorporates parts of Acme.Serve. See http://
www.paralogic.com/webcore/.

* Anders Kristensen’s Nexus Web Server, a freely available servlet runner that
implements most of the Servlet API and can be easily embedded in Java appli-
cations. See http://www-uk.hpl.hp.com/people/ak/java/nexus/.

Additional Thoughts

Before proceeding, we feel obliged to point out that not all servlet engines are
created equal. So, before you choose a servlet engine (and possibly a server) with
which to deploy your servlets, take it out for a test drive. Kick its tires a little. Check
the mailing lists. Always verify that your servlets behave as they do in the Java Web
Server implementation. With servlets, you don’t have to worry about the lowest-
common-denominator implementation, so you should pick a servlet engine that
has the functionality that you want.

For a complete, up-to-date list of available servlet engines, see the official list main-
tained by Sun at:

http://jserv.java.sun.com/products/java-server/servlets/environments. html

The Power of Servlets

So far, we have portrayed servlets as an alternative to other dynamic web content
technologies, but we haven’t really explained why we think you should use them.
What makes servlets a viable choice for web development? We believe that servlets
offer a number of advantages over other approaches, including: portability, power,
efficiency, endurance, safety, elegance, integration, extensibility, and flexibility.
Let’s examine each in turn.

Portability

Because servlets are written in Java and conform to a well-defined and widely
accepted API, they are highly portable across operating systems and across server
implementations. You can develop a servlet on a Windows NT machine running

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE POWER OF SERVLETS 11

the Java Web Server and later deploy it effortlessly on a high-end Unix server
running Apache. With servlets, you can truly “write once, serve everywhere.”

Servlet portability is not the stumbling block it so often is with applets, for two
reasons. First, servlet portability is not mandatory. Unlike applets, which have to be
tested on all possible client platforms, servlets have to work only on the server
machines that you are using for development and deployment. Unless you are in
the business of selling your servlets, you don’t have to worry about complete porta-
bility. Second, servlets avoid the most error-prone and inconsistently implemented
portion of the Java language: the Abstract Windowing Toolkit (AWT) that forms
the basis of Java graphical user interfaces.

Power

Servlets can harness the full power of the core Java APIs: networking and URL
access, multithreading, image manipulation, data compression, database connec-
tivity, internationalization, remote method invocation (RMI), CORBA
connectivity, and object serialization, among others. If you want to write a web
application that allows employees to query a corporate legacy database, you can
take advantage of all of the Java Enterprise APIs in doing so. Or, if you need to
create a web-based directory lookup application, you can make use of the JNDI
APIL.

As a servlet author, you can also pick and choose from a plethora of third-party
Java classes and JavaBeans components. In the future, you’ll even be able to use
newly introduced Enterprise JavaBeans components. Today, servlets can use third-
party code to handle tasks such as regular expression searching, data charting,
advanced database access, and advanced networking.

Servlets are also well suited for enabling client/server communication. With a Java-
based applet and a Java-based servlet, you can use RMI and object serialization to
handle client/server communication, which means that you can leverage the same
custom code on the client as on the server. Using CGI for the same purpose is
much more complicated, as you have to develop your own custom protocol to
handle the communication.

Efficiency and Endurance

Servlet invocation is highly efficient. Once a servlet is loaded, it generally remains
in the server’s memory as a single object instance. Thereafter, the server invokes
the servlet to handle a request using a simple, lightweight method invocation.
Unlike with CGI, there’s no process to spawn or interpreter to invoke, so the
servlet can begin handling the request almost immediately. Multiple, concurrent
requests are handled by separate threads, so servlets are highly scalable.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

12 CHAPTER 1: INTRODUCTION

Servlets, in general, are naturally enduring objects. Because a servlet stays in the
server’s memory as a single object instance, it automatically maintains its state and
can hold on to external resources, such as database connections, that may other-
wise take several seconds to establish.

Safety

Servlets support safe programming practices on a number of levels. Because they
are written in Java, servlets inherit the strong type safety of the Java language. In
addition, the Servlet API is implemented to be type-safe. While most values in a
CGI program, including a numeric item like a server port number, are treated as
strings, values are manipulated by the Servlet API using their native types, so a
server port number is represented as an integer. Java’s automatic garbage collec-
tion and lack of pointers mean that servlets are generally safe from memory
management problems like dangling pointers, invalid pointer references, and
memory leaks.

Servlets can handle errors safely, due to Java’s exception-handling mechanism. If a
servlet divides by zero or performs some other illegal operation, it throws an
exception that can be safely caught and handled by the server, which can politely
log the error and apologize to the user. If a C++based server extension were to
make the same mistake, it could potentially crash the server.

A server can further protect itself from servlets through the use of a Java security
manager. A server can execute its servlets under the watch of a strict security
manager that, for example, enforces a security policy designed to prevent a mali-
cious or poorly written servlet from damaging the server file system.

Elegance

The elegance of servlet code is striking. Servlet code is clean, object oriented,
modular, and amazingly simple. One reason for this simplicity is the Servlet API
itself, which includes methods and classes to handle many of the routine chores of
servlet development. Even advanced operations, like cookie handling and session
tracking, are abstracted into convenient classes. A few more advanced but still
common tasks were left out of the API, and, in those places, we have tried to step
in and provide a set of helpful classes in the com.oreilly.servlet package.

Integration

Servlets are tightly integrated with the server. This integration allows a servlet to
cooperate with the server in ways that a CGI program cannot. For example, a
servlet can use the server to translate file paths, perform logging, check authoriza-
tion, perform MIME type mapping, and, in some cases, even add users to the

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE POWER OF SERVLETS 13

server’s user database. Server-specific extensions can do much of this, but the
process is usually much more complex and error-prone.

Extensibility and Flexibility

The Servlet API is designed to be easily extensible. As it stands today, the API
includes classes that are optimized for HTTP servlets. But at a later date, it could
be extended and optimized for another type of servlets, either by Sun or by a third
party. It is also possible that its support for HTTP servlets could be further
enhanced.

Servlets are also quite flexible. As you’ll see in the next chapter, an HTTP servlet
can be used to generate a complete web page; it can be added to a static page
using a <SERVLET> tag in what’s known as a server-side include; and it can be used
in cooperation with any number of other servlets to filter content in something
called a servlet chain. In addition, just before this book went to press, Sun intro-
duced JavaServer Pages, which offer a way to write snippets of servlet code directly
within a static HTML page, using a syntax that is curiously similar to Microsoft’s
Active Server Pages (ASP). Who knows what they (or you) will come up with next.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

In this chapter:
e HTTP Basics
® The Servlet API

* Page Generation

* Server-Side Includes

* Servlet Chaining and
Filters

* JavaServer Pages

* Moving On

HTTP Servlet Basics

This chapter provides a quick introduction to some of the things an HTTP servlet
can do. For example, an HTTP servlet can generate an HTML page, either when
the servlet is accessed explicitly by name, by following a hypertext link, or as the
result of a form submission. An HTTP servlet can also be embedded inside an
HTML page, where it functions as a server-side include. Servlets can be chained
together to produce complex effects—one common use of this technique is for
filtering content. Finally, snippets of servlet code can be embedded directly in
HTML pages using a new technique called JavaServer Pages.

Although the code for each of the examples in this chapter is available for down-
load (as described in the Preface), we would suggest that for these first examples
you deny yourself the convenience of the Internet and type in the examples. It
should help the concepts seep into your brain.

Don’t be alarmed if we seem to skim lightly over some topics in this chapter. Serv-
lets are powerful and, at times, complicated. The point here is to give you a
general overview of how things work, before jumping in and overwhelming you
with all of the details. By the end of this book, we promise that you’ll be able to
write servlets that do everything but make tea.

HTTP Basics

Before we can even show you a simple HTTP servlet, we need to make sure that
you have a basic understanding of how the protocol behind the Web, HTTP,
works. If you’re an experienced CGI programmer (or if you've done any serious
server-side web programming), you can safely skip this section. Better yet, you
might skim it to refresh your memory about the finer points of the GET and POST
methods. If you are new to the world of server-side web programming, however,

14

http://www.allitebooks.org

HTTP Basics 15

you should read this material carefully, as the rest of the book is going to assume
that you understand HTTP. For a more thorough discussion of HTTP and its
methods, see Web Client Programming by Clinton Wong (O’Reilly).

Requests, Responses, and Headers

HTTP is a simple, stateless protocol. A client, such as a web browser, makes a
request, the web server responds, and the transaction is done. When the client
sends a request, the first thing it specifies is an HTTP command, called a method,
that tells the server the type of action it wants performed. This first line of the
request also specifies the address of a document (a URL) and the version of the
HTTP protocol it is using. For example:

GET /intro.html HTTP/1.0

This request uses the GET method to ask for the document named intro.htm,
using HTTP Version 1.0. After sending the request, the client can send optional
header information to tell the server extra information about the request, such as
what software the client is running and what content types it understands. This
information doesn’t directly pertain to what was requested, but it could be used by
the server in generating its response. Here are some sample request headers:

User-Agent: Mozilla/4.0 (compatible; MSIE 4.0; Windows 95)
Accept: image/gif, image/jpeg, text/*, */*

The User-Agent header provides information about the client software, while the
Accept header specifies the media (MIME) types that the client prefers to accept.
(We’ll talk more about request headers in the context of servlets in Chapter 4,
Retrieving Information.) After the headers, the client sends a blank line, to indicate
the end of the header section. The client can also send additional data, if appro-
priate for the method being used, as it is with the POST method that we’ll discuss
shortly. If the request doesn’t send any data, it ends with an empty line.

After the client sends the request, the server processes it and sends back a
response. The first line of the response is a status line that specifies the version of
the HTTP protocol the server is using, a status code, and a description of the
status code. For example:

HTTP/1.0 200 OK

This status line includes a status code of 200, which indicates that the request was
successful, hence the description “OK”. Another common status code is 404, with
the description “Not Found”—as you can guess, this means that the requested
document was not found. Chapterb, Sending HTML Information, discusses
common status codes and how you can use them in servlets, while Appendix C,
HTTP Status Codes, provides a complete list of HTTP status codes.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

16 CHAPTER 2: HTTP SERVLET BASICS

After the status line, the server sends response headers that tell the client things
like what software the server is running and the content type of the server’s
response. For example:

Date: Saturday, 23-May-98 03:25:12 GMT

Server: JavaWebServer/1.1.1

MIME-version: 1.0

Content-type: text/html

Content-length: 1029

Last-modified: Thursday, 7-May-98 12:15:35 GMT

The Server header provides information about the server software, while the
Content-type header specifies the MIME type of the data included with the
response. (We’ll also talk more about response headers in Chapter 5.) The server
sends a blank line after the headers, to conclude the header section. If the request
was successful, the requested data is then sent as part of the response. Otherwise,
the response may contain human-readable data that explains why the server
couldn’t fulfill the request.

GLET and POST

When a client connects to a server and makes an HTTP request, the request can
be of several different types, called methods. The most frequently used methods
are GET and POST. Put simply, the GET method is designed for getting informa-
tion (a document, a chart, or the results from a database query), while the POST
method is designed for posting information (a credit card number, some new
chart data, or information that is to be stored in a database). To use a bulletin
board analogy, GET is for reading and POST is for tacking up new material.

The GET method, although it’s designed for reading information, can include as
part of the request some of its own information that better describes what to get—
such as an x, y scale for a dynamically created chart. This information is passed as a
sequence of characters appended to the request URL in what’s called a query string.
Placing the extra information in the URL in this way allows the page to be book-
marked or emailed like any other. Because GET requests theoretically shouldn’t
need to send large amounts of information, some servers limit the length of URLs
and query strings to about 240 characters.

The POST method uses a different technique to send information to the server
because in some cases it may need to send megabytes of information. A POST
request passes all its data, of unlimited length, directly over the socket connection
as part of its HTTP request body. The exchange is invisible to the client. The URL
doesn’t change at all. Consequently, POST requests cannot be bookmarked or
emailed or, in some cases, even reloaded. That’s by design—information sent to
the server, such as your credit card number, should be sent only once.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE SERVLET API 17

In practice, the use of GET and POST has strayed from the original intent. It’s
common for long parameterized requests for information to use POST instead of
GET to work around problems with overly-long URLs. It’s also common for simple
forms that upload information to use GET because, well—why not, it works!
Generally, this isn’t much of a problem. Just remember that GET requests,
because they can be bookmarked so easily, should not be allowed to cause damage
for which the client could be held responsible. In other words, GET requests
should not be used to place an order, update a database, or take an explicit client
action in any way.

Other Methods

In addition to GET and POST, there are several other lesser-used HTTP methods.
There’s the HEAD method, which is sent by a client when it wants to see only the
headers of the response, to determine the document’s size, modification time, or
general availability. There’s also PUT, to place documents directly on the server,
and DELETE, to do just the opposite. These last two aren’t widely supported due
to complicated policy issues. The TRACE method is used as a debugging aid—it
returns to the client the exact contents of its request. Finally, the OPTIONS
method can be used to ask the server which methods it supports or what options
are available for a particular resource on the server.

The Servlet API

Now that you have a basic understanding of HT'TP, we can move on and talk about
the Servlet API that you’ll be using to create HTTP servlets, or any kind of serv-
lets, for that matter. Servlets use classes and interfaces from two packages: javax.
servlet and javax.servlet.http. The javax.servlet package contains
classes to support generic, protocol-independent servlets. These classes are
extended by the classes in the javax.servlet.http package to add HTTP-
specific functionality. The top-level package name is javax instead of the familiar
java, to indicate that the Servlet API is a standard extension.

Every servlet must implement the javax.servlet.Servlet interface. Most serv-
lets implement it by extending one of two special classes: javax. servlet.
GenericServlet or javax.servlet.http.HttpServlet. A protocol-indepen-
dent servlet should subclass GenericServlet, while an HTTP servlet should
subclass HttpServlet, which is itself a subclass of GenericServlet with added
HTTP-specific functionality.

Unlike a regular Java program, and just like an applet, a servlet does not have a
main () method. Instead, certain methods of a servlet are invoked by the server in

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

18 CHAPTER 2: HTTP SERVLET BASICS

the process of handling requests. Each time the server dispatches a request to a
servlet, it invokes the servlet’s service () method.

A generic servlet should override its service() method to handle requests as
appropriate for the servlet. The service() method accepts two parameters: a
request object and a response object. The request object tells the servlet about the
request, while the response object is used to return a response. Figure 2-1 shows
how a generic servlet handles requests.

Server GenericServlet subdass

request —

response < \/

KEY: [implemented by subclass |

Figure 2-1. A generic servlet handling a request

In contrast, an HTTP servlet usually does not override the service() method.
Instead, it overrides doGet () to handle GET requests and doPost () to handle
POST requests. An HTTP servlet can override either or both of these methods,
depending on the type of requests it needs to handle. The service() method of
HttpServlet handles the setup and dispatching to all the doXXX() methods,
which is why it usually should not be overridden. Figure 2-2 shows how an HTTP
servlet handles GET and POST requests.

Web Server HttpServlet subdass
GET request —— -
FESPONSE <o
—y
POST request)
response yd
\/
KEY: - implemented by subclass |

Figure 2-2. An HTTP servlet handling GET and POST requests

Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

PAGE GENERATION 19

An HTTP servlet can override the doPut () and doDelete() methods to handle
PUT and DELETE requests, respectively. However, HTTP servlets generally don’t
touch doHead (), doTrace (), or doOptions (). For these, the default implemen-
tations are almost always sufficient.

The remainder in the javax.servlet and javax.servlet.http packages are
largely support classes. For example, the ServletRequest and ServletResponse
classes in javax.servlet provide access to generic server requests and
responses, while HttpServletRequest and HttpServletResponse in javax.
servlet.http provide access to HTTP requests and responses. The javax.
servlet.http package also contains an HttpSession class that provides built-in
session tracking functionality and a Cookie class that allows you to quickly set up
and process HTTP cookies.

Page Generation

The most basic type of HTTP servlet generates a full HTML page. Such a servlet
has access to the same information usually sent to a CGI script, plus a bit more. A
servlet that generates an HTML page can be used for all the tasks where CGI is
used currently, such as for processing HTML forms, producing reports from a
database, taking orders, checking identities, and so forth.

Writing Hello World

Example 2-1 shows an HTTP servlet that generates a complete HTML page. To
keep things as simple as possible, this servlet just says “Hello World” every time it is
accessed via a web browser.”

Example 2-1. A servlet that prints “Hello World”

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class HelloWorld extends HttpServlet {

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

res.setContentType ("text/html") ;
PrintWriter out = res.getWriter();

* Fun trivia: the first instance of a documented “Hello World” program appeared in A Tutorial Introduc-
tion to the Language B, written by Brian Kernighan in 1973. For those too young to remember, B was a
pre-cursor to C. You can find more information on the B programming language and a link to the tu-
torial at http://cm.bell-labs.com/who/dmr/bintro. html.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

20 CHAPTER 2: HTTP SERVLET BASICS

Example 2-1. A servlet that prints “Hello World” (continued)

out.println ("<HTML>") ;

out.println ("<HEAD><TITLE>Hello World</TITLE></HEAD>") ;
out.println("<BODY>") ;

out.println("<BIG>Hello World</BIG>") ;
out.println("</BODY></HTML>") ;

}

This servlet extends the HttpServlet class and overrides the doGet () method
inherited from it. Each time the web server receives a GET request for this servlet,
the server invokes this doGet () method, passing it an HttpServletRequest
object and an HttpServletResponse object.

The HttpServletRequest represents the client’s request. This object gives a
servlet access to information about the client, the parameters for this request, the
HTTP headers passed along with the request, and so forth. Chapter 4 explains the
full capabilities of the request object. For this example, we can completely ignore
it. After all, this servlet is going to say “Hello World” no matter what the request!

The HttpServletResponse represents the servlet’s response. A servlet can use
this object to return data to the client. This data can be of any content type,
though the type should be specified as part of the response. A servlet can also use
this object to set HTTP response headers. Chapter 5 and Chapter 6, Sending Multi-
media Content, explain everything a servlet can do as part of its response.

Our servlet first uses the setContentType () method of the response object to set
the content type of its response to “text/html”, the standard MIME content type
for HTML pages. Then, it uses the getWriter() method to retrieve a
PrintWriter, the internationalfriendly counterpart to a PrintStream
PrintWriter converts Java’s Unicode characters to a locale-specific encoding. For
an English locale, it behaves same as a PrintStream. Finally, the servlet uses this
PrintWriter to send its “Hello World” HTML to the client.

That’s it! That’s all the code needed to say hello to everyone who “surfs” to our
servlet.

Running Hello World

When developing servlets you need two things: the Servlet API class files, which are
used for compiling, and a servlet engine such as a web server, which is used for
deployment. To obtain the Servlet API class files, you have several options:

e Install the Java Servlet Development Kit (JSDK), available for free at http://java.
sun.com/products/servlet/. JSDK Version 2.0 contains the class files for the Serv-
let API 2.0, along with their source code and a simple web server that acts as a

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

PAGE GENERATION 21

servlet engine for HTTP servlets. It works with JDK 1.1 and later. (Note that
the JSDK is the Servlet API reference implementation, and as such its version
number determines the Servlet API version number.)

¢ Install one of the many full-featured servlet engines, each of which typically
bundles the Servlet API class files.

There are dozens of servlet engines available for servlet deployment, several of
which are listed in Chapter 1, Introduction. Why not use the servlet engine included
in JSDK 2.0? Because that servlet engine is bare-bones simple. It implements the
Servlet API 2.0 and nothing more. Features like robust session tracking, server-side
includes, servlet chaining, and JavaServer Pages have been left out because they
are technically not part of the Servlet API. For these features, you need to use a
full-fledged servlet engine like the Java Web Server or one of its competitors.

So, what do we do with our code to make it run in a web server? Well, it depends
on your web server. The examples in this book use Sun’s Java Web Server 1.1.1,
unofficially considered the reference implementation for how a web server should
support servlets. It’s free for educational use and has a 30-day trial period for all
other use. You can download a copy from http://java.sun.com/products or, for
educational use, hitp://www.sun.com/products-n-solutions/edu/java/. The Java Web
Server includes plenty of documentation explaining the use of the server, so while
we discuss the general concepts involved with managing the server, we’re leaving
the details to Sun’s documentation. If you choose to use another web server, these
examples should work for you, but we cannot make any guarantees.

If you are using the Java Web Server, you should put the source code for the
servlet in the server. root/servlets directory (where server. root is the directory
where you installed your server). This is the standard location for servlet class files.
Once you have the “Hello World” source code in the right location, you need to
compile it. The standard javac compiler (or your favorite graphical Java develop-
ment environment) can do the job. Just be sure you have the javax.servlet and
javax.servlet.http packages in your classpath. With the Java Web Server, all
you have to do is include server. root/lib/jws.jar (or a future equivalent) some-
where in your classpath.

Now that you have your first servlet compiled, there is nothing more to do but
start your server and access the servlet! Starting the server is easy. Look for the
hitpd script (or hittpd.exe program under Windows) in the server. root/bin direc-
tory. This should start your server if you’re running under Solaris or Windows. On
other operating systems, or if you want to use your own Java Runtime Environ-
ment (JRE), you’ll need to use Aitpd.nojre. In the default configuration, the server
listens on port 8080.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

22 CHAPTER 2: HTTP SERVLET BasIcs

There are several ways to access a servlet. For this example, we’ll do it by explicitly
accessing a URL with /servlet/ prepended to the servlet’s class name.” You can
enter this URL in your favorite browser: http://server:8080/serviet/HelloWorld.
Replace server with the name of your server machine or with localhost if the server
is on your local machine. You should see a page similar to the one shown in
Figure 2-3.

ello wWorld - Netscape

File Edit Wiew Go Communicator Help

Back Forward Reload Home Search Guide Frint Securty Stop
w!' Bookmarks LDCEtiDhZIhtl‘pi.-".-"|DC-E||"|DStZBUBU.-"SEI'WEUHE"DWDTH j

Hello World

=] | Document: Done
Figure 2-3. The Hello World servlet

If the servlet were part of a package, it would need to be placed in server. root/
servlets/package/name and referred to with the URL http://server:8080/ serviet/
package.name. HelloWorld.

An alternate way to refer to a servlet is by its registered name. This does not have to
be the same as its class name, although it can be. With the Java Web Server, you
register servlets via the JavaServer Administration Tool, an administration applet
that manages the server, usually available at hAttp://server:9090/. Choose to
manage the Web Service, go to the Servlets section, and then Add a new servlet.
Here you can specify the name of the new servlet and the class associated with that
name (on some servers the class can be an HTTP URL from which the servlet class
file will be automatically loaded). If we choose the name “hi” for our HelloWorld
servlet, we can then access it at the URL http://server:8080/servlet/hi. You may
wonder why anyone would bother adding a servlet to her server. The short answer
appropriate for Chapter 2 is that it allows the server to remember things about the
servlet and give it special treatment.

A third way to access a servlet is through a servlet alias. The URL of a servlet alias
looks like any other URL. The only difference is that the server has been told that
the URL should be handled by a particular servlet. For example, we can choose to
have http://server: 8080/ hello.html invoke the HelloWorld servlet. Using aliases in
this way can help hide a site’s use of servlets; it lets a servlet seamlessly replace an

* Beware, servlets are placed in a servlets (plural) directory but are invoked with a servlet (singular) tag.
If you think about it, this makes a certain amount of sense, as servlets go in the servlets directory while
a single servlet is referenced with the servlet tag.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

PAGE GENERATION 23

existing page at any given URL. To create a servlet alias, choose to manage the
Web Service, go to the Setup section, choose Servlet Aliases, and then Add the
alias.

Handling Form Data

The “Hello World” servlet is not very exciting, so let’s try something slightly more
ambitious. This time we’ll create a servlet that greets the user by name. It’s not
hard. First, we need an HTML form that asks the user for his or her name. The
following page should suffice:

<HTML>

<HEAD>

<TITLE>Introductions</TITLE>

</HEAD>

<BODY>

<FORM METHOD=GET ACTION="/servlet/Hello">
If you don't mind me asking, what is your name?
<INPUT TYPE=TEXT NAME="name"><P>

<INPUT TYPE=SUBMIT>

</FORM>

</BODY>

</HTML>

Figure 2-4 shows how this page appears to the user.

Introductions - Metscape

File Edit Wiew Go Communicator Help

2 2 A D s o & @

Back Forward Reload Home Search Guide Frint Securty Stop
J'Bnokmarks .15 anation:Ihttp:.n’.n’lnc:alhost:BEIBEI.n’fc-rm.html j

If you don't mind me asling, what 15 your name?

Submit Query |

=] | Document: Done
Figure 2-4. An HTML form

When the user submits this form, his name is sent to the Hello servlet because
we’ve set the ACTION attribute to point to the servlet. The form is using the GET
method, so any data is appended to the request URL as a query string. For
example, if the user enters the name “Inigo Montoya,” the request URL is Attp://
server:8080/servlet/Hello ?name=Inigo+Montoya. The space in the name is specially
encoded as a plus sign by the browser because URLs cannot contain spaces.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

24 CHAPTER 2: HTTP SERVLET BASICS

A servlet’s HttpServletRequest object gives it access to the form data in its query
string. Example 2-2 shows a modified version of our Hello servlet that uses its
request object to read the “name” parameter.

Example 2-2. A servlet that knows to whom it’s saying hello

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class Hello extends HttpServlet {

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

res.setContentType ("text/html") ;
PrintWriter out = res.getWriter();

String name = reqg.getParameter ("name") ;

out.println ("<HTML>") ;

out.println("<HEAD><TITLE>Hello, " + name + "</TITLE></HEAD>");
out.println("<BODY>") ;

out.println("Hello, " + name);

out.println("</BODY></HTML>") ;

public String getServletInfo() {
return "A servlet that knows the name of the person to whom it's" +
"saying hello";

This servlet is nearly identical to the HelloWorld servlet. The most important
change is that it now calls req.getParameter ("name") to find out the name of
the user and that it then prints this name instead of the harshly impersonal (not to
mention overly broad) “World”. The getParameter () method gives a servlet
access to the parameters in its query string. It returns the parameter’s decoded
value or null if the parameter was not specified. If the parameter was sent but
without a value, as in the case of an empty form field, getParameter () returns
the empty string.

This servlet also adds a getServletInfo() method. A servlet can override this
method to return descriptive information about itself, such as its purpose, author,
version, and/or copyright. It’s akin to an applet’s getAppletInfo (). The method
is used primarily for putting explanatory information into a web server administra-
tion tool. You’ll notice we won’t bother to include it in future examples because it
is clutter for learning.

er Edition
Ul rights reserved.

http://www.allitebooks.org

PAGE GENERATION 25

The servlet’s output looks something like what is shown in Figure 2-5.

ello. Inigo Montoya - Netscape

File Edit Wiew Go Communicator Help

2 2 A D} s o & @

Back Fonward Reload Home Seach Guide Frint Securty Stop
w!' Bookmarks \eﬁ_ anation:|http:.n’.n’lncalhost:BEIBEI.n’servIet.f'Hello?name=lnigo+Montoya j

Hello, Inigo Montoya

=] |Document: Done
Figure 2-5. The Hello servlet using form data

Handling POST Requests

You’ve now seen two servlets that implement the doGet () method. Now let’s
change our Hello servlet so that it can handle POST requests as well. Because we
want the same behavior with POST as we had for GET, we can simply dispatch all
POST requests to the doGet () method with the following code:

public void doPost (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
doGet (req, res);

}
Now the Hello servlet can handle form submissions that use the POST method:
<FORM METHOD=POST ACTION="/servlet/Hello">

In general, it is best if a servlet implements either doGet () or doPost (). Deciding
which to implement depends on what sort of requests the servlet needs to be able
to handle, as discussed earlier. The code you write to implement the methods is
almost identical. The major difference is that doPost () has the added ability to
accept large amounts of input.

You may be wondering what would have happened had the Hello servlet been
accessed with a POST request before we implemented doPost (). The default
behavior inherited from HttpServlet for both doGet () and doPost() is to
return an error to the client saying the requested URL does not support that
method.

Handling HEAD Requests

A bit of under-the-covers magic makes it trivial to handle HEAD requests (sent by a
client when it wants to see only the headers of the response). There is no

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

26 CHAPTER 2: HTTP SERVLET BASICS

doHead () method to write. Any servlet that subclasses HttpServlet and imple-
ments the doGet () method automatically supports HEAD requests.

Here’s how it works. The service() method of the HttpServlet identifies
HEAD requests and treats them specially. It constructs a modified
HttpServletResponse object and passes it, along with an unchanged request, to
the doGet () method. The doGet () method proceeds as normal, but only the
headers it sets are returned to the client. The special response object effectively
suppresses all body output.” Figure 2-6 shows how an HTTP servlet handles HEAD
requests.

Web Server HttpServlet subclass

GET request ——————
(L P ——

POST request
resp%nse - S

HEAD request //
response « S
KEY: [implemented by subelass |

Body suppressed

Figure 2-6. An HT'TP servlet handling a HEAD request

Although this strategy is convenient, you can sometimes improve performance by
detecting HEAD requests in the doGet () method, so that it can return early,
before wasting cycles writing output that no one will see. Example 2-3 uses the
request’s getMethod () method to implement this strategy (more properly called
a hack) in our Hello servlet.

Example 2-3. The Hello servlet modified to return quickly in response to HEAD requests

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class Hello extends HttpServlet {

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

// Set the Content-Type header
res.setContentType ("text/html") ;

* Jason is proud to report that Sun added this feature in response to comments he made during beta
testing.

Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

SERVER-SIDE INCLUDES 27

Example 2-3. The Hello servlet modified to return quickly in response to HEAD requests (continued)

// Return early if this is a HEAD
if (reqg.getMethod().equals("HEAD")) return;

// Proceed otherwise

PrintWriter out = res.getWriter();

String name = reqg.getParameter ("name") ;

out.println ("<HTML>") ;

out.println("<HEAD><TITLE>Hello, " + name + "</TITLE></HEAD>");
out.println("<BODY>") ;

out.println("Hello, " + name);

out.println("</BODY></HTML>") ;

}

Notice that we set the Content-Type header, even if we are dealing with a HEAD
request. Headers such as these are returned to the client. Some header values,
such as Content-Length, may not be available until the response has already
been calculated. If you want to be accurate in returning these header values, the
effectiveness of this shortcut is limited.

Make sure that you end the request handling with a return statement. Do not call
System.exit (). If you do, you risk exiting the web server.

Server-Side Includes

All the servlets you've seen so far generate full HTML pages. If this were all that
servlets could do, it would still be plenty. Servlets, however, can also be embedded
inside HTML pages with something called server-side include (SSI) functionality.

In many servers that support servlets, a page can be preprocessed by the server to
include output from servlets at certain points inside the page. The tags used for a
server-side include look similar to those used for applets:*

<SERVLET CODE=ServletName CODEBASE=http://server:port/dir
initParaml=initValuel initParam2=initValue2>
<PARAM NAME=paraml VALUE=valuel>
<PARAM NAME=param2 VALUE=value2>
If you see this text, it means that the web server
providing this page does not support the SERVLET tag.
</SERVLET>

* Currently, the <SERVLET> tag syntax varies across server implementations. This section describes the
syntax appropriate for the Java Web Server.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

28 CHAPTER 2: HTTP SERVLET BASICS

The CODE attribute specifies the class name or registered name of the servlet to
invoke. The CODEBASE attribute is optional. It can refer to a remote location from
which the servlet should be loaded. Without a CODEBASE attribute, the servlet is
assumed to be local.

Any number of parameters may be passed to the servlet using the <PARAM> tag.
The servlet can retrieve the parameter values using the getParameter () method
of ServletRequest. Any number of initialization (init) parameters may also be
passed to the servlet appended to the end of the <SERVLET> tag. We’ll cover init
parameters in Chapter 3, The Serviet Life Cycle.

A server that supports SSI detects the <SERVLET> tag in the process of returning
the page and substitutes in its place the output from the servlet (as shown in
Figure 2-7). The server does not parse every page it returns, just those that are
specially tagged. The Java Web Server, by default, parses only pages with an .shtml
extension. Note that with the <SERVLET> tag, unlike the <APPLET> tag, the client
browser never sees anything between <SERVLET> and </SERVLET>—unless the
server does not support SSI, in which case the client receives the content, ignores
the unrecognized tags, and displays the descriptive text.

shiml file

Web Server <HTML>
<HEAD>

request ——— > < HEAD>

—
<BODY> Servlet]
.), |

response < <SERVLET CODE=Servletl>
J </SERVLET>

</BODY>
</HTML>

Figure 2-7. Server-side include expansion

Writing a Server-Side Include

Server-side includes are useful when a page is primarily static but contains a few
distinct dynamic portions. For a simple example, let’s assume we have several
pages that need to display the current time. As an extra challenge, let’s assume
that sometimes we need the current time in time zones other than our own.

The problem is easy with server-side includes. Each page can be written as a static
HTML page with one or more SSI directives that call Java code to provide the

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

SERVER-SIDE INCLUDES 29

times. The HTML could look something like this, saved to a file with an .shtml
extension:

<HTML>
<HEAD><TITLE>Times!</TITLE></HEAD>
<BODY>

The current time here is:

<SERVLET CODE=CurrentTime>
</SERVLET>

<P>

The current time in London is:
<SERVLET CODE=CurrentTime>

<PARAM NAME=zone VALUE=GMT>
</SERVLET>

<pP>

And the current time in New York is:
<SERVLET CODE=CurrentTime>

<PARAM NAME=zone VALUE=EST>
</SERVLET>

<P>

</BODY>

</HTML>

The servlet named CurrentTime can be plugged into any page that needs a time
display. The name can be either the servlet’s class name or its registered name.
The servlet code is shown in Example 2-4.

Example 2-4. A server-side include that prints the current time

import java.io.*;

import java.text.*;

import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;

public class CurrentTime extends HttpServlet ({

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

PrintWriter out = res.getWriter();

Date date = new Date();
DateFormat df = DateFormat.getInstance();

String zone = req.getParameter ("zone") ;

if (zone != null) {
TimeZone tz = TimeZone.getTimeZone (zone) ;
df .setTimeZone (tz) ;

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

30 CHAPTER 2: HTTP SERVLET BASICS

Example 2-4. A server-side include that prints the current time (continued)

out.println(df.format (date)) ;

}

The CurrentTime servlet looks strikingly similar to the Hello servlet. This is not a
coincidence. There is no real difference between a servlet that handles full-page
GET requests and one that is embedded in a page, except that embedded servlets
have limited response capabilities. For example, an embedded servlet cannot set
HTTP headers.

The only method CurrentTime implements is the doGet () method. All SSI serv-
lets use either doGet () or service() to handle requests. Inside the method, the
servlet first retrieves its PrintWriter.” This early retrieval is perhaps unnecessary;
it could be retrieved as late as the next to last line. Still, we recommend fetching it
first thing. It will save time later when you find you need to begin sending output
sooner than you expected.

Then the servlet gets the current Date and a DateFormat instance with which to
display the time. This servlet’s ability to hop time zones is based on functionality in
DateFormat. The servlet simply tells the DateFormat which time zone to use, and
the date is displayed appropriately.

The time zone is specified by the <PARAM> tag in the HTML file. The servlet gains
access to this parameter with the getParameter() method of
HttpServletRequest. This technique is identical to the one we used to retrieve
form data. The servlet uses the value of the “zone” parameter to create a
TimeZone object that can be passed to the DateFormat object. If the “zone”
parameter is not specified, as is the case with the first SSI example on our page,
getParameter () returns null and the DateFormat uses the default time zone.
Finally, the servlet outputs the String created when the DateFormat object
formats the current date. The output of the HTML page is shown in Figure 2-8.

Servlet Chaining and Filters

Now you’ve seen how an individual servlet can create content by generating a full
page or by being used in a server-side include. Servlets can also cooperate to create
content in a process called servlet chaining.

* The Java Web Server 1.1.1 has a bug where the PrintWriter returned by the getWriter () method
of ServletRequest does not generate output for a servlet used as a server side include. This means
that to run the SSI examples shown in the book you need to use another servlet engine; or you can
change the examples to manually create a PrintWriter as follows: PrintWriter out = new Print
Writer (res.getOutputStream(), true);

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

SERVLET CHAINING AND FILTERS 31

File Edit “iew Go Communicator

2 » A H 2 £ S &£

Back Fomward Reload Home Search Guide Print Security Stop

The current time here is; 6/8,/98 6,00 FPI

The current time in London is: /9798 1:00 Al

And the current time in New York is: £/8/98 S:00 Flv

i

Figure 2-8. At the beep the current time will be...

In many servers that support servlets, a request can be handled by a sequence of
servlets. The request from the client browser is sent to the first servlet in the chain.
The response from the last servlet in the chain is returned to the browser. In
between, the output from each servlet is passed (piped) as input to the next
servlet, so each servlet in the chain has the option to change or extend the
content, as shown in Figure 2-9.*

There are two common ways to trigger a chain of servlets for an incoming request.
First, you can tell the server that certain URLs should be handled by an explicitly
specified chain. Or, you can tell the server to send all output of a particular
content type through a specified servlet before it is returned to the client, effec-
tively creating a chain on the fly. When a servlet converts one type of content into
another, the technique is called filtering.

Servlet chaining can change the way you think about web content creation. Here
are some of the things you can do with it:

Quickly change the appearance of a page, a group of pages, or a type of content.
For example, you can improve your site by suppressing all <BLINK> tags from
the pages of your server, as shown in the next example. You can speak to those
who don’t understand English by dynamically translating the text from your
pages to the language read by the client. You can suppress certain words that
you don’t want everyone to read, be they the seven dirty words or words not

* A web server could implement servlet chaining differently than described here. There is no reason
the initial content must come from a servlet. It could come from a static file fetched with built-in server
code or even from a CGI script. The Java Web Server does not have to make this distinction because
all its requests are handled by servlets.

Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

32

CHAPTER 2: HTTP SERVLET BASICS

Web Server
requesf —— » Servletl
'
Servlet2
v
response <—— Servlet3

Figure 2-9. Servlet chaining

everyone knows already, like the unreleased name of your secret project. You
could also suppress entire pages in which these words appear. You can
enhance certain words on your site, so that an online news magazine could
have a servlet detect the name of any Fortune 1000 companies and automati-
cally make each company name a link to its home page.

Take a kernel of content and display it in special formats.

For example, you can embed custom tags in your page and have a servlet
replace them with HTML content. Imagine an <SQL> tag whose query
contents are executed against a database and whose results are placed in an
HTML table. This is, in fact, similar to how the Java Web Server supports the
<SERVLET> tag.

Support esoteric data types.

For example, you can serve unsupported image types with a filter that converts
nonstandard image types to GIF or JPEG.

You may be asking yourself, why you would want to use a servlet chain when you

could instead write a script that edits the files in place—especially when there is an

additional amount of overhead for each servlet involved in handling a request?
The answer is that servlet chains have a threefold advantage:

They can easily be undone, so when users riot against your tyranny of remov-
ing their <BLINK> freedom, you can quickly reverse the change and appease
the masses.

They handle dynamically created content, so you can trust that your restric-
tions are maintained, your special tags are replaced, and your dynamically
converted PostScript images are properly displayed, even in the output of a
servlet (or a CGI script).

They handle the content of the future, so you don’t have to run your script
every time new content is added.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

SERVLET CHAINING AND FILTERS 33

Creating a Servlet Chain

Our first servlet chain example removes <BLINK> tags from HTML pages. If you're
not familiar with the <BLINK> tag, be thankful. It is a tag recognized by many
browsers in which any text between the <BLINK> and </BLINK> tags becomes a
flashing distraction. Sure, it’s a useful feature when used sparingly. The problem is
that many page authors use it far too often. It has become the joke of HTML.

Example 2-5 shows a servlet that can be used in a servlet chain to remove the
<BLINK> tag from all of our server’s static HTML pages, all its dynamically created
HTML pages, and all the pages added to it in the future. This servlet introduces
the getReader () and getContentType () methods.

Example 2-5. A servlet that removes the <BLINK> tag from HTML pages

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class Deblink extends HttpServlet {

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

String contentType = req.getContentType(); // get the incoming type
if (contentType == null) return; // nothing incoming, nothing to do
res.setContentType (contentType); // set outgoing type to be incoming type

PrintWriter out = res.getWriter();
BufferedReader in = reqg.getReader () ;

String line = null;

while ((line = in.readLine()) != null) {
line = replace(line, "<BLINK>", "");
line = replace(line, "</BLINK>", "");
out.println(line);

public void doPost (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
doGet (req, res);

private String replace(String line, String oldString, String newString) {
int index = 0;
while ((index = line.indexOf (0ldString, index)) >= 0) {
// Replace the old string with the new string (inefficiently)

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

34 CHAPTER 2: HTTP SERVLET BASICS

Example 2-5. A servlet that vemoves the <BLINK> tag from HTML pages (continued)

line = line.substring(0, index) +
newString +
line.substring(index + oldString.length());
index += newString.length();
}

return line;

}

This servlet overrides both the doGet () and doPost () methods. This allows it to
work in chains that handle either type of request. The doGet () method contains
the core logic, while doPost () simply dispatches to doGet (), using the same tech-
nique as the Hello example.

Inside doGet (), the servlet first fetches its print writer. Next, the servlet calls req.
getContentType () to find out the content type of the data it is receiving. It sets
its output type to match, or if getContentType () returned null, it realizes there
is no incoming data to deblink and simply returns. To read the incoming data, the
servlet fetches a BufferedReader with a call to req.getReader (). The reader
contains the HTML output from the previous servlet in the chain. As the servlet
reads each line, it removes any instance of <BLINK> or </BLINK> with a call to
replace() and then returns the line to the client (or perhaps to another servlet
in the chain). Note that the replacement is case-sensitive and inefficient; a solu-
tion to this problem that uses regular expressions is included in Chapter 13, Odds
and Ends.

A more robust version of this servlet would retrieve the incoming HTTP headers
and pass on the appropriate headers to the client (or to the next servlet in the
chain). Chapter 4 and Chapter 5 explain the handling and use of HTTP headers.
There’s no need to worry about it now, as the headers aren’t useful for simple
tasks like the one we are doing here.

Running Deblink

If you're using the Java Web Server, before running Deblink you have to first tell
the web server you want servlet chains enabled. Go to managing the Web Service,
go to the Setup section, select Site, and then select Options. Here you can turn
servlet chaining on. By default it’s turned off to improve performance.

As we said before, there are two ways to trigger a servlet chain. A chain can be
explicitly specified for certain requests, or it can be created on the fly when one
servlet returns a content type that another servlet is registered to handle. We’ll use
both techniques to run Deblink.

er Edition
Ul rights reserved.

http://www.allitebooks.org

SERVLET CHAINING AND FILTERS 35

First, we’ll explicitly specify that all files with a name matching the wildcard
pattern *html should be handled by the file servlet followed by the Deblink
servlet. The file servlet is a core Java Web Server servlet used to retrieve files.
Normally it is the only servlet invoked to return an HTML file. But here, we’re
going to pass its output to Deblink before returning the HTML to the client. Go
back to managing the Web Service, go to the Setup section, and select Servlet
Aliases. Here you will see which servlets are invoked for different kinds of URLs, as
shown in Figure 2-10.

Fife Edit View Go Bookmarks Options Directory Window Help

|Back” Fol

g

:ﬂ||:i:\,.:‘::| |Re\oad||_oad \mages”Open.‘.”Prinl.””Find.”|

Location: | http://localhost: 9898/

. Setup Moritor | Security | Servlets Help
JAVA
A Setup [Alias f
Network oy
e]
sie
Service Tunin "isp
Services Status ‘Pm’t |Ne 4 o
File Aliases shoml ssinclude
3 Java Weh Server Runining Servlet Aliases i tile
LG8 Web Service Running ilhi) Virtual Hosts P T
Lgs Web 8 Mot Runnin 7070
E:Pe:ures eh Service NmRunmng fhts MIME Types iog-bin ca
roxy Service Log Files
4 S H feounter.html counter
access E
agent {fdate.txt dateserdet B
ermor fimagemap imagemap
avent Noganalyzer logenalyzer
referer ‘phone.homl phone
pserviet himnl pserviet
servlet invoker
fsession hrml session
ienoop.hunl snosp =
‘ Manage I | Restart I ‘ Stop
| Add I | Modify I | Remove I ‘ Save I ‘ I
n
s s
melUnsigned Java Applet Window
= e =

Figure 2-10. Standard servlet aliases

These mappings provide some insight into how the Java Web Server uses its core
servlets. You can see / invokes file, *.shiml invokes ssinclude, and /servlet
invokes invoker. The most specific wildcard pattern is used, which is why /servlet
uses the invoker servlet to launch a servlet instead of using the file servlet to
return a file. You can change the default aliases or add new aliases. For example,
changing the /servlet prefix would change the URL used to access servlets. Right
now, we’re interested in adding another alias. You should add an alias that speci-
fies that * html invokes file, Deblink. After making this change, any file ending
in .html is retrieved by the file servlet and passed to Deblink.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

36 CHAPTER 2: HTTP SERVLET BASICS

Try it yourself. Create a blinky.html file in server. root/public_html that is sprin-
kled with a few blink tags and try surfing to hitp://server:8080/blinky.himl. If
everything’s set up right, all evidence of the blink tags is removed.

The Loophole

This technique has one large loophole: not all HTML comes from files with the .
html extension. For example, HTML can come from a file with the .A¢m extension
or from some dynamically created HTML. We can work around multiple file
extensions with more aliases. This, however, still doesn’t catch dynamic content.
We need our second technique for creating a servlet chain to plug that hole.

We really want to specify that all text/html content should pass through the
Deblink servlet. The JavaServer Administration Tool does not yet include a graph-
ical way to do this. Instead, we can make the change with a simple edit of a
properties file. The properties file can be found at server. root/properties/server/
Jjavawebserver/webpageservice/mimeservlets. properties. It contains directives like this:

java-internal /parsed-html=ssinclude

This directive indicates that all responses with a Content-Type header of java-
internal /parsed-html should be passed to the ssinclude (server-side include)
servlet. Why is this necessary? Without it, the ssinclude servlet would handle only
static files with the .shtml extension. It would suffer from the same loophole:
dynamically created pages containing the <SERVLET> tag would be ignored. With
this directive, any servlet can set its content type to java-internal/parsed-
html, which causes the ssinclude servlet to handle its output.

To specify that all text/html content is passed through Deblink, we need to add
our own directive:

text/html=Deblink
You need to restart your server before this change can take effect.

After making this change, all HTML content served by the server has its <BLINK>
tags removed.” Try it yourself! Change your HelloWorld servlet to <BLINK> its
message and watch the Deblink servlet silently remove all evidence of the deed.

* Unfortunately, some servers (including the Java Web Server 1.1.1) have a bug where they are too smart
for their own good. They literally feed all text/html content to the Deblink servlet—even the text/
html content being output by the Deblink servlet itself! In other words, every HTML page is de-
blinked forever (or until the client stops the request, whichever comes first).

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

JAVASERVER PAGES 37

JavaServer Pages

Just as this book was going to press, Sun announced a new way to use servlets,
called JavaServer Pages (commonly, but not officially, referred to as JSP). JSP’s
functionality and syntax bear a remarkable resemblance to Active Server Pages
(ASP).

JSP operates in many ways like server-side includes. The main difference is that
instead of embedding a <SERVLET> tag in an HTML page, JSP embeds actual snip-
pets of servlet code. It’s an attempt by Sun to separate content from presentation,
more convenient than server-side includes for pages that have chunks of dynamic
content intermingled with static content in several different places.

Just like server-side includes and servlet chaining, JSP doesn’t require any changes
to the Servlet API. But it does require special support in your web server. This
support is not included in the Java Web Server 1.1.1 (the unofficially considered
reference servlet engine against which this book is written), but it’s expected to be
introduced in the next version of the Java Web Server, probably 1.2, and in other
servlet engines as they keep pace.

Note that the following tutorial is based on the JavaServer Pages draft specifica-
tion, version 0.91. You may notice small changes in the final specification.

Using JavaServer Pages

At its most basic, JSP allows for the direct insertion of servlet code into an other-
wise static HTML file. Each block of servlet code (called a scriptlet) is surrounded
by a leading <% tag and a closing %> tag.” For convenience, a scriptlet can use four
predefined variables:

request
The servlet request, an HttpServletRequest object

response
The servlet response, an HttpServletResponse object

out
The output writer, a PrintWriter object
in
The input reader, a Buf feredReader object
Example 2-6 shows a simple JSP page that says “Hello” in a manner similar to

Example 2-2, though with a lot less code. It makes use of the predefined request
and out variables.

* An earlier technology, called Page Compilation, uses <JAVA> and </JAVA> tags and a different inter-
nal syntax. Page Compilation has been deprecated in favor of JavaServer Pages.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

38 CHAPTER 2: HTTP SERVLET BASICS

If you have a server that supports JavaServer Pages and want to test this page, you
should place the file under the server’s document root (probably server. root/
public_html) and save it with a special extension. By default, this extension for JSP
pages is .jsp. Assuming you have saved the page as hellol.jsp, you can then access it
at the URL http://sexrver:port/hellol.jsp. A screen shot is shown in Figure 2-11.

Example 2-6. Saying Hello with JSP

<HTML>

<HEAD><TITLE>Hello</TITLE></HEAD>

<BODY>

<H1>

<%

if (request.getParameter ("name") == null) {
out.println("Hello World") ;

}

else {
out.println("Hello, " + request.getParameter ("name")) ;

}

%>

</H1>

</BODY></HTML>

ello - Netscape

File Edit Wiew Go Communicator Help

Back Fonward Reload Home Seach Guide Frint Securty Stop
W!' Bookmarks \,ﬁ Location:Ihttp:!flocalhost:BElBElfhelld.isp?name=D0||_l,J j

Hello, Dolly

E| | Document: Done
Figure 2-11. Saying Hello using JavaServer Pages

Behind the Scenes

How does JSP work? Behind the scenes, the server automatically creates, compiles,
loads, and runs a special servlet to generate the page’s content, as shown in
Figure 2-12. You can think of this special servlet as a background, workhorse
servlet. The static portions of the HTML page are generated by the workhorse
servlet using the equivalent of out.println() calls, while the dynamic portions

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

JAVASERVER PAGES 39

are included directly. For example, the servlet shown in Example 2-7 might be the
background workhorse for hellol.jsp.*

Example 2-7. The workhorse servlet for hellol.jsp

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class _hellol_xjsp extends HttpServlet {

public void service (HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
response.setContentType ("text/html") ;
PrintWriter out = response.getWriter();
BufferedReader in = request.getReader();

out.println ("<HTML>") ;
out.println ("<HEAD><TITLE>Hello</TITLE></HEAD>") ;
out.println("<BODY>") ;
out.println("<H1>");
if (request.getParameter ("name") == null) {
out.println("Hello World") ;
}
else {
out.println("Hello, " + request.getParameter ("name")) ;
}
out.println("</H1>");
out.println("</BODY></HTML>") ;

The first time you access a JSP page, you may notice that it takes a short time to
respond. This is the time necessary for the server to create and compile the back-
ground servlet. Subsequent requests should be as fast as ever because the server
can reuse the servlet. The one exception is when the .jsp file changes, in which
case the server notices and recompiles a new background servlet. If there’s ever an
error in compiling, you can expect the server to somehow report the problem,
usually in the page returned to the client.

* If you're interested in seeing the true servlet source code for a JSP page, poke around the directories
under your server root. After all, the server needs to save the Java source code somewhere before com-
piling it! If you find the true servlet source, you're likely to see that it is far more complicated and
convoluted than what is shown here.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

40 CHAPTER 2: HTTP SERVLET BASICS

jsp file
Web Server ML
<HEAD>
request ——— . Java
<\HEAD> Compiler
= <BODY> —_—
response «——--- :
\/ <% . . .O%>
<\ BODY>
<\HTML>
y
Servlet

Figure 2-12. Generating JavaServer Pages

Expressions and Directives

In addition to scriptlets, JavaServer Pages allow the use of expressions and directives.
A JSP expression begins with <%= and ends with %>. Any Java expression between
the two tags is evaluated, the result is converted to a String, and the text is
included directly in the page. This technique eliminates the clutter of an out.
println() call. For example, <%= foo %> includes the value of the foo variable.

A JSP directive begins with <%@ and ends with %>. A directive allows a JSP page to
control certain aspects of its workhorse servlet. Directives can be used to have the
workhorse servlet set its content type, import a package, extend a different super-
class, implement an interface, and handle either GET or POST requests. A
directive can even specify the use of a non-Java scripting language.

In between the directive tags certain key variables can be assigned values using the
following syntax:

<%@ varname = "value" %>
Here are the six variables you can set:

content_type
Specifies the content type of the generated page. For example:

<%@ content_type = "text/plain" %>

The default content type is “text/html”.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

JAVASERVER PAGES 41

import
Specifies a list of classes the servlet should import. Multiple classes can be
given in a comma-separated list or given through multiple import directives.
For example:

<%@ import = "java.io.*,java.util.Hashtable" %>

extends
Specifies the superclass the servlet should extend. For example:

<%@ extends = "CustomHttpServletSuperclass" %>
The default superclass is HttpServlet.

implements
Specifies a list of interfaces the servlet should implement. Multiple interfaces
can be given in a comma-separated list or given through multiple import
directives. For example:

<%@ implements = "Serializable" %>
The default behavior is to not implement anything.

method
Specifies the servlet method that should contain the generated code and
handle client requests. The default is “service”, which handles all requests.
For example:

<%@ method = "doPost" %>

language
Specifies the scripting language used by the back-end. The default language is
“java”. Some servers can choose to allow other languages. For example:

<%@ language = "java" %>

Example 2-8 shows a revised version of the Hello page that uses JSP expressions
and directives. It uses a method directive to indicate it should handle POST
requests, and it uses an expression to simplify its display of the name parameter.

Example 2-8. Saying Hello using JSP expressions and directives

<%@ method = "doPost" %>

<HTML>

<HEAD><TITLE>Hello</TITLE></HEAD>

<BODY>

<H1>

<% 1f (request.getParameter ("name") == null) { %>
Hello World

<% } else { %>

Hello, <%= request.getParameter ("name") %>
<% } >

</H1>

</BODY></HTML>

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

42 CHAPTER 2: HTTP SERVLET BASICS

The background workhorse servlet for this JSP page should look nearly identical
to Example 2-7, with the only difference that this servlet implements doPost ()
instead of service().

Declarations

Sometimes it’s necessary for a JSP page to define methods and nonlocal variables
in its workhorse servlet. For this there is a construct called a JSP declaration.

A declaration begins with a <SCRIPT RUNAT="server"> tag and ends with a </
SCRIPT> tag. In between the tags, you can include any servlet code that should be
placed outside the servlet’s service method. Example 2-9 demonstrates this with a
JSP page that uses a declaration to define the getName () method.

Example 2-9. Saying Hello using a JSP declaration

<HTML>
<HEAD><TITLE>Hello</TITLE></HEAD>
<BODY>

<H1>

Hello, <%= getName (request) %>
</H1>

</BODY>

</HTML>

<SCRIPT RUNAT="server">
private static final String DEFAULT NAME = "World";

private String getName (HttpServletRequest req) {
String name = req.getParameter ("name") ;
if (name == null)
return DEFAULT NAME;
else
return name;
}
</SCRIPT>

The background servlet created to generate this page might look like the servlet
shown in Example 2-10.

Example 2-10. The workhorse servlet for a J[SP page with a declaration
import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class _hello3_xjsp extends HttpServlet {

public void service (HttpServletRequest request, HttpServletResponse response)

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

JAVASERVER PAGES 43

Example 2-10. The workhorse servlet for a JSP page with a declaration (continued)

throws ServletException, IOException {
response.setContentType ("text/html") ;
PrintWriter out = response.getWriter();
BufferedReader in = request.getReader();

out.println ("<HTML>") ;
out.println ("<HEAD><TITLE>Hello</TITLE></HEAD>") ;
out.println("<BODY>") ;
out.println("<H1>");

("Hello, " + getName (request));
out.println("</H1>");
out.println("</BODY></HTML>") ;

out.println

private static final String DEFAULT NAME = "World";

private String getName (HttpServletRequest req) {
String name = req.getParameter ("name") ;
if (name == null)
return DEFAULT NAME;
else
return name;

JavaServer Pages and JavaBeans

One of the most interesting and powerful ways to use JavaServer Pages is in coop-
eration with JavaBeans components. JavaBeans are reusable Java classes whose
methods and variables follow specific naming conventions to give them added abil-
ities. They can be embedded directly in a JSP page using <BEAN> tags. A JavaBean
component can perform a well-defined task (execute database queries, connect to
a mail server, maintain information about the client, etc.) and make its resulting
information available to the JSP page through simple accessor methods.*

The difference between a JavaBeans component embedded in a JSP page and a
normal third-party class used by the generated servlet is that the web server can
give JavaBeans special treatment. For example, a server can automatically set a
bean’s properties (instance variables) using the parameter values in the client’s
request. In other words, if the request includes a name parameter and the server
detects through introspection (a technique in which the methods and variables of
a Java class can be programatically determined at runtime) that the bean has a

* For more information on JavaBeans, see http://java.sun.com/bean/ and the book Developing Java Beans
by Robert Englander (O’Reilly).

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

44 CHAPTER 2: HTTP SERVLET BASICS

name property and a setName (String name) method, the server can automati-
cally call setName () with the value of the name parameter. There’s no need for
getParameter ().

A bean can also have its scope managed automatically by the server. A bean can be
assigned to a specific request (where it is used once and destroyed or recycled) or
to a client session (where it’s automatically made available every time the same
client reconnects). Sessions and session tracking are covered in depth in
Chapter 7, Session Tracking.

A bean can even be implemented as a servlet! If the server detects that a bean
implements the javax.servlet.Servlet interface (either directly or by
extending GenericServlet or HttpServlet), it will call the bean’s service()
method once for each request and the bean’s init () method when the bean is
first created. The utility of this functionality is debatable, but it can be used by
beans that need to prepare somehow before handling requests.

Beans are embedded in a JSP page using the <BEAN> tag. It has the following
syntax:
<BEAN NAME="Ilookup name" VARNAME="alternate variable name"
TYPE="class or interface name" INTROSPECT="{yes|no}" BEANNAME="file name"
CREATE="{yes|no}" SCOPE="{request|session}">

<PARAM propertyl=valuel property2=value2>
</BEAN>

You can set the following attributes of the <BEAN> tag:

NAME
Specifies the name of the bean. This is the key under which the bean is saved
if its scope extends across requests. If a bean instance saved under this name
already exists in the current scope, that instance is used with this page. For
example:

NAME="userPreferences"

VARNAME
Specifies the variable name of the bean. This is the name used by the page to
refer to the bean and invoke its methods. For example:

VARNAME="prefs"

If not given, the variable name of the bean is set to the value of its name
attribute.

TYPE
Specifies the name of the bean’s class or interface type. For example:

TYPE="UserPreferencesBean"

The type defaults to java.lang.Object.

er Edition
Ul rights reserved.

http://www.allitebooks.org

JAVASERVER PAGES 45

INTROSPECT
Specifies if the server should set the bean’s properties using the parameter
values in the client’s request. Its value must be “yes” or “no”. The default is

«“, 2

yes”.

BEANNAME
Specifies the serialized file or class file that contains the bean, used when first
creating the bean. This is an optional attribute. For example:

BEANNAME="hellobean.ser"

CREATE
Specifies if the bean should be created if it doesn’t already exist. Its value must
be “yes” or “no”. The default is “yes”. If create is set to “no” and a preex-
isting instance isn’t found, an error is returned to the client.

SCOPE
Specifies if the bean should be assigned to a specific request (where it is used
once and destroyed or recycled) or to a client session (where it’s automati-
cally made available every time the same client reconnects, within a certain
time frame). Its value must be “request” or “session”. The default is
“request”.

Parameters can be passed to a bean as a list using a <PARAM> tags placed between
the opening <BEAN> tag and the closing </BEAN> tag. The parameter values are
used to set the bean’s properties using introspection.

Example 2-11 demonstrates the use of a JavaBeans component with a JSP page; it
says Hello with the help of a HelloBean.

Example 2-11. Saying Hello using a_JavaBean

<%@ import = "HelloBean" %>

<BEAN NAME="hello" TYPE="HelloBean"
INTROSPECT="yes" CREATE="yes" SCOPE="request">
</BEAN>

<HTML>
<HEAD><TITLE>Hello</TITLE></HEAD>
<BODY>

<H1>

Hello, <%= hello.getName() %>
</H1>

</BODY>

</HTML>

As you can see, using a JavaBeans component with JavaServer Pages greatly
reduces the amount of code necessary in the page. This allows a clean separation

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

46 CHAPTER 2: HTTP SERVLET BASICS

of content (the functionality the bean provides) from presentation (the HTML
structure of the page). By using a well-defined API to interact with the bean, even
nonprogrammers can write JSP pages.

The code for HelloBean is shown in Example 2-12. Its class file should be placed
in the server’s classpath (something like server. root/classes, although for the
Java Web Server you need to first create this directory).

Example 2-12. The HelloBean class

public class HelloBean {
private String name = "World";

public void setName (String name) {
this.name = name;

public String getName() {
return name;

This is about as simple a bean as you’ll ever see. It has a single name property that
is set using setName () and retrieved using getName (). The default value of name
is “Wor1d”, but when a request comes in that includes a NAME parameter, the prop-
erty is set automatically by the server with a call to setName(). To test the
mechanism, try browsing to htlp://server:port/hellobean.jsp. You should see
something similar to the screen shot in Figure 2-13.

ello - Netzcape

File Edit “iew Go Communicator Help

14 5 3 & 2 £ 35 & B

Back Fomward Reload Home Seach Guide Frnt Securty Stop

w!'Bookmarks \& Location:Ihttp:.n’.n’localhost:SDSDIheIIDbean.isp?name:Howan

[
Hello, Rowan :I
|
4

[|Document: Done

Figure 2-13. Saying Hello using JavaServer pages in cooperation with a_JavaBeans component

Moving On

We realize this chapter has been a whirlwind introduction to HTTP servlets. By
now, we hope you have a sense of the different ways you can use servlets to handle

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

MOoVING ON 47

a variety of web development tasks. Of course, servlets can do far more than say
“Hello World,” tell the time, and remove <BLINK> tags. Now that you’ve got your
feet wet, we can dive into the details and move on to more interesting applications.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

In this chapter:

* The Servlet
Alternative

* Servlet Reloading

* Init and Destroy

* Single-Thread Model

* Background
Processing

* Last Modified Times

The Servlet Life Cycle

The servlet life cycle is one of the most exciting features of servlets. This life cycle
is a powerful hybrid of the life cycles used in CGI programming and lower-level
NSAPI and ISAPI programming, as discussed in Chapter 1, Introduction.

The Servlet Alternative

The servlet life cycle allows servlet engines to address both the performance and
resource problems of CGI and the security concerns of low-level server API
programming. A servlet engine may execute all its servlets in a single Java virtual
machine (JVM). Because they are in the same JVM, servlets can efficiently share
data with each other, yet they are prevented by the Java language from accessing
one another’s private data. Servlets may also be allowed to persist between requests
as object instances, taking up far less memory than fullfledged processes.

Before we proceed too far, you should know that the servlet life cycle is highly flex-
ible. Servers have significant leeway in how they choose to support servlets. The
only hard and fast rule is that a servlet engine must conform to the following life
cycle contract:

1. Create and initialize the servlet.
2. Handle zero or more service calls from clients.

3. Destroy the servlet and then garbage collect it.

It’s perfectly legal for a servlet to be loaded, created, and instantiated in its own
JVM, only to be destroyed and garbage collected without handling any client
requests or after handling just one request. Any servlet engine that makes this a
habit, however, probably won’t last long on the open market. In this chapter we
describe the most common and most sensible life cycle implementations for HTTP
servlets.

48
Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE SERVLET ALTERNATIVE 49

A Single Java Virtual Machine

Most servlet engines want to execute all servlets in a single JVM. Where that JVM
itself executes can differ depending on the server, though. With a server written in
Java, such as the Java Web Server, the server itself can execute inside a JVM right
alongside its servlets.

With a single-process, multithreaded web server written in another language, the
JVM can often be embedded inside the server process. Having the JVM be part of
the server process maximizes performance because a servlet becomes, in a sense,
just another low-level server API extension. Such a server can invoke a servlet with
a lightweight context switch and can provide information about requests through
direct method invocations.

A multiprocess web server (which runs several processes to handle requests)
doesn’t really have the choice to embed a JVM directly in its process because there
is no one process. This kind of server usually runs an external JVM that its
processes can share. With this approach, each servlet access involves a heavy-
weight context switch reminiscent of FastCGI. All the servlets, however, still share
the same external process.

Fortunately, from the perspective of the servlet (and thus from your perspective, as
a servlet author), the server’s implementation doesn’t really matter because the
server always behaves the same way.

Instance Persistence

We said above that servlets persist between requests as object instances. In other
words, at the time the code for a servlet is loaded, the server creates a single class
instance. That single instance handles every request made of the servlet. This
improves performance in three ways:

¢ It keeps the memory footprint small.

* It eliminates the object creation overhead that would otherwise be necessary
to create a new servlet object. A servlet can be already loaded in a virtual
machine when a request comes in, letting it begin executing right away.

¢ It enables persistence. A servlet can have already loaded anything it’s likely to
need during the handling of a request. For example, a database connection
can be opened once and used repeatedly thereafter. It can even be used by a
group of servlets. Another example is a shopping cart servlet that loads in
memory the price list along with information about its recently connected cli-
ents. Yet another servlet may choose to cache entire pages of output to save
time if it receives the same request again.

Not only do servlets persist between requests, but so do any threads created by

servlets. This perhaps isn’t useful for the run-of-the-mill servlet, but it opens up

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

50 CHAPTER 3: THE SERVLET LIFE CYCLE

some interesting possibilities. Consider the situation where one background
thread performs some calculation while other threads display the latest results. It’s
quite similar to an animation applet where one thread changes the picture and
another one paints the display.

A Simple Counter

To demonstrate the servlet life cycle, we’ll begin with a simple example.
Example 3-1 shows a servlet that counts and displays the number of times it has
been accessed. For simplicity’s sake, it outputs plain text.

Example 3-1. A simple counter

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class SimpleCounter extends HttpServlet ({
int count = 0;

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
res.setContentType ("text/plain") ;
PrintWriter out = res.getWriter();
count++;
out.println("Since loading, this servlet has been accessed " +
count + " times.");

The code is simple—it just prints and increments the instance variable named
count—but it shows the power of persistence. When the server loads this servlet,
the server creates a single instance to handle every request made of the servlet.
That’s why this code can be so simple. The same instance variables exist between
invocations and for all invocations.

A Simple Synchronized Counter

From the servlet-developer’s perspective, each client is another thread that calls
the servlet via the service(), doGet(), or doPost() methods, as shown in
Figure 3-1.*

* Does it seem confusing how one servlet instance can handle multiple requests at the same time? If so,
it’s probably because when we picture an executing program we often see object instances performing
the work, invoking each other’s methods and so on. But, although this model works for simple cases,
it’s not how things actually work. In reality, all real work is done by threads. The object instances are
nothing more than data structures manipulated by the threads. Therefore, if there are two threads
running, it’s entirely possible that both are using the same object at the same time.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE SERVLET ALTERNATIVE 51

Web Server

request ———-.

'--,‘I[mzad

request ———»--..._ Thread

Servlet

request ————>"Thread

request " Thead

Figure 3-1. Many threads, one servlet instance

If your servlets only read from the request, write to the response, and save informa-
tion in local variables (that is, variables declared within a method), you needn’t
worry about the interaction among these threads. Once any information is saved
in nonlocal variables (that is, variables declared within a class but outside any
specific method), however, you must be aware that each of these client threads has
the ability to manipulate a servlet’s nonlocal variables. Without precautions, this
may result in data corruption and inconsistencies. For example, the
SimpleCounter servlet makes a false assumption that the counter incrementation
and output occur atomically (immediately after one another, uninterrupted). It’s
possible that if two requests are made to SimpleCounter around the same time,
each will print the same value for count. How? Imagine that one thread incre-
ments the count and just afterward, before the first thread prints the count, the
second thread also increments the count. Each thread will print the same count
value, after effectively increasing its value by 2." The order of execution goes some-
thing like this

count++ // Thread 1
count++ // Thread 2
out.println // Thread 1
out.println // Thread 2

Now, in this case, the inconsistency is obviously not a problem, but many other
servlets have more serious opportunities for errors. To prevent these types of prob-
lems and the inconsistencies that come with them, we can add one or more
synchronized blocks to the code. Anything inside a synchronized block or a

* Odd factoid: if count were a 64-bit long instead of a 32-bit int, it would be theoretically possible for
the increment to be only half performed at the time it is interrupted by another thread. This is because
Java uses a 32-bit wide stack.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

52 CHAPTER 3: THE SERVLET LIFE CYCLE

synchronized method is guaranteed not to be executed concurrently by another
thread. Before any thread begins to execute synchronized code, it must obtain a
monitor (lock) on a specified class. If another thread already has that monitor—
because it is already executing the same synchronized block or some other block
with the same monitor—the first thread must wait. All this is handled by the
language itself, so it’s very easy to use. Synchronization, however, should be used
only when necessary. On some platforms, it requires a fair amount of overhead to
obtain the monitor each time a synchronized block is entered. More importantly,
during the time one thread is executing synchronized code, the other threads may
be blocked waiting for the monitor to be released.

For SimpleCounter, we have four options to deal with this potential problem.
First, we could add the keyword synchronized to the doGet () signature:

public synchronized void doGet (HttpServletRequest req,
HttpServletResponse res)

This guarantees consistency by synchronizing the entire method, using the servlet
class as the monitor. In general, though, this is not the right approach because it
means the servlet can handle only one GET request at a time.

Our second option is to synchronize just the two lines we want to execute
atomically:

PrintWriter out = res.getWriter();
synchronized(this) {
count++;
out.println("Since loading, this servlet has been accessed " +
count + " times.");

}

This approach works better because it limits the amount of time this servlet spends
in its synchronized block, while accomplishing the same goal of a consistent count.
Of course, for this simple example, it isn’t much different than the first option.

Our third option is to create a synchronized block that performs all the work that
needs to be done serially, then use the results outside the synchronized block. For
our counter servlet, we can increment the count in a synchronized block, save the
incremented value to a local variable (a variable declared inside a method), then
print the value of the local variable outside the synchronized block:

PrintWriter out = res.getWriter();
int local_count;
synchronized(this) {
local_count = ++count;
}
out.println("Since loading, this servlet has been accessed " +
local_count + " times.");

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE SERVLET ALTERNATIVE 53

This change shrinks the synchronized block to be as small as possible, while still
maintaining a consistent count.

Our last option is to decide that we are willing to suffer the consequences of
ignoring synchronization issues. Sometimes the consequences are quite accept-
able. For this example, ignoring synchronization means that some clients may
receive a count that’s a bit off. Not a big deal, really. If this servlet were supposed
to return unique numbers, however, it would be a different story.

Although it’s not possible with this example, an option that exists for other serv-
lets is to change instance variables into local variables. Local variables are not
available to other threads and thus don’t need to be carefully protected from
corruption. At the same time, however, local variables are not persistent between
requests, so we can’t use them to store the persistent state of our counter.

A Holistic Counter

Now, the “one instance per servlet” model is a bit of a gloss-over. The truth is that
each registered name for a servlet (but not each alias) is associated with one
instance of the servlet. The name used to access the servlet determines which
instance handles the request. This makes sense because the impression to the
client should be that differently named servlets operate independently. The sepa-
rate instances are also a requirement for servlets that accept initialization
parameters, as discussed later in this chapter.

Our SimpleCounter example uses the count instance variable to track the
number of times it has been accessed. If, instead, it needed to track the count for
all instances (and thus all registered aliases), it can in some cases use a class, or
static, variable. These variables are shared across all instances of a class.
Example 3-2 demonstrates with a servlet that counts three things: the times it has
been accessed, the number of instances created by the server (one per name), and
the total times all of them have been accessed.

Example 3-2. A more holistic counter

import java.io.*;

import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;

public class HolisticCounter extends HttpServlet {
static int classCount = 0; // shared by all instances

int count = 0; // separate for each servlet
static Hashtable instances = new Hashtable(); // also shared

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

54 CHAPTER 3: THE SERVLET LIFE CYCLE

Example 3-2. A more holistic counter (continued)

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

res.setContentType ("text/plain") ;
PrintWriter out = res.getWriter();

count++;
out.println("Since loading, this servlet instance has been accessed " +

count + " times.");

// Keep track of the instance count by putting a reference to this
// instance in a Hashtable. Duplicate entries are ignored.
// The size() method returns the number of unique instances stored.
instances.put (this, this);
out.println("There are currently " +

instances.size() + " instances.");

classCount++;
out.println("Across all instances, this servlet class has been " +
"accessed " + classCount + " times.");

}

This HolisticCounter tracks its own access count with the count instance vari-
able, the shared count with the classCount class variable, and the number of
instances with the instances hashtable (another shared resource that must be a
class variable). Sample output is shown in Figure 3-2.

File Edit “iew Go Communicator

2 w A4 H 2 £ S &

Back Fomward Reload Home Search Guide Print Security Stop

<& Bockmarks & Locaton [rceprI/isealhost: 8080/serviet /ReTistis

=
{ since loading, this serwvlet instance has been accessed 4 times.

| There are currently 2 instances.
| Across all instances, this servlet class has been accessed 7 times.

|| |

Figure 3-2. Output from HolisticCounter

er Edition
Ul rights reserved.

http://www.allitebooks.org

SERVLET RELOADING 55

Servlet Reloading

If you tried using these counters for yourself, you may have noticed that any time
you recompiled one, its count automatically began again at 1. Trust us—it’s not a
bug, it’s a feature. Most servers automatically reload a servlet after its class file
(under the default servlet directory, such as server. root/servlets) changes. It’s an
on-the-fly upgrade procedure that greatly speeds up the development-test cycle—
and allows for long server uptimes.

Servlet reloading may appear to be a simple feature, but it’s actually quite a trick—
and requires quite a hack. ClassLoader objects are designed to load a class just
once. To get around this limitation and load servlets again and again, servers use
custom class loaders that load servlets from the default servlets directory. This
explains why the servlet classes are found in server. root/serviets, even though
that directory doesn’t appear in the server’s classpath.

When a server dispatches a request to a servlet, it first checks if the servlet’s class
file has changed on disk. If it has changed, the server abandons the class loader
used to load the old version and creates a new instance of the custom class loader
to load the new version. Old servlet versions can stay in memory indefinitely (and,
in fact, other classes can still hold references to the old servlet instances, causing
odd side effects, as explained in Chapter 11, Interservlet Communication), but the
old versions are not used to handle any more requests.

Servlet reloading is not performed for classes found in the server’s classpath (such
as server._root/classes) because those classes are loaded by the core, primordial
class loader. These classes are loaded once and retained in memory even when
their class files change.

It’s generally best to put servlet support classes (such as the utility classes in com.
oreilly.servlet) somewhere in the server’s classpath (such as server. root/
classes) where they don’t get reloaded. The reason is that support classes are not
nicely reloaded like servlets. A support class, placed in the default servlets direc-
tory and accessed by a servlet, is loaded by the same class loader instance that
loaded the servlet. It doesn’t get its own class loader instance. Consequently, if the
support class is recompiled but the servlet referring to it isn’t, nothing happens.
The server checks only the timestamp on servlet class files.”

A frequently used trick to improve performance is to place servlets in the default
servlet directory during development and move them to the server’s classpath for

* For the daredevils out there, here’s a stunt you can try to force a support class reload. Put the support
class in the servlet directory. Then convince the server it needs to reload the servlet that uses the sup-
port class (recompile it or use the Unix utility touch). The class loader that reloads the servlet should
also load the new version of the support class.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

56 CHAPTER 3: THE SERVLET LIFE CYCLE

deployment. Having them out of the default directory eliminates the needless
timestamp comparison for each request.

Init and Destroy

Just like applets, servlets can define init () and destroy() methods. A servlet’s
init (ServletConfig) method is called by the server immediately after the
server constructs the servlet’s instance. Depending on the server and its configura-
tion, this can be at any of these times:

e When the server starts

* When the servlet is first requested, just before the service() method is
invoked

¢ Atthe request of the server administrator

In any case, init () is guaranteed to be called before the servlet handles its first
request.

The init () method is typically used to perform servlet initialization—creating or
loading objects that are used by the servlet in the handling of its requests. Why not
use a constructor instead? Well, in JDK 1.0 (for which servlets were originally
written), constructors for dynamically loaded Java classes (such as servlets)
couldn’t accept arguments. So, in order to provide a new servlet any information
about itself and its environment, a server had to call a servlet’s init () method
and pass along an object that implements the ServletConfig interface. Also, Java
doesn’t allow interfaces to declare constructors. This means that the javax.
servlet.Servlet interface cannot declare a constructor that accepts a
ServletConfig parameter. It has to declare another method, like init (). It’s
still possible, of course, for you to define constructors for your servlets, but in the
constructor you don’t have access to the ServletConfig object or the ability to
throw a ServletException.

This ServletConfig object supplies a servlet with information about its initializa-
tion (init) parameters. These parameters are given to the servlet itself and are not
associated with any single request. They can specify initial values, such as where a
counter should begin counting, or default values, perhaps a template to use when
not specified by the request. In the Java Web Server, init parameters for a servlet
are usually set during the registration process. See Figure 3-3.

Other servers set init parameters in different ways. Sometimes it involves editing a
configuration file. One creative technique you can use with the Java Web Server,
but currently by no other servers, is to treat servlets as JavaBeans. Such servlets can
be loaded from serialized files or have their init properties set automatically by the

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

INIT AND DESTROY 57

File Edit View Go Bookmarks Options Directory Window Help

[etsci

‘Back”' s

| |F%e|uad” Load \mages”Open.HPrim”.||Find.”|

Location: I http://1ocalhost: 9898/

Java
[> 3

#SEME“ g Canfiguration l Properties]
o Add
2 Cuﬂﬁgﬂu:eth " | Froperty Valug 2 | add
candutharity —
ava Weh Server WIAGIE) counter
S Weh Service Running 8080 dateservlet
‘B SeCure Web Service Mot Running 7070 arror
@8 Proxy Service Mot Running BOB0 fle
imagemap
inwoker =
s
linkcheck,
Ioganalyzer
pageCompile
phone
poervlet
session ||
simpleserviet H
| Manage | | Restart | stap snoop
83 Load | | Remove | ‘ Beeva | |
asinclurie =

|

HslUnsigned Java Applet Window
S

Figure 3-3. Setting init parameters in the Java Web Server

server at load time using introspection. See the Java Web Server documentation
for more information.

The ServletConfig object also holds a reference to a ServletContext object
that a servlet may use to investigate its environment. See Chapter 4, Retrieving Infor-
mation, for a full discussion of this ability.

The server calls a servlet’s destroy () method when the servlet is about to be
unloaded. In the destroy() method, a servlet should free any resources it has
acquired that will not be garbage collected. The destroy () method also gives a
servlet a chance to write out its unsaved cached information or any persistent
information that should be read during the next call to init ().

A Counter with Init

Init parameters can be used for anything. In general, they specify initial values or
default values for servlet variables, or they tell a servlet how to customize its
behavior in some way. Example 3-3 extends our SimpleCounter example to read
an init parameter (named initial) that stores the initial value for our counter.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

58 CHAPTER 3: THE SERVLET LIFE CYCLE

Example 3-3. A counter that reads init parameters

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class InitCounter extends HttpServlet ({
int count;

public void init(ServletConfig config) throws ServletException {
super.init (config) ;
String initial = config.getInitParameter ("initial");

try {
count = Integer.parselnt (initial);
}
catch (NumberFormatException e) {
count = 0;

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

res.setContentType ("text/plain") ;
PrintWriter out = res.getWriter();
count++;
out.println("Since loading (and with a possible initialization");
out.println("parameter figured in), this servlet has been accessed");
out.println(count + " times.");

}

The init () method accepts an object that implements the ServletConfig inter-
face. It uses the config object’s getInitParameter () method to get the value for
the init parameter named initial. This method takes the name of the param-
eter as a String and returns the value as a String. There is no way to get the
value as any other type. This servlet therefore converts the String value to an int
or, if there’s a problem, defaults to a value of 0.

Take special note that the first thing the init () method does is call super.
init (config). Every servlet’s init() method must do this!

Why must the init () method call super.init (config)? The reason is that a
servlet is passed its ServletConfig instance in its init () method, but not in any
other method. This could cause a problem for a servlet that needs to access its
config object outside of init(). Calling super.init(config) solves this
problem by invoking the init () method of GenericServlet, which saves a refer-
ence to the config object for future use.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

INIT AND DESTROY 59

So, how does a servlet make use of this saved reference? By invoking methods on
itself. The GenericServlet class itself implements the ServletConfig interface,
using the saved config object in the implementation. In other words, after the call
to super.init(config), a servlet can invoke its own getInitParameter ()
method. That means we could replace the following call:

String initial = config.getInitParameter ("initial");
with:
String initial = getInitParameter ("initial");

This second style works even outside of the init() method. Just remember,
without the call to super.init (config) in the init () method, any call to the
GenericServlet’s implementation of getInitParameter() or any other
ServletConfig methods will throw a NullPointerException. So, let us say it
again: every servlet’s init() method should call super.init(config) as ils first action. The only
reason not to is if the servlet directly implements the javax.servlet.Servlet
interface, where there is no super.init ().

A Counter with Init and Destroy

Up until now, the counter examples have demonstrated how servlet state persists
between accesses. This solves only part of the problem. Every time the server is
shut down or the servlet is reloaded, the count begins again. What we really want is
persistence across loads—a counter that doesn’t have to start over.

The init() and destroy() pair can accomplish this. Example 3-4 further
extends the InitCounter example, giving the servlet the ability to save its state in
destroy () and load the state again in init (). To keep things simple, assume this
servlet is not registered and is accessed only as http://server: port/servlet/
InitDestroyCounter. If it were registered under different names, it would have to save
a separate state for each name.

Example 3-4. A fully persistent counter

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class InitDestroyCounter extends HttpServlet ({
int count;
public void init(ServletConfig config) throws ServletException {

// Always call super.init(config) first (servlet mantra #1)
super.init (config) ;

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

60 CHAPTER 3: THE SERVLET LIFE CYCLE

Example 3-4. A fully persistent counter (continued)

// Try to load the initial count from our saved persistent state

try {
FileReader fileReader = new FileReader ("InitDestroyCounter.initial");
BufferedReader bufferedReader = new BufferedReader (fileReader) ;
String initial = bufferedReader.readLine() ;
count = Integer.parselnt (initial);

return;
}
catch (FileNotFoundException ignored) { } // no saved state
catch (IOException ignored) { } // problem during read

catch (NumberFormatException ignored) { } // corrupt saved state

// No luck with the saved state, check for an init parameter
String initial = getInitParameter ("initial");
try {
count = Integer.parselnt (initial);
return;
}

catch (NumberFormatException ignored) { } // null or non-integer value

// Default to an initial count of "0O"
count = 0;

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
res.setContentType ("text/plain") ;
PrintWriter out = res.getWriter();
count++;
out.println("Since the beginning, this servlet has been accessed " +
count + " times.");

public void destroy() {
saveState() ;

public void saveState() {

// Try to save the accumulated count

try {
FileWriter fileWriter = new FileWriter ("InitDestroyCounter.initial");
String initial = Integer.toString(count) ;
fileWriter.write(initial, 0, initial.length());
fileWriter.close();
return;

}

catch (IOException e) { // problem during write
// Log the exception. See Chapter 5.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

INIT AND DESTROY 61

Example 3-4. A fully persistent counter (continued)

}

}

Each time this servlet is about to be unloaded, it saves its state in a file named Init-
DestroyCounter.initial. In the absence of a supplied path, the file is saved in the
server process’ current directory, usually the server_root.” This file contains a
single integer, saved as a string, that represents the latest count.

Each time the servlet is loaded, it tries to read the saved count from the file. If, for
some reason, the read fails (as it does the first time the servlet runs because the
file doesn’t yet exist), the servlet checks if an init parameter specifies the starting
count. If that too fails, it starts fresh with zero. You can never be too careful in
init () methods.

Servlets can save their state in many different ways. Some may use a custom file
format, as was done here. Others may save their state as serialized Java objects or
put it into a database. Some may even perform journaling, a technique common
to databases and tape backups, where the servlet’s full state is saved infrequently
while a journal file stores incremental updates as things change. Which method a
servlet should use depends on the situation. In any case, you should always be
watchful that the state being saved isn’t undergoing any change in the
background.

Right now you’re probably asking yourself “What happens if the server crashes?”
It’s a good question. The answer is that the destroy () method will not be called.t
This doesn’t cause a problem for destroy() methods that only have to free
resources; a rebooted server does that job just as well (if not better). But it does
cause a problem for a servlet that needs to save its state in its destroy () method.
For these servlets, the only guaranteed solution is to save state more often. A
servlet may choose to save its state after handling each request, such as a “chess
server” servlet should do, so that even if the server is restarted, the game can resume
with the latest board position. Other servlets may need to save state only after some
important value has changed—a “shopping cart” servlet needs to save its state only
when a customer adds or removes an item from her cart. Last, for some servlets, it’s
fine to lose a bit of the recent state changes. These servlets can save state after some
set number of requests. For example, in our InitDestroyCounter example, it

* The exact location of the current user directory can be found using System.getProperty ("user.
dir").

1 Unless you’re so unlucky that your server crashes while in the destroy () method. In that case, you
may be left with a partially-written state file—garbage written on top of your previous state. To be per-
fectly safe, a servlet should save its state to a temporary file and then copy that file on top of the official
state file in one command.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

62 CHAPTER 3: THE SERVLET LIFE CYCLE

should be satisfactory to save state every 10 accesses. To implement this, we can
add the following line at the end of doGet ():

if (count % 10 == 0) saveState();

Does this addition make you cringe? It should. Think about synchronization
issues. We’ve opened up the possibility for data loss if saveState () is executed by
two threads at the same time and the possibility for saveState () not to be called
at all if count is incremented by several threads in a row before the check. Note
that this possibility did not exist when saveState() was called only from the
destroy() method: the destroy() method is called just once per servlet
instance. Now that saveState() is called in the doGet () method, however, we
need to reconsider. If by some chance this servlet is accessed so frequently that it
has more than 10 concurrently executing threads, it’s likely that two servlets (10
requests apart) will be in saveState() at the same time. This may result in a
corrupted data file. It’s also possible the two threads will increment count before
either thread notices it was time to call saveState(). The fix is easy: move the
count check into the synchronized block where count is incremented:

int local_count;
synchronized (this) {
local_count = ++count;
if (count % 10 == 0) saveState();
}
out.println("Since loading, this servlet has been accessed " +
local_count + " times.");

The moral of the story is harder: always be vigilant to protect servlet code from
multithreaded access problems.

Even though this series of counter examples demonstrates the servlet life cycle, the
counters themselves aren’t particularly useful because they count only the number
of times they themselves have been accessed. You can find two truly useful
counters—that count accesses to other pages—in the next chapter.

Single-Thread Model

Although it is standard to have one servlet instance per registered servlet name, it
is possible for a servlet to elect instead to have a pool of instances created for each
of its names, all sharing the duty of handling requests. Such servlets indicate this
desire by implementing the javax.servlet.SingleThreadModel interface. This
is an empty, tag interface that defines no methods or variables and serves only to
flag the servlet as wanting the alternate life cycle.

A server that loads a SingleThreadModel servlet must guarantee, according to
the Servlet API documentation, “that no two threads will execute concurrently the

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

SINGLE-THREAD MODEL 63

service method of that servlet.” To accomplish this, each thread uses a free servlet
instance from the pool, as shown in Figure 3-4. Thus, any servlet implementing
SingleThreadModel can be considered thread safe and isn’t required to synchro-
nize access to its instance variables.

Web Server

request > Thread Servlet Pool

Servlet
Instance

N
request ————»..Th ol o R

Instance

Threaed Servlet
reql‘lest 0 > Ins'un‘e

Thread .- . Servlet

request ——»— Instance

Figure 3-4. The Single Thread Model

Such a life cycle is pointless for a counter or other servlet application that requires
central state maintenance. The life cycle can be useful, however, in avoiding
synchronization while still performing efficient request handling.

For example, a servlet that connects to a database sometimes needs to perform
several database commands atomically as part of a single transaction. Normally,
this would require the servlet to synchronize around the database commands
(letting it manage just one request at a time) or to manage a pool of database
connections where it can “check out” and “check in” connections (letting it
support multiple concurrent requests). By instead implementing
SingleThreadModel and having one “connection” instance variable per servlet, a
servlet can easily handle concurrent requests by letting its server manage the
servlet instance pool (which doubles as a connection pool). The skeleton code is
shown in Example 3-5.

Example 3-5. Handling database connections using SingleThreadModel

import java.io.*;

import java.sql.*;

import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

64 CHAPTER 3: THE SERVLET LIFE CYCLE

Example 3-5. Handling database connections using SingleThreadModel (continued)

public class SingleThreadConnection extends HttpServlet
implements SingleThreadModel {

Connection con = null; // database connection, one per pooled servlet instance

public void init(ServletConfig config) throws ServletException {
super.init (config) ;

// Establish the connection for this instance
con = establishConnection() ;
con.setAutoCommit (false) ;

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
res.setContentType ("text/plain") ;
PrintWriter out = res.getWriter();

// Use the connection uniquely assigned to this instance
Statement stmt = con.createStatement () ;

// Update the database any number of ways

// Commit the transaction
con.commit () ;

public void destroy() {
if (con != null) con.close();

private Connection establishConnection() {
// Not implemented. See Chapter 9.

Background Processing

Servlets can do more than simply persist between accesses. They can also execute
between accesses. Any thread started by a servlet can continue executing even after
the response has been sent. This ability proves most useful for long-running tasks
whose incremental results should be made available to multiple clients. A back-
ground thread started in init() performs continuous work while request-
handling threads display the current status with doGet (). It’s a similar technique
to that used in animation applets, where one thread changes the picture and
another paints the display.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

BACKGROUND PROCESSING 65

Example 3-6 shows a servlet that searches for prime numbers above one quadril-
lion. It starts with such a large number to make the calculation slow enough to
adequately demonstrate caching effects—something we need for the next section.
The algorithm it uses couldn’t be simpler: it selects odd-numbered candidates and
attempts to divide them by every odd integer between 3 and their square root. If
none of the integers evenly divides the candidate, it is declared prime.

Example 3-6. On the hunt for primes

import java.io.*;

import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;

public class PrimeSearcher extends HttpServlet implements Runnable {

long lastprime = 0; // last prime found
Date lastprimeModified = new Date(); // when it was found
Thread searcher; // background search thread

public void init(ServletConfig config) throws ServletException {
super.init (config) ; // always!
searcher = new Thread(this) ;
searcher.setPriority (Thread.MIN_PRIORITY); // be a good citizen
searcher.start () ;

public void run() {
// QTTTBBBMMMTTTOOO
long candidate = 1000000000000001L; // one quadrillion and one

// Begin loop searching for primes
while (true) { // search forever
if (isPrime(candidate)) {

lastprime = candidate; // new prime
lastprimeModified = new Date(); // new "prime time"

}

candidate += 2; // evens aren't prime

// Between candidates take a 0.2 second break.
// Another way to be a good citizen with system resources.
try {
searcher.sleep(200) ;
}
catch (InterruptedException ignored) { }

private static boolean isPrime(long candidate) {

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

66 CHAPTER 3: THE SERVLET LIFE CYCLE

Example 3-6. On the hunt for primes (continued)

// Try dividing the number by all odd numbers between 3 and its sqgrt
double sgrt = Math.sgrt (candidate) ;
for (long 1 = 3; i <= sqgrt; 1 += 2) {

if (candidate % i == 0) return false; // found a factor

// Wasn't evenly divisible, so it's prime
return true;

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

res.setContentType ("text/plain") ;

PrintWriter out = res.getWriter();

if (lastprime == 0) {
out.println("Still searching for first prime...");

}

else {
out.println("The last prime discovered was " + lastprime);
out.println(" at " + lastprimeModified) ;

public void destroy () {
searcher.stop() ;

}

The searcher thread begins its search in the init () method. Its latest find is saved
in lastprime, along with the time it was found in in lastprimeModified. Each
time a client accesses the servlet, the doGet () method reports the largest prime
found so far and the time it was found. The searcher runs independently of client
accesses; even if no one accesses the servlet it continues to find primes silently. If
several clients access the servlet at the same time, they all see the same current
status.

Notice that the destroy () method stops the searcher thread.” This is very impor-
tant! If a servlet does not stop its background threads, they continue to run until
the virtual machine exits. Even when a servlet is reloaded (either explicitly or
because its class file changed), its threads won’t be stopped. Instead, it’s likely that

* Stopping threads using the stop () method as shown here is deprecated in JDK 1.2 in favor of a safer
flag-based system, where a thread must periodically examine a “flag” variable to determine when it
should stop, at which point it can clean up and return from its run () method. See the JDK documen-
tation for details. Example source code can be found in an article titled “Scott’s Solutions: Program-
ming with threads in Java 1.2”, written by Scott Oaks for Java Report Online, found at Attp://www.sigs.
com/jro/features/9711/oaks. html.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

LAST MODIFIED TIMES 67

the new servlet will create extra copies of the background threads. And, at least
with the Java Web Server, even explicitly restarting the web server service doesn’t
stop background threads because the Java Web Server virtual machine continues
its execution.

Last Modified Times

By now, we’re sure you’ve learned that servlets handle GET requests with the
doGet () method. And that’s almost true. The full truth is that not every request
really needs to invoke doGet (). For example, a web browser that repeatedly
accesses PrimeSearcher should need to call doGet () only after the searcher
thread has found a new prime. Until that time, any call to doGet () just generates
the same page the user has already seen, a page probably stored in the browser’s
cache. What’s really needed is a way for a servlet to report when its output has
changed. That’s where the getLastModified() method comes in.

Most web servers, when they return a document, include as part of their response
a Last-Modified header. An example Last-Modified header value might be:

Tue, 06-May-98 15:41:02 GMT

This header tells the client the time the page was last changed. That information
alone is only marginally interesting, but it proves useful when a browser reloads a

page.
Most web browsers, when they reload a page, include in their request an If-
Modified-Since header. Its structure is identical to the Last-Modified header:

Tue, 06-May-98 15:41:02 GMT

This header tells the server the Last-Modified time of the page when it was last
downloaded by the browser. The server can read this header and determine if the
file has changed since the given time. If the file has changed, the server must send
the newer content. If the file hasn’t changed, the server can reply with a simple,
short response that tells the browser the page has not changed and it is sufficient
to redisplay the cached version of the document. For those familiar with the
details of HTTP, this response is the 304 “Not Modified” status code.

This technique works great for static pages: the server can use the file system to
find out when any file was last modified. For dynamically generated content,
though, such as that returned by servlets, the server needs some extra help. By
itself, the best the server can do is play it safe and assume the content changes with
every access, effectively eliminating the usefulness of the Last-Modified and If-
Modified-Since headers.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

68 CHAPTER 3: THE SERVLET LIFE CYCLE

The extra help a servlet can provide is implementing the getLastModified ()
method. A servlet should implement this method to return the time it last
changed its output. Servers call this method at two times. The first time the server
calls it is when it returns a response, so that it can set the response’s Last-
Modified header. The second time occurs in handling GET requests that include
the If-Modified-Since header (usually reloads), so it can intelligently deter-
mine how to respond. If the time returned by getLastModified () is equal to or
earlier than the time sent in the If-Modified-Since header, the server returns
the “Not Modified” status code. Otherwise, the server calls doGet () and returns
the servlet’s output.”

Some servlets may find it difficult to determine their last modified time. For these
situations, it’s often best to use the “play it safe” default behavior. Many servlets,
however, should have little or no problem. Consider a “bulletin board” servlet
where people post carpool openings or the need for racquetball partners. It can
record and return when the bulletin board’s contents were last changed. Even if
the same servlet manages several bulletin boards, it can return a different modi-
fied time depending on the board given in the parameters of the request. Here’s a
getLastModified () method for our PrimeSearcher example that returns when
the last prime was found.

public long getLastModified (HttpServletRequest req) {
return lastprimeModified.getTime() / 1000 * 1000;
}

Notice that this method returns a long value that represents the time as a number
of milliseconds since midnight, January 1, 1970, GMT. This is the same representa-
tion used internally by Java to store time values. Thus, the servlet uses the
getTime () method to retrieve lastprimeModified as a long.

Before returning this time value, the servlet rounds it down to the nearest second
by dividing by 1000 and then multiplying by 1000. All times returned by
getLastModified() should be rounded down like this. The reason is that the
Last-Modified and If-Modified-Since headers are given to the nearest
second. If getLastModified() returns the same time but with a higher resolu-
tion, it may erroneously appear to be a few milliseconds later than the time given
by If-Modified-Since. For example, let’s assume PrimeSearcher found a
prime exactly 869127442359 milliseconds since the beginning of the Disco
Decade. This fact is told to the browser, but only to the nearest second:

Thu, 17-Jul-97 09:17:22 GMT

* A servlet can directly set its Last-Modified header inside doGet (), using techniques discussed in
Chapter 5, Sending HTML Information. However, by the time the header is set inside doGet (), it’s too
late to decide whether or not to call doGet ().

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

LAST MODIFIED TIMES 69

Now let’s assume that the user reloads the page and the browser tells the server,
via the If-Modified-Since header, the time it believes its cached page was last
modified:

Thu, 17-Jul-97 09:17:22 GMT

Some servers have been known to receive this time, convert it to exactly
869127442000 milliseconds, find that this time is 359 milliseconds earlier than the
time returned by getLastModified(), and falsely assume that the servlet’s
content has changed. This is why, to play it safe, getLastModified() should
always round down to the nearest thousand milliseconds.

The HttpServletRequest object is passed to getLastModified() in case the
servlet needs to base its results on information specific to the particular request.
The generic bulletin board servlet can make use of this to determine which board
was being requested, for example.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

In this chapter:
¢ Initialization
Parameters
* The Server

® The Client
* The Request

Retrieving Information

To build a successful web application, you often need to know a lot about the envi-
ronment in which it is running. You may need to find out about the server that is
executing your servlets or the specifics of the client that is sending requests. And
no matter what kind of environment the application is running in, you most
certainly need information about the requests that the application is handling.

Servlets have a number of methods available to gain access to this information. For
the most part, each method returns one specific result. If you compare this to the
way environment variables are used to pass a CGI program its information, the
servlet approach has several advantages:

e Stronger type checking. In other words, more help from the compiler in
catching errors. A CGI program uses one function to retrieve its environment
variables. Many errors cannot be found until they cause runtime problems.
Let’s look at how both a CGI program and a servlet find the port on which its
server is running.

A CGI script written in Perl calls:

$port = $ENV{'SERVER_PORT'};

where $port is an untyped variable. A CGI program written in C calls:

char *port = getenv ("SERVER_PORT") ;

where port is a pointer to a character string. The chance for accidental errors
is high. The environment variable name could be misspelled (it happens often
enough) or the data type might not match what the environment variable
returns.

A servlet, on the other hand, calls:

int port = req.getServerPort ()

70
Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

RETRIEVING INFORMATION 71

This eliminates a lot of accidental errors because the compiler can guarantee
there are no misspellings and each return type is as it should be.

Delayed calculation. When a server launches a CGI program, the value for
each and every environment variable must be precalculated and passed,
whether the CGI program uses it or not. A server launching a servlet has the
option to improve performance by delaying these calculations and perform-
ing them on demand as needed.

More interaction with the server. Once a CGI program begins execution, it is
untethered from its server. The only communication path available to the pro-
gram 1is its standard output. A servlet, however, can work with the server. As
discussed in the last chapter, a servlet operates either within the server (when
possible) or as a connected process outside the server (when necessary). Using
this connectivity, a servlet can make ad hoc requests for calculated informa-
tion that only the server can provide. For example, a servlet can have its server
do arbitrary path translations, taking into consideration the server’s aliases

and virtual paths.

If you’re coming to servlets from CGI, Table 4-1 is a “cheat sheet” you can use for
your migration. It lists each CGI environment variable and the corresponding

HTTP servlet method.

Table 4-1. CGI Environment Variables and the Corresponding Servlet Methods

CGI Environment Variable

HTTP Servlet Method

SERVER_NAME
SERVER_SOFTWARE.
SERVER_PROTOCOL
SERVER_PORT
REQUEST METHOD
PATH_INFO
PATH_TRANSLATED
SCRIPT_NAME
DOCUMENT_ROOT
QUERY_STRING
REMOTE_HOST
REMOTE_ADDR
AUTH_TYPE
REMOTE_USER
CONTENT_TYPE.
CONTENT_LENGTH
HTTP_ACCEPT

req.getServerName ()
getServletContext () .getServerInfo ()
req.getProtocol ()
req.getServerPort ()
req.getMethod ()
req.getPathInfo ()
req.getPathTranslated ()
reqg.getServletPath()
reqg.getRealPath("/")
reqg.getQueryString ()
req.getRemoteHost ()
req.getRemoteAddr ()
req.getAuthType ()
req.getRemoteUser ()
reqg.getContentType ()
req.getContentLength ()
req.getHeader ("Accept")

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

72 CHAPTER 4: RETRIEVING INFORMATION

Table 4-1. CGI Environment Variables and the Corresponding Servlet Methods (continued)

CGI Environment Variable HTTP Servlet Method
HTTP_USER_AGENT req.getHeader ("User-Agent")
HTTP_REFERER req.getHeader ("Referer")

In the rest of this chapter, we’ll see how and when to use these methods—and
several other methods that have no CGI counterparts. Along the way, we’ll put the
methods to use in some real servlets.

Initialization Parameters

Each registered servlet name can have specific initialization (init) parameters asso-
ciated with it. Init parameters are available to the servlet at any time; they are often
used in init() to set initial or default values for a servlet or to customize the
servlet’s behavior in some way. Init parameters are more fully explained in
Chapter 3, The Servlet Life Cycle.

Getting an Init Parameter

A servlet uses the getInitParameter() method to get access to its init
parameters:

public String ServletConfig.getInitParameter (String name)

This method returns the value of the named init parameter or null if it does not
exist. The return value is always a single String. It is up to the servlet to interpret
the value.

The GenericServlet class implements the ServletConfig interface and thus
provides direct access to the getInitParameter() method.” The method is
usually called like this:

public void init(ServletConfig config) throws ServletException {
super.init (config) ;
String greeting = getInitParameter ("greeting") ;

}

A servlet that needs to establish a connection to a database can use its init parame-
ters to define the details of the connection. We can assume a custom
establishConnection () method to abstract away the details of JDBC, as shown
in Example 4-1.

* The servlet must call super.init (config) inits init () method to get this functionality.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

INITIALIZATION PARAMETERS 73

Example 4-1. Using init parameters to establish a database connection

java.sql.Connection con = null;

public void init(ServletConfig config) throws ServletException {
super.init (config) ;

String host = getInitParameter ("host");

int port = Integer.parselnt (getInitParameter ("port"));
String db = getInitParameter ("db");

String user = getInitParameter ("user");

String password = getInitParameter ("password") ;
String proxy = getInitParameter ("proxy");

con = establishConnection (host, port, db, user, password, proxy);

Getting Init Parameter Names
A servlet can examine all its init parameters using getInitParameterNames ():
public Enumeration ServletConfig.getInitParameterNames ()

This method returns the names of all the servlet’s init parameters as an
Enumeration of String objects or an empty Enumeration if no parameters exist.
It’s most often used for debugging.

The GenericServlet class also makes this method directly available to servlets.
Example 4-2 shows a servlet that prints the name and value for all of its init
parameters.

Example 4-2. Getting init parameter names

import java.io.*;
import java.util.*;
import javax.servlet.*;

public class InitSnoop extends GenericServlet {
// No init () method needed

public void service(ServletRequest req, ServletResponse res)
throws ServletException, IOException {
res.setContentType ("text/plain") ;
PrintWriter out = res.getWriter();

out.println("Init Parameters:");
Enumeration enum = getInitParameterNames () ;
while (enum.hasMoreElements()) {

String name = (String) enum.nextElement();

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

74 CHAPTER 4: RETRIEVING INFORMATION

Example 4-2. Getting init parameter names (continued)

out.println(name + ": " + getInitParameter (name));

}

Notice that this servlet directly subclasses GenericServlet, showing that init
parameters are available to servlets that aren’t HTTP servlets. A generic servlet can
be used in a web server even though it lacks any support for HTTP-specific
functionality.

Unfortunately, there’s no server-independent way for a servlet to ask for its regis-
tered name or its class file location. This information may be added in a future
version of the Servlet API. Until then, although it’s not pretty, this information can
be passed using init parameters where necessary. Also, some servers—including
the Java Web Server—provide a back door whereby a servlet can get its registered
name. If a servlet defines a method with the following signature, the server calls it
and passes it the servlet’s registered name at initialization:

public void setServletName (String name) ;

The servlet can save the passed-in name and use it later. You’ll notice this back
door was built without changing the Servlet API, a necessary requirement because,
by the time it was added, the Servlet API 2.0 had already been frozen.

The Server

A servlet can find out much about the server in which it is executing. It can learn
the hostname, listening port, and server software, among other things. A servlet
can display this information to a client, use it to customize its behavior based on a
particular server package, or even use it to explicitly restrict the machines on
which the servlet will run.

Getting Information About the Server

There are four methods that a servlet can use to learn about its server: two that are
called using the ServletRequest object passed to the servlet and two that are
called from the ServletContext object in which the servlet is executing. A servlet
can get the name of the server and the port number for a particular request with
getServerName () and getServerPort (), respectively:

public String ServletRequest.getServerName ()
public int ServletRequest.getServerPort ()

These methods are attributes of ServletRequest because the values can change
for different requests if the server has more than one name (a technique called

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE SERVER 75

virtual hosting). The returned name might be something like "www.servlets.
com" while the returned port might be something like "8080".

The getServerInfo() and getAttribute() methods of ServletContext
provide information about the server software and its attributes:

public String ServletContext.getServerInfo ()
public Object ServletContext.getAttribute(String name)

getServerInfo () returns the name and version of the server software, separated
by a slash. The string returned might be something like "JavaWebServer/1.1.
1". getAttribute () returns the value of the named server attribute as an Object
or null if the attribute does not exist. The attributes are server-dependent. You
can think of this method as a back door through which a servlet can get extra
information about its server. Attribute names should follow the same convention
as package names. The package names java.* and javax.* are reserved for use
by the Java Software division of Sun Microsystems (formerly known as JavaSoft),
and com.sun. * is reserved for use by Sun Microsystems. See your server’s docu-
mentation for a list of its attributes. Because these methods are attributes of
ServletContext in which the servlet is executing, you have to call them through
that object:

String serverInfo = getServletContext ().getServerInfol();

The most straightforward use of information about the server is an “About This
Server” servlet, as shown in Example 4-3.

Example 4-3. Snooping the server

import java.io.*;
import java.util.*;
import javax.servlet.*;

public class ServerSnoop extends GenericServlet {

public void service(ServletRequest req, ServletResponse res)
throws ServletException, IOException {
res.setContentType ("text/plain") ;
PrintWriter out = res.getWriter();

out.println("reqg.getServerName(): " + req.getServerName()) ;
out.println("reg.getServerPort(): " + reqg.getServerPort());
out.println("getServletContext () .getServerInfo(): " +
getServletContext () .getServerInfo()) ;
out.println("getServerInfo() name: " +

getServerInfoName (getServletContext () .getServerInfo()));
out.println("getServerInfo() version: " +

getServerInfoVersion (getServletContext () .getServerInfo()));
out.println("getServletContext () .getAttribute(\"attribute\"): " +

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

76 CHAPTER 4: RETRIEVING INFORMATION

Example 4-3. Snooping the server (continued)

getServletContext () .getAttribute ("attribute")) ;

private String getServerInfoName (String serverInfo) {
int slash = serverInfo.indexOf('/"');
if (slash == -1) return serverInfo;
else return serverInfo.substring(0, slash);

private String getServerInfoVersion(String serverInfo) {
int slash = serverInfo.indexOf('/"');
if (slash == -1) return null;
else return serverInfo.substring(slash + 1);

}

This servlet also directly subclasses GenericServlet, demonstrating that all the
information about a server is available to servlets of any type. The servlet outputs
simple raw text. When accessed, this servlet prints something like:

req.getServerName () : localhost

req.getServerPort () : 8080
getServletContext () .getServerInfo(): JavaWebServer/1.1.1
getServerInfo() name: JavaWebServer

getServerInfo() version: 1.1.1
getServletContext () .getAttribute ("attribute"): null

Unfortunately, there is no server-independent way to determine the server’s root
directory, referred to in this book as server. root. However, some servers—
including the Java Web Server—save the server’s root directory name in the
server.root system property, where it can be retrieved using System.
getProperty ("server.root").

Locking a Servlet to a Server

This server information can be put to more productive uses. Let’s assume you’ve
written a servlet and you don’t want it running just anywhere. Perhaps you want to
sell it and, to limit the chance of unauthorized copying, you want to lock the
servlet to your customer’s machine with a software license. Or, alternatively, you’ve
written a license generator as a servlet and want to make sure it works only behind
your firewall. This can be done relatively easily because a servlet has instant access
to the information about its server.

Example 4-4 shows a servlet that locks itself to a particular server IP address and
port number. It requires an init parameter key that is appropriate for its server IP
address and port before it unlocks itself and handles a request. If it does not

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE SERVER 77

receive the appropriate key, it refuses to continue. The algorithm used to map the
key to the IP address and port (and vice-versa) must be secure.

Example 4-4. A servlet locked to a server

import java.io.*;
import java.net.*;
import java.util.*;
import javax.servlet.*;

public class KeyedServerlLock extends GenericServlet {

// This servlet has no class or instance variables
// associated with the locking, so as to simplify
// synchronization issues.

public void service(ServletRequest req, ServletResponse res)
throws ServletException, IOException {
res.setContentType ("text/plain") ;
PrintWriter out = res.getWriter();

// The piracy check shouldn't be done in init
// because name/port are part of request.
String key = getInitParameter ("key");

String host = req.getServerName () ;

int port = req.getServerPort();

// Check if the init parameter "key" unlocks this server.
if (! keyFitsServer (key, host, port)) {
// Explain, condemn, threaten, etc.
out.println("Pirated!");
}
else {
// Give 'em the goods
out.println("valid");
// etc...

// This method contains the algorithm used to match a key with

// a server host and port. This example implementation is extremely
// weak and should not be used by commercial sites.

//

private boolean keyFitsServer (String key, String host, int port) {

if (key == null) return false;

long numericKey = 0;
try {

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

78 CHAPTER 4: RETRIEVING INFORMATION

Example 4-4. A servlet locked to a server (continued)

numericKey = Long.parseLong (key) ;
}
catch (NumberFormatException e) {
return false;

// The key must be a 64-bit number equal to the logical not (~)
// of the 32-bit IP address concatenated with the 32-bit port number.

byte hostIP[];
try {
hostIP = InetAddress.getByName (host) .getAddress() ;
}
catch (UnknownHostException e) {
return false;

// Get the 32-bit IP address

long servercode = 0;

for (int i = 0; 1 < 4; i++) {
servercode <<= 8;
servercode |= (hostIP[i] & 255);

// Concatentate the 32-bit port number
servercode <<= 32;
servercode |= port;

// Logical not
long accesscode = ~numericKey;

// The moment of truth: Does the key match?
return (servercode == accesscode) ;

}

This servlet refuses to perform unless given the correct key. To really make it
secure, however, the simple keyFitsServer () logic should be replaced with a
strong algorithm and the whole servlet should be run through an obfuscator to
prevent decompiling. Example 4-8 later in this chapter provides the code used to
generate keys. If you try this servlet yourself, it’s best if you access the server with
its actual name, rather than localhost, so the servlet can determine the web server’s
true name and IP address.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE CLIENT 79

The Client

For each request, a servlet has the ability to find out about the client machine and,
for pages requiring authentication, about the actual user. This information can be
used for logging access data, associating information with individual users, or
restricting access to certain clients.

Getting Information About the Client Machine

A servlet can use getRemoteAddr () and getRemoteHost () to retrieve the IP
address and hostname of the client machine, respectively:

public String ServletRequest.getRemoteAddr ()
public String ServletRequest.getRemoteHost ()

Both values are returned as String objects. The information comes from the
socket that connects the server to the client, so the remote address and hostname
may be that of a proxy server. An example remote address might be "192.26.80.
118" while an example remote host might be "dist.engr. sgi.com".

The IP address or remote hostname can be converted to a java.net.
InetAddress object using InetAddress.getByName ():

InetAddress remoteInetAddress = InetAddress.getByName (req.getRemoteAddr()) ;

Restricting Access to the United States and Canada

Due to the United States government’s policy restricting the export of strong
encryption outside the United States and Canada, some web sites must be careful
about who they let download certain software. Servlets, with their ability to find
out about the client machine, are well suited to enforce this restriction. These serv-
lets can check the client machine and provide links for download only if the client
appears to be coming from inside the United States or Canada. Example 4-5 gives
an example.

Example 4-5. Can they be trusted?

import java.io.*;

import java.net.*;

import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;

public class ExportRestriction extends HttpServlet {

public void doGet (HttpServletRequest req, HttpServletResponse res)

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

80 CHAPTER 4: RETRIEVING INFORMATION

Example 4-5. Can they be trusted? (continued)

throws ServletException, IOException {
res.setContentType ("text/html") ;
PrintWriter out = res.getWriter();

// ...Some introductory HIML...

// Get the client's hostname
String remoteHost = req.getRemoteHost () ;

// See if the client is allowed
if (! isHostAllowed (remoteHost)) {
out.println("Access <BLINK>denied</BLINK>"); // filter out the blink!
}
else {
out.println("Access granted");
// Display download links, etc...

// We assume hosts ending with .com, .edu, .net, .org,
// .gov, .mil, .us, and .ca are legal even though this is an
// over-simplification now that .com, .net, and .org have
// become global top-level domains. We also assume
// clients without a domain name are local and that
// local is allowed. (After all, if local isn't allowed
// you would have to be outside the United States and Canada -- so
// why would you be using this servlet?)
private boolean isHostAllowed(String host) {
return (host.endsWith(".com") ||
host.endswith(".edu") ||
host.endsWith(".net") ||
host.endsWith(".org") ||
host.endsWith(".gov") ||
host.endswWith(".mil") ||
host.endswWith(".us") ||
host.endsWith(".ca") ||
(host.indexOf('.') == -1)); // no domain, assume OK

}

This servlet gets the client hostname with a call to req.getRemoteHost () and,
based on its suffix, decides if the client came from inside or outside the United
States and Canada. Of course, be sure to get high-priced legal counsel before
making any cryptographic code available for download.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE CLIENT 81

Getting Information About the User

What do you do when you need to restrict access to some of your web pages but
want to have a bit more control over the restriction than this “continent by conti-
nent” approach? Say, for example, you publish an online magazine and want only
paid subscribers to read the articles. Well (prepare yourself), you don’t need serv-
lets to do this.

Nearly every HTTP server has a built-in capability to restrict access to some or all
of its pages to a given set of registered users. How you set up restricted access
depends on the server, but here’s how it works mechanically. The first time a
browser attempts to access one of these pages, the HTTP server replies that it
needs special user authentication. When the browser receives this response, it
usually pops open a window asking the user for a name and password appropriate
for the page, as shown in Figure 4-1.

| Enter username for SurfZone at www.surf.sgi.com:‘

User ID: |

Password: |

[ox | [[aeor] [concel

Figure 4-1. Please log in

Once the user enters his information, the browser again attempts to access the
page, this time attaching the user’s name and password along with the request. If
the server accepts the name/password pair, it happily handles the request. If, on
the other hand, the server doesn’t accept the name/password pair, the browser is
again denied and the user swears under his breath about forgetting yet another
password.

How does this involves servlets? When access to a servlet has been restricted by the
server, the servlet can get the name of the user that was accepted by the server,
using the getRemoteUser () method:

public String HttpServletRequest.getRemoteUser ()

Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

82 CHAPTER 4: RETRIEVING INFORMATION

Note that this information is retrieved from the servlet’s HttpServletRequest
object, the HTTP-specific subclass of ServletRequest. This method returns the
name of the user making the request as a String or null if access to the servlet
was not restricted. There is no comparable method to get the remote user’s pass-
word (although it can be manually determined, as shown in Example 8-2). An
example remote user might be "jhunter".

A servlet can also use the getAuthType () method to find out what type of autho-
rization was used:

public String HttpServletRequest.getAuthType ()

This method returns the type of authorization used or null if access to the servlet
was not restricted. The most common authorization types are "BASIC" and
"DIGEST".

By the time the servlet calls getRemoteUser (), the server has already determined
that the user is authorized to invoke the servlet, but that doesn’t mean the remote
user’s name is worthless. The servlet could perform a second authorization check,
more restrictive and dynamic than the server’s. For example, it could return sensi-
tive information about someone only if that person made the request, or it could
enforce a rule that each user can make only 10 accesses per day.”

Then again, the client’s name can simply tell the servlet who is accessing it. After
all, the remote host is not necessarily unique to one user. Unix servers often host
hundreds of users, and gateway proxies can act on behalf of thousands. But bear
in mind that access to the client’s name comes with a price. Every user must be
registered with your server and, before accessing your site, must enter his name
and password. Generally speaking, authentication should not be used just so a
servlet can know to whom it is talking. Chapter 7, Session Tracking, describes some
better, lower-maintenance techniques for knowing about users. However, if a
servlet is already protected and has the name easily available, the servlet might as
well use it.

With the remote user’s name, a servlet can save information about each client.
Over the long term, it can remember each individual’s preferences. For the short
term, it can remember the series of pages viewed by the client and use them to
add a sense of state to a stateless HT'TP protocol. The session tracking tricks from
Chapter 7 may be unnecessary if the servlet already knows the name of the client
user.

* Want to know how to say “Access Denied” for the eleventh access? It’s in the next chapter.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE CLIENT 83

A Personalized Welcome

A simple servlet that uses getRemoteUser () can greet its clients by name and
remember when each last logged in, as shown in Example 4-6.
Example 4-6. Hey, I remember you!

import java.io.*;

import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;

public class PersonalizedWelcome extends HttpServlet {
Hashtable accesses = new Hashtable() ;
public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
res.setContentType ("text/html") ;
PrintWriter out = res.getWriter();

// ...Some introductory HTML...

String remoteUser = req.getRemoteUser();

if (remoteUser == null) {
out.println("Welcome!") ;
}
else {
out.println("Welcome, " + remoteUser + "!");
Date lastAccess = (Date) accesses.get (remoteUser) ;
if (lastAccess == null) {
out.println("This is your first visit!");
}
else {

out.println("Your last visit was " + accesses.get (remoteUser)) ;

if (remoteUser.equals ("PROFESSOR FALKEN")) {
out.println("Shall we play a game?");

accesses.put (remoteUser, new Date());

// ...Continue handling the request...

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

84 CHAPTER 4: RETRIEVING INFORMATION

This servlet uses a Hashtable to save the last access time for each remote user.
The first thing it does for each request is greet the person by name and tell him
the time of his last visit. Then it records the time of this visit, for use next time.
After that, it continues handling the request.

The Request

We’ve seen how the servlet finds out about the server and about the client. Now
it’s time to move on to the really important stuff: how a servlet finds out what the
client wants.

Request Parameters

Each access to a servlet can have any number of request parameters associated
with it. These parameters are typically name/value pairs that tell the servlet any
extra information it needs to handle the request. Please don’t confuse these
request parameters with init parameters, which are associated with the servlet
itself.

An HTTP servlet gets its request parameters as part of its query string (for GET
requests) or as encoded post data (for POST requests). A servlet used as a server-
side include has its parameters supplied by <PARAM> tags. Other types of servlets
can receive their parameters in other ways.

Fortunately, even though a servlet can receive parameters in a number of different
ways, every servlet retrieves its parameters the same way, using getParameter ()
and getParameterValues ():

public String ServletRequest.getParameter (String name)
public String[] ServletRequest.getParameterValues (String name)

getParameter () returns the value of the named parameter as a String or null
if the parameter was not specified.” The value is guaranteed to be in its normal,
decoded form. If the parameter has multiple values, the value returned is server-
dependent. If there’s any chance a parameter could have more than one value,
you should use the getParameterValues () method instead. This method returns
all the values of the named parameter as an array of String objects or null if the
parameter was not specified. A single value is returned in an array of length 1.

One word of warning: if the parameter information came in as encoded POST data,
it may not be available if the POST data has already been read manually using the

* The getParameter() method was deprecated in the Java Web Server 1.1 in favor of
getParameterValues (). However, after quite a lot of public protest, Sun took getParameter () off
the deprecation list in the final release of Servlet API 2.0. It was the first Java method to be undepre-
cated!

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE REQUEST 85

getReader () or getInputStream() method of ServletRequest (because
POST data can be read only once).

The possible uses for request parameters are unlimited. They are a general-
purpose way to tell a servlet what to do, how to do it, or both. For a simple
example, let’s look at how a dictionary servlet might use getParameter () to find
out the word it needs to look up.

An HTML file could contain this form asking the user for a word to look up:

<FORM METHOD=GET ACTION="/servlet/Dictionary">
Word to look up: <INPUT TYPE=TEXT NAME="word"><P>
Another word? <INPUT TYPE=TEXT N ="word"><P>
<INPUT TYPE=SUBMIT><P>

</FORM>

Or the HTML file could contain this server-side include:

<SERVLET CODE=Dictionary>

<PARAM NAME=word VALUE=obfuscate>
<PARAM NAME=word VALUE=onomatopoeia>
</SERVLET>

No matter what the HTML looks like or whether the servlet handles GET requests,
POST requests, or server-side include requests or is part of a filter chain, you can
use code like the following to retrieve the servlet’s parameters:

String word = req.getParameter ("word") ;
String definition = getDefinition (word) ;
out.println(word + ": " + definition);

While this code works fine, it can handle only one word per request. To handle
multiple values for word, the servlet can use the getParameterValues () method
instead:

String[] words = req.getParameterValues ("word") ;
if (words != null) {
for (int i = 0; i < words.length; i++) {
String definition = getDefinition (words[i]);
out.println(words[i] + ": " + definition);
out.println("<HR>") ;

}

In addition to getting parameter values, a servlet can access parameter names
using getParameterNames ():

public Enumeration ServletRequest.getParameterNames ()

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

86 CHAPTER 4: RETRIEVING INFORMATION

This method returns all the parameter names as an Enumeration of String
object or an empty Enumeration if the servlet has no parameters. The method is
most often used for debugging.

Finally, a servlet can retrieve the raw query string of the request with
getQueryString():

public String ServletRequest.getQueryString()

This method returns the raw query string (encoded GET parameter information)
of the request or null if there was no query string. This low-level information is
rarely useful for handling form data. It’s best for handling a single unnamed value,
asin "/servlet/Sqgrt?576", where the returned query string is "576".

Example 4-7 shows the use of these methods with a servlet that prints its query
string, then prints the name and value for all its parameters.

Example 4-7. Snooping parameters

import java.io.*;

import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;

public class ParameterSnoop extends HttpServlet {

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
res.setContentType ("text/plain") ;
PrintWriter out = res.getWriter();

out.println("Query String:");
out.println(req.getQueryString());
out.println();

out.println("Request Parameters:");
Enumeration enum = req.getParameterNames () ;
while (enum.hasMoreElements()) {

String name = (String) enum.nextElement () ;

String values|[] = req.getParameterValues (name) ;

if (values != null) {

for (int 1 = 0; i < values.length; i++) {
out.println(name + " (" + i + "): " + values[i]);

This servlet’s output is shown in Figure 4-2.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE REQUEST

87

File Edit “iew Go Communicator Help

-

4 » 4 N} 2 £ 5 & @l

Back Fonward Reload Home Search Guide Frint Securty Stop

? w! " Bookmarks \g&_ Goto: Ihttp:a’a’localhost:BDBDa’servIeta’ParameterSnonp?action=lnokup&word= j

Query String:
action=lookupiword=cbhfuscatesword=onomatopoeia

Regquest Parstieters:
word (0): ohfuscate

word (1) : onomatopoeia
action (0): lookup
=P |Document: Done

Figure 4-2. The snooped parameters

Generating a License Key

Now we’re ready to write a servlet that generates a KeyedServerLock license key
for any given host and port number. A key from this servlet can be used to unlock
the KeyedServerLock servlet. So, how will this servlet know the host and port
number of the servlet it needs to unlock? Why, with request parameters, of course.

Example 4-8 shows the code.

Example 4-8. Unlocking KeyedServerLock

import java.io.*;

import java.net.*;

import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;

public class KeyedServerUnlock extends HttpServlet {

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
PrintWriter out = res.getWriter();

// Get the host and port
String host = req.getParameter ("host");
String port = req.getParameter ("port");

// Convert the port to an integer
int numericPort;
try {
numericPort = Integer.parselnt (port) ;

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

88 CHAPTER 4: RETRIEVING INFORMATION

Example 4-8. Unlocking KeyedServerLock (continued)

}
catch (NumberFormatException e) {
numericPort = 80; // default

// Generate and print the key
// Any KeyGenerationException is caught and displayed
try {
long key = generateKey (host, numericPort);
out.println(host + ":" + numericPort + " has the key " + key);
}
catch (KeyGenerationException e) {
out.println("Could not generate key: " + e.getMessage()):;

// This method contains the algorithm used to match a key with

// a server host and port. This example implementation is extremely

// weak and should not be used by commercial sites.

//

// Throws a KeyGenerationException because anything more specific

// would be tied to the chosen algorithm.

//

private long generateKey (String host, int port) throws KeyGenerationException {

// The key must be a 64-bit number equal to the logical not (~)
// of the 32-bit IP address concatenated by the 32-bit port number.

byte hostIP[];
try {
hostIP = InetAddress.getByName (host) .getAddress() ;
}
catch (UnknownHostException e) {
throw new KeyGenerationException(e.getMessage());

// Get the 32-bit IP address

long servercode = 0;

for (int i = 0; 1 < 4; i++) {
servercode <<= 8;
servercode |= (hostIP[i] & 255);

// Concatentate the 32-bit port number
servercode <<= 32;
servercode |= port;

// The key is the logical not

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE REQUEST 89

Example 4-8. Unlocking KeyedServerLock (continued)

return ~servercode;

class KeyGenerationException extends Exception {

public KeyGenerationException() {
super () ;

public KeyGenerationException (String msg) ({
super (msg) ;

}

This servlet can either generate a full page (for handling GET requests) or act as a
server-side include.

Path Information

In addition to parameters, an HTTP request can include something called “extra
path information” or a “virtual path.” In general, this extra path information is
used to indicate a file on the server that the servlet should use for something. This
path information is encoded in the URL of an HTTP request. An example URL
looks like this:

http://server:port/servlet/ViewFile/index.html

This invokes the ViewFile servlet, passing "/index.html" as extra path informa-
tion. A servlet can access this path information, and it can also translate the "/
index.html" string into the real path of the index.html file. What is the real path
of "/index.html"? It’s the full file system path to the file—what the server would
return if the client asked for "/index.html" directly. This probably turns out to
be document_root/index.html, but, of course, the server could have special
aliasing that changes this.

Besides being specified explicitly in a URL, this extra path information can also be
encoded in the ACTION parameter of an HTML form:

<FORM METHOD=GET ACTION="/servlet/Dictionary/dict/definitions.txt">
Word to look up: <INPUT TYPE=TEXT NAME="word"><P>

<INPUT TYPE=SUBMIT><P>

</FORM>

This form invokes the Dictionary servlet to handle its submissions and passes the
Dictionary the extra path information "/dict/definitions.txt". The
Dictionary servlet can then know to look up word definitions using the definitions.ixt

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

90 CHAPTER 4: RETRIEVING INFORMATION

file, the same file the client would see if it requested "/dict/definitions.txt",
probably server. root/public_html/dict/definitions.txt.

Why Extra Path Information?

Why does HTTP have special support for extra path information? Isn’t it
enough to pass the servlet a path parameter? The answer is yes. Servlets don’t
need the special support, but CGI programs do.

A CGI program cannot interact with its server during execution, so it has no
way to receive a path parameter, let alone ask the server to map it to a real file
system location. The server has to somehow translate the path before invoking
the CGI program. This is why there needs to be support for special “extra path
information.” Servers know to pretranslate this extra path and send the trans-
lation to the CGI program as an environment variable. It’s a fairly elegant
workaround to a shortcoming in CGI.

Of course, just because servlets don’t need the special handling of “extra path
information,” it doesn’t mean they shouldn’t use it. It provides a simple, con-
venient way to attach a path along with a request.

Getting path information

A servlet can use the getPathInfo () method to get extra path information:
public String HttpServletRequest.getPathInfo()

This method returns the extra path information associated with the request or
null if none was given. An example path is "/dict/definitions.txt". The
path information by itself, however, is only marginally useful. A servlet usually
needs to know the actual file system location of the file given in the path info,
which is where getPathTranslated () comes in:

public String HttpServletRequest.getPathTranslated()

This method returns the extra path information translated to a real file system
path or null if there is no extra path information. The returned path does not
necessarily point to an existing file or directory. An example translated path is
"C:\JavaWebServerl.1l.1l\public_html\dict\definitions.txt".

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE REQUEST 91

Example 4-9 shows a servlet that uses these two methods to print the extra path
information it receives and the resulting translation to a real path.

Example 4-9. Showing where the path leads
import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class FileLocation extends HttpServlet {

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
res.setContentType ("text/plain") ;
PrintWriter out = res.getWriter();

if (reqg.getPathInfo() != null) {
out.println("The file \"" + reqg.getPathInfo() + "\"");
out.println("Is stored at \"" + reqg.getPathTranslated() + "\"");

Some example output of this servlet might be:
The file "/index.html"

Is stored at "/usr/JavaWebServerl.l.l/public_html/index.html"

Ad hoc path translations

Sometimes a servlet needs to translate a path that wasn’t passed in as extra path
information. You can use the getRealPath () method for this task:

public String ServletRequest.getRealPath(String path)

This method returns the real path of any given “virtual path” or null if the trans-
lation cannot be performed. If the given path is "/", the method returns the
document root (the place where documents are stored) for the server. If the given
path is getPathInfo(), the method returns the same real path as would be
returned by getPathTranslated (). This method can be used by generic servlets
as well as HTTP servlets. There is no CGI counterpart.

Getting MIME types

Once a servlet has the path to a file, it often needs to discover the type of the file.
Use getMimeType () to do this:

public String ServletContext.getMimeType (String file)

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

92 CHAPTER 4: RETRIEVING INFORMATION

This method returns the MIME type of the given file or null if it isn’t known.
Some implementations return "text/plain" if the given file doesn’t exist.
Common MIME types are "text/html", "text/plain", "image/gif", and
"image/jpeg".

The following code fragment finds the MIME type of the extra path information:

String type = getServletContext () .getMimeType (req.getPathTranslated())

Serving Files

The Java Web Server itself uses servlets to handle every request. Besides being a
showcase for the ability of servlets, this gives the server a modular design that
allows the wholesale replacement of certain aspects of its functionality. For
example, all files are served by the com.sun.server.http.FileServlet servlet,
registered under the name file and charged with the responsibility to handle the
"/" alias (meaning it’s the default handler for requests). But there’s nothing to
say that Sun’s FileServlet cannot be replaced. In fact, it can be, either by regis-
tering another servlet under the name file or by changing the "/" alias to use
another servlet. Furthermore, it’s not all that hard to write a replacement for
file, using the methods we’ve just seen.

Example 4-10 shows a ViewFile servlet that uses the getPathTranslated() and
getMimeType () methods to return whatever file is given by the extra path
information.

Example 4-10. Dynamically returning static files

import java.io.*;

import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;

import com.oreilly.servlet.ServletUtils;
public class ViewFile extends HttpServlet {

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
// Use a ServletOutputStream because we may pass binary information
ServletOutputStream out = res.getOutputStream() ;

// Get the file to view
String file = req.getPathTranslated() ;

// No file, nothing to view
if (file == null) {
out.println("No file to view");

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE REQUEST 93

Example 4-10. Dynamically returning static files (continued)

return;

// Get and set the type of the file
String contentType = getServletContext () .getMimeType (file);
res.setContentType (contentType) ;

// Return the file

try {
ServletUtils.returnFile(file, out);

}
catch (FileNotFoundException e) {
out.println("File not found");

}
catch (IOException e) {
out.println("Problem sending file: " + e.getMessage());

}

This servlet first uses getPathTranslated() to get the name of file it needs to
display. Then it uses getMimeType () to find the content type of this file and sets
the response content type to match. Last, it returns the file using the
returnFile() method found in the com.oreilly.servlet.ServletUtils
utility class:

// Send the contents of the file to the output stream
public static void returnFile(String filename, OutputStream out)
throws FileNotFoundException, IOException {
// A FileInputStream is for bytes
FileInputStream fis = null;
try {
fis = new FileInputStream(filename) ;
byte[] buf = new byte[4 * 1024]; // 4K buffer
int bytesRead;
while ((bytesRead = fis.read(buf)) != -1) {
out.write(buf, 0, bytesRead);

}
finally {
if (fis != null) fis.close():

}

The servlet’s error handling is basic—it returns a page that describes the error.
This is acceptable for our simple example (and really more than many programs
seem capable of), but we’ll learn a better way using status codes in the next
chapter.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

94 CHAPTER 4: RETRIEVING INFORMATION

This servlet can be used directly with a URL like this.
http://server:port/servliet/ViewFile/index.html

Or, if you use it as a replacement for the "file" servlet, it is automatically invoked
even for a URL like this.

http://server:port/index.html

Just beware that this servlet is a “proof of concept” example and does not have the
full functionality of the com. sun.server.http.FileServlet servlet.

Determining What Was Requested

A servlet can use several methods to find out exactly what file or servlet the client
requested. After all, only the most conceited servlet would always assume itself to
be the direct target of a request. A servlet may be nothing more than a single link
in a long servlet chain.

No method directly returns the original Uniform Resource Locator (URL) used by
the client to make a request. The javax.servlet.http.HttpUtils class,
however, provides a getRequestURL () method that does about the same thing:*

public static StringBuffer HttpUtils.getRequestURL (HttpServletRequest req)

This method reconstructs the request URL based on information available in the
HttpServletRequest object. It returns a StringBuffer that includes the
scheme (such as HTTP), server name, server port, and extra path information.
The reconstructed URL should look almost identical to the URL used by the
client. Differences between the original and reconstructed URLs should be minor
(that is, a space encoded by the client as "$20" might be encoded by the server as
a "+"). Because this method returns a StringBuffer, the request URL can be
modified efficiently (for example, by appending query parameters). This method
is often used for creating redirect messages and reporting errors.

Most of the time, however, a servlet doesn’t really need the request URL. It just
needs the request URI, which is returned by getRequestURI ():

public String HttpServletRequest.getRequestURI ()

This method returns the Universal Resource Identifier (URI) of the request. For
normal HTTP servlets, a request URI can be thought of as a URL minus the

* Why isn’t there a method that directly returns the original URL shown in the browser? Because the
browser never sends the full URL. The port number, for example, is used by the client to make its
HTTP connection, but it isn’t included in the request made to the web server answering on that port.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE REQUEST 95

scheme, host, port, and query string, but including any extra path information.*
Table 4-2 shows the request URIs for several request URLs.

Table 4-2. URLs and Their URIs

Request URL Its URI Component
http://server:port/servlet/Classname /servlet/Classname
http://server:port/servlet/registeredName /servlet/registered Name
http://server:port/serviet/Classname 2var=val /servlet/Classname @
http://server:port/servlet/Classname/pathinfo /servlet/Classname/pathinfo
http://server:port/servlet/Classname/pathinfo var=val /servlet/Classname/pathinfo
http://server:port/ssi.shtml (SSI) /ssi.shiml
http://server:port/alias. html (alias to a servlet) Jalias. html

a Several servlet engines (including the Java Web Server 1.1.1) have a bug where getRequestURI () er-
roneously includes the query string. The JSDK 2.0 servlet runner behaves correctly.

For servlets in a chain, the request URI is always that of the first servlet in the
chain.

In some situations it is enough for a servlet to know the servlet name under which
it was invoked. You can retrieve this information with getServletPath ():

public String HttpServletRequest.getServletPath()

This method returns the part of the URI that refers to the servlet being invoked or
null if the URI does not directly point to a servlet. The servlet path does not
include extra path information. Table 4-3 shows the servlet names for several
request URLs.

Table 4-3. URLs and Their Servlet Paths

Request URL Its Servlet Path
http://server:port/servlet/Classname /servlet/Classname
http://server:port/servlet/registered Name /servlet/registeredName
http://server:port/servlet/Classname 2var=val /servlet/Classname
http://server:port/serviet/Classname/pathinfo /servlet/Classname
http://server:port/servlet/Classname/pathinfo 2var=val /servlet/Classname
http://server:port/ssi.shtml (SSI) null
http://server:port/alias.html (alias to a servlet) Jalias. himl

* Technically, what is referred to here as a request URI could more formally be called a “request URL
path”. This is because a URI is, in the most precise sense, a general purpose identifier for a resource.
A URL is one type of URI; a URN (Uniform Resource Name) is another. For more information on
URIs, URLs, and URNS, see RFC 1630 at http://www.ietf.org/rfc/rfc1 630.txt.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

96 CHAPTER 4: RETRIEVING INFORMATION

For servlets in a filter chain, the servlet path is always the same as the path of the first
servlet in the chain. If the request URI does not point at a servlet,
getServletPath() returns null. It does not matter that a servlet (such as the
file servlet) may have handled the request behind the scenes or that the request
eventually ended up in a servlet.

For example, if the client requests the page /index.html and the content goes
through the Deblink servlet from Chapter 2, HTTP Servlet Basics, the Deblink
servlet has a null servlet path—the original request was for a static file, not a servlet.
If, however, the client requests /alias.html—which is a direct alias to a servlet—both
that servlet and the Deblink servlet have a servlet path of /alias. himl.

A servlet invoked as a server-side include behaves similarly. If it is embedded in a
static file, it too has a null servlet path. The only way for it to have a non-null
servlet path is if it is part of a servlet chain started by a servlet.

An Improved Counter

We can make use of the request URI information to improve our counter servlet.
The counter example from Chapter 3 could count only its own accesses. A real
counter has to be able to count accesses to pages other than itself. There are two
elegant ways to accomplish this: use the counter as an SSI servlet embedded in a
page or use the counter in a servlet chain where it can replace any instances of the
<COUNT> tag with the appropriate number. For each approach, a servlet can use
the getRequestURI () method to associate a separate count with each requested
URL

Example 4-11 shows a GenericCounter servlet superclass that knows how to
manage a hashtable that stores counts for different URIs. Example 4-12 and
Example 4-13 show servlets that subclass GenericCounter to act as a server-side
include counter and a chain-based counter, respectively.”

Example 4-11. A generic counter superclass

import java.io.*;

import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;

public class GenericCounter extends HttpServlet {
private Hashtable counts = new Hashtable();
public void init(ServletConfig config) throws ServletException {

// Always call super.init(config) first
super.init (config) ;

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE REQUEST 97

Example 4-11. A generic counter superclass (continued)

// Try to load the initial page counts from the saved persistent state
try {
FileReader fileReader = new FileReader (getClass() .getName() + ".counts");
BufferedReader bufferedReader = new BufferedReader (fileReader) ;
String line = null;
String uri = null;
String count = null;
int[] holder = null; // holder for the count, to make it an object
while ((line = bufferedReader.readLine()) != null) {

StringTokenizer tokenizer = new StringTokenizer (line);
if (tokenizer.countTokens() < 2) continue; // bogus line
uri = tokenizer.nextToken/() ;
count = tokenizer.nextToken() ;
// Store the uri/count pair in the counts hashtable
// The count is saved as an int[l] to make it an "object"
try {
holder = new int[1];

holder[0] = Integer.parselnt (count);
counts.put (uri, holder) ;
}
catch (NumberFormatException e) { } // bogus line
}
}
catch (FileNotFoundException e€) { } // no saved state
catch (IOException e) { } // problem during read
}

// Increment and return the count for the given URI
public int incrementAndGetCount (String uri) {
int[] holder = (int[])counts.get (uri);
if (holder == null) {
// Initialize the count to 0
holder = new int[1];
holder[0] = 0;
counts.put (uri, holder); // save the holder
}
holder[0]++; // increment
return holder([0];

public void destroy() {
// Try to save the accumulated count

* For Example 4-12, please note that the Java Web Server 1.1.1 has a bug where the PrintWriter re-
turned by getWriter () doesn’t generate output for servlets used as server side includes. See to
Chapter 2 for more information.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

98 CHAPTER 4: RETRIEVING INFORMATION

Example 4-11. A generic counter superclass (continued)

try {
FileWriter fileWriter = new FileWriter (getClass() .getName() + ".counts");
BufferediWriter bufferedWriter = new BufferedWriter (fileWriter) ;
Enumeration keys = counts.keys();
Enumeration elements = counts.elements();
String output = null;
while (keys.hasMoreElements () && elements.hasMoreElements()) {
bufferedWriter.write (keys.nextElement () + " " +
elements.nextElement () + "\n");
}
bufferedwriter.close() ;
fileWriter.close();
return;
}
catch (IOException e) { } // problem during write

Example 4-12. A server-side include counter

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class SSICounter extends GenericCounter {

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
PrintWriter out = res.getWriter();

// Fetch the page we're on.
String uri = reqg.getRequestURI();

// Get and increment the count for that page
int count = incrementAndGetCount (uri) ;

// Fulfull our purpose: print the count
out.println(count) ;

Example 4-13. A chain-based counter that replaces <COUNT> with the hit count

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class ChainCounter extends GenericCounter {

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE REQUEST 99

Example 4-13. A chain-based counter that replaces <COUNT> with the hit count (continued)

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

String contentType = req.getContentType() ;
res.setContentType (contentType) ;

PrintWriter out = res.getWriter();

// Fetch the page we're on.
String uri = req.getRequestURI();

// Get and increment the count
int count = incrementAndGetCount (uri) ;

// Prepare to read the input
BufferedReader reader = req.getReader();

String line = null;
while ((line = reader.readLine()) != null) {
line = replace(line, "<COUNT>", "" + count); // case sensitive

out.println(line) ;

public void doPost (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
doGet (req, res);

private String replace(String line, String oldString, String newString) {
int index = 0;
while ((index = line.indexOf (0ldString, index)) >= 0) {
line = line.substring(0, index) +
newString +
line.substring(index + oldString.length());
index += newString.length();
}

return line;

How It Was Requested

Besides knowing what was requested, a servlet has several ways of finding out
details about how it was requested. The getScheme () method returns the scheme
used to make this request:

public String ServletRequest.getScheme ()

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

100 CHAPTER 4: RETRIEVING INFORMATION

Examples include "http", "https", and "ftp", as well as the newer Java-specific
schemes "jdbc" and "rmi". There is no direct CGI counterpart (though some
CGI implementations have a SERVER_URL variable that includes the scheme). For
HTTP servlets, this method indicates whether the request was made over a secure
connection using the Secure Sockets Layer (SSL), as indicated by the scheme
"https", or if it was an insecure request, as indicated by the scheme "http".

The getProtocol () method returns the protocol and version number used to
make the request:

public String ServletRequest.getProtocol ()

The protocol and version number are separated by a slash. The method returns
null if no protocol could be determined. For HTTP servlets, the protocol is
usually vVHTTP/1.0v or VHTTP/1.1". HTTP servlets can use the protocol version to
determine if it’s okay with the client to use the new features in HTTP Version 1.1.

To find out what method was used for a request, a servlet uses getMethod ():
public String HttpServletRequest.getMethod ()

This method returns the HTTP method used to make the request. Examples
include "GET", "POST", and "HEAD". The service() method of the Http
Servlet implementation uses this method in its dispatching of requests.

Request Headers

HTTP requests and responses can have a number of associated HTTP “headers”.
These headers provide some extra information about the request (or response).
The HTTP Version 1.0 protocol defines literally dozens of possible headers; the
HTTP Version 1.1 protocol includes even more. A description of all the headers
extends beyond the scope of this book; we discuss only the headers most often
accessed by servlets. For a full list of HTTP headers and their uses, we recommend
Web Client Programming by Clinton Wong (O’Reilly) or Webmaster in a Nutshell by
Stephen Spainhour and Valerie Quercia (O’Reilly).

A servlet rarely needs to read the HTTP headers accompanying a request. Many of
the headers associated with a request are handled by the server itself. Take, for
example, how a server restricts access to its documents. The server uses HTTP
headers, and servlets need not know the details. When a server receives a request for
a restricted page, it checks that the request includes an appropriate
Authorization header that contains a valid username and a password. If it
doesn’t, the server itself issues a response containing a WWw-Authenticate header,
to tell the browser its access to a resource was denied. When the client sends a request

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE REQUEST 101

that includes the proper Authorization header, the server grants the access and
gives any servlet invoked access to the user’s name via the getRemoteUser () call.

Other headers are used by servlets, but indirectly. A good example is the Last-
Modified and If-Last-Modified pair discussed in Chapter 3. The server itself
sees the If-Last-Modified header and calls the servlet’s getLastModified()
method to determine how to proceed.

There are a few HTTP headers that a servlet may want to read on occasion. These
are listed in Table 4-4.

Table 4-4. Useful HT'TP Request Headers

Header Usage

Accept Specifies the media (MIME) types the client prefers to accept, sepa-
rated by commas.2 Each media type is divided into a type and subtype
given as type/subtype. An asterisk (*) wildcard is allowed for the
subtype (type/*) or for both the type and subtype (*/*). For
example:

Accept: image/gif, image/jpeg, text/*, */*

A servlet can use this header to help determine what type of content
to return. If this header is not passed as part of the request, the servlet
can assume the client accepts all media types.

User-Agent Gives information about the client software. The format of the
returned string is relatively free form, but it often includes the
browser name and version as well as information about the machine
on which it is running. Netscape 3.01 on an SGI Indy running IRIX 6.
2 reports:

User-Agent: Mozilla/3.01SC-SGI (X11; I; IRIX 6.2 IP22)

Microsoft Internet Explorer 4.0 running on a Windows 95 machine
reports:

User-Agent: Mozilla/4.0 (compatible; MSIE 4.0; Windows 95)

A servlet can use this header to keep statistics or to customize its
response based on browser type.

Referer Gives the URL of the document that refers to the requested URL
(that is, the document that contains the link the client followed to
access this document).b For example:

Referer: http://www.gamelan.com/pages/Gamelan.sites.home.html

A servlet can use this header to keep statistics or, if there’s some error
in the request, to keep track of the documents with errors.

Authorization | Provides the client’s authorization to access the requested URI,
including a username and password encoded in Base64. Servlets can
use this for custom authorization, as discussed in Chapter 8, Security.

a Some older browsers send a separate Accept header for each media type. This can confuse some serv-
let engines, including the Java Web Server.

b The properly-spelled Referrer header gives you nothing.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

102 CHAPTER 4: RETRIEVING INFORMATION

Accessing header values

HTTP header values are accessed through the HttpServletRequest object. A
header value can be retrieved as a String, a long (representing a Date), or an
int, using getHeader (), getDateHeader (), and getIntHeader (), respectively:

public String HttpServletRequest.getHeader (String name)
public long HttpServletRequest.getDateHeader (String name)
public int HttpServletRequest.getIntHeader (String name)

getHeader () returns the value of the named header as a String or null if the
header was not sent as part of the request. The name is case insensitive, as it is for
all these methods. Headers of all types can be retrieved with this method.

getDateHeader () returns the value of the named header as a long (repre-
senting a Date) that specifies the number of milliseconds since the epoch) or -1 if
the header was not sent as part of the request. This method throws an
IllegalArgumentException when called on a header whose value cannot be
converted to a Date. The method is useful for handling headers like Last-
Modified and If-Modified-Since.

getIntHeader () returns the value of the named header as an int or -1 if the
header was not sent as part of the request. This method throws a NumberFormat
Exception when called on a header whose value cannot be converted to an int.

A servlet can also get the names of all the headers it can access using
getHeaderNames ():

public Enumeration HttpServletRequest.getHeaderNames ()

This method returns the names of all the headers as an Enumeration of String
objects. It returns an empty Enumeration if there were no headers. The Servlet
API gives servlet engine implementations the right to not allow headers to be
accessed in this way, in which case this method returns null.

Example 4-14 demonstrates the use of these methods in a servlet that prints infor-
mation about its HTTP request headers.

Example 4-14. Snooping headers

import java.io.*;

import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;

public class HeaderSnoop extends HttpServlet {

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

THE REQUEST 103

Example 4-14. Snooping headers (continued)

res.setContentType ("text/plain") ;
PrintWriter out = res.getWriter();

out.println("Request Headers:");
out.println();
Enumeration enum = req.getHeaderNames () ;
while (enum.hasMoreElements()) {

String name = (String) enum.nextElement () ;

String value = req.getHeader (name) ;

if (value != null) {

out.println(name + ": " + value);

}
Some example output from this servlet might look like this:

Request Headers:

Connection: Keep-Alive

If-Modified-Since: Saturday, 13-Jun-98 20:50:31 GMT; length=297

User-Agent: Mozilla/4.05 [en] (X11; I; IRIX 6.2 IP22)

Host: localhost:8080

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png, */*
Accept-Language: en

Accept-Charset: iso-8859-1,*,utf-8

Cookie: jwssessionid=A3KBBlYAAAAABQDGPMSQAAA

Headers in servlet chains

Servlet chains add an interesting twist to how servlets handle headers. Unlike all
other servlets, a servlet in the middle or at the end of a servlet chain reads header
values not from the client’s request, but from the previous servlet’s response.

The power and flexibility of this approach comes from the fact that a servlet can
intelligently process a previous servlet’s output, not only in body content, but in
header values. For example, it can add extra headers to the response or change
the value of existing headers. It can even suppress the previous servlet’s headers.

But power comes with responsibilities: unless a chained servlet specifically reads
the previous servlet’s response headers and sends them as part of its own response,
the headers are not passed on and will not be seen by the client. A well-behaved
chained servlet always passes on the previous servlet’s headers, unless it has a
specific reason to do otherwise.

Java™ Serviet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

104 CHAPTER 4: RETRIEVING INFORMATION

The code shown in Example 4-15 uses getHeaderNames () in combination with
getHeader () and setHeader () to pass on the headers from the previous servlet
to the client (or possibly to another servlet in the chain). The only header given
special treatment is the Content-Length header. This header’s value reports the
length of the response in bytes—a value that is likely to change during the
chaining process and so not appropriate to send on. Note that you haven’t seen
the setHeader () method before. It can be used to, well, set a header.

Example 4-15. Passing on the headers

Enumeration enum = req.getHeaderNames () ;

if (enum != null) { // to be safe across all implementations
while (enum.hasMoreElements()) {
String header = (String)enum.nextElement () ;

if ("Content-Length") .equalsIgnoreCase (header))
continue;

String value = req.getHeader (header) ;

res.setHeader (header, value);

}

An HTTP servlet designed to function in a chain should include code similar to
this early on in its handling of a request, so as to pass on the appropriate headers.

Wading the Input Stream

Each request handled by a servlet has an input stream associated with it. Just as a
servlet can write to a PrintWriter or OutputStream associated with its response
object, it can rea