
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Robert Liguori and Patricia Liguori

Java 8 Pocket Guide

www.allitebooks.com

http://www.allitebooks.org

Java 8 Pocket Guide
by Robert Liguori and Patricia Liguori

Copyright © 2014 Gliesian, LLC. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebasto‐
pol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional
use. Online editions are also available for most titles (http://my.safaribookson
line.com). For more information, contact our corporate/institutional sales de‐
partment: 800-998-9938 or corporate@oreilly.com.

Editors: Mike Loukides and Meghan Blanchette
Production Editor: Melanie Yarbrough
Proofreader: Gillian McGarvey
Indexer: WordCo Indexing Services
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Rebecca Demarest

April 2014: First Edition

Revision History for the First Edition:
2014-04-07: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781491900864 for release de‐
tails.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are
registered trademarks of O’Reilly Media, Inc. Java 8 Pocket Guide, the cover
image of a Javan tiger, and related trade dress are trademarks of O’Reilly Media,
Inc.

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this
book, and O’Reilly Media, Inc. was aware of a trademark claim, the designations
have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the
publisher and authors assume no responsibility for errors or omissions, or for
damages resulting from the use of the information contained herein.

ISBN: 978-1-491-90086-4

[M]

www.allitebooks.com

http://my.safaribooksonline.com/?portal=oreilly
http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781491900864
http://www.allitebooks.org

This book is dedicated to our beautiful, awesome-tastic daughter,
Ashleigh.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

Preface xi

Part I. Language

Chapter 1: Naming Conventions 3
Class Names 3
Interface Names 3
Method Names 4
Instance and Static Variable Names 4
Parameter and Local Variable Names 4
Generic Type Parameter Names 4
Constant Names 5
Enumeration Names 5
Package Names 5
Annotation Names 6
Acronyms 6

Chapter 2: Lexical Elements 7
Unicode and ASCII 7
Comments 9

v

www.allitebooks.com

http://www.allitebooks.org

Keywords 10
Identifiers 11
Separators 12
Operators 12
Literals 14
Escape Sequences 17
Unicode Currency Symbols 18

Chapter 3: Fundamental Types 21
Primitive Types 21
Literals for Primitive Types 22
Floating-Point Entities 23
Numeric Promotion of Primitive Types 26
Wrapper Classes 27
Autoboxing and Unboxing 28

Chapter 4: Reference Types 31
Comparing Reference Types to Primitive Types 32
Default Values 32
Conversion of Reference Types 34
Converting Between Primitives and Reference Types 35
Passing Reference Types into Methods 35
Comparing Reference Types 37
Copying Reference Types 40
Memory Allocation and Garbage Collection of Reference

Types 41

Chapter 5: Object-Oriented Programming 43
Classes and Objects 43
Variable-Length Argument Lists 49
Abstract Classes and Abstract Methods 51

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Static Data Members, Static Methods, Static Constants, and
Static Initializers 52

Interfaces 53
Enumerations 54
Annotation Types 55
Functional Interfaces 57

Chapter 6: Statements and Blocks 59
Expression Statements 59
Empty Statement 60
Blocks 60
Conditional Statements 60
Iteration Statements 62
Transfer of Control 64
Synchronized Statement 66
Assert Statement 66
Exception Handling Statements 67

Chapter 7: Exception Handling 69
The Exception Hierarchy 69
Checked/Unchecked Exceptions and Errors 70
Common Checked/Unchecked Exceptions and Errors 71
Exception Handling Keywords 74
The Exception Handling Process 78
Defining Your Own Exception Class 79
Printing Information About Exceptions 80

Chapter 8: Java Modifiers 83
Access Modifiers 84

Table of Contents | vii

www.allitebooks.com

http://www.allitebooks.org

Other (Nonaccess) Modifiers 85

Part II. Platform

Chapter 9: Java Platform, Standard Edition 89
Common Java SE API Libraries 89

Chapter 10: Development Basics 103
Java Runtime Environment 103
Java Development Kit 103
Java Program Structure 104
Command-Line Tools 106
Classpath 113

Chapter 11: Memory Management 115
Garbage Collectors 115
Memory Management Tools 117
Command-Line Options 118
Resizing the JVM Heap 121
Metaspace 121
Interfacing with the GC 122

Chapter 12: Basic Input and Output 125
Standard Streams in, out, and err 125
Class Hierarchy for Basic Input and Output 126
File Reading and Writing 127
Socket Reading and Writing 129
Serialization 131
Zipping and Unzipping Files 132

Chapter 13: New I/O API (NIO.2) 135
The Path Interface 135

viii | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

The Files Class 136
Additional Features 137

Chapter 14: Concurrency 139
Creating Threads 139
Thread States 140
Thread Priorities 141
Common Methods 141
Synchronization 143
Concurrent Utilities 144

Chapter 15: Java Collections Framework 149
The Collection Interface 149
Implementations 150
Collection Framework Methods 150
Collections Class Algorithms 151
Algorithm Efficiencies 152
Comparator Functional Interface 153

Chapter 16: Generics Framework 157
Generic Classes and Interfaces 157
Constructors with Generics 158
Substitution Principle 159
Type Parameters, Wildcards, and Bounds 160
The Get and Put Principle 160
Generic Specialization 161
Generic Methods in Raw Types 162

Chapter 17: The Java Scripting API 165
Scripting Languages 165
Script Engine Implementations 165
Setting Up Scripting Languages and Engines 168

Table of Contents | ix

Chapter 18: Date and Time API 171
Legacy Interoperability 172
Regional Calendars 172
ISO Calendar 173

Chapter 19: Lambda Expressions 179
λEs Basics 179
Specific Purpose Functional Interfaces 182
General Purpose Functional Interfaces 182
Resources for λEs 184

Part III. Appendixes

A. Fluent APIs 189

B. Third-Party Tools 191

C. UML Basics 201

Index 211

x | Table of Contents

Preface

Designed to be your companion, this Pocket Guide provides a
quick reference to the standard features of the Java programming
language and its platform.

This Pocket Guide provides you with the information you will
need while developing or debugging your Java programs, includ‐
ing helpful programming examples, tables, figures, and lists.

It also contains supplemental information about things such as
the Java Scripting API, third-party tools, and the basics of the
Unified Modeling Language (UML).

The material in this book also provides support in preparing for
the Oracle Certified Associate Java SE 7 Programmer I Exam. If
you are considering pursuing this Java certification, you may also
wish to consider acquiring OCA Java SE 7 Programmer I Study
Guide (Exam 1Z0-803) by Edward Finegan and Robert Liguori
(McGraw-Hill Osborne Media, 2012).

Java coverage in this book is representative through Java SE 8.
However, the primary differences between this Java 8 Pocket
Guide and the prior Java 7 Pocket Guide is the addition of the
Date and Time API and the Lambda Expressions chapters.

xi

Book Structure
This book is broken into three parts: Part I, Part II, and Part III.
Chapters 1 through 8 detail the Java programming language as
derived from the Java Language Specification (JLS). Chapters 9
through 19 detail Java platform components and related topics.
The appendixes cover third-party tools and the Unified Modeling
Language.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and
file extensions.

Constant width

Used for program listings, as well as within paragraphs to
refer to program elements such as variable or function
names, databases, data types, environment variables, state‐
ments, and keywords.

Constant width bold

Shows commands or other text that should be typed literally
by the user.

Constant width italic

Shows text that should be replaced with user-supplied values
or by values determined by context.

T I P

This element signifies a tip, suggestion, or general note.

xii | Preface

W A R N I N G

This element indicates a warning or caution.

Safari® Books Online

N O T E

Safari Books Online is an on-demand digital library that
delivers expert content in both book and video form from
the world’s leading authors in technology and business.

Technology professionals, software developers, web designers,
and business and creative professionals use Safari Books Online
as their primary resource for research, problem solving, learning,
and certification training.

Safari Books Online offers a range of product mixes and pricing
programs for organizations, government agencies, and individ‐
uals. Subscribers have access to thousands of books, training vid‐
eos, and prepublication manuscripts in one fully searchable da‐
tabase from publishers like O’Reilly Media, Prentice Hall Profes‐
sional, Addison-Wesley Professional, Microsoft Press, Sams,
Que, Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons,
Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
Press, FT Press, Apress, Manning, New Riders, McGraw-Hill,
Jones & Bartlett, Course Technology, and dozens more. For more
information about Safari Books Online, please visit us online.

Preface | xiii

http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/

How to Contact Us
Please address comments and questions concerning this book to
the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
and any additional information. You can access this page at http://
oreil.ly/java-8-pocket-guide.

To comment or ask technical questions about this book, send
email to bookquestions@oreilly.com.

For more information about our books, courses, conferences,
and news, see our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Authors
Robert James Liguori is the principal for Gliesian LLC. He is an
Oracle Certified Expert, supporting several Java-based air traffic
management and safety applications. Patricia Liguori is a multi-
disciplinary information systems engineer for The MITRE Cor‐
poration. She has been developing real-time air traffic manage‐
ment systems and aviation-related information systems since
1994.

xiv | Preface

http://oreil.ly/java-8-pocket-guide
http://oreil.ly/java-8-pocket-guide
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.gliesian.com
http://www.mitre.org/
http://www.mitre.org/

Acknowledgments
We extend a special thank you to our editor, Meghan Blanchette.
Her oversight and collaboration has been invaluable to this en‐
deavor.

Further appreciation goes out to Michael Loukides (technical
editor of the initial Java Pocket Guide), our technical reviewer
Ryan Cuprak, as well as the various members of the O’Reilly team,
our family, and our friends.

We would also like to thank again all of those who participated
with the original Java Pocket Guide and the Java 7 Pocket Guide.

Most importantly, we thank you for using the book as a reference
guide and for loving Java. Feel free to post a picture of yourself
with the book on Tumblr. It would be nice to see who is using the
book and where it has been (even on vacations). :)

Preface | xv

http://shop.oreilly.com/product/0636920027829.do
http://javapocketguide.tumblr.com/

PART I

Language

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1

Naming Conventions

Naming conventions are used to make Java programs more read‐
able. It is important to use meaningful and unambiguous names
comprised of Java letters.

Class Names
Class names should be nouns, as they represent “things” or “ob‐
jects.” They should be mixed case (camel case) with only the first
letter of each word capitalized, as in the following:

public class Fish {...}

Interface Names
Interface names should be adjectives. They should end with “able”
or “ible” whenever the interface provides a capability; otherwise,
they should be nouns. Interface names follow the same capitali‐
zation convention as class names:

public interface Serializable {...}
public interface SystemPanel {...}

3

Method Names
Method names should contain a verb, as they are used to make
an object take action. They should be mixed case, beginning with
a lowercase letter, and the first letter of each subsequent word
should be capitalized. Adjectives and nouns may be included in
method names:

public void locate() {...} // verb
public String getWayPoint() {...} // verb and noun

Instance and Static Variable Names
Instance and static variable names should be nouns and should
follow the same capitalization convention as method names:

private String wayPoint;

Parameter and Local Variable Names
Parameter and local variable names should be descriptive low‐
ercase single words, acronyms, or abbreviations. If multiple
words are necessary, they should follow the same capitalization
convention as method names:

public void printHotSpots(ArrayList spotList) {
 int counter = 0;
 for (String hotSpot : spotList) {
 System.out.println("Hot Spot #"
 + ++counter + ": " + hotSpot);
 }
}

Temporary variable names may be single letters such as i, j, k,
m, and n for integers and c, d, and e for characters.

Generic Type Parameter Names
Generic type parameter names should be uppercase single letters.
The letter T for type is typically recommended.

4 | Chapter 1: Naming Conventions

The Collections Framework makes extensive use of generics. E is
used for collection elements, S is used for service loaders, and K
and V are used for map keys and values:

public interface Map <K,V> {
 V put(K key, V value);
}

Constant Names
Constant names should be all uppercase letters, and multiple
words should be separated by underscores:

public static final int MAX_DEPTH = 200;

Enumeration Names
Enumeration names should follow the conventions of class
names. The enumeration set of objects (choices) should be all
uppercase letters:

enum Battery {CRITICAL, LOW, CHARGED, FULL}

Package Names
Package names should be unique and consist of lowercase letters.
Underscores may be used if necessary:

package com.oreilly.fish_finder;

Publicly available packages should be the reversed Internet do‐
main name of the organization, beginning with a single-word
top-level domain name (e.g., com, net, org, or edu), followed by
the name of the organization and the project or division. (Internal
packages are typically named according to the project.)

Package names that begin with java and javax are restricted and
can be used only to provide conforming implementations to the
Java class libraries.

Constant Names | 5

Annotation Names
Annotation names have been presented several ways in the Java
SE API for predefined annotation types, [adjective|verb][noun]:

@Documented
@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.TYPE)
public @interface FunctionalInterface {}

Acronyms
When using acronyms in names, only the first letter of the acro‐
nym should be uppercase and only when uppercase is appropri‐
ate:

public String getGpsVersion() {...}

6 | Chapter 1: Naming Conventions

CHAPTER 2

Lexical Elements

Java source code consists of words or symbols called lexical ele‐
ments or tokens. Java lexical elements include line terminators,
whitespace, comments, keywords, identifiers, separators, opera‐
tors, and literals. The words or symbols in the Java programming
language are comprised of the Unicode character set.

Unicode and ASCII
Maintained by the Unicode Consortium standards organization,
Unicode is the universal character set with the first 128 characters
being the same as those in the American Standard Code for In‐
formation Interchange (ASCII) character set. Unicode provides
a unique number for character, usable across all platforms, pro‐
grams, and languages. Java SE 8 uses Unicode 6.2.0 and you can
find more information about it in the online manual. Java SE 7
uses Unicode 6.0.0. Java SE 6 and J2SE 5.0 use Unicode 4.0.

T I P

Java comments, identifiers, and string literals are not limi‐
ted to ASCII characters. All other Java input elements are
formed from ASCII characters.

7

http://bit.ly/1eeZt6J

The Unicode set version used by a specified version of the Java
platform is documented in the Character class of the Java API.
The Unicode Character Code Chart for scripts, symbols, and
punctuation can be accessed at http://unicode.org/charts/.

Printable ASCII Characters
ASCII reserves code 32 (spaces) and codes 33 to 126 (letters, dig‐
its, punctuation marks, and a few others) for printable characters.
Table 2-1 contains the decimal values followed by the corre‐
sponding ASCII characters for these codes.
Table 2-1. Printable ASCII characters

32 SP 48 0 64 @ 80 P 96 ' 112 p

33 ! 49 1 65 A 81 Q 97 a 113 q

34 " 50 2 66 B 82 R 98 b 114 r

35 # 51 3 67 C 83 S 99 C 115 S

36 $ 52 4 68 D 84 T 100 d 116 t

37 % 53 5 69 E 85 U 101 e 117 u

38 & 54 6 70 F 86 V 102 f 118 v

39 ' 55 7 71 G 87 W 103 g 119 w

40 (56 8 72 H 88 X 104 h 120 x

41) 57 9 73 I 89 Y 105 i 121 y

42 * 58 : 74 J 90 Z 106 j 122 z

43 + 59 ; 75 K 91 [107 k 123 {

44 , 60 < 76 L 92 \ 108 l 124 |

45 - 61 = 77 M 93] 109 m 125 }

46 . 62 > 78 N 94 ^ 110 n 126 ~

47 / 63 ? 79 O 95 _ 111 o

8 | Chapter 2: Lexical Elements

http://unicode.org/charts/

Nonprintable ASCII Characters
ASCII reserves decimal numbers 0–31 and 127 for control char‐
acters. Table 2-2 contains the decimal values followed by the cor‐
responding ASCII characters for these codes.
Table 2-2. Nonprintable ASCII characters

00 NUL 07 BEL 14 SO 21 NAK 28 FS

01 SOH 08 BS 15 SI 22 SYN 29 GS

02 STX 09 HT 16 DLE 23 ETB 30 RS

03 ETX 10 NL 17 DC1 24 CAN 31 US

04 EOT 11 VT 18 DC2 25 EM 127 DEL

05 ENQ 12 NP 19 DC3 26 SUB

06 ACK 13 CR 20 DC4 27 ESC

T I P

ASCII 10 is a newline or linefeed. ASCII 13 is a carriage
return.

Comments
A single-line comment begins with two forward slashes and ends
immediately before the line terminator character:

// A comment on a single line

A multiline comment begins with a forward slash immediately
followed by an asterisk, and ends with an asterisk immediately
followed by a forward slash. The single asterisks in between pro‐
vide a nice formatting convention; they are typically used, but are
not required:

/*
 * A comment that can span multiple lines
 * just like this
 */

Comments | 9

A Javadoc comment is processed by the Javadoc tool to generate
API documentation in HTML format. A Javadoc comment must
begin with a forward slash, immediately followed by two aster‐
isks, and end with an asterisk immediately followed by a forward
slash (Oracle’s documentation page provides more information
on the Javadoc tool):

/** This is my Javadoc comment */

In Java, comments cannot be nested:

/* This is /* not permissible */ in Java */

Keywords
Table 2-3 contains the Java keywords. Two of these, the const and
goto keywords, are reserved but are not used by the Java language.
Java 5.0 introduced the enum keyword.

T I P

Java keywords cannot be used as identifiers in a Java pro‐
gram.

Table 2-3. Java keywords

abstract double int super

assert else interface switch

boolean enum long synchronized

break extends native this

byte final new throw

case finally package throws

catch float private transient

char for protected try

class if public void

10 | Chapter 2: Lexical Elements

http://bit.ly/16mhGeT

const goto return volatile

continue implements short while

default import static

do instanceof strictfp

T I P

Sometimes true, false, and null literals are mistaken for
keywords. They are not keywords; they are reserved literals.

Identifiers
A Java identifier is the name that a programmer gives to a class,
method, variable, and so on.

Identifiers cannot have the same Unicode character sequence as
any keyword, boolean, or null literal.

Java identifiers are made up of Java letters. A Java letter is a char‐
acter for which Character.isJavaIdentifierStart(int) returns
true. Java letters from the ASCII character set are limited to the
dollar sign ($), the underscore symbol (_), and upper- and low‐
ercase letters.

Digits are also allowed in identifiers, but after the first character:

// Valid identifier examples
class TestDriver {...}
String testVariable;
int _testVariable;
Long $testVariable;
startTest(testVariable1);

See Chapter 1 for naming guidelines.

Identifiers | 11

Separators
Several ASCII characters delimit program parts and are used as
separators. (), { }, and [] are used in pairs:

() { } [] < > :: : ; , . ->

Table 2-4 cites nomenclature that can be used to reference the
difference types of bracket separators. The first names mentioned
for each bracket is what is typically seen in the Java Language
Specification.
Table 2-4. Java bracket separators

Brackets Nomenclature Usage

() Parentheses, curved brackets, oval
brackets, and round brackets

Adjusts precedence in arithmetic
expressions, encloses cast types,
and surrounds set of method
arguments

{ } Braces, curly brackets, fancy brackets,
squiggly brackets, and squirrelly
brackets

Surrounds blocks of code and
supports arrays

[] Box brackets, closed brackets, and
square brackets

Supports and initializes arrays

< > Angle brackets, diamond brackets,
and chevrons

Encloses generics

Guillemet characters, a.k.a. angle quotes, are used to specified
stereotypes in UML; << >>.

Operators
Operators perform operations on one, two, or three operands and
return a result. Operator types in Java include assignment, arith‐
metic, comparison, bitwise, increment/decrement, and class/
object. Table 2-5 contains the Java operators listed in precedence
order (those with the highest precedence at the top of the table),
along with a brief description of the operators and their associa‐
tivity (left to right or right to left).

12 | Chapter 2: Lexical Elements

www.allitebooks.com

http://www.allitebooks.org

Table 2-5. Java operators

Precedence Operator Description Association

1 ++,-- Postincrement,
postdecrement

R → L

2 ++,-- Preincrement,
predecrement

R → L

+,- Unary plus, unary minus R → L

~ Bitwise complement R → L

! Boolean NOT R → L

3 new Create object R → L

(type) Type cast R → L

4 *,/,% Multiplication, division,
remainder

L → R

5 +,- Addition, subtraction L → R

+ String concatenation L → R

6 <<, >>, Left shift, right shift,
unsigned right shift

L → R

7 <, ⇐, >, >= Less than, less than or
equal to, greater than,
greater than or equal to

L → R

instanceof Type comparison L → R

8 ==, != Value equality and
inequality

L → R

==, != Reference equality and
inequality

L → R

9 & Boolean AND L → R

& Bitwise AND L → R

10 ^ Boolean exclusive OR
(XOR)

L → R

^ Bitwise exclusive OR
(XOR)

L → R

Operators | 13

Precedence Operator Description Association

11 Boolean inclusive
OR

L → R

Bitwise
inclusive OR

L → R 12 &&

Logical AND
(a.k.a.
conditional
AND)

L → R 13

Logical OR (a.k.a.
conditional OR)

L → R

14 ?: Conditional ternary
operator

L → R

15 =, +=, -=,
*=, /=, %=,
&=, ^=,

=, <⇐, >> =, >>>= Assignment
operators

Literals
Literals are source code representation of values. As of Java SE 7,
underscores are allowed in numeric literals to enhance readabil‐
ity of the code. The underscores may only be placed between
individual numbers and are ignored at runtime.

For more information on primitive type literals, see “Literals for
Primitive Types” on page 22 in Chapter 3.

Boolean Literals
Boolean literals are expressed as either true or false:

boolean isReady = true;
boolean isSet = new Boolean(false); // unboxed
boolean isGoing = false;

14 | Chapter 2: Lexical Elements

Character Literals
A character literal is either a single character or an escape se‐
quence contained within single quotes. Line terminators are not
allowed:

char charValue1 = 'a';
// An apostrophe
Character charValue2 = new Character ('\'');

Integer Literals
Integer types (byte, short, int, and long) can be expressed in
decimal, hexadecimal, octal, and binary. By default, integer lit‐
erals are of type int:

int intValue1 = 34567, intValue2 = 1_000_000;

Decimal integers contain any number of ASCII digits, zero
through nine, and represent positive numbers:

Integer integerValue1 = new Integer(100);

Prefixing the decimal with the unary negation operator can form
a negative decimal:

publis static final int INT_VALUE = -200;

Hexadecimal literals begin with 0x or 0X, followed by the ASCII
digits zero through nine and the letters a through f (or A through
F). Java is not case-sensitive when it comes to hexadecimal literals.

Hex numbers can represent positive and negative integers and
zero:

int intValue3 = 0X64; // 100 decimal from hex

Octal literals begin with a zero followed by one or more ASCII
digits zero through seven:

int intValue4 = 0144; // 100 decimal from octal

Binary literals are expressed using the prefix 0b or 0B followed by
zeros and ones:

Literals | 15

char msgValue1 = 0b01001111; // O
char msgValue2 = 0B01001011; // K
char msgValue3 = 0B0010_0001; // !

To define an integer as type long, suffix it with an ASCII letter L
(preferred and more readable) or l:

long longValue = 100L;

Floating-Point Literals
A valid floating-point literal requires a whole number and/or a
fractional part, decimal point, and type suffix. An exponent pref‐
aced by an e or E is optional. Fractional parts and decimals are
not required when exponents or type suffixes are applied.

A floating-point literal (double) is a double-precision floating
point of eight bytes. A float is four bytes. Type suffixes for dou‐
bles are d or D; suffixes for floats are f or F:

[whole-number].[fractional_part][e|E exp][f|F|d|D]

float floatValue1 = 9.15f, floatValue2 = 1_168f;
Float floatValue3 = new Float(20F);
double doubleValue1 = 3.12;
Double doubleValue2 = new Double(1e058);
float expValue1 = 10.0e2f, expValue2=10.0E3f;

String Literals
String literals contain zero or more characters, including escape
sequences enclosed in a set of double quotes. String literals can‐
not contain Unicode \u000a and \u000d for line terminators; use
\r and \n instead. Strings are immutable:

String stringValue1 = new String("Valid literal.");
String stringValue2 = "Valid.\nOn new line.";
String stringValue3 = "Joins str" + "ings";
String stringValue4 = "\"Escape Sequences\"\r";

There is a pool of strings associated with class String. Initially,
the pool is empty. Literal strings and string-valued constant

16 | Chapter 2: Lexical Elements

expressions are interned in the pool and added to the pool only
once.

The following example shows how literals are added to and used
in the pool:

// Adds String "thisString" to the pool
String stringValue5 = "thisString";
// Uses String "thisString" from the pool
String stringValue6 = "thisString";

A string can be added to the pool (if it does not already exist in
the pool) by calling the intern() method on the string. The in
tern() method returns a string, which is either a reference to the
new string that was added to the pool or a reference to the existing
string:

String stringValue7 = new String("thatString");
String stringValue8 = stringValue7.intern();

Null Literals
The null literal is of type null and can be applied to reference
types. It does not apply to primitive types:

String n = null;

Escape Sequences
Table 2-6 provides the set of escape sequences in Java.
Table 2-6. Character and string literal escape sequences

Name Sequence Decimal Unicode

Backspace \b 8 \u0008

Horizontal tab \t 9 \u0009

Line feed \n 10 \u000A

Form feed \f 12 \u000C

Carriage return \r 13 \u000D

Double quote \” 34 \u0022

Escape Sequences | 17

Name Sequence Decimal Unicode

Single quote \' 39 \u0027

Different line terminators are used for different platforms to ach‐
ieve a newline; see Table 2-7. The println() method, which in‐
cludes a line break, is a better solution than hardcoding \n and
\r when used appropriately.
Table 2-7. Newline variations

Operating system Newline

POSIX-compliant operating systems (e.g., Solaris, Linux) and Mac
OS X

LF (\n)

Mac OS X up to version 9 CR (\r)

Microsoft Windows CR+LF (\r\n)

Unicode Currency Symbols
Unicode currency symbols are present in the range of \u20A0–
\u20CF (8352–+8399+). See Table 2-8 for examples.
Table 2-8. Currency symbols within range

Name Symbol Decimal Unicode

Franc sign ₣ 8355 \u20A3

Lira sign ₤ 8356 \u20A4

Mill sign ₥ 8357 \u20A5

Rupee sign ₨ 8360 \u20A8

Dong sign ₫ 8363 \u20AB

Euro sign € 8364 \u20AC

Drachma sign ₯ 8367 \u20AF

German penny sign ₰ 8368 \u20B0

A number of currency symbols exist outside of the designated
currency range. See Table 2-9 for examples.

18 | Chapter 2: Lexical Elements

Table 2-9. Currency symbols outside of range

Name Symbol Decimal Unicode

Dollar sign $ 36 \u0024

Cent sign ¢ 162 \u00A2

Pound sign £ 163 \u00A3

Currency sign ¤ 164 \u00A4

Yen sign ¥ 165 \u00A5

Latin small f with hook ƒ 402 \u0192

Bengali rupee mark ৲ 2546 \u09F2

Bengali rupee sign ৳ 2547 \u09F3

Gujarati rupee sign ૱ 2801 \u0AF1

Tamil rupee sign ௹ 3065 \u0BF9

Thai symbol baht ฿ 3647 \u0E3F

Script captial ℳ 8499 \u2133

CJK unified ideograph 1 元 20803 \u5143

CJK unified ideograph 2 円 20870 \u5186

CJK unified ideograph 3 圆 22278 \u5706

CJK unified ideograph 4 圓 22291 \u5713

Unicode Currency Symbols | 19

CHAPTER 3

Fundamental Types

Fundamental types include the Java primitive types and their
corresponding wrapper classes/reference types. Java 5.0 and be‐
yond provide for automatic conversion between these primitive
and reference types through autoboxing and unboxing. Numeric
promotion is applied to primitive types where appropriate.

Primitive Types
There are eight primitive types in Java; each is a reserved key‐
word. They describe variables that contain single values of the
appropriate format and size; see Table 3-1. Primitive types are
always the specified precision, regardless of the underlying hard‐
ware precisions (e.g., 32- or 64-bit).
Table 3-1. Primitive types

Type Detail Storage Range

boolean true or false 1 bit Not applicable

char Unicode character 2 bytes \u0000 to \uFFFF

byte Integer 1 byte –128 to 127

short Integer 2 bytes –32768 to 32767

int Integer 4 bytes –2147483648 to 2147483647

long Integer 8 bytes –263 to 263 –1

21

Type Detail Storage Range

float Floating point 4 bytes 1.4e–45 to 3.4e+38

double Floating point 8 bytes 5e–324 to 1.8e+308

T I P

Primitive types byte, short, int, long, float, and dou
ble are all signed. Type char is unsigned.

Literals for Primitive Types
All primitive types except boolean can accept character, decimal,
hexadecimal, octal, and Unicode literal formats, as well as char‐
acter escape sequences. Where appropriate, the literal value is
automatically cast or converted. Remember that bits are lost dur‐
ing truncation. The following is a list of primitive assignment
examples:

boolean isTitleFight = true;

The boolean primitive’s only valid literal values are true and
false.

char [] cArray = {'\u004B', 'O', '\'', 0x0064, 041,

(char) 131105, 0b00100001}; // KO'd!!!

The char primitive represents a single Unicode character.
Literal values of the char primitive that are greater than two
bytes need to be explicitly cast.

byte rounds = 12, fighters = (byte) 2;

The byte primitive has a four-byte signed integer as its valid
literal. If an explicit cast is not performed, the integer is im‐
plicitly cast to one byte.

short seatingCapacity = 17157, vipSeats = (short) 500;

The short primitive has a four-byte signed integer as its valid
literal. If an explicit cast is not performed, the integer is im‐
plicitly cast to two bytes.

22 | Chapter 3: Fundamental Types

www.allitebooks.com

http://www.allitebooks.org

int ppvRecord = 19800000, vs = vipSeats, venues = (int)

20000.50D;

The int primitive has a four-byte signed integer as its valid
literal. When char, byte, and short primitives are used as
literals, they are automatically cast to four-byte integers, as
in the case of the short value within vipSeats. Floating-
point and long literals must be explicitly cast.

long wins = 38L, losses = 4l, draws = 0, knockouts =

(long) 30;

The long primitive uses an eight-byte signed integer as its
valid literal. It is designated by an L or l postfix. The value
is cast from four bytes to eight bytes when no postfix or cast
is applied.

float payPerView = 54.95F, balcony = 200.00f, ringside =

(float) 2000, cheapSeats = 50;

The float primitive has a four-byte signed floating point as
its valid literal. An F or f postfix or an explicit cast designates
it. Even though no explicit cast is necessary for an int literal,
an int will not always fit into a float where the value exceeds
about 2^23.

double champsPay = 20000000.00D, challengersPay =

12000000.00d, chlTrainerPay = (double) 1300000, referee

sPay = 3000, soda = 4.50;

The double primitive uses an eight-byte signed floating-
point value as its valid literal. The literal can have a D, d, or
explicit cast with no postfix. If the literal is an integer, it is
implicitly cast.

See Chapter 2 for more details on literals.

Floating-Point Entities
Positive and negative floating-point infinities, negative zero, and
Not-a-Number (NaN) are special entities defined to meet the
IEEE 754-1985 standard; see Table 3-2.

Floating-Point Entities | 23

The Infinity, –Infinity, and –0.0 entities are returned when
an operation creates a floating-point value that is too large to be
traditionally represented.
Table 3-2. Floating-point entities

Entity Description Examples

Infinity Represents the concept of
positive infinity

1.0 / 0.0, 1e300 / 1e–300, Math.abs (–
1.0 / 0.0)

–Infinity Represents the concept of
negative infinity

–1.0 / 0.0, 1.0 / (–0.0), 1e300/–1e–
300

–0.0 Represents a negative number
close to zero

–1.0 / (1.0 / 0.0), –1e–300 / 1e300

NaN Represents undefined results 0.0 / 0.0, 1e300 * Float.NaN, Math.sqrt
(–9.0)

Positive infinity, negative infinity, and NaN entities are available
as double and float constants:

Double.POSITIVE_INFINITY; // Infinity
Float.POSITIVE_INFINITY; // Infinity
Double.NEGATIVE_INFINITY; // –Infinity
Float.NEGATIVE_INFINITY; // –Infinity
Double.NaN; // Not-a-Number
Float.NaN; // Not-a-Number

The Double and Float wrapper classes have methods to determine
if a number is finite, infinite, or NaN:

Double.isFinite(Double.POSITIVE_INFINITY); // false
Double.isFinite(Double.NEGATIVE_INFINITY); // false
Double.isFinite(Double.NaN); // false
Double.isFinite(1); // true
Double.isInfinite(Double.POSITIVE_INFINITY); // true
Double.isInfinite(Double.NEGATIVE_INFINITY); // true
Double.isInfinite(Double.NaN); // false
Double.isInfinite(1); // false
Double.isNaN(Double.NaN); // true
Double.isNaN(1); // false

24 | Chapter 3: Fundamental Types

Operations Involving Special Entities
Table 3-3 shows the results of special entity operations where the
operands are abbreviated as INF for Double.POSITIVE_INFINITY,
–INF for Double.NEGATIVE_INFINITY, and NAN for Double.NaN.

For example, column 4’s heading entry (–0.0) and row 12’s entry
(* NAN) have a result of NaN, and could be written as follows:

// 'NaN' will be printed
System.out.print((-0.0) * Double.NaN);

Table 3-3. Operations involving special entities

 INF (–INF) (–0.0)

* INF Infinity –Infinity NaN

+ INF Infinity NaN Infinity

– INF NaN –Infinity –Infinity

/ INF NaN NaN –0.0

* 0.0 NaN NaN –0.0

+ 0.0 Infinity –Infinity 0.0

+ 0.5 Infinity –Infinity 0.5

* 0.5 Infinity –Infinity –0.0

+ (–0.5) Infinity –Infinity –0.5

* (–0.5) –Infinity Infinity 0.0

+ NAN NaN NaN NaN

* NAN NaN NaN NaN

T I P

Any operation performed on NaN results in NaN; there is no
such thing as –NaN.

Floating-Point Entities | 25

Numeric Promotion of Primitive Types
Numeric promotion consists of rules that are applied to the
operands of an arithmetic operator under certain conditions.
Numeric promotion rules consist of both unary and binary pro‐
motion rules.

Unary Numeric Promotion
When a primitive of a numeric type is part of an expression, as
listed in Table 3-4, the following promotion rules are applied:

• If the operand is of type byte, short, or char, the type will
be promoted to type int.

• Otherwise, the type of the operand remains unchanged.

Table 3-4. Expression for unary promotion rules

Expression

Operand of a unary plus operator

Operand of a unary minus operator –

Operand of a bitwise complement operator ~

All shift operators >>, >>>, or <<

Index expression in an array access expression

Dimension expression in an array creation expression

Binary Numeric Promotion
When two primitives of different numerical types are compared
via the operators listed in Table 3-5, one type is promoted based
on the following binary promotion rules:

• If either operand is of type double, the non-double primi‐
tive is converted to type double.

• If either operand is of type float, the non-float primitive
is converted to type float.

26 | Chapter 3: Fundamental Types

• If either operand is of type long, the non-long primitive is
converted to type long.

• Otherwise, both operands are converted to int.

Table 3-5. Operators for binary promotion rules

Operators Description

+ and – Additive operators

*, /, and % Multiplicative operators

<, ⇐, >, and >= Comparison operators

== and != Equality operators

&, ^, and | Bitwise operators

? : Conditional operator (see next section)

Special Cases for Conditional Operators

• If one operand is of type byte and the other is of type
short, the conditional expression will be of type short:

short = true ? byte : short

• If one operand R is of type byte, short, or char, and the
other is a constant expression of type int whose value is
within range of R, the conditional expression is of type R:

short = (true ? short : 1967)

• Otherwise, binary numeric promotion is applied and the
conditional expression type will be that of the promoted
type of the second and third operands.

Wrapper Classes
Each of the primitive types has a corresponding wrapper class/
reference type, which is located in package java.lang. Each
wrapper class has a variety of methods, including one to return

Wrapper Classes | 27

the type’s value, as shown in Table 3-6. These integer and floating-
point wrapper classes can return values of several primitive types.
Table 3-6. Wrapper classes

Primitive
types

Reference types Methods to get primitive values

boolean Boolean booleanValue()

char Character charValue()

byte Byte byteValue(), shortValue(), intValue(), longValue(), float
Value(), doubleValue()

short Short byteValue(), shortValue(), intValue(), longValue(), float
Value(), doubleValue()

int Integer byteValue(), shortValue(), intValue(), longValue(), float
Value(), doubleValue()

long Long byteValue(), shortValue(), intValue(), longValue(), float
Value(), doubleValue()

float Float byteValue(), shortValue(), intValue(), longValue(), float
Value(), doubleValue()

double Double byteValue(), shortValue(), intValue(), longValue(), float
Value(), doubleValue()

Autoboxing and Unboxing
Autoboxing and unboxing are typically used for collections of
primitives. Autoboxing involves the dynamic allocation of mem‐
ory and initialization of an object for each primitive. Note that
the overhead can often exceed the execution time of the desired
operation. Unboxing involves the production of a primitive for
each object.

Computationally intensive tasks using primitives (e.g., iterating
through primitives in a container) should be done using arrays
of primitives in preference to collections of wrapper objects.

28 | Chapter 3: Fundamental Types

Autoboxing
Autoboxing is the automatic conversion of primitive types to
their corresponding wrapper classes. In this example, the prize‐
fighter’s weight of 147 is automatically converted to its corre‐
sponding wrapper class because collections store references, not
primitive values:

// Create hash map of weight groups
HashMap<String, Integer> weightGroups
 = new HashMap<String, Integer> ();
weightGroups.put("welterweight", 147);
weightGroups.put("middleweight", 160);
weightGroups.put("cruiserweight", 200);

The following example shows an acceptable but not recommend‐
ed use of autoboxing:

// Establish weight allowance
Integer weightAllowanceW = 5; //improper

T I P

For these examples, wrapper class variables end with a cap‐
ital W. This is not the convention.

As there is no reason to force autoboxing, the preceding state‐
ment should instead be written as follows:

Integer weightAllowanceW = new Integer (5);

Unboxing
Unboxing is the automatic conversion of the wrapper classes to
their corresponding primitive types. In this example, a reference
type is retrieved from the hash map. It is automatically unboxed
so that it can fit into the primitive type:

// Get the stored weight limit
int weightLimitP = weightGroups.get(middleweight);

Autoboxing and Unboxing | 29

T I P

For these examples, primitive variables end with a capital
P. This is not the convention.

The following example shows an acceptable but not recommend‐
ed use of unboxing:

// Establish the weight allowance
weightLimitP = weightLimitP + weightAllowanceW;

It is better to write this expression with the intValue() method,
as shown here:

weightLimitP = weightLimitP
 + weightAllowanceW.intValue(
);

30 | Chapter 3: Fundamental Types

CHAPTER 4

Reference Types

Reference types hold references to objects and provide a means
to access those objects stored somewhere in memory. The mem‐
ory locations are irrelevant to programmers. All reference types
are a subclass of type java.lang.Object.

Table 4-1 lists the five Java reference types.
Table 4-1. Reference types

Reference type Brief description

Annotation Provides a way to associate metadata (data about data) with
program elements.

Array Provides a fixed-size data structure that stores data elements of the
same type.

Class Designed to provide inheritance, polymorphism, and encapsulation.
Usually models something in the real world and consists of a set of
values that holds data and a set of methods that operates on the
data.

Enumeration A reference for a set of objects that represents a related set of choices.

Interface Provides a public API and is “implemented” by Java classes.

31

Comparing Reference Types to Primitive
Types
There are two type categories in Java: reference types and prim‐
itive types. Table 4-2 shows some of the key comparisons between
them. See Chapter 3 for more details.
Table 4-2. Reference types compared to primitive types

Reference types Primitive types

Unlimited number of reference
types, as they are defined by the user.

Consists of boolean and numeric types: char,
byte, short, int, long, float, and double.

Memory location stores a reference
to the data.

Memory location stores actual data held by
the primitive type.

When a reference type is assigned to
another reference type, both will
point to the same object.

When a value of a primitive is assigned to
another variable of the same type, a copy is
made.

When an object is passed into a
method, the called method can
change the contents of the object
passed to it but not the address of
the object.

When a primitive is passed into a method,
only a copy of the primitive is passed. The
called method does not have access to the
original primitive value and therefore
cannot change it. The called method can
change the copied value.

Default Values
Default values are the values assigned to instance variables in Java,
when no initialization value has been explicitly set.

Instance and Local Variable Objects
Instance variables (i.e., those declared at the class level) have a
default value of null. null references nothing.

Local variables (i.e., those declared within a method) do not have
a default value, not even a value of null. Always initialize local
variables because they are not given a default value. Checking an

32 | Chapter 4: Reference Types

www.allitebooks.com

http://www.allitebooks.org

uninitialized local variable object for a value (including a value
of null) will result in a compile-time error.

Although object references with a value of null do not refer to
any object on the heap, objects set to null can be referenced in
code without receiving compile-time or runtime errors:

Date dateOfParty = null;
// This will compile
if (dateOfParty == null) {
 ...
}

Invoking a method on a reference variable that is null or using
the dot operator on the object will result in a java.lang.Null
PointerException:

private static int MAX_LENGTH = 20;
...
String theme = null;
// Exception thrown, since theme is null
if (theme.length() > MAX_LENGTH) {
 ...
}

Arrays
Arrays are always given a default value whether they are declared
as instance variables or local variables. Arrays that are declared
but not initialized are given a default value of null.

In the following code, the gameList1 array is initialized, but not
the individual values, meaning that the object references will have
a value of null. Objects have to be added to the array:

// The declared arrays named gameList1 and
// gameList2 are initialized to null by default
Game[] gameList1;
Game gameList2[];

// The following array has been initialized but
// the object references are still null because
// the array contains no objects

Default Values | 33

 gameList1 = new Game[10];

// Add a Game object to the list
// Now the list has one object
 gameList1[0] = new Game();

Multidimensional arrays in Java are actually arrays of arrays.
They may be initialized with the new operator or by placing their
values within braces. Multidimensional arrays may be uniform
or nonuniform in shape:

// Anonymous array
int twoDimensionalArray[][] = new int[6][6];
twoDimensionalArray[0][0] = 100;
int threeDimensionalArray[][][] = new int[2][2][2];
threeDimensionalArray[0][0][0] = 200;
int varDimensionArray[][] = {{0,0},{1,1,1},
{2,2,2,2}};
varDimensionArray[0][0] = 300;

Anonymous arrays allow for the creation of a new array of values
anywhere in the code base:

// Examples using anonymous arrays
int[] luckyNumbers = new int[] {7, 13, 21};
int totalWinnings = sum(new int[] {3000, 4500,
5000});

Conversion of Reference Types
An object can be converted to the type of its superclass (widening)
or any of its subclasses (narrowing).

The compiler checks conversions at compile time and the Java
Virtual Machine (JVM) checks conversions at runtime.

Widening Conversions

• Widening implicitly converts a subclass to a parent class
(superclass).

• Widening conversions do not throw runtime exceptions.

34 | Chapter 4: Reference Types

• No explicit cast is necessary:
String s = new String();
Object o = s; // widening

Narrowing Conversions

• Narrowing converts a more general type into a more spe‐
cific type.

• Narrowing is a conversion of a superclass to a subclass.

• An explicit cast is required. To cast an object to another
object, place the type of object to which you are casting in
parentheses immediately before the object you are casting.

• Illegitimate narrowing results in a ClassCastException.

• Narrowing may result in a loss of data/precision.

Objects cannot be converted to an unrelated type—that is, a type
other than one of its subclasses or superclasses. Doing so will
generate an inconvertible types error at compile time. The fol‐
lowing is an example of a conversion that will result in a compile-
time error due to inconvertible types:

Object c = new Object();
String d = (Integer) c; // compile-time error

Converting Between Primitives and
Reference Types
The automatic conversion of primitive types to reference types
and vice versa is called autoboxing and unboxing, respectively.
For more information, refer back to Chapter 3.

Passing Reference Types into Methods
When an object is passed into a method as a variable:

Converting Between Primitives and Reference Types | 35

• A copy of the reference variable is passed, not the actual
object.

• The caller and the called methods have identical copies of
the reference.

• The caller will also see any changes the called method
makes to the object. Passing a copy of the object to the
called method will prevent it from making changes to the
original object.

• The called method cannot change the address of the object,
but it can change the contents of the object.

The following example illustrates passing reference types and
primitive types into methods and the effects on those types when
changed by the called method:

void roomSetup() {
 // Reference passing
 Table table = new Table();
 table.setLength(72);
 // Length will be changed
 modTableLength(table);

 // Primitive passing
 // Value of chairs not changed
 int chairs = 8;
 modChairCount(chairs);
}

void modTableLength(Table t) {
 t.setLength(36);
}

void modChairCount(int i) {
 i = 10;
}

36 | Chapter 4: Reference Types

Comparing Reference Types
Reference types are comparable in Java. Equality operators and
the equals method can be used to assist with comparisons.

Using the Equality Operators
The != and == equality operators are used to compare the memory
locations of two objects. If the memory addresses of the objects
being compared are the same, the objects are considered equal.
These equality operators are not used to compare the contents of
two objects.

In the following example, guest1 and guest2 have the same
memory address, so the statement "They are equal" is output:

Guest guest1 = new Guest("name");
Guest guest2 = guest1;
if (guest1 == guest2)
 System.out.println("They are equal")

In the following example, the memory addresses are not equal,
so the statement "They are not equal" is output:

Guest guest3 = new Guest("name");
Guest guest4 = new Guest("name");
if (guest3 == guest4)
 System.out.println("They are equal.")
else
 System.out.println("They are not equal")

Using the equals() Method
To compare the contents of two class objects, the equals()meth‐
od from class Object can be used or overridden. When the
equals() method is overridden, the hashCode()method should
also be overridden. This is done for compatibility with hash-
based collections such as HashMap() and HashSet().

Comparing Reference Types | 37

T I P

By default, the equals() method uses only the == operator
for comparisons. This method has to be overridden to really
be useful.

For example, if you want to compare values contained in two
instances of the same class, you should use a programmer-
defined equals() method.

Comparing Strings
There are two ways to check whether strings are equal in Java,
but the definition of “equal” for each of them is different. Typi‐
cally, if the goal is to compare character sequences contained in
two strings, the equals() method should be used:

• The equals() method compares two strings, character by
character, to determine equality. This is not the default im‐
plementation of the equals() method provided by the Ob
ject class. This is the overridden implementation provided
by String class.

• The == operator checks to see whether two object refer‐
ences refer to the same instance of an object.

Here is a program that shows how strings are evaluated using the
equals() method and the == operator (for more information on
how strings are evaluated, see “String Literals” on page 16 in
Chapter 2):

class MyComparisons {

 // Add string to pool
 String first = "chairs";
 // Use string from pool
 String second = "chairs";
 // Create a new string
 String third = new String ("chairs");

38 | Chapter 4: Reference Types

 void myMethod() {

 // Contrary to popular belief, this evaluates
 // to true. Try it!
 if (first == second) {
 System.out.println("first == second");
 }

 // This evaluates to true
 if (first.equals(second)) {
 System.out.println("first equals second");
 }
 // This evaluates to false
 if (first == third) {
 System.out.println("first == third");
 }
 // This evaluates to true
 if (first.equals(third)) {
 System.out.println("first equals third");
 }
 } // End myMethod()
} //end class

T I P

Objects of the String class are immutable. Objects of the
StringBuffer and StringBuilder classes are mutable.

Comparing Enumerations
enum values can be compared using == or the equals()method
because they return the same result. The == operator is used more
frequently to compare enumeration types.

Comparing Reference Types | 39

Copying Reference Types
When reference types are copied, either a copy of the reference
to an object is made; or an actual copy of the object is made,
creating a new object. The latter is referred to as cloning in Java.

Copying a Reference to an Object
When copying a reference to an object, the result is one object
with two references. In the following example, closingSong is
assigned a reference to the object pointed to by lastSong. Any
changes made to lastSong will be reflected in closingSong and
vice versa:

Song lastSong = new Song();
Song closingSong = lastSong;

Cloning Objects
Cloning results in another copy of the object, not just a copy of
a reference to an object. Cloning is not available to classes by
default. Note that cloning is usually very complex, so you should
consider a copy constructor instead:

• For a class to be cloneable, it must implement the interface
Cloneable.

• The protected method clone() allows for objects to clone
themselves.

• For an object to clone an object other than itself, the
clone() method must be overridden and made public by
the object being cloned.

• When cloning, a cast must be used because clone() returns
type object.

• Cloning can throw a CloneNotSupportedException.

40 | Chapter 4: Reference Types

Shallow and deep cloning
Shallow and deep cloning are the two types of cloning in Java.

In shallow cloning, primitive values and the references in the
object being cloned are copied. Copies of the objects referred to
by those references are not made.

In the following example, leadingSong will be assigned the values
in length and year because they are primitive types, and refer‐
ences to title and artist because they are reference types:

Class Song {
 String title;
 Artist artist;
 float length;
 int year;
 void setData() {...}
}
Song firstSong = new Song();
try {
 // Make an actual copy by cloning
 Song leadingSong = (Song)firstSong.clone();
} catch (CloneNotSupportedException cnse) {
 cnse.printStackTrace();
} // end

In deep cloning, the cloned object makes a copy of each of its
object’s fields, recursing through all other objects referenced by
it. A deep-clone method must be defined by the programmer, as
the Java API does not provide one. Alternatives to deep cloning
are serialization and copy constructors. (Copy constructors are
often preferred over serialization.)

Memory Allocation and Garbage
Collection of Reference Types
When a new object is created, memory is allocated. When there
are no references to an object, the memory that object used can
be reclaimed during the garbage collection process. For more
information on this topic, see Chapter 11.

Memory Allocation and Garbage Collection of Reference Types | 41

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 5

Object-Oriented Programming

Basic elements of object-oriented programming (OOP) in Java
include classes, objects, and interfaces.

Classes and Objects
Classes define entities that usually represent something in the real
world. They consist of a set of values that holds data and a set of
methods that operates on the data.

An instance of a class is called an object, and it is allocated mem‐
ory. There can be multiple instances of a class.

Classes can inherit data members and methods from other
classes. A class can directly inherit from only one class—the su‐
perclass. A class can have only one direct superclass. This is
called inheritance.

When implementing a class, the inner details of the class should
be private and accessible only through public interfaces. This is
called encapsulation. The JavaBean convention is to use accessor
and mutator methods (e.g., getFirstName() and setFirst
Name("Leonardina")) to indirectly access the private members of
a class and to ensure that another class cannot unexpectedly
modify private members. Returning immutable values (i.e.,
strings, primitive values, and objects intentionally made immut‐

43

able) is another way to protect the data members from being al‐
tered by other objects.

Class Syntax
A class has a class signature, optional constructors, data mem‐
bers, and methods:

[javaModifiers] class className
 [extends someSuperClass]
 [implements someInterfaces separated by commas] {
 // Data member(s)
 // Constructor(s)
 // Method(s)
}

Instantiating a Class (Creating an Object)
An object is an instance of a class. Once instantiated, objects have
their own set of data members and methods:

// Sample class definitions
public class Candidate {...}
class Stats extends ToolSet {...}

public class Report extends ToolSet
 implements Runnable {...}

Separate objects of class Candidate are created (instantiated) us‐
ing the keyword new:

Candidate candidate1 = new Candidate();
Candidate candidate2 = new Candidate();

Data Members and Methods
Data members, also known as fields, hold data about a class. Data
members that are nonstatic are also called instance variables:

[javaModifier] type dataMemberName

Methods operate on class data:

44 | Chapter 5: Object-Oriented Programming

[javaModifiers] type methodName (parameterList)
[throws listOfExceptionsSeparatedByCommas] {
 // Method body
}

The following is an example of class Candidate and its data mem‐
bers and methods:

public class Candidate {
 // Data members or fields
 private String firstName;
 private String lastName;
 private int year;
 // Methods
 public void setYear (int y) { year = y; }
 public String getLastName() {return lastName;}
} // End class Candidate

Accessing Data Members and Methods in Objects
The dot operator (.) is used to access data members and methods
in objects. It is not necessary to use the dot operator when ac‐
cessing data members or methods from within an object:

candidate1.setYear(2016);
String name = getFirstName() + getLastName();

Overloading
Methods, including constructors, can be overloaded. Overload‐
ing means that two or more methods have the same name but
different signatures (parameters and return values). Note that
overloaded methods must have different parameters, and they
may have different return types; but having only different return
types is not overloading. The access modifiers of overloaded
methods can be different:

public class VotingMachine {
 ...
 public void startUp() {...}
 private void startUp(int delay) {...}
}

Classes and Objects | 45

When a method is overloaded, it is permissible for each of its
signatures to throw different checked exceptions:

private String startUp(District d) throws new
IOException {...}

Overriding
A subclass can override the methods it inherits. When overrid‐
den, a method contains the same signature (name and parame‐
ters) as a method in its superclass, but it has different implemen‐
tation details.

The method startUp() in superclass Display is overridden in
class TouchScreenDisplay:

public class Display {
 void startUp(){
 System.out.println("Using base display.");
 }
}
public class TouchScreenDisplay extends Display {
 void startUp() {
 System.out.println("Using new display.");
 }
}

Rules regarding overriding methods include the following:

• Methods that are not final, private, or static can be
overridden.

• Protected methods can override methods that do not have
access modifiers.

• The overriding method cannot have a more restrictive ac‐
cess modifier (i.e., package, public, private, protect
ed) than the original method.

• The overriding method cannot throw any new checked ex‐
ceptions.

46 | Chapter 5: Object-Oriented Programming

Constructors
Constructors are called upon object creation and are used to in‐
itialize data in the newly created object. Constructors are op‐
tional, have exactly the same name as the class, and they do not
have a return in the body (as methods do).

A class can have multiple constructors. The constructor that is
called when a new object is created is the one that has a matching
signature:

public class Candidate {
 ...
 Candidate(int id) {
 this.identification = id;
 }
 Candidate(int id, int age) {
 this.identification = id;
 this.age = age;
 }
}
// Create a new Candidate and call its constructor
Candidate candidate = new Candidate(id);

Classes implicitly have a no-argument constructor if no explicit
constructor is present. Note that if a constructor with arguments
is added, there will be no no-argument constructor unless it is
manually added.

Superclasses and Subclasses
In Java, a class (known as the subclass) can inherit directly from
one class (known as the superclass). The Java keyword extends
indicates that a class inherits data members and methods from
another class. Subclasses do not have direct access to private
members of its superclass, but do have access to the public and
protected members of the superclass. A subclass also has access
to members of the superclass where the same package is shared
(package-private or protected). As previously mentioned, acces‐
sor and mutator methods provide a mechanism to indirectly ac‐
cess the private members of a class, including a superclass:

Classes and Objects | 47

public class Machine {
 boolean state;
 void setState(boolean s) {state = s;}
 boolean getState() {return state;}
}
public class VotingMachine extends Machine {
 ...
}

The keyword super in the Curtain class’s default constructor is
used to access methods in the superclass overridden by methods
in the subclass:

public class PrivacyWall {
 public void printSpecs() {...}

}
public class Curtain extends PrivacyWall {
 public void printSpecs() {
 ...
 super.printSpecs();
 }
}

Another common use of the keyword super is to call the con‐
structor of a superclass and pass it parameters. Note that this call
must be the first statement in the constructor calling super:

public PrivacyWall(int l, int w) {
 int length = l;
 int width = w;
}

public class Curtain extends PrivacyWall {
 // Set default length and width
 public Curtain() {super(15, 25);}
}

If there is not an explicit call to the constructor of the superclass,
an automatic call to the no-argument constructor of the super‐
class is made.

48 | Chapter 5: Object-Oriented Programming

The this Keyword
The three common uses of the this keyword are to refer to the
current object, to call a constructor from within another con‐
structor in the same class, and to pass a reference of the current
object to another object.

To assign a parameter variable to an instance variable of the cur‐
rent object:

public class Curtain extends PrivacyWall {
 String color;
 public void setColor(String color) {
 this.color = color;
 }
}

To call a constructor from another constructor in the same class:

public class Curtain extends PrivacyWall {
 public Curtain(int length, int width) {}
 public Curtain() {this(10, 9);}
}

To pass a reference of the current object to another object:

// Print the contents of class curtain
System.out.println(this);

public class Builder {
 public void setWallType(Curtain c) {...}
}

Variable-Length Argument Lists
Since Java 5.0, methods can have a variable-length argument list.
Called varargs, these methods are declared such that the last (and
only the last) argument can be repeated zero or more times when
the method is called. The vararg parameter can be either a prim‐
itive or an object. An ellipsis (…) is used in the argument list of
the method signature to declare the method as a vararg. The syn‐
tax of the vararg parameter is as follows:

Variable-Length Argument Lists | 49

type... objectOrPrimitiveName

Here is an example of a signature for a vararg method:

public setDisplayButtons(int row,
 String... names) {...}

The Java compiler modifies vararg methods to look like regular
methods. The previous example would be modified at compile
time to:

public setDisplayButtons(int row,
 String [] names) {...}

It is permissible for a vararg method to have a vararg parameter
as its only parameter:

// Zero or more rows
public void setDisplayButtons (String... names)
{...}

A vararg method is called the same way an ordinary method is
called except that it can take a variable number of parameters,
repeating only the last argument:

setDisplayButtons("Jim");
setDisplayButtons("John", "Mary", "Pete");
setDisplayButtons("Sue", "Doug", "Terry", "John");

The printf method is often used when formatting a variable set
of output, because printf is a vararg method. From the Java API,
type the following:

public PrintStream printf(String format,
 Object... args)

The printf method is called with a format string and a variable
set of objects:

System.out.printf("Hello voter %s%n
 This is machine %d%n", "Sally", 1);

For detailed information on formatting a string passed into the
printf method, see java.util.Formatter.

50 | Chapter 5: Object-Oriented Programming

The enhanced for loop (for each) is often used to iterate through
the variable argument:

printRows() {
 for (String name: names)
 System.out.println(name);
}

Abstract Classes and Abstract Methods
Abstract classes and methods are declared with the keyword ab
stract.

Abstract Classes
An abstract class is typically used as a base class and cannot be
instantiated. It can contain abstract and nonabstract methods,
and it can be a subclass of an abstract or a nonabstract class. All
of its abstract methods must be defined by the classes that inherit
(extend) it unless the subclass is also abstract:

public abstract class Alarm {
 public void reset() {...}
 public abstract void renderAlarm();
}

Abstract Methods
An abstract method contains only the method declaration, which
must be defined by any nonabstract class that inherits it:

public class DisplayAlarm extends Alarm {
 public void renderAlarm() {
 System.out.println("Active alarm.");
 }
}

Abstract Classes and Abstract Methods | 51

Static Data Members, Static Methods,
Static Constants, and Static Initializers
Static data members, methods, constants, and initializers reside
with a class and not instances of classes. Static data members,
methods, and constants can be accessed in the class in which they
are defined or in another class using the dot operator.

Static Data Members
Static data members have the same features as static methods and
are stored in a single location in memory.

They are used when only one copy of a data member is needed
across all instances of a class (e.g., a counter):

// Declaring a static data member
public class Voter {
 static int voterCount = 0;
 public Voter() { voterCount++;}
 public static int getVoterCount() {
 return voterCount;
 }
}
...
int numVoters = Voter.voterCount;

Static Methods
Static methods have the keyword static in the method declara‐
tion:

// Declaring a static method
class Analyzer {
 public static int getVotesByAge() {...}
}
// Using the static method
Analyzer.getVotesByAge();

Static methods cannot access nonstatic methods or variables be‐
cause static methods are associated with a class, not an object.

52 | Chapter 5: Object-Oriented Programming

www.allitebooks.com

http://www.allitebooks.org

Static Constants
Static constants are static members declared constant. They have
the keywords static and final, and a program cannot change
them:

// Declaring a static constant
static final int AGE_LIMIT = 18;
// Using a static constant
if (age == AGE_LIMIT)
 newVoter = "yes";

Static Initializers
Static initializers include a block of code prefaced by the keyword
static. A class can have any number of static initializer blocks,
and it is guaranteed that they will run in the order in which they
appear. Static initializer blocks are executed only once per class
initialization. A block is ran when the JVM class loader loads
StaticClass, which is upon the initial reference to the code.

// Static Initializer
static {
 numberOfCandidates = getNumberOfCandidates();
}

Interfaces
Interfaces provide a set of declared public methods that do not
have method bodies. A class that implements an interface must
provide concrete implementations of all the methods defined by
the interface, or it must be declared abstract.

An interface is declared using the keyword interface, followed
by the name of the interface and a set of method declarations.

Interface names are usually adjectives and end with “able” or
“ible,” as the interface provides a capability:

interface Reportable {
 void genReport(String repType);

Interfaces | 53

 void printReport(String repType);
}

A class that implements an interface must indicate so in its class
signature with the keyword implements:

class VotingMachine implements Reportable {
 public void genReport (String repType) {
 Report report = new Report(repType);
 }
 public void printReport(String repType) {
 System.out.println(repType);
 }
}

T I P

Classes can implement multiple interfaces, and interfaces
can extend multiple interfaces.

Enumerations
In simplest terms, enumerations are a set of objects that represent
a related set of choices:

enum DisplayButton {ROUND, SQUARE}
DisplayButton round = DisplayButton.ROUND;

Looking beyond simplest terms, an enumeration is a class of
type enum and it is a singleton. Enum classes can have methods,
constructors, and data members:

enum DisplayButton {
 // Size in inches
 ROUND (.50f),
 SQUARE (.40f);
 private final float size;
 DisplayButton(float size) {this.size = size;}
 private float size() { return size; }
}

54 | Chapter 5: Object-Oriented Programming

The method values() returns an array of the ordered list of ob‐
jects defined for the enum:

for (DisplayButton b : DisplayButton.values())
 System.out.println("Button: " + b.size());

Annotation Types
Annotations provide a way to associate metadata (data about da‐
ta) with program elements at compile time and runtime. Pack‐
ages, classes, methods, fields, parameters, variables, and con‐
structors can be annotated.

Built-in Annotations
Java annotations provide a way to obtain metadata about a class.
Java has three built-in annotation types, as depicted in
Table 5-1. These annotation types are contained in the java.lang
package.

Annotations must be placed directly before the item being an‐
notated. They do not have any parameters and do not throw ex‐
ceptions. Annotations return primitive types, enumerations,
class String, class Class, annotations, and arrays (of these types).
Table 5-1. Built-in annotations

Annotation type Description

@Override Indicates that the method is intended to override a method
in a superclass.

@Deprecated Indicates that a deprecated API is being used or overridden.

@SuppressWarnings Used to selectively suppress warnings.

The following is an example of their use:

@Override
 public String toString() {
 return super.toString() + " more";
 }

Annotation Types | 55

Because @Override is a marker annotation, a compile warning
will be returned if the method to be overridden cannot be found.

Developer-Defined Annotations
Developers can define their own annotations using three anno‐
tation types. A marker annotation has no parameters, a single
value annotation has a single parameter, and a multivalue anno‐
tation has multiple parameters.

The definition of an annotation is the symbol @, followed by the
word interface, followed by the name of the annotation.

Repeated annotations are permitted.

The meta-annotation Retention indicates that an annotation
should be retained by the VM so that it can be read at runtime.
Retention is in the package java.lang.annotation:

@Retention(RetentionPolicy.RUNTIME)
public @interface Feedback {} // Marker
public @interface Feedback {
 String reportName();
} // Single value
public @interface Feedback {
 String reportName();
 String comment() default "None";
} // Multi value

Place the user-defined annotation directly before the item being
annotated:

@Feedback(reportName="Report 1")
public void myMethod() {...}

Programs can check the existence of annotations and obtain an‐
notation values by calling getAnnotation() on a method:

Feedback fb =
 myMethod.getAnnotation(Feedback.class);

The Type Annotations Specification (also known as “JSR 308”)
allows for annotations to be written in array positions and generic
type arguments. Annotations may also be written with super‐

56 | Chapter 5: Object-Oriented Programming

classes, implemented interfaces, casts, instanceof checks, excep‐
tion specifications, wildcards, method references, and construc‐
tor references. See Java SE 8 for the Really Impatient by Cay S.
Horstmann (Addison-Wesley) for detailed information on An‐
notations in these contexts.

Functional Interfaces
A functional interface, a.k.a. Single Abstract Method (SAM) in‐
terface, is an inteface that defines one and only one abstract
method. The annotation @FunctionalInterface may be placed in
front of an interface to declare its intention as a functional inter‐
face. An interface can have any number of default methods.

@FunctionalInterface
 public interface InterfaceName {

 // Only one abstract method allowed
 public void doAbstractTask();

 // Multiple default methods allowed
 default public void performTask1(){
 System.out.println("Msg from task 1.");
 }
 default public void performTask2(){
 System.out.println("Msg from task 2.");
 }
}

Instances of functional interfaces can be created with lambda ex‐
pressions, method references, or constructor references.

Functional Interfaces | 57

CHAPTER 6

Statements and Blocks

A statement is a single command that performs some activity
when executed by the Java interpreter:

GigSim simulator = new GigSim("Let's play guitar!");

Java statements include expression, empty, block, conditional,
iteration, transfer of control, exception handling, variable, la‐
beled, assert, and synchronized statements.

Reserved Java words used in statements are if, else, switch, case,
while, do, for, break, continue, return, synchronized, throw, try,
catch, finally, and assert.

Expression Statements
An expression statement is a statement that changes the program
state; it is a Java expression that ends in a semicolon. Expression
statements include assignments, prefix and postfix increments,
prefix and postfix decrements, object creation, and method calls.
The following are examples of expression statements:

isWithinOperatingHours = true;
++fret; patron++; --glassOfWater; pick--;
Guitarist guitarist = new Guitarist();
guitarist.placeCapo(guitar, capo, fret);

59

Empty Statement
The empty statement provides no additional functionality and is
written as a single semicolon (;) or as an empty block {}.

Blocks
A group of statements is called a block or statement block. A block
of statements is enclosed in braces. Variables and classes declared
in the block are called local variables and local classes, respec‐
tively. The scope of local variables and classes is the block in which
they are declared.

In blocks, one statement is interpreted at a time in the order in
which it was written or in the order of flow control. The following
is an example of a block:

static {
 GigSimProperties.setFirstFestivalActive(true);
 System.out.println("First festival has begun");
 gigsimLogger.info("Simulator started 1st festival");
}

Conditional Statements
if, if else, and if else if are decision-making control flow
statements. They are used to execute statements conditionally.
The expression for any of these statements must have type
Boolean or boolean. Type Boolean is subject to unboxing, and
autoconversion of Boolean to boolean.

The if Statement
The if statement consists of an expression and a statement or a
block of statements that are executed if the expression evaluates
to true:

Guitar guitar = new Guitar();
guitar.addProblemItem("Whammy bar");
if (guitar.isBroken()) {

60 | Chapter 6: Statements and Blocks

 Luthier luthier = new Luthier();
 luthier.repairGuitar(guitar);
}

The if else Statement
When using else with if, the first block of statements is executed
if the expression evaluates to true; otherwise, the block of code
in the else is executed:

CoffeeShop coffeeshop = new CoffeeShop();
if (coffeeshop.getPatronCount() > 5) {
 System.out.println("Play the event.");
} else {
 System.out.println("Go home without pay.");
}

The if else if Statement
if else if is typically used when you need to choose among
multiple blocks of code. When the criteria are not met to execute
any of the blocks, the block of code in the final else is executed:

ArrayList<Song> playList = new ArrayList<>();
Song song1 = new Song("Mister Sandman");
Song song2 = new Song("Amazing Grace");
playList.add(song1);
playList.add(song2);
...
int numOfSongs = playList.size();
if (numOfSongs <= 24) {
 System.out.println("Do not book");
} else if ((numOfSongs > 24) & (numOfSongs < 50)){
 System.out.println("Book for one night");
} else if ((numOfSongs >= 50)) {
 System.out.println("Book for two nights");
} else {
 System.out.println("Book for the week");
}

Conditional Statements | 61

The switch Statement
The switch statement is a control flow statement that starts with
an expression and transfers control to one of the case statements
based on the value of the expression. A switch works with char,
byte, short, int, as well as Character, Byte, Short, and Integer
wrapper types; enumeration types; and the String type. Support
for String objects was added in Java SE 7. The break statement
is used to exit out of a switch statement. If a case statement does
not contain a break, the line of code after the completion of the
case will be executed.

This continues until either a break statement is reached or the
end of the switch is reached. One default label is permitted and
is often listed last for readability:

String style;
String guitarist = "Eric Clapton";
...
switch (guitarist) {
 case "Chet Atkins":
 style = "Nashville sound";
 break;
 case "Thomas Emmanuel":
 style = "Complex fingerstyle";
 break;
 default:
 style = "Unknown";
 break;
}

Iteration Statements
The for loop, enhanced for loop, while, and do-while statements
are iteration statements. They are used for iterating through
pieces of code.

The for Loop
The for statement contains three parts: initialization, expression,
and update. As shown next, the variable (i.e., i) in the statement

62 | Chapter 6: Statements and Blocks

must be initialized before being used. The expression (i.e., i<bAr
ray.length) is evaluated before iterating through the loop (i.e.,
i++). The iteration takes place only if the expression is true and
the variable is updated after each iteration:

Banjo [] bArray = new Banjo[2];
bArray[0] = new Banjo();
bArray[0].setManufacturer("Windsor");
bArray[1] = new Banjo();
bArray[1].setManufacturer("Gibson");
for (int i=0; i<bArray.length; i++){
 System.out.println(bArray[i].getManufacturer());
}

The Enhanced for Loop
The enhanced for loop, a.k.a. the “for in” loop and “for each” loop,
is used for iteration through an iterable object or array. The loop
is executed once for each element of the array or collection and
does not use a counter, because the number of iterations is already
determined:

ElectricGuitar eGuitar1 = new ElectricGuitar();
eGuitar1.setName("Blackie");
ElectricGuitar eGuitar2 = new ElectricGuitar();
eGuitar2.setName("Lucille");
ArrayList <ElectricGuitar> eList = new ArrayList<>();
eList.add(eGuitar1); eList.add(eGuitar2);
for (ElectricGuitar e : eList) {
 System.out.println("Name:" + e.getName());
}

The while Loop
In a while statement, the expression is evaluated and the loop is
executed only if the expression evaluates to true. The expression
can be of type boolean or Boolean:

int bandMembers = 5;
while (bandMembers > 3) {
 CoffeeShop c = new CoffeeShop();
 c.performGig(bandMembers);

Iteration Statements | 63

 Random generator = new Random();
 bandMembers = generator.nextInt(7) + 1; // 1-7
}

The do while Loop
In a do while statement, the loop is always executed at least once
and will continue to be executed as long as the expression is
true. The expression can be of type boolean or Boolean:

int bandMembers = 1;
do {
 CoffeeShop c = new CoffeeShop();
 c.performGig(bandMembers);
 Random generator = new Random();
 bandMembers = generator.nextInt(7) + 1; // 1-7
} while (bandMembers > 3);

Transfer of Control
Transfer of control statements are used to change the flow of
control in a program. These include the break, continue, and
return statements.

The break Statement
An unlabeled break statement is used to exit the body of a switch
statement or to immediately exit the loop in which it is contained.
Loop bodies include those for the for loop, enhanced for loop,
while, and do-while iteration statements:

Song song = new Song("Pink Panther");
Guitar guitar = new Guitar();
int measure = 1; int lastMeasure = 10;
while (measure <= lastMeasure) {
 if (guitar.checkForBrokenStrings()) {
 break;
 }
 song.playMeasure(measure);
 measure++;
}

64 | Chapter 6: Statements and Blocks

A labeled break forces a break of the loop statement immediately
following the label. Labels are typically used with for and while
loops when there are nested loops and there is a need to identify
which loop to break. To label a loop or a statement, place the label
statement immediately before the loop or statement being la‐
beled, as follows:

...
playMeasures:
while (isWithinOperatingHours()) {
 while (measure <= lastMeasure) {
 if (guitar.checkForBrokenStrings()) {
 break playMeasures;
 }
 song.playMeasure(measure);
 measure++;
 }
} // exits to here

The continue Statement
When executed, the unlabeled continue statement stops the ex‐
ecution of the current for loop, enhanced for loop, while, or do-
while statements and starts the next iteration of the loop. The
rules for testing loop conditions apply. A labeled continue state‐
ment forces the next iteration of the loop statement immediately
following the label:

for (int i=0; i<25; i++) {
 if (playList.get(i).isPlayed()) {
 continue;
 } else {
 song.playAllMeasures();
 }
}

The return Statement
The return statement is used to exit a method and return a value
if the method specifies to return a value:

Transfer of Control | 65

private int numberOfFrets = 18; // default
...
public int getNumberOfFrets() {
 return numberOfFrets;
}

The return statement will be optional when it is the last statement
in a method and the method doesn’t return anything.

Synchronized Statement
The Java keyword synchronized can be used to limit access to
sections of code (i.e., entire methods) to a single thread. It pro‐
vides the capability to control access to resources shared by mul‐
tiple threads. See Chapter 14 for more information.

Assert Statement
Assertions are Boolean expressions used to check whether code
behaves as expected while running in debug mode (i.e., using
the -enableassertions or -ea switch with the Java interpreter).
Assertions are written as follows:

assert boolean_expression;

Assertions help identify bugs more easily, including identifying
unexpected values. They are designed to validate assumptions
that should always be true. While running in debug mode, if the
assertion evaluates to false, a java.lang.AssertionError is
thrown and the program exits; otherwise, nothing happens. As‐
sertions need to be explicitly enabled. To find command-line ar‐
guments used to enable assertions, see Chapter 10.

// 'strings' value should be 4, 5, 6, 7, 8 or 12
assert (strings == 12 ||
 (strings >= 4 && strings <= 8));

Assertions may also be written to include an optional error code.
Although called an error code, it is really just text or a value to
be used for informational purposes only.

66 | Chapter 6: Statements and Blocks

When an assertion that contains an error code evaluates to
false, the error code value is turned into a string and displayed
to the user immediately prior to the program exiting:

assert boolean_expression : errorcode;

An example of an assertion using an error code is as follows:

// Show invalid 'stringed instruments' strings value
assert (strings == 12 ||
 (strings >= 4 && strings <= 8))
 : "Invalid string count: " + strings;

Exception Handling Statements
Exception handling statements are used to specify code to be ex‐
ecuted during unusual circumstances. The keywords throw and
try/catch/finally are used for exception handling. For more
information on exception handling, see Chapter 7.

Exception Handling Statements | 67

CHAPTER 7

Exception Handling

An exception is an anomalous condition that alters or interrupts
the flow of execution. Java provides built-in exception handling
to deal with such conditions. Exception handling should not be
part of normal program flow.

The Exception Hierarchy
As shown in Figure 7-1, all exceptions and errors inherit from
the class Throwable, which inherits from the class Object.

Figure 7-1. Snapshot of the exception hierarchy

69

Checked/Unchecked Exceptions and Errors
Exceptions and errors fall into three categories: checked excep‐
tions, unchecked exceptions, and errors.

Checked Exceptions

• Checked exceptions are checked by the compiler at compile
time.

• Methods that throw a checked exception must indicate so
in the method declaration using the throws clause. This
must continue all the way up the calling stack until the ex‐
ception is handled.

• All checked exceptions must be explicitly caught with a
catch block.

• Checked exceptions include exceptions of the type Excep
tion, and all classes that are subtypes of Exception, except
for RuntimeException and the subtypes of RuntimeExcep
tion.

The following is an example of a method that throws a checked
exception:

// Method declaration that throws
// an IOException
void readFile(String filename)
 throws IOException {
 ...
}

Unchecked Exceptions

• The compiler does not check unchecked exceptions at
compile time.

• Unchecked exceptions occur during runtime due to pro‐
grammer error (out-of-bounds index, divide by zero, and
null pointer exception) or system resource exhaustion.

70 | Chapter 7: Exception Handling

• Unchecked exceptions do not have to be caught.

• Methods that may throw an unchecked exception do not
have to (but can) indicate this in the method declaration.

• Unchecked exceptions include exceptions of the type Run
timeException and all subtypes of RuntimeException.

Errors

• Errors are typically unrecoverable and present serious con‐
ditions.

• Errors are not checked at compile time and do not have to
be (but can be) caught/handled.

T I P

Any checked exceptions, unchecked exceptions, or errors
can be caught.

Common Checked/Unchecked Exceptions
and Errors
There are various checked exceptions, unchecked exceptions,
and unchecked errors that are part of the standard Java platform.
Some are more likely to occur than others.

Common Checked Exceptions
ClassNotFoundException

Thrown when a class cannot be loaded because its definition
cannot be found.

Common Checked/Unchecked Exceptions and Errors | 71

IOException

Thrown when a failed or interrupted operation occurs. Two
common subtypes of IOException are EOFException and
FileNotFoundException.

FileNotFoundException

Thrown when an attempt is made to open a file that cannot
be found.

SQLException

Thrown when there is a database error.

InterruptedException

Thrown when a thread is interrupted.

NoSuchMethodException

Thrown when a called method cannot be found.

CloneNotSupportedException

Thrown when clone() is called by an object that is not
cloneable.

Common Unchecked Exceptions
ArithmeticException

Thrown to indicate that an exceptional arithmetic condition
has occurred.

ArrayIndexOutOfBoundsException

Thrown to indicate index out of range.

ClassCastException

Thrown to indicate an attempt to cast an object to a subclass
of which it is not an instance.

DateTimeException

Thrown to indicate problems with creating, querying, and
manipulating date-time objects.

72 | Chapter 7: Exception Handling

IllegalArgumentException

Thrown to indicate that an invalid argument has been
passed to a method.

IllegalStateException

Thrown to indicate that a method has been called at an in‐
appropriate time.

IndexOutOfBoundsException

Thrown to indicate that an index is out of range.

NullPointerException

Thrown when code references a null object but a nonnull
object is required.

NumberFormatException

Thrown to indicate an invalid attempt to convert a string to
a numeric type.

UncheckedIOException

Wraps an IOException with an unchecked exception.

Common Errors
AssertionError

Thrown to indicate that an assertion failed.

ExceptionInInitializeError

Thrown to indicate an unexpected exception in a static in‐
itializer.

VirtualMachineError

Thrown to indicate a problem with the JVM.

OutOfMemoryError

Thrown when there is no more memory available to allocate
an object or perform garbage collection.

NoClassDefFoundError

Thrown when the JVM cannot find a class definition that
was found at compile time.

Common Checked/Unchecked Exceptions and Errors | 73

StackOverflowError

Thrown to indicate that a stack overflow occurs.

Exception Handling Keywords
In Java, error-handling code is cleanly separated from error-
generating code. Code that generates the exception is said to
“throw” an exception, whereas code that handles the exception
is said to “catch” the exception:

// Declare an exception
public void methodA() throws IOException {
 ...
 throw new IOException();
 ...
}

// Catch an exception
public void methodB() {
 ...
 /* Call to methodA must be in a try/catch block
 ** since the exception is a checked exception;
 ** otherwise methodB could throw the exception */
 try {
 methodA();

 }catch (IOException ioe) {
 System.err.println(ioe.getMessage());
 ioe.printStackTrace();
 }
}

The throw Keyword
To throw an exception, use the keyword throw. Any checked/
unchecked exception and error can be thrown:

if (n == -1)
 throw new EOFException();

74 | Chapter 7: Exception Handling

The try/catch/finally Keywords
Thrown exceptions are handled by a Java try, catch, finally
block. The Java interpreter looks for code to handle the exception,
first looking in the enclosed block of code, and then propagating
up the call stack to main() if necessary. If the exception is not
handled on the main thread (i.e., not the Event Dispatch
Thread [EDT]), the program exits and a stack trace is printed:

try {
 method();
} catch (EOFException eofe) {
 eofe.printStackTrace();
} catch (IOException ioe) {
 ioe.printStackTrace();
} finally {
 // cleanup
}

The try-catch Statement
The try-catch statement includes one try and one or more catch
blocks.

The try block contains code that may throw exceptions. All
checked exceptions that may be thrown must have a catch block
to handle the exception. If no exceptions are thrown, the try
block terminates normally. A try block may have zero or more
catch clauses to handle the exceptions.

T I P

A try block must have at least one catch or finally block
associated with it.

There cannot be any code between the try block and any of the
catch blocks (if present) or the finally block (if present).

Exception Handling Keywords | 75

The catch block(s) contain code to handle thrown exceptions,
including printing information about the exception to a file, giv‐
ing users an opportunity to input correct information. Note that
catch blocks should never be empty because such “silencing” re‐
sults in exceptions being hidden, which makes errors harder to
debug.

A common convention for naming the parameter in the catch
clause is a set of letters representing each of the words in the name
of the exception:

catch (ArrayIndexOutOfBoundsException aioobe) {
 aioobe.printStackStrace();
}

Within a catch clause, a new exception may also be thrown if
necessary.

The order of the catch clauses in a try/catch block defines the
precedence for catching exceptions. Always begin with the most
specific exception that may be thrown and end with the most
general.

T I P

Exceptions thrown in the try block are directed to the first
catch clause containing arguments of the same type as the
exception object or superclass of that type. The catch block
with the Exception parameter should always be last in the
ordered list.

If none of the parameters for the catch clauses match the excep‐
tion thrown, the system will search for the parameter that match‐
es the superclass of the exception.

The try-finally Statement
The try-finally statement includes one try and one finally
block.

76 | Chapter 7: Exception Handling

The finally block is used for releasing resources when necessary:

public void testMethod() throws IOException {
FileWriter fileWriter =
 new FileWriter("\\data.txt");
 try {
 fileWriter.write("Information...");
 } finally {
 fileWriter.close();
 }
}

This block is optional and is only used where needed. When used,
it is executed last in a try-finally block and will always be exe‐
cuted, whether or not the try block terminates normally. If the
finally block throws an exception, it must be handled.

The try-catch-finally Statement
The try-catch-finally statement includes one try, one or more
catch blocks, and one finally block.

For this statement, the finally block is also used for cleanup and
releasing resources:

public void testMethod() {
 FileWriter fileWriter = null;
 try {
 fileWriter = new FileWriter("\\data.txt");
 fileWriter.write("Information...");
 } catch (IOException ex) {
 ex.printStackTrace();
 } finally {
 try {
 fileWriter.close();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

This block is optional and is only used where needed. When used,
it is executed last in a try-catch-finally block and will always

Exception Handling Keywords | 77

be executed, whether or not the try block terminates normally
or the catch clause(s) were executed. If the finally block throws
an exception, it must be handled.

The try-with-resources Statement
The try-with-resources statement is used for declaring resources
that must be closed when they are no longer needed. These re‐
sources are declared in the try block:

public void testMethod() throws IOException {
 try (FileWriter fw = new FileWriter("\\data.txt"))
 {
 fw.write("Information...");
 }
}

Any resource that implements the AutoClosable interface may be
used with the try-with-resources statement.

The multi-catch Clause
The multi-catch clause is used to allow for multiple exception
arguments in one catch clause:

boolean isTest = false;
public void testMethod() {
 try {
 if (isTest) {
 throw new IOException();
 } else {
 throw new SQLException();
 }
 } catch (IOException | SQLException e) {
 e.printStackTrace();
 }
}

The Exception Handling Process
Here are the steps to the exception handling process:

78 | Chapter 7: Exception Handling

1. An exception is encountered, which results in an exception
object being created.

2. A new exception object is thrown.

3. The runtime system looks for code to handle the exception,
beginning with the method in which the exception object
was created. If no handler is found, the runtime environ‐
ment traverses the call stack (the ordered list of methods)
in reverse looking for an exception handler. If the exception
is not handled, the program exits and a stack trace is au‐
tomatically output.

4. The runtime system hands the exception object off to an
exception handler to handle (catch) the exception.

Defining Your Own Exception Class
Programmer-defined exceptions should be created when those
other than the existing Java exceptions are necessary. In general,
the Java exceptions should be reused wherever possible:

• To define a checked exception, the new exception class
must extend the Exception class, directly or indirectly.

• To define an unchecked exception, the new exception class
must extend the RuntimeException class, directly or indi‐
rectly.

• To define an unchecked error, the new error class must ex‐
tend the Error class.

User-defined exceptions should have at least two constructors—
a constructor that does not accept any arguments and a con‐
structor that does:

public class ReportException extends Exception {
 public ReportException () {}
 public ReportException (String message, int
 reportId) {

Defining Your Own Exception Class | 79

 ...
 }
}

Printing Information About Exceptions
The methods in the Throwable class that provide information
about thrown exceptions are getMessage(), toString, and print
StackTrace(). In general, one of these methods should be called
in the catch clause handling the exception. Programmers can also
write code to obtain additional useful information when an ex‐
ception occurs (i.e., the name of the file that was not found).

The getMessage() Method
The getMessage() method returns a detailed message string
about the exception:

try {
 new FileReader("file.js");
} catch (FileNotFoundException fnfe) {
 System.err.println(fnfe.getMessage());
}

The toString() Method
This toString() method returns a detailed message string about
the exception, including its class name:

try {
 new FileReader("file.js");
} catch (FileNotFoundException fnfe) {
 System.err.println(fnfe.toString());
}

The printStackTrace() Method
This printStackTrace() method returns a detailed message
string about the exception, including its class name and a stack
trace from where the error was caught, all the way back to where
it was thrown:

80 | Chapter 7: Exception Handling

try {
 new FileReader("file.js");
} catch (FileNotFoundException fnfe) {
 fnfe.printStackTrace();
}

The following is an example of a stack trace. The first line contains
the contents returned when the toString() method is invoked
on an exception object. The remainder shows the method calls,
beginning with the location where the exception was thrown all
the way back to where it was caught and handled:

java.io.FileNotFoundException: file.js (The system
cannot find the file specified)
 at java.io.FileInputStream.open(Native Method)
 at java.io.FileInputStream.(init)
 (FileInputSteam.java:106)
 at java.io.FileInputStream.(init)
 (FileInputSteam.java:66)
 at java.io.FileReader(init)(FileReader.java:41)
 at EHExample.openFile(EHExample.java:24)
 at EHExample.main(EHExample.java:15)

Printing Information About Exceptions | 81

CHAPTER 8

Java Modifiers

Modifiers, which are Java keywords, may be applied to classes,
interfaces, constructors, methods, and data members.

Table 8-1 lists the Java modifiers and their applicability. Note that
private and protected classes are allowed, but only as inner or
nested classes.
Table 8-1. Java modifiers

Modifier Class Interface Constructor Method Data member

Access modifiers

package-private Yes Yes Yes Yes Yes

private No No Yes Yes Yes

protected No No Yes Yes Yes

public Yes Yes Yes Yes Yes

Other modifiers

abstract Yes Yes No Yes No

final Yes No No Yes Yes

native No No No Yes No

strictfp Yes Yes No Yes No

static No No No Yes Yes

synchronized No No No Yes No

83

Modifier Class Interface Constructor Method Data member

transient No No No No Yes

volatile No No No No Yes

Inner classes may also use the private or protected access mod‐
ifiers. Local variables may only use one modifier: final.

Access Modifiers
Access modifiers define the access privileges of classes, interfaces,
constructors, methods, and data members. Access modifiers con‐
sist of public, private, and protected. If no modifier is present,
the default access of package-private is used.

Table 8-2 provides details on visibility when access modifiers are
used.
Table 8-2. Access modifiers and their visibility

Modifier Visibility

package-
private

The default package-private limits access from within the package.

private The private method is accessible from within its class.
The private data member is accessible from within its class. It can
be indirectly accessed through methods (i.e., getter and setter
methods).

protected The protected method is accessible from within its package, and
also from outside its package by subclasses of the class containing
the method.
The protected data member is accessible within its package, and
also from outside its package by subclasses of the class containing
the data member.

public The public modifier allows access from anywhere, even outside of
the package in which it was declared. Note that interfaces are public
by default.

84 | Chapter 8: Java Modifiers

Other (Nonaccess) Modifiers
Table 8-3 contains the nonaccess Java modifiers and their usage.
Table 8-3. Nonaccess Java modifiers

Modifier Usage

abstract An abstract class is a class that is declared with the keyword abstract.
It cannot be simultaneously declared with final. Interfaces are abstract
by default and do not have to be declared abstract.
An abstract method is a method that contains only a signature and no
body. If at least one method in a class is abstract, then the enclosing
class is abstract. It cannot be declared final, native, private, static, or
synchronized.

default A default method, a.k.a. defender method, allows for the creation of
a default method implementation in an interface.

final A final class cannot be extended.
A final method cannot be overridden.
A final data member is initialized only once and cannot be changed.
A data member that is declared static final is set at compile time and
cannot be changed.

native A native method is used to merge other programming languages such
as C and C++ code into a Java program. It contains only a signature
and no body. It cannot be used simultaneously with strictfp.

static Both static methods and static variables are accessed through the class
name. They are used for the whole class and all instantiations from
that class.
A static data member is accessed through the class name. Only one
static data member exists no matter how many instances of the class
exist.

strictfp A strictfp class will follow the IEEE 754-1985 floating-point
specification for all of its floating-point operations.
A strictfp method has all expressions in the method as FP-strict.
Methods within interfaces cannot be declared strictfp. It cannot be
used simultaneously with the native modifier.

Other (Nonaccess) Modifiers | 85

Modifier Usage

synchron
ized

A synchronized method allows only one thread to execute the method
block at a time, making it thread safe. Statements can also be
synchronized.

transient A transient data member is not serialized when the class is serialized.
It is not part of the persistent state of an object.

volatile A volatile data member informs a thread both to get the latest value
for the variable (instead of using a cached copy) and to write all
updates to the variable as they occur.

86 | Chapter 8: Java Modifiers

PART II

Platform

CHAPTER 9

Java Platform, Standard Edition

The Java Platform, Standard Edition (SE), includes the Java Run‐
time Environment (JRE) and its encompassing Java Development
Kit (JDK; see Chapter 10), the Java Programming Language, Java
Virtual Machines (JVMs), tools/utilities, and the Java SE API li‐
braries. Separate platforms are available: Windows (32- and 64-
bit), Mac OS X (64-bit), Linux (32- and 64-bit), Linux ARMv6/7
VFP—HardFP ABI (32-bit), Solaris SPARC (64-bit), and Solaris
(64-bit).

Common Java SE API Libraries
Java SE API standard libraries are provided within packages. Each
package is made up of classes and/or interfaces. An abbreviated
list of commonly used packages is represented here.

Java SE provides the JavaFX runtime libraries from Java SE 7 up‐
date 6 and JavaFX 2.2 onwards. JavaFX is replacing the Swing API
as the new client UI library for Java SE.

Language and Utility Libraries
java.lang

Language support; system/math methods, fundamental
types, strings, threads, and exceptions

89

http://bit.ly/1j4kWPl
http://bit.ly/1gvdiNC

java.lang.annotation

Annotation framework; metadata library support

java.lang.instrument

Program instrumentation; agent services to instrument
JVM programs

java.lang.invoke

Dynamic Language Support; supported by core classes and
VM

java.lang.management

Java Management Extensions API; JVM monitoring and
management

java.lang.ref

Reference-object classes; interaction support with the GC

java.lang.reflect

Reflective information about classes and objects

java.util

Utilities; collections, event model, date/time, and interna‐
tional support

java.util.concurrent

Concurrency utilities; executors, queues, timing, and syn‐
chronizers

java.util.concurrent.atomic

Atomic toolkit; lock-free thread-safe programming on sin‐
gle variables

java.util.concurrent.locks

Locking framework; locks and conditions

java.util.function

Functional interfaces; provides target types for lambda ex‐
pressions and method references

java.util.jar

Java Archive file format; reading and writing

90 | Chapter 9: Java Platform, Standard Edition

java.util.logging

Logging; failures, errors, performance issues, and bugs

java.util.prefs

User and system preferences; retrieval and storage

java.util.regex

Regular expressions; char sequences matched to patterns

java.util.stream

Streams; functional-style operations on streams of elements

java.util.zip

ZIP and GZIP file formats; reading and writing

Base Libraries
java.applet

Applet framework; embeddable window and control meth‐
ods

java.beans

Beans; components based on JavaBeans, long-term persis‐
tence

java.beans.beancontext

Bean context; containers for beans, run environments

java.io

Input/output; through data streams, the filesystem, and se‐
rialization

java.math

Mathematics; extra large integer and decimal arithmetic

java.net

Networking; TCP, UDP, sockets, and addresses

java.nio

High performance I/O; buffers, memory-mapped files

Common Java SE API Libraries | 91

java.nio.channels

Channels for I/O; selectors for nonblocking I/O

java.nio.charset

Character sets; translation between bytes and Unicode

java.nio.file

File support; files, file attributes, filesystems

java.nio.file.attribute

File and filesystem attribute support

java.text

Text utilities; text, dates, numbers, and messages

java.time

Time; dates, times, instants, and durations

java.time.chrono

Time; calendar systems

java.time.format

Time; printing and parsing

java.time.temporal

Time; access using fields, units, and adjusters

java.time.zone

Time; support for time zones and their rules

javax.annotation

Annotation types; library support

javax.management

JMX API; application configuration, statistics, and state
changes

javax.net

Networking; socket factories

javax.net.ssl

Secured sockets layer; error detection, data encryption/
authentication

92 | Chapter 9: Java Platform, Standard Edition

javax.tools

Program invoked tool interfaces; compilers, file managers

Integration Libraries
java.sql

Structured Query Language (SQL); access and processing
data source information

javax.jws

Java web services; supporting annotation types

javax.jws.soap

Java web services; SOAP bindings and message parameters

javax.naming

Naming services; Java Naming and Directory Interface
(JNDI)

javax.naming.directory

Directory services; JNDI operations for directory-stored
objects

javax.naming.event

Event services; JNDI event notification operations

javax.naming.ldap

Lightweight Directory Access Protocol v3; operations and
controls

javax.script

Scripting language support; integration, bindings, and in‐
vocations

javax.sql

SQL; database APIs and server-side capabilities

javax.sql.rowset.serial

Serializable mappings; between SQL types and data types

Common Java SE API Libraries | 93

javax.sql.rowset

Java Database Connectivity (JDBC) Rowset; standard inter‐
faces

javax.transactions.xa

XA Interface; transaction and resource manager contracts
for JTA

Miscellaneous User Interface Libraries
javax.accessibility

Accessibility technology; assistive support for UI compo‐
nents

javax.imageio

Java image I/O; image file content description (metadata,
thumbnails)

javax.print

Print services; formatting and job submissions

javax.print.attribute

Java Print Services; attributes and attribute set collecting

javax.print.attribute.standard

Standard attributes; widely used attributes and values

javax.print.event

Printing events; services and print job monitoring

javax.sound.midi

Sound; I/O, sequencing, and synthesis of MIDI Types
0 and 1

javax.sound.sampled

Sound; sampled audio data (AIFF, AU, and WAV formats)

JavaFX User Interface Library
javafx.animation

Transition-based animation

94 | Chapter 9: Java Platform, Standard Edition

javafx.application

Application life cycle

javafx.beans

Generic form of observability

javafx.beans.binding

Binding characteristics

javafx.beans.property

Read-only and writable properties

javafx.beans.property.adapter

Property adapter

javafx.beans.value

Reading and writing

javafx.collections

JavaFX collection utilities

javafx.concurrent

JavaFX concurrent task

javafx.embed.swing

Swing API application integration

javafx.embed.swt

SWT API application integration

javafx.event

Event framework (e.g., delivery and handling)

javafx.fxml

Markup language (e.g., loading an object hierarchy)

javafx.geometry

Two-dimensional geometry

javafx.scene

Base classes; core Scene Graph API

Common Java SE API Libraries | 95

javafx.scene.canvas

Canvas classes; an immediate mode style of rendering API

javafx.scene.chart

Chart components; data visualization

javafx.scene.control

User interface controls; specialized nodes in the scene graph

javafx.scene.control.cell

Cell-related classes (i.e., noncore classes)

javafx.scene.effect

Graphical filter effects; supporting scene graph nodes

javafx.scene.image

Loading and displaying images

javafx.scene.input

Mouse and keyboard input event handling

javafx.scene.layout

Interface layout classes

javafx.scene.media

Audio and video classes

javafx.scene.paint

Colors and gradients support (e.g., fill shapes and back‐
grounds)

javafx.scene.shape

Two-dimensional shapes

javafx.scene.text

Fonts and text node rendering

javafx.scene.transform

Transformation; rotating, scaling, shearing, and translation
for affine objects

javafx.scene.web

Web content; loading and displaying web content

96 | Chapter 9: Java Platform, Standard Edition

javafx.stage

Stage; top-level container

javafx.util

Utilities and helper classes

javafx.util.converter

String converters

Remote Method Invocation (RMI) and CORBA
Libraries
java.rmi

Remote Method Invocation; invokes objects on remote
JVMs

java.rmi.activation

RMI object activation; activates persistent remote object’s
references

java.rmi.dgc

RMI distributed garbage collection (DGC); remote object
tracking from client

java.rmi.registry

RMI registry; remote object that maps names to remote ob‐
jects

java.rmi.server

RMI server side; RMI transport protocol, Hypertext Trans‐
fer Protocol (HTTP) tunneling, stubs

javax.rmi

Remote Method Invocation; RMI; Remote Method Invoca‐
tion Internet InterORB Protocol (RMI-IIOP), Java Remote
Method Protocol (JRMP), Java Remote Method Protocol
(JRMP)

Common Java SE API Libraries | 97

javax.rmi.CORBA

Common Object Request Broker Architecture (CORBA)
support; portability APIs for RMI-IIOP and Object Request
Brokers (ORBs)

javax.rmi.ssl

Secured Sockets Layer (SSL); RMI client and server support

org.omg.CORBA

OMG CORBA; CORBA to Java mapping, ORBs

org.omg.CORBA_2_3

OMG CORBA additions; further Java Compatibility Kit
(JCK) test support

Security Libraries
java.security

Security; algorithms, mechanisms, and protocols

java.security.cert

Certifications; parsing, managing Certificate Revocation
Lists (CRLs) and certification paths

java.security.interfaces

Security interfaces: Rivest, Shamir, and Adelman (RSA) and
Digital Signature Algorithm (DSA) generation

java.security.spec

Specifications; security keys and algorithm parameters

javax.crypto

Cryptographic operations; encryption, keys, MAC genera‐
tions

javax.crypto.interfaces

Diffie-Hellman keys; defined in RSA Laboratories’ PKCS #3

javax.crypto.spec

Specifications; for security key and algorithm parameters

98 | Chapter 9: Java Platform, Standard Edition

javax.security.auth

Security authentication and authorization; access controls
specifications

javax.security.auth.callback

Authentication callback support; services interaction with
apps

javax.security.auth.kerberos

Kerberos network authentication protocol; related utility
classes

javax.security.auth.login

Login and configuration; pluggable authentication frame‐
work

javax.security.auth.x500

X500 Principal and X500 Private Credentials; subject stor‐
age

javax.security.sasl

Simple Authentication and Security Layer (SASL); SASL au‐
thentication

org.ietf.jgss

Java Generic Security Service (JGSS); authentication, data
integrity

Extensible Markup Language (XML) Libraries
javax.xml

Extensible Markup Language (XML); constants

javax.xml.bind

XML runtime bindings; unmarshalling, marshalling, and
validation

javax.xml.crypto

XML cryptography; signature generation and data encryp‐
tion

Common Java SE API Libraries | 99

javax.xml.crypto.dom

XML and Document Object Model (DOM); cryptographic
implementations

javax.xml.crypto.dsig

XML digital signatures; generating and validating

javax.xml.datatype

XML and Java data types; mappings

javax.xml.namespace

XML namespaces; processing

javax.xml.parsers

XML parsers; Simple API for XML (SAX) and DOM parsers

javax.xml.soap

XML; SOAP messages; creation and building

javax.xml.transform

XML transformation processing; no DOM or SAX depend‐
ency

javax.xml.transform.dom

XML transformation processing; DOM-specific API

javax.xml.transform.sax

XML transformation processing; SAX-specific API

javax.xml.transform.stax

XML transformation processing; Streaming API for XML
(StAX) API

javax.xml.validation

XML validation; verification against XML schema

javax.xml.ws

Java API for XML Web Services (JAX-WS); core APIs

javax.xml.ws.handler

JAX-WS message handlers; message context and handler
interfaces

100 | Chapter 9: Java Platform, Standard Edition

javax.xml.ws.handler.soap

JAX-WS; SOAP message handlers

javax.xml.ws.http

JAX-WS; HTTP bindings

javax.xml.ws.soap

JAX-WS; SOAP bindings

javax.xml.xpath

XPath expressions; evaluation and access

org.w3c.dom

W3C’s DOM; file content and structure access and updates

org.xml.sax

XML.org’s SAX; file content and structure access and up‐
dates

Common Java SE API Libraries | 101

CHAPTER 10

Development Basics

The Java Runtime Environment (JRE) provides the backbone for
running Java applications. The Java Development Kit (JDK) pro‐
vides all of the components and necessary resources to develop
Java applications.

Java Runtime Environment
The JRE is a collection of software that allows a computer system
to run a Java application. The software collection consists of the
Java Virtual Machines (JVMs) that interpret Java bytecode into
machine code, standard class libraries, user interface toolkits, and
a variety of utilities.

Java Development Kit
The JDK is a programming environment for compiling, debug‐
ging, and running Java applications, Java Beans, and Java applets.
The JDK includes the JRE with the addition of the Java program‐
ming language and additional development tools and tool APIs.
Oracle’s JDK supports Mac OS X, Solaris, Linux (Oracle, Suse,
Red Hat, Ubuntu, and Debian [on ARM]), and Microsoft Win‐
dows (Server 2008 R2, Server 2012, Vista, Windows 7, and Win‐
dows 8). Additional operating system and special purpose JVMs,
JDKs, and JREs are freely available from Java Virtual Machine.

103

http://bit.ly/16mhI6k

Supported browsers are Internet Explorer 9+, Mozilla Firefox,
Chrome on Windows, and Safari 5.x.

Table 10-1 lists versions of the JDK provided by Oracle. Down‐
load the most recent version at Oracle’s website, where you can
also download older versions.
Table 10-1. Java Development Kits

Java Development Kits Codename Release Packages Classes

Java SE 8 with JDK 1.8.0 --- 2014 217 4,240

Java SE 7 with JDK 1.7.0 Dolphin 2011 209 4,024

Java SE 6 with JDK 1.6.0 Mustang 2006 203 3,793

Java 2 SE 5.0 with JDK 1.5.0 Tiger 2004 166 3,279

Java 2 SE with SDK 1.4.0 Merlin 2002 135 2,991

Java 2 SE with SDK 1.3 Kestrel 2000 76 1,842

Java 2 with SDK 1.2 Playground 1998 59 1,520

Development Kit 1.1 --- 1997 23 504

Development Kit 1.0 Oak 1996 8 212

Java SE version 6 reached Oracle’s End of Public Updates in
March 2013.

Java Program Structure
Java source files are created with text editors such as jEdit, Text‐
Pad, Vim, Notepad++, or one provided by a Java Integrated De‐
velopment Environment (IDE). The source files must have
the .java extension and the same name as the public class name
contained in the file. If the class has package-private access, the
class name can differ from the filename.

Therefore, a source file named HelloWorld.java would corre‐
spond to the public class named HelloWorld, as represented in
the following example (all nomenclature in Java is case-sensitive):

 1 package com.oreilly.tutorial;
 2 import java.time.*;

104 | Chapter 10: Development Basics

http://bit.ly/16mhImY
http://bit.ly/16mhHzq

 3 // import java.time.ZoneId;;
 4 // import java.time.Clock;
 5
 6 public class HelloWorld
 7 {
 8 public static void main(String[] args)
 9 {
 10 ZoneId zi = ZoneId.systemDefault();
 11 Clock c = Clock.system(zi);
 12 System.out.print("From: "
 13 + c.getZone().getId());
 13 System.out.println(", \"Hello, World!\"");
 14 }
 15 }

In line 1, the class HelloWorld is contained in the package
com.oreilly.tutorial. This package name implies that com/oreilly/
tutorial is a directory structure that is accessible on the class path
for the compiler and the runtime environment. Packaging source
files is optional, but is recommended to avoid conflicts with other
software packages.

In line 2, the import declaration allows the JVM to search for
classes from other packages. Here, the asterisk all classes in the
java.time package available. However, you should always ex‐
plicitly include classes so that dependencies are documented, in‐
cluding the statements import java.time. ZoneId; and import
java.time.Clock;, which as you see are currently commented
out and would have been a better choice than simply using import
java.time.*;. Note that import statements are not needed be‐
cause you can include the full package name before each class
name; however, this is not an ideal way to code.

T I P

The java.lang package is the only Java package imported
by default.

Java Program Structure | 105

In line 6, there must be only one top-level public class defined in
a source file. In addition, the file may include multiple top-level
package-private classes.

Looking at line 8, we note that Java applications must have a main
method. This method is the entry point into a Java program, and
it must be defined. The modifiers must be declared public, stat
ic, and void. The arguments parameter provides a string array
of command-line arguments.

T I P

Container-managed application components (e.g., Spring
and Java EE) do not have a main method.

In lines 12 and 13, the statements provide calls to the Sys
tem.out.print and System.out.println methods to print out the
supplied text to the console window.

Command-Line Tools
A JDK provides several command-line tools that aid in software
development. Commonly used tools include the compiler,
launcher/interpreter, archiver, and documenter. Find a complete
list of tools at Oracle.com.

Java Compiler
The Java compiler translates Java source files into Java bytecode.
The compiler creates a bytecode file with the same name as the
source file but with the .class extension. Here is a list of commonly
used compiler options:

javac [-options] [source files]

Compiles Java source files.

javac HelloWorld.java

Compiles the program to produce HelloWorld.class.

106 | Chapter 10: Development Basics

http://bit.ly/16mhHQ3

javac –cp /dir/Classes/ HelloWorld.java

The –cp and –classpath options are equivalent and identify
classpath directories to utilize at compile time.

javac –d /opt/hwapp/classes HelloWorld.java

The –d option places generated class files into a preexisting
specified directory. If there is a package definition, the path
will be included (e.g., /opt/hwapp/classes/com/oreilly/tuto‐
rial/).

javac –s /opt/hwapp/src HelloWorld.java

The –s option places generated source files into a preexisting
specified directory. If there is a package definition, the path
will be further expanded (e.g., /opt/hwapp/src/com/oreilly/
tutorial/).

javac –source 1.4 HelloWorld.java

The –source option provides source compatibility with the
given release, allowing unsupported keywords to be used as
identifiers.

javac –X

The –X option prints a synopsis of nonstandard options. For
example, –Xlint:unchecked enables recommended warn‐
ings, which prints out further details for unchecked or un‐
safe operations.

T I P

Even though –Xlint and other -X options are commonly
found among Java compilers, the –X options are not stand‐
ardized, so their availability across JDKs should not be as‐
sumed.

javac –version

The –version option prints the version of the javac utility.

Command-Line Tools | 107

javac –help

The –help option, or the absence of arguments, will cause
the help information for the javac command to be printed.

Java Interpreter
The Java interpreter handles the program execution, including
launching the application. Here is a list of commonly used inter‐
preter options.

java [-options] class [arguments…]

Runs the interpreter.

java [-options] –jar jarfile [arguments…]

Executes a JAR file.

java HelloWorld

Starts the JRE, loads the class HelloWorld, and runs the main
method of the class.

java com.oreilly.tutorial.HelloWorld

Starts the JRE, loads the HelloWorld class under the com/
oreilly/tutorial/ directory, and runs the main method of the
class.

java -cp /tmp/Classes HelloWorld

The –cp and –classpath options identify classpath directo‐
ries to use at runtime.

java –Dsun.java2d.ddscale=true HelloWorld

The –D option sets a system property value. Here, hardware
accelerator scaling is turned on.

java –ea HelloWorld

The –ea and –enableassertions options enable Java asser‐
tions. Assertions are diagnostic code that you insert in your
application. For more information on assertions, see “Assert
Statement” on page 66.

108 | Chapter 10: Development Basics

java -da HelloWorld

The –da and –disableassertions options disable Java as‐
sertions.

java –client HelloWorld

The –client option selects the client virtual machine to en‐
hance interactive applications such as GUIs.

java –server HelloWorld

The –server option selects the server virtual machine to en‐
hance overall system performance.

java –splash:images/world.gif HelloWorld

The –splash option accepts an argument to display a splash
screen of an image prior to running the application.

java –version

The –version option prints the version of the Java inter‐
preter, the JRE, and the virtual machine.

java [-d32 | -d64]

The [-d32] and the [-d64] options call for the use of the 32-
bit or the 64-bit data model (respectively), if available.

java –help

The –help option, or the absence of arguments, will cause
the help information for the java command to be printed.

javaw <classname>

On the Windows OS, javaw is equivalent to the java com‐
mand but without a console window. The Linux equivalent
is accomplished by running the java command as a back‐
ground process with the ampersand: java <classname> &.

Java Program Packager
The Java Archive (JAR) utility is an archiving and compression
tool, typically used to combine multiple files into a single file
called a JAR file. JAR consists of a ZIP archive containing a man‐
ifest file (JAR content describer) and optional signature files (for

Command-Line Tools | 109

security). Here is a list of commonly used JAR options along with
examples:

jar [options] [jar-file] [manifest-files] [entry-point]

[-C dir] files…

This is the usage for the JAR utility.

jar cf files.jar HelloWorld.java com/oreilly/tutorial/

HelloWorld.class

The c option allows for the creation of a JAR file. The f
option allows for the specification of the filename. In this
example, HelloWorld.java and com/oreilly/tutorial/Hello‐
World.class are included in the JAR file.

jar tfv files.jar

The t option is used to list the table of contents of the JAR
file. The f option is used to specify the filename. The v option
lists the contents in verbose format.

jar xf files.jar

The x option allows for the extraction of the contents of the
JAR file. The f option allows for the specification of the file‐
name.

T I P

Several other ZIP tools (e.g., 7-Zip, WinZip, and Win-RAR)
can work with JAR files.

JAR File Execution
JAR files can be created so that they are executable by specifying
the file within the JAR where the “main” class resides, so the Java
interpreter knows which main() method to utilize. Here is a com‐
plete example of making a JAR file executable:

1. Create a HelloWorld.java file from the HelloWorld class at
the beginning of this chapter.

110 | Chapter 10: Development Basics

2. Create the subfolders com/oreilly/tutorial/.

3. Run javac HelloWorld.
Use this command to compile the program and place the
HelloWorld.class file into the com/oreilly/tutorial/ directo‐
ry.

4. Create a file named Manifest.txt in the directory where the
package is located. In the file, include the following line
specifying where the main class is located:

Main-Class: com.oreilly.tutorial.HelloWorld

5. Run jar cmf Manifest.txt helloWorld.jar com/oreil
ly/tutorial.
Use this command to create a JAR file that adds the Man‐
ifest.txt contents to the manifest file, MANIFEST.MF. The
manifest file is also used to define extensions and various
package-related data:

Manifest-Version: 1.0
Created-By: 1.7.0 (Oracle Corporation)
Main-Class: com.oreilly.tutorial.HelloWorld

6. Run jar tf HelloWorld.jar.
Use this command to display the contents of the JAR file:

META-INF/
META-INF/MANIFEST.MF
com/
com/oreilly/
com/oreilly/tutorial
com/oreilly/tutorial/HelloWorld.class

7. Finally, run java –jar HelloWorld.jar.
Use this command to execute the JAR file.

Java Documenter
Javadoc is a command-line tool used to generate documentation
on source files. The documentation is more detailed when the

Command-Line Tools | 111

appropriate Javadoc comments are applied to the source code;
see “Comments” on page 9. Here is a list of commonly used jav‐
adoc options and examples:

javadoc [options] [packagenames] [sourcefiles]

This is the usage to produce Java documentation.

javadoc HelloWorld.java

The javadoc command generates HTML documentation
files: HelloWorld.html, index.html, allclasses-frame.html,
constant-values.html, deprecated-list.html, overview-
tree.html, package-summary.html, etc.

javadoc –verbose HelloWorld.java

The –verbose option provides more details while Javadoc is
running.

javadoc –d /tmp/ HelloWorld.java

This –d option specifies the directory where the generated
HTML files will be extracted to. Without this option, the
files will be placed in the current working directory.

javadoc –sourcespath /Classes/ Test.java

The –sourcepath option specifies where to find user .java
source files.

javadoc –exclude <pkglist> Test.java

The –exclude option specifies which packages not to gen‐
erate HTML documentation files for.

javadoc –public Test.java

The –public option produces documentation for public
classes and members.

javadoc –protected Test.java

The –protected option produces documentation for pro‐
tected and public classes and members. This is the default
setting.

112 | Chapter 10: Development Basics

javadoc –package Test.java

The –package option produces documentation for package,
protected, and public classes and members.

javadoc –private Test.java

The –private option produces documentation for all classes
and members.

javadoc –help

The –help option, or the absence of arguments, causes the
help information for the javadoc command to be printed.

Classpath
The classpath is an argument set used by several command-line
tools that tells the JVM where to look for user-defined classes and
packages. Classpath conventions differ among operating sys‐
tems.

On Microsoft Windows, directories within paths are delineated
with backslashes, and the semicolon is used to separate the paths:

-classpath \home\XClasses\;dir\YClasses\;.

On POSIX-compliant operations systems (e.g., Solaris, Linux,
and Mac OS X), directories within paths are delineated with for‐
ward slashes and the colon is used to separate the paths:

-classpath /home/XClasses/:dir/YClasses/:.

T I P

The period represents the current working directory.

The CLASSPATH environmental variable can also be set to tell the
Java compiler where to look for class files and packages:

rem Windows
set CLASSPATH=classpath1;classpath2

Classpath | 113

Linux, Solaris, Mac OS X
(May vary due to shell specifics)
setenv CLASSPATH classpath1:classpath2

114 | Chapter 10: Development Basics

CHAPTER 11

Memory Management

Java has automatic memory management, which is also known
as garbage collection (GC). GC’s principal tasks are allocating
memory, maintaining referenced objects in memory, and recov‐
ering memory from objects that no longer have references to
them.

Garbage Collectors
Since the J2SE 5.0 release, the Java HotSpot Virtual Machine per‐
forms self-tuning. This process includes the attempted best-fit
GC and related settings at startup, based on platform informa‐
tion, as well as ongoing GC tuning.

Although the initial settings and runtime tuning for GC are gen‐
erally successful, there are times when you may wish to change
or tune your GC based on the following goals:

Maximum pause time goal
The maximum pause time goal is the desired time that the
GC pauses the application to recover memory.

Throughput goal
The throughput goal is the desired application time, or the
time spent outside of GC.

115

The following sections provide an overview of various garbage
collectors, their main focus, and situations in which they should
be used. “Command-Line Options” on page 118 explains how to
acquire information for manually selecting the GC.

Serial Collector
The serial collector is performed via a single thread on a single
CPU. When this GC thread is run, the execution of the applica‐
tion will pause until the collection is complete.

This collection is best used when your application has a small
data set up to approximately 100 MB and does not have a re‐
quirement for low pause times.

Parallel Collector
The parallel collector, also known as the throughput collector,
can be performed with multiple threads across several CPUs. Us‐
ing these multiple threads significantly speeds up GC.

This collector is best used when there are no pause time con‐
straints and application performance is the most important as‐
pect of your program.

Parallel Compacting Collector
The parallel compacting collector is similar to the parallel col‐
lector except for refined algorithms that reduce collection pause
times.

This collector is best used for applications that do have pause time
constraints.

T I P

The parallel compacting collector is available beginning
with J2SE 5.0 update 6.

116 | Chapter 11: Memory Management

Concurrent Mark-Sweep Collector
The Concurrent Mark-Sweep (CMS), also known as the low-
latency collector, implements algorithms to handle large collec‐
tions that might warrant long pauses.

This collector is best used when response times take precedence
over throughput times and GC pauses.

Garbage-First (G1) Collector
The Garbage-First collector, also known as the G1 collector, is
used for multiprocessor machines with large memories. This
server-style GC meets pause time goals with high probability,
while achieving high throughput. Whole-heap operations (e.g.,
global marking) are performed concurrently with the application
threads, which prevents interruptions proportional to the heap
or live-data size.

T I P

$The Garbage-First collector is available beginning with
Java SE 7 update 4. Its goal is to replace the CMS collector.

Memory Management Tools
Although tuning your GC may prove to be successful, it is im‐
portant to note that the GCs do not provide guarantees, only
goals; any improvement gained on one platform may be undone
on another. It is best to find the source of the problem with mem‐
ory management tools, including profilers.

Table 11-1 lists such tools. All are command-line applications
except Heap/CPU Profiling Tool (HPROF). HPROF is dynami‐
cally loaded from a command-line option. The following exam‐
ple returns a complete list of options that can be passed to
HPROF:

java -agentlib:hprof=help

Memory Management Tools | 117

Table 11-1. JDK memory management tools

Resource Description

jvisualvm All-in-one Java troubleshooting tool

jconsole Java Management Extensions (JMX)-compliant monitoring tool

jinfo Configuration information tool

jmap Memory map tool

jstack Stack trace tool

jstat JVM statistics monitoring tool

jhat Heap analysis tool

HPROF Profiler CPU usage, heap statistics, and monitor contentions profiler

jdb Java debugger tool

T I P

Consider exploring Oracle Java SE Advanced, which in‐
cludes Java Mission Control (i.e., jmc) and Java Flight Re‐
corder. These are enterprise-grade production-savvy diag‐
nostics and monitoring tools.

Command-Line Options
The following GC-related command-line options can be passed
into the Java interpreter to interface with the functionality of the
Java HotSpot Virtual Machine (for a more complete list of op‐
tions, visit Java HotSpot VM Options):

-XX:+PrintGC or -verbose:gc
Prints out general information about the heap and garbage
collection at each collection.

-XX:+PrintCommandLineFlags -version

Prints out heap settings, applied -XX values, and version
information.

118 | Chapter 11: Memory Management

http://visualvm.java.net/
http://bit.ly/16mhL27

-XX:+PrintGCDetails

Prints out detailed information about the heap and garbage
collection during each collection.

-XX:+PrintGCTimeStamps

Adds timestamps to the output from PrintGC or Print-
GCDetails.

-XX:+UseSerialGC

Enables the serial collector.

-XX:+UseParallelGC

Enables the parallel collector.

-XX:+UseParallelOldGC

Enables the parallel compacting collector. Note that Old
refers to the fact that new algorithms are used for “old” gen‐
eration GC.

-XX:+UseParNewGC

Enables the parallel young generation collector. Can be used
with the concurrent low pause collector.

-XX:+UseConcMarkSweepGC

Enables the concurrent low pause CMS collector. Can be
used with the parallel young generation collector.

-XX:+UseG1GC

Enables the Garbage-First collector.

-XX:+DisableExplicitGC

Disables the explicit GC (System.gc()) methods.

-XX:ParallelGCThreads=[threads]

Defines the number of GC threads. The default correlates to
the number of CPUs. This option applies to the CMS and
parallel collectors.

Command-Line Options | 119

-XX:MaxGCPauseMillis=[milliseconds]

Provides a hint to the GC for the desired maximum pause
time goal in milliseconds. This option applies to the parallel
collectors.

-XX:+GCTimeRatio=[__value__]

Provides a hint to the GC for the desired ratio of GC time
to application time (1 / (1 + [value])) for the desired
throughput goal. The default value is 99. This means that
the application will run 99% of the time and therefore, the
GC will run 1% of the time. This option applies to the parallel
collectors.

-XX:+CMSIncrementalMode

Enables incremental mode for the CMS collector only. Used
for machines with one or two processors.

-XX:+CMSIncrementalPacing

Enables automatic packing for the CMS collector only.

-XX:MinHeapFreeRatio=[percent]

Sets the minimum target percent for the proportion of free
space to total heap size. The default percent is 40.

-XX:MaxHeapFreeRatio=[percent]

Sets the maximum target percent for the proportion of free
space to total heap size. The default percent is 70.

-Xms[bytes]

Overrides the minimum heap size in bytes. Default: 1/64th

of the system’s physical memory up to 1 GB. Initial heap size
is 4 MB for machines that are not server-class.

-Xmx[bytes]

Overrides the maximum heap size in bytes. Default: Smaller
than 1/4th physical memory or 1 GB. Maximum heap size is
64 MB for machines that are not server-class.

-Xmn[bytes]

The size of the heap for the young generation.

120 | Chapter 11: Memory Management

-XX:OnError=[command_line_tool [__options__]]

Used to specify user-supplied scripts or commands when a
fatal error occurs.

-XX+AggressiveOpts

Enables performance optimizations that are expected to be
on by default in future releases.

T I P

Byte values include [k|K] for kilobytes, [m|M] for megabytes,
and [g|G] for gigabytes.

Note that –XX options are not guaranteed to be stable. They are
not part of the Java Language Specification (JLS) and are unlikely
to be available in exact form and function from other third-party
JVMs, if at all.

Resizing the JVM Heap
The heap is an area in memory that stores all objects created by
executing a Java program. You should resize the heap only if it
needs to be sized larger than the default heap size. If you are hav‐
ing performance problems or seeing the Permanent Generation
(PermGen) error message java.lang.OutOfMemoryError, you
may be running out of heap space.

Metaspace
Native memory is used for the representation of class metadata,
creating a memory space called Metaspace. Metaspace is the su‐
cessor to the PermGen model. Because of this, the JDK 8 HotSpot
JVM will no longer see any PermGen OutOfMemoryError occur‐
ring. JVisualVM provides analysis support to the Metaspace if
any memory leaks should occur.

Resizing the JVM Heap | 121

Interfacing with the GC
Interfacing with the garbage collector can be done through ex‐
plicit invocation or via overriding the finalize method.

Explicit Garbage Collection
The garbage collector can be explicitly requested to be invoked
with System.gc() or Runtime.getRuntime().gc(). However, ex‐
plicit invocation of the GC should generally be avoided because
it could force full collections (when a minor collection may suf‐
fice), thereby unnecessarily increasing the pause times. The re‐
quest for System.gc() is not always fulfilled as the JVM can and
does ignore it at times.

Finalization
Every object has a finalize() method inherited from class Ob
ject. The garbage collector, prior to destroying the object, can
invoke this method, but this invocation is not guaranteed. The
default implementation of the finalize() method does nothing
and although it is not recommended, the method can be over‐
ridden:

public class TempClass extends SuperClass {
 ...
 // Performed when Garbage Collection occurs
 protected void finalize() throws Throwable {
 try {
 /* Desired functionality goes here */
 } finally {
 // Optionally, you can call the
 // finalize method of the superclass
 super.finalize(); // From SuperClass
 }
 }
}

The following example destroys an object:

122 | Chapter 11: Memory Management

public class MainClass {
 public static void main(String[] args) {
 TempClass t = new TempClass();
 // Object has references removed
 t = null;
 // GC made available
 System.gc();
 }
}

Interfacing with the GC | 123

CHAPTER 12

Basic Input and Output

Java provides several classes for basic input and output, a few of
which are discussed in this chapter. The basic classes can be used
to read and write to files, sockets, and the console. They also
provide for working with files and directories and for serializing
data. Java I/O classes throw exceptions, including the IOExcep
tion, which needs to be handled.

Java I/O classes also support for+matting data, compressing and
decompressing streams, encrypting and decrypting, and com‐
municating between threads using piped streams.

The new I/O (NIO) APIs that were introduced in Java 1.4 provide
additional I/O capabilities, including buffering, file locking, reg‐
ular expression matching, scalable networking, and buffer man‐
agement.

NIO.2 was introduced with Java SE 7 and is covered in the next
chapter. NIO.2 extends NIO and provides a new filesystem API.

Standard Streams in, out, and err
Java uses three standard streams: in, out, and err.

System.in is the standard input stream that is used to get data
from the user to a program:

125

byte teamName[] = new byte[200];
int size = System.in.read(teamName);
System.out.write(teamName,0,size);

System.out is the standard output stream that is used to output
data from a program to the user:

System.out.print("Team complete");

System.err is the standard error stream that is used to output
error data from a program to the user:

System.err.println("Not enough players");

Note that each of these methods can throw an IOException.

T I P

The Console class, introduced in Java SE 6, provides an al‐
ternative to the standard streams for interacting with the
command-line environment.

Class Hierarchy for Basic Input and Output
Figure 12-1 shows a class hierarchy for commonly used readers,
writers, and input and output streams. Note that I/O classes can
be chained together to get multiple effects.

The Reader and Writer classes are used for reading and writing
character data (text). The InputStream and OutputStream classes
are typically used for reading and writing binary data.

126 | Chapter 12: Basic Input and Output

Figure 12-1. Common readers, writers, and input/output streams

File Reading and Writing
Java provides facilities to easily read and write to system files.

Reading Character Data from a File
To read character data from a file, use a BufferedReader. A Fil
eReader can also be used, but it will not be as efficient if there is
a large amount of data. The call to readLine() reads a line of text
from the file. When reading is complete, call close() on the
BufferedReader:

BufferedReader bReader = new BufferedReader
 (new FileReader("Master.txt"));
String lineContents;

File Reading and Writing | 127

while ((lineContents = bReader.readLine())
 != null) {...}
bReader.close();

Consider using NIO 2.0’s Files.newBufferedRead

er(<path>,<charset>); to avoid the implicit assumption about
the file encoding.

Reading Binary Data from a File
To read binary data, use a DataInputStream. The call to read()
reads the data from the input stream. Note that if only an array
of bytes will be read, you should just use InputStream:

DataInputStream inStream = new DataInputStream
 (new FileInputStream("Team.bin"));
inStream.read();

If a large amount of data is going to be read, you should also use
a BufferedInputStream to make reading the data more efficient:

DataInputStream inStream = new DataInputStream
(new BufferedInputStream(new FileInputStream(team)));

Binary data that has been read can be put back on the stream
using methods in the PushbackInputStream class:

unread(int i); // pushback a single byte
unread(byte[] b); // pushback array of bytes

Writing Character Data to a File
To write character data to a file, use a PrintWriter. Call the
close() method of class PrintWriter when writing to the output
stream is complete:

String in = "A huge line of text";
PrintWriter pWriter = new PrintWriter
 (new FileWriter("CoachList.txt"));
pWriter.println(in);
pWriter.close();

128 | Chapter 12: Basic Input and Output

Text can also be written to a file using a FileWriter if there is a
small amount of text to be written. Note that if the file passed into
the FileWriter does not exist, it will automatically be created:

FileWriter fWriter = new
 FileWriter("CoachList.txt");
fwriter.write("This is the coach list.");
fwriter.close();

Writing Binary Data to a File
To write binary data, use a DataOutputStream. The call to write
Int() writes an array of integers to the output stream:

File positions = new File("Positions.bin");
Int[] pos = {0, 1, 2, 3, 4};
DataOutputStream outStream = new DataOutputStream
 (new FileOutputStream(positions));
for (int i = 0; i < pos.length; i++)
 outStream.writeInt(pos[i]);

If a large amount of data is going to be written, then also use a
BufferedOutputStream:

DataOutputStream outStream = new DataOutputStream
(new BufferedOutputStream(positions));

Socket Reading and Writing
Java provides facilities to easily read and write to system sockets.

Reading Character Data from a Socket
To read character data from a socket, connect to the socket and
then use a BufferedReader to read the data:

Socket socket = new Socket("127.0.0.1", 64783);
InputStreamReader reader = new InputStreamReader
 (socket.getInputStream());
BufferedReader bReader = new BufferedReader(reader);
String msg = bReader.readLine();

Socket Reading and Writing | 129

BufferedReader introduced the lines() method in Java SE 8, rel‐
ative to the new Stream API. This method returns a Stream, the
elements of which are lines lazily read from the contexted Buf
feredReader.

Reading Binary Data from a Socket
To read binary data, use a DataInputStream. The call to read()
reads the data from the input stream. Note that the Socket class
is located in java.net:

Socket socket = new Socket("127.0.0.1", 64783);
DataInputStream inStream = new DataInputStream
 (socket.getInputStream());
inStream.read();

If a large amount of data is going to be read, then also use a
BufferedInputStream to make reading the data more efficient:

DataInputStream inStream = new DataInputStream
(new BufferedInputStream(socket.getInputStream()));

Writing Character Data to a Socket
To write character data to a socket, make a connection to a socket
and then create and use a PrintWriter to write the character data
to the socket:

Socket socket = new Socket("127.0.0.1", 64783);
PrintWriter pWriter = new PrintWriter
 (socket.getOutputStream());
pWriter.println("Dad, we won the game.");

Writing Binary Data to a Socket
To write binary data, use a DataOutputStream. The call to write()
writes the data to an output stream:

byte positions[] = new byte[10];
Socket socket = new Socket("127.0.0.1", 64783);
DataOutputStream outStream = new DataOutputStream
 (socket.getOutputStream());
outStream.write(positions, 0, 10);

130 | Chapter 12: Basic Input and Output

If a large amount of data is going to be written, then also use a
BufferedOutputStream:

DataOutputStream outStream = new DataOutputStream
(new BufferedOutputStream(socket.getOutputStream()));

Serialization
To save a version of an object (and all related data that would need
to be restored) as an array of bytes, the class of this object must
implement the interface Serializable. Note that data members
declared transient will not be included in the serialized object.
Use caution when using serialization and deserialization, as
changes to a class—including moving the class in the class hier‐
archy, deleting a field, changing a field to nontransient or static,
and using different JVMs—can all impact restoring an object.

The ObjectOutputStream and ObjectInputStream classes can be
used to serialize and deserialize objects.

Serialize
To serialize an object, use an ObjectOutputStream:

ObjectOutputStream s = new
 ObjectOutputStream(new FileOutputStream("p.ser"));

An example of serializing follows:

ObjectOutputStream oStream = new
 ObjectOutputStream(new
 FileOutputStream("PlayerDat.ser"));
oStream.writeObject(player);
oStream.close();

Deserialize
To deserialize an object (i.e., turn it from a flattened version of
an object to an object), use an ObjectInputStream, then read in
the file and cast the data into the appropriate object:

Serialization | 131

ObjectInputStream d = new
 ObjectInputStream(new FileInputStream("p.ser"));

An example of deserializing follows:

ObjectInputStream iStream = new
 ObjectInputStream(new
 FileInputStream("PlayerDat.ser"));
Player p = (Player) iStream.readObject();

Zipping and Unzipping Files
Java provides classes for creating compressed ZIP and GZIP files.
ZIP archives multiple files, whereas GZIP archives a single file.

Use ZipOutputStream to zip files and ZipInputSteam to unzip
them:

ZipOutputStream zipOut = new ZipOutputStream(
 new FileOutputStream("out.zip"));
String[] fNames = new String[] {"f1", "f2"};
for (int i = 0; i < fNames.length; i++) {
ZipEntry entry = new ZipEntry(fNames[i]);
File InputStream fin =
 new FileInputStream(fNames[i]);
try {
 zipOut.putNextEntry(entry);
 for (int a = fin.read();
 a != -1; a = fin.read()) {
 zipOut.write(a);
 }
 fin.close();
 zipOut.close();
 } catch (IOException ioe) {...}
}

To unzip a file, create a ZipInputStream, call its getNextEntry()
method, and read the file into an OutputStream.

132 | Chapter 12: Basic Input and Output

Compressing and Uncompressing GZIP Files
To compress a GZIP file, create a new GZIPOutputStream, pass it
the name of a file with the .gzip extension, and then transfer the
data from the GZIPOutputStream to the FileInputStream.

To uncompress a GZIP file, create a GZipInputStream, create a
new FileOutputStream, and read the data into it.

Zipping and Unzipping Files | 133

CHAPTER 13

New I/O API (NIO.2)

NIO.2 was introduced with JDK 7 to provide enhanced file I/O
support and access to the default filesystem. NIO.2 is supported
by the java.nio.file and java.nio.file.attribute packages.
The NIO.2 API is also known as “JSR 203: More New I/O APIs
for the Java Platform.” Popular interfaces that are used from the
API are Path, PathMatcher, FileVisitor, and WatchService. Pop‐
ular classes that are used from the API are Paths and Files.

The Path Interface
The Path interface can be used to operate on file and directory
paths. This class is an upgraded version of the java.io.File class.
The following code demonstrates the use of some of the methods
of the Path interface and the Paths class for acquiring informa‐
tion:

Path p = Paths.get("\\opt\\jpgTools\\README.txt");
System.out.println(p.getParent()); // \opt\jpgTools
System.out.println(p.getRoot()); // \
System.out.println(p.getNameCount()); // 3
System.out.println(p.getName(0)); // opt
System.out.println(p.getName(1)); // jpgTools
System.out.println(p.getFileName()); // README.txt
System.out.println(p.toString()); // The full path

135

The Path class also provides additional features, some of which
are detailed in Table 13-1.
Table 13-1. Path interface capabilities

Path method Capability

path.toUri() Converts a path to a URI object

path.resolve(Path) Combines two paths together

path.relativize(Path) Constructs a path from one location to another

path.compareTo(Path) Compares two paths against each other

The Files Class
The Files class can be used to create, check, delete, copy, or move
a file or directory. The following code demonstrates some com‐
monly used methods of the Files class:

// Create Directory
Files.createDirectories("\\opt\\jpg");
// Intstantiate path objects
Path target1 = Paths.get("\\opt\\jpg\\README1.txt");
Path p1 = Files.createFile(target1);
Path target2 = Paths.get("\\opt\\jpg\\README2.txt");
Path p2 = Files.createFile(target2);
// Check file attributes
System.out.println(Files.isReadable(p1));
System.out.println(Files.isReadable(p2));
System.out.println(Files.isExecutable(p1));
System.out.println(Files.isSymbolicLink(p1));
System.out.println(Files.isWritable(p1));
System.out.println(Files.isHidden(p1));
System.out.println(Files.isSameFile(p1, p2));

// Delete, move, and copy examples
Files.delete(p2);
System.out.println(Files.move(p1, p2));
System.out.println(Files.copy(p2, p1));
Files.delete(p1);
Files.delete(p2);

136 | Chapter 13: New I/O API (NIO.2)

The move method accepts the varargs enumeration using RE
PLACE_EXISTING or ATOMIC_MOVE. REPLACE_EXISTING moves the
file, even if it already exists. ATOMIC_MOVE ensures that any process
watching the directory will be able to access the complete file.

The copy method accepts the varargs enumeration with RE
PLACE_EXISTING, COPY_ATTRIBUTES, or NOFOLLOW_LINKS. RE

PLACE_EXISTING copies the file, even if it already exists. COPY_AT
TRIBUTES copies the file attributes. NOFOLLOW_LINKS copies the
links, but not the targets.

The lines, list, walk, and find methods have been added to the
Files class relative to the Stream API. The lines method lazily
reads a stream of lines. The list method lazily lists directory
entries and walk recursively traverses the entries. The find meth‐
od lazily provides Path by searching for files in a file tree rooted
at a given file node.

Additional Features
The NIO 2.0 API also provides the following features, which are
good to know for the job. Questions about these features are also
included on the Oracle Certified Professional Java SE 7 Pro‐
grammer Exam. These items are not covered here as they are
more suited to a tutorial style guide or resource:

• The ability to watch a directory using the WatchService
interface.

• The ability to recursively access directory trees using the
FileVisitor interface.

• The ability to find files using the PathMatcher functional
interface.

Since PathMatcher is a functional interface, it may be used with
a Lambda Expression.

PathMatcher matcher = (Path p) -> {
 // returns boolean
 return (p.toString().contains("World"));

Additional Features | 137

};
Path path = FileSystems.getDefault().getPath(
 "\\opt\\jpg\\HelloWorld.java");
System.out.print("Matches: " +
matcher.matches(path));

$ Matches: true

T I P

Consider using the new java.nio.file.DirectoryStream
functional interface with the enhanced for loop to iterate
over a directory.

138 | Chapter 13: New I/O API (NIO.2)

CHAPTER 14

Concurrency

Threads in Java allow the use of multiple processors or multiple
cores in one processor more efficiently. On a single processor,
threads provide for concurrent operations such as overlapping I/
O with processing.

Java supports multithreaded programming features with the
Thread class and the Runnable interface.

Creating Threads
Threads can be created two ways, either by extending
java.lang.Thread or by implementing java.lang.Runnable.

Extending the Thread Class
Extending the Thread class and overriding the run() method can
create a threadable class. This is an easy way to start a thread:

class Comet extends Thread {
 public void run() {
 System.out.println("Orbiting");
 orbit();
 }
}

Comet halley = new Comet();
hally.run();

139

Remember that only one superclass can be extended, so a class
that extends Thread cannot extend any other superclass.

Implementing the Runnable Interface
Implementing the Runnable functional interface and defining its
run() method can also create a threadable class.

class Asteroid implements Runnable {
 public void run() {
 System.out.println("Orbiting");
 orbit();
 }
}

Asteroid majaAsteroid = new Asteroid();
Thread majaThread = new Thread(majaAsteroid);
majaThread.run();

A single runnable instance can be passed to multiple thread ob‐
jects. Each thread performs the same task, as shown here after
the use of a Lambda Expression:

Runnable asteroid = () -> {
 System.out.println("Orbiting");
 orbit();
};
Thread asteroidThread1 = new Thread(asteroid);
Thread asteroidThread2 = new Thread(asteroid);
asteroidThread1.run();
asteroidThread2.run();

Thread States
Enumeration Thread.state provides six thread states, as depicted
in Table 14-1.
Table 14-1. Thread states

Thread state Description

NEW A thread that is created but not started

RUNNABLE A thread that is available to run

140 | Chapter 14: Concurrency

Thread state Description

BLOCKED An “alive” thread that is blocked waiting for a monitor lock

WAITING An “alive” thread that calls its own wait() or join() while waiting
on another thread

TIMED_WAITING An “alive” thread that is waiting on another thread for a specified
period of time; sleeping

TERMINATED A thread that has completed

Thread Priorities
The valid range of priority values is typically 1 through 10, with
a default value of 5. Thread priorities are one of the least portable
aspects of Java, as their range and default values can vary among
Java Virtual Machines (JVMs). Using MIN_PRIORITY, NORM_PRIOR
ITY, and MAX_PRIORITY can retrieve priorities.

System.out.print(Thread.MAX_PRIORITY);

Lower priority threads yield to higher priority threads.

Common Methods
Table 14-2 contains common methods used for threads from the
Thread class.
Table 14-2. Thread methods

Method Description

getPriority() Returns the thread’s priority

getState() Returns the thread’s state

interrupt() Interrupts the thread

isAlive() Returns the thread’s alive status

isInterrupted() Checks for interruption of the thread

join() Causes the thread that invokes this method to wait for the thread
that this object represents to finish

setPriority(int) Sets the thread’s priority

Thread Priorities | 141

Method Description

start() Places the thread into a runnable state

Table 14-3 contains common methods used for threads from the
Object class.
Table 14-3. Methods from the Object class used for threads

Method Description

notify() Tells a thread to wake up and run

notifyAll() Tells all threads that are waiting on a thread or resource to wake up,
and then the scheduler will select one of the threads to run

wait() Pauses a thread in a wait state until another thread calls notify() or
notifyAll()

T I P

Calls to wait() and notify() throw an InterruptedExcep
tion if called on a thread that has its interrupted flag set to
true.

Table 14-4 contains common static methods used for threads
from the Thread class (i.e., Thread.sleep(1000)).
Table 14-4. Static thread methods

Method Description

activeCount() Returns number of threads in the current thread’s group

currentThread() Returns reference to the currently running thread

interrupted() Checks for interruption of the currently running thread

sleep(long) Blocks the currently running thread for parameter number of
milliseconds

yield() Pauses the current thread to allow other threads to run

142 | Chapter 14: Concurrency

Synchronization
The synchronized keyword provides a means to apply locks to
blocks and methods. Locks should be applied to blocks and
methods that access critically shared resources. These monitor
locks begin and end with opening and closing braces. Following
are some examples of synchronized blocks and methods.

Object instance t with a synchronized lock:

synchronized (t) {
 // Block body
}

Object instance this with a synchronized lock:

synchronized (this) {
 // Block body
}

Method raise() with a synchronized lock:

// Equivalent code segment 1
synchronized void raise() {
 // Method Body
}

// Equivalent code segment 2
void raise() {
 synchronized (this) {
 // Method body
 }
}

Static method calibrate() with a synchronized lock:

class Telescope {
 synchronized static void calibrate() {
 // Method body
 }
}

Synchronization | 143

T I P

A lock is also known as a monitor or mutex (mutually ex‐
clusive lock).

The concurrent utilities provide additional means to apply and
manage concurrency.

Concurrent Utilities
Java 2 SE 5.0 introduced utility classes for concurrent program‐
ming. These utilities reside in the java.util.concurrent pack‐
age, and they include executors, concurrent collections, syn‐
chronizers, and timing utilities.

Executors
The class ThreadPoolExecutor as well as its subclass Scheduled
ThreadPoolExecutor implement the Executor interface to pro‐
vide configurable, flexible thread pools. Thread pools allow serv‐
er components to take advantage of the reusability of threads.

The class Executors provides factory (object creator) methods
and utility methods. Of them, the following are supplied to create
thread pools:

newCachedThreadPool()

Creates an unbounded thread pool that automatically reuses
threads

newFixedThreadPool(int nThreads)

Creates a fixed-size thread pool that automatically reuses
threads off a shared unbounded queue

newScheduledThreadPool(int corePoolSize)

Creates a thread pool that can have commands scheduled to
run periodically or on a specified delay

144 | Chapter 14: Concurrency

newSingleThreadExecutor()

Creates a single-threaded executor that operates off an un‐
bounded queue

newSingleThreadScheduledExecutor()

Creates a single-threaded executor that can have commands
scheduled to run periodically or by a specified delay

The following example demonstrates usage of the newFixed
ThreadPool factory method:

import java.util.concurrent.Executors;
import java.util.concurrent.ExecutorService;

public class ThreadPoolExample {
 public static void main() {
 // Create tasks
 // (from 'class RTask implements Runnable')
 RTask t1 = new RTask("thread1");
 RTask t2 = new RTask("thread2");

 // Create thread manager
 ExecutorService threadExecutor =
 Executors.newFixedThreadPool(2);

 // Make threads runnable
 threadExecutor.execute(t1);
 threadExecutor.execute(t2);

 // Shut down threads
 threadExecutor.shutdown();
 }
}

Concurrent Collections
Even though collection types can be synchronized, it is best to
use concurrent thread-safe classes that perform equivalent func‐
tionality, as represented in Table 14-5.

Concurrent Utilities | 145

Table 14-5. Collections and their thread-safe equivalents

Collection class Thread-safe equivalent

HashMap ConcurrentHashMap

TreeMap ConcurrentSkipListMap

TreeSet ConcurrentSkipListSet

Map subtypes ConcurrentMap

List subtypes CopyOnWriteArrayList

Set subtypes CopyOnWriteArraySet

PriorityQueue PriorityBlockingQueue

Deque BlockingDeque

Queue BlockingQueue

Synchronizers
Synchronizers are special-purpose synchronization tools. Avail‐
able synchronizers are listed in Table 14-6.
Table 14-6. Synchronizers

Synchronizer Description

Semaphore Maintains a set of permits

CountDownLatch Implements waits against sets of operations being performed

CyclicBarrer Implements waits against common barrier points

Exchanger Implements a synchronization point where threads can exchange
elements

Timing Utility
The TimeUnit enumeration is commonly used to inform time-
based methods how a given timing parameter should be evalu‐
ated, as shown in the following example. Available TimeUnit
enum constants are listed in Table 14-7.

// tyrLock (long time, TimeUnit unit)
if (lock.tryLock(15L, TimeUnit.DAYS)) {...} //15 days

146 | Chapter 14: Concurrency

Table 14-7. TimeUnit constants

Constants Unit def. Unit (sec) Abbreviation

NANOSECONDS 1/1000 µs .000000001 ns

MICROSECONDS 1/1000 ms .000001 µs

MILLISECONDS 1/1000 sec .001 ms

SECONDS sec 1 sec

MINUTES 60 sec 60 min

HOURS 60 min 3600 hr

DAYS 24 hr 86400 d

Concurrent Utilities | 147

CHAPTER 15

Java Collections Framework

The Java Collections Framework is designed to support numer‐
ous collections in a hierarchical fashion. It is essentially made up
of interfaces, implementations, and algorithms.

The Collection Interface
Collections are objects that group multiple elements and store,
retrieve, and manipulate those elements. The Collection inter‐
face is at the root of the collection hierarchy. Subinterfaces of
Collection include List, Queue, and Set. Table 15-1 shows these
interfaces and whether they are ordered or allow duplicates. The
Map interface is also included in the table, as it is part of the
framework.
Table 15-1. Common collections

Interface Ordered Dupes Notes

List Yes Yes Positional access; element insertion control

Map Can be No (Keys) Unique keys; one value mapping max per key

Queue Yes Yes Holds elements; usually FIFO

Set Can be No Uniqueness matters

149

Implementations
Table 15-2 lists commonly used collection type implementations,
their interfaces, and whether or not they are ordered, sorted, and/
or contain duplicates.
Table 15-2. Collection type implementations

Implementations Interface Ordered Sorted Dupes Notes

ArrayList List Index No Yes Fast resizable array

LinkedList List Index No Yes Doubly linked list

Vector List Index No Yes Legacy, synchronized

HashMap Map No No No Key/value pairs

Hashtable Map No No No Legacy, synchronized

LinkedHashMap Map Insertion, last
access

No No Linked list/hash table

TreeMap Map Balanced Yes No Red-black tree map

PriorityQueue Queue Priority Yes Yes Heap implementation

HashSet Set No No No Fast access set

LinkedHashSet Set Insertion No No Linked list/hash set

TreeSet Set Sorted Yes No Red-black tree set

Collection Framework Methods
The subinterfaces of the Collection interface provide several
valuable method signatures, as shown in Table 15-3.
Table 15-3. Valuable subinterface methods

Method List params Set params Map params Returns

add index, element element n/a boolean

contains Object Object n/a boolean

containsKey n/a n/a key boolean

containsValue n/a n/a value boolean

get index n/a key Object

150 | Chapter 15: Java Collections Framework

Method List params Set params Map params Returns

indexOf Object n/a n/a int

iterator none none n/a Iterator

keySet n/a n/a none Set

put n/a n/a key, value void

remove index or Object Object key void

size none none none int

Collection.stream() returns a sequential Stream with the con‐
text collection as its source. Collection.parallelStream() re‐
turns a parallel Stream with the context collection as its source.

Collections Class Algorithms
The Collections class, not to be confused with the Collection
interface, contains several valuable static methods (e.g., algo‐
rithms). These methods can be invoked on a variety of collection
types. Table 15-4 shows commonly used Collection class meth‐
ods, their acceptable parameters, and return values.
Table 15-4. Collection class algorithms

Method Parameters Returns

addAll Collection <? super T>, T… boolean

max Collection, [Comparator] <T>

min Collection, [Comparator] <T>

disjoint Collection, Collection boolean

frequency Collection, Object int

asLifoQueue Deque Queue<T>

reverse List void

shuffle List void

copy List destination, List source void

rotate List, int distance void

Collections Class Algorithms | 151

Method Parameters Returns

swap List, int position, int position void

binarySearch List, Object int

fill List, Object void

sort List, Object, [Comparator] void

replaceAll List, Object oldValue, Object newValue boolean

newSetFromMap Map Set<E>

See Chapter 16 for more information on typed parameters (e.g.,
<T>).

Algorithm Efficiencies
Algorithms and data structures are optimized for different rea‐
sons—some for random element access or insertion/deletion,
others for keeping things in order. Depending on your needs, you
may have to switch algorithms and structures.

Common collection algorithms, their types, and average time ef‐
ficiencies are shown in Table 15-5.
Table 15-5. Algorithm efficiencies

Algorithms Concrete type Time

get, set ArrayList 0 (1)

add, remove ArrayList 0 (n)

contains, indexOf ArrayList 0 (n)

get, put, remove, containsKey HashMap 0 (1)

add, remove, contains HashSet 0 (1)

add, remove, contains LinkedHashSet 0 (1)

get, set, add, remove (from either end) LinkedList 0 (1)

get, set, add, remove (from index) LinkedList 0 (n)

contains, indexOf LinkedList 0 (n)

peek PriorityQueue 0 (1)

152 | Chapter 15: Java Collections Framework

Algorithms Concrete type Time

add, remove PriorityQueue 0 (log n)

remove, get, put, containsKey TreeMap 0 (log n)

add, remove, contains TreeSet 0 (log n)

The Big O notation is used to indicate time efficiencies, where n
is the number of elements; see Table 15-6.
Table 15-6. Big O notation

Notation Description

0 (1) Time is constant, regardless of the number of elements.

0 (n) Time is linear to the number of elements.

0 (log n) Time is logarithmic to the number of elements.

0 (n log n) Time is linearithmic to the number of elements.

Comparator Functional Interface
Several methods in the Collections class assume that the objects
in the collection are comparable. If there is no natural ordering,
a helper class can implement the Comparator functional interface
to specify how the objects are to be ordered:

public class Crayon {
 private String color;
 public Crayon(String color) {
 this.color = color;
 }
 public String getColor() {
 return color;
 }
 public void setColor(String color) {
 this.color = color;
 }
 public String toString() {
 return this.color;
 }
}

Comparator Functional Interface | 153

import java.util.Comparator;
public class CrayonSort implements Comparator <Crayon> {
 @Override
 public int compare (Crayon c1, Crayon c2) {
 return c1.getColor().compareTo(c2.getColor());
 }
}

import java.util.ArrayList;
import java.util.Collections;
public class CrayonApp {
 public static void main(String[] args) {
 Crayon crayon1 = new Crayon("yellow");
 Crayon crayon2 = new Crayon("green");
 Crayon crayon3 = new Crayon("red");
 Crayon crayon4 = new Crayon("blue");
 Crayon crayon5 = new Crayon("purple");
 ArrayList <Crayon> cList = new ArrayList <>();
 cList.add(crayon1);
 cList.add(crayon2);
 cList.add(crayon3);
 cList.add(crayon4);
 cList.add(crayon5);
 System.out.println("Unsorted: " + cList);
 CrayonSort cSort = new CrayonSort(); // Here
 Collections.sort(cList, cSort);
 System.out.println("Sorted: " + cList);
 }
}

$ Unsorted: [yellow, green, red, blue, purple]
$ Sorted: [blue, green, purple, red, yellow]

The CrayonSort class implemented the Comparator interface that
was used by the cSort instance. Optionally, an anonymous inner
class could have been created to avoid the work of creating the
seperate CrayonSort class:

Comparator<Crayon> cSort = new Comparator <Crayon>()
{
 public int compare(Crayon c1, Crayon c2) {
 return c1.getColor().compareTo(c2.getColor());

154 | Chapter 15: Java Collections Framework

 }
};

Since Comparator is a functional interface, a lambda expression
could have been used to make the code more readable:

Comparator <Crayon> cSort = (Crayon c1, Crayon c2)
 -> c1.getColor().compareTo(c2.getColor());

Class names do not need to be explicitly stated in the argument
list, as the lambda expressions have knowledge of the target types.
That is, notice (c1, c2) versus (Crayon c1, Crayon c2):

// Example 1
Comparator <Crayon> cSort = (c1, c2)
 -> c1.getColor().compareTo(c2.getColor());
Collections.sort(cList, cSort);

// Example 2
Collections.sort(cList, (c1, c2)
 -> c1.getColor().compareTo(c2.getColor()));

Comparator Functional Interface | 155

CHAPTER 16

Generics Framework

The Generics Framework, introduced in Java SE 5.0 and updated
in Java SE 7 and 8, provides support that allows for the parame‐
terization of types.

The benefit of generics is the significant reduction in the amount
of code that needs to be written when developing a library. An‐
other benefit is the elimination of casting in many situations.

The classes of the Collections Framework, the class Class, and
other Java libraries have been updated to include generics.

See Java Generics and Collections by Maurice Naftalin and Philip
Wadler (O’Reilly, 2006) for comprehensive coverage of the Ge‐
nerics Framework.

Generic Classes and Interfaces
Generic classes and interfaces parameterize types by adding a
type parameter within angular brackets (i.e., <T>). The type is
instantiated at the place of the brackets.

Once instantiated, the generic parameter type is applied through‐
out the class for methods that have the same type specified. In
the following example, the add() and get() methods use the par‐
ameterized type as their parameter argument and return types,
respectively:

157

http://shop.oreilly.com/product/9780596527754.do

public interface List <E> extends Collection<E>{
 public boolean add(E e);
 E get(int index);
}

When a variable of a parameterized type is declared, a concrete
type (i.e., <Integer>) is specified to be used in place of the type
parameter (i.e., <E>).

Subsequently, the need to cast when retrieving elements from
things such as collections would be eliminated:

// Collection List/ArrayList with Generics
List<Integer> iList = new ArrayList<Integer>();
iList.add(1000);
// Explicit cast not necessary
Integer i = iList.get(0);

// Collection List/ArrayList without Generics
List iList = new ArrayList();
iList.add(1000);
// Explicit cast is necessary
Integer i = (Integer)iList.get(0);

The diamond operator <> was introduced in Java SE 7 to simplify
the creation of generic types, by reducing the need for additional
typing:

// Without the use of the diamond operator
List<Integer> iList1 = new ArrayList<Integer>();
// With the use of the diamond operator
List<Integer> iList2 = new ArrayList<>();

Constructors with Generics
Constructors of generic classes do not require generic type pa‐
rameters as arguments:

// Generic Class
public class SpecialList <E> {
 // Constructor without arguments
 public SpecialList() {...}

158 | Chapter 16: Generics Framework

 public SpecialList(String s) {...}
}

A generic object of this class could be instantiated as such:

SpecialList<String> b = new
 SpecialList<String>();

If a constructor for a generic class includes a parameter type such
as a String, the generic object could be instantiated as such:

SpecialList<String> b = new
 SpecialList<String>("Joan Marie");

Substitution Principle
As specified in Java Generics and Collections (O’Reilly), the Sub‐
stitution Principle allows subtypes to be used where their super‐
type is parameterized:

• A variable of a given type may be assigned a value of any
subtype of that type.

• A method with a parameter of a given type may be invoked
with an argument of any subtype of that type.

Byte, Short, Integer, Long, Float, Double, BigInteger, and Big
Decimal are all subtypes of class Number:

// List declared with generic Number type
List<Number> nList = new ArrayList<Number>();
nList.add((byte)27); // Byte (Autoboxing)
nList.add((short)30000); // Short
nList.add(1234567890); // Integer
nList.add((long)2e62); // Long
nList.add((float)3.4); // Float
nList.add(4000.8); // Double
nList.add(new BigInteger("9223372036854775810"));
nList.add(new BigDecimal("2.1e309"));

// Print Number's subtype values from the list
for(Number n : nList)
 System.out.println(n);

Substitution Principle | 159

http://shop.oreilly.com/product/9780596527754.do

Type Parameters, Wildcards, and Bounds
The simplest declaration of a generic class is with an unbounded
type parameter, such as T:

public class GenericClass <T> {...}

Bounds (constraints) and wildcards can be applied to the type
parameter(s), as shown in Table 16-1.
Table 16-1. Type parameters, bounds, and wildcards

Type parameters Description

<T> Unbounded type; same as <T extends Object>

<T,P> Unbounded types; <T extends Object> and <P extends Object>

<T extends P> Upper bounded type; a specific type T that is a subtype of type
P

<T extends P & S> Upper bounded type; a specific type T that is a subtype of type
P and that implements type S

<T super P > Lower bounded type; a specific type T that is a supertype of
type P

<?> Unbounded wildcard; any object type, same as <? extends
Object>

<? extends P> Bounded wildcard; some unknown type that is a subtype of
type P

<? extends P & S> Bounded wildcard; some unknown type that is a subtype of
type P and that implements type S

<? super P> Lower bounded wildcard; some unknown type that is a
supertype of type P

The Get and Put Principle
As also specified in Java Generics and Collections, the Get and
Put Principle details the best usage of extends and super wild‐
cards:

160 | Chapter 16: Generics Framework

• Use an extends wildcard when you get only values out of a
structure.

• Use a super wildcard when you put only values into a
structure.

• Do not use a wildcard when you place both get and put
values into a structure.

The extends wildcard has been used in the method declaration
of the addAll() method of the List collection, as this method gets
values from a collection:

public interface List <E> extends Collection<E>{
 boolean addALL(Collection <? extends E> c)
}

List<Integer> srcList = new ArrayList<Integer>();
srcList.add(0);
srcList.add(1);
srcList.add(2);
// Using addAll() method with extends wildcard
List<Integer> destList = new ArrayList<Integer>();
destList.addAll(srcList);

The super wildcard has been used in the method declaration of
the addAll() method of the class Collections, as the method puts
values into a collection:

public class Collections {
 public static <T> boolean addAll
 (Collection<? super T> c, T... elements){...}
}

// Using addAll() method with super wildcard
List<Number> sList = new ArrayList<Number>();
sList.add(0);
Collections.addAll(sList, (byte)1, (short)2);

Generic Specialization
A generic type can be extended in a variety of ways.

Generic Specialization | 161

Given the parameterized abstract class AbstractSet <E>:

class SpecialSet<E> extends AbstractSet<E> {…}

The SpecialSet class extends the AbstractSet class with the
parameter type E. This is the typical way to declare general‐
izations with generics.

class SpecialSet extends AbstractSet<String> {…}

The SpecialSet class extends the AbstractSet class with the
parameterized type String.

class SpecialSet<E,P> extends AbstractSet<E> {…}

The SpecialSet class extends the AbstractSet class with the
parameter type E. Type P is unique to the SpecialSet class.

class SpecialSet<E> extends AbstractSet {…}

The SpecialSet class is a generic class that would parame‐
terize the generic type of the AbstractSet class. Because the
raw type of the AbstractSet class has been extended (as op‐
posed to generic), the parameterization cannot occur. Com‐
piler warnings will be generated upon method invocation
attempts.

class SpecialSet extends AbstractSet {…}

The SpecialSet class extends the raw type of the Abstract
Set class. Because the generic version of the AbstractSet
class was expected, compiler warnings will be generated
upon method invocation attempts.

Generic Methods in Raw Types
Static methods, nonstatic methods, and constructors that are part
of nongeneric or raw type classes can be declared as generic. A
raw type class is the nongeneric counterpart class to a generic
class.

For generic methods of nongeneric classes, the method’s return
type must be preceded with the generic type parameter (e.g.,
<E>). However, there is no functional relationship between the

162 | Chapter 16: Generics Framework

type parameter and the return type, unless the return type is of
the generic type:

public class SpecialQueue {
 public static <E> boolean add(E e) {...}
 public static <E> E peek() {...}
}

When calling the generic method, the generic type parameter is
placed before the method name. Here, <String> is used to specify
the generic type argument:

SpecialQueue.<String>add("White Carnation");

Generic Methods in Raw Types | 163

CHAPTER 17

The Java Scripting API

The Java Scripting API, introduced in Java SE 6, provides support
that allows Java applications and scripting languages to interact
through a standard interface. This API is detailed in JSR 223,
“Scripting for the Java Platform” and is contained in the jav
ax.script package.

Scripting Languages
Several scripting languages have script engine implementations
available that conform to JSR 223. See “Scripting Languages
Compatible with JSR-223” on page 198 in Appendix B for a subset
of these supported languages.

Script Engine Implementations
The ScriptEngine interface provides the fundamental methods
for the API. The ScriptEngineManager class works in conjunction
with this interface and provides a means to establish the desired
scripting engines to be utilized.

Embedding Scripts into Java
The scripting API includes the ability to embed scripts and/or
scripting components into Java applications.

165

The following example shows two ways to embed scripting com‐
ponents into a Java application: (1) the scripting engine’s eval
method reads in the scripting language syntax directly, and (2)
the scripting engine’s eval method reads the syntax in from a file.

import java.io.FileReader;
import java.nio.file.Path;
import java.nio.file.Paths;
import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;

public class HelloWorld {
 public static void main(String[] args) throws
 Exception {
 ScriptEngineManager m
 = new ScriptEngineManager();
 // Sets up Nashorn JavaScript Engine
 ScriptEngine e = m.getEngineByExtension("js");
 // Nashorn JavaScript syntax.
 e.eval("print ('Hello, ')");
 // world.js contents: print('World!\n');
 Path p1 = Paths.get("/opt/jpg2/world.js");
 e.eval(new FileReader(p1.toString()));
 }
}

$ Hello, World!

Invoking Methods of Scripting Languages
Scripting engines that implement the optional Invocable inter‐
face provide a means to invoke (execute) scripting language
methods that the engine has already evaluated (interpreted).

The following Java-based invokeFunction() method calls the
evaluated Nashorn scripting language function greet(), which
we have created:

ScriptEngineManager m = new ScriptEngineManager();
ScriptEngine e = m.getEngineByExtension("js");
e.eval("function greet(message)
 + "{" + "println(message)" + "}");

166 | Chapter 17: The Java Scripting API

Invocable i = (Invocable) e;
i.invokeFunction("greet", "Greetings from Mars!");

$ Greetings from Mars!

Accessing and Controlling Java Resources from
Scripts
The Java Scripting API provides the ability to access and control
Java resources (objects) from within evaluated scripting language
code. The script engines utilizing key-value bindings is one way
this is accomplished.

Here, the evaluated Nashorn JavaScript makes use of the name
Key/world binding and reads in (and prints out) a Java data mem‐
ber from the evaluated scripting language:

ScriptEngineManager m = new ScriptEngineManager();
ScriptEngine e = m.getEngineByExtension("js");
String world = "Gliese 581 c";
e.put("nameKey", world);
e.eval("var w = nameKey");
e.eval("println(w)");

$ Gliese 581 c

By utilizing the key-value bindings, you can make modifications
to the Java data members from the evaluated scripting language:

ScriptEngineManager m = new ScriptEngineManager();
ScriptEngine e = m.getEngineByExtension("js");
List<String> worldList = new ArrayList<>();
worldList.add ("Earth");
worldList.add ("Mars");
e.put("nameKey", worldList);
e.eval("var w = nameKey.toArray();");
e.eval(" nameKey.add (\"Gliese 581 c\")");
System.out.println(worldList);

$ [Earth, Gliese 581 c]

Script Engine Implementations | 167

Setting Up Scripting Languages and
Engines
Before using the Scripting API, you must obtain and set up the
desired script engine implementations. Many scripting languages
include the JSR-223 scripting engine with their distribution, ei‐
ther in a separate JAR or in their main JAR, as in the case of JRuby.

Scripting Language Setup
Here are the steps for setting up the scripting language:

1. Set up the scripting language on your system. “Scripting
Languages Compatible with JSR-223” on page 198 in Appen‐
dix B contains a list of download sites for some supported
scripting languages. Follow the associated installation in‐
structions.

2. Invoke the script interpreters to ensure that they function
properly. There is normally a command-line interpreter, as
well as one with a graphical user interface.

For JRuby (as an example), the following commands should be
validated to ensure proper setup:

jruby [file.rb] //Command line file
jruby.bat //Windows batch file

Scripting Engine Setup
Here are the steps for setting up the scripting engine:

1. Determine if your scripting language distribution includes
the JSR-223 scripting API engine in its distribution. If it is
included, steps 2 and 3 are not necessary.

2. Find and download the scripting engine file from the ex‐
ternal resource (e.g., website).

3. Place the downloaded file into a directory and extract it to
expose the necessary JAR. Note that the optional software

168 | Chapter 17: The Java Scripting API

(opt) directory is commonly used as an installation direc‐
tory.

T I P

To install and configure certain scripting languages on a
Windows machine, you may need a minimal POSIX-
compliant shell, such as MSYS or Cygwin.

Scripting Engine Validation
Validate the scripting engine setup by compiling and/or inter‐
preting the scripting language libraries and the scripting engine
libraries. The following is an older version of JRuby where the
engine was available externally:

javac -cp c:\opt\jruby-1.0\lib\jruby.jar;c:\opt\
jruby-engine.jar;. Engines

You can perform additional testing with short programs. The
following application produces a list of the available scripting
engine names, language version numbers, and extensions. Note
that this updated version of JRuby includes JSR-223 support in
its primary JAR file; therefore, the engine does not need to be
separately called out on the class path:

$ java -cp c:\opt\jruby-1.6.7.2\lib\jruby.jar;.
 EngineReport

import java.util.List;
import javax.script.ScriptEngineManager;
import javax.script.ScriptEngineFactory;

public class EngineReport {
 public static void main(String[] args) {
 ScriptEngineManager m =
 new ScriptEngineManager();
 List<ScriptEngineFactory> s =
 m.getEngineFactories();

Setting Up Scripting Languages and Engines | 169

 // Iterate through list of factories
 for (ScriptEngineFactory f: s) {
 // Release name and version
 String en = f.getEngineName();
 String ev = f.getEngineVersion();
 System.out.println("Engine: "
 + en + " " + ev);
 // Language name and version
 String ln = f.getLanguageName();
 String lv = f.getLanguageVersion();
 System.out.println("Language: "
 + ln + " " + lv);
 // Extensions
 List<String> l = f.getExtensions();
 for (String x: l) {
 System.out.println("Extensions: " + x);
 }
 }
 }
}

$ Engine: Oracle Nashorn 1.8.0
$ Language: ECMAScript ECMA - 262 Edition 5.1
$ Extensions: js

$ Engine: JSR 223 JRuby Engine 1.6.7.2
$ Language: ruby jruby 1.6.7.2
$ Extensions: rb

T I P

Nashorn JavaScript is a scripting API packaged with Java SE
and is available by default. Nashorn replaces the Rhino
JavaScript scripting API from previous versions of the JDK.

170 | Chapter 17: The Java Scripting API

CHAPTER 18

Date and Time API

The Date and Time API (JSR 310) provides support for date, time,
and calendar calculations. The reference implementation (RI) for
this JSR is the ThreeTen Project and was provided for inclusion
into JDK 1.8. The Date and Time API is relative to the java.time
package and java.time.chrono, java.time.format,
java.time.temporal, and java.time.zone subpackages.

JSR 310 achieved several design goals:

• Fluent API; easy-to-read (e.g., chained methods)

• Thread-safe design; immutable value classes

• Extensible API; calendar systems, adjusters, and queries

• Expectable behavior

The Date and Time API uses the International Organization for
Standardization date and time data exchange model (ISO 8601).
The ISO 8601 standard is formally called “Data elements and
interchange formats—Information interchange—Representa‐
tion of dates and times.” The standard is based on the Gregorian
calendar. Regional calendars are also supported.

See Appendix A for more information on fluent APIs.

171

http://www.threeten.org/

Legacy Interoperability
JSR 310 supercedes but does not deprecate java.util.Date,
java.util.Calendar, java.util.DateFormat, java.util.Gregor
ianCalendar, java.util.TimeZone, and java.sql.Date. JDK 8
provides methods to these classes to convert to and from the JSR
310 types for legacy support.

// Legacy -> New -> Legacy
Calendar c = Calendar.getInstance();
Instant i = c.toInstant();
Date d = Date.from(i);

// New -> Legacy -> New
 ZonedDateTime zdt
 = ZonedDateTime.parse("2014-02-24T11:17:00+01:00"
 + "[Europe/Gibraltar]")
GregorianCalendar gc = GregorianCalendar.from(zdt);
LocalDateTime ldt
 = gc.toZonedDateTime().toLocalDateTime();

Regional Calendars
JSR 310 is flexible enough to allow for the addition of new cal‐
endars. When creating a new calendar, classes will need to be
implemented against the Era, Chronology, and ChronoLocalDate
interfaces.

Four regional calendars are packaged with the API:

• Hijrah

• Japanese imperial

• Minguo

• Thai Buddhist

With regional calendars, you will not be using the main classes
of the ISO calendar.

172 | Chapter 18: Date and Time API

ISO Calendar
The primary java.time package of the API provides the ISO 8601
calendar system that is based on Gregorian rules. This and the
related packages of the API provide an easy-to-use interface as
you can see in the following example of determining age differ‐
ence between presidents.

public final static String DISNEY_BIRTH_YEAR =
"1901";
public final static String TEMPLE_BIRTH_YEAR =
"1928";
...
Year birthYear1 = Year.parse(DISNEY_BIRTH_YEAR);
Year birthYear2 = Year.parse(TEMPLE_BIRTH_YEAR);
long diff
 = ChronoUnit.YEARS.between(birthYear1,
 birthYear2);
System.out.println("There is an age difference of "
 + Math.abs(diff) + " years.");

 $ There is an age difference of 27 years.

The primary classes of the API are listed here with key text de‐
rived from the online API. The sections that follow highlight key
attributes and usage of some of these classes.

Instant

Instantaneous point on the timeline; measured from the
standard Java epoch of 1970-01-01T00:00:00Z.

LocalDate

Immutable date-time object;t represents a date, viewed as
year-month-day.

LocalTime

Immutable date-time object that represents a time; viewed
as hour-minute-second.

LocalDateTime

Immutable date-time object that represents a date-time;
viewed as year-month-day-hour-minute-second.

ISO Calendar | 173

OffsetTime

Immutable date-time object that represents a time; viewed
as hour-minute-second-offset.

OffsetDateTime

Immutable representation of a date-time with an offset;
stores all date and time fields to a precision of nanoseconds,
as well as the offset from UTC/Greenwich.

ZonedDateTime

Immutable representation of a date-time with a time zone;
stores all date and time fields to a precision of nanoseconds
and a time zone, with a zone offset used to handle ambiguous
local date-times.

ZoneOffset

Time-zone offset; amount of time that a time-zone differs
from Greenwich/UTC.

ZonedId

Time-zone identification; used to identify the rules to con‐
vert between an Instant and a LocalDateTime.

Year

Immutable date-time object; represents a year.

YearMonth

Immutable date-time object; represents the combination of
a year and month.

MonthDay

Immutable date-time object; represents the combination of
a year and month.

DayOfWeek

Enumeration for the days of the week; Monday, Tuesday,
Wednesday, Thursday, Friday, Saturday, and Sunday.

174 | Chapter 18: Date and Time API

Month

Enumeration for the months of the year; January, February,
March, April, May, June, July, August, September, October,
November, and December.

Duration

A time-based amount of time measured in seconds.

Period

A date-based amount of time.

Clock

A clock provides access to the current instant, date, and time
using a time zone. It’s use is optional.

Machine Interface
JSR 310 uses the UNIX Epoch for its default ISO 8301 calendar
with zero starting at 1970-01-01T00:00Z. Time is continuous
since then, with negative values for instances before it.

To get an instance of the current time, simply call the In
stant.now() method.

Instant i = Instant.now();

System.out.println("Machine: " + i.toEpochMilli());
$ Machine: 1392859358793

System.out.println("Human: " + i);
$ Human: 2014-02-20T01:20:41.402Z

The Clock class provides access to the current instant, date, and
time while using a time zone.

Clock clock1 = Clock.systemUTC();
Instant i1 = Instant.now(clock1);

ZoneId zid = ZoneId.of("Europe/Vienna");
Clock clock2 = Clock.system(zid);
Instant i2 = Instant.now(clock2);

The Date-Time API uses the Time Zone Database (TZDB).

ISO Calendar | 175

http://www.iana.org/time-zones

Durations and Periods
A Duration is a time-based amount consisting of days, hours,
minutes, seconds, and nanoseconds. A duration is the time be‐
tween two instances on a timeline.

The usage for a duration as a parsable string is PnDTnHnMnS where
P stands for period and T stands for time. D, H, M, and S are days,
hours, minutes, and seconds prefaced by their values (n):

Duration d1 = Duration.parse("P2DT3H4M1.1S");

Durations can also be created using the of[Type] method. Hours,
minutes, seconds, and nanoseconds can be added to their asso‐
ciated status:

Duration d2 = Duration.of(41, ChronoUnit.YEARS);

Duration d3 = Duration.ofDays(8);
d3 = d3.plusHours(3);
d3 = d3.plusMinutes(30);
d3 = d3.plusSeconds(55).minusNanos(300);

The Duration.between() method can be used to create a Dura
tion from a start and end time.

Instant birth = Instant.parse("1967-09-15T10:30:00Z");
Instant current = Instant.now();
Duration d4 = Duration.between(birth, current);
System.out.print("Days alive: " + d4.toDays());

A Period is a date-based amount consisting of years, months, and
days.

The usage for a period as a parsable string is PnYnMnD where P
stands for period; Y, M, and D are years, months, and days prefaced
by their values (n):

Period p1 = Period.parse("P10Y5M2D");

Periods can also be created using the of[Type] method. Years,
months, and days can be added or subtracted to/from their as‐
sociated states.

176 | Chapter 18: Date and Time API

Period p2 = Period.of(5, 10, 40);
p2 = p2.plusYears(100);
p2 = p2.plusMonths(5).minusDays(30);

JDBC and XSD Mapping
Interoperation between the java.time and java.sql types has
been achieved. Table 18-1 provides a visual mapping of the JSR
310 types to the SQL as well as XML Schema (XSD) types.
Table 18-1. JDBC and XSD Mapping

JSR 310 Type SQL Type XSD Type

LocalDate DATE xs:time

LocalTime TIME xs:time

LocalDateTime TIMESTAMP WITHOUT TIMEZONE xs:dateTime

OffsetTime TIME WITH TIMEZONE xs:time

OffsetDateTime TIMESTAMP WITH TIMEZONE xs:dateTime

Period INTERVAL .

Formatting
The DateTimeFormatter class provides a formatting capability for
printing and parsing date-time objects. The upcoming example
demonstrates the use of pattern letters with the ofPattern()
method of the class. Usable pattern letters are identified in the
Javadoc for the DateTimeFormatter class:

LocalDateTime input = LocalDateTime.now();
DateTimeFormatter format
 = DateTimeFormatter.ofPattern("yyyyMMddhhmmss");
String date = input.format(format);
String logFile = "simple-log-" + date + ".txt";

Table 18-2 contains examples of predefined formatters using the
following structure:

System.out.print(LocalDateTime.now()
 .format(DateTimeFormatter.BASIC_ISO_DATE));

ISO Calendar | 177

Table 18-2. Predefined formatters

Class Formatter Example

LocalDateTime BASIC_ISO_DATE 20140215

LocalDateTime ISO_LOCAL_DATE 2014-02-15

OffsetDateTime ISO_OFFSET_DATE 2014-02-15-05:00

LocalDateTime ISO_DATE 2014-02-15

OffsetDateTime ISO_DATE 2014-02-15-05:00

LocalDateTime ISO_LOCAL_TIME 23:39:07.884

OffsetTime ISO_OFFSET_TIME 23:39:07.888-05:00

LocalDateTime ISO_TIME 23:39:07.888

OffsetDateTime ISO_TIME 23:39:07.888-05:00

LocalDateTime ISO_LOCAL_DATE_TIME 2014-02-15T23:39:07.888

OffsetDateTime ISO_OFFSET_DATE_TIME 2014-02-15T23:39:07.888-05:00

ZonedDateTime ISO_ZONED_DATE_TIME 2014-02-15T23:39:07.89-05:00
[America/New_York]

LocalDateTime ISO_DATE_TIME 2014-02-15T23:39:07.891

ZonedDateTime ISO_DATE_TIME 2014-02-15T23:39:07.891-05:00
[America/New_York]

LocalDateTime ISO_ORDINAL_DATE 2014-046

LocalDate ISO_WEEK_DATE 2014-W07-6

ZonedDateTime RFC_1123_DATE_TIME Sat, 15 Feb 2014 23:39:07 -0500

178 | Chapter 18: Date and Time API

CHAPTER 19

Lambda Expressions

Lamda expressions (λEs), also known as closures, provide a
means to represent anonymous methods. Supported by Project
Lambda, λEs allow for the creation and use of single method
classes. These methods have a basic syntax that provides for the
omission of modifiers, the return type, and optional parameters.
The specification for λEs is set out in JSR 335, which is divided
into seven parts: functional interfaces, lambda expressions,
method and constructor references, poly expressions, typing and
evaluation, type inference, and default methods. This chapter fo‐
cuses on the first two.

λEs Basics
λEs must have a functional interface (FI). An FI is an interface
that has one abstract method and zero or more default methods.
FIs provide target types for lambda expressions and method ref‐
erences, and ideally should be annotated with @FunctionalInter
face to aid the developer and compiler with design intent.

@FunctionalInterface
public interface Comparator<T> {
 // Only one abstract method allowed
 int compare(T o1, T o2);
 // Overriding allowed
 boolean equals(Object obj);

179

http://openjdk.java.net/projects/lambda/
http://openjdk.java.net/projects/lambda/
http://jcp.org/en/jsr/detail?id=335

 // Optional default methods allowed
}

λEs Syntax and Example
Lambda expressions typically include a parameter list, a return
type, and a body.

(parameter list) -> { statements; }

Examples of λEs include:

() -> 66
(x,y) -> x + y
(Integer x, Integer y) -> x*y
(String s) -> { System.out.println(s); }

This simple JavaFX GUI application adds text to the title bar when
the button is pressed. The code makes use of the EventHandler
functional interface with the one abstract method, handle().

import javafx.application.Application;
import javafx.event.ActionEvent;
import javafx.event.EventHandler;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.layout.StackPane;
import javafx.stage.Stage;
public class JavaFxApp extends Application {
 @Override
 public void start(Stage stage) {
 Button b = new Button();
 b.setText("Press Button");
 // Anonymous inner class usage
 b.setOnAction(new EventHandler<ActionEvent>() {
 @Override
 public void handle(ActionEvent event) {
 stage.setTitle("λEs rock!");
 }
 });
 StackPane root = new StackPane();
 root.getChildren().add(b);
 Scene scene = new Scene(root, 200, 50);
 stage.setScene(scene);

180 | Chapter 19: Lambda Expressions

 stage.show();
 }
 public static void main(String[] args) {
 launch();
 }
}

To refactor this anonymous inner class into a lambda expression,
the parameter type needs to be either (ActionEvent event) or
just (event) and the desired functionality needs to be provided
as statements in the body.

// Lambda Expression usage
b.setOnAction((ActionEvent event) -> {
 stage.setTitle("λEs rock!");
});

T I P

Modern IDEs have features to convert anonymous inner
classes to lambda expressions.

See “Comparator Functional Interface” on page 153 for another
example of lambda expressions with the Comparator functional
interface.

Method and Constructor References
A method reference refers to an existing method without invok‐
ing it. Types include static method reference, instance method of
particular object, super method of particular object, and instance
method of arbitrary object of particular type. Method references
also include class constructor reference and array constructor
reference.

"some text"::length // Get length of String
String::length // Get length of String
CheckAcct::compareByBalance // Static method ref
myComparator::compareByName // Inst method part obj
super::toString // Super method part object

λEs Basics | 181

String::compareToIgnoreCase // Inst method arb obj
ArrayList<String>::new // New ArrayList constructor
Arrays::sort // Sort array elements

Specific Purpose Functional Interfaces
Annotated FIs listed in Table 19-1 have been established for spe‐
cific purposes relative to the packages/APIs in which they reside.
Not all functional interfaces in the Java SE API are annotated.
Table 19-1. Specific-purpose FIs

API Class Method

AWT KeyEventDispacter dispatchKeyEvent (KeyEvent e)

AWT KeyEventPostProcessor postProcessKeyEvent (KeyEvent e)

IO FileFilter accept(File pathname)

IO FilenameFilter accept(File dir, String name)

LANG Runnable run ()

NIO DirectorStream iterator ()

NIO PathMatcher matches (Path path)

TIME TemporalAdjuster adjustInto (Temporal temporal)

TIME TemporalQuery queryFrom (TemporalAccessor temporal)

UTIL Comparator compare (T o1, T o2)

CONC Callable call ()

LOG Filter isLoggable (LogRecord record)

PREF PreferenceChangeListener preferenceChange (PreferenceChangeEvent evt)

General Purpose Functional Interfaces
The java.util.function package is made up of general purpose
FIs for the primary use of features of the JDK. Table 19-2 lists
them all.

182 | Chapter 19: Lambda Expressions

Table 19-2. Functional interfaces functional package

Consumer accept (T t)

BiConsumer accept (T t, U u)

ObjDoubleConsumer accept (T t, double value)

ObjIntConsumer accept (T t, int value)

ObjLongConsumer accept (T t, long value)

DoubleConsumer accept (double value)

IntConsumer accept (int value)

LongConsumer accept (long value)

Function apply (T t)

BiFunction apply (T t, U u)

DoubleFunction apply (double value)

IntFunction apply (int value)

LongFunction apply (long value)

BinaryOperator apply (Object, Object)

ToDoubleBiFunction applyAsDouble (T t, U u)

ToDoubleFunction applyAsDouble (T value)

IntToDoubleFunction applyAsDouble (int value)

LongToDoubleFunction applyAsDouble(long value)

DoubleBinaryOperator applyAsDouble (double left, double right)

ToIntBiFunction applyAsInt (T t, U u)

ToIntFunction applyAsInt (T value)

LongToIntFunction applyAsInt (long value)

DoubleToIntFunction applyAsInt(double value)

IntBinaryOperator applyAsInt (int left, int right)

ToLongBiFunction applyAsLong (T t, U u)

ToLongFunction applyAsLong (T value)

DoubleToLongFunction applyAsLong (double value)

IntToLongFunction applyAsLong (int value)

General Purpose Functional Interfaces | 183

Consumer accept (T t)

LongBinaryOperator applyAsLong (long left, long right)

BiPredicate test (T t, U u)

Predicate test (T t)

DoublePredicate test (double value)

IntPredicate test (int value)

LongPredicate test (long value)

Supplier get()

BooleanSupplier getAsBoolean()

DoubleSupplier getAsDouble()

IntSupplier getAsInt()

LongSupplier getAsLong()

UnaryOperator identity()

DoubleUnaryOperator identity()

IntUnaryOperator applyAsInt (int operand)

LongUnaryOperator applyAsInt (long value)

Resources for λEs
This section provides links to tutorials and community resources
about λEs.

Tutorials
Comprehensive tutorials are provided by Oracle and Maurice
Naftalin.

• The Java Tutorials: Lambda Expressions

• Maurice Naftalin’s Lambda FAQ: “Your questions an‐
swered: all about Lambdas and friends”

184 | Chapter 19: Lambda Expressions

http://bit.ly/1oHnAAt
http://www.lambdafaq.org/
http://www.lambdafaq.org/

Community Resources
Online bulletin boards, mailing lists, and instructional videos
provide support for learning and using λEs:

• λEs Forum Board at CodeRanch: Online bulletin board

• λEs Mailing List: Technical discussions related to Project
Lambda

• Oracle Learning Library on YouTube

Resources for λEs | 185

http://www.coderanch.com/forums/f-121/JSR
http://bit.ly/1e5DpMF
http://bit.ly/1e5DpMF
http://bit.ly/1m3ZHhs

PART III

Appendixes

APPENDIX A

Fluent APIs

Fluent APIs, a.k.a. fluent interfaces, are object-oriented APIs de‐
signed to make the API code more readable and therefore easier
to use. Wiring objects together via method chaining helps ac‐
complish these readability and usability goals. In this design,
chained methods generally maintain the same type.

// StringBuilder API
StringBuilder sb = new StringBuilder("palindrome!");
// Method chaining
sb.delete(10, 11).append("s").reverse();
System.out.println("Value: " + sb);

$ Value: semordnilap

To name a few popular fluent APIs written in Java, there is the
Java Object Oriented Querying (jOOQ) API, the jMock testing
API, the Calculon Android testing API, the Apache Camel inte‐
gration patterns API, Java 8’s Date Time API (JSR 310), and Java
9’s Money and Currency API (JSR 354). Each of these is consid‐
ered to contain a Java domain specific language (DSL).

An external DSL can be easily mapped into a new Java internal
DSL by using the fluent API approach.

Common method prefixes used in fluent APIs, and acting on
objects, include at, format, from, get, to, and with.

189

The LocalDateTime class of the Date Time API is represented
here, first without and then with method chaining:

// Standalone static method
LocalDateTime ldt1 = LocalDateTime.now();
System.out.println(ldt1);

$ 2014-02-26T09:33:25.676

// Static method with method chaining
LocalDateTime ldt2 = LocalDateTime.now()
 .withDayOfMonth(1).withYear(1878)
 .plusWeeks(2).minus(3, ChronoUnit.HOURS);
System.out.println(ldt2);

$ 1878-02-15T06:33:25.724

T I P

Consider reviewing Domain Specific Languages by Martin
Fowler (Addison-Wesley) for comprehensive information
on DSLs.

190 | Appendix A: Fluent APIs

APPENDIX B

Third-Party Tools

A wide variety of open source and commercial third-party tools
and technologies are available to assist you with developing Java-
based applications.

The sample set of resources listed here are both effective and
popular. Remember to check the licensing agreements of the
open source tools you are using for commercial environment re‐
strictions.

Development, CM, and Test Tools
Ant

Apache Ant is an XML-based tool for building and deploy‐
ing Java applications. It’s similar to the well-known Unix
make utility.

Bloodhound
Apache Bloodhound is an open source web-based project
management and bug tracking system.

Continuum
Apache Continuum is a continuous integration server that
builds and tests code on a frequent, regular basis.

191

http://bit.ly/16mhLiI
http://bit.ly/1i4Qkfw
http://bit.ly/16mhLPB

CruiseControl
CruiseControl is a framework for a continuous build pro‐
cess.

Enterprise Architect
Enterprise Architect is a commercial Computer Aided Soft‐
ware Engineering (CASE) tool that provides forward and
reverse Java code engineering with UML.

FindBugs
FindBugs is a program that looks for bugs in Java code.

Git
Git is an open source distributed version control system.

Gradle
Gradle is a build system that provides testing, publishing,
and deployment support.

Hudson
Hudson is an extensible continuous integration server.

Ivy
Apache Ivy is a transitive relation dependency manager. It
is integrated with Apache Ant.

Jalopy
Jalopy is a source code formatter for Java that has plug-ins
for Eclipse, jEdit, NetBeans, and other tools.

JDocs
JDocs is a documentation repository that provides web ac‐
cess to Java API documentation of open source libraries.

jClarity
jClarity is a performance analysis and monitoring tool for
cloud environments.

jEdit
jEdit is a text editor designed for programmers. It has several
plug-ins available through a plug-in manager.

192 | Appendix B: Third-Party Tools

http://bit.ly/16mhM6j
http://bit.ly/16mhNqN
http://bit.ly/16mhMTO
http://bit.ly/16mhOep
http://bit.ly/1eTp2Xs
http://bit.ly/16mhPii
https://ant.apache.org/ivy/
http://bit.ly/16mhRGY
http://bit.ly/16mhRXx
http://www.jclarity.com
http://bit.ly/16mhTi5

JavaFX SceneBuilder
JavaFX Scene Builder is a visual layout tool for designing
JavaFX applications.

Jenkins
Jenkins CI is an open source continuous integration server,
formally known as Hudson Labs.

JIRA
JIRA is a commercial bug tracking, issue tracking, and
project management application.

JUnit
JUnit is a framework for unit testing that provides a means
to write and run repeatable tests.

JMeter
Apache JMeter is an application that measures system be‐
havior, such as functional behavior and performance.

Maven
Apache Maven is a software project management tool. Mav‐
en can manage builds, reports, and documentation.

Nemo
Nemo is an online instance of Sonar dedicated to open
source projects.

PMD
PMD scans Java source code for bugs, suboptimal code, and
overly complicated expressions.

SonarQube
SonarQube is an open source quality management platform.

Subversion
Apache Subversion is a centralized version control system
that keeps track of work and changes for a set of files.

Development, CM, and Test Tools | 193

http://bit.ly/16mhXOT
http://bit.ly/XUeClg
http://bit.ly/16mhVGM
http://bit.ly/16mhWdY
http://bit.ly/16mhUCH
http://bit.ly/16mhV9O
http://bit.ly/16mhYm2
http://bit.ly/16mhY5z
http://bit.ly/16mhZ9B
http://bit.ly/16mhZq9

Libraries
ActiveMQ

Apache ActiveMQ is a message broker that supports many
cross-language clients and protocols.

BIRT
BIRT is an open source Eclipse-based reporting system to
be used with Java EE applications.

Camel
Apache Camel is a rule-based routing and mediation engine.

Hibernate
Hibernate is an object/relational persistence and query ser‐
vice. It allows for the development of persistent classes.

iText
iText is a Java library that allows for the creation and ma‐
nipulation of PDF documents.

Jakarta Commons
Jakarta Commons is a repository of reusable Java compo‐
nents.

Jackrabbit
Apache Jackrabbit is a content repository system that pro‐
vides hierarchical content storage and control.

JasperReports
JasperReports is an open source Java reporting engine.

Jasypt
Jasypt is a Java library that allows the developer to add basic
encryption capabilities.

JFreeChart
JFreeChart is a Java class library for generating charts.

JFXtras2
JFXtras2 is a set of controls and add-ons for JavaFX 2.0.

194 | Appendix B: Third-Party Tools

http://bit.ly/16mhZWY
http://bit.ly/16mi0dz
http://bit.ly/1ijRVyI
http://bit.ly/16mi2Ck
http://bit.ly/16mi3Gp
http://bit.ly/16mi4tM
http://bit.ly/16mi4da
http://bit.ly/16mi6Sy
http://bit.ly/16mi796
http://bit.ly/16mi5hq
http://bit.ly/16mi5Oy

JGoodies
JGoodies provides components and solutions to solve com‐
mon user interface tasks.

JIDE
JIDE software provides various Java and Swing components.

JMonkeyEngine
JMonkeyEngine is a collection of libraries providing a Java
3D (OpenGL) game engine.

JOGL
JOGL is a Java API supporting OpenGL and ES specifica‐
tions.

jOOQ
jOOQ is a fluent API for typesafe SQL query construction
and execution.

opencsv
opencsv is a comma-separated values (CSV) parser library
for Java.

POI
Apache Poor Obfuscation Implementation (POI) is a library
for reading and writing Microsoft Office formats.

RXTX
RXTX provides native serial and parallel communications
for Java.

Spring Framework
The Spring Framework is a layered Java/Java EE application
framework.

Integrated Development Environments
BlueJ

BlueJ is an IDE designed for introductory teaching.

Integrated Development Environments | 195

http://bit.ly/16mi90J
http://bit.ly/16mi5Oh
http://bit.ly/16mi9xy
https://jogamp.org/jogl/www/
http://www.jooq.org/
http://opencsv.sourceforge.net/
http://bit.ly/LBob50
http://bit.ly/16mid0f
http://bit.ly/16midgS
http://bit.ly/16migJu

Eclipse IDE
Eclipse IDE is an open source IDE for for creating desktop,
mobile, and web applications.

Greenfoot
Greenfoot is a simple IDE designed to teach object orienta‐
tion with Java.

IntelliJ IDEA
IntelliJ IDEA is a commercial IDE for creating desktop, mo‐
bile, and web applications.

JBuilder
JBuilder is a commercial IDE for creating desktop, mobile,
and web applications.

JCreator
JCreator is a commercial IDE for creating desktop, mobile,
and web applications.

JDeveloper
JDeveloper is Oracle’s IDE for creating desktop, mobile, and
web applications.

NetBeans IDE
NetBeans is Oracle’s open source IDE for creating desktop,
mobile, and web applications.

Web Application Platforms
Geronimo

Apache Geronimo is a Java EE server used for applications,
portals, and web services.

Glassfish
Glassfish is an open source Java EE server used for applica‐
tions, portals, and web services.

IBM WebSphere
IBM WebSphere is a commercial Java EE server used for
applications, portals, and web services.

196 | Appendix B: Third-Party Tools

http://bit.ly/16mih05
http://bit.ly/1ef1kIv
http://bit.ly/16miel3
http://bit.ly/16mihxd
http://bit.ly/16mihNJ
http://bit.ly/15XCBkv
http://bit.ly/16miikG
http://bit.ly/16miiBc
http://bit.ly/16migcz
http://ibm.co/16mij8l

JavaServer Faces
JavaServer Faces technology simplifies building user inter‐
faces for Java server applications. JSF implementations and
component sets include Apache MyFaces, ICEFaces, Rich‐
Faces, and Primefaces.

Jetty
Jetty is a web container for Java Servlets and JavaServer Pa‐
ges.

Oracle WebLogic Application Server
Oracle WebLogic Application Server is a commercial Java
EE server used for applications, portals, and web services.

Resin
Resin is a high-performance, cloud-optimized Java applica‐
tion server.

ServiceMix
Apache ServiceMix is an enterprise service bus that com‐
bines the functionality of a service-oriented architecture
and an event-driven architecture on the Java Business Inte‐
gration specification.

Sling
Sling is a web application framework that leverages the Rep‐
resentational State Transfer (REST) software architecture
style.

Struts
Apache Struts is a framework for creating enterprise-ready
Java web applications that utilize a model-view-controller
architecture.

Tapestry
Apache Tapestry is a framework for creating web applica‐
tions based upon the Java Servlet API.

Tomcat
Apache Tomcat is a web container for Java Servlets and
JavaServer Pages.

Web Application Platforms | 197

https://jcp.org/en/jsr/detail?id=314
http://bit.ly/16miksP
http://bit.ly/16mikZM
http://bit.ly/16milgv
http://bit.ly/16mioc4
http://bit.ly/16mioZF
http://bit.ly/16mipwx
http://bit.ly/16miq3x
http://bit.ly/16misIJ

TomEE
Apache TomEE is an all-Apache Java EE 6 Web Profile cer‐
tified stack.

WildFly
WildFly, formally known as JBoss Application Server, is an
open source Java EE server used for applications, portals,
and web services.

Scripting Languages Compatible with
JSR-223
BeanShell

BeanShell is an embeddable Java source interpreter with
object-based scripting language features.

Clojure
Clojure is a dynamic programming language targeted for
the Java Virtual Machine, Common Language Runtime, and
JavaScript engines.

FreeMarker
FreeMarker is a Java-based general-purpose template en‐
gine.

Groovy
Groovy is a scripting language with many Python, Ruby, and
Smalltalk features in a Java-like syntax.

Jacl
Jacl is a pure Java implementation of the Tcl scripting lan‐
guage.

JEP
Java Math Expression Parser (JEP) is a Java library for pars‐
ing and evaluating mathematical expressions.

Jawk
Jawk is a pure Java implementation of the AWK scripting
language.

198 | Appendix B: Third-Party Tools

http://tomee.apache.org/
http://www.wildfly.org/
http://bit.ly/16mitfM
http://bit.ly/16miwIo
http://bit.ly/16miwZa
http://bit.ly/16mivo0
http://bit.ly/16miws2
http://bit.ly/16mixMz
http://bit.ly/16miz7h

Jelly
Jelly is a scripting tool used for turning XML into executable
code.

JRuby
JRuby is a pure Java implementation of the Ruby program‐
ming language.

Jython
Jython is a pure Java implementation of the Python pro‐
gramming language.

Nashorn
Nashorn is a JavaScript implementation. It is the only script‐
ing language that has a script engine implementation in‐
cluded in the Java Scripting API by default.

Scala
Scala is a general-purpose programming language designed
to express common programming patterns in a concise, el‐
egant, and type-safe way.

Sleep
Sleep, based on Perl, is an embeddable scripting language
for Java applications.

Velocity
Apache Velocity is a Java-based general-purpose template
engine.

Visage
Visage is a domain specific language (DSL) designed for the
express purpose of writing user interfaces.

Scripting Languages Compatible with JSR-223 | 199

http://bit.ly/16miD6O
http://bit.ly/16miEHY
http://bit.ly/16miG2B
http://bit.ly/1komFPD
http://bit.ly/16miGQf
http://bit.ly/16miIY9
http://bit.ly/16miKzh
http://code.google.com/p/visage/

APPENDIX C

UML Basics

Unified Modeling Language (UML) is an object modeling spec‐
ification language that uses graphical notation to create an ab‐
stract model of a system. The Object Management Group governs
UML. This modeling language can be applied to Java programs
to help graphically depict such things as class relationships and
sequence diagrams. The latest specifications for UML can be
found at the OMG website. An informative book on UML is UML
Distilled, Third Edition, by Martin Fowler (Addison-Wesley).

Class Diagrams
A class diagram represents the static structure of a system, dis‐
playing information about classes and the relationships between
them. The individual class diagram is divided into three com‐
partments: name, attributes (optional), and operations (option‐
al). See Figure C-1 and the example that follows it.

Figure C-1. Class diagram

201

http://bit.ly/16miJLR
http://bit.ly/16miLmZ

// Corresponding code segment
class Orchestra { // Class Name
 // Attributes
 private String orch Name;
 private Integer instrCount = 7;
 // Operations
 public void setOrchName(String name) {...}
 public Boolean play(Score s) {...}
}

Name
The name compartment is required and includes the class or in‐
terface name typed in boldface.

Attributes
The attributes compartment is optional and includes member
variables that represent the state of the object. The complete UML
usage is as follows:

visibility name : type [multiplicity] = defaultValue
{property-string}

Typically, only the attribute names and types are represented.

Operations
The operations compartment is optional and includes member
functions that represent the system’s behavior. The complete
UML usage for operations is as follows:

visibility name (parameter-list) :
return-type-expression
{property-string}

Typically, only the operation names and parameter lists are rep‐
resented.

202 | Appendix C: UML Basics

T I P

{property-string} can be any of several properties such as
{ordered} or {read-only}.

Visibility
Visibility indicators (prefix symbols) can be optionally defined
for access modifiers. The indicators can be applied to the member
variables and member functions of a class diagram; see Table C-1.
Table C-1. Visibility indicators

Visibility indicators Access modifiers

~ package-private

protected

- private

Object Diagrams
Object diagrams are differentiated from class diagrams by un‐
derlining the text in the object’s name compartment. The text can
be represented three different ways; see Table C-2.
Table C-2. Object names

: ClassName Class name only

objectName Object name only

objectName : ClassName Object and class name

Object diagrams are not frequently used, but they can be helpful
when detailing information, as shown in Figure C-2.

Object Diagrams | 203

Figure C-2. Object diagram

Graphical Icon Representation
Graphical icons are the main building blocks in UML diagrams;
see Figure C-3.

Figure C-3. Graphical icon representation

Classes, Abstract Classes, and Interfaces
Classes, abstract classes, and interfaces are all represented with
their names in boldface within a rectangle. Abstract classes are
also italicized. Interfaces are prefaced with the word interface
enclosed in guillemet characters. Guillemets house stereotypes
and in the interface case, a classifier.

Notes
Notes are comments in a rectangle with a folded corner. They can
be represented alone, or they can be connected to another icon
by a dashed line.

204 | Appendix C: UML Basics

Packages
A package is represented with an icon that resembles a file folder.
The package name is inside the larger compartment unless the
larger compartment is occupied by other graphical elements (i.e.,
class icons). In the latter case, the package name would be in the
smaller compartment. An open arrowhead with a dashed line
shows package dependencies.

The arrow always points in the direction of the package that is
required to satisfy the dependency. Package diagrams are shown
in Figure C-4.

Figure C-4. Package diagrams

Connectors
Connectors are the graphical images that show associations be‐
tween classes. Connectors are detailed in “Class Relationships”
on page 206.

Multiplicity Indicators
Multiplicity indicators represent how many objects are partici‐
pating in an association; see Table C-3. These indicators are typ‐
ically included next to a connector and can also be used as part
of a member variable in the attributes compartment.

Connectors | 205

Table C-3. Multiplicity indicators

Indicator Definition

* Zero or more objects

0..* Zero or more objects

0..1 Optional (zero or one object)

0..n Zero to n objects where n > 1

1 Exactly one object

1..* One or more objects

1..n One to n objects where n > 1

m..n Specified range of objects

n Only n objects where n > 1

Role Names
Role names are utilized when the relationships between classes
need to be further clarified. Role names are often seen with mul‐
tiplicity indicators. Figure C-5 shows Orchestra where it per‐
forms one or more Scores.

Figure C-5. Role names

Class Relationships
Class relationships are represented by the use of connectors and
class diagrams; see Figure C-6. Graphical icons, multiplicity in‐
dicators, and role names may also be used in depicting relation‐
ships.

206 | Appendix C: UML Basics

Association
An association denotes a relationship between classes and can be
bidirectionally implied. Class attributes and multiplicities can be
included at the target end(s).

Figure C-6. Class relationships

Direct Association
Direct association, also known as navigability, is a relationship
directing the source class to the target class. This relationship can
be read as “Orchestra has a Clarinet.” Class attributes and multi‐
plicities can be included at the target end. Navigability can be
bidirectional between classes.

Composition Association
Composition association, also known as containment, models a
whole-part relationship, where the whole governs the lifetime of
the parts. The parts cannot exist except as components of the

Class Relationships | 207

whole. This is a stronger form of association than aggregation.
This can be read as “Score is composed of ” one or more parts.

Aggregation Association
Aggregation association models a whole-part relationship where
the parts may exist independently of the whole. The whole does
not govern the existence of the parts. This can be read as “Or‐
chestra is the whole and Clarinet is part of Orchestra.”

Temporary Association
Temporary association, better known as dependency, is repre‐
sented where one class requires the existence of another class. It’s
also seen in cases where an object is used as a local variable, return
value, or a member function argument. Passing a frequency to a
tune method of class Clarinet can be read as class Clarinet de‐
pends on class Frequency, or “Clarinet use a Frequency.”

Generalization
Generalization is where a specialized class inherits elements of a
more general class. In Java, we know this as inheritance, such as
class extends class Woodwind, or “Clarinet is a Woodwind.”

Realization
Realization models a class implementing an interface, such as
class Clarinet implements interface Instrument.

Sequence Diagrams
UML sequence diagrams are used to show dynamic interaction
between objects; see Figure C-7. The collaboration starts at the
top of the diagram and works its way toward the bottom.

208 | Appendix C: UML Basics

Figure C-7. Sequence diagrams

Participant (1)
The participants are considered objects.

Found Message (2)
A found message is one in which the caller is not represented in
the diagram. This means that the sender is not known, or does
not need to be shown in the given diagram.

Synchronous Message (3)
A synchronous message is used when the source waits until the
target has finished processing the message.

Return Call (4)
The return call can optionally depict the return value and is typ‐
ically excluded from sequence diagrams.

Sequence Diagrams | 209

Asynchronous Message (5)
An asynchronous message is used when the source does not wait
for the target to finish processing the message.

Message to Self (6)
A message to self, or self-call, is defined by a message that stays
within the object.

Lifeline (7)
Lifelines are associated with each object and are oriented verti‐
cally. They are related to time and are read downward, with the
earliest event at the top of the page.

Activation Bar (8)
The activation bar is represented on the lifeline or another acti‐
vation bar. The bar shows when the participant (object) is active
in the collaboration.

210 | Appendix C: UML Basics

We’d like to hear your suggestions for improving our indexes. Send email to
index@oreilly.com.

Index

Symbols
!= operator, 37
$ (dollar sign), 11
() (parenthesis), 12
. (dot) operator, 45
; (semicolon), 59
<< >> (angle quotes), 12, 204
== operator, 37
@ (annotation) symbol, 56
[] (square brackets), 12
_ (underscore symbol), 11
{ } (curly brackets), 12
λEs Forum Board at CodeRanch,

185
λEs Mailing List, 185
–0.0 entity, 24

A
abstract classes, 51, 85
abstract methods, 51
access modifiers, 84
accessor methods, 43

acronyms, naming conventions
for, 6

activation bar (UML), 210
affine objects, 96
aggregation association of classes,

208
algorithms, optimizing, 152
American Standard Code for In‐

formation Interchange (AS‐
CII), 7

annotated functional interfaces,
182

annotations
built-in, 55
developer-defined, 56
naming conventions for, 6
types of, 55–57

Apache Camel API, 189
argument list, 49–51
arithmetic operators, 12
arrays, default values of, 33
ASCII, 7–9

nonprintable, 9
printable, 8

211

assertions, 66
assignment operators, 12
association of classes, 207
asynchronous message (UML),

210
autoboxing, 28
AutoClosable interface, 78
autoconversion, 60

B
base libraries (Java), 91–93
Big O notation, 153
binary data

reading from files, 128
reading from sockets, 130
writing to files, 129
writing to sockets, 130

binary literals, 15
binary numeric promotion, 26
bitwise operators, 12
blocks, 60
boolean literals, 14, 22
Boolean type, 60
bounds, 160
break statement, 62, 64
BufferedInputStream, 128, 130
BufferedOutputStream, 129
BufferedReader, 127, 129
built-in annotations, 55
byte primitive, 22

switch statements and, 62
Byte type, 62

C
Calculon Android API, 189
Canvas classes, 96
catch block, 70
Certificate Revocation Lists

(CRLs), 98
char primitive, 22

switch statements and, 62
character literals, 15
Character type, 62

Character.isJavaIdentifier‐
Start(int), 11

characters
reading from files, 127
reading from sockets, 129
writing to files, 128
writing to sockets, 130

checked exceptions, 70
class diagrams (UML), 201–203

attributes compartment, 202
name compartment, 202
operations compartment, 202
visibility indicators, 203

ClassCastException, 35
classes, 43–49

abstract, 51
accessing methods/data mem‐

bers of, 45
associations between, 207
constructors, 47
containment of, 207
data members, 44
dependency of, 208
generic, 157
generic methods in, 162
hierarchy for I/O, 126
instantiating, 44
methods, 44
naming conventions for, 3
operators, 12
overloading methods, 45
overriding methods, 46
private data, accessing, 43
relationships between, in

UML, 206
representing in UML, 204
sub-, 47–48
super-, 47–48
syntax, 44
this keyword, 49

classpath argument, 113
clone() method, 40
cloning objects, 40

212 | Index

CM, third-party tools for, 191–193
CMS collector, 117
Collection class

algorithms, 151
Comparator functional inter‐

face, 153–155
Collection interface, 149

implementations of, 150
methods, 150

Collection.parallelStream(), 151
Collection.stream(), 151
Collections Framework, 5
command-line tools, 106–113

compiler, 106–108
executing JAR files, 110
for garbage collection, 118–

121
for memory management,

118–121
JAR, 109
Java interpreter, 108
Javadoc, 111
-X options, 107

comments, 9
Common Object Request Broker

Architecture (CORBA), 98
Comparator functional interface,

153–155, 181
comparison operators, 12
composition association of classes,

207
compressed files, 132
concurrency, 139–146

collections, 145
executor utilities, 144
methods for, 141
synchronized statements and,

143
synchronizers, 146
timing utility, 146

concurrent mark-sweep collector,
117

conditional operators, 27

conditional statements, 60
if else if statements, 61
if else statement, 61
if statement, 60
switch statement, 62

connectors (UML), 205
Console class, 126
constants

naming conventions for, 5
static, 53

constructors, 47
lambda expressions and, 181
with generics, 158

containment of classes, 207
continue statement, 65
conversion of reference types, 34

narrowing, 35
widening, 34

CORBA libraries (Java), 97
CRLs (see Certificate Revocation

Lists)
currency symbols, 18

D
data members, 44

accessing, 45
final, 85
in classes, 44
static, 52, 85
transient, 86

data structures, optimizing, 152
DataInputStream, 128, 130
DataOutputStream, 129
Date Time API (JSR 310), 171–

177, 189
durations, 176
formatting, 177
ISO calendar in, 173–177
legacy code and, 172
machine interface for, 175
periods, 176
regional calendars in, 172

DateTimeFormatter class, 177

Index | 213

Debian, 103
decimal integers, 15
deep cloning, 41
default method, 85
default statement, 62
default values

of arrays, 33
for instance variables, 32
for local variables, 32
of reference types, 32–34

defender method, 85
dependency of classes, 208
developer-defined annotations, 56
development, 103–113

classpath argument and, 113
command line tools for, 106–

113
program structure, 104–106
third-party tools for, 191–193

Diffie-Hellman keys, 98
Digital Signature Algorithm

(DSA) generation, 98
direct association of classes, 207
do while loop, 64
Document Object Model (DOM),

100
documentation

generating from command
line, 111

Javadoc comments and, 10
Domain Specific Languages

(Fowler), 190
double literals, 16
Double wrapper class, 24
DSA generation, 98
Duration, 176

E
-ea switch, 66
empty statements, 60
enableassertions switch, 66
encapsulation, 43
enhanced for loop, 63

entities
floating-point, 23–25
operations involving, 25

enum class type, 54
enumerations, 54

comparing, 39
naming conventions for, 5
switch statements and, 62

equality operators, 37
equals() method (Object), 37
err stream (System), 125
errors, 71, 73
escape sequences, 17
Event Dispatch Thread (EDT), 75
exception handling

keywords for, 74–78
multi-catch clause, 78
process, 78
programmer-defined, 79
throw keyword, 74
try-catch statements, 75
try-catch-finally statements,

77
try-finally statements, 76
try-with-resources statements,

78
try/catch/finally blocks, 75

exception hierarchy, 69
exceptions, 69–81

checked, 70
errors, 71
hierarchy of, 69
logging, 80
programmer-defined, 79
Throwable class and, 80
unchecked, 70

Executor interface, 144
explicit garbage collection, 122
expression statements, 59
extends keyword, 47

F
fields, 44

214 | Index

file I/O, 127–129
reading binary data from, 128
reading raw character data

from, 127
writing binary data to, 129
writing character data to, 128

FileReader, 127
Files class, 136
Files.newBufferedReader() meth‐

od, 128
FileVisitor interface, 137
FileWriter, 129
final class, 85
final data members, 85
final keyword, 53
finalize() method, 122, 122
float primitive, 23
Float wrapper class, 24
floating-point

entities, 23–25
literals, 16

fluent APIs, 189
fluent interfaces, 189
for loop, 62

enhanced, 63
found message (UML), 209
Fowler, Martin, 190, 201
functional interfaces (FI), 57

annotated, 182
general purpose, 182–184
of Lambda Expressions, 179

@FunctionalInterface annotation,
57

G
G1 collector, 117
garbage collection, 115–117

CMS, 117
command-line options for,

118–121
explicit, 122
finalize() method and, 122
G1, 117

interfacing with, 122
parallel, 116
parallel compacting, 116
serial, 116

Garbage-First collector, 117
generalization of classes, 208
generics, 157–163

bounds, 160
classes, 157
constructors with, 158
extending, 161
Get and Put Principle, 160
in classes, 162
interfaces, 157
Substitution Principle, 159
type parameters, 4, 160
wildcards, 160

Get and Put Principle, 160
getMessage() method (Throwable

class), 80
global marking, 117
graphical icon representation, 204

of classes, 204
of notes, 204
of packages, 205

Gregorian calendar, 171
guillemet characters (<< >>), 12,

204
GZIP files, I/O with, 132
GZipInputStream, 133
GZipOutputStream, 133

H
hashCode() method, 37
HashMap() method, 37
HashSet() method, 37
heap, resizing, 121
Heap/CPU Profiling Tool

(HPROF), 117
hexadecimal literals, 15
Hijrah calendar system, 172
Horstmann, Cay S., 57

Index | 215

HPROF (Heap/CPU Profiling
Tool), 117

I
I/O, 125–133

class hierarchy for, 126
with compressed files, 132
deserializing, 131
err stream, 125
Files class, 136
with GZIP files, 132
in stream, 125
ObjectOutputStream, 131
on files, 127–129
out stream, 125
Path interface, 135
serialization of objects, 131
sockets, 129–131
streams, 125
with ZIP files, 132

identifiers, 11
keywords and, 10

IDEs, 195
if else if statements, 61
if else statement, 61
if statement, 60
implements keyword, 54
in stream (System), 125
inconvertible types error, 35
Infinity entity, 24
–Infinity entity, 24
inheritance, 43
initializers, static, 53
InputStream, 128
instance variables, default values

for, 32
instances, naming conventions

for, 4
int primitives, 23

switch statements and, 62
integer literals, 15
Integer type, 62

integrated development environ‐
ments, 195
lambda expressions and, 181

integration libraries (Java), 93
interfaces, 53

functional, 57
generic, 157
naming conventions for, 3

intern() method (String), 17
interpreter (Java), 108
InterruptedException, 142
Invocable interface, 166
IOException error, 126
ISO 8601, 171
ISO calendar, 173–177
iteration statements, 62

do while loop, 64
enhanced for loop, 63
for loop, 62
while loops, 63

J
Japanese Imperial calendar sys‐

tem, 172
JAR (see Java Archive utility)
Java

command line tools, 106–113
compiler, 106–108
generics framework for, 157–

163
I/O, 125–133
interpreter, 108
NIO.2 API, 135–138
program structure of, 104–106

Java API for XML Web Services
(JAX-WS), 100

Java Archive utility (JAR), 109
files, executing, 110

Java Collections Framework, 149–
155

Java Compatibility Kit (JCK), 98
Java Database Connectivity

(JDBC), 94, 177

216 | Index

Java Development Kit (JDK), 103
Java domain specific language

(DSL), 189
Java Flight Recorder, 118
Java Generic Security Service

(JGSS), 99
Java Generics and Collections

(Naftalin, Wadler), 157
Java HotSpot Virtual Machine,

115
Java Mission Control (JMC), 118
Java Naming and Directory Inter‐

face (JNDI), 93
Java Object Oriented Querying

(jOOQ) API, 189
Java Runtime Environment (JRE),

103
Java Scripting API, 165–170

engine implementations, 165–
167

Java SE, 89–101
base libraries, 91–93
CORBA libraries, 97
integration libraries, 93
JavaFX libraries, 94–97
language libraries, 89–91
Remote Method Invocation

(RMI) libraries, 97
security libraries, 98
standard libraries, 89
user interface libraries, 94
utility libraries, 89–91
XML libraries, 99–101

Java SE 8 for the Really Impatient
(Horstmann), 57

The Java Tutorial: Lambda Ex‐
pressions, 184

Java Virtual Machine (JVM)
garbage collection and, 122
source for, 103
thread priorities and, 141

java.lang package, 55
java.lang.AssertionError, 66

java.lang.NullPointerException,
33

java.lang.Object, 31–41
java.lang.OutOfMemoryError,

121
java.lang.Runnable, 139
java.lang.Thread, 139
java.nio.file.DirectoryStream FI,

138
java.sql, 177
java.time package, 171

DateTimeFormatter class, 177
java.sql and, 177

java.util.concurrent, 144
java.util.function package, 182–

184
JavaBean, 43
Javadoc, 111

comments, 10
JavaFX libraries, 94–97
JAX-WS (see Java API for XML

Web Services)
JCK (see Java Compatibility Kit)
JDBC (see Java Database Connec‐

tivity)
JDK (see Java Development Kit)
jEdit, 104
JGSS (see Java Generic Security

Service)
JMC (see Java Mission Control)
jMock API, 189
JNDI (see Java Naming and Direc‐

tory Interface)
jOOQ API (see ava Object Orient‐

ed Querying)
JRE (see Java Runtime Environ‐

ment)
JRuby, 168
JSR 203 (More New I/O APIs for

the Java Platform), 135
JSR 223, 165–170
JSR 308 (Type Annotations Speci‐

fication), 56

Index | 217

JSR 310 (Date and Time API),
171–177
methods, listed, 173

JSR 335, 179
JSR 354 (Money and Currency

API), 189
JVisualVM, 121

K
keywords, 10

for exception handling, 74–78

L
lambda expressions, 179–185

annotated functional inter‐
faces, 182

community resources for, 185
constructor references, 181
method references, 181
syntax, 180
tutorials, 184

λEs Forum Board at CodeRanch,
185

λEs Mailing List, 185
language libraries (Java), 89–91
legacy code

Date Time API and, 172
JSR 310 and, 172

lexical elements, 7–18
ASCII, 7–9
comments, 9
currency symbols in Unicode,

18
escape sequences, 17
identifiers, 11
keywords, 10
literals, 14–17
operators, 12
separators, 12
Unicode, 7–9

libraries, third-party, 194
lifeline (UML), 210

Lightweight Directory Access Pro‐
tocol v3 (LDAP), 93

Linux, 103
POSIX-compliance and, 113

List interface, 149
literals, 14–17

boolean, 14
character, 15
floating-point, 16
for primitive types, 22
integer, 15
null, 17
string, 16

local variables
default values for, 32
naming conventions for, 4

LocalDateTime, 190
locking threads, 143
logging exceptions, 80
long integers, 16
long primitive, 23
low-latency collector, 117

M
Mac OS X, 103

POSIX-compliance and, 113
marker annotation, 56
Maurice Naftalins Lambda FAQ,

184
maximum pause time goal, 115
memory management, 115–122

command-line options for,
118–121

garbage collection, 115–117
heap, resizing, 121
metaspace, 121
tools for, 117

message to self (UML), 210
metaspace, 121
methods, 44

abstract, 51
accessing, 45
argument list, 49–51

218 | Index

fluent API prefixes for, 189
invoking, of scripting languag‐

es, 166
lambda expressions and, 181
naming conventions for, 4
overloading, 45
overriding, 46
passing reference types into,

35
static, 52

Microsoft Windows, 103
Minquo calendar system, 172
modifiers, 83–86

access, 84
non-access, 85

Money and Currency API (JSR
354), 189

multi-catch clause, 78
multiplicity indicators (UML),

205
multivalue annotation, 56
mutator methods, 43

N
Naftalin, Maurice, 157, 184
naming conventions, 3–6

for acronyms, 6
for annotations, 6
for classes, 3
for constants, 5
for enumerations, 5
for generic parameter types, 4
for instances, 4
for interfaces, 3
for local variables, 4
for methods, 4
for packages, 5
for parameters, 4
for static variables, 4

narrowing conversions, 34
Nashorn JavaScript, 166, 170
native methods, 85

newBufferedReader() method
(Files), 128

NIO.2, 135–138
Files class, 136
Path interface, 135

non-access modifiers, 85
Not-a-Number (NaN), 23–25
Notepad++, 104
notes, in UML, 204
notify() method (Object), 142
null literals, 17
Number class, 159
numeric promotion, 26

binary, 26
unary, 26

O
Object class, 142

equals() method, 37
object diagrams (UML), 203
Object Management Group, 201
Object Request Brokers (ORBs),

98
object-oriented programming,

43–57
annotation types, 55–57
classes, 43–49
enumerations, 54
functional interfaces, 57
interfaces, 53
objects, 43–49

ObjectInputStream class, 131
ObjectOutputStream class, 131
objects, 43–49

accessing methods/data mem‐
bers of, 45

cloning, 40
constructors, 47
copying reference types to, 40
creating, 44
deserializing, 131
methods, 44
methods overriding, 46

Index | 219

operators, 12
overloading methods, 45
serializing, 131
this keyword, 49

octal literals, 15
operators, 12
optional software directory, 168
Oracle, 103, 184
Oracle Certified Professional Java

SE Programmer Exam, 137
Oracle Java SE Advanced, 118
Oracle Learning Library on You‐

Tube, 185
out stream (System), 125
overloading methods, 45
@Override annotation, 56
overriding methods, 46

P
package-private access modifier,

47, 84
packages

naming conventions for, 5
representing in UML, 205

parallel collectors, 116
parallel compacting collectors,

116
parameters

naming conventions for, 4
naming conventions for

generic type, 4
participants (UML), 209
Path interface, 135
PathMatcher interface, 137
Period, 176
Permanent Generation (Perm‐

Gen) error message, 121
primitive types, 21–30

autoboxing, 28
binary numeric promotion of,

26
comparing to reference, 32
conditional operators and, 27

listed, 21
literals for, 22
reference types, converting be‐

tween, 35
unary numeric promotion of,

26
unboxing, 29
wrapper classes for, 27

printf method as vararg method,
50

println() method, 18
printStackTrace() method

(Throwable class), 80
PrintWriter, 128, 130
private access modifier, 84
private data, 43
programmer-defined exceptions,

79
Project Lambda, 179
protected access modifier, 84
protected keyword, 47
public access modifier, 84
publicly available packages, 5
PushbackInputStream class, 128

Q
Queue interface, 149

R
realization models, 208
Red Hat, 103
reference types, 31–41

cloning objects and, 40
comparing, 37
comparing to primitives, 32
conversion of, 34
copying, 40–41
copying to objects, 40
default values of, 32–34
enumerations, comparing, 39
equals() method and, 37
passing into methods, 35

220 | Index

primitive types, converting be‐
tween, 35

strings, comparing, 38
regional calendars, 172
Remote Method Invocation (RMI)

libraries, 97
resources, accessing/controlling,

167
Retention meta-annotation, 56
return call (UML), 209
return statement, 65
Rhino JavaScript, 170
RMI-IIOP, 97
role names (UML), 206
RSA security interface, 98
run() method (Thread class), 139
Runnable interface, 139

implementing, 140
Runtime.getRuntime() method,

122

S
SASL (see Simple Authentication

and Security Layer)
SAX (see Simple API for XML)
Scene Graph API, 95
ScheduledThreadPoolExecutor

class, 144
ScriptEngine interface, 165–167
scripting engines

implementations, 165–167
setting up, 168
validation of, 169

scripting languages, 198
scripts, 165–170

embedding in Java, 165
engine implementations, 165–

167
invoking methods from, 166
resources, accessing/control‐

ling with, 167
Secured Sockets Layer (SSL), 98
security libraries (Java), 98

self-calls, 210
separators, 12
sequence diagrams (UML), 208

activation bar, 210
asynchronous message, 210
found message, 209
lifeline, 210
message to self, 210
participants, 209
return call, 209
synchronous message, 209

serial collectors, 116
Serializable interface, 131
serialization, 131
Set interface, 149
shallow cloning, 41
short primitive, 22

switch statements and, 62
Short type, 62
signed types, 22
Simple API for XML (SAX), 100
Simple Authentication and Securi‐

ty Layer (SASL), 99
Single Abstract Method (SAM) in‐

terfaces, 57
single value annotation, 56
socket I/O, 129–131

reading binary data from, 130
reading characters from, 129
writing binary data to, 130
writing character data to, 130

Solaris, 103
POSIX-compliance and, 113

SQL (Structured Query Lan‐
guage), 93
Date Time API and, 177

SSL, 98
statements, 59–67

assert, 66
blocks, 60
conditional, 60
empty, 60
expression, 59

Index | 221

iteration, 62
synchronized, 66
transfer of control, 64

states of threads, 140
static

constants, 53
data members, 52, 85
initializers, 53
methods, 52, 85
variables, naming conventions

for, 4
static keyword, 52
StAX API (see Streaming API for

XML (StAX) API)
Stream API, 137
Streaming API for XML (StAX)

API, 100
streams, 125
strictfp, 85
string literals, 16

comparing, 38
String type, 62
StringBuffer class, 39
StringBuilder class, 39
Structured Query Language

(SQL), 93
Date Time API and, 177

subclasses, 47–48
Substitution Principle, 159
super keyword, 48, 161
superclasses, 47–48
Suse, 103
switch statement, 62
synchronized keyword, 143
synchronized methods, 86
synchronized statements, 66

concurrency and, 143
synchronizers, 146
synchronous message (UML), 209
System.err stream, 125
System.gc() method, 122

T
temporary association of classes,

208
testing, third-party tools for, 191–

193
TextPad, 104
Thai Buddhist calendar system,

172
this keyword, 49
Thread class

extending, 139
methods from, 141
state enumerator, 140

ThreadPoolExecutor class, 144
threads, 139–146

creating, 139
locking, 143
priorities of, 141

ThreeTen Project, 171
throughput goal, 115
throw keyword, 74
Throwable class, 80
thrown exceptions, 74

try/catch/finally blocks, 75
throws clause, 70
Time-Zone Database (TZDB), 175
timing utility, 146
toString() method (Throwable

class), 80
transfer of control statements, 64

break, 64
continue, 65
return, 65

transient data members, 86
try-catch statements, 75
try-catch-finally statements, 77
try-finally statements, 76
try-with-resources statements, 78
try/catch/finally blocks, 75
Type Annotations Specification

(JSR 308), 56
type parameters, 160

222 | Index

types, 21–30
reference, 31–41

U
Ubuntu, 103
UML Distilled (Fowler), 201
unary numeric promotion, 26
unboxing, 29

Boolean types, 60
unchecked exceptions, 70, 72
Unicode, 7–9

currency symbols in, 18
string literals, 16

Unicode 6.2.0, 7
Unicode Character Code Chart, 8
Unicode Consortium, 7
Unified Modeling Language

(UML), 201–210
class relationships in, 206
classes, diagraming, 201–203
connectors, 205
graphical icon representation,

204
multiplicity indicators, 205
object diagrams, 203
realization models, 208
role names, 206
sequence diagrams, 208

UNIX Epoch, 175
unsigned types, 22
user interface

controls, 96
libraries, 94

utility libraries (Java), 89–91

V
varargs, 49–51

Vim, 104
volatile data member, 86

W
W3C’s DOM, 101
Wadler, Philip, 157
wait() method (Object), 142
WatchService interface, 137
web application platforms, 196–

198
while loops, 63
whole-heap operations, 117
widening conversions, 34
wildcards, 160
wrapper classes for primitive

types, 27

X
-X options, 107
X500 Principal Credentials, 99
X500 Private Credentials, 99
XML libraries (Java), 99–101
XML Schema (XSD), 177

Date and Time API and, 177
XSD, 177
–XX options for garbage collec‐

tion, 121

Y
YouTube, 185

Z
ZIP files, I/O with, 132
ZipInputStream, 132
ZipOutputStream, 132

Index | 223

	Copyright
	Table of Contents
	Preface
	Book Structure
	Conventions Used in This Book
	Safari® Books Online
	How to Contact Us
	Authors
	Acknowledgments

	Part I. Language
	Chapter 1. Naming Conventions
	Class Names
	Interface Names
	Method Names
	Instance and Static Variable Names
	Parameter and Local Variable Names
	Generic Type Parameter Names
	Constant Names
	Enumeration Names
	Package Names
	Annotation Names
	Acronyms

	Chapter 2. Lexical Elements
	Unicode and ASCII
	Printable ASCII Characters
	Nonprintable ASCII Characters

	Comments
	Keywords
	Identifiers
	Separators
	Operators
	Literals
	Boolean Literals
	Character Literals
	Integer Literals
	Floating-Point Literals
	String Literals
	Null Literals

	Escape Sequences
	Unicode Currency Symbols

	Chapter 3. Fundamental Types
	Primitive Types
	Literals for Primitive Types
	Floating-Point Entities
	Operations Involving Special Entities

	Numeric Promotion of Primitive Types
	Unary Numeric Promotion
	Binary Numeric Promotion
	Special Cases for Conditional Operators

	Wrapper Classes
	Autoboxing and Unboxing
	Autoboxing
	Unboxing

	Chapter 4. Reference Types
	Comparing Reference Types to Primitive Types
	Default Values
	Instance and Local Variable Objects
	Arrays

	Conversion of Reference Types
	Widening Conversions
	Narrowing Conversions

	Converting Between Primitives and Reference Types
	Passing Reference Types into Methods
	Comparing Reference Types
	Using the Equality Operators
	Using the equals() Method
	Comparing Strings
	Comparing Enumerations

	Copying Reference Types
	Copying a Reference to an Object
	Cloning Objects

	Memory Allocation and Garbage Collection of Reference Types

	Chapter 5. Object-Oriented Programming
	Classes and Objects
	Class Syntax
	Instantiating a Class (Creating an Object)
	Data Members and Methods
	Accessing Data Members and Methods in Objects
	Overloading
	Overriding
	Constructors
	Superclasses and Subclasses
	The this Keyword

	Variable-Length Argument Lists
	Abstract Classes and Abstract Methods
	Abstract Classes
	Abstract Methods

	Static Data Members, Static Methods, Static Constants, and Static Initializers
	Static Data Members
	Static Methods
	Static Constants
	Static Initializers

	Interfaces
	Enumerations
	Annotation Types
	Built-in Annotations
	Developer-Defined Annotations

	Functional Interfaces

	Chapter 6. Statements and Blocks
	Expression Statements
	Empty Statement
	Blocks
	Conditional Statements
	The if Statement
	The if else Statement
	The if else if Statement
	The switch Statement

	Iteration Statements
	The for Loop
	The Enhanced for Loop
	The while Loop
	The do while Loop

	Transfer of Control
	The break Statement
	The continue Statement
	The return Statement

	Synchronized Statement
	Assert Statement
	Exception Handling Statements

	Chapter 7. Exception Handling
	The Exception Hierarchy
	Checked/Unchecked Exceptions and Errors
	Checked Exceptions
	Unchecked Exceptions
	Errors

	Common Checked/Unchecked Exceptions and Errors
	Common Checked Exceptions
	Common Unchecked Exceptions
	Common Errors

	Exception Handling Keywords
	The throw Keyword
	The try/catch/finally Keywords
	The try-catch Statement
	The try-finally Statement
	The try-catch-finally Statement
	The try-with-resources Statement
	The multi-catch Clause

	The Exception Handling Process
	Defining Your Own Exception Class
	Printing Information About Exceptions
	The getMessage() Method
	The toString() Method
	The printStackTrace() Method

	Chapter 8. Java Modifiers
	Access Modifiers
	Other (Nonaccess) Modifiers

	Part II. Platform
	Chapter 9. Java Platform, Standard Edition
	Common Java SE API Libraries
	Language and Utility Libraries
	Base Libraries
	Integration Libraries
	Miscellaneous User Interface Libraries
	JavaFX User Interface Library
	Remote Method Invocation (RMI) and CORBA Libraries
	Security Libraries
	Extensible Markup Language (XML) Libraries

	Chapter 10. Development Basics
	Java Runtime Environment
	Java Development Kit
	Java Program Structure
	Command-Line Tools
	Java Compiler
	Java Interpreter
	Java Program Packager
	JAR File Execution
	Java Documenter

	Classpath

	Chapter 11. Memory Management
	Garbage Collectors
	Serial Collector
	Parallel Collector
	Parallel Compacting Collector
	Concurrent Mark-Sweep Collector
	Garbage-First (G1) Collector

	Memory Management Tools
	Command-Line Options
	Resizing the JVM Heap
	Metaspace
	Interfacing with the GC
	Explicit Garbage Collection
	Finalization

	Chapter 12. Basic Input and Output
	Standard Streams in, out, and err
	Class Hierarchy for Basic Input and Output
	File Reading and Writing
	Reading Character Data from a File
	Reading Binary Data from a File
	Writing Character Data to a File
	Writing Binary Data to a File

	Socket Reading and Writing
	Reading Character Data from a Socket
	Reading Binary Data from a Socket
	Writing Character Data to a Socket
	Writing Binary Data to a Socket

	Serialization
	Serialize
	Deserialize

	Zipping and Unzipping Files
	Compressing and Uncompressing GZIP Files

	Chapter 13. New I/O API (NIO.2)
	The Path Interface
	The Files Class
	Additional Features

	Chapter 14. Concurrency
	Creating Threads
	Extending the Thread Class
	Implementing the Runnable Interface

	Thread States
	Thread Priorities
	Common Methods
	Synchronization
	Concurrent Utilities
	Executors
	Concurrent Collections
	Synchronizers
	Timing Utility

	Chapter 15. Java Collections Framework
	The Collection Interface
	Implementations
	Collection Framework Methods
	Collections Class Algorithms
	Algorithm Efficiencies
	Comparator Functional Interface

	Chapter 16. Generics Framework
	Generic Classes and Interfaces
	Constructors with Generics
	Substitution Principle
	Type Parameters, Wildcards, and Bounds
	The Get and Put Principle
	Generic Specialization
	Generic Methods in Raw Types

	Chapter 17. The Java Scripting API
	Scripting Languages
	Script Engine Implementations
	Embedding Scripts into Java
	Invoking Methods of Scripting Languages
	Accessing and Controlling Java Resources from Scripts

	Setting Up Scripting Languages and Engines
	Scripting Language Setup
	Scripting Engine Setup
	Scripting Engine Validation

	Chapter 18. Date and Time API
	Legacy Interoperability
	Regional Calendars
	ISO Calendar
	Machine Interface
	Durations and Periods
	JDBC and XSD Mapping
	Formatting

	Chapter 19. Lambda Expressions
	λEs Basics
	λEs Syntax and Example
	Method and Constructor References

	Specific Purpose Functional Interfaces
	General Purpose Functional Interfaces
	Resources for λEs
	Tutorials
	Community Resources

	Part III. Appendixes
	Appendix A. Fluent APIs
	Appendix B. Third-Party Tools
	Development, CM, and Test Tools
	Libraries
	Integrated Development Environments
	Web Application Platforms
	Scripting Languages Compatible with JSR-223

	Appendix C. UML Basics
	Class Diagrams
	Name
	Attributes
	Operations
	Visibility

	Object Diagrams
	Graphical Icon Representation
	Classes, Abstract Classes, and Interfaces
	Notes
	Packages

	Connectors
	Multiplicity Indicators
	Role Names
	Class Relationships
	Association
	Direct Association
	Composition Association
	Aggregation Association
	Temporary Association
	Generalization
	Realization

	Sequence Diagrams
	Participant (1)
	Found Message (2)
	Synchronous Message (3)
	Return Call (4)
	Asynchronous Message (5)
	Message to Self (6)
	Lifeline (7)
	Activation Bar (8)

	Index

