
M A N N I N G

Gerard Gallant

With examples using C++ and Emscripten

WebAssembly in Action

A browser’s JavaScript engine monitors the code until it’s satisfied it knows the variable
types before it can convert that section of JavaScript into machine code.

With WebAssembly, your code is compiled into the WebAssembly binary format ahead of
time. Because the variable types are all known in advance, when the browser loads the
WebAssembly file, the JavaScript engine doesn’t need to monitor the code. It can compile
the binary format straight into machine code.

JavaScript

Browser

function add(a, b){
 return (a + b);
}

01110001001...

JavaScript compiled
to machine code

C++ Wasm

Developer

C++ compiled to
WebAssembly binary

Wasm

Browser

WebAssembly binary
compiled to machine code

01110001001...

WebAssembly in Action

WebAssembly in Action
WITH EXAMPLES USING C++ AND EMSCRIPTEN

C. GERARD GALLANT

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

© 2019 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Acquisitions editor: Brian Sawyer
Development editor: Toni Arritola

Technical development editor: Ian LovellManning Publications Co.
20 Baldwin Road Review editor: Ivan Martinović
PO Box 761 Production editor: Anthony Calcara
Shelter Island, NY 11964 Copy editor: Rebecca Deuel-Gallegos

Proofreader: Tiffany Taylor
Technical proofreader: Arno Bastenof

Typesetter: Dottie Marsico
Cover designer: Marija Tudor

ISBN 9781617295744
Printed in the United States of America

http://www.manning.com

brief contents
PART 1 FIRST STEPS.. 1

1 ■ 3Meet WebAssembly
2 ■ 17A look inside WebAssembly modules
3 ■ 24Creating your first WebAssembly module

PART 2 WORKING WITH MODULES... 53
4 ■ 55Reusing your existing C++ codebase
5 ■ Creating a WebAssembly module 85that calls into JavaScript
6 ■ Creating a WebAssembly module that talks to JavaScript using

105function pointers

PART 3 ADVANCED TOPICS.. 133
7 ■ 135Dynamic linking: The basics
8 ■ 163Dynamic linking: The implementation
9 ■ 195Threading: Web workers and pthreads

10 ■ 219WebAssembly modules in Node.js

PART 4 DEBUGGING AND TESTING .. 247
11 ■ 249WebAssembly text format
12 ■ 300Debugging
13 ■ 327Testing—and then what?
v

contents
preface xiii
acknowledgments xv
about this book xvii
about the author xx
about the cover illustration xxi

PART 1 FIRST STEPS...1

1 Meet WebAssembly 3
1.1 What is WebAssembly? 4

Asm.js, the forerunner to WebAssembly 4 ■ From asm.js to
MVP 5

1.2 What problems does it solve? 5
Performance improvements 5 ■ Faster startup times compared
with JavaScript 7 ■ Ability to use languages other than JavaScript
in the browser 7 ■ Opportunity for code reuse 7

1.3 How does it work? 8
Overview of how compilers work 9 ■ Loading, compiling, and
instantiating a module 10

1.4 Structure of a WebAssembly module 11
Preamble 12 ■ Known sections 13 ■ Custom sections 13

1.5 WebAssembly text format 13
vii

CONTENTSviii
1.6 How is WebAssembly secure? 14

1.7 What languages can I use to create a WebAssembly
module? 14

1.8 Where can I use my module? 15

2 A look inside WebAssembly modules 17
2.1 Known sections 19

2.2 Custom sections 23

3 Creating your first WebAssembly module 24
3.1 The Emscripten toolkit 25

3.2 WebAssembly modules 26
When would you not use a WebAssembly module? 27

3.3 Emscripten output options 28

3.4 Compiling C or C++ with Emscripten and using the HTML
template 29

3.5 Having Emscripten generate the JavaScript plumbing
code 34
Compiling C or C++ with Emscripten-generated JavaScript 34
Creating a basic HTML web page for use in browsers 37

3.6 Having Emscripten generate only the WebAssembly
file 40
Compiling C or C++ as a side module with Emscripten 41
Loading and instantiating in a browser 43

3.7 Feature detection: How to test if WebAssembly is
available 50

PART 2 WORKING WITH MODULES................................53

4 Reusing your existing C++ codebase 55
4.1 Using C or C++ to create a module with Emscripten

plumbing 58
Making the C++ modifications 58 ■ Compiling the code into
a WebAssembly module 63 ■ Creating the web page 64
Creating the JavaScript that will interact with the module 66
Viewing the results 71

CONTENTS ix
4.2 Using C or C++ to create a module without
Emscripten 72
Making the C++ modifications 72 ■ Compiling the code into a
WebAssembly module 78 ■ Creating the JavaScript that will
interact with the module 78 ■ Viewing the results 83

5 Creating a WebAssembly module that calls into JavaScript 85
5.1 Using C or C++ to create a module

with Emscripten plumbing 88
Adjusting the C++ code 90 ■ Creating the JavaScript that you
want included in Emscripten’s generated JavaScript file 92
Compiling the code into a WebAssembly module 93 ■ Adjusting the
web page’s JavaScript code 94 ■ Viewing the results 96

5.2 Using C or C++ to create a module without Emscripten
plumbing 97
Making the C++ modifications 99 ■ Compiling the code into a
WebAssembly module 100 ■ Adjusting the JavaScript that will
interact with the module 100 ■ Viewing the results 103

6 Creating a WebAssembly module that talks to JavaScript
using function pointers 105
6.1 Using C or C++ to create a module with Emscripten

plumbing 107
Using a function pointer given to the module by JavaScript 107
Adjusting the C++ code 108 ■ Compiling the code into a
WebAssembly module 112 ■ Adjusting the web page’s JavaScript
code 113 ■ Viewing the results 119

6.2 Using C or C++ to create a module without Emscripten
plumbing 119
Using function pointers given to the module by JavaScript 120
Making the C++ modifications 121 ■ Compiling the code into a
WebAssembly module 122 ■ Adjusting the JavaScript that will
interact with the module 122 ■ Viewing the results 131

PART 3 ADVANCED TOPICS...133

7 Dynamic linking: The basics 135
7.1 Dynamic linking: Pros and cons 136

CONTENTSx
7.2 Dynamic linking options 137
Side modules and main modules 138 ■ Dynamic linking:
dlopen 139 ■ Dynamic linking: dynamicLibraries 149
Dynamic linking: WebAssembly JavaScript API 153

7.3 Dynamic linking review 160

8 Dynamic linking: The implementation 163
8.1 Creating the WebAssembly modules 166

Splitting the logic in the validate.cpp file into two files 168
Creating a new C++ file for the Place Order form’s logic 171
Using Emscripten to generate the WebAssembly side modules 173
Defining a JavaScript function to handle an issue with the
validation 177 ■ Using Emscripten to generate the WebAssembly
main module 178

8.2 Adjusting the web page 180
Adjusting your web page’s JavaScript 183 ■ Viewing the
results 192

9 Threading: Web workers and pthreads 195
9.1 Benefits of web workers 196
9.2 Considerations for using web workers 197
9.3 Prefetching a WebAssembly module using a web

worker 198
Adjusting the calculate_primes logic 200 ■ Using Emscripten to
generate the WebAssembly files 202 ■ Copying files to the correct
location 203 ■ Creating the HTML file for the web page 203
Creating the JavaScript file for the web page 204 ■ Creating the web
worker’s JavaScript file 207 ■ Viewing the results 207

9.4 Using pthreads 208
Adjusting the calculate_primes logic to create and use four
pthreads 210 ■ Using Emscripten to generate the WebAssembly
files 213 ■ Viewing the results 214

10 WebAssembly modules in Node.js 219
10.1 Revisiting what you know 220
10.2 Server-side validation 220
10.3 Working with Emscripten-built modules 222

Loading a WebAssembly module 222 ■ Calling functions in the
WebAssembly module 223 ■ Calling into the JavaScript 227
Calling JavaScript function pointers 229

CONTENTS xi

10.4 Using the WebAssembly JavaScript API 231
Loading and instantiating a WebAssembly module 232 ■ Calling
functions in the WebAssembly module 234 ■ The WebAssembly
module calling into JavaScript 238 ■ The WebAssembly module
calling JavaScript function pointers 241

PART 4 DEBUGGING AND TESTING247

11 WebAssembly text format 249
11.1 Creating the game’s core logic using WebAssembly text

format 252
The module’s sections 253 ■ Comments 255 ■ Function
signatures 255 ■ The module node 256 ■ The import
nodes 257 ■ The global nodes 261 ■ The export nodes 262
The start node 264 ■ The code nodes 264 ■ The type
nodes 283 ■ The data node 285

11.2 Generating a WebAssembly module from the text
format 286

11.3 The Emscripten-generated module 287
Creating the C++ file 288 ■ Generating a WebAssembly
module 289

11.4 Creating the HTML and JavaScript files 290
Modifying the HTM8L file 290 ■ Creating the JavaScript
file 291

11.5 Viewing the results 297

12 Debugging 300
12.1 Extending the game 301
12.2 Adjusting the HTML 302
12.3 Displaying the number of tries 304

The generateCards JavaScript function 305 ■ Adjusting the text
format 306 ■ Generating the Wasm file 307 ■ Testing the
changes 308

12.4 Incrementing the number of tries 310
The updateTriesTotal JavaScript function 311 ■ Adjusting the
text format 311 ■ Generating the Wasm file 313 ■ Testing the
changes 314

12.5 Updating the summary screen 321
The levelComplete JavaScript function 322 ■ Adjusting the text
format 323 ■ Generating the Wasm file 324 ■ Testing the
changes 325

CONTENTSxii
13 Testing—and then what? 327
13.1 Installing the JavaScript testing framework 329

The package.json file 330 ■ Installing Mocha and Chai 330

13.2 Creating and running tests 331
Writing the tests 331 ■ Running the tests from the command
line 335 ■ An HTML page that loads your tests 336
Running the tests from a browser 338 ■ Making the tests
pass 338

13.3 Where do you go from here? 340

343Installation and tool setupappendix A
ccall, cwrap, anappendix B 353d direct function calls

360Emscripten macrosappendix C
375Exercise solutionsappendix D
395Text format extrasappendix E

index 411

preface
Compared to my friends, I was a late bloomer when it came to programming. I only
discovered it in high school by chance because I needed another computer course,
and my guidance counselor suggested Computer Ed. I was expecting to learn about
how computers work, but, much to my surprise, the course was about programming. It
didn’t take long before I was hooked, and I adjusted my career direction from one
dealing with building architecture to one in software architecture.

In 2001, I landed a job with Dovico Software helping it maintain and improve its
C++ client/server application. The winds of change were blowing, and in 2004, Dovico
decided to switch to a software-as-a-service model, and I moved to the web application
product. I still helped maintain the C++ applications, but my core focus became web
development with C# and JavaScript. These days, I still do web development, but my
focus has shifted to the architecture side of things—building APIs, working with data-
bases, and exploring new technologies.

I enjoy being able to give back to the developer community through blogs and pub-
lic speaking. In September 2017, I was asked if I’d be interested in giving a presenta-
tion at a local user group. As I was browsing for ideas on what I could talk about, I ran
across an article from PSPDFKit that talked about a technology called WebAssembly
(https://pspdfkit.com/blog/2017/webassembly-a-new-hope/).

I had read about Google’s Native Client (PNaCI) technology, in which C or C++
compiled code could run in the Chrome web browser at near-native speeds. I’d also
read about Mozilla’s asm.js technology, where you could compile C or C++ code to a
subset of JavaScript and have it run really fast in browsers that supported it. In brows-
ers that didn’t support asm.js, it would still run, but at normal speed, because it’s just
JavaScript. Somehow, this was the first I’d heard of WebAssembly.
xiii

https://pspdfkit.com/blog/2017/webassembly-a-new-hope/

PREFACExiv
WebAssembly takes the improvements that asm.js brought and aims to address its
shortcomings. Not only can you write code in a number of different languages and
compile it into something that works safely in a browser, but it’s already available in all
major desktop and mobile browsers! It’s also available outside the browser, in places
like Node.js! I was blown away by its potential and spent every spare moment from
then on digging into the technology and blogging about it.

Late in 2017, my blog posts were noticed by Manning Publications, and I was con-
tacted to see if I would be interested in writing a book about WebAssembly. At first, the
book was going to cover multiple languages as well as show you how to work with the
technology from both a backend and frontend developer perspective. By the first
review, however, it became obvious that the book wasn’t focused enough, so we
decided that it would be best to narrow the scope to the C++ programming language
and focus more on backend developers.

The WebAssembly community and working groups haven’t been sitting still while
I’ve been working on this book. In fact, several advancements to the technology are in
the works. Recently, the ability to use multithreaded WebAssembly modules in the
desktop version of Google Chrome became possible without the need to turn on a
developer flag! WebAssembly has the potential to help bring web development to a
whole new level, and I’m excited to see where things go.

acknowledgments
I was told that writing a book took work and time, but I wasn’t expecting it to take as
much work as it did! With help from my editors and reviewers, and feedback from
those who purchased an early copy, I believe this has turned out to be a great book
that will help you get started with WebAssembly.

I need to thank a lot of people who made this book possible. First and foremost, I
need to thank my family for their patience with me as I worked long into the evenings
and on weekends and holidays, and even used up some vacation time to meet dead-
lines. My wife Selena and my girls Donna and Audrey—I love you all very much!

Next, thank you to my first editor at Manning, Kevin Harreld, who helped me get
up and running with writing this book. Kevin later accepted a job at another company,
giving me the opportunity and pleasure to work with Toni Arritola for the remainder
of the book. Toni, thank you for your patience while working with me, your profes-
sionalism, your honesty where you didn’t beat around the bush and told it like it was,
and your desire for quality.

Thank you to everyone at Manning who has played a role in this book, from mar-
keting to production. Your tireless work is appreciated.

Thank you to all the reviewers who took time out of their busy lives to read this
book at the various stages of its development and gave constructive feedback, includ-
ing Christoffer Fink, Daniel Budden, Darko Bozhinovski, Dave Cutler, Denis Kreis,
German Gonzalez-Morris, James Dietrich, James Haring, Jan Kroken, Jason Hales,
Javier Muñoz, Jeremy Lange, Jim Karabatsos, Kate Meyer, Marco Massenzio, Mike
Rourke, Milorad Imbra, Pavlo Hodysh, Peter Hampton, Reza Zeinali, Ronald Borman,
Sam Zaydel, Sander Zegveld, Satej Kumar Sahu, Thomas Overby Hansen, Tiklu Gan-
guly, Timothy R. Kane, Tischliar Ronald, Kumar S. Unnikrishnan, Viktor Bek, and
Wayne Mather.
xv

ACKNOWLEDGMENTSxvi
Special thanks to my technical editor, Ian Lovell, who gave lots of invaluable feed-
back throughout the process, and my technical proofreader, Arno Bastenhof, who
gave the code one last review before the book went into production.

And finally, a huge thank you to the browser makers that have worked together to
bring a technology to market that will benefit the web for years to come. Thank you to
the many people around the world continuing to work on improving WebAssembly
and extend its reach. The possibilities are enormous for this technology, and I can’t
wait to see where WebAssembly takes us.

about this book
WebAssembly in Action was written to help you understand what WebAssembly is, how it
works, and what you can and can’t do with it. It leads you through the various options
for how you can build a WebAssembly module depending on your needs. It starts with
simple examples and builds up to more advanced topics, like dynamic linking, parallel
processing, and debugging.

Who should read this book

WebAssembly in Action is for developers with a basic understanding of C or C++, Java-
Script, and HTML. While there’s WebAssembly information online, some of it is out-
of-date and typically doesn’t go into a lot of detail or cover advanced topics. This book
presents the information in an easy-to-follow format that will help both beginner and
expert developers create and interact with WebAssembly modules.

How this book is organized

This book has 13 chapters that are divided into four parts.
Part 1 explains what WebAssembly is and how it works. It also introduces you to the

Emscripten toolkit, which you’ll use throughout this book to create WebAssembly
modules:

 Chapter 1 discusses what WebAssembly is, the problems it solves, and how it
works. It also explains what makes it secure, which languages can be used to cre-
ate WebAssembly modules, and where the modules can be used.

 Chapter 2 explains how a WebAssembly module is structured and what each
section of the module is responsible for.
xvii

ABOUT THIS BOOKxviii
 Chapter 3 introduces you to the Emscripten toolkit and teaches you about the
different output options available when creating a WebAssembly module.
You’re also introduced to the WebAssembly JavaScript API.

Part 2 leads you through the process of creating a WebAssembly module and interact-
ing with it in a web browser:

 Chapter 4 teaches you how to take an existing C or C++ codebase and adjust it
so that it can also be compiled into a WebAssembly module. You’ll also learn
how to interact with the module from your web page’s JavaScript.

 Chapter 5 teaches you how to adjust the code you built in chapter 4 so that the
WebAssembly module can now call into your web page’s JavaScript code.

 Chapter 6 walks you through the process of modifying the WebAssembly mod-
ule to work with function pointers passed to the module from your JavaScript
code. This allows your JavaScript to specify functions on-demand and take
advantage of JavaScript promises.

Part 3 introduces advanced topics like dynamic linking, parallel processing, and work-
ing with WebAssembly modules in places other than a web browser:

 Chapter 7 introduces you to the basics of dynamic linking, in which two or
more WebAssembly modules can be linked together at runtime to act as one.

 Chapter 8 takes what you learned in chapter 7 and expands on it, teaching you
how to create multiple instances of the same WebAssembly module and have
each instance dynamically link to another WebAssembly module on-demand.

 Chapter 9 teaches you about web workers and pthreads. In this chapter, you’ll
learn how to prefetch WebAssembly modules as needed in a background thread
of your browser using web workers. You’ll also learn how to do parallel process-
ing in a WebAssembly module using pthreads.

 Chapter 10 demonstrates that WebAssembly isn’t limited to a web browser. In
this chapter, you’ll learn how to use several of your WebAssembly modules in
Node.js.

Part 4 digs into debugging and testing:

 Chapter 11 teaches you about the WebAssembly text format by having you build
a card-matching game.

 Chapter 12 extends the card-matching game to show you the various options
that are available to debug a WebAssembly module.

 Chapter 13 teaches you how to write integration tests for your modules.

Each chapter builds on what was learned in the previous chapters, so it’s best if they’re
read in order. Developers should read chapters 1, 2, and 3 in sequence to understand
what WebAssembly is, how it works, and how to use the Emscripten toolkit. Appendix
A is also important so that you can get the tooling set up properly in order to follow
along with the code in this book. The first two parts of the book cover the core

ABOUT THIS BOOK xix
concepts. The rest—the advanced and debugging topics—can be read based on your
needs.

About the code

This book contains many source code examples in both numbered listings and inline
with normal text. To distinguish it from normal text, the code is formatted with a
fixed-width font like this. Also, if code has changed from a previous example,
the change is indicated in bold.

In some cases, the code shown in the book has been reformatted with line breaks
and indentation to accommodate the page space available. In rare cases where there
still isn’t enough room, listings will use a line-continuation marker (➥). In the book’s
text, annotations highlight important concepts rather than the use of comments.

The source code for this book is available for download from the publisher’s web-
site at www.manning.com/books/webassembly-in-action.

liveBook discussion forum
Purchase of WebAssembly in Action includes free access to a private web forum run by
Manning Publications where you can make comments about the book, ask technical
questions, and receive help from the author and from other users. To access the forum,
go to https://livebook.manning.com/#!/book/webassembly-in-action/discussion. You
can also learn more about Manning’s forums and the rules of conduct at https://livebook
.manning.com/#!/discussion.

Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It isn’t a commitment to any specific amount of participation on the part of the
author, whose contribution to the forum remains voluntary (and unpaid). We suggest
you try asking the author some challenging questions lest his interest stray! The forum
and the archives of previous discussions will be accessible from the publisher’s website
as long as the book is in print.

Other online resources

Need additional help?

 Emscripten has a lot of documentation available for many different tasks:
https://emscripten.org.

 The Emscripten community is very active, with frequent releases. If you find an
issue with Emscripten itself, you can check to see if someone has filed a bug
report or knows how to work around the issue you’re having: https://github
.com/emscripten-core/emscripten.

 Stack Overflow is also a great website to ask questions or help others: https://
stackoverflow.com/questions.

www.manning.com/books/webassembly-in-action
https://livebook.manning.com/#!/book/webassembly-in-action/discussion
https://livebook.manning.com/#!/discussion
https://livebook.manning.com/#!/discussion
https://livebook.manning.com/#!/discussion
https://emscripten.org
https://github.com/emscripten-core/emscripten
https://github.com/emscripten-core/emscripten
https://github.com/emscripten-core/emscripten
https://stackoverflow.com/questions
https://stackoverflow.com/questions
https://stackoverflow.com/questions

about the author

C. GERARD GALLANT received a Microsoft Certified Profes-
sional certificate in 2013 for completing the Programming
in HTML5 with JavaScript and CSS3 specialist exam. He
blogs regularly on Blogger.com and DZone.com.
xx

about the cover illustration
The figure on the cover of WebAssembly in Action is captioned “Fille Lipparotte,” or a
girl from the Lipparotte. The illustration is taken from a collection of dress costumes
from various countries by Jacques Grasset de Saint-Sauveur (1757–1810), titled
Costumes Civils Actuels de Tous les Peuples Connus, published in France in 1788. Each
illustration is finely drawn and colored by hand. The rich variety of Grasset de Saint-
Sauveur’s collection reminds us vividly of how culturally apart the world’s towns and
regions were just 200 years ago. Isolated from each other, people spoke different dia-
lects and languages. In the streets or in the countryside, it was easy to identify where
they lived and what their trade or station in life was just by their dress.

The way we dress has changed since then, and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns, regions, or countries. Perhaps we have traded cultural
diversity for a more varied personal life—certainly for a more varied and fast-paced
technological life.

At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Grasset de Saint-Sauveur’s pictures.
xxi

Part 1

First steps

This part of the book will introduce you to WebAssembly and the process of
creating a WebAssembly module.

 In chapter 1, you’ll learn what WebAssembly is, the problems it solves, what
makes it secure, and which programming languages you can use with it.

 In chapter 2, I’ll introduce the internal structure of a WebAssembly module,
so you can see what each section’s purpose is.

 Then, in chapter 3, you’ll learn about the different output options available
with the Emscripten toolkit by creating your first WebAssembly modules. I’ll also
introduce you to the WebAssembly JavaScript API.

Meet WebAssembly
This chapter covers
 What WebAssembly is

 The problems that WebAssembly solves

 How WebAssembly works

 What makes WebAssembly secure

 The languages you can use to create a WebAssembly
module

When it comes to web development, one thing that’s top of mind for most web
developers is performance, from how fast the web page loads to how responsive it is
overall. A number of studies have shown that if your web page doesn’t load within
three seconds, 40% of your visitors will leave. That percentage increases for every
additional second it takes your page to load.

How long it takes your web page to load isn’t the only issue. According to one
Google article, if a web page has poor performance, 79% of visitors say they’re less
likely to purchase from that website again (Daniel An and Pat Meenan, “Why mar-
keters should care about mobile page speed” [July 2016], http://mng.bz/MOlD).

As web technologies have advanced, there’s been a push to move more and
more applications to the web. This has presented developers with another chal-
lenge, because web browsers support only one programming language: JavaScript.

Having a single programming language across all browsers is good in one
sense—you only have to write your code once, and you know that it will run in every
3

http://mng.bz/MOlD

4 CHAPTER 1 Meet WebAssembly
browser. You still have to test in each browser you intend to support, because vendors
sometimes implement things slightly differently. Also, sometimes one browser vendor
won’t add a new feature at the same time other vendors do. Overall, though, having
one language to support is easier than having four or five. The downside of browsers
supporting only JavaScript, however, is that the applications we want to move to the
web aren’t written in JavaScript—rather, they’re written in languages like C++.

 JavaScript is a great programming language, but we’re now asking it to do more
than it was originally designed to do—heavy computations for games, for example—
and we’re asking it to run really fast.

What is WebAssembly?1.1
As browser makers looked for ways to improve JavaScript’s performance, Mozilla
(which makes the Firefox browser) defined a subset of JavaScript called asm.js.

Asm.js, the forerunner to WebAssembly1.1.1

Asm.js brought the following advantages:

 You don’t write asm.js directly. Instead, you write your logic using C or C++ and
convert it into JavaScript. Converting code from one language to another is
known as transpiling.

 Faster code execution for high computations. When a browser’s JavaScript
engine sees a special string called the asm pragma statement ("use asm";), it
acts as a flag, telling the browser that it can use the low-level system operations
rather than the more expensive JavaScript operations.

 Faster code execution from the very first call. Type-hints are included to tell
JavaScript what type of data a variable will hold. For example, a | 0 would be
used to hint that the variable a will hold a 32-bit integer value. This works
because a bitwise OR operation of zero doesn’t change the original value, so
there are no side effects to doing this.

These type-hints serve as a promise to the JavaScript engine indicating that,
if the code declares a variable as an integer, it will never change to a string, for
example. Consequently, the JavaScript engine doesn’t have to monitor the code
to find out what the types are. It can simply compile the code as it’s declared.

The following code snippet shows an example of asm.js code:

function AsmModule() {
 "use asm";
 return {
 add: function(a, b) {
 a = a | 0;
 b = b | 0;
 return (a + b) | 0;
 }
 }
}

Flag telling JavaScript that the
code that follows is asm.js

Type-hint indicating that the
parameter is a 32-bit integer

Type-hint indicating that the
return value is a 32-bit integer

5What problems does it solve?
Despite asm.js’s advantages, it still has some shortcomings:

 All the type-hints can make the files really large.
 The asm.js file is a JavaScript file, so it still has to be read in and parsed by the

JavaScript engine. This becomes an issue on devices like phones because all that
processing slows load time and uses battery power.

 To add additional features, browser makers would have to modify the JavaScript
language itself, which isn’t desirable.

 JavaScript is a programming language and wasn’t intended to be a compiler
target.

1.1.2 From asm.js to MVP

As browser makers looked at how they could improve on asm.js, they came up with a
WebAssembly minimum viable product (MVP) that aimed to take asm.js’s positive
aspects while addressing its shortcomings. In 2017, all four major browser vendors
(Google, Microsoft, Apple, and Mozilla) updated their browsers with support for the
MVP, which is sometimes referred to as Wasm:

 WebAssembly is a low-level assembly-like language that can run at near-native
speeds in all modern desktop browsers as well as many mobile browsers.

 WebAssembly files are designed to be compact and, as a result, can be transmit-
ted and downloaded fast. The files are also designed in such a way that they can
be parsed and initialized quickly.

 WebAssembly is designed as a compile target so that code written in languages
such as C++, Rust, and others can now run on the web.

Backend developers can leverage WebAssembly to improve code reuse or bring their
code to the web without having to rewrite it. Web developers also benefit from the cre-
ation of new libraries, improvements to existing libraries, and the opportunity to
improve performance in computationally heavy sections of their own code. Although
WebAssembly’s primary use is in web browsers, it’s also designed with portability in
mind, so you can use it outside the browser as well.

1.2 What problems does it solve?
The WebAssembly MVP addresses the following asm.js issues.

1.2.1 Performance improvements

One of the biggest issues that WebAssembly aims to solve is performance—from how
long it takes to download your code to how quickly the code executes. With pro-
gramming languages, rather than writing code in the machine language that the
computer’s processor understands (1s and 0s, or native code), you usually write
something that’s closer to a human language. While it’s easier to work with code
that’s abstracted from your computer’s fine details, computer processors don’t

6 CHAPTER 1 Meet WebAssembly
understand your code, so when it comes time to run it, you have to convert what you
wrote into machine code.

 JavaScript is what’s known as an interpreted programming language—that is, it reads
the code you wrote as it’s executing and translates those instructions into machine
code on the fly. With interpreted languages, there’s no need to compile the code
ahead of time, which means it starts running sooner. The downside, however, is that
the interpreter has to convert the instructions to machine code every time the code is
run. If your code is doing a loop, for example, each line of that loop has to be inter-
preted every time the loop is executed. Because a lot of time isn’t always available
during the interpretation process, optimizations aren’t always possible either.

 Other programming languages, like C++, aren’t interpreted. With these types of
languages, you need to convert the instructions to machine code ahead of time using
special programs called compilers. With compiled programming languages, it takes a
bit of time up front to convert the instructions to machine code before you can run
them, but the advantage is that there’s more time to run optimizations on the code;
once it’s compiled to machine code, it doesn’t have to be compiled again.

 Over time, JavaScript has gone from simply being a glue language that ties compo-
nents together, where it was only expected to be short-lived, to a language now used by
many websites to do complex processing; it can easily involve hundreds to thousands
of lines of code; and, with the rise of single-page applications, this code can often be
long-lived. The internet has gone from websites that just displayed some text and a few
pictures to very interactive websites and even sites that are called web applications
because they’re similar to desktop applications but run in a web browser.

 As developers continued to push JavaScript’s limits, some noticeable performance
issues came to light. Browser makers decided to try to find a middle ground in which
you get the advantages of an interpreter, where the code starts running as soon as it
gets called, but you also have code that runs faster when it’s being executed. To make
the code faster, browser makers introduced a concept called JIT (just-in-time) compil-
ing, in which the JavaScript engine monitors the code as it runs; if a section of code is
used enough times, the engine will attempt to compile that section into machine code
so that it can bypass the JavaScript engine and use the lower-level system methods
instead, which are much faster.

 The JavaScript engine needs to monitor the code several times before it gets com-
piled to machine code because JavaScript is also a dynamic programming language.
In JavaScript, a variable can hold any type of value. For example, a variable can hold
an integer initially but later be assigned a string. Until the code is run a few times, a
browser doesn’t know what to expect. Even when compiled, the code still needs to be
monitored, because there’s a chance that something will change and the compiled
code for that section will need to be thrown out and the process started again.

7What problems does it solve?
Faster startup times1.2.2 compared with JavaScript

As with asm.js, WebAssembly isn’t designed to be written by hand, and it’s not
intended to be read by humans. When code is compiled to WebAssembly, the result-
ing bytecode is represented in a binary format, rather than a text format, which
reduces the file size, allowing it to be transmitted and downloaded fast.

 The binary file is designed in such a way that module validation can be made in a
single pass. The file’s structure also allows for different sections of the file to be com-
piled in parallel.

 By implementing JIT compilation, browser makers have made a lot of progress in
improving JavaScript performance. But the JavaScript engine can compile JavaScript
to machine code only after code has been monitored several times. WebAssembly
code, on the other hand, is statically typed, which means the types of values that the
variables will hold are known ahead of time. Because of this, WebAssembly code can
be compiled to machine code from the beginning, without having to be monitored
first—performance improvements are seen from the first time the code is run.

 Since the MVP’s initial release, browser makers have found ways to further improve
WebAssembly’s performance. One such improvement was the introduction of some-
thing they call streaming compilation, which is the process of compiling the WebAssembly
code to machine code as the file is being downloaded and received by the browser.
Streaming compilation allows for a WebAssembly module to be initialized as soon as it
finishes downloading, which speeds up the module’s startup time considerably.

Ability to use languages other than JavaScript in the browser1.2.3

Up until this point, for a language other than JavaScript to be able to target the web,
the code had to be converted to JavaScript, which wasn’t intended to be a compiler
target. WebAssembly, on the other hand, was designed to be a compiler target from
the beginning, so developers who want to use a particular language for web develop-
ment will be able to do so without having to transpile their code into JavaScript.

 Because WebAssembly isn’t tied to the JavaScript language, improvements can be
made to the technology more easily and without worrying about interfering with how
JavaScript works. This independence should result in the ability to improve Web-
Assembly much faster.

 For the WebAssembly MVP, C and C++ were given focus as languages that could
target WebAssembly, but Rust has since added support, and several other languages
are also experimenting with it.

Opportunity for code reuse1.2.4

Being able to take code written in languages other than JavaScript and compile it to
WebAssembly gives developers more flexibility when it comes to code reuse. Now,
something that would have had to be rewritten in JavaScript can be used on the desk-
top or server and run in the browser.

8 CHAPTER 1 Meet WebAssembly
How does it work?1.3
As figure 1.1 illustrates, with JavaScript, the code is included in the website and is
interpreted as it runs. Because JavaScript variables are dynamic, looking at the add
function in the illustration, it’s not obvious what type of values you’re dealing with.
The variables a and b could be integers, floats, strings, or even a combination in which
one variable could be a string and the other a float, for example.

 The only way to know what the types are for sure is to monitor the code as it exe-
cutes, which is what the JavaScript engine does. Once the engine is satisfied that it
knows the variable’s types, it can convert that section of code into machine code.

WebAssembly isn’t interpreted but, rather, is compiled into the WebAssembly binary
format by a developer ahead of time, as figure 1.2 shows. Because the variable types
are all known ahead of time, when the browser loads the WebAssembly file, the Java-
Script engine doesn’t need to monitor the code. It can simply compile the code’s
binary format into machine code.

JavaScript

Browser

function add(a, b){
 return (a + b);
}

01110001001...

JavaScript compiled
to machine code

Figure 1.1 JavaScript compiled to machine code as it executes

C++ Wasm

Developer

C++ compiled to
WebAssembly binary

Wasm

Browser

WebAssembly binary
compiled to machine code

01110001001...

Figure 1.2 C++ being turned into WebAssembly and then into machine code in the browser

9How does it work?
Overview of how compilers work1.3.1

In section 1.2.1, we talked briefly about how developers write code in a language that’s
closer to a human language, but computer processors understand only machine lan-
guage. As a result, the code you write has to be converted into machine code in order
to execute. What I didn’t mention is that each type of computer processor has its own
type of machine code.

 It would be inefficient to compile each programming language directly to each
version of machine code. Instead, what usually happens is shown in figure 1.3, in
which a part of the compiler, referred to as the frontend, converts the code you wrote
into an intermediate representation (IR). Once the IR code has been created, the
backend part of the compiler takes this IR code, optimizes it, and then turns it into the
desired machine code.

Because a browser can run on a number of different processors (from desktop com-
puters to smartphones and tablets, for example), distributing a compiled version of
the WebAssembly code for each potential processor would be tedious. Figure 1.4
shows what you do instead, which is take the IR code and run it through a special com-
piler that converts it into a special binary bytecode and places that bytecode in a file
with a .wasm extension.

The bytecode in your Wasm file isn’t machine code yet. It’s simply a set of virtual
instructions that browsers that support WebAssembly understand. As figure 1.5 shows,
when the file is loaded into a browser that supports WebAssembly, the browser verifies
that everything is valid; the bytecode is then compiled the rest of the way into the
machine code of the device the browser is running on.

C++

C

Rust

Frontend

ARM

x86

IR

Backend
Figure 1.3 Compiler frontend
and backend

C++ .wasm

C

Rust

Frontend

IR

WebAssembly backend
Figure 1.4 Compiler frontend
with a WebAssembly backend

10 CHAPTER 1 Meet WebAssembly
Loading, compiling,1.3.2 and instantiating a module

At the time of writing, the process of downloading the Wasm file into the browser and
having the browser compile it is done using JavaScript function calls. There’s a desire
to allow WebAssembly modules to interact with ES6 modules in the future, which
would include the ability for WebAssembly modules to be loaded though a special
HTML tag (<script type="module">), but this isn’t yet available. (ES is shorthand
for ECMAScript, and 6 is the version. ECMAScript is the official name for JavaScript.)

 Before the WebAssembly module’s binary bytecode can be compiled, it needs to be
validated to make sure that the module is structured correctly, that the code can’t do
anything that isn’t permitted, and that it can’t access memory that the module doesn’t
have access to. Checks are also made at runtime to ensure that the code stays within
the memory that it has access to. The Wasm file is structured so that validation can be
made in a single pass to ensure that the validation process, compilation to machine
code, and then instantiation occur as quickly as possible.

 Once a browser has compiled the WebAssembly bytecode into machine code, the
compiled module can be passed to a web worker (we’ll dig into web workers in chap-
ter 9, but, for now, know that web workers are a way to create threads in JavaScript) or
to another browser window. The compiled module can even be used to create addi-
tional instances of the module.

 Once a Wasm file has been compiled, it has to be instantiated before it can be
used. Instantiation is simply the process of receiving any import objects that are
needed, initiating the module’s elements, calling the start function if a start function
was defined, and then finally returning the module’s instance to the execution envi-
ronment.

.wasm

ARM

x86

Browser

Figure 1.5 Wasm file loaded into a browser
and then compiled to machine code

WebAssembly vs. JavaScript
Up until now, the only language allowed to run within the JavaScript virtual machine
(VM) was JavaScript. When other technologies were tried over the years, like plug-ins,
they needed to create their own sandboxed VM, which increased both the attack sur-
face and the use of computer resources. For the first time ever, the JavaScript VM is
being opened up to allow WebAssembly code to also run in the same VM. This has
several advantages. One of the biggest is that the VM has been heavily tested and
hardened against security vulnerabilities over the years. If a new VM was created, it
would undoubtedly have some security issues to iron out.

11Structure of a WebAssembly module
When programming for a web browser, you basically have two main components: the
JavaScript VM, which the WebAssembly module runs in, and Web APIs (for example,
DOM, WebGL, web workers, and so on). Being an MVP, there are some things missing
from WebAssembly. Your WebAssembly module can communicate with JavaScript but
isn’t yet able to talk directly to any of the Web APIs. A post-MVP feature is being
worked on that will give WebAssembly direct access to Web APIs. In the meantime,
modules can interact with Web APIs indirectly by calling into JavaScript and having
JavaScript perform the action needed on the module’s behalf.

1.4 Structure of a WebAssembly module
WebAssembly currently has only four available value types:

 32-bit integers
 64-bit integers
 32-bit floats
 64-bit floats

Boolean values are represented using a 32-bit integer, where 0 is false and a nonzero
value is true. All other value types, such as strings, need to be represented in the mod-
ule’s linear memory.

 The main unit of a WebAssembly program is called the module, a term used for
both the binary version of the code and the compiled version in the browser. A Web-
Assembly module isn’t something you’re expected to create by hand, but having a
basic understanding of how the module is structured, and how it works under the
hood, can come in handy because you interact with certain aspects of it during initial-
ization and over the module’s lifetime.

 Figure 1.6 is a basic representation of a WebAssembly file’s structure. You’ll learn
about a module’s structure in more detail in chapter 2, but, for now, I’ll give you a
quick overview.

WebAssembly is being designed as a complement to JavaScript and not as a replace-
ment. Although we’ll likely see some developers try to create entire websites using
only WebAssembly, this probably won’t be the norm. There will be times when Java-
Script will still be the better choice. There will also be times when a website may need
to include WebAssembly for access to faster calculations or for lower-level support.
For example, SIMD (single instruction, multiple data)—the ability to process multiple
data with a single instruction—was being built into the JavaScript of several brows-
ers, but browser vendors decided to deprecate the JavaScript implementation and
make SIMD support available only via WebAssembly modules. As a result, if your web-
site needs SIMD support, you’ll need to include a WebAssembly module to commu-
nicate with.

12 CHAPTER 1 Meet WebAssembly
A Wasm file starts with a section called the preamble.

1.4.1 Preamble

The preamble contains a magic number (0x00 0x61 0x73 0x6D, which is \0asm) that
distinguishes a WebAssembly module from an ES6 module. This magic number is
then followed by a version (0x01 0x00 0x00 0x00, which is 1) that indicates which
version of the WebAssembly binary format was used to create the file.

 Only one version of the binary format exists at the moment. One of the goals with
WebAssembly is to keep everything backward-compatible as new features are being
added and to avoid having to increase the version number. If a feature ever arises that
can’t be implemented without breaking things, then the version number will be
increased.

 Following the preamble, a module can have several sections, but each section is
optional, so you could technically have an empty module with no sections. You’ll learn
about one use case for an empty module in chapter 3 when you implement feature
detection to check if WebAssembly is supported in a web browser.

 Two types of sections are available: known sections and custom sections.

Indicates that this is a WebAssembly module
and which version of the WebAssembly binary
format was used

Known sections
(all are optional)

Preamble

Type

Import

Function

Table

Memory

Global

Export

Start

Element

Code

Data

Any kind of data

Any kind of data

Custom sections
(optional)

A basic representation of a WebAssembly file’s structureFigure 1.6

13WebAssembly text format
Known sections1.4.2

Known sections can be included only once and must appear in a specific order. Each
known section has a specific purpose, is well-defined, and is validated when the mod-
ule is instantiated. Chapter 2 goes into more detail about known sections.

Custom sections1.4.3

A custom section provides a way to include data inside the module for uses that don’t
apply to the known sections. Custom sections can appear anywhere in the module
(before, in between, or after the known sections) any number of times, and multiple
custom sections can even reuse the same name.

 Unlike with known sections, if a custom section isn’t laid out correctly, it won’t trig-
ger a validation error. Custom sections can be loaded lazily by the framework, which
means the data they contain might not be available until some point after the mod-
ule’s initialization.

 For the WebAssembly MVP, a custom section called “name” was defined. The idea
with this section is that you could have a debug version of your WebAssembly module,
and this section would hold the names of the functions and variables in text form for
use when debugging. Unlike with other custom sections, this section should appear
only once and only after the Data section.

WebAssembly text format1.5
WebAssembly has been designed with the web’s openness in mind. Just because the
binary format isn’t designed to be written or read by humans doesn’t mean that Web-
Assembly modules are a way for developers to try to hide their code. Actually, quite
the opposite is true. A text format that uses s-expressions has been defined for Web-
Assembly that corresponds to the binary format.

INFO Symbolic expression, or s-expression, was invented for the Lisp pro-
gramming language. An s-expression can be either an atom or an ordered
pair of s-expressions that allow you to nest s-expressions. An atom is a symbol
that’s not a list: foo or 23, for example. A list is represented by parentheses,
and can be empty or can hold atoms or even other lists; each item is space
delimited: () or (foo) or (foo (bar 132)), for example.

This text format will enable View Source for the code in a browser, for example, or it
can be used for debugging. You can even write s-expressions by hand and, by using a
special compiler, compile the code into the WebAssembly binary format.

 Because the WebAssembly text format will be used by browsers when you choose to
View Source and for debugging purposes, having a basic understanding of the text
format will be useful. For example, since all sections of a module are optional, you
could define an empty module using the following s-expression:

(module)

14 CHAPTER 1 Meet WebAssembly
If you were to compile the (module) s-expression into the WebAssembly binary format
and look at the resulting binary values, the file would contain only the preamble bytes
:0061 736d (the magic number) and 0100 0000 (the version number).

LOOKING AHEAD In chapter 11, you’ll create a WebAssembly module using
only the text format so that you’ll have a better idea of what you’re looking at
if you ever need to debug a module in a browser, for example.

1.6 How is WebAssembly secure?
One way that WebAssembly is secure is that it’s the first language to ever share the
JavaScript VM, which is sandboxed from the runtime and has had years of hardening
and security tests to make it secure. WebAssembly modules don’t have access to any-
thing that JavaScript doesn’t have access to and will also respect the same security pol-
icies, which include enforcing things like same-origin policy.

 Unlike a desktop application, a WebAssembly module doesn’t have direct access to
a device’s memory. Instead, the runtime environment passes the module an Array-
Buffer during initialization. The module uses this ArrayBuffer as linear memory, and
the WebAssembly framework checks to make sure that the code is operating within
the bounds of the array.

 A WebAssembly module doesn’t have direct access to items, such as function point-
ers, that are stored in the Table section. The code asks the WebAssembly framework to
access an item based on its index. The framework then accesses the memory and exe-
cutes the item on the code’s behalf.

 In C++, the execution stack is in memory along with the linear memory and,
although the C++ code isn’t supposed to modify the execution stack, it’s possible to do
so using pointers. WebAssembly’s execution stack is also separate from the linear
memory and isn’t accessible by the code.

MORE INFO If you would like more information about WebAssembly’s secu-
rity model, you can visit the following website: https://webassembly.org/
docs/security.

What languages can I use to create a1.7
WebAssembly module?
To create the MVP, WebAssembly’s initial focus was on the C and C++ languages, but
languages like Rust and AssemblyScript have since added support. It’s also possible to
write code using the WebAssembly text format, which uses s-expressions, and compile
that into WebAssembly using a special compiler.

 Right now, WebAssembly’s MVP doesn’t have garbage collection (GC), which lim-
its what some languages can do. GC is being worked on as a post-MVP feature, but,
until it arrives, several languages are experimenting with WebAssembly by either
compiling their VM to WebAssembly or, in some cases, by including their own garbage
collector.

https://webassembly.org/docs/security
https://webassembly.org/docs/security
https://webassembly.org/docs/security

15Where can I use my module?
 The following languages are experimenting with or have WebAssembly support:

 C and C++.
 Rust is aiming to be the programming language of choice for WebAssembly.
 AssemblyScript is a new compiler that takes TypeScript and turns it into Web-

Assembly. Converting TypeScript makes sense, considering that it’s typed and
already transpiles to JavaScript.

 TeaVM is a tool that transpiles Java to JavaScript but can now also generate Web-
Assembly.

 Go 1.11 added an experimental port to WebAssembly that includes a garbage
collector as part of the compiled WebAssembly module.

 Pyodide is a port of Python that includes the core packages of Python’s scien-
tific stack: Numpy, Pandas, and matplotlib.

 Blazor is an experimental effort from Microsoft to bring C# to WebAssembly.

MORE INFO The following GitHub repository maintains a curated list of
languages that compile to, or have their VMs in, WebAssembly. The list also
indicates where the language stands in its support of WebAssembly:
https://github.com/appcypher/awesome-wasm-langs.

For learning WebAssembly in this book, we’ll use C and C++.

1.8 Where can I use my module?
In 2017, all the modern browser makers released versions of their browsers that sup-
port WebAssembly’s MVP; these include Chrome, Edge, Firefox, Opera, and Safari.
Several mobile web browsers also support WebAssembly, including Chrome, Firefox
for Android, and Safari.

 As mentioned at the beginning of this chapter, WebAssembly was designed with
portability in mind so that it can be used in multiple locations, not just in a browser. A
new standard called WASI (WebAssembly Standard Interface) is being developed to
ensure WebAssembly modules will work consistently across all supported systems. The
following article gives a good overview of WASI: Lin Clark, “Standardizing WASI: A sys-
tem interface to run WebAssembly outside the web” (March 27, 2019), http://mng
.bz/gVJ8.

MORE INFO If you’d like to learn more about WASI, the following GitHub
repository has a curated list of related links and articles: https://github.com/
wasmerio/awesome-wasi.

One nonbrowser location that supports WebAssembly modules is Node.js, starting
with version 8. Node.js is a JavaScript runtime built using Chrome’s V8 JavaScript
engine that allows JavaScript code to be used server-side. Similar to how many devel-
opers see WebAssembly as an opportunity to use code that they’re familiar with in the
browser, rather than JavaScript, Node.js lets developers who prefer JavaScript also use

http://mng.bz/gVJ8
http://mng.bz/gVJ8
http://mng.bz/gVJ8
https://github.com/appcypher/awesome-wasm-langs
https://github.com/wasmerio/awesome-wasi
https://github.com/wasmerio/awesome-wasi
https://github.com/wasmerio/awesome-wasi

16 CHAPTER 1 Meet WebAssembly
it on the server side. To demonstrate using WebAssembly outside the browser, chapter
10 will show you how to work with your WebAssembly module in Node.js.

 WebAssembly isn’t a replacement for JavaScript but is rather a complement to it.
There are times when using a WebAssembly module will be a better choice and times
when using JavaScript will be better. Running in the same VM as JavaScript lets both
technologies leverage each other.

 WebAssembly will open the door for developers who are proficient in languages
other than JavaScript to make their code available on the web. It will also allow web
developers who might not know how to code in languages like C or C++ to gain access
to newer and faster libraries and potentially those with features not available in cur-
rent JavaScript libraries. In some cases, WebAssembly modules might be used by
libraries to speed up execution of certain aspects of the library; other than having
faster code, the library would work the same as it always has.

 The most exciting thing about WebAssembly is that it’s already available in all
major desktop browsers, in several major mobile browsers, and even outside the
browser in Node.js.

Summary
As you saw in this chapter, WebAssembly brings a number of performance improve-
ments as well as improvements in language choice and code reuse. Some key
improvements that WebAssembly brings are the following:

 Transmission and download times are faster because of smaller file sizes due to
the use of binary encoding.

 Due to the way Wasm files are structured, they can be parsed and validated
quickly. Also because of how they’re structured, portions of the files can be
compiled in parallel.

 With streaming compilation, WebAssembly modules can be compiled as they’re
being downloaded so that they’re ready to be instantiated the moment the
download completes, speeding up load time considerably.

 Code execution is faster for things like computations due to the use of
machine-level calls rather than the more expensive JavaScript engine calls.

 Code doesn’t need to be monitored before it’s compiled to determine how it’s
going to behave. The result is that code runs at the same speed every time it
runs.

 Being separate from JavaScript, improvements can be made to WebAssembly
faster because they won’t impact the JavaScript language.

 You can use code written in a language other than JavaScript in a browser.
 There’s an increased opportunity for code reuse by structuring the WebAssembly

framework in such a way that it can be used in the browser and outside it.

A look inside
WebAssembly modules
This chapter covers
 Descriptions of a WebAssembly module’s known and

custom sections

In this chapter, you’ll learn about the different sections of a WebAssembly module
and their purposes. I’ll offer more detail as you proceed through this book, but it’s
helpful to have a basic understanding of how modules are structured and how the
different sections work together.

Some benefits of a module’s different sections and how they’re designed are

 Efficiency—The binary bytecode can be parsed, validated, and compiled in a
single pass.

 Streaming—Parsing, validation, and compilation can begin before all the data
has been downloaded.

 Parallelization—It’s possible for the parsing, validation, and compilation to be
performed in parallel.

 Security—The module doesn’t have direct access to the device memory, and
items like function pointers are called on your code’s behalf.
17

18 CHAPTER 2 A look inside WebAssembly modules
Figure 2.1 represents the basic structure of the WebAssembly binary bytecode.
Although you’ll interact with the various sections when working with WebAssembly
modules, the compiler is responsible for creating the sections as needed and placing
them in the proper order based on your code.

WebAssembly modules can have several sections, but each section is optional. You
could technically have an empty module with no sections. As introduced in chapter 1,
the two types of available sections are

 Known sections
 Custom sections

Known sections have a specific purpose, are well-defined, and are validated when the
WebAssembly module is instantiated. Custom sections are used for data that doesn’t

Module

Continued

1. List of
 unique function
 signatures used
 in the module

2. Items to be
 imported

3. List of all
 functions in
 the module

4. An array
 of references
 to items like
 functions

5. The module’s
 linear memory

6. The module’s
 global variables

7. Items that will be
 exposed to the host

8. An index to a function
 in the module that will
 be called automatically
 once the module has
 been initialized

9. Data to load into the
 Table section during
 instantiation

10. The body of each
 function defined in
 the Function section

11. Data to load into the
 linear memory during
 instantiation

The preamble: this is a WebAssembly module and is built
according to version 1 of the WebAssembly binary format.

Type

Import

Table

Memory

(i32, i32) → (i32)

(i64, i64) → ()

() → ()

Type 0

Type 2

Type 1

00000100

Function

Size0

Version 1

"mathlib", "multiply", Type 0

Global

Export

Element

Global variables

Function 1

Initialization data for Table

Code

Code for Function 0

Code for Function 1

Code for Function 2

Start

Initialization data for Memory

Data

Any kind of data

Custom sections

"add", Function 0

The basic structure of the WebAssembly binarFigure 2.1 y bytecode, highlighting the known and custom sections

19Known sections
apply to the known sections and won’t trigger a validation error if the data isn’t laid
out correctly.

 The WebAssembly bytecode starts with the preamble, which indicates that the
module is a WebAssembly module and that it’s version 1 of the WebAssembly binary
format. After the preamble, you have the known sections, which are all optional. The
figure shows the custom sections at the end of the module, but, in reality, they can be
placed before, in between, or after the known sections. As with known sections, cus-
tom sections are also optional.

 Now that you’ve seen a high-level representation of a WebAssembly module’s basic
structure, let’s take a closer look at each of the known sections.

2.1 Known sections
If a known section is included, it can be included at most one time, and known sec-
tions must appear in the order presented here.

Figure 2.2 is an example of a Type section holding three function signatures:

 The first has two 32-bit integer (i32) parameters and a 32-bit integer (i32)
return value.

 The second has two 64-bit integer (i64) parameters but no return value.
 The third doesn’t accept any parameters or return a value.

DescriptionSection

Type The Type section declares a list of all unique function signatures that will be used in
the module, including those that will be imported. Multiple functions can share the
same signature.

DescriptionSection

Import The Import section declares all the imports that will be used in the module, which
can include Function, Table, Memory, or Global imports.

Imports are designed so that modules can share code and data, but still allow for
the modules to be compiled and cached separately. The imports are provided by
the host environment when the module is instantiated.

Function The Function section is a list of all the functions in the module. The position of the
function declaration in this list represents the index of the function body in the
Code section. The value listed in the Function section indicates the index of the
function’s signature in the Type section.

20 CHAPTER 2 A look inside WebAssembly modules
Figure 2.3 shows an example of how the Type, Function, and Code sections are
related. If you look at the Function section in the diagram, the value of the second
function is the index to the function signature that doesn’t have any parameters or
return value. The index of the second function points to the matching index in the
code section.

Function declarations are separated from the function bodies to allow for parallel and
streaming compilation of each function in the module.

Signature of a function with two 32-bit integer parameters;
returns a 32-bit integer

Signature of a function with two 64-bit integer parameters;
no return value

Signature of a function with no parameters
and no return value

Type section

Index

(i32, i32) → (i32)

(i64, i64) → ()

() → ()

0

1

2

Figure 2.2 A Type section holding three function signatures. The signature at index 0 receives two 32-bit integer
parameters and returns a 32-bit integer value. The signature at index 1 receives two 64-bit integer parameters
but doesn’t have a return value. The signature at index 2 doesn’t receive any parameter values and doesn’t have
a return value.

List of unique
function signatures
used in the module

List of all functions
in the module

The value in the
Function section
matches the index
in the Type section.

The body of each
function defined in
the Function section

The index in the
Function section
matches the index
in the Code section.

Type section

Index

(i32, i32) → (i32)

(i64, i64) → ()

() → ()

0

1

2

Function section

Index

Type 0

Type 2

Type 1

0

1

2

Code section

Index

Code for Function 0

Code for Function 1

Code for Function 2

0

1

2

Example of how the Type, Function, and Code sections work togetherFigure 2.3

21Known sections

Figure 2.4 shows the WebAssembly code asking for the item at index 0 in the Table
section to be called. The WebAssembly framework reads the memory address at that
index and then executes the code at that memory location.

A table is given an initial size and, optionally, a maximum size. For tables, the size is
the number of elements in the table. It’s possible to ask a table to grow by a specified
number of elements. If a maximum number of elements is specified, the system will
prevent the table from growing past that point. If a maximum isn’t specified, however,
the table will be allowed to grow without restriction.

DescriptionSection

Table The Table section holds a typed array of references, like functions, that can’t be
stored in the module’s linear memory as raw bytes. This section provides one of the
core security aspects of WebAssembly by giving the WebAssembly framework a way
to map objects in a secure way.

Your code doesn’t have direct access to the references stored in the table.
Instead, when your code wants to access the data referenced in this section, it
asks for the framework to operate on the item at a specific index in the table. The
WebAssembly framework then reads the address stored at that index and performs
the action. When dealing with functions, for example, this enables the use of func-
tion pointers by specifying the table index.

DescriptionSection

Memory The Memory section holds the linear memory used by the module instance.

Table section

Index

000001000

1

2

Device memory
0 21 3 4 5 6 7 8 9 10 11

Ask for the item at
index 0 to be called.

WebAssembly calls the
item at this address on
the code’s behalf.

Example of an item in the Table section being calledFigure 2.4

The Memory section is also a core security aspect of WebAssembly because WebAssembly
modules don’t have direct access to the device’s memory. Instead, as figure 2.5 shows,
the environment that instantiates the module passes in an ArrayBuffer that a module
instance uses as linear memory. As far as the code is concerned, this linear memory

22 CHAPTER 2 A look inside WebAssembly modules
acts just like the heap in C++, but every time the code tries to access this memory, the
framework verifies that the request is within the bounds of the array.

 A module’s memory is defined as WebAssembly pages that are 64 KB each (1 KB is
1,024 bytes, so one page holds 65,536 bytes). When the environment specifies how
much memory the module can have, it specifies the initial number of pages and,
optionally, the maximum number of pages. If the module needs more memory, you
can request that the memory grow by a specified number of pages. If a maximum
number of pages is specified, the framework will prevent the memory from growing
past that point. If a maximum number of pages isn’t specified, the memory will be
allowed to grow without restriction.

 Multiple instances of WebAssembly modules can share the same linear memory
(ArrayBuffer), which is useful when modules are dynamically linked.

 In C++, the execution stack is in memory along with the linear memory; although the
C++ code isn’t supposed to modify the execution stack, it’s possible to do so using point-
ers. In addition to code not having access to the device memory, WebAssembly has taken
security a step further and has separated the execution stack from the linear memory.

Section Description

Global The Global section allows for the definition of global variables for the module.

Export The Export section holds a list of all objects that will get returned to the host envi-
ronment once the module has been instantiated (the portions of the module that
the host environment can access). This can include Function, Table, Memory, or
Global exports.

Start The Start section declares the index of the function that’s to be called after the
module has been initialized but before the exported functions are callable. The
start function can be used as a way to initialize global variables or memory. If spec-
ified, the function can’t be imported. It must exist within the module.

Element The Element section declares the data that gets loaded into the module’s Table sec-
tion during instantiation.

Code The Code section holds the body of each function declared in the Function section;
each function body must appear in the same order as it was declared. (See figure
2.3 for a depiction of how Type, Function, and Code sections work together.)

Data The Data section declares the data that gets loaded into the module’s linear mem-
ory during instantiation.

ArrayBuffer

Size0

Linear memory

Figure 2.5 ArrayBuffer is used as linear
memory by WebAssembly modules.

23Summary
In chapter 11, you’ll learn about the WebAssembly text format, which is the text equiv-
alent of the module’s binary format. It’s used by browsers for debugging the module if
source maps aren’t available. The text format can also be useful if you need to inspect
your generated modules to see how the compiler created them to determine why
something isn’t working as expected. The text format uses the same names for sec-
tions that you learned in this chapter, but they’re sometimes abbreviated (func
instead of function, for example).

 A module can also include custom sections as a way to include data that doesn’t
apply to the known sections defined in this chapter.

2.2 Custom sections
Custom sections can appear anywhere in the module (before, in between, or after the
known sections), any number of times; multiple custom sections can even reuse the
same name.

 Unlike with known sections, if a custom section isn’t laid out correctly, it won’t trig-
ger a validation error. Custom sections can be loaded lazily by the framework, which
means the data they contain might not be available until some point after the mod-
ule’s initialization.

 One use case for custom sections is the “name” section that was defined for the
WebAssembly MVP. The idea with this section is that function and variable names
could be placed here in text form to aid in debugging. Unlike normal custom sec-
tions, however, this section should only appear once if included and must appear after
the Data known section.

Summary
In this chapter, you learned about the known and custom sections of a WebAssembly
module to gain a better understanding of what the sections are responsible for and
how they work together. This understanding will help you as you interact with the
WebAssembly modules and when you work with the WebAssembly text format. In par-
ticular, you learned that

 WebAssembly module sections, and how they’re designed, are one reason for
many of WebAssembly’s features and advantages.

 A compiler handles generating the WebAssembly module’s sections and placing
them in the proper order.

 All sections are optional, so it’s possible to have an empty module.
 If specified, known sections can appear only once and must appear in a specific

order.
 Custom sections can be placed before, in between, or after known sections and

are used to specify data that doesn’t apply to the known sections.

Creating your first
WebAssembly module
In this chapter, you’ll write some C code and then use the Emscripten toolkit to
compile it into a WebAssembly module. This will let us look at three approaches we
can use with the toolkit to create WebAssembly modules. Just to give you an idea of
what’s possible using the toolkit, some of the items that have been ported to Web-
Assembly using Emscripten include the Unreal Engine 3, SQLite, and AutoCAD.

This chapter covers
 An overview of the Emscripten toolkit

 Creating a module using Emscripten and Emscripten’s HTML
template

 Creating a module with Emscripten JavaScript plumbing
code and letting this code handle loading the module

 Creating a module without the Emscripten JavaScript
plumbing code and then loading the module yourself

 Feature detection to test if WebAssembly is available
24

25The Emscripten toolkit
The Emscripten toolkit3.1
The Emscripten toolkit is currently the most mature toolkit available to compile C or
C++ code into WebAssembly bytecode. It was originally created to transpile such code
into asm.js. When work started on the WebAssembly MVP, Emscripten was chosen
because it uses the LLVM compiler, and the WebAssembly working group already had
experience with LLVM from its work with Google’s Native Client (PNaCl). Emscripten
can still be used to transpile C and C++ code into asm.js, but you’ll be using it to com-
pile the code you write into WebAssembly modules.

 As described in chapter 1, compilers typically have a frontend section, which takes
the source code and converts it to an intermediate representation (IR), and a back-
end to convert the IR into the desired machine code, as figure 3.1 shows.

I mentioned that Emscripten uses the LLVM compiler—this compiler toolchain cur-
rently has the most WebAssembly support, and the nice thing with LLVM is that there
are a number of frontends and backends you can plug into it. The Emscripten com-
piler uses Clang, which is similar to the GCC in C++, as the frontend compiler to con-
vert the C or C++ code into an LLVM IR, as figure 3.2 shows. Emscripten then takes
the LLVM IR and converts it into a binary bytecode, which is simply a virtual set of
instructions that browsers that support WebAssembly understand. This might sound a
bit intimidating at first, but, as you’ll see in this chapter, the process of compiling C or
C++ code into a WebAssembly module is a simple command in a console window.

 Before you continue, please see appendix A to install Emscripten and ensure you
have all the tools you’ll need to use in this book. Once you have the necessary tools
installed, you can continue to the next section.

C++

C

Rust

Frontend

ARM

x86

IR

Backend
Figure 3.1 Compiler frontend
and backend

.wasm

C

C++

Clang frontend

LLVM IR

Emscripten backend
Figure 3.2 Compiler frontend
with LLVM IR

26 CHAPTER 3 Creating your first WebAssembly module
WebAssembly modules3.2
When the WebAssembly file is loaded by a browser that supports WebAssembly, the
browser will check to ensure that everything is valid. If everything checks out with the
file, the browser will compile the bytecode the rest of the way into the device’s
machine code, as figure 3.3 shows.

Both the WebAssembly binary file and the compiled object in the browser are referred
to as modules. Although you can create an empty module, it won’t be of much use, so
most modules will have at least one function to do some sort of processing. A mod-
ule’s functions can be built-in, can be imported from other modules’ exports, or can
even be imported from JavaScript.

 WebAssembly modules have several sections that Emscripten will populate based
on your C or C++ code. Under the hood, sections start with a section ID followed by
the section’s size and then the content itself. Chapter 2 provides more information
about module sections. All the sections are optional, which is why you can have an
empty module.

 The Start section points to the index of a function that’s part of the module (not
imported). The function referenced will be called automatically before any of the
module’s exports are callable by the JavaScript. If you include a main function in your
C or C++ code, Emscripten will set it up as the module’s start function.

 A WebAssembly module receives memory to use from the host in the form of an
ArrayBuffer. As far as the module is concerned, the buffer acts just like the heap in C
or C++, but every time the module interacts with the memory, the WebAssembly
framework verifies that the request is within the bounds of the array.

 WebAssembly modules only support four data types:

 32-bit integers
 64-bit integers
 32-bit floats
 64-bit floats

Boolean values are represented using a 32-bit integer, where 0 is false and a nonzero
value is true. All other values that are set by the host environment, such as strings,
need to be represented in the module’s linear memory.

 WebAssembly files contain a binary bytecode designed not for humans to read
but rather to be as efficient as possible so that it can be downloaded, compiled, and

.wasm

ARM

x86

Browser
Figure 3.3 The WebAssembly file is
loaded into a browser and compiled
to machine code.

27WebAssembly modules
instantiated quickly. At the same time, WebAssembly modules aren’t intended to be
black boxes that developers can use to hide their code. WebAssembly has been
designed with the web’s openness in mind, so the WebAssembly binary format has an
equivalent WebAssembly text format representation. We can see this text format by
going into the browser’s developer tools.

 WebAssembly modules have several advantages:

 They’re designed to be a compile target, which JavaScript wasn’t designed for.
This will allow improvements to be made to WebAssembly over time without
impacting JavaScript.

 They’re designed to be portable, meaning that they can also be used in places
other than web browsers. Node.js is currently another place you can use Web-
Assembly modules.

 WebAssembly files use a binary format so that they are as compact as possible
and can be transmitted and downloaded quickly.

 Files are structured to allow validation to happen in a single pass, which speeds
up startup time.

 Using the latest WebAssembly JavaScript API functions, the file can be compiled
to machine code as it’s being downloaded so that it’s ready to be used as soon as
the download completes.

 Because of JavaScript’s dynamic nature, code needs to be monitored several
times before it gets compiled to machine code. WebAssembly bytecode, on the
other hand, is compiled to machine code right away. The result is that the first
call to a function is just as fast as the tenth call, for example.

 Because it’s compiled ahead of time, the compiler can make optimizations to
the code before it even reaches the browser.

 WebAssembly code runs almost as fast as native code. Because WebAssembly has
checks to make sure the code is behaving properly, there’s a slight performance
reduction compared to running pure native code.

3.2.1 When would you not use a WebAssembly module?

Although WebAssembly has a lot of advantages, it’s not the right choice in every case.
JavaScript will be a better choice under certain circumstances:

 If the logic is simple, the extra work to set up a compiler toolchain and write
something in another language might not be worth the effort.

 Although this issue is being worked on and will change, at the moment, Web-
Assembly modules don’t have direct access to the DOM or any Web APIs.

DEFINITION The DOM, or Document Object Model, is an interface represent-
ing the various aspects of a web page, which gives JavaScript code a way to
interact with the page.

28 CHAPTER 3 Creating your first WebAssembly module

3.3

Emscripten output options
You can create WebAssembly modules in several ways depending on your goals. You
can instruct Emscripten to generate the WebAssembly module file and, depending on
the options specified in the command line, Emscripten can also include a JavaScript
plumbing file and an HTML file.

DEFINITION A JavaScript plumbing file is a JavaScript file that Emscripten
generates. The file’s contents can vary depending on the command-line argu-
ments given. The file has code that will automatically download the Web-
Assembly file and have it compiled and instantiated in the browser. The
JavaScript also contains numerous helper functions to make it easier for the
host to talk with the module and vice versa.

You can use the three following approaches to create a module with Emscripten:

 Ask Emscripten to generate the WebAssembly module, JavaScript plumbing file, and
HTML template file.

Having Emscripten generate an HTML file isn’t typical for production but is
useful if you’re learning about WebAssembly and want to focus on the compil-
ing of C or C++ before digging into the details of what’s involved with loading
and instantiating a module. This method is also useful if you wish to experi-
ment with portions of code as a way to debug or prototype things. With this
approach, you can simply write the C or C++ code, compile it, and then open
the generated HTML file in your browser to see the results.

 Ask Emscripten to generate the WebAssembly module and the JavaScript plumbing file.
This is typically the approach used for production because you can add the

generated JavaScript file to a new or existing HTML page simply by including a
reference to the file. This JavaScript file will automatically download and have
the module instantiated when the HTML page is loaded. The JavaScript file
also has several helper functions to make the interactions between the module
and your JavaScript easier.

Both the HTML template approach and this approach will include any stan-
dard C library items in the module if your code uses them. If your code doesn’t
use a standard C library function, but you need it included in the module, you
can use flags to tell Emscripten to include the functions that you need.

 Ask that Emscripten generate only the WebAssembly module.
This approach is meant for dynamically linking two or more modules at run-

time, but it can also be used to create a minimalist module that contains no
standard C library support or JavaScript plumbing file.

DEFINITION This will be covered in more detail in chapters 7 and 8, but,
for now, dynamic linking of WebAssembly modules is the process of join-
ing two or more modules together at runtime, where the unresolved sym-
bols in one module (a function, for example) resolve to symbols existing in
another module.

29Compiling C or C++ with Emscripten and using the HTML template
If your code needs to pass anything more than integers or floats between the
module and JavaScript, then it will need memory management. Unless you have
a standard library equivalent to the malloc and free functions, I don’t recom-
mend this approach for this scenario. The module’s linear memory is really an
array buffer passed to the module during instantiation, so the memory issues
won’t affect the browser or your OS but could lead to bugs that are difficult to
track down.

Aside from dynamic linking, this approach is useful for learning how to man-
ually download, compile, and instantiate a module using the WebAssembly
JavaScript API, which the Emscripten plumbing code does for you. Knowing
what the WebAssembly JavaScript API functions do will make it easier to under-
stand some examples you may find online.

Because Emscripten is not the only compiler available that can create Web-
Assembly modules (Rust has one, for example), you might, in the future, want
to use a third-party module that doesn’t have code to load itself. You may need
to manually download and have a module instantiated at some point.

3.4 Compiling C or C++ with Emscripten
and using the HTML template
Suppose you’ve been asked to write some logic that will determine what prime num-
bers exist in a certain number range. You could write the code using JavaScript, but
you’ve read that one of the main areas where WebAssembly shines is with calculations,
so you’ve decided to use WebAssembly for this project.

 You’ll need to integrate the project into an existing website, but you’ll want to create
the WebAssembly module first to verify that everything is working as expected before
moving on. You’ll create the logic using C and then compile it to a WebAssembly mod-
ule using Emscripten. Conveniently, as figure 3.4 shows, Emscripten can generate the
JavaScript needed to download and compile the WebAssembly module and can also cre-
ate an HTML file from a template.

C/C++ HTML JavaScript WasmEmscripten

1. C/C++ code
is written.

2. Emscripten generates
WebAssembly, HTML,
and JavaScript files.

3. Open HTML file in a
browser to view results.

Emscripten generating the WebAssembly, JavaScript, and HTML filesFigure 3.4

30 CHAPTER 3 Creating your first WebAssembly module
The first thing you’ll need to do is create a folder where you’ll
keep your files: WebAssembly\Chapter 3\3.4 html_template\.

NOTE This book has adopted the Windows conven-
tion for representing file separators. *Nix users will
need to replace the \ characters with /.

As figure 3.5 shows, the first step of the process is to create
the C or C++ code. Create a file called calculate_primes.c,
and then open it. The first thing you’ll need to do is include
a header file for the standard C library, the C standard input
and output library, and the Emscripten library:

#include <stdlib.h>
#include <stdio.h>
#include <emscripten.h>

The next step is to write a helper function called IsPrime, which will accept as a
parameter an integer value that you’ll check to see if it’s a prime number. If it is, the
function will return 1. Otherwise, the function will return 0 (zero).

 A prime number is any number that can only be divided evenly by 1 and itself.
Other than 2, even numbers are never prime numbers, so the function can skip those.
Also, since checking any number higher than the number’s square root would be
redundant, your code can skip those numbers too, which will make the logic a bit
more efficient. Based on this, you can create the following function in the calculate_
primes.c file:

int IsPrime(int value) {

 if (value == 2) { return 1; }

 if (value <= 1 || value % 2 == 0) { return 0; }

 for (int i = 3; (i * i) <= value; i += 2) {

 if (value % i == 0) { return 0; }

 }

 return 1;

}

Now that you have a function that can determine if a value is a prime number or not,
you need to write some code to loop through a range of numbers, call the IsPrime
function, and output the value if it’s a prime number. The code for doing this doesn’t
need any interaction from JavaScript, so you’ll include it in the main function. When
Emscripten sees a main function in your C or C++ code, it will specify this function as
the start function for the module. Once the module has been downloaded and com-
piled, the WebAssembly framework will call the start function automatically.

2 is a prime number.

1 or less and even numbers
(other than 2) aren’t primes.

Loops from 3 to the square root of
the value; only checks odd numbers

The value can be divided evenly by the
loop value, so it’s not a prime number.The number couldn’t be divided

evenly by any number you
checked. It’s a prime number.

C/C++

1. C/C++ code
is written.

Figure 3.5 Step 1 is to
create the C or C++ code.

31Compiling C or C++ with Emscripten and using the HTML template
 You’ll use the printf function in your main function to pass strings to Emscripten’s
JavaScript code. This code will then take the strings received and display them in the
text box on the web page as well as in the console window of the browser’s developer
tools. In chapter 4, you’ll write code in which the module will talk to JavaScript code,
which will give you a better understanding of how the interaction with JavaScript works.

 Following your IsPrime function, you can write the code shown in the following list-
ing to loop from 3 to 100,000 to find out which of those numbers are prime numbers.

...

int main() {
 int start = 3;
 int end = 100000;

 printf("Prime numbers between %d and %d:\n", start, end);

 for (int i = start; i <= end; i += 2) {
 if (IsPrime(i)) {
 printf("%d ", i);
 }
 }
 printf("\n");

 return 0;
}

Figure 3.6 shows the next step of the process, in which you’ll ask the Emscripten com-
piler to take your C code and convert it into a WebAssembly module. In this case,
you’ll also want Emscripten to include the JavaScript plumbing file as well as the
HTML template file.

 To compile your C code into a WebAssembly module, you need to use the console
window to run the emcc command, which is the Emscripten compiler. Rather than
having to specify a file path for the files you want Emscripten to compile, it’s easier if

Listing 3.1 The main function in calculate_primes.c

Starts with an odd number
to allow the following loop
to be more efficient

Tells the JavaScript
code what the

range is

Loops through the range of numbers
but only checks the odd numbers

If the current value is a
prime number, tells the
JavaScript code the value

C/C++ HTML JavaScript WasmEmscripten

2. Emscripten generates
 WebAssembly, HTML,
 and JavaScript files.

Figure 3.6 Emscripten is asked to compile the C code into a WebAssembly file to
generate the JavaScript plumbing file and HTML file.

32 CHAPTER 3 Creating your first WebAssembly module
you navigate to the WebAssembly\Chapter 3\3.4 html_template\ folder. Open a con-
sole window, and navigate to this folder.

 The emcc command accepts a number of inputs and flags. Although their order
doesn’t matter, in general, you should include the input files first. In this case, you
should place calculate_primes.c after emcc.

 By default, if you don’t include an output file name, Emscripten won’t generate an
HTML file and will instead generate a WebAssembly file with the name a.out.wasm
and a JavaScript file with the name a.out.js. To specify an output file, you’ll need to use
the -o flag (hyphen and lowercase o) followed by the file name you want. To have
Emscripten include the HTML template, you’ll need to specify a file name with a
.html extension.

 Run the following command to generate the WebAssembly module, JavaScript
plumbing file, and HTML template. Note that this might take a couple of minutes if
this is your first time running the Emscripten compiler because it will also be creating
some common resources for the compiler to reuse. These resources will be cached so
that subsequent compiles will be much faster:

emcc calculate_primes.c -o html_template.html

MORE INFO There are several optimization flags available on Emscripten’s
website at https://emscripten.org/docs/optimizing/Optimizing-Code.html.
Emscripten recommends starting out with no optimizations when you first
port your code. Not specifying an optimization flag at the command line
defaults to -O0 (capital O followed by zero). You should debug and fix any
issues that might exist in your code before you start turning on optimizations.
Depending on your needs, you would then adjust the optimization flags from
-O0 to -O1, -O2, -Os, -Oz, and -O3.

If you look in the folder where you have the calculate_primes.c file, you should now
see the three other files that are highlighted in figure 3.7.

The newly
generated
files

The newly generated HTML, JavaScript, and WebAssembly filesFigure 3.7

https://emscripten.org/docs/optimizing/Optimizing-Code.html

33Compiling C or C++ with Emscripten and using the HTML template
The html_template.wasm file is your WebAssembly module. The html_template.js file
is the generated JavaScript file, and the third file is your HTML file, html_template
.html.

 As figure 3.8 shows, the final step of the process is to view the web page to verify
that the WebAssembly module is behaving as expected.

If you’re using Python for your local web server, navigate to the WebAssembly\Chapter
3 \3.4 html_template\ folder and start up the web server. Open a web browser, and type
the following address into the address box (depending on your web server, you might
not need the :8080 portion of the address):

http://localhost:8080/html_template.html

You should see the HTML page that was generated, as shown in figure 3.9.

HTML JavaScript Wasm

3. Open HTML file in a
 browser to view results.

Figure 3.8 You can now open the
HTML file in a web browser to view
the results.

The HTML page running in Google ChromeFigure 3.9

34 CHAPTER 3 Creating your first WebAssembly module
TIP Python needs to be installed in order to install the Emscripten toolkit,
which is convenient because Python can also run a local web server. If you
wish to use a different web server for the examples in this book, you can, but
you’ll need to ensure that the WebAssembly media type is present. Instructions
for how to start up a local web server using Python can be found in appendix
A. The media type that browsers expect when loading a WebAssembly module
is also mentioned in this appendix.

The HTML file created by Emscripten directs any printf output from the module to
a text box so that you can see output on the page rather than having to open the
browser’s developer tools. The HTML file also includes a canvas element above the
text box that allows for WebGL output. WebGL is an API based on OpenGL ES 2.0
that enables web content to render 2D and 3D graphics to a canvas element.

 In a later chapter, you’ll learn how Emscripten takes the output from the call to
printf and directs that output to the browser’s debugger console or a text box.

Having Emscripten generate the JavaScript plumbing code3.5
Being able to ask Emscripten to include an HTML template file can be helpful if you
want to try out code quickly or verify that the logic in a module is sound before mov-
ing on. When it comes to production code, however, you don’t typically use the
HTML template file. Instead, you ask Emscripten to compile your C or C++ code into
a WebAssembly module and generate the JavaScript plumbing file. Then, you either
create a new web page or edit an existing one and include a reference to the Java-
Script file. Once the JavaScript file reference is part of the web page, when the page
loads, the file will handle downloading and instantiating the WebAssembly module
automatically.

Compiling C or C++ with3.5.1 Emscripten-generated JavaScript

You’ve verified the logic for your prime numbers by having Emscripten build the Web-
Assembly module with the HTML template. Now that the WebAssembly module’s
logic is ready and working as expected, you’ll want to tell Emscripten to generate only
the WebAssembly module and the JavaScript plumbing file. As figure 3.10 shows,
you’ll create your own HTML file and then reference the generated JavaScript file.
The first thing you’ll need to do is create a folder where you’ll keep your files for this
section: WebAssembly\Chapter 3\3.5 js_plumbing\ .

 As figure 3.11 shows, the first step is creating the C or C++ code. Listing 3.2 shows
the contents of the calculate_primes.c file that you created for use with the HTML
template. Copy this file to your 3.5 js_plumbing folder.

35Having Emscripten generate the JavaScript plumbing code

#include <stdlib.h>
#include <stdio.h>
#include <emscripten.h>

int IsPrime(int value) {
 if (value == 2) { return 1; }
 if (value <= 1 || value % 2 == 0) { return 0; }

 for (int i = 3; (i * i) <= value; i += 2) {
 if (value % i == 0) { return 0; }
 }

 return 1;
}

int main() {
 int start = 3;
 int end = 100000;

 printf("Prime numbers between %d and %d:\n", start, end);

 for (int i = start; i <= end; i += 2) {
 if (IsPrime(i)) {
 printf("%d ", i);
 }
 }
 printf("\n");

 return 0;
}

Now that you have your new C file, figure 3.12 shows the next step of the process, in
which you’ll ask the Emscripten compiler to take your C code and convert it into a

Code in calculate_primes.cListing 3.2

C/C++ JavaScript HTMLWasmEmscripten

1. C/C++ code
 is written.

2. Emscripten generates
 WebAssembly and
 JavaScript files.

3. Create HTML file and
 include the generated
 JavaScript file.

Figure 3.10 Emscripten is asked to generate the WebAssembly and JavaScript plumbing files.
You then create the HTML file and include a reference to the generated JavaScript file.

C/C++

1. C/C++ code
 is written.

Figure 3.11 Step 1
is to create the C or
C++ code.

36 CHAPTER 3 Creating your first WebAssembly module
WebAssembly module. You’ll also want Emscripten to include the JavaScript plumbing
file but not the HTML template file.

 To compile your C code into a WebAssembly module, you’ll need to open a con-
sole window and navigate to the WebAssembly\Chapter 3\3.5 js_plumbing\ folder. The
command to use here is similar to the one that you used when asking for the HTML
template to be included. In this case, you want only the WebAssembly and JavaScript
files generated. You don’t want the HTML file, so you’ll need to modify the output file
name to have a .js extension rather than a .html extension. Run the following com-
mand to have Emscripten build the WebAssembly module and JavaScript file:

emcc calculate_primes.c -o js_plumbing.js

If you look in the folder where you copied the calculate_primes.c file, you should now
see two new files, pointed out in figure 3.13.

C/C++ JavaScript WasmEmscripten

2. Emscripten generates
 WebAssembly, and
 JavaScript files.

Figure 3.12 Emscripten is asked to compile the C code into a WebAssembly
file and to generate the JavaScript plumbing file.

The newly
generated
files

The newly generated JavaScript and WebAssembly filesFigure 3.13

37Having Emscripten generate the JavaScript plumbing code
Now that you have the WebAssembly module and generated JavaScript file, figure 3.14
shows the next step, in which you’ll create an HTML file and include the generated
JavaScript file. The JavaScript file that Emscripten generated handles the loading and
instantiation of the WebAssembly module, so simply including a reference to that file
in an HTML page is all you need to gain access to the module’s features.

Creating a basic HTML web page for use in browsers3.5.2

For developers who may be strong with languages like C or C++ but have never really
worked with HTML pages, I’ll briefly introduce the elements of an HTML page,
which you’ll build in a moment to use for your examples in this chapter. If you already
understand the basics of HTML pages, you can skip ahead to the next section, “Creat-
ing your HTML page.”

HTML BASICS

The first thing every HTML page needs is a DocType declaration that tells the browser
which version of HTML is being used. HTML 5 is the latest version and the one you’ll
want to use, so the DocType for HTML 5 is written as <!DOCTYPE html>.

 For the most part, HTML is a series of tags similar to XML. XML is used to
describe data, whereas HTML is used to describe presentation. HTML tags are similar
to the DocType declaration just mentioned and usually consist of opening and closing
tags surrounding content that can also include other tags.

 After the DocType declaration, an HTML page starts with an html tag, which holds
all the page content. Within the html tags are the head and body tags.

 The head tag is where you can include metadata about the page, like a title or the
file’s character encoding. The character encoding that’s typically used for HTML files
is UTF-8, but you can also use other encodings. You can also include link tags in the
head tag to include references to files for things like the styles to use for the look of
the page content.

 The body tag is where you place all the content for the page. As with the head tag,
the body tag can also include file references.

JavaScript HTMLWasm

3. Create an HTML file and
 include the generated
 JavaScript file.

Figure 3.14 An HTML file is modified, or a
new one is created, to reference the
generated JavaScript file.

38 CHAPTER 3 Creating your first WebAssembly module
 Script tags are used to include JavaScript code by including an src attribute,
which tells the browser where to find a code file. This is still in the works, but browser
makers want to allow WebAssembly modules to be included in a web page by simply
including a script tag in the page, similar to <script type="module">.

 Script tags can be placed in either the head or body tag, but, until recently, it was
considered best practice to place script tags at the end of the body tag. This was
because the browser would pause DOM construction until the script was downloaded,
and a web page felt more responsive if it showed something before the pause rather
than showing a white screen briefly at the beginning. Script tags can now include an
async attribute, which tells the browser to continue building the DOM while down-
loading the script file at the same time.

MORE INFO The following web page explains in more detail why script tags
were recommended at the end of the body tag: Ilya Grigorik, “Adding Interac-
tivity with JavaScript,” Google Developers, http://mng.bz/xld7.

The browser doesn’t need the whitespace in an HTML file. The indents and linefeeds
in an HTML file are optional and are included for readability.

CREATING YOUR HTML PAGE

The following HTML (listing 3.3) is a basic web page for your WebAssembly file,
which you should place in the WebAssembly\Chapter 3\3.5 js_plumbing\ folder and
name js_plumbing.html. The web page in this listing simply includes a reference to
the JavaScript file that Emscripten generated. Because the JavaScript file handles the
loading and instantiation of the WebAssembly module for you, all you have to do is
include a reference to the file.

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8"/>
 </head>
 <body>
 HTML page I created for my WebAssembly module.

 <script src="js_plumbing.js"></script>
 </body>
</html>

VIEWING YOUR HTML PAGE

If you open a web browser and type the following into the address box, you should see
a page displayed similar to the one in figure 3.15:

http://localhost:8080/js_plumbing.html

The HTML for js_plumbing.htmlListing 3.3

The JavaScript file handles
loading and instantiating the
WebAssembly module for you.

http://mng.bz/xld7

39Having Emscripten generate the JavaScript plumbing code

While looking at the web page in the browser, you might be asking yourself, where’s
the text showing all the prime numbers that I saw when I used the HTML template
approach in section 3.4?

 When you asked Emscripten to generate the HTML template in section 3.4,
Emscripten placed all the printf output into a text box on the web page; but, by
default, it directs all such output to the console of the browser’s developer tools. To
display these tools, press F12.

 Each browser’s developer tools are a bit different, but they all have a way to view
console output. As you can see in figure 3.16, the text from the printf call in your
module is being output to the console window in the browser’s developer tools.

The HTML page that you created, running in Google ChromeFigure 3.15

Figure 3.16 The console window in Google Chrome’s developer tools showing the list of prime numbers

40 CHAPTER 3 Creating your first WebAssembly module
Having Emscripten generate3.6 only the WebAssembly file
Figure 3.17 shows the third scenario that we’re going to cover when creating a Web-
Assembly module with Emscripten. Here, you’ll ask Emscripten to only compile your
C or C++ code to WebAssembly and to not generate any other files. In this case, you’ll
not only have to create an HTML file, but you’ll also have to write the JavaScript code
necessary to download and instantiate the module.

You can create a WebAssembly module this way by telling Emscripten that you want to
create a side module. A side module is actually intended for use with dynamic linking
in which multiple modules can be downloaded and then linked together at runtime
to work as one unit. This is similar to dependent libraries in other languages. We’ll
talk about dynamic linking later in the book; for this scenario, we’re not asking for a
side module to do dynamic linking. You’ll be asking Emscripten to create a side mod-
ule because, when you do, Emscripten doesn’t include any of the standard C library
functions with your code in the WebAssembly module, and it doesn’t create a Java-
Script plumbing file.

 You might want to create a side module for several reasons:

 You wish to implement dynamic linking in which multiple modules will be
downloaded and linked together at runtime. In this case, one of your modules
will be compiled as a main module and will have the standard C library func-
tions. I explain the differences between main modules and side modules in
chapter 7, when you’ll dig into dynamic linking, but both side modules and
main modules fall into the three scenarios that you’re looking at in this chapter.

 The logic in your module doesn’t need the standard C library. Be careful here
because if you’re passing anything other than an integer or float between the
JavaScript code and the module, memory management is needed, which will
require some form of the standard C library functions malloc and free. Mem-
ory management issues will impact only your module, given that the module’s

C/C++ JavaScriptHTMLWasmEmscripten

1. C/C++ code
is written.

2. Emscripten generates only
the WebAssembly file.

3. Create HTML file and write
JavaScript to load Wasm file.

Figure 3.17 Emscripten being requested to generate only the WebAssembly file. You then
create the necessary HTML and JavaScript code to download and instantiate the module.

41Having Emscripten generate only the WebAssembly file
memory is only an array buffer passed to it by JavaScript, but the bugs that can
arise may prove difficult to track down.

 You wish to learn how to download the module and have it compiled and
instantiated by the browser, which is a useful skill to have, given that Emscripten
isn’t the only compiler that creates WebAssembly modules. Several examples on
the internet show modules being loaded manually, so being able to create a
module that you can load manually is helpful if you wish to follow along. There
is also a chance that, at some point in the future, you’ll want to work with a
third-party module that has no JavaScript plumbing file.

3.6.1 Compiling C or C++ as a side module with Emscripten

As figure 3.18 shows, your first step will be to create some C code.
Create a folder where you’ll keep your files for this section: Web-
Assembly\Chapter 3\3.6 side_module\.

 Because your C code won’t have access to the printf function,
you’ll need a simple C file as a replacement for the examples used
so far. You’re going to build a function called Increment that
accepts an integer, adds 1 to the value received, and then returns
the result to the caller. In this case, the caller will be a JavaScript
function. Place the following code into a file called side_module.c:

int Increment(int value) {
 return (value + 1);
}

Now that you have your C code, you can move on to the next step, which is to ask
Emscripten to generate only the WebAssembly file, as figure 3.19 shows. To compile
the code as a side module, you’ll need to include the -s SIDE_MODULE=2 flag as part of
the emcc command line. The -s SIDE_MODULE=2 flag tells Emscripten that you don’t
want things like the standard C library functions included in the module or the Java-
Script plumbing file generated.

 You’ll also need to include the -O1 optimization flag (capital letter O and the num-
ber 1). If you don’t specify an optimization flag, Emscripten will use the default -O0
(capital letter O and the number 0), which indicates to not do any optimizations. Not

C/C++ WasmEmscripten

2. Emscripten generates
 only the WebAssembly file.

Figure 3.19 Have Emscripten
generate only the WebAssembly file.

C/C++

1. C/C++ code
 is written.

Figure 3.18 Step
1 is to create the C
or C++ code.

42 CHAPTER 3 Creating your first WebAssembly module
including any optimizations in this scenario will cause link errors to be thrown if you
try to load your module—the module is expecting several functions and global vari-
ables, but your code won’t be providing them. Adding any optimization flag other
than -O0 will fix the issue by removing the extra imports, so you go with the next opti-
mization flag level of -O1. (The letter O is case-sensitive and must be uppercase.)

 You need to specify that you want your Increment function exported so that it can
be called by JavaScript code. To indicate this to the Emscripten compiler, you can
include the function’s name in the -s EXPORTED_FUNCTIONS command-line array.
Emscripten adds an underscore character in front of the functions when it generates
the WebAssembly file, so you’ll need to include the underscore character when
including the function name in the exported array: _Increment.

TIP In this case, you need to specify only one function in the EXPORTED_
FUNCTIONS command-line array. If you need to specify multiple functions,
don’t include a space in between the comma and the next function, or you’ll
receive a compilation error. If you do want to include a space between the
function names, you need to wrap the command-line array in double quotes,
as follows: -s "EXPORTED_FUNCTIONS=['_Increment', '_Decrement']".

Finally, the output file that you specify needs to have the .wasm extension. In your first
scenario, you specified an HTML file, and in your second, you specified a JavaScript
file. In this case, you specify a WebAssembly file. If you don’t specify a file name,
Emscripten will create a file with the name a.out.wasm.

 You can compile your Increment code into a WebAssembly module by opening a
command-line window, navigating to the folder where you saved your C file, and then
running the following command:

emcc side_module.c -s SIDE_MODULE=2 -O1

➥ -s EXPORTED_FUNCTIONS=['_Increment'] -o side_module.wasm

If you look in the folder where you have the side_module.c file, you should now see
just the one new file that’s highlighted in figure 3.20.

The newly
generated
file

The newly generated WebAssembly fileFigure 3.20

43Having Emscripten generate only the WebAssembly file
Loading and instan3.6.2 tiating in a browser

Now that you know how to create the Wasm file itself, you need to create an HTML
file and write the JavaScript code to request this file from the server and have the
module instantiated.

PROMISES AND ARROW FUNCTION EXPRESSIONS

When working with many of the JavaScript functions that we’re about to cover, the
functions typically operate asynchronously through the use of promises. When you
call an asynchronous function, it will return a Promise object that will be called later
when the action either is fulfilled (succeeded) or was rejected (there was an error).

 The Promise object has a then method, which accepts two parameters that are call-
back functions. The first parameter will be called when the action is fulfilled and the
second if the action was rejected.

 With the following example, I include both a function to call when the request is
fulfilled and one to call if there is an error:

asyncFunctionCall.then(onFulfilled, onRejected);

Both the fulfilled and rejected functions accept a single parameter. The function that
calls the fulfilled function can pass any data it wants for the fulfillment parameter
value. The rejected parameter value is a string containing the rejected reason.

 In the previous example, you passed in function pointers to be called when the
then method is fulfilled or rejected. Rather than having a separate function some-
where else in the code, you can always create anonymous functions, as in the following
example:

asyncFunctionCall.then(function(result) {
 ...
}, function(reason) {
 ...
});

Often when working with promises, you’ll see this taken a bit further using arrow
function expressions, which have a shorter syntax compared to normal functions, as
in the following example:

asyncFunctionCall.then((result) => {
 ...
}, (reason) => {
 ...
});

When there is only the one parameter, the parentheses are optional. For example, the
(result) => {} function could be written as result => {}. If there are no parame-
ters, then parentheses are used: () => {}.

Passes in callback functions to
be called when the promise is
fulfilled or rejected

An anonymous function for
if the promise is fulfilled

An anonymous function for
if the promise is rejected

Using an arrow function expression
for the fulfilled function

Using an arrow function expression
for the rejected function

44 CHAPTER 3 Creating your first WebAssembly module
 For the body of the arrow function expression, if a return value is expected and
curly braces are used, then an explicit return statement is required:

(value1, value2) => { return value1 + value2 }

If the body of the arrow function expression is wrapped in parentheses or nothing at
all, then there is an implicit return, as follows:

(value1, value2) => value1 + value2

If you’re interested only in finding out if the action was fulfilled, you don’t have to
specify the second parameter in the then method for the rejection.

 If, on the other hand, you have an action in which you’re interested only if there
was an issue, you can specify null for the first parameter and then a callback for the
rejection. Typically, however, if you’re interested only if there was an error, you’d use
the catch method. This method accepts one parameter, a callback function that will
be called if the action was rejected.

 Both the then and catch methods return promises, which allows several asynchro-
nous operations to be chained together. This makes working with several asynchro-
nous operations that are dependent on each other much easier because the next then
method will be called only once the one before it is fulfilled:

asyncFunctionCall.then(result =>
 asyncFunctionCall2()
).then(result => {

}).catch((err) => {

});

JAVASCRIPT OBJECT SHORTHAND

Some functions that you’ll be using in upcoming examples accept objects as parame-
ters. You can create an object in JavaScript using new Object(), but there is also a
shorthand way of creating objects using curly braces, as in the following example,
which creates an empty object:

const person = {};

Within the object, you can include name/value pairs, with each pair separated by a
comma. The name/value pair itself is separated by a colon, and the value can be a
string, number, object, array, true, false, or null. String values are wrapped in sin-
gle or double quotes. The following is an example of a name/value pair:

age: 21

Creating objects in this manner makes things easier because the object can be
declared and initialized in one step. Once you’ve defined the JavaScript object, you
can access the properties using dot notation, as follows:

const person = { name: "Sam Smith", age: 21 };
console.log("The person's name is: " + person.name);

asyncFunctionCall2 also
returns a promise.

asyncFunctionCall2 fulfilled

One of the calls in the chain was
rejected. Log or display the error.

45Having Emscripten generate only the WebAssembly file

AN OVERVIEW OF THE WEBASSEMBLY JAVASCRIPT API
Browsers that support WebAssembly have something known as the WebAssembly
JavaScript API. This API is a WebAssembly namespace with several functions and
objects that are used to compile and instantiate a module; interact with aspects of the
module, like its memory, to pass strings back and forth between the module and Java-
Script, for example; and handle error conditions.

When using Emscripten’s generated JavaScript file, it handles the process of down-
loading the WebAssembly file for you. It then interacts with the WebAssembly Java-
Script API to have the WebAssembly module compiled and instantiated.

In this section, you’ll see how the API is used so that you can interact with it to
manually load the WebAssembly module that you built in section 3.6.1.

INFO Most modern desktop and mobile browsers, including Edge, Firefox,
Chrome, Safari, and Opera, support WebAssembly. You can view a detailed
list at the following website: https://caniuse.com/#search=WebAssembly.

Before you can do anything with a WebAssembly module, you need to first ask for the
WebAssembly file to be downloaded. To request the file, you’ll use the fetch Java-
Script method. This method lets JavaScript make HTTP-related calls asynchronously.
If you only need to pull data, rather than pass data to the server, for example, then
you need to specify only the first parameter, which is the URI of the file you want to
download, and the fetch method will return a Promise object. For example, if the
Wasm file is sitting in the same folder on the server where the HTML file was down-
loaded from, then you will only need to specify the file name for the URI, as follows:

fetch("side_module.wasm")

The fetch method accepts a JavaScript object as an optional second parameter to
control numerous settings in relation to the request, such as the content type of the
data if you’re passing data to the server. For this book, you won’t be using the optional
second parameter, referred to as init, but if you need to know the details of the init

object, they are available on the MDN Web Docs site at http://mng.bz/ANle.
Once you’ve fetched the WebAssembly file, you need a way to compile and then

instantiate it; for this, the WebAssembly.instantiateStreaming function is the recom-
mended approach because the module gets compiled to machine code as the byte-
code is being downloaded by the fetch method. Compiling the module as it’s being
downloaded speeds up load time because the module is ready to be instantiated as
soon as it finishes downloading.

The instantiateStreaming function accepts two parameters. The first is a
Response object, or a Promise object that will fulfill with a Response object, represent-
ing the source of a Wasm file. Because the fetch method returns a Response object,
you can simply include the method call as the first parameter of instantiateStream-
ing. The second parameter is an optional JavaScript object, which we’ll discuss shortly,
in which you pass the module any data that it’s expecting, such as imported functions
or global variables.

http://mng.bz/ANle
https://caniuse.com/#search=WebAssembly

46 CHAPTER 3 Creating your first WebAssembly module

Pas
ArrayBu
the inst

fu
 The instantiateStreaming function returns a Promise object that, if fulfilled, will
hold a module property and an instance property. The module property is a WebAs-
sembly.Module object, and the instance property is a WebAssembly.Instance object.
The instance property is the object that we’re interested in because it holds an
exports property, which contains all the items the module exports.

 The following is an example of using the WebAssembly.instantiateStreaming
function to load the module you created in section 3.6.1:

WebAssembly.instantiateStreaming(fetch("side_module.wasm"),

➥ importObject).then(result => {
const value = result.instance.exports._Increment(17);
console.log(value.toString());

});

The instantiateStreaming function was added to browsers after the WebAssembly
MVP was first released, so there’s a chance that some browsers that support Web-
Assembly won’t support instantiateStreaming. It’s best to use feature detection to
check and see if instantiateStreaming is available before trying to use it. At the end of
this chapter, section 3.7 shows you how to test to see if this function is available. If it’s
not, you should use the older WebAssembly.instantiate function.

TIP MDN Web Docs (formerly the Mozilla Developer Network) has an arti-
cle about the instantiateStreaming function and includes an up-to-date
browser compatibility table toward the bottom of the page: http://mng
.bz/ZeoN.

As when calling instantiateStreaming, with the instantiate function, you can also use
fetch to download the contents of the WebAssembly file. But, unlike with instantiate-
Streaming, you can’t pass the Promise object directly into the instantiate function.
Instead, you need to wait for the fetch request to be fulfilled, convert the data into an
ArrayBuffer, and then pass that ArrayBuffer into the instantiate function. As with the
instantiateStreaming function, the instantiate function also accepts an optional sec-
ond parameter JavaScript object for the module’s imports.

 The following is an example of using the WebAssembly.instantiate function:

fetch("side_module.wasm").then(response =>
 response.arrayBuffer()
).then(bytes =>
 WebAssembly.instantiate(bytes, importObject)
).then(result => {
 const value = result.instance.exports._Increment(17);
 console.log(value.toString());

});

The Promise object from the fetch call is
passed as the first parameter.

The instance object is where you
can access the exported function.

Asks for the WebAssembly
file to be downloaded

Asks for the file’s data to be
turned into an ArrayBufferses the

ffer to
antiate
nction You now have access to

the instantiated module:
result.instance.

http://mng.bz/ZeoN
http://mng.bz/ZeoN
http://mng.bz/ZeoN

47Having Emscripten generate only the WebAssembly file
In chapter 9, you’ll work with just a compiled module (not instantiated) by passing it
from a web worker. You’ll also work with the WebAssembly.compileStreaming and
WebAssembly.compile functions at that time. For now, the compileStreaming and
compile functions work the same as the instantiateStreaming and instantiate
functions but only return the compiled module.

 Note that there is a WebAssembly.Module function that can compile a module and
a WebAssembly.Instance function to instantiate a compiled module, but these two
functions aren’t recommended because the calls are synchronous. The instantiate-
Streaming, instantiate, compileStreaming, and compile functions are asynchro-
nous and are the recommended functions to use instead.

 As mentioned earlier, the optional JavaScript object (often called importObject)
can be passed as a second parameter to the instantiateStreaming and instantiate
functions to provide the module with anything it needs to import. This object can
include memory, a table, global variables, or function references. You’ll work with
these imports as you work with the various examples throughout this book.

 WebAssembly modules can include a Memory section that indicates how many
pages of memory it would like initially and, optionally, the maximum number of pages
it would like. Each page of memory holds 65,536 bytes or 64 KB. If the module indi-
cates that the memory needs to be imported, then it’s up to your JavaScript code to
provide it as part of the importObject that gets passed to the instantiateStreaming
or instantiate function.

MORE INFO One WebAssembly security feature is that the module can’t allo-
cate its own memory or resize it directly. Instead, the memory used by Web-
Assembly modules is provided by the host in the form of a resizable
ArrayBuffer when the module is instantiated.

To pass memory to the module, the first thing that you need to do is create an
instance of the WebAssembly.Memory object to include as part of the importObject.
The WebAssembly.Memory object accepts a JavaScript object as part of its constructor.
The first property of the JavaScript object is initial, which indicates how many pages
of memory should be initially allocated for the module. The JavaScript object can
optionally include a maximum property, which indicates the maximum number of
pages a WebAssembly’s memory is allowed to grow. You’ll see more details about grow-
ing memory later.

 The following is an example of how you create a WebAssembly.Memory object and
pass it to a module:

const importObject = {
 env: {
 memory: new WebAssembly.Memory({initial: 1, maximum: 10})
 }
};

WebAssembly.instantiateStreaming(fetch("test.wasm"),

➥ importObject).then(result => { ... });

One page of memory initially
and only allowed to grow to a

maximum of 10 pages

48 CHAPTER 3 Creating your first WebAssembly module

CREATING THE JAVASCRIPT TO FETCH AND INSTANTIATE THE MODULE
You’re going to write some JavaScript code to load in the side_module.wasm file that
you created in section 3.6.1, and you’ll use the WebAssembly.instantiateStreaming
function. In section 3.6.1, you asked Emscripten to create the module as a side mod-
ule so that Emscripten wouldn’t include any of the standard C library functions in the
Wasm file and wouldn’t create a JavaScript plumbing file. Although we don’t intend to
use it this way in this chapter, because the side module approach with Emscripten is
really intended for dynamically linking two or more modules together at runtime,
Emscripten adds imports to the module that you’ll need to provide when you call
instantiateStreaming.

 You’ll need to define a JavaScript object, which you’ll call importObject, that has a
child object called env, which in turn contains a __memory_base property that the
module wants to import. This __memory_base property will simply hold a value of zero
because you won’t be dynamically linking this module.

 Once you have your importObject created, you can call the instantiateStream-
ing function, passing in the result of the fetch method for the Wasm file as the first
parameter and the importObject as the second parameter. The instantiateStream-
ing function returns a promise, so you’ll set up a handler for the success callback,
which will be called once the module has been downloaded, compiled, and instanti-
ated. At that point, you can access the exported elements of the WebAssembly module
instance and call your _Increment function, passing in a value of 17. Your _Increment
function takes the value that’s passed in, adds 1 to it, and returns the new value. The
console.log call that you’ll include will output the result to the browser’s console win-
dow and display the number 18 in this case.

 The following is the JavaScript code that’s needed to load and instantiate your
module.

The JavaScript to load and instantiate side_module.wasmListing 3.4

const importObject = {
env: {

__memory_base: 0,
}

};

WebAssembly.instantiateStreaming(fetch("side_module.wasm"),

➥ importObject).then(result => {
const value = result.instance.exports._Increment(17);
console.log(value.toString());

});

CREATING A BASIC HTML PAGE

In your Chapter 3\3.6 side_module\ folder, create a side_module.html file, and then
open it with your favorite editor. As you can see in listing 3.5, the HTML that you’re
going to use to load the WebAssembly file is almost identical to what you used in the
js_plumbing.html file in section 3.5.2, except that here, rather than referencing a
JavaScript file, you’re going to take the JavaScript code that you wrote in listing 3.4
and add it to the script block in listing 3.5.

49Having Emscripten generate only the WebAssembly file

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8"/>
 </head>
 <body>
 HTML page I created for my WebAssembly module.

 <script>
 const importObject = {
 env: {
 __memory_base: 0,
 }
 };

 WebAssembly.instantiateStreaming(fetch("side_module.wasm"),
 ➥ importObject).then(result => {
 const value = result.instance.exports._Increment(17);
 console.log(value.toString());
 });
 </script>
 </body>
</html>

Open a web browser and type http://localhost:8080/side_module.html into the
address box. Then press F12 to open the browser’s developer tools to see that the
HTML page that you just created output the number 18, as figure 3.21 shows.

An HTML page for the WebAssembly module named side_module.htmlListing 3.5

The result of passing 17 to the
module’s Increment function

The HTML page that you created, showing the result of the call to theFigure 3.21 Increment function

http://localhost:8080/side_module.html

50 CHAPTER 3 Creating your first WebAssembly module

Che
th
W

.Modu

WebAs

supp
Feature detection: How to test3.7
if WebAssembly is available
With new technologies, some browser vendors will sometimes implement a feature
before other browser vendors. Not everybody upgrades their browsers to the latest ver-
sion as frequently as we’d like, either, so even if the user is using a browser from a ven-
dor that has implemented a feature, they might not be using a version of the browser
that supports this feature. If there’s a chance that your users will be using a browser
where a feature you need won’t exist, then it’s considered best practice to check for
the feature before trying to use it.

 WebAssembly is a new enough technology that not all browsers—or all versions of
Node.js—currently in use support it. It’s also possible that a browser may support Web-
Assembly but not allow the module you request to be loaded and instantiated due to
security checks with things like Content Security Policy (CSP), which is an added layer
of security to try to prevent things like cross-site scripting (XSS) and data injection
attacks. Because of this, simply checking if the WebAssembly JavaScript object exists
isn’t enough. The following function can be used to detect if the browser or Node.js
supports WebAssembly.

function isWebAssemblySupported() {
 try {
 if (typeof WebAssembly === "object") {

const module = new WebAssembly.Module(new Uint8Array([0x00, 0x61,

➥ 0x73, 0x6D, 0x01, 0x00, 0x00, 0x00]));
if (module instanceof WebAssembly.Module) {

const moduleInstance = new WebAssembly.Instance(module);
return (moduleInstance instanceof WebAssembly.Instance);

}
 }
 } catch (err) {}

 return false;
}

console.log((isWebAssemblySupported() ? "WebAssembly is supported":
"WebAssembly is not supported"));

Now that you know how to test if WebAssembly is supported, there’s still a chance that
the browser or Node.js won’t support the latest feature. For example, WebAssembly
.instantiateStreaming is a new JavaScript function that can be used instead of the
WebAssembly.instantiate function, but instantiateStreaming was created after
the MVP was released. As a result, the instantiateStreaming function might not

JavaScript to test if WebAssembly is supportedListing 3.6

Checks to see that the
WebAssembly JavaScript

API object exists

Wraps in a try/catch just in case a
CompileError or LinkError is thrown

Compiles a minimal
module with just

the magic number
(‘\0asm’) and

version (1)

Supports WebAssembly if the object is a
WebAssembly.Instance JavaScript API object

If the result is a WebAssembly
.Module JavaScript API object

cks whether
e result is a
ebAssembly

le JavaScript
API object

sembly
isn’t

orted.

51Exercises
exist in every browser that supports WebAssembly. To test to see if a JavaScript func-
tion exists, you can do the following:

if (typeof WebAssembly.instantiateStreaming === "function") {
 console.log("You can use the WebAssembly.instantiateStreaming

➥ function");
} else {
 console.log("The WebAssembly.instantiateStreaming function is not

➥ available. You need to use WebAssembly.instantiate instead.");
}

When it comes to feature detection, you generally test for the function you want to use
first and fall back to alternatives if the function isn’t available. In our case,
instantiateStreaming is preferred because it compiles the code as the module is
being downloaded; but if it’s not available, then instantiate will still work. The
instantiate function just doesn’t have the same performance improvements that
instantiateStreaming does.

 Now: how can you use what you learned in this chapter in the real world?

Real-world use cases
The following are some possible use cases for what you’ve learned in this chapter:

 You can use Emscripten’s HTML Template output option to quickly create
proof-of-concept code or test out a WebAssembly feature independently of your
web page. Using the printf function, you can output information to the text
box on the web page and the console of the browser’s developer tools to verify
that things are working as expected. Once you have the code working in a test
environment, you can implement it in your main code base.

 You can use the WebAssembly JavaScript API to do feature detection to deter-
mine if WebAssembly is supported.

 Other examples include a calculator or a unit converter (Celsius to Fahrenheit
or centimeters to inches, for example).

Exercises
You can find the solutions to these exercises in appendix D.

1 Which four data types does WebAssembly support?
2 Add a Decrement function to the side module you created in section 3.6.1.

a The function should have an integer return value and an integer parameter.
Subtract 1 from the value received, and return the result to the calling func-
tion.

b Compile the side module, and then adjust the JavaScript to call the function
and display the result to the console

52 CHAPTER 3 Creating your first WebAssembly module
Summary
As you saw in this chapter, the Emscripten toolkit uses the LLVM compiler toolchain
to convert C or C++ code into an LLVM IR. Emscripten then converts the LLVM IR
into WebAssembly bytecode. WebAssembly-supported browsers load the WebAssembly
file, and, if everything checks out, the bytecode gets compiled the rest of the way into
the device’s machine code.

 The Emscripten toolkit gives you flexibility depending on your needs, allowing you
to create modules in several different ways:

 You can create a module but also have the HTML and JavaScript files generated
for you. This is a useful approach when someone wants to learn about creating
WebAssembly modules before having to learn about the HTML and JavaScript
side of things. It’s also useful when you need to test something quickly and not
have to create the HTML and JavaScript as well.

 You can create a module and also have the JavaScript file generated for you.
Here, you are responsible for creating your own HTML file. This gives you the
flexibility to either create a new custom HTML page or simply add the gener-
ated JavaScript file reference to an existing web page. This would be the typical
method used for production code.

 Finally, you can create only the module. Here you’re responsible for creating
your own HTML file as well as the JavaScript needed to download and instanti-
ate the module. This approach can be useful in learning the details surround-
ing the WebAssembly JavaScript API.

Part 2

Working with modules

Now that you know what WebAssembly is, and have been introduced to
the Emscripten toolkit, this part of the book will guide you through creating
WebAssembly modules that your JavaScript code can interact with and vice versa.

 In chapter 4, you’ll learn how to take an existing C or C++ codebase and
adjust it so that it can also be compiled into a WebAssembly module. You’ll learn
how to interact with your new module from your web page’s JavaScript.

 Chapter 5 teaches you how to adjust the code from chapter 4 so that the Web-
Assembly module can call into your web page’s JavaScript.

 Chapter 6 takes calling into the JavaScript code of your web page to another
level by passing JavaScript function pointers to the WebAssembly module. This
allows your JavaScript to specify functions on demand and take advantage of
JavaScript promises.

Reusing your existing
C++ codebase
This chapter covers
 Adjusting a C++ codebase so that it can also be compiled

by Emscripten

 Exporting WebAssembly functions so that they can be called
by JavaScript

 Calling a WebAssembly function using Emscripten helper
functions

 Passing strings and arrays to the WebAssembly module via
the module’s memory

Typically, when people talk about the advantages of WebAssembly, it’s from the
standpoint of performance. But WebAssembly brings another advantage to the
table—code reuse. Rather than writing the same logic multiple times for each tar-
get environment (desktop, website, and others), WebAssembly lets you reuse the
same code in multiple locations.

Imagine a scenario in which a company already has a desktop point-of-sale
application written in C++ but wants to add an online solution. The company
55

56 CHAPTER 4 Reusing your existing C++ codebase
decides that the first part of the website it should build is the Edit Product web page
shown in figure 4.1. The new website will also use Node.js for the server-side logic, but
I’ll leave the discussion of working with Node.js for a later chapter.

 Because the company has existing C++ code, it would like to take advantage of
WebAssembly to extend its validation code to both the browser and Node.js. This will
ensure that all three locations are validating the data in the exact same way, all while
using a single codebase, which makes maintainability easier. As figure 4.2 shows, the
steps for building this website and incorporating the validation logic are as follows:

1 Modify the C++ code so that it can be compiled by Emscripten.
2 Ask Emscripten to generate the WebAssembly and JavaScript plumbing files.
3 Create the web page and then write the JavaScript code necessary to interact

with the WebAssembly module.

Why would you want to validate the user’s input twice? Why not skip validation in the
browser and just validate the data on the server? You want to validate the data in the
browser first, rather than just on the server, for a few reasons:

 Mainly, the user may not be physically near the server. The farther away they
are, the longer it takes for the data to reach the server and for a response to be
returned. If the user is on the other side of the world, this delay is noticeable, so
validating what you can in the browser makes the website more responsive for
the user.

 Validating as much as you can in the browser also reduces the amount of work
the server needs to do. If the server doesn’t have to respond as often per user, it
can handle more users at once.

The Edit Product page that you’ll be buildingFigure 4.1

57
As helpful as it is to validate user data in the browser, you can’t assume that the data is
perfect when it reaches the server; there are ways to get around the browser’s valida-
tion checks. You don’t want to risk adding bad data to a database—whether submitted
inadvertently or intentionally by the
user. Regardless of how good the vali-
dation is in the browser, the server-side
code must always validate the data it
receives.

 Figure 4.3 shows how the validation
will work in the web page that you’re
about to build. When the user enters
some information and then clicks the
Save button, validation checks will be
performed to ensure the data is as
expected. If there’s an issue with the
data, the web page will display an error
message. Once the issue is corrected,
the user can click the Save button
again. If there are no issues with the
data, then the information will be
passed to the server.

validate.js validate.wasmEmscripten

Emscripten is asked to generate
the WebAssembly and JavaScript
files from validate.cpp.

Files are copied to the
server for use by the
browser and server code.

Browser

Validation logic
(validate.wasm validate.js)

Desktop application written in C++

Validation logic
(validate.cpp)

Server

Validation logic
(validate.wasm validate.js)

Figure 4.2 The steps needed to turn the existing C++ logic into a WebAssembly module for use in a
browser and by the server-side code. I discuss the server aspect, Node.js, in a later chapter.

Browser

Website asks for information

An error message is displayed

User enters some information
and presses the Save button

The data is passed
to the server

Is valid?
Yes

No

How validation will work in the browserFigure 4.3

58 CHAPTER 4 Reusing your existing C++ codebase
Using C or C++ to create a module4.1
with Emscripten plumbing
In this section, you’re going to build the C++ code for the validation logic; you’ll
include the standard C library and Emscripten helper functions, which is the recom-
mended way to build a module for use in production. This approach is recommended
for a few reasons:

 Emscripten provides a number of helper functions that make interactions
between the module and JavaScript easier.

 Emscripten also includes the standard C library functions in the module if your
code uses them. If your code will need a standard C library function at runtime
but doesn’t use it when the code is being compiled, the function can be
included using a command-line flag.

 If you need to pass anything more than integers or floats between the module
and JavaScript, you’ll need to use the module’s linear memory. The standard
C library includes the malloc and free functions, which help with memory
management.

You’ll see the approach to building a WebAssembly module that doesn’t include the
standard C library or Emscripten helper functions later in this chapter.

Making the C++ modifications4.1.1

The first thing you’ll need to do is create a folder where you’ll keep your files for this
section of the chapter: WebAssembly\Chapter 4\4.1 js_plumbing\source\.

 As figure 4.4 shows, the first step toward building a website that reuses the C++ val-
idation code is to modify the code so that it can also be compiled by Emscripten.

EMSCRIPTEN’S CONDITIONAL COMPILATION SYMBOL AND HEADER FILE

In many cases, when you use C or C++ code that’s part of an existing solution to create
a WebAssembly module, you’ll need to add some things to the code for everything to
work together. For example, when the code is compiled for a desktop application, it
doesn’t need the Emscripten header file; you’ll need a way to include that header file,
but only when the code is being compiled by Emscripten.

 Fortunately, Emscripten includes a conditional compilation symbol, __EMSCRIPTEN__,
that you can use to detect whether Emscripten is compiling the solution. If needed, you

Desktop application written in C++

Validation logic
(validate.cpp) Figure 4.4 The first step of the process in reusing

C++ code is to adjust the code so that it can be
compiled by Emscripten.

59Using C or C++ to create a module with Emscripten plumbing
can also include an else condition with the conditional compilation symbol check to
include header files that are needed when code isn’t being compiled by Emscripten.

 Create a file called validate.cpp, and open it. Add the header files for the standard
C library and the string library. Because this code is part of an existing solution, you’ll
need to add the header file for the Emscripten library, but you’ll need to wrap it in a
conditional compilation symbol check to make sure it gets included only if
Emscripten is compiling the code:

#include <cstdlib>
#include <cstring>

#ifdef __EMSCRIPTEN__
 #include <emscripten.h>
#endif

INFO Several C header files have been deprecated or are no longer sup-
ported in C++. An example is stdlib.h. You should now use cstdlib instead of
stdlib.h. For the complete list of header file changes, you can visit
https://en.cppreference.com/w/cpp/header.

THE EXTERN "C" BLOCK

In C++, function names can be overloaded, so to make sure the name is unique when
compiled, the compiler mangles it by adding information to it about the function’s
parameters. The compiler changing function names when the code is compiled is a
problem for external code that wants to call a specific function, because that func-
tion’s name no longer exists.

 You’ll want to tell the compiler to not modify the names of the functions that the
JavaScript code will be calling. To do this, you need to include an extern "C" block
around the functions. All the functions that you’ll be adding to this file are placed
within this block. Add the following to the validate.cpp file:

#ifdef __cplusplus
extern "C" {
#endif

#ifdef __cplusplus
}
#endif

THE VALIDATEVALUEPROVIDED FUNCTION

The Edit Product web page that you’ll be building will have a product name field and
category drop-down list that you’ll need to validate. Both the name and selected cate-
gory will be passed to the module as strings, but the category ID will hold a numeric
value.

 You’ll create two functions, ValidateName and ValidateCategory, to validate the
product name and selected category. Because both functions need to ensure that a

Symbol is present when the code
is being compiled by Emscripten

Emscripten library’s
header file

So the compiler doesn’t rename the
functions within these curly braces

Your WebAssembly functions
will be placed here.

https://en.cppreference.com/w/cpp/header

60 CHAPTER 4 Reusing your existing C++ codebase
value was provided, you’ll create a helper function called ValidateValueProvided
that will accept the following parameters:

 The value that was passed to the module from the web page.
 The appropriate error message from the module based on whether the func-

tion is being called by ValidateName or ValidateCategory. If a value isn’t pro-
vided, this error message will be placed into the third parameter’s return buffer.

 The buffer to put the error message into if the value isn’t provided.

Place the following code within the extern "C" curly braces of the validate.cpp file:

int ValidateValueProvided(const char* value,
 const char* error_message,
 char* return_error_message) {
 if ((value == NULL) || (value[0] == '\0')) {
 strcpy(return_error_message, error_message);
 return 0;
 }

 return 1;
}

THE VALIDATENAME FUNCTION

You’ll now create the ValidateName function, which receives the following parameters:

 The user-entered product name
 A maximum-length value for the name
 A pointer to a buffer, to which you’ll add an error message if there’s an issue

with the validation

The function will verify two things:

 Was a product name provided? You’ll verify this by passing the name to the
ValidateValueProvided helper function.

 You’ll also verify that the length of the name provided doesn’t exceed the maxi-
mum length value, by using the standard C library function strlen.

If either validation check fails, you’ll place the appropriate error message into the
return buffer and exit the function, returning 0 (error). If the code runs to the end of
the function, there were no validation issues, so a 1 (success) message is returned.

 You’ll also add the EMSCRIPTEN_KEEPALIVE declaration to the ValidateName func-
tion and wrap it in a conditional compilation symbol check to make sure it’s included
only if Emscripten is compiling the code. In chapter 3, you added functions from the
module to an Emscripten command-line flag called EXPORTED_FUNCTIONS so that
the JavaScript code could interact with those functions. The EMSCRIPTEN_KEEPALIVE

Value that was received by the module

Error message to return if there’s an issue
Buffer to put the error message
into if there’s an issue

If a NULL or empty string was
provided, then there is an issue.

Copies the error message
into the return buffer

Tells the calling function
that there was an issue

Tells the calling function that
everything is ok

61Using C or C++ to create a module with Emscripten plumbing
declaration automatically adds the associated function to the exported functions so
that you don’t have to explicitly specify it at the command line.

 The code in the next listing is the ValidateName function. Add it after the Validate-
ValueProvided function in validate.cpp.

...

#ifdef __EMSCRIPTEN__
 EMSCRIPTEN_KEEPALIVE
#endif
int ValidateName(char* name,
 int maximum_length,
 char* return_error_message) {
 if (ValidateValueProvided(name,
 "A Product Name must be provided.",
 return_error_message) == 0) {
 return 0;
 }

 if (strlen(name) > maximum_length) {
 strcpy(return_error_message, "The Product Name is too long.");
 return 0;
 }

 return 1;
}

THE ISCATEGORYIDINARRAY FUNCTION

Before you create the ValidateCategory function, you’ll create a helper function to
simplify the function’s logic. This helper function will be called IsCategoryIdInArray
and will receive the following parameters:

 The user-selected category ID
 A pointer to an array of integers holding the valid category IDs
 The number of items in the array of valid category IDs

The function will loop through the items in the array to check whether the user-
selected category ID is actually in the array. If so, a 1 (success) code is returned. If the
category ID isn’t found, a 0 (error) code is returned.

 Add the following IsCategoryIdInArray function to the validate.cpp file after the
ValidateName function:

int IsCategoryIdInArray(char* selected_category_id,
 int* valid_category_ids,
 int array_length) {
 int category_id = atoi(selected_category_id);

Listing 4.1 ValidateName function in validate.cpp

Adds the function to the
list of exported functions

Product name passed
to the module

Maximum length
allowed for the name

Buffer in which to put the error
message if there’s an issue

If the value wasn’t specified,
then return an error.

If the value exceeds the maximum
length, then return an error.

Tells the caller that
everything was ok

Category ID passed
to the module

Pointer to an array of integers
holding the valid category IDs

Number of items in the
valid_category_ids array

Converts the string
received into an integer

62 CHAPTER 4 Reusing your existing C++ codebase
 for (int index = 0; index < array_length; index++) {
 if (valid_category_ids[index] == category_id) {

return 1;
 }
 }

 return 0;
}

THE VALIDATECATEGORY FUNCTION

The final function that you need to create is ValidateCategory, which will receive the
following parameters:

 The user-selected category ID
 A pointer to an array of integers holding the valid category IDs
 The number of items in the array of valid category IDs
 A pointer to a buffer, to which you’ll add an error message if there’s an issue

with the validation

The function will verify three things:

 Was a category ID provided? You’ll verify this by passing the ID to the Validate-
ValueProvided helper function.

 Was a pointer to the valid category IDs array provided?
 Is the user-selected category ID in the array of valid IDs?

If any of the validation checks fail, you’ll place the appropriate error message into the
return buffer and exit the function, returning 0 (error). If the code runs to the end of
the function, there were no validation issues, so a 1 (success) message is returned.

 Add the ValidateCategory function, shown in the following listing, below the
IsCategoryIdInArray function in the validate.cpp file.

...

#ifdef __EMSCRIPTEN__
 EMSCRIPTEN_KEEPALIVE
#endif
int ValidateCategory(char* category_id,
 int* valid_category_ids,
 int array_length,
 char* return_error_message) {
 if (ValidateValueProvided(category_id,

"A Product Category must be selected.",
return_error_message) == 0) {

 return 0;
 }

 if ((valid_category_ids == NULL) || (array_length == 0)) {
 strcpy(return_error_message,

"There are no Product Categories available.");

TheListing 4.2 ValidateCategory function

Loops through the array

If the ID is in the array, then exit
the function, telling the caller

that the ID was found.

Tells the caller that the category ID
wasn’t found in the array

Selected category ID
passed to the module Pointer to an array of integers

holding the valid category IDs

Number of items in the
valid_category_ids array

Buffer to put the error message
into if there’s an issue

If a value isn’t received,
return an error.

If the array wasn’t
specified, then

return an error.

63Using C or C++ to create a module with Emscripten plumbing
 return 0;
 }

 if (IsCategoryIdInArray(category_id, valid_category_ids,
 array_length) == 0) {
 strcpy(return_error_message,
 "The selected Product Category is not valid.");
 return 0;
 }

 return 1;
}

Compiling the code into a WebAssembly module4.1.2

Now that the C++ code has been modified so that it can also be compiled by
Emscripten, you can move to the next step and have Emscripten compile the code
into WebAssembly, as figure 4.5 shows.

When you write the JavaScript code to interact with the module, you’ll use the ccall
and UTF8ToString Emscripten helper functions (for details on the ccall function, see
appendix B). To ensure that these functions are included in the generated JavaScript
file, you’ll need to specify them when compiling the C++ code. To do this, you’ll use
the EXTRA_EXPORTED_RUNTIME_METHODS command-line array to specify the functions.

NOTE When including functions, remember that function names are case-
sensitive. The UTF8ToString function, for example, must have a capital UTF,
T, and S.

To compile the code into a WebAssembly module, you need to open a command
prompt, navigate to the folder where you saved the validate.cpp file, and then run the
following command:

emcc validate.cpp -o validate.js

➥ -s EXTRA_EXPORTED_RUNTIME_METHODS=['ccall','UTF8ToString']

If the selected
category ID isn’t found
in the array, then
return an error.

Tells the caller that
everything was ok

validate.js validate.wasmEmscripten

Emscripten is asked to generate
the WebAssembly and JavaScript
files from validate.cpp.

Desktop application written in C++

Validation logic
(validate.cpp)

Figure 4.5 The second step of the process in reusing C++ code is to ask
Emscripten to generate both the WebAssembly and JavaScript files.

64 CHAPTER 4 Reusing your existing C++ codebase
Creating the web page4.1.3

Now that you’ve modified the C++ code and compiled it into a WebAssembly module,
you’ll need to build the Edit Product page for the website, shown in figure 4.6.

TIP Some of you may be strong with languages like C or C++ but not have
ever really worked with HTML. If you’d like to familiarize yourself with
HTML basics, the following website has some really good tutorials:
www.w3schools.com/html.

For a more professional-looking web page, instead of styling everything manually,
you’ll be using Bootstrap. This popular framework for web development includes a
number of design templates to help make development easier and faster. For this
book, you’ll simply point to the files that are hosted on the CDNs, but Bootstrap can
be downloaded and included with your web page. The instructions for downloading
Bootstrap are included in appendix A.

INFO A CDN, or content delivery network, is geographically distributed with a
goal of serving the file or files needed as close to the device requesting them
as possible. This distribution speeds up the process of downloading the files,
which improves website load times.

In the WebAssembly\Chapter 4\4.1 js_plumbing\ folder, create a folder called frontend
and then create a file in the frontend folder called editproduct.html. Open the
editproduct.html file in your favorite text editor, and enter the HTML shown in the
following listing.

The Edit Product page that you’ll be building and validatingFigure 4.6

www.w3schools.com/html

65Using C or C++ to create a module with Emscripten plumbing

<!DOCTYPE html>
<html>
 <head>
 <title>Edit Product</title>
 <meta charset="utf-8"/>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet"
 ➥ href="https://maxcdn.bootstrapcdn.com/bootstrap/4.1.0/css/W3Schools
 ➥ bootstrap.min.css">
 <script
 ➥ src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/W3Schools
 ➥ jquery.min.js"></script>
 <script
 ➥ src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.0/umd/
 ➥ W3Schools popper.min.js"></script>
 <script
 ➥ src="https://maxcdn.bootstrapcdn.com/bootstrap/4.1.0/js/W3Schools
 ➥ bootstrap.min.js"></script>
 </head>
 <body onload="initializePage()">
 <div class="container">
 <h1>Edit Product</h1>

 <div id="errorMessage" class="alert alert-danger" role="alert"
 ➥ style="display:none;"></div>

 <div class="form-group">
 <label for="name">Name:</label>
 <input type="text" class="form-control" id="name">
 </div>

 <div class="form-group">
 <label for="category">Category:</label>
 <select class="custom-select" id="category">
 <option value="0"></option>
 <option value="100">Jeans</option>
 <option value="101">Dress Pants</option>
 </select>
 </div>

 <button type="button" class="btn btn-primary"
 ➥ onclick="onClickSave()">Save</button>
 </div>

 <script src="editproduct.js"></script>
 <script src="validate.js"></script>
 </body>
</html>

HTML of the Edit Product page (editproduct.html)Listing 4.3

66 CHAPTER 4 Reusing your existing C++ codebase
Creating the JavaScript that will interact with the module4.1.4

Figure 4.7 shows the next step of the process, in which you’ll copy the files generated
by Emscripten, validate.js and validate.wasm, to the folder where you have the
editproduct.html file. You’ll then create an editproduct.js file that will bridge the gap
between the user interacting with the web page and the code interacting with the
module.

Copy the validate.js and validate.wasm files from the WebAssembly\Chapter 4\4.1
js_plumbing\source\ folder to the WebAssembly\Chapter 4\4.1 js_plumbing\frontend\
folder. In the frontend folder, create a file called editproduct.js, and then open it.

 Rather than include code to talk to the server, you’ll simulate having received data
from the server by creating a JavaScript object named initialData. This object will be
used to initialize the controls when the web page is displayed. Add the JavaScript
object to the editproduct.js file:

const initialData = {
 name: "Women's Mid Rise Skinny Jeans",
 categoryId: "100",
};

When you call the module’s ValidateName function, it will want to know the maxi-
mum length that the product name can be. To specify this value, you’ll use the con-
stant MAXIMUM_NAME_LENGTH. You’ll also have an array of valid category IDs,
VALID_CATEGORY_IDS, for use when validating the user’s category ID selection. Add
the following snippet after the initialData object in the editproduct.js file:

const MAXIMUM_NAME_LENGTH = 50;
const VALID_CATEGORY_IDS = [100, 101];

validate.js validate.wasm

Files are copied to the server
for use in the browser.

Browser

Validation logic
(validate.wasm validate.js)

Figure 4.7 The third step of the process in reusing C++ code is to
copy the generated files to where the HTML file is and build the
JavaScript code to interact with the module.

Simulated data received
from the server

Maximum length a
name is allowed to be

List of valid category IDs
that can be selected

67Using C or C++ to create a module with Emscripten plumbing

In the HTML of the editproduct.html page, you specified that an initializePage
function be called when the web page has loaded. This function call lets you populate
the controls on the page with the data from the initialData object.

 Within the initializePage function, you first populate the product name field with
the name value in the initialData object. Next, loop through the category drop-down
list to find the item in the list that matches the categoryId value in the initialData
object. If you find the matching category ID value, you set the selection of the desired
item in the list by passing the item’s index to the selectedIndex property. Add the fol-
lowing initializePage function to the editproduct.js file:

function initializePage() {
 document.getElementById("name").value = initialData.name;

 const category = document.getElementById("category");
 const count = category.length;
 for (let index = 0; index < count; index++) {
 if (category[index].value === initialData.categoryId) {
 category.selectedIndex = index;
 break;
 }
 }
}

The next function you need to add to the editproduct.js file is getSelectedCategoryId.
This returns the selected item’s ID from the category list and is called when the user
clicks the Save button:

function getSelectedCategoryId() {
 const category = document.getElementById("category");
 const index = category.selectedIndex;
 if (index !== -1) { return category[index].value; }

 return "0";
}

You’ll now need to create the setErrorMessage function, which is used to present an
error message to the user. You’ll do this by populating a section of the web page with
the string received from the WebAssembly module. If an empty string is passed to the
function, it’s a signal to hide the error section on the website. Otherwise, the error
section is shown. The following snippet is the setErrorMessage function to add to the
editproduct.js file:

function setErrorMessage(error) {
 const errorMessage = document.getElementById("errorMessage");
 errorMessage.innerText = error;
 errorMessage.style.display = (error === "" ? "none" : "");
}

Gets the count of
how many items are
in the drop-down

Loops through each
item in the category list

If a match is found, select that
item in the list and exit the loop.

If there is a selected item
in the list, then return
that item’s value.Nothing was selected, so

you return zero for the ID.

68 CHAPTER 4 Reusing your existing C++ codebase
The HTML for the Save button on the web page has an onclick event specified to
trigger the onClickSave function when a user clicks the button. In the onClickSave
function, you’ll grab the user-entered values and pass them to the validateName and
validateCategory JavaScript functions. If either validation function indicates that
there was an issue, the error message from the module is retrieved from the module’s
memory and displayed to the user.

TIP You could give the JavaScript functions any name, but I’ve named them
so that they match the function in the module that they call. The validate-
Name JavaScript function, for example, calls the ValidateName module func-
tion.

As described in previous chapters, WebAssembly modules support only four basic data
types (32-bit integers, 64-bit integers, 32-bit floats, and 64-bit floats). For more com-
plex data types like strings, you need to use the module’s memory.

 Emscripten has a ccall helper function that exists to help call a module’s func-
tions and will help with the memory management of strings if those strings are
expected to last only for the call’s duration. In this case, you’ll pass a string buffer to
the module so that it can be populated with the appropriate validation error if there’s
an issue with the user’s input. Because the memory for the string needs to last longer
than just the call to the ValidateName or ValidateCategory module function, you’ll
need to handle memory management manually in the onClickSave function. To do
this, the Emscripten plumbing code provides access to the malloc and free standard
C library functions via _malloc and _free, respectively, so that you can allocate and
free the module’s memory.

 Aside from allocating and freeing the memory, you also need to be able to read the
string from the module’s memory. To do this, you’ll use Emscripten’s UTF8ToString
helper function. This function accepts a pointer and reads the string from that mem-
ory location.

 The next listing is the onClickSave function that you need to add to the editproduct
.js file after the setErrorMessage function.

...

function onClickSave() {
 let errorMessage = "";
 const errorMessagePointer = Module._malloc(256);

 const name = document.getElementById("name").value;
 const categoryId = getSelectedCategoryId();

 if (!validateName(name, errorMessagePointer) ||
!validateCategory(categoryId, errorMessagePointer)) {

 errorMessage = Module.UTF8ToString(errorMessagePointer);
 }

Listing 4.4 The onClickSave function in editproduct.js

Reserves 256 bytes of the module’s
memory for an error message

Grabs the user-entered
values from the web page

Checks to see if
the Name and
Category ID are
valid

Grabs the error
message from
the module’s
memory

69Using C or C++ to create a module with Emscripten plumbing
 Module._free(errorMessagePointer);

 setErrorMessage(errorMessage);
 if (errorMessage === "") {

 }
}

TALKING TO THE MODULE: VALIDATENAME

The first function in the WebAssembly module that you’ll want to call has the follow-
ing signature in C++:

int ValidateName(char* name,
 int maximum_length,
 char* return_error_message);

To call the ValidateName function in the module, you’ll be using the ccall Emscripten
helper function. For details on the parameters to the ccall function, see appendix B.
Your ccall function will be passed the following values for the parameters:

 'ValidateName', indicating the function name that you want to call.
 'number', for the return type because the function returns an integer.
 An array with the values 'string', 'number', and 'number' indicating the data

types of the parameters.
The first parameter of ValidateName is the char* pointer for the user-

entered product name. In this case, the string being temporary is acceptable, so
you’ll let the ccall function handle the memory management for you by speci-
fying 'string' for that parameter.

The second parameter is expecting an int, so you’ll simply specify a 'number'
type.

The third parameter is where things can get a little confusing. That char*
pointer parameter is the return message if there’s an error. You need that
pointer to be long-lived so that you can return it to the calling JavaScript func-
tion. Rather than letting the ccall function handle the string’s memory man-
agement in this case, you handle it in the onClickSave function. You simply
want to pass the string as a pointer, and to pass a pointer, you need to specify
the parameter type as 'number'.

 An array holding the value that the user entered for a product name, the con-
stant value for the maximum length the product name can be, and a buffer to
hold any error messages that might be returned.

The following code snippet is the validateName function that you need to add to the
editproduct.js file after the onClickSave function:

function validateName(name, errorMessagePointer) {
 const isValid = Module.ccall('ValidateName',

'number',

Releases the memory that
was locked by _malloc

Displays the error
message if there was one

There were no issues. The
data can be passed to the
server to be saved.

Name of the function you’re
calling in the module

Return type of the function

70 CHAPTER 4 Reusing your existing C++ codebase

p

['string', 'number', 'number'],
[name, MAXIMUM_NAME_LENGTH, errorMessagePointer]);

 return (isValid === 1);
}

Array of
arameter

types
Array holding the
values for the
parametersReturns true if the integer

is 1 and false if not

TIP In this case, the code to call the module’s ValidateName function is
straightforward. As you’ll see in future examples, the code can be more
involved. It’s recommended that the code for each WebAssembly function
that’s called be kept in its own JavaScript function to make maintainability
easier.

TALKING TO THE MODULE: VALIDATECATEGORY

You’re now going to write the validateCategory JavaScript function to call the mod-
ule’s ValidateCategory function. The ValidateCategory function has the following
signature in C++:

int ValidateCategory(char* category_id,
int* valid_category_ids,
int array_length,
char* return_error_message);

The ValidateCategory function is expecting an array pointer of integers, but the
ccall function’s array parameter type is for only 8-bit values (see appendix B for more
information about these parameters). Because the module’s function is expecting an
array of 32-bit integers, you need to manually allocate memory for the array and free it
after the call to the module returns.

A WebAssembly module’s memory is simply a typed array buffer. Emscripten pro-
vides several views that allow you to view the memory in different ways so that you can
work with different data types more easily. Because the module expects an array of
integers, you’ll use the HEAP32 view.

To allocate enough memory for the array pointer, your call to Module._malloc

needs to multiply the number of items in the array by the number of bytes for each
item that’s placed in the Module.HEAP32 object. For this, you’ll use the constant
Module.HEAP32.BYTES_PER_ELEMENT, which holds a value of 4 for the HEAP32 object.

Once you have the memory allocated for the array pointer, you can use the HEAP32

object’s set method to copy the array’s contents into the module’s memory:

 The first parameter is the array, VALID_CATEGORY_IDS, to be copied to the Web-
Assembly module’s memory.

 The second parameter is an index for where the set method should start writ-
ing the data in the underlying array (the module’s memory). In this case,
because you’re working with the 32-bit view of the memory, each index refers to
one of the groupings of 32 bits (4 bytes). As a result, you need to divide the
memory address by four.

The final JavaScript function that you need to add to the end of the editproduct.js file
is the validateCategory function in the next listing.

71Using C or C++ to create a module with Emscripten plumbing

...

function validateCategory(categoryId, errorMessagePointer) {
 const arrayLength = VALID_CATEGORY_IDS.length;
 const bytesPerElement = Module.HEAP32.BYTES_PER_ELEMENT;
 const arrayPointer = Module._malloc((arrayLength *
 bytesPerElement));
 Module.HEAP32.set(VALID_CATEGORY_IDS,
 (arrayPointer / bytesPerElement));

 const isValid = Module.ccall('ValidateCategory',
 'number',
 ['string', 'number', 'number', 'number'],
 [categoryId, arrayPointer, arrayLength, errorMessagePointer]);

 Module._free(arrayPointer);

 return (isValid === 1);
}

Viewing the results4.1.5

Now that you have the completed JavaScript code, you can open your browser and
type http://localhost:8080/editproduct.html into the address box to see the web
page you just built. You can test the validation by removing all the text from the Name
field and then clicking the Save button. An error should display on the web page (fig-
ure 4.8).

Listing 4.5 The validateCategory function in editproduct.js

Gets the number of bytes per
element for the HEAP32 object

Allocates enough memory
for each item of the array

Copies the
array’s elements
into the module’s
memory

Calls the
ValidateCategory
function in the
module

Frees the memory that
was allocated for the array

Returns true if the integer
is 1 and false if not

Validation error
when the name
isn’t provided

Edit Product page’s Name validation errorFigure 4.8

72 CHAPTER 4 Reusing your existing C++ codebase
Using C or C++ to create4.2 a module without Emscripten
Suppose you want to have Emscripten compile the C++ code and not include any of
the standard C library functions or generate the JavaScript plumbing file. As conve-
nient as the Emscripten plumbing code is, it hides a lot of the details of working with
a WebAssembly module. This approach is useful for learning because you’ll get a
chance to directly work with things like the JavaScript WebAssembly API.

 Typically, production code uses the process discussed in section 4.1, in which
Emscripten includes the standard C library functions your code uses in the generated
module. In that process, Emscripten also generates a JavaScript plumbing file that
handles loading and instantiating the module and includes helper functions such as
ccall to make interacting with the module easier.

 As you can see in figure 4.9, the process in this section is similar to that in section
4.1, except that you’ll be asking Emscripten to generate only the WebAssembly file
and not the JavaScript plumbing file.

Making the C++ modifications4.2.1

Although the code in the validate.cpp file that you created in section 4.1 is fairly basic,
it uses some standard C library functions, like strlen, that Emscripten won’t include
when you ask it to create the module as a side module. Also, because the code needs
to pass pointers to values placed in memory, you need a way to flag that memory as

validate.wasmEmscripten

Emscripten is asked to generate
only the WebAssembly file
from validate.cpp.

File is copied to the server
for use by the browser
and server code.

Browser

Validation logic
(validate.wasm)

Desktop application written in C++

Validation logic
(validate.cpp)

Server

Validation logic
(validate.wasm)

Figure 4.9 Steps for turning existing C++ logic into WebAssembly for use by a website and the server-
side code but without any generated Emscripten JavaScript code. I discuss the server aspect, Node.js,
in a future chapter.

73Using C or C++ to create a module without Emscripten
locked to prevent the C or JavaScript code from overwriting the values in that section
of memory until the code is finished with the memory.

 Because you won’t have access to the malloc and free standard library functions,
your first step (figure 4.10) will be to implement your own.

THE HEADER FILE FOR THE SIDE MODULE’S SYSTEM FUNCTIONS

Create the folder WebAssembly\Chapter 4\4.2 side_module\source\. In the source
folder, create a file called side_module_system_functions.h and open it with your edi-
tor. Add the following snippet to the file to define the function signatures for the
functions that you’re about to create:

#pragma once

#ifndef SIDE_MODULE_SYSTEM_FUNCTIONS_H_
#define SIDE_MODULE_SYSTEM_FUNCTIONS_H_

#include <stdio.h>

void InsertIntoAllocatedArray(int new_item_index, int offset_start,
 int size_needed);

int create_buffer(int size_needed);
void free_buffer(int offset);

char* strcpy(char* destination, const char* source);
size_t strlen(const char* value);

int atoi(const char* value);

#endif // SIDE_MODULE_SYSTEM_FUNCTIONS_H_

THE IMPLEMENTATION FILE FOR THE SIDE MODULE’S SYSTEM FUNCTIONS

Now create the side_module_system_functions.cpp file in the source folder, and open
it with your editor. You’ll be creating a simple replacement for the standard C library’s
malloc and free functions. The malloc function finds the first available memory loca-
tion that’s big enough for the requested memory size. It then flags that block of mem-
ory so that it doesn’t get used by other code requests for memory. Once the code is
finished with the memory block, it calls the standard C library’s free function to
release the lock.

 You’ll use an array to handle allocating chunks of memory for 10 concurrent
requests, which is more than enough for this validation code. You should always have
at least one page of memory that is 65,536 bytes (64 KB), so the memory allocations
will happen within this block.

Desktop application written in C++

Validation logic
(validate.cpp) Figure 4.10 Your first step is to create your own

versions of the standard C library functions you need
so that the code can be compiled by Emscripten.

74 CHAPTER 4 Reusing your existing C++ codebase
 At the beginning of the side_module_system_functions.cpp file, add the includes
for the C standard input and output library and Emscripten header file. Add the
opening extern "C" block, and then add the constants for the memory size and the
maximum number of concurrent memory blocks that will be allowed:

#include <stdio.h>
#include <emscripten.h>

#ifdef __cplusplus
extern "C" {
#endif

const int TOTAL_MEMORY = 65536;
const int MAXIMUM_ALLOCATED_CHUNKS = 10;

Following the constants, add the current_allocated_count variable that will indicate
how many blocks of memory are currently allocated. Add a definition for an object,
MemoryAllocated, which will hold the start of the memory that’s allocated and how
long the block of memory is. Then create the array that will hold the objects that indi-
cate which blocks of memory are in use:

int current_allocated_count = 0;

struct MemoryAllocated {
 int offset;
 int length;
};

struct MemoryAllocated

➥ AllocatedMemoryChunks[MAXIMUM_ALLOCATED_CHUNKS];

Your next step is to create a function that will accept an index for where it will insert a
new memory block in the AllocatedMemoryChunks array. Any items in the array from
that index to the end of the array will be moved one spot toward the end of the array.
The function will then place the memory block’s start location (offset) and memory
block size at the requested location in the array. Place the code in the following listing
after the AllocatedMemoryChunks array in the side_module_system_functions.cpp file.

...

void InsertIntoAllocatedArray(int new_item_index, int offset_start,
 int size_needed) {
 for (int i = (MAXIMUM_ALLOCATED_CHUNKS – 1); i > new_item_index; i--){
 AllocatedMemoryChunks[i] = AllocatedMemoryChunks[(i - 1)];
 }

 AllocatedMemoryChunks[new_item_index].offset = offset_start;
 AllocatedMemoryChunks[new_item_index].length = size_needed;

 current_allocated_count++;
}

TheListing 4.6 InsertIntoAllocatedArray function

75Using C or C++ to create a module without Emscripten
Now, create a simplified version of the malloc function called create_buffer. When
you include string literals in C++ code and compile the code into a WebAssembly
module, Emscripten has these string literals loaded into the module’s memory auto-
matically when the module is instantiated. Because of this, the code will need to leave
room for the strings and will only start allocating memory at byte 1,024. The code will
also increase the size of the memory requested so that it’s a multiple of 8.

 The first thing the code will do is loop through the currently allocated memory to
see if there’s room in between the allocated blocks to fit the requested memory size. If
so, the new allocated block will be inserted into the array at that index. If there isn’t
enough room for the requested memory size between the existing allocated memory
blocks, then the code will check to see if there’s room following the currently allo-
cated memory.

 The code will return the memory offset of where the memory block has been allo-
cated if it was successful in finding a spot. Otherwise, it will return 0 (zero), which will
indicate an error given that the code will only start allocating memory at byte 1,024.

 Add the code from the next listing to the side_module_system_functions.cpp file.

...

EMSCRIPTEN_KEEPALIVE
int create_buffer(int size_needed) {
 if (current_allocated_count == MAXIMUM_ALLOCATED_CHUNKS) { return 0; }

 int offset_start = 1024;
 int current_offset = 0;
 int found_room = 0;

 int memory_size = size_needed;
 while (memory_size % 8 != 0) { memory_size++; }

 for (int index = 0; index < current_allocated_count; index++) {
 current_offset = AllocatedMemoryChunks[index].offset;
 if ((current_offset - offset_start) >= memory_size) {
 InsertIntoAllocatedArray(index, offset_start, memory_size);
 found_room = 1;
 break;
 }

 offset_start = (current_offset + AllocatedMemoryChunks[index].length);
 }

 if (found_room == 0) {
 if (((TOTAL_MEMORY - 1) - offset_start) >= size_needed) {
 AllocatedMemoryChunks[current_allocated_count].offset = offset_start;
 AllocatedMemoryChunks[current_allocated_count].length = size_needed;
 current_allocated_count++;
 found_room = 1;
 }
 }

Simplified version of theListing 4.7 malloc function

Increases the size so
that the next offset

is a multiple of 8

Is there room in
between the

currently allocated
memory blocks?

Room wasn’t found between the
currently allocated memory blocks.

Is there room between the
last memory block and the

end of the module’s memory?

76 CHAPTER 4 Reusing your existing C++ codebase

 if (found_room == 1) { return offset_start; }
 return 0;
}

Your free function equivalent will be called free_buffer. In this function, you’ll sim-
ply loop through the array of allocated memory blocks until you find the offset that
was passed in by the caller. Once you find that array item, you’ll shift all items after it
by one position toward the beginning of the array. Add the code in the next listing
after the create_buffer function.

Simplified version of theListing 4.8 free function

...

EMSCRIPTEN_KEEPALIVE
void free_buffer(int offset) {

int shift_item_left = 0;

for (int index = 0; index < current_allocated_count; index++) {
if (AllocatedMemoryChunks[index].offset == offset) {

shift_item_left = 1;
}

if (shift_item_left == 1) {
if (index < (current_allocated_count - 1)) {
AllocatedMemoryChunks[index] = AllocatedMemoryChunks[(index + 1)];

}
else {
AllocatedMemoryChunks[index].offset = 0;
AllocatedMemoryChunks[index].length = 0;

}
}

}

current_allocated_count--;
}

The following snippet continues the side_module_system_functions.cpp file, in which
you create a version of the system library functions strcpy and strlen:

char* strcpy(char* destination, const char* source) {
char* return_copy = destination;
while (*source) { *destination++ = *source++; }
*destination = 0;

return return_copy;
}

size_t strlen(const char* value) {
size_t length = 0;
while (value[length] != '\0') { length++; }

return length;
}

The next listing continues the side_module_system_functions.cpp file to create a ver-
sion of the system library function atoi.

77Using C or C++ to create a module without Emscripten

...

int atoi(const char* value) {
 if ((value == NULL) || (value[0] == '\0')) { return 0; }

 int result = 0;
 int sign = 0;

 if (*value == '-') { sign = -1; ++value; }

 char current_value = *value;
 while (current_value != '\0') {
 if ((current_value >= '0') && (current_value <= '9')) {
 result = result * 10 + current_value - '0';
 ++value;
 current_value = *value;
 }
 else {
 return 0;
 }
 }

 if (sign == -1) { result *= -1; }
 return result;
}

Finally, add the closing extern "C" curly brace at the end of your side_module_system_
functions.cpp file, as shown in the following snippet:

#ifdef __cplusplus
}
#endif

Now that you’ve completed the side_module_system_functions.cpp file, copy the vali-
date .cpp file from the WebAssembly\Chapter 4\4.1 js_plumbing\source\ folder and
place it in the WebAssembly\Chapter 4\4.2 side_module\source\ folder.

 Open the validate.cpp file, and remove the includes for the cstdlib and cstring
files. Then, add an include for the new side_module_system_functions.h header file
before the ValidateValueProvided function and within the extern "C" block.

WARNING The include for the header file must be placed within the extern
"C" block. This is because you’ll be asking the Emscripten compiler to com-
pile two .cpp files. Although both files’ functions are within extern "C"
blocks, the Emscripten compiler still assumes that function calls in the
validate.cpp file are being compiled to a C++ file, where the functions have
been mangled. The compiler won’t see the mangled function names in the
generated module and will assume that they need to be imported instead.

The following snippet shows the modifications to the validate.cpp file:

#ifdef __EMSCRIPTEN__
 #include <emscripten.h>
#endif

The version ofListing 4.9 atoi

Flag if the first character
is a negative sign. Move
to the next byte.

Loop until you reach
the null terminator.

If the current
character is a
number. . .

. . . convert current_
value to an integer. Add
it to the result.

Move the pointer
to the next byte.

If you found a non-
numeric character,
then exit, returning zero.

If you have a negative number,
then flip the value to negative.

78 CHAPTER 4 Reusing your existing C++ codebase
#ifdef __cplusplus
extern "C" {
#endif

#include "side_module_system_functions.h"

Compiling the code into a WebAssembly module4.2.2

Now that you’ve created the C++ code, the next step is to have Emscripten compile
the code into a WebAssembly module but without the JavaScript plumbing code, as
figure 4.11 shows.

To compile the C++ code into a WebAssembly module, open a command prompt, nav-
igate to the folder where you saved the C++ files, and run the following command:

emcc side_module_system_functions.cpp validate.cpp -s SIDE_MODULE=2

➥ -O1 -o validate.wasm

4.2.3 Creating the JavaScript that will interact with the module

Now that you have the WebAssembly module, you can see the next step in figure 4.12.
Within the WebAssembly\Chapter 4 \4.2 side_module\ folder, create a folder called
frontend, and copy the editproduct.html and editproduct.js files from WebAssembly\
Chapter 4\4.1 js_plumbing\frontend\ into it.

Important: place the header
file within the extern "C" block.

validate.wasmEmscripten

Emscripten is asked to generate
only the WebAssembly file
from validate.cpp.

Validation logic
(validate.cpp)

Figure 4.11 The second step of the process is to ask Emscripten to
generate only the WebAssembly file. Emscripten won’t generate the
JavaScript plumbing file in this case.

validate.wasm

File is copied to the server
for use in the browser.

Browser

Validation logic
(validate.wasm)

Figure 4.12 The third step of the process is to
copy the generated file to where the HTML file
is and build the JavaScript code to interact with
the module.

79Using C or C++ to create a module without Emscripten
Then, copy validate.wasm from WebAssembly\Chapter 4\4.2 side_module\ source\ to
the new frontend folder.

 The first thing you need to do is open the editproduct.html file and remove the
validate.js JavaScript file reference at the bottom. The end of the editproduct.html file
should now look like the following snippet:

 </div>

 <script src="editproduct.js"></script>
 </body>
</html>

Next, make a few changes to the editproduct.js file (listing 4.10): add two global vari-
ables before the initializePage function, called moduleMemory and moduleExports.
The moduleMemory variable keeps a reference to the module’s WebAssembly.Memory
object so that you can read and write to memory.

 Because you don’t have access to Emscripten’s plumbing code, you also don’t have
a Module object. Instead, you’ll use the global object reference, moduleExports, which
you’ll receive when you instantiate the module. The moduleExports reference will
allow you to call all the exported functions in the module. You’ll also add the code at
the end of the initializePage function to load and instantiate the module.

...

let moduleMemory = null;
let moduleExports = null;

function initializePage() {
 ...

 moduleMemory = new WebAssembly.Memory({initial: 256});

 const importObject = {
 env: {
 __memory_base: 0,
 memory: moduleMemory,
 }
 };

 WebAssembly.instantiateStreaming(fetch("validate.wasm"),
 ➥ importObject).then(result => {
 moduleExports = result.instance.exports;
 });
}

...

The Emscripten compiler puts an underscore character before each function in the
module, which is why you’ll see the module’s functions, like create_buffer, prefixed
with an underscore character in listing 4.11.

Listing 4.10 Modifications to initializePage in editproduct.js

Adds two new global variables

Places the reference to
the module’s memory in

the global variable

Downloads and
instantiates the

moduleKeeps a reference to the
instantiated module’s exports

80 CHAPTER 4 Reusing your existing C++ codebase
 The next function you need to modify is onClickSave, where you’ll replace the call
to Module._malloc with moduleExports._create_buffer, the call to Module.UTF8To-
String with getStringFromMemory, and the Module._free call with moduleExports
._free_buffer. The changes to the onClickSave function are indicated in bold in the
following listing.

...

function onClickSave() {
 let errorMessage = "";
 const errorMessagePointer = moduleExports._create_buffer(256);

 const name = document.getElementById("name").value;
 const categoryId = getSelectedCategoryId();

 if (!validateName(name, errorMessagePointer) ||
!validateCategory(categoryId, errorMessagePointer)) {

 errorMessage = getStringFromMemory(errorMessagePointer);
 }

 moduleExports._free_buffer(errorMessagePointer);

 setErrorMessage(errorMessage);
 if (errorMessage === "") {

 }
}
...

The memory that you passed to the WebAssembly module during initialization was
provided via a WebAssembly.Memory object that you kept a reference to in the
moduleMemory variable. Under the hood, the WebAssembly.Memory object is holding
an ArrayBuffer object, which serves as the bytes for the module to simulate actual
machine memory. You can access the underlying ArrayBuffer object held by the
moduleMemory reference by accessing the buffer property.

 As you’ll recall, the Emscripten plumbing code has objects like HEAP32 that allow
you to view the module’s memory (the ArrayBuffer) in different ways so that you can
work with different types of data more easily. Without access to Emscripten’s plumbing
code, you don’t have access to objects like HEAP32, but, fortunately, those objects are
simply referencing JavaScript objects like Int32Array, which you do have access to.

 You need to create a helper function called getStringFromMemory that will read
the strings that the module returns to the JavaScript code from the module’s memory.
Strings in C or C++ are placed in memory as an array of 8-bit characters, so you’ll use
the Uint8Array JavaScript object to access the module’s memory starting at the offset
specified by a pointer. Once you have the view, loop through the items in the array,
reading in one character at a time until you reach the null-terminator character.

Listing 4.11 Edit of the onClickSave function in editproduct.js

Replaces Module._malloc with
moduleExports._create_buffer

Replaces
Module.UTF8ToString

with a helper function
to read the string from

memory
Replaces Module._free with

moduleExports._free_buffer
There were no issues with
the validation. The data
can be saved.

81Using C or C++ to create a module without Emscripten
 After the onClickSave function in the editproduct.js file, you need to add the get-
StringFromMemory helper function, shown in the following listing.

...

function getStringFromMemory(memoryOffset) {
 let returnValue = "";

 const size = 256;
 const bytes = new Uint8Array(moduleMemory.buffer, memoryOffset, size);

 let character = "";
 for (let i = 0; i < size; i++) {
 character = String.fromCharCode(bytes[i]);
 if (character === "\0") { break; }

 returnValue += character;
 }

 return returnValue;
}

Now that you can read a string from the module’s memory, you’ll need to create a
function that will let you write a string to the module’s memory. Similar to the get-
StringFromMemory function, the copyStringToMemory function starts by creating a
Uint8Array object to manipulate the module’s memory. You’ll then use the JavaScript
TextEncoder object to turn a string into an array of bytes. Once you have this array of
bytes from the string, you can call the Uint8Array object’s set method, passing in the
array of bytes for the first parameter and the offset for where to start writing those
bytes as the second parameter.

 The following is the copyStringToMemory function, which you need to add to the
editproduct.js file after the getStringFromMemory function:

function copyStringToMemory(value, memoryOffset) {
 const bytes = new Uint8Array(moduleMemory.buffer);
 bytes.set(new TextEncoder().encode((value + "\0")),
 memoryOffset);
}

Modify the validateName function to first allocate memory for the product name that
the user entered. Copy the string value into the module’s memory at the pointer’s
memory location by calling the copyStringToMemory function. Then call the mod-
ule’s _ValidateName function; afterward, free the memory that was allocated for the
name pointer.

 The following code snippet shows the modification to the validateName function:

function validateName(name, errorMessagePointer) {
 const namePointer = moduleExports._create_buffer(

Listing 4.12 The getStringFromMemory function in editproduct.js

Gets the section of memory
starting at the offset and

ending 256 characters later

Loops through
the bytes one
byte at a time

Converts the
current byte

into a character

If the current character is the
null-terminator, then you’re
done reading in the string.

Adds the current character to
the return string before

looping to the next character

82 CHAPTER 4 Reusing your existing C++ codebase
(name.length + 1));
 copyStringToMemory(name, namePointer);

 const isValid = moduleExports._ValidateName(namePointer,
MAXIMUM_NAME_LENGTH, errorMessagePointer);

 moduleExports._free_buffer(namePointer);

 return (isValid === 1);

}

The last item that you need to modify is the validateCategory function. You’ll allocate
memory for the category ID and then copy the ID to the pointer’s memory location.

 The function will allocate the memory needed for the items in the VALID_CATEGORY_
IDS global array and then copy each array item into the module’s memory, similar to
the approach you used with the Emscripten plumbing code. The difference is that you
don’t have access to the Emscripten HEAP32 object—but that object is simply a refer-
ence to the Int32Array JavaScript object, which you can access.

 Once the array’s values are copied into the module’s memory, the code calls the
module’s _ValidateCategory function. When the function returns, the code frees the
memory that was allocated for the array and string pointers. The following listing
shows the modified validateCategory function.

...

function validateCategory(categoryId, errorMessagePointer) {
 const categoryIdPointer = moduleExports._create_buffer(

➥ (categoryId.length + 1));
copyStringToMemory(categoryId, categoryIdPointer);

 const arrayLength = VALID_CATEGORY_IDS.length;
 const bytesPerElement = Int32Array.BYTES_PER_ELEMENT;
 const arrayPointer = moduleExports._create_buffer(

➥ (arrayLength * bytesPerElement));

 const bytesForArray = new Int32Array(moduleMemory.buffer);
 bytesForArray.set(VALID_CATEGORY_IDS, (arrayPointer / bytesPerElement));

 const isValid = moduleExports._ValidateCategory(categoryIdPointer,

➥ arrayPointer, arrayLength, errorMessagePointer);

 moduleExports._free_buffer(arrayPointer);
 moduleExports._free_buffer(categoryIdPointer);

 return (isValid === 1);
}

Listing 4.13 validateCategory

Allocates memory for the category ID Copies the ID to the
module’s memory

Allocates
memory for each
item in the array

Gets an
Int32Array
view of the
memory and
then copies in
the array’s
values

Calls the
_ValidateCategory
function in the module

Frees the memory
that was allocated

83Real-world use cases
Viewing the results4.2.4

Now that you’ve revised the code, you can open a web browser and type
http://localhost:8080/editproduct.html into the address box to see the web
page. You can test the validation by adding more than 50 characters to the Name field
and then clicking the Save button, which should display a validation error, as figure
4.13 shows.

Now: how can you use what you learned in this chapter in the real world?

Real-world use cases
The following are some possible use cases for what you’ve learned in this chapter:

 You can adjust one of your existing C++ codebases, or take a portion of the
codebase, and compile it to WebAssembly so that it can be run in the browser.

 If you have JavaScript code that calls the server or a third-party API and receives
large amounts of text data in return, you could create a WebAssembly module
that parses the string for the data that your web page needs.

 If you have a website that allows users to upload a photo, you could create a
WebAssembly module that accepts the file’s bytes in order to resize or compress
the photo before uploading. This would save bandwidth, which would help the
user reduce data usage and would reduce processing on the server.

Validation error
when the name
is too long

Edit Product page’s Name validation error when the name entered is too longFigure 4.13

84 CHAPTER 4 Reusing your existing C++ codebase
Exercises
You can find the solutions to these exercises in appendix D.

1 What two options are there to have Emscripten make your functions visible to
the JavaScript code?

2 How do you prevent function names from being mangled when compiled so
that your JavaScript code can use the expected function name?

Summary
In this chapter, you dug into the code-reuse aspect of WebAssembly by creating a web
page that accepted user information that needed to be validated:

 By using the conditional compilation symbol __EMSCRIPTEN__ and placing func-
tions within an extern "C" block, you can adjust existing code so that it can
also be compiled by the Emscripten compiler. This allows a single C or C++
codebase, which might be part of a desktop application, for example, to also be
available for use in a web browser or in Node.js.

 By including the EMSCRIPTEN_KEEPALIVE declaration with a function, you can
have the function automatically added to Emscripten’s list of functions that it
will make visible to the JavaScript code. By using this declaration, you don’t
need to include the function in the command line’s EXPORTED_FUNCTIONS array
when compiling the module.

 You can call the module’s functions using the ccall Emscripten helper function.
 To pass anything other than an integer or float between the module and Java-

Script code requires interactions with the module’s memory. The Emscripten-
generated JavaScript code provides a number of functions that help with this.

Creating a WebAssembly
module that calls

into JavaScript
In chapter 4, you created a WebAssembly module that your JavaScript code called
into using Emscripten’s ccall helper function. You passed a buffer as a parameter
to the module’s function so that, if there was an issue, an error message could be
returned by placing it into the buffer. If there was an issue, your JavaScript read the
string from the module’s memory and then displayed the message to the user, as
figure 5.1 shows.

This chapter covers
 Calling into JavaScript directly using Emscripten’s toolkit

 Calling into JavaScript without Emscripten’s toolkit
85

86 CHAPTER 5 Creating a WebAssembly module that calls into JavaScript
Imagine that rather than passing a buffer to the module’s function if there’s an issue,
the module can just pass the error message directly to your JavaScript, as figure 5.2
shows.

1. A buffer is allocated in
the module’s memory.

2. Emscripten is asked to call
the ValidateName function.
The buffer is included as
a parameter.

Your JavaScript

3. If there’s an issue with the
user’s entry, an error message
is placed in the buffer.

4. The error is read from the
module’s memory and
displayed to the user.

validateName

errorPointererrorPointer

setErrorMessage

Emscripten JavaScript

ccall

Module

ValidateName

How the JavaScript code currently interacts with the module’s functionsFigure 5.1

Your JavaScript

validateName

setErrorMessage

1. Emscripten is asked to call
the ValidateName function.

2. If there’s an issue with the user’s
entry, an error message is passed
to a function you’ve defined in
Emscripten’s JavaScript.

3. The message is read from the
module’s memory and passed
to a method in your main
JavaScript code.

4. The message is
displayed to the user.

error

Emscripten JavaScript

errorPointer
UpdateHostAboutError

ccall

Module

ValidateName

The module calling a function in the JavaScript codeFigure 5.2

87

When using the Emscripten toolkit, you can interact with JavaScript code from your
module in three ways:

1 Use Emscripten macros. These include the emscripten_run_script series of
macros, the EM_JS macro, and the EM_ASM series of macros.

2 Add custom JavaScript to Emscripten’s JavaScript file that you can call into
directly.

3 Use function pointers in which the JavaScript code specifies a function for the
module to call into. We’ll look at this approach in chapter 6.

With any way of interacting with JavaScript from a module, one approach may work
better than another in certain circumstances:

1 Emscripten’s macros can be quite helpful when debugging or when you need
only the odd interaction with the JavaScript code. As the complexity of the
macro code or number of interactions with JavaScript increases, you might con-
sider separating the macro code out of your C or C++ code. You would do this
so that both your module’s code and the web page code can be more easily
maintained.

Under the hood, when the EM_JS and EM_ASM series of macros are used, the
Emscripten compiler creates the necessary functions and adds them to the gen-
erated Emscripten JavaScript file. When the WebAssembly module calls the
macros, it’s really calling the generated JavaScript functions.

INFO More about Emscripten’s macros, including how to use them, can
be found in appendix C.

2 As you’ll see in this chapter, calling into JavaScript directly is easy and will sim-
plify your website’s JavaScript somewhat. If you plan to make function calls from
the JavaScript function you place in Emscripten’s generated JavaScript, you
need some knowledge of the main JavaScript code. If you’re supplying the mod-
ule to a third party, they’ll need clear instructions on setting things up correctly
so that there are no errors because, for example, a function doesn’t exist.

WARNING If you plan to use this approach and also target Node.js, then
the JavaScript code you add to the generated JavaScript file must be self-
contained. You’ll work with Node.js in chapter 10 and will see this in more
detail then, but, basically, because of the way Node.js loads the
Emscripten JavaScript file, the code within the file can’t call into your
main JavaScript code.

3 In chapter 6, you’ll see that using function pointers gives you a lot more flexibil-
ity because the module doesn’t need to know what functions exist in your Java-
Script code. Instead, the module will just call the JavaScript function that you
provide it. The added flexibility of function pointers comes with a bit more
complexity because it requires more code in your JavaScript to make everything
work.

88 CHAPTER 5 Creating a WebAssembly module that calls into JavaScript
Rather than letting Emscripten generate the JavaScript functions for you using mac-
ros, you can define your own JavaScript to be included in Emscripten’s JavaScript file.
You’ll be looking into this approach in this chapter.

 For this scenario, you’re going to modify the validation module that you created in
chapter 4 so that, if there’s an issue with the validation, you won’t pass the error mes-
sage back to the calling function by using a parameter. What you’ll do instead is the
following (figure 5.3):

1 If there’s an issue with the user’s entry, have the module call a JavaScript func-
tion that you’ll place in Emscripten’s generated JavaScript file.

2 The JavaScript function will accept a pointer from the module and, from that,
will read the error message from the module’s memory.

3 It will then pass the message to your web page’s main JavaScript, which will han-
dle updating the UI with the error received.

Using C or C++ to create a module5.1
with Emscripten plumbing
Let’s revise the C++ validation logic that you created in chapter 4 so that it can talk to
the JavaScript code. You’ll include the standard C library and Emscripten helper func-
tions, which is the recommended way to build a module for use in production. We’ll
look at the other approach to building a WebAssembly module that doesn’t include
the standard C library or Emscripten helper functions later in this chapter.

Your JavaScript

validateName

setErrorMessage

 Emscripten is asked to call
 the ValidateName function.

1. If there’s an issue with the user’s
entry, an error message is passed
to a function you’ve defined in
Emscripten’s JavaScript.

2. The message is read from the
module’s memory and passed
to a method in your main
JavaScript code.

3. The message is
displayed to the user.

error

Emscripten JavaScript

errorPointer
UpdateHostAboutError

ccall

Module

ValidateName

How the module and JavaScript will be reworked to allow the module to call back to the JavaScriptFigure 5.3

89Using C or C++ to create a module with Emscripten plumbing
 As figure 5.4 shows, the steps to build the module will be similar to what you saw in
chapter 4:

1 Modify the C++ code so that it no longer receives a string buffer and instead
calls a JavaScript function if there’s an issue with the validation.

2 Define the JavaScript code that you want included in Emscripten’s generated
JavaScript file.

3 Ask Emscripten to generate the WebAssembly and JavaScript plumbing files.
4 Copy the generated files for use in the browser.
5 Create the web page, and then write the JavaScript code necessary to interact

with the WebAssembly module.

validate.js

JavaScript
for

Emscripten’s
library

validate.wasmEmscripten

1. Modify to no longer receive
 a buffer. Instead, call a
 JavaScript function if there’s
 an issue with the validation.

2. Define a JavaScript function
 for the C++ code to call. Will
 be included in Emscripten’s
 generated JavaScript file.

3. Emscripten is asked to generate
 the WebAssembly and
 JavaScript files.

4. Files are copied to the
 server for use by the
 browser and server code.

5. Create the web page, and
 write the JavaScript code
 to interact with the module.

 The server aspect is
 discussed in a later chapter.

Browser

Validation logic
(validate.wasm validate.js)

Desktop application written in C++

Validation logic
(validate.cpp)

Server

Validation logic
(validate.wasm validate.js)

Figure 5.4 Steps for turning C++ logic, as well as some JavaScript that needs to be included in Emscripten’s
JavaScript file, into a WebAssembly module for use in a browser and by the server-side code. I discuss the
server aspect, Node.js, in a later chapter.

90 CHAPTER 5 Creating a WebAssembly module that calls into JavaScript
Adjusting the C++ code5.1.1

You can see in figure 5.5 that the first step of the process is to modify the C++ code so
that it no longer receives a string buffer. Instead, the code will call a JavaScript func-
tion, passing it the error message if there’s a problem with the validation.

In your WebAssembly folder, create a Chapter 5\5.1.1 EmJsLibrary\source\ folder for the
files that you’ll use in this section. Copy the validate.cpp file from the WebAssembly\
Chapter 4\4.1 js_plumbing\source\ folder to your newly created source folder. Open
the validate.cpp file in your favorite editor.

 In a moment, you’ll modify the C++ code to call a function that’s defined in the
JavaScript code. Because the function isn’t part of the C++ code, you’ll need to tell the
compiler what the function signature is by including the extern keyword in front of
the signature. Doing this allows the C++ code to be compiled with the expectation
that the function will be available when the code is run. When the Emscripten com-
piler sees the function signature, it’ll create an import item for it in the WebAssembly
module. When the module is instantiated, the WebAssembly framework will see the
requested import and will expect the function to be provided.

 The JavaScript function that you’ll create will accept a const char* pointer for the
parameter, which will hold the error message if there’s an issue with the validation.
The function won’t return a value. To define your function signature, add the follow-
ing line of code within the extern "C" block and before the ValidateValueProvided
function in your validate.cpp file:

extern void UpdateHostAboutError(const char* error_message);

Because you’re not going to pass a buffer to the module anymore, you’ll need to
remove the char* return_error_message parameters from the functions. Also, any
location that’s making a strcpy call to copy the error message into the buffer will now
need to call the UpdateHostAboutError function instead.

 Modify the ValidateValueProvided function to no longer have the return_error_
message parameter and to now call the UpdateHostAboutError function rather than
strcpy, as follows:

int ValidateValueProvided(const char* value,
 const char* error_message) {

1. Modify to no longer receive a buffer.
 Instead, call a JavaScript function if
 there’s an issue with the validation.

Desktop application written in C++

Validation logic
(validate.cpp)

Figure 5.5 Step 1 is to modify the C++ code so that it passes the error
message to a JavaScript function.

The return_error_message
parameter has been removed.

91Using C or C++ to create a module with Emscripten plumbing

d.
 if ((value == NULL) || (value[0] == '\0')) {
 UpdateHostAboutError(error_message);
 return 0;
 }

 return 1;
}

As with the ValidateValueProvided function, modify the ValidateName function to no
longer receive the return_error_message parameter and remove it from the Validate-
ValueProvided function call. Revise the code to now pass the error message to the
UpdateHostAboutError function rather than use strcpy, as follows:

int ValidateName(char* name, int maximum_length) {
 if (ValidateValueProvided(name,
 "A Product Name must be provided.") == 0) {
 return 0;
 }

 if (strlen(name) > maximum_length) {
 UpdateHostAboutError("The Product Name is too long.");
 return 0;
 }

 return 1;
}

No changes are needed for the IsCategoryIdInArray function.
 Lastly, you need to make the same changes to the ValidateCategory function that

you did with the ValidateValueProvided and ValidateName functions, as the follow-
ing listing shows.

int ValidateCategory(char* category_id, int* valid_category_ids,
 int array_length) {
 if (ValidateValueProvided(category_id,
 "A Product Category must be selected.") == 0) {
 return 0;
 }

 if ((valid_category_ids == NULL) || (array_length == 0)) {
 UpdateHostAboutError("There are no Product Categories available.");
 return 0;
 }

 if (IsCategoryIdInArray(category_id, valid_category_ids,
 array_length) == 0) {
 UpdateHostAboutError("The selected Product Category is not valid.");
 return 0;
 }

 return 1;
}

The modifiedListing 5.1 ValidateCategory function in validate.cpp

strcpy is replaced with the call
to UpdateHostAboutError.

The return_error_message
parameter has been
removed.

strcpy is replaced with
the call to

UpdateHostAboutError.

The return_error_message
parameter has been remove

92 CHAPTER 5 Creating a WebAssembly module that calls into JavaScript
Creating the JavaScript that yo5.1.2 u want included in Emscripten’s
generated JavaScript file

Now that you’ve revised the C++ code, the next step (figure 5.6) is to create the Java-
Script code that you want included in Emscripten’s generated JavaScript file.

When creating JavaScript code that will be merged into Emscripten’s generated Java-
Script file, WebAssembly module creation is slightly different compared to how you’ve
done it previously. In this case, you’ll define your UpdateHostAboutError JavaScript
function before you ask Emscripten to compile the C++ code, because you need the
Emscripten compiler to merge your JavaScript code with the rest of the Emscripten
JavaScript code that gets generated.

 To have your JavaScript included in Emscripten’s generated JavaScript file, you
need to add your JavaScript to Emscripten’s LibraryManager.library object; to do
this, you can use Emscripten’s mergeInto function, which takes two parameters:

 The object that you want to add properties to—in this case, the LibraryManager
.library object

 An object whose properties will be copied into the first object—in this case,
your code

You’ll create a JavaScript object that will hold a property with the name UpdateHost-
AboutError; the value will be a function that receives an error message pointer. The
function will read the string from the module’s memory using the Emscripten helper
function UTF8ToString and will then call the JavaScript function setErrorMessage
that’s part of your web page’s main JavaScript code.

 In the WebAssembly\Chapter 5\5.1.1 EmJsLibrary\source\ folder, create a file called
mergeinto.js, open it with your favorite editor, and add the following code snippet:

mergeInto(LibraryManager.library, {
 UpdateHostAboutError: function(errorMessagePointer) {
 setErrorMessage(Module.UTF8ToString(errorMessagePointer));
 }
});

JavaScript
for

Emscripten’s
library

Emscripten

2. Define a JavaScript function
for the C++ code to call. Will
be included in Emscripten’s
generated JavaScript file.

Validation logic
(validate.cpp)

Figure 5.6 Step 2 is creating the JavaScript code to include in Emscripten’s
generated JavaScript file.

Copies the properties
of the object into the

LibraryManager.library object

93Using C or C++ to create a module with Emscripten plumbing
Compiling the code into a WebAssembly module5.1.3

Now that you’ve modified the C++ code and created the JavaScript function that you
want included in Emscripten’s generated JavaScript file, you can move to the next
step. As figure 5.7 shows, this step is to have Emscripten compile the code into a Web-
Assembly module. Emscripten will also be instructed to include the code from your
mergeinto.js file in the generated JavaScript file.

To tell the Emscripten compiler to include your JavaScript code in the generated
JavaScript file, you’ll need to use the --js-library flag followed by the path of the
file to include. To ensure that the Emscripten helper functions that your JavaScript
code needs are included in the generated JavaScript file, you’ll specify them when
compiling the C++ code by including them in the EXTRA_EXPORTED_RUNTIME_METHODS
command-line array. You’ll include two Emscripten helper functions:

 ccall—Used by the web page’s JavaScript code to call into the module
 UTF8ToString—Used by the JavaScript you wrote in the mergeinto.js file to

read the strings from the module’s memory

To compile the code into a WebAssembly module, open a command prompt, navigate
to the folder where you saved your validate.cpp and mergeinto.js files, and run the fol-
lowing command:

emcc validate.cpp --js-library mergeinto.js

➥ -s EXTRA_EXPORTED_RUNTIME_METHODS=['ccall','UTF8ToString']

➥ -o validate.js

If you open the Emscripten-generated JavaScript file, validate.js, and search for the
UpdateHostAboutError function, you should see that the function you defined now is
part of the generated JavaScript file:

function _UpdateHostAboutError(errorMessagePointer) {
 setErrorMessage(Module.UTF8ToString(errorMessagePointer));
}

validate.js

JavaScript
for

Emscripten’s
library

validate.wasmEmscripten

3. Emscripten is asked to generate
 the WebAssembly and
 JavaScript files.Validation logic

(validate.cpp)

Figure 5.7 Step 3 is to ask Emscripten to generate both the WebAssembly and
JavaScript files. In this case, you’ll also ask Emscripten to include the mergeInto.js file.

94 CHAPTER 5 Creating a WebAssembly module that calls into JavaScript
One nice thing about including functions in the generated JavaScript file is that, if
you have several other functions along with UpdateHostAboutError, only the func-
tions that are actually called by the module’s code will be included.

Adjusting the web page’s JavaScript code5.1.4

Figure 5.8 shows the next step of the process, in which you’ll copy the files generated
by Emscripten to a folder along with a copy of the editproduct.html and editprod-
uct.js files that you created in chapter 4. You’ll then modify some of the code in the
editproduct.js file based on how you’ll now need to interact with the module.

In your WebAssembly\Chapter 5\5.1.1 EmJsLibrary\ folder, create a folder called front-
end. Copy the following files into your new frontend folder:

 The validate.js and validate.wasm files from your Chapter 5\5.1.1 EmJsLibrary\
source\ folder

 The editproduct.html and editproduct.js files from your Chapter 4\4.1 js_plumbing\
frontend\ folder

Open the editproduct.js file with your editor.
 Because the JavaScript no longer needs to create a string buffer and pass it to the

module, you can simplify the onClickSave function in the editproduct.js file:

 The errorMessage and errorMessagePointer variables are no longer needed,
so you can delete these two lines of code. In their place, you’ll put a call to the
setErrorMessage function and pass in an empty string so that, if there was a
previous error displayed on the web page, the message will be hidden in the
event that there are no issues with the current call to the save function.

 Remove the errorMessagePointer parameter from the call to the validate-
Name and validateCategory functions.

 Remove the Module.UTF8ToString line of code within the if statement.

validate.js validate.wasm

4. Files are copied to
the server for use
in the browser.

Browser

Validation logic
(validate.wasm validate.js)

Figure 5.8 Step 4 is to copy the
generated files to where the HTML file
is and update the JavaScript code
based on the new way it needs to
interact with the module.

95Using C or C++ to create a module with Emscripten plumbing
 Revise the if statement so that the or (||) condition between the two checks is
now an and (&&) condition, and remove the inequality check (!) from before
both function calls. Now, if both function calls indicate that there were no
errors, then everything’s valid, and the data can be passed to the server-side
code.

 You can remove the rest of the code that follows the if statement in the function.

Your onClickSave function should now look like this:

function onClickSave() {
 setErrorMessage("");

 const name = document.getElementById("name").value;
 const categoryId = getSelectedCategoryId();

 if (validateName(name) &&
 validateCategory(categoryId)) {

 }
}

You’ll also need to modify the validateName function:

 Remove the errorMessagePointer parameter.
 Because the ValidateName function in the WebAssembly module now expects

only two parameters, remove the last array item ('number') in the ccall func-
tion’s third parameter.

 Remove the errorMessagePointer array item from the ccall function’s last
parameter.

The validateName function should now look like the following code snippet:

function validateName(name) {
 const isValid = Module.ccall('ValidateName',
 'number',
 ['string', 'number'],
 [name, MAXIMUM_NAME_LENGTH]);

 return (isValid === 1);
}

You’ll make the same changes to the validateCategory function that you did to the
validateName function:

 Remove the errorMessagePointer parameter.
 Remove the last array item ('number') from the ccall function’s third parameter.
 Remove the errorMessagePointer array item from the ccall function’s last

parameter.

Clears any previous
error message

The second parameter of each
function call was removed.

Inequality checks removed from
before the function calls. The or
condition is changed to and.

There were no issues. The
data can be passed to the
server-side code.

The second parameter
(errorMessagePointer)
 has been removed.

The third array item
(number) has been removed.

The third array item
(errorMessagePointer)
has been removed.

96 CHAPTER 5 Creating a WebAssembly module that calls into JavaScript
The validateCategory function should now look like the code in the next listing.

function validateCategory(categoryId) {
 const arrayLength = VALID_CATEGORY_IDS.length;
 const bytesPerElement = Module.HEAP32.BYTES_PER_ELEMENT;
 const arrayPointer = Module._malloc((arrayLength * bytesPerElement));
 Module.HEAP32.set(VALID_CATEGORY_IDS, (arrayPointer / bytesPerElement));

 const isValid = Module.ccall('ValidateCategory',
'number',
['string', 'number', 'number'],
[categoryId, arrayPointer, arrayLength]);

 Module._free(arrayPointer);

 return (isValid === 1);}

Viewing the results5.1.5

Now that you’ve finished modifying the JavaScript code, you can open your browser
and type http://localhost:8080/editproduct.html into the address box to see the
web page. You can test the validation by removing all the text from the Name field and
then clicking the Save button. An error should display on the web page (figure 5.9).

The modifiedListing 5.2 validateCategory function in editproduct.js

The second parameter
(errorMessagePointer)

has been removed.

The fourth array item
(number) has been removed.The fourth array item

(errorMessagePointer)
has been removed.

Validation error
when the name
isn’t provided

Edit Product page’s Name validation errorFigure 5.9

97Using C or C++ to create a module without Emscripten plumbing

Using C or C++ to create a module5.2
without Emscripten plumbing
Suppose you want to have Emscripten compile the C++ code and not include any of
the standard C library functions or generate the JavaScript plumbing file. Emscripten’s
plumbing code is convenient, but it also hides a lot of the details of working with a
WebAssembly module. The approach you’ll see here is quite helpful in learning
because you’ll be working with the module directly.

 The process you saw in section 5.1, with Emscripten’s plumbing code, is typically
what’s used for production code. Emscripten’s generated JavaScript file is convenient
because it handles loading and instantiating the module and includes helper func-
tions to make interacting with the module easier.

 In section 5.1, when you compiled your WebAssembly module and included the
Emscripten plumbing code, your updateHostAboutError function was placed within
Emscripten’s generated JavaScript file, as figure 5.10 shows.

Your JavaScript

validateName

setErrorMessage

1. Emscripten is asked to call
 the ValidateName function.

2. If there’s an issue with the user’s
 entry, an error message is passed
 to a function you’ve defined in
 Emscripten’s JavaScript.

3. The message is read from the
 module’s memory and passed
 to a method in your main
 JavaScript code.

4. The message is
 displayed to the user.

error

Emscripten JavaScript

errorPointer
UpdateHostAboutError

ccall

Module

ValidateName

Figure 5.10 The module calling back to the JavaScript through a function you defined in the Emscripten-
generated JavaScript file

When you’re not using Emscripten’s plumbing code, your C or C++ code won’t have
access to Emscripten macros or Emscripten’s JavaScript file, but it’s still possible to call
into JavaScript directly. Because you won’t have access to Emscripten’s generated
JavaScript file, the callback function will need to be placed in your website’s JavaScript
file, as figure 5.11 shows.

In section 5.1.1, I warned you that when including JavaScript in Emscripten’s
JavaScript code, the code needs to be self-contained if you plan to target Node.js. In
chapter 10, you’ll work with WebAssembly modules in Node.js and see this in more
detail, but the warning is due to how the Emscripten-generated JavaScript files are
loaded into Node.js.

98 CHAPTER 5 Creating a WebAssembly module that calls into JavaScript

Modules built using this approach don’t have the self-contained code restrictions—
the code your module calls into will be part of your main JavaScript. As you can see in
figure 5.12, the process is similar to that in section 5.1, except that you’ll ask
Emscripten to generate only the WebAssembly file.

validateName

setErrorMessage

UpdateHostAboutError

1. Your code calls the
ValidateName function.

2. If there’s an issue with the
user’s entry, an error message
is passed to a function you’ve
defined in your JavaScript.

3. The message is read
from the module’s
memory and then
displayed to the user.

errorPointer

ModuleYour JavaScript

ValidateName

error

How the callback logic works without Emscripten plumbing codeFigure 5.11

validate.wasmEmscripten

2. Emscripten is asked to generate
only the WebAssembly file.

3. File is copied to the server
for use by the browser
and server code.

Browser

Validation logic
(validate.wasm)

Desktop application written in C++

Validation logic
(validate.cpp)

Server

Validation logic
(validate.wasm)

1. Modify to use
side_module_system_functions.h.

 The server aspect is
 discussed in a later chapter.

4. Adjust how the JavaScript code
interacts with the module.

Figure 5.12 Steps in which existing C++ logic is turned into WebAssembly for use by a website and
the server-side code but without any generated Emscripten JavaScript code. I discuss the server aspect,
Node.js, in a future chapter.

99Using C or C++ to create a module without Emscripten plumbing
Making the C++ modifications5.2.1

The first step of the process (figure 5.13) is to modify the C++ code that you created in
section 5.1 so that it uses the side_module_system_functions.h and .cpp files that you
created in chapter 4. In your Chapter 5\ folder, create a 5.2.1 SideModuleCallingJS\
source\ folder for your files in this section. Copy the following files into your new
source folder:

 The validate.cpp file from your 5.1.1 EmJsLibrary\source\ folder
 The side_module_system_functions.h and .cpp files from your Chapter 4\4.2

side_module\source\ folder

When it comes to calling into JavaScript directly, the C++ code is identical to what you
created in section 5.1, in which the extern keyword is used to define the function sig-
nature of the JavaScript function:

extern void UpdateHostAboutError(const char* error_message);

The only difference between the C++ code here and the code you wrote in section 5.1
is that this code won’t have access to the standard C library. You’ll need to import the
code you wrote in chapter 4 that gave you functions like strcpy, strlen, and atoi.

 Open the validate.cpp file in your favorite editor, and then remove the includes
for the standard system library cstdlib and cstring. Then, add the header for your
version of the standard C library functions, side_module_system_functions.h, within
the extern "C" block.

WARNING The include for the header file must be placed within the extern
"C" block because you’ll be asking the Emscripten compiler to compile two
.cpp files. Although both files’ functions are within extern "C" blocks, the
Emscripten compiler still assumes that function calls in the validate.cpp file
are being compiled to a C++ file, where the functions have been mangled.
The compiler won’t see the mangled function names in the generated mod-
ule and will assume they need to be imported instead.

1. Modify to use
 side_module_system_functions.h.

Desktop application written in C++

Validation logic
(validate.cpp)

Figure 5.13 You need to modify the C++ code from section 5.1 to use
the side_module_system_functions files that you created in chapter 4.

100 CHAPTER 5 Creating a WebAssembly module that calls into JavaScript
The following snippet shows the modifications to the validate.cpp file:

#ifdef __EMSCRIPTEN__
 #include <emscripten.h>
#endif

#ifdef __cplusplus
extern "C" {
#endif

#include "side_module_system_functions.h"

Compiling the code into a WebAssembly module5.2.2

Now that the C++ code is modified, the next step is to have Emscripten compile it into
a WebAssembly module but without the JavaScript plumbing code, as figure 5.14
shows.

To compile the C++ code into a WebAssembly module, open a command prompt, nav-
igate to the folder where you saved the C++ files, and run the following command:

emcc side_module_system_functions.cpp validate.cpp

➥ -s SIDE_MODULE=2 -O1 -o validate.wasm

5.2.3 Adjusting the JavaScript that will interact with the module

Once you’ve generated the WebAssembly module, figure 5.15 shows the next step, in
which you’ll copy the generated Wasm file to where the HTML file is located. You’ll
then modify how the JavaScript code interacts with the module now that it’s not pass-
ing a buffer to the module’s functions.

Important: place the header file
within the extern "C" block.

validate.wasmEmscripten

2. Emscripten is asked to generate
only the WebAssembly file.

Validation logic
(validate.cpp)

Figure 5.14 In this case, you need to ask Emscripten to generate only
the WebAssembly file but not the JavaScript plumbing file.

3. File is copied to the
server for use in
the browser.

Browser

Validation logic
(validate.wasm)

Figure 5.15 You need to copy the
generated Wasm file to where the HTML
file is and modify how the JavaScript code
interacts with the module.

101Using C or C++ to create a module without Emscripten plumbing
In your Chapter 5\5.2.1 SideModuleCallingJS\ folder, create a frontend\ folder. Copy
the following files into this folder:

 Your newly generated validate.wasm file from the 5.2.1 SideModuleCalling-
JS\source\ folder

 The editproduct.html and editproduct.js files from the Chapter 4\4.2 side_
module\frontend\ folder

In your C++ code, the extern keyword and function signature tell the Emscripten
compiler that the module will be importing the _UpdateHostAboutError function
(the Emscripten compiler adds an underscore before the function’s name in the gen-
erated WebAssembly module). Because you don’t have the Emscripten plumbing
code, when your JavaScript instantiates the module, it’s up to you to pass the _Update-
HostAboutError function to the module.

THE INITIALIZEPAGE FUNCTION

Your first step is to open the editproduct.js file in your editor and then locate the
initializePage function. Revise importObject by adding a new property to the end
with the name _UpdateHostAboutError and a function that receives the error-
MessagePointer parameter. Within the function’s body, you’ll call the getString-
FromMemory function to read the string from the module’s memory. You’ll then pass
the string to the setErrorMessage function.

 The next listing shows what the importObject should now look like in the
initializePage function of the editproduct.js file.

function initializePage() {
 ...

 moduleMemory = new WebAssembly.Memory({initial: 256});

 const importObject = {
 env: {
 __memory_base: 0,
 memory: moduleMemory,
 _UpdateHostAboutError: function(errorMessagePointer) {
 setErrorMessage(getStringFromMemory(errorMessagePointer));
 },
 }
 };

 ...
}

The rest of the changes to the editproduct.js file will be the same ones that you made
in section 5.1, with the removal of the error buffer variable from the onClickSave,
validateName, and validateCategory functions.

Listing 5.3 _UpdateHostAboutError added to the importObject

Function created to respond
to calls from the module

Reads the string from the
module’s memory and
displays it to the user

102 CHAPTER 5 Creating a WebAssembly module that calls into JavaScript
THE ONCLICKSAVE FUNCTION

Locate the onClickSave function, and do the following:

 Replace the errorMessage and errorMessagePointer lines of code with a call
to setErrorMessage, passing in an empty string. If there are no validation
issues, calling the setErrorMessage function with an empty string will remove
any error message that might have been displayed the last time the user clicked
the Save button.

 Modify the if statement to no longer pass in the errorMessagePointer parameter.
 Remove the inequality checks (!) from before the validateName and validate-

Category function calls. Change the or (||) check to an and (&&) check.
 Remove the getStringFromMemory line of code from within the if statement’s

body. If everything is ok with the validation, the body of the if statement will be
where you put the code to pass the information to the server side to be saved.

 Delete the rest of the code that follows the if statement in the onClickSave
function.

The onClickSave function should now look like the following code snippet:

function onClickSave() {
 setErrorMessage("");

 const name = document.getElementById("name").value;
 const categoryId = getSelectedCategoryId();

 if (validateName(name) &&
 validateCategory(categoryId)) {

 }
}

THE VALIDATENAME AND VALIDATECATEGORY FUNCTIONS

Your next step is to modify the validateName and validateCategory functions to no
longer receive an errorMessagePointer parameter or pass the value to the module’s
functions. The following listing shows the modified functions.

function validateName(name) {
 const namePointer = moduleExports._create_buffer((name.length + 1));
 copyStringToMemory(name, namePointer);

 const isValid = moduleExports._ValidateName(namePointer,
 MAXIMUM_NAME_LENGTH);

 moduleExports._free_buffer(namePointer);

 return (isValid === 1);
}

Modifications to theListing 5.4 validateName and validateCategory functions

Clears any previous
error message

The second parameter
of each function call
was removed.

Inequality checks removed.
The or condition is
changed to and.

There were no issues. The
data can be passed to the
server-side code.

errorMessagePointer
removed as the

second parameter to
the function

errorMessagePointer no
longer passed to the
module’s function

103Using C or C++ to create a module without Emscripten plumbing
function validateCategory(categoryId) {
 const categoryIdPointer = moduleExports._create_buffer(

➥ (categoryId.length + 1));
 copyStringToMemory(categoryId, categoryIdPointer);

 const arrayLength = VALID_CATEGORY_IDS.length;
 const bytesPerElement = Int32Array.BYTES_PER_ELEMENT;
 const arrayPointer = moduleExports._create_buffer((arrayLength *

➥ bytesPerElement));

 const bytesForArray = new Int32Array(moduleMemory.buffer);
 bytesForArray.set(VALID_CATEGORY_IDS, (arrayPointer / bytesPerElement));

 const isValid = moduleExports._ValidateCategory(categoryIdPointer,
 arrayPointer, arrayLength);

 moduleExports._free_buffer(arrayPointer);
 moduleExports._free_buffer(categoryIdPointer);

 return (isValid === 1);
}

5.2.4 Viewing the results

Now that you have everything adjusted, you can type http://localhost:8080/
editproduct.html into the address box of your browser to see the web page. You
can test that the validation is working correctly by changing the selection of the Cat-
egory drop-down so that nothing is selected and then clicking the Save button. The
validation check should cause an error to be displayed on the web page, as figure
5.16 shows.

errorMessagePointer
removed as the
second parameter to
the function

errorMessagePointer
no longer passed to the
module’s function

Validation error
when a category
isn’t selected

The Edit Product page’s Category validation error when there’s no categoryFigure 5.16
selected

104 CHAPTER 5 Creating a WebAssembly module that calls into JavaScript
How can you use what you learned in this chapter in the real world?

Real-world use cases
With the ability to call into JavaScript, your module can now interact with the web
page and the browser’s Web APIs, opening up a lot of possibilities. Some options
include:

 Creating a WebAssembly module that performs ray-tracing computations for
3D graphics. The graphics could then be used for an interactive web page or a
game.

 Creating a file converter (take a photo and convert it to a PDF before including
it in an email, for example).

 Taking an existing open source C++ library—cryptography, for example—and
compiling it to WebAssembly for use by your website. This website lists a number
of open source C++ libraries: https://en.cppreference.com/w/cpp/links/libs.

Exercises
You can find the solutions to these exercises in appendix D.

1 Which keyword do you need to use to define a signature in your C or C++ code
so that the compiler knows the function will be available when the code is run?

2 Suppose you need to include a function in Emscripten’s JavaScript code that
your module will call to determine if the user’s device is online or not. How
would you include a function called IsOnline that returns 1 for true and 0
(zero) for false?

Summary
In this chapter, you learned the following:

 You can modify a WebAssembly module so it can talk to the JavaScript code
directly.

 External functions can be defined in your C or C++ code using the extern key-
word.

 You can add your own JavaScript code to Emscripten’s generated JavaScript file
by adding it to the LibraryManager.library object.

 When not using Emscripten’s plumbing code, you can include a function for
the module to import by placing it in the JavaScript object that you pass to the
WebAssembly.instantiate or WebAssembly.instantiateStreaming functions.

https://en.cppreference.com/w/cpp/links/libs

Creating a WebAssembly module
that talks to JavaScript using

function pointers
In chapter 5, you modified your module so that it was no longer passing a valida-
tion error message back to the JavaScript through a parameter. Instead, you modi-
fied the module so that it called a JavaScript function directly, as figure 6.1
illustrates.

This chapter covers
 Adjusting C or C++ code to work with function pointers

 Using Emscripten’s helper functions to pass JavaScript
functions to the WebAssembly module

 Calling function pointers in the WebAssembly module when
not using Emscripten’s plumbing code
105

106 CHAPTER 6 Creating a WebAssembly module that talks to JavaScript using function pointers
Imagine being able to pass a JavaScript function to the module based on your Java-
Script code’s needs at the time. When the module finishes processing, it can then call
the function that was specified, as figure 6.2 shows.

Your JavaScript

validateName

setErrorMessage

1. Emscripten is asked to call
the ValidateName function.

2. If there’s an issue with the user’s
entry, an error message is passed
to a function you’ve defined in
Emscripten’s JavaScript.

3. The message is read from the
module’s memory and passed
to a method in your main
JavaScript code.

4. The message is
displayed to the user.

error

Emscripten JavaScript

errorPointer
UpdateHostAboutError

ccall

Module

ValidateName

The module calling a function in the JavaScript codeFigure 6.1

1. Emscripten is asked to call
the ValidateName function.

2. If there’s an issue with the user’s
entry, an error message is passed
to a function you’ve specified.

Your JavaScript

3. The message is read from the
module’s memory and then
displayed to the user.

validateName

onError

Emscripten JavaScript

errorPointer
onError

ccall

Module

ValidateName

The module calling a JavaScript function pointerFigure 6.2

107Using C or C++ to create a module with Emscripten plumbing
Using C or C++ to create a module6.1
with Emscripten plumbing
In this section, you’re going to build the C++ code for the validation logic. You’ll
include the standard C library and Emscripten helper functions, which is the recom-
mended way to build a module for use in production. Later in this chapter, you’ll
learn the other approach to building a WebAssembly module, which doesn’t include
the standard C library or Emscripten helper functions.

6.1.1 Using a function pointer given to the module by JavaScript

As figure 6.3 shows, adjusting the module so that it uses function pointers requires the
following steps:

1 Modify the C++ code so that the exported functions receive success and error
function pointers.

2 Ask Emscripten to generate the WebAssembly file and JavaScript plumbing file.
3 Copy the generated files for use in the browser.
4 Revise the website’s JavaScript code to interact with the WebAssembly module

now that it expects function pointers to be specified.

Emscripten

2. Emscripten is asked to generate the
 WebAssembly and JavaScript files.

Desktop application written in C++

Validation logic
(validate.cpp)

1. Modify to receive function pointers
 for success and error callbacks.

validate.js validate.wasm

3. Files are copied to the
 server for use by the
 browser and server code.

Browser

Validation logic
(validate.wasm validate.js)

Server

Validation logic
(validate.wasm validate.js)

 The server aspect is
 discussed in a later chapter.

4. Adjust how the JavaScript
 code interacts with the module.

Figure 6.3 Steps showing existing C++ logic modified to accept function pointers and then turned into
WebAssembly for use by a website and the server-side code. I discuss the server aspect, Node.js, in a future
chapter.

108 CHAPTER 6 Creating a WebAssembly module that talks to JavaScript using function pointers
Adjusting the C++ code6.1.2

As figure 6.4 shows, the first step is to modify the C++ code to accept function pointers.

Create the following folder to hold your files for this section: WebAssembly\Chapter
6\6.1.2 EmFunctionPointers\source\. Copy the validate.cpp file from the WebAssem-
bly\Chapter 5\5.1.1 EmJsLibrary\ source\ folder to the source folder you just created.
Then open it with your favorite editor to define the function signatures that your code
will use to call the JavaScript code to indicate either success or that there’s an issue
with the user’s data.

DEFINING THE FUNCTION SIGNATURES

In C or C++, functions can accept a parameter with a function pointer’s signature. For
example, the following parameter would be for a function pointer that doesn’t receive
any parameters or return a value:

void(*UpdateHostOnSuccess)(void)

You may run across code examples where the function pointer is being called by first
dereferencing the pointer. This isn’t needed because the dereferenced function
pointer is immediately converted to a pointer, so you just get the same function pointer
back. The C code can call the function pointer the same way it would call a normal
function, as the following example shows:

void Test(void(*UpdateHostOnSuccess)(void)) {
 UpdateHostOnSuccess();
}

Although you can specify a function signature as the parameter in each function
where it’s needed, you can also create a definition of that signature and use it for the
parameters instead. To create a definition of a function signature, you use the
typedef keyword followed by the signature.

 Using a predefined function signature rather than defining the function signature
for each parameter has some advantages:

 It simplifies the functions.
 It improves maintainability. If you ever need to adjust a function signature, you

don’t need to modify every parameter where it’s used. Instead, you need to
update only one spot: the definition.

1. Modify to receive function
pointers for success and
error callbacks.

Desktop application written in C++

Validation logic
(validate.cpp) Figure 6.4 Step 1 is to modify

the code so that it accepts
function pointers.

109Using C or C++ to create a module with Emscripten plumbing

You’ll be using the typedef approach to define the two function signatures the code
needs in the validate.cpp file:

 One signature will be for a success callback function that will not have any
parameters or return a value.

 The other signature will be for a validation error callback function. It will
accept a const char* parameter and not return a value.

In the validate.cpp file, replace the extern void UpdateHostAboutError line of code
with the following snippet of the two signatures:

typedef void(*OnSuccess)(void);
typedef void(*OnError)(const char*);

Now that the module won’t be receiving a buffer parameter in order to return an
error message, you’ll need to remove that parameter from the module’s functions,
starting with the ValidateValueProvided function.

THE VALIDATEVALUEPROVIDED FUNCTION

Revise the ValidateValueProvided function to remove the error_message parame-
ter. Then remove the UpdateHostAboutError call from the if statement.

 The modified ValidateValueProvided function should now look like the following:

int ValidateValueProvided(const char* value) {
 if ((value == NULL) || (value[0] == '\0')) {
 return 0;
 }

The error_message
parameter has been
removed.The code no longer calls

UpdateHostAboutError.
return 1;

}

Next, you need to modify the ValidateName and ValidateCategory functions to
receive success and error function pointers to call the appropriate function based on
whether there’s an issue with the user’s data.

THE VALIDATENAME FUNCTION

You need to make several modifications to the ValidateName function. Start by chang-
ing the function’s return type from int to void, and then add two function pointer
parameters:

 OnSuccess UpdateHostOnSuccess

 OnError UpdateHostOnError

Because you removed the second parameter from the ValidateValueProvided func-
tion, you won’t be able to pass the string to it, so remove the second parameter from
the function call. Replace the return 0 line of code within that if statement with a
call to the error function pointer:

UpdateHostOnError("A Product Name must be provided.");

Originally, the JavaScript function that the code was calling was called UpdateHost-

AboutError. You’ve removed that function and now need to have the code in the

110 CHAPTER 6 Creating a WebAssembly module that talks to JavaScript using function pointers
string length (strlen) if statement call the error function pointer instead. Rename
the UpdateHostAboutError function call as UpdateHostOnError, and then remove the
return 0 line of code.

 Because the ValidateName function now returns void, you need to remove the
return 1 line of code from the end of the function and replace it with an else state-
ment at the end of the if block. The else block is triggered when there are no issues
with the user’s entry, so you’ll want to tell the JavaScript code that everything was suc-
cessful; to do this, you’ll call the success function pointer:

UpdateHostOnSuccess();

The ValidateName function in the validate.cpp file should now look like the code in
the following listing.

...

#ifdef __EMSCRIPTEN__
 EMSCRIPTEN_KEEPALIVE
#endif
void ValidateName(char* name, int maximum_length,
 OnSuccess UpdateHostOnSuccess, OnError UpdateHostOnError) {
 if (ValidateValueProvided(name) == 0) {
 UpdateHostOnError("A Product Name must be provided.");
 }
 else if (strlen(name) > maximum_length) {
 UpdateHostOnError("The Product Name is too long.");
 }
 else {
 UpdateHostOnSuccess();
 }
}
...

No changes are needed for the IsCategoryIdInArray function.
 You’ll make the same changes to the ValidateCategory function that you made to

the ValidateName function by adding the success and error function pointer parame-
ters. You’ll then modify the code to call the appropriate function pointer depending
on whether there’s an issue with the user’s data.

THE VALIDATECATEGORY FUNCTION

Change the return type of the ValidateCategory function to now return void and
then add the function pointer parameters for success and for if there’s an issue with
the user’s entry:

 OnSuccess UpdateHostOnSuccess

 OnError UpdateHostOnError

Listing 6.1 ValidateName modified to use function pointers (validate.cpp)

The function now returns
void. All return statements
have been removed.

OnSuccess and
OnError function

pointers have
been added.

111Using C or C++ to create a module with Emscripten plumbing
Remove the second parameter from the call to the ValidateValueProvided function,
and replace the return 0 line of code within that if statement with the following:

UpdateHostOnError("A Product Category must be selected.");

Because you’re no longer calling the original JavaScript function, UpdateHostAbout-
Error, you’ll need to adjust the calls that were being made to that function to call the
error function pointer. Replace the UpdateHostAboutError calls with UpdateHost-
OnError, and remove the return statement line of code in the following spots:

 In the valid_category_ids == NULL if statement
 In the IsCategoryIdInArray if statement

Lastly, because the ValidateCategory function now returns void, remove the return 1

line of code from the end of the function, and add an else statement to the end of the
if block. The else block will be triggered if there are no issues with the user’s entry. At
this point, you’ll want to tell the JavaScript code that the user-selected category is valid,
so you’ll call the success function pointer:

UpdateHostOnSuccess();

The ValidateCategory function in the validate.cpp file should now look like the code
in the next listing.

...

#ifdef __EMSCRIPTEN__
 EMSCRIPTEN_KEEPALIVE
#endif
void ValidateCategory(char* category_id, int* valid_category_ids,
 int array_length, OnSuccess UpdateHostOnSuccess,
 OnError UpdateHostOnError) {
 if (ValidateValueProvided(category_id) == 0) {
 UpdateHostOnError("A Product Category must be selected.");
 }
 else if ((valid_category_ids == NULL) || (array_length == 0)) {
 UpdateHostOnError("There are no Product Categories available.");
 }
 else if (IsCategoryIdInArray(category_id, valid_category_ids,
 array_length) == 0) {
 UpdateHostOnError("The selected Product Category is not valid.");
 }
 else {
 UpdateHostOnSuccess();
 }
}
...

Now that you’ve modified the C++ code to use function pointers, you can move on to
the next step in the process (figure 6.5) and have Emscripten compile the code into a
WebAssembly module.

Listing 6.2 ValidateCategory modified to use function pointers (validate.cpp)

The function now returns
void. All return statements

have been removed.

OnSuccess and
OnError parameters

have been added.

112 CHAPTER 6 Creating a WebAssembly module that talks to JavaScript using function pointers
6.1.3 Compiling the code into a WebAssembly module

When the Emscripten compiler sees your C++ function pointer use, it will expect func-
tions with those signatures to be imported during the module’s instantiation. Once a
module has been instantiated, you can only add exported WebAssembly functions
from another module. This means the JavaScript code can’t specify a function pointer
later that hasn’t already been imported.

 If you can’t import JavaScript functions after the module has been instantiated,
how are you going to specify a JavaScript function dynamically? As it turns out,
Emscripten provides the module with functions that have the necessary signatures
during instantiation and then maintains a backing array in its JavaScript code. When
the module calls the function pointer, Emscripten looks into the backing array to see
if your JavaScript code has provided it with a function to call for that signature.

 For the function pointers, the size of Emscripten’s backing array needs to be
explicitly set at compile-time by including the RESERVED_FUNCTION_POINTERS flag.
The ValidateName and ValidateCategory functions are each expecting two function
pointer parameters, and you’ll be modifying your JavaScript to call both functions at
the same time, so the backing array will need to be able to hold four items at once. As
a result, you’ll need to specify a value of 4 for this flag.

 To add or remove function pointers from Emscripten’s backing array, your Java-
Script code will need access to Emscripten’s addFunction and removeFunction helper
functions. To make sure these functions are included in the generated JavaScript file,
you’ll include them in the EXTRA_EXPORTED_RUNTIME_METHODS command-line array.

 To compile the code into a WebAssembly module, open a command prompt, navi-
gate to the folder where you saved the validate.cpp file, and run the following
command:

emcc validate.cpp -s RESERVED_FUNCTION_POINTERS=4

➥ -s EXTRA_EXPORTED_RUNTIME_METHODS=['ccall','UTF8ToString',

➥'addFunction','removeFunction'] -o validate.js

validate.js validate.wasmEmscripten

2. Emscripten is asked to generate
the WebAssembly and
JavaScript files.

Validation logic
(validate.cpp)

Figure 6.5 Step 2 is to ask Emscripten to generate both the WebAssembly and
JavaScript files.

113Using C or C++ to create a module with Emscripten plumbing

6.1.4

Validation logic
(validate.wasm validate.js)

Browser

3. Files are copied to
 the server for use
 in the browser.

Figure 6.6 Step 3 is to copy the
generated files to where your HTML and
JavaScript files are located. You’ll then
update the JavaScript code to pass
JavaScript functions to the module.

Now that you’ve generated the WebAssembly module and the Emscripten JavaScript
file, the next step (figure 6.6) is to copy the generated files to a folder where you’ll also
copy the editproduct.html and editproduct.js files that you worked on in chapter 5.
You’ll then update the editproduct.js file to pass JavaScript functions to the module.

Adjusting the web page’s JavaScript code

In your Chapter 6\6.1.2 EmFunctionPointers\ folder, create a frontend folder and
then copy the following files into it:

 The validate.js and validate.wasm files from your Chapter 6\6.1.2 EmFunction-
Pointers\source\ folder

 The editproduct.html and editproduct.js files from your Chapter 5\5.1.1 EmJs-
Library\frontend\ folder

Open the editproduct.js file in your favorite editor so that you can modify the code to
pass function pointers to the module.

THE ONCLICKSAVE FUNCTION

In the C++ code, you modified the module’s validation functions to no longer have a
return value but instead call the provided JavaScript function pointers to indicate suc-
cess or an error when the validation logic is ready to call back. Because you don’t
know when the function pointers will be called, you’ll modify the validateName and
validateCategory JavaScript functions to return a Promise object.

Right now, the onClickSave function uses an if statement to call the validate-

Name function first. If there are no issues with the user-entered name, the if statement
then calls the validateCategory function. Because both functions will be modified to
return a promise, you’ll need to replace the if statement to work with promises.

You could call the validateName function, wait for it to succeed, and then call the
validateCategory function. This would work, but the Promise.all method will call
both validation functions at the same time and will simplify the code compared with
doing one call at a time.

The Promise.all method is passed an array of promises and returns a single
Promise object. If all the promises succeed, the then method is called. If any promise
is rejected (there was an error), the rejected reason of the first promise to reject is the
one that gets returned. You could use the second parameter of the then method to
receive the rejected reason, but you’ll use the promise’s catch statement instead
because that’s the most common approach developers use to handle promise errors.

114 CHAPTER 6 Creating a WebAssembly module that talks to JavaScript using function pointers

Disp
error m
 Modify the onClickSave function in the editproduct.js file to match the code in
the next listing.

...

function onClickSave() {
 setErrorMessage("");

 const name = document.getElementById("name").value;
 const categoryId = getSelectedCategoryId();

 Promise.all([
 validateName(name),
 validateCategory(categoryId)
])
.then(() => {

 })
.catch((error) => {

 setErrorMessage(error);
 });
}
...

Before you move on to modify the validateName and validateCategory functions to
pass a JavaScript function to the WebAssembly module, you’ll need to learn how to
pass a function to Emscripten’s backing array.

CALLING EMSCRIPTEN’S ADDFUNCTION HELPER FUNCTION

For the JavaScript code to pass a function to the module, it needs to use the
Emscripten helper function addFunction. The addFunction call will add the Java-
Script function to a backing array and then return an index that you need to pass to
the ccall function, as illustrated in figure 6.7. (You can find more information about
ccall in appendix B.)

 The addFunction function accepts two parameters:

 The JavaScript function that you want to pass to the module
 A string that represents the function’s signature

The first character in the function signature string represents the return value’s type,
and the rest of the characters represent each parameter’s value type. The following
characters are available for the value types:

 v—Void
 i—32-bit integer
 j—64-bit integer
 f—32-bit float
 d—64-bit float

Listing 6.3 onClickSave modified to use Promise.all (editproduct.js)

Calls both
validation functions

Both validation
functions return success.

There are no issues with the
validation. The data can be saved.

If either validation function
returns an error, then this
block is triggered.

lays the
essage

115Using C or C++ to create a module with Emscripten plumbing
When your code finishes with the function pointer, you need to remove it from
Emscripten’s backing array. To do this, you pass the index you received from add-
Function to removeFunction.

 For each of your module’s validation functions, you’ll need to pass in two function
pointers, one for a success callback and one for a validation error callback. To make
things easier, you’ll create a JavaScript helper function called createPointers that
will help both JavaScript validation functions create the function pointers.

THE CREATEPOINTERS FUNCTION

The createPointers function will receive the following parameters:

 resolve—The resolve method of the promise belonging to the validateName
or validateCategory function

 reject—The reject method of the promise belonging to the validateName or
validateCategory function

 returnPointers—An object that will be returned to the calling function and
will hold the index of each function that was added to Emscripten’s backing
array

You’ll use anonymous functions for both function pointers that will be added to
Emscripten’s backing array.

INFO In JavaScript, anonymous functions are functions that are defined with-
out including a name. For more information, you can visit this MDN Web
Docs page: http://mng.bz/7zDV.

addFunction

onErroronError

ccall

Emscripten JavaScript

1. Pass a callback function
 to Emscripten.

2. Ask Emscripten to call the
 ValidateName function.

Your JavaScript

validateName

Module

errorPointer

onError

ValidateName

3. If there’s an issue with the user’s
 entry, an error message is passed
 to the function you’ve specified.

4. The message is read from
 the module’s memory and
 then displayed to the user.

Figure 6.7 A JavaScript function being passed to Emscripten’s backing array to be called later by
the module

http://mng.bz/7zDV

116 CHAPTER 6 Creating a WebAssembly module that talks to JavaScript using function pointers
The success function pointer expected by the module has a void return type and no
parameters, so the value that needs to be passed as the second parameter to add-
Function is 'v'. If called, this function will call first your freePointers helper func-
tion and then the resolve method that was passed into the createPointers function.

 The error function pointer expected by the module has a void return type and a
const char* parameter. In WebAssembly, pointers are represented by 32-bit integers.
In this case, the function signature string needed for the second parameter of the
addFunction is 'vi'. If called, this function will first call your freePointers helper
function, will read the error message from the module’s memory, and will then call
the reject method that was passed into the createPointers function.

 At the end of the createPointers function, the index of each function that you
added to Emscripten’s backing array will be placed in the returnPointers object.

 After the onClickSave function in your editproduct.js file, add the createPointers
function shown in the next listing.

...

function createPointers(resolve, reject, returnPointers) {
 const onSuccess = Module.addFunction(function() {
 freePointers(onSuccess, onError);
 resolve();
 }, 'v');

 const onError = Module.addFunction(function(errorMessage) {
 freePointers(onSuccess, onError);
 reject(Module.UTF8ToString(errorMessage));
 }, 'vi');

 returnPointers.onSuccess = onSuccess;
 returnPointers.onError = onError;
}
...

To help remove the function pointers from Emscripten’s backing array once you’re
done with them, you’ll create another helper function called freePointers.

Listing 6.4 The new createPointers function in editproduct.js

Creates the function for a
success call from the module

resolve and reject are from the
promise. returnPointers holds the
function indexes.

Removes both functions from
Emscripten’s backing array

Calls the resolve (success)
method of the promise

Function’s
signature: no
return value
and no
parameters

Reads the error from the
module’s memory and then calls
the promise’s reject method

Creates the function for an error
call from the module

Function signature: no
return value and a 32-bit
integer parameter
(pointer)

Adds the function indexes to
the return object

117Using C or C++ to create a module with Emscripten plumbing
THE FREEPOINTERS FUNCTION

Following the createPointers function, add the following snippet of code for the
freePointers function to handle removing your functions from Emscripten’s back-
ing array:

function freePointers(onSuccess, onError){
 Module.removeFunction(onSuccess);
 Module.removeFunction(onError);
}

Now that you’ve created the functions to help add functions to Emscripten’s backing
array and remove them when you’re finished, you’ll need to modify the validateName
and validateCategory functions. You’ll modify these functions to return a Promise
object and, with help from your new createPointers function, pass JavaScript func-
tions to the module.

THE VALIDATENAME FUNCTION

You’ll modify the validateName function to return a Promise object, and you’ll use an
anonymous function within the Promise object. Within the anonymous function, the
first thing you need to do is call the createPointers function to have your Success and
Error functions created. The createPointers call will also return the indexes you need
to pass to the module for the success and error function pointers. These indexes will
be placed in the object, pointers, that’s passed as the third parameter to the create-
Pointers function.

 Remove the const isValid = code that’s in front of Module.ccall, and then
modify the Module.ccall function as follows:

 Set the second parameter to null to indicate that the ValidateName function’s
return value is void.

 Add two additional 'number' types to the third parameter’s array because the
module’s function now accepts two new parameters that are pointers. Pointers
in WebAssembly are represented using 32-bit values, which is why the number
type is used.

 Because two new parameters were added to the module’s function, pass the
indexes for the Success and Error functions to the ccall function’s fourth
parameter. The indexes are returned in the object pointers from the create-
Pointers call.

 Remove the function’s return statement.

The validateName function in the editproduct.js file should now look like the code in
the following listing.

...

function validateName(name) {
 return new Promise(function(resolve, reject) {

The modifiedListing 6.5 validateName function in editproduct.js

Removes the functions from
Emscripten’s backing array

Returns a Promise
object for the caller

118 CHAPTER 6 Creating a WebAssembly module that talks to JavaScript using function pointers
 const pointers = { onSuccess: null, onError: null };
 createPointers(resolve, reject, pointers);

 Module.ccall('ValidateName',
null,
['string', 'number', 'number', 'number'],
[name, MAXIMUM_NAME_LENGTH, pointers.onSuccess,
 pointers.onError]);

 });
}
...

The same changes that were made to the validateName function now need to be made
to the validateCategory function by returning a Promise object and using the create-
Pointers function to create function pointers that can be passed to the module.

THE VALIDATECATEGORY FUNCTION

As you did for the validateName function, you’ll modify the validateCategory func-
tion to return a Promise object. Call the createPointers function to have the Suc-
cess and Error functions created.

 Remove the const isValid = portion of code that’s before the Module.ccall
function, and then revise this function as follows:

 Change the second parameter to null, because the module’s function now
returns void.

 Add two new 'number' types to the array of the third parameter of ccall for
the two pointer types.

 Add the Success and Error function indexes to the array of ccall’s fourth
parameter.

 Finally, remove the return statement from the end of the function.

Your validateCategory function should look like the code in the next listing.

...

function validateCategory(categoryId) {
 return new Promise(function(resolve, reject) {

 const pointers = { onSuccess: null, onError: null };
 createPointers(resolve, reject, pointers);

 const arrayLength = VALID_CATEGORY_IDS.length;
 const bytesPerElement = Module.HEAP32.BYTES_PER_ELEMENT;
 const arrayPointer = Module._malloc((arrayLength * bytesPerElement));
 Module.HEAP32.set(VALID_CATEGORY_IDS,

The modifiedListing 6.6 validateCategory function in editproduct.js

const isValid = removed

Creates the function
pointers for the module

Module’s function
now returns void

Two number types are added for
the two new pointer parameters.Success and Error

function indexes are
added to the array.

Returns a Promise
object for the caller

Creates the function
pointers for the module

119Using C or C++ to create a module without Emscripten plumbing

s are
 new
rs.
 (arrayPointer / bytesPerElement));

 Module.ccall('ValidateCategory',
 null,
 ['string', 'number', 'number', 'number', 'number'],
 [categoryId, arrayPointer, arrayLength,
 pointers.onSuccess, pointers.onError]);

 Module._free(arrayPointer);

 });
}

Viewing the results6.1.5

Now that you’ve finished modifying the JavaScript code, you can open your browser and
type http://localhost:8080/editproduct.html into the address box to see the web
page. You can test the validation by adding more than 50 characters to the Name field
and then pressing the Save button. An error should display on the page (figure 6.8).

Using C or C++ to create a module6.2
without Emscripten plumbing
Suppose that you want to have Emscripten compile the C++ code but not include any
of the standard C library functions or generate the JavaScript plumbing file.
Emscripten’s plumbing code is convenient and is recommended for production use,
but it also hides a lot of the details of working with WebAssembly modules. Not using
Emscripten’s plumbing allows you to work with the WebAssembly module directly.

const isValid =
removed

Module’s
function now
returns void

Two number type
added for the two
pointer paramete

Success and Error function
indexes are added to the array.

Validation error
when the name
is too long

The Edit Product page’s validation error when the name is too longFigure 6.8

120 CHAPTER 6 Creating a WebAssembly module that talks to JavaScript using function pointers
As you can see in figure 6.9, the process in this section is similar to that in section 6.1,
except you’ll be asking Emscripten to generate only the WebAssembly file and not the
JavaScript plumbing file.

6.2.1 Using function pointers given to the module by JavaScript

When you worked with function pointers in section 6.1, you used Emscripten’s plumb-
ing code, which hid the interactions between the module and JavaScript. It actually
felt like the JavaScript code was passing a function pointer to the module.

 When it comes to function pointers in WebAssembly, the C or C++ code is written
as if it’s calling the function pointers directly. When compiled into a WebAssembly
module, however, the code is actually specifying an index of a function in the Table
section of the module and asking the WebAssembly framework to call the function on
its behalf.

INFO A module’s Table section is optional, but, if present, it holds a typed
array of references, like function pointers, that can’t be stored in the mod-
ule’s memory as raw bytes. A module doesn’t have direct access to the items in
the Table section. Instead, the code asks the WebAssembly framework to
access an item based on its index. The framework then accesses the memory
and executes the item on the code’s behalf. Chapter 2 goes into more detail
about the sections of a module.

validate.wasmEmscripten

2. Emscripten is asked to generate
only the WebAssembly file.

3. File is copied to the server
for use by the browser
and server code.

Browser

Validation logic
(validate.wasm)

Desktop application written in C++

Validation logic
(validate.cpp)

Server

Validation logic
(validate.wasm)

1. Adjust the header files so that the code
can be compiled as a side module.

 The server aspect is
 discussed in a later chapter.

4. Adjust how the JavaScript
code interacts with the module.

Figure 6.9 Steps for turning the C++ logic into WebAssembly for use by a website and the server-side code
but without any generated Emscripten JavaScript code. I discuss the server aspect, Node.js, in a later chapter.

121Using C or C++ to create a module without Emscripten plumbing
Function pointers can be functions within the module or can be imported. In your
case, as figure 6.10 shows, you’ll specify the functions for the OnSuccess and OnError
calls so you can pass messages back to JavaScript. Similar to Emscripten’s backing
array, your JavaScript code will need to maintain an object that holds references to the
callback functions that need to be called when the module calls the OnSuccess or
OnError function.

6.2.2 Making the C++ modifications

The first step of the process (figure 6.11) is to modify the C++ code that you created in
section 6.1 so that it uses the side_module_system_functions.h and .cpp files.

In your Chapter 6\ folder, create a 6.2.2 SideModuleFunctionPointers\source\ folder
for your files in this section. Copy the following files into your new source folder:

 The validate.cpp file from your 6.1.2 EmFunctionPointers\source\ folder
 The side_module_system_functions.h and .cpp files from your Chapter 4\4.2

side_module\source\ folder

Open the validate.cpp file in your favorite editor.

ValidateName

onErroronError

onSuccessonSuccess

Module

1. Your code calls the
 ValidateName
 function.

2. The appropriate callback function is
 called depending on whether there
 was an issue with the user’s entry.

Your JavaScript

validateName

Figure 6.10 A module that has imported the onSuccess and onError
JavaScript functions at instantiation. When the ValidateName module
function calls either function, it’s calling into the JavaScript code.

1. Adjust the header files so
 that the code can be
 compiled as a side module.

Desktop application written in C++

Validation logic
(validate.cpp)

Figure 6.11 You’ll modify the C++
code from section 6.1 so that a
WebAssembly module can be
generated without the Emscripten
plumbing code.

122 CHAPTER 6 Creating a WebAssembly module that talks to JavaScript using function pointers
 Because the WebAssembly module will be built as a side module, Emscripten won’t
include the standard C library, so you need to remove the includes for the cstdlib and
cstring header files. To add in your own version of the standard C library functions for
your code to use, add an include for the side_module_system_functions.h file in the
extern "C" block.

 The first part of your validate.cpp file should now look like the following snippet:

#ifdef __EMSCRIPTEN__
 #include <emscripten.h>
#endif

#ifdef __cplusplus
extern "C" {
#endif

#include "side_module_system_functions.h"

That’s all that needs to be modified in the validate.cpp file. The rest of the code is fine
the way it is.

6.2.3 Compiling the code into a WebAssembly module

Now that the C++ code is modified, the next step is to have Emscripten compile it into a
WebAssembly module but without the JavaScript plumbing code, as figure 6.12 shows.

To compile the C++ code into a WebAssembly module, open a command prompt, nav-
igate to the folder where you saved the C++ files, and run the following command:

emcc side_module_system_functions.cpp validate.cpp

➥ -s SIDE_MODULE=2 -O1 -o validate.wasm

6.2.4 Adjusting the JavaScript that will interact with the module

Figure 6.13 shows the next step of the process, in which you’ll copy the generated
Wasm file to where the HTML file is located. You’ll then modify how the JavaScript

Important: place the
header file within the
extern "C" block.

validate.wasmEmscripten

2. Emscripten is asked to generate
only the WebAssembly file.

Validation logic
(validate.cpp)

Figure 6.12 Step 2 is to ask Emscripten to generate only the
WebAssembly file. Emscripten won’t generate the JavaScript
plumbing file in this case.

123Using C or C++ to create a module without Emscripten plumbing
code interacts with the module now that you don’t have access to Emscripten’s plumb-
ing code.

In your Chapter 6\6.2.2 SideModuleFunctionPointers\ folder, create a frontend\
folder. Copy the following files into this new folder:

 The validate.wasm file from your 6.2.2 SideModuleFunctionPointers\source\
folder

 The editproduct.html and editproduct.js files from the Chapter 5\5.2.1 Side-
ModuleCallingJS\frontend\ folder

Open the editproduct.js file in your favorite editor so that you can adjust the code to
work with the WebAssembly module’s function pointers.

NEW GLOBAL VARIABLES

You’ll need to create some variables to hold the index locations of the success and
error function pointers in the module’s Table section. Place the following code snip-
pet between the const VALID_CATEGORY_IDS = [100, 101]; line of code and the let
moduleMemory = null; line of code in the editproduct.js file:

let validateOnSuccessNameIndex = -1;
let validateOnSuccessCategoryIndex = -1;
let validateOnErrorNameIndex = -1;
let validateOnErrorCategoryIndex = -1;

While waiting for the module to complete its processing, you’ll also need some way
of keeping track of the resolve and reject functions of the promises from the
validateName and validateCategory functions. To do this, you’ll create an object for
each function, as shown in the following snippet, which you can place after the vari-
ables you just added in the editproduct.js file:

let validateNameCallbacks = { resolve: null, reject: null };
let validateCategoryCallbacks = { resolve: null, reject: null };

Even though your C++ code looks like it’s calling a function pointer directly, it’s not
really. Under the hood, function pointer references are placed in the module’s Table
section. The code calls the desired function at a specific index using call_indirect,
and WebAssembly calls the function at that index on the code’s behalf. In JavaScript,
the Table section is represented by the WebAssembly.Table object.

Browser

Validation logic
(validate.wasm)

3. File is copied to the
 server for use in
 the browser.

Figure 6.13 Step 3 is to copy the generated
Wasm file to where the HTML file is and
modify how the JavaScript code interacts
with the module.

124 CHAPTER 6 Creating a WebAssembly module that talks to JavaScript using function pointers
 You’ll also need a global variable to hold the module’s WebAssembly.Table
instance, which you’ll pass to the module to hold its function pointer references. Place
the following code after the let moduleExports = null; line in the editproduct.js file:

let moduleTable = null;

Now that the global variables have been created, the next step is to modify the
initializePage function so that you can pass the module the objects and functions
that it’s expecting.

THE INITIALIZEPAGE FUNCTION

The first thing that you'll need to do is create a new instance of the WebAssembly
.Table object for the module's function pointers. The WebAssembly.Table object
expects a JavaScript object to the constructor.

 The first property of the JavaScript object is called initial, and it indicates what
the table’s initial size should be. The second property is called element, and the only
value that can be provided at the moment is the string funcref. There is a third
optional property called maximum. If specified, the maximum property indicates the
maximum size the table is allowed to grow.

 The initial number of items needed for the table will depend on the Emscripten
compiler. To determine what value to use, you can include the -g flag at the command
line when you build your WebAssembly module. The flag will tell Emscripten to also
create a WebAssembly text format file.

 If you open the generated text format file (.wast), you can search for an import s-
expression for the table object, which will look similar to the following:

(import "env" "table" (table $table 1 funcref))

The value you’re looking for would be 1 in this case.

INFO The WebAssembly specification has been modified to use the word
funcref rather than anyfunc for the table’s element type. When
Emscripten outputs a .wast file, it uses the new name, and the Web-
Assembly Binary Toolkit can now accept text format code that uses either
name. At the time of this book’s writing, developer tools in the browsers
are still using the word anyfunc when you inspect a module. Firefox allows
you to use either word when constructing a WebAssembly.Table object in
your JavaScript, but, at the moment, other browsers allow only the old
name, so the JavaScript used in this book will continue to use anyfunc.

In the initializePage function, after the moduleMemory line of code and just before
the creation of the importObject, add the code in the following snippet:

moduleTable = new WebAssembly.Table({initial: 1, element: "anyfunc"});

Next, you'll need to add some properties to the importObject:

 After the memory property, add a __table_base property with a 0 (zero) value.
Emscripten added this import because there will be a Table section in this module,

125Using C or C++ to create a module without Emscripten plumbing
and—because side modules are intended for dynamic linking—there could be
multiple Table sections that need to be merged. Because you’re not doing
dynamic linking here, you can simply pass zero.

 After the __table_base property, you’ll need to include a table object because
this module is using function pointers, and function pointer references are
kept in the module’s Table section.

 The _UpdateHostAboutError function is no longer needed, so it can be removed.
 Emscripten added an import for an abort function to inform you if there’s a

problem preventing the module from loading. You’ll provide a function for it
that will throw an error indicating that abort was called.

Within the then function of the instantiateStreaming function, you’ll need to add
calls to an addToTable function (you’ll build this in a moment) and pass in anony-
mous functions for the success and error function pointers that the module’s
ValidateName and ValidateCategory functions will call. The second parameter to
the addToTable function will be a string representing the signature of the function
you’re adding. The first character of the string is the function’s return value type, and
each additional character indicates the parameter types. The characters Emscripten
uses are

 v—Void
 i—32-bit integer
 j—64-bit integer
 f—32-bit float
 d—64-bit float

Modify the initializePage function to look like the code in the following listing.

...

let moduleMemory = null;
let moduleExports = null;
let moduleTable = null;

function initializePage() {
 ...

 moduleMemory = new WebAssembly.Memory({initial: 256});
 moduleTable = new WebAssembly.Table({initial: 1,
 element: "anyfunc"});

 const importObject = {
 env: {
 __memory_base: 0,
 memory: moduleMemory,
 __table_base: 0,
 table: moduleTable,

Modifications to theListing 6.7 initializePage function (editproduct.js)

anyfunc rather than funcref
for older browsers

abort: function(i) { throw new Error('abort'); },
}

126 CHAPTER 6 Creating a WebAssembly module that talks to JavaScript using function pointers
 };

 WebAssembly.instantiateStreaming(fetch("validate.wasm"),
 importObject).then(result => {
 moduleExports = result.instance.exports;

 validateOnSuccessNameIndex = addToTable(() => {
 onSuccessCallback(validateNameCallbacks);
 }, 'v');

 validateOnSuccessCategoryIndex = addToTable(() => {
 onSuccessCallback(validateCategoryCallbacks);
 }, 'v');

 validateOnErrorNameIndex = addToTable((errorMessagePointer) => {
 onErrorCallback(validateNameCallbacks, errorMessagePointer);
 }, 'vi');

 validateOnErrorCategoryIndex = addToTable((errorMessagePointer) => {
 onErrorCallback(validateCategoryCallbacks, errorMessagePointer);
 }, 'vi');
 });
}
...

You now need to create the addToTable function that will add the specified JavaScript
function to the module’s Table section.

THE ADDTOTABLE FUNCTION

The addToTable function first needs to determine the Table section’s size, because
that will be the index for where the JavaScript function needs to be inserted. The Web-
Assembly.Table object’s grow method is used to increase the size of the Table section
by the desired number of elements. You only need to add one function, so you’ll tell
the Table to grow by 1.

 Next, you’ll call the WebAssembly.Table object’s set method to insert the func-
tion. Because JavaScript functions can’t be passed to the WebAssembly.Table object
but exports from another WebAssembly module can, you’ll pass the JavaScript func-
tion to a special helper function (convertJsFunctionToWasm) that will convert the
function into a WebAssembly function.

 Add the following code after the initializePage function in your editproduct.js
file:

function addToTable(jsFunction, signature) {
 const index = moduleTable.length;
 moduleTable.grow(1);
 moduleTable.set(index,
 convertJsFunctionToWasm(jsFunction, signature));

 return index;
}

Anonymous functions
added to the Table for
the success and error
function pointers

The current size will be
the new function’s index.

Growa the Table to
allow for the new
function to be added

Converta the JavaScript
function into a Wasm
function, and adds it to
the Table

Returns the function’s
index in the Table to
the caller

127Using C or C++ to create a module without Emscripten plumbing
Rather than create the convertJsFunctionToWasm function, you’ll copy over the one
used by the Emscripten-generated JavaScript file. The function creates a very small
WebAssembly module that imports the JavaScript function you specify. The module
exports the same function, but it’s now a WebAssembly wrapped function that can be
inserted into a WebAssembly.Table object.

 Open the validate.js file in your Chapter 6\6.1.2 EmFunctionPointers\frontend\
folder, and search for the convertJsFunctionToWasm function. Copy the function,
and paste it after your addFunctionToTable function in the editproduct.js file.

 Your next task is to create a helper function for use when the module indicates
that the validation was successful. This function will be called by both the Validat-
eName and ValidateCategory module functions if there are no validation issues with
the user’s data.

THE ONSUCCESSCALLBACK FUNCTION

After the initializePage function in the editproduct.js file, define an onSuccess-
Callback function that accepts the following object as a parameter: validateCall-
backs. The validateCallbacks parameter will be a reference to either the validate-
NameCallbacks or validateCategoryCallbacks global object, depending on whether
this function is being called for the validateName or validateCategory function.
Within the function, you’ll call the callback object’s resolve method and then
remove the functions from that object.

 Add the following code snippet after the initializePage function in the edit-
product.js file:

function onSuccessCallback(validateCallbacks) {
 validateCallbacks.resolve();
 validateCallbacks.resolve = null;
 validateCallbacks.reject = null;
}

Similar to the onSuccessCallback function that you just created, you’ll need to create
a helper function for use when the module indicates that there’s a validation error
with one of the user’s entries. This function will be called by both the ValidateName
and ValidateCategory module functions.

THE ONERRORCALLBACK FUNCTION

Following the onSuccessCallback function in the editproduct.js file, you’ll create the
onErrorCallback function that accepts two parameters:

 validateCallbacks—This parameter will be a reference to either the validate-
NameCallbacks or validateCategoryCallbacks global object, depending
on whether this function is being called for the validateName or validate-
Category function.

 errorMessagePointer—A pointer to the location in the module’s memory
where the validation error message is located.

Calls the resolve
method of the promise

Removes the functions
from the object

128 CHAPTER 6 Creating a WebAssembly module that talks to JavaScript using function pointers

Calls
meth
The first thing that the function will need to do is read the string from the module’s
memory by calling your getStringFromMemory helper function. You’ll then call the
callback object’s reject method before removing the functions from that object.

 Add the code in the following snippet after the onSuccessCallback function in
the editproduct.js file:

function onErrorCallback(validateCallbacks, errorMessagePointer) {
 const errorMessage = getStringFromMemory(errorMessagePointer);

 validateCallbacks.reject(errorMessage);

 validateCallbacks.resolve = null;
 validateCallbacks.reject = null;
}

In a moment, you’ll modify the validateName and validateCategory JavaScript func-
tions to return a Promise object because you won’t know when the module will call
the Success and Error functions. Because the functions will return a Promise object,
the onClickSave function will need to be modified to work with the promises.

THE ONCLICKSAVE FUNCTION

Modify the onClickSave function to replace the if statement with the Promise.all
code that you saw in section 6.1. Revise the code in the onClickSave function of the
editproduct.js file so that it matches the next listing.

...

function onClickSave() {
 setErrorMessage("");

 const name = document.getElementById("name").value;
 const categoryId = getSelectedCategoryId();

 Promise.all([
 validateName(name),
 validateCategory(categoryId)
])
 .then(() => {

 })
 .catch((error) => {
 setErrorMessage(error);
 });
}
...

Because both the validateName and validateCategory functions will need to have
the resolve and reject methods of their Promise placed into the global variables,
you’ll create a helper function, createPointers, that both functions can use.

The modifiedListing 6.8 onClickSave function (editproduct.js)

the reject
od of the
promise Reads in the error message

from the module’s memory

Removes the functions
from the object

Calls both validation functions

Both validation functions
return success.

There were no issues with the
validation. The data can be saved.

If either validation
function had an error...

... displays the validation
error to the user

129Using C or C++ to create a module without Emscripten plumbing

T
va
fu
THE CREATEPOINTERS FUNCTION

Following the onClickSave function, add a createPointers function that accepts the
following parameters:

 isForName—A flag indicating whether it’s the validateName or validate-
Category function calling

 resolve—The resolve method of the calling function’s promise
 reject—The reject method of the calling function’s promise
 returnPointers—An object that you’ll use to return the index of the _On-

Success and _OnError functions that the module’s function should call

Based on the isForName value, you’ll place the resolve and reject methods into the
proper callback object.

 The module’s function will need to know which index in the module’s Table sec-
tion it needs to call for the _OnSuccess and _OnError function pointers. You’ll place
the proper index in the returnPointers object.

 Place the code in the next listing after the onClickSave function in the editproduct
.js file.

...

function createPointers(isForName, resolve, reject, returnPointers) {
 if (isForName) {
 validateNameCallbacks.resolve = resolve;
 validateNameCallbacks.reject = reject;

 returnPointers.onSuccess = validateOnSuccessNameIndex;
 returnPointers.onError = validateOnErrorNameIndex;
 } else {
 validateCategoryCallbacks.resolve = resolve;
 validateCategoryCallbacks.reject = reject;

 returnPointers.onSuccess = validateOnSuccessCategoryIndex;
 returnPointers.onError = validateOnErrorCategoryIndex;
 }
}
...

You’ll now need to modify the validateName and validateCategory functions to
return a Promise object and, with the help of your new createPointers function,
have the module’s function call the appropriate function pointer.

THE VALIDATENAME FUNCTION

Modify the validateName function, which will now return a Promise object. The con-
tents of the promise will be wrapped in an anonymous function.

Listing 6.9 The createPointers function (editproduct.js)

Places the promise methods into
validateName's callback object

The caller is the validateName function.
Returns the indexes
for validateName’s

function pointers

he caller is the
lidateCategory
nction.

Places the promise methods
into validateCategory’s
callback object

Returns the indexes for
validateCategory’s function pointers

130 CHAPTER 6 Creating a WebAssembly module that talks to JavaScript using function pointers
 You’ll need to add a call to the createPointers function to have the promise’s
resolve and reject methods placed into the validateNameCallbacks global object.
The call to the createPointers object will also return the proper indexes to pass to
the module’s _ValidateName function so that it will call the _OnSuccessName or
_OnErrorName function pointer.

 The module’s _ValidateName function no longer returns a value, so you’ll need to
remove the const isValid = portion of code as well as the return statement at the
end of the function. The call to the _ValidateName function also needs to be modi-
fied to receive the two function pointer indexes.

 Revise the validateName function in the editproduct.js file to match the code in
the next listing.

...

function validateName(name) {
 return new Promise(function(resolve, reject) {

 const pointers = { onSuccess: null, onError: null };
 createPointers(true, resolve, reject, pointers);

 const namePointer = moduleExports._create_buffer((name.length + 1));
 copyStringToMemory(name, namePointer);

 moduleExports._ValidateName(namePointer, MAXIMUM_NAME_LENGTH,
pointers.onSuccess, pointers.onError);

 moduleExports._free_buffer(namePointer);
 });
}
...

You’ll need to make the same adjustments to the validateCategory function that you
did for the validateName function.

THE VALIDATECATEGORY FUNCTION

The only difference in the changes here is that you’ll specify false as the first parame-
ter to the createPointers function so that it knows the validateCategory function is
calling and not the validateName function.

 Revise the validateCategory function in the editproduct.js file to match the code
in the next listing.

...

function validateCategory(categoryId) {
 return new Promise(function(resolve, reject) {

 const pointers = { onSuccess: null, onError: null };
 createPointers(false, resolve, reject, pointers);

Modifications to theListing 6.10 validateName function (editproduct.js)

Modifications to theListing 6.11 validateCategory function (editproduct.js)

Returns a Promise
object to the caller Places the resolve and

reject methods into
the global object and
gets the function
pointer indexes

Passes in indexes for
the function pointers
_OnSuccessName and
_OnErrorName

Returns a Promise
object to the caller

Places the resolve and reject

methods into the global object and

gets the function pointer indexes

131Using C or C++ to create a module without Emscripten plumbing
 const categoryIdPointer =

➥ moduleExports._create_buffer((categoryId.length + 1));
copyStringToMemory(categoryId, categoryIdPointer);

 const arrayLength = VALID_CATEGORY_IDS.length;
 const bytesPerElement = Int32Array.BYTES_PER_ELEMENT;
 const arrayPointer = moduleExports._create_buffer((arrayLength *

➥ bytesPerElement));

 const bytesForArray = new Int32Array(moduleMemory.buffer);
 bytesForArray.set(VALID_CATEGORY_IDS,

(arrayPointer / bytesPerElement));

 moduleExports._ValidateCategory(categoryIdPointer, arrayPointer,
arrayLength, pointers.onSuccess, pointers.onError);

 moduleExports._free_buffer(arrayPointer);
 moduleExports._free_buffer(categoryIdPointer);
 });
}

Viewing the results6.2.5

Now that you’ve adjusted the code, you can open a web browser and type http://
localhost:8080/editproduct.html into the address box to see the web page. You
can test the validation by changing the selection in the Category drop-down so that
nothing is selected and then clicking the Save button. The validation should display
an error on the web page as shown in figure 6.14.

How can you use what you learned in this chapter in the real world?

Passes in indexes for
the function pointers
_OnSuccessCategory

and _OnErrorCategory

Validation error
when a category
isn’t selected

The Edit Product page’s Category validation errorFigure 6.14

132 CHAPTER 6 Creating a WebAssembly module that talks to JavaScript using function pointers
Real-world use cases
The following are some possible use cases for what you’ve learned in this chapter:

 With function pointers, you can create JavaScript functions that return a promise,
allowing your module to work the same as other JavaScript methods like fetch.
By returning a Promise object, your function can even be chained together with
other promises.

 As long as the function pointer specified has the same signature that the Web-
Assembly module is expecting, it can be called. For example, this allows the
module’s code to use one signature for onSuccess in each function. The Java-
Script code can specify two or more functions that match that signature and,
depending on what JavaScript code is calling, have the module call the desired
onSuccess function that matches the current action.

Exercises
You can find the solutions to the exercises in appendix D.

1 Which two functions do you use to add and remove function pointers from
Emscripten’s backing array?

2 Which instruction does WebAssembly use to call a function defined in the Table
section?

Summary
In this chapter, you learned the following:

 You can define a function pointer’s signature directly in a function parameter
in C or C++.

 It’s possible to define the signature using the typedef keyword and then use the
defined signature name in the function parameters.

 Under the hood, function pointers aren’t really called directly by WebAssembly
code. Instead, function references are held in the module’s Table section, and
the code asks the WebAssembly framework to call the desired function at the
index specified.

Part 3

Advanced topics

Now that you know the basics of creating and working with WebAssembly
modules, this part of the book looks at ways to help you reduce download sizes
and improve reusability, take advantage of parallel processing, or even use your
WebAssembly modules outside a web browser.

 Chapter 7 introduces you to the basics of dynamic linking, in which two or
more WebAssembly modules can be linked together at runtime to use each
other’s features.

 Chapter 8 expands on what you learned in chapter 7, teaching you how to
create multiple instances of the same WebAssembly module and have each
instance dynamically link to another WebAssembly module on-demand.

 In chapter 9, you’ll learn how to prefetch WebAssembly modules as needed
using web workers. You’ll also learn how to perform parallel processing using
pthreads in a WebAssembly module.

 Chapter 10 demonstrates that WebAssembly isn’t limited to a web browser. In
this chapter, you’ll learn how to use several of your WebAssembly modules in
Node.js.

Dynamic linking:
The basics
This chapter covers
 How dynamic linking works for WebAssembly modules

 Why you might want to use dynamic linking and why you
might not

 How to create WebAssembly modules as main or side
modules

 What the different options are for dynamic linking and how
to use each approach

When it comes to WebAssembly modules, dynamic linking is the process of joining
two or more modules together at runtime, where the unresolved symbols from one
module (functions, for example) resolve to symbols existing in another. You’ll still
have the original number of WebAssembly modules, but now they’re linked
together and able to access each other’s functionality, as figure 7.1 shows.

You can implement dynamic linking for WebAssembly modules in several ways,
making this a large topic. You’ll learn how to build a website that uses dynamic link-
ing in chapter 8, but first you’ll need to learn what your options are.
135

136 CHAPTER 7 Dynamic linking: The basics
7.1 Dynamic linking: Pros and cons
Why would you want to use dynamic linking instead of just using the single WebAssembly
module approach that you’ve used so far in this book? You might consider using dynamic
linking for several reasons:

 To speed up development time. Rather than compiling one big module, you
compile only the modules that changed.

 The core of your application can be separated out so that it can be shared more
easily. Rather than having two or three big WebAssembly modules with the same
logic in each, you can have a core module with several smaller modules that
link to it. An example of this approach would be with game engines, in which
the engine could be downloaded separately from the game. Multiple games
could share the same engine.

 The smaller something is, the faster it downloads, so downloading only what
you need initially will speed up load time. As the web page needs additional
logic, a smaller module with logic specific to that area can be downloaded.

 If a portion of your logic is never used, it’s never downloaded because logic is
downloaded only as needed. The result is that you won’t waste time download-
ing and processing something up front if it isn’t needed.

2. WebAssembly module with
logic for the current need.

Module 1

3. The two modules
are linked and
act as one.

1. WebAssembly module
with core logic

Method 1

Module 2

Method 2

Module 1

Method 1

Method 2

Module 2

Method 2

Figure 7.1 At runtime, the logic from one module (Module 2, in this case) is linked to
another module (Module 1), allowing the two to communicate and act as one.

137Dynamic linking options
 The browser caches the module, similar to how it caches images or JavaScript
files. Only the modules that change are downloaded again, making subsequent
page views faster because only a portion of the logic needs to be redownloaded.

Although dynamic linking has a number of advantages, it isn’t the best choice for
every situation, so it’s best to test to see if it’s right for your needs.

 Dynamic linking can have some performance impacts. According to Emscripten’s
documentation, the performance hit could be 5 to 10% or higher, depending on how
your code is structured. Some areas where you could see a performance impact
include the following:

 In development, the build configuration becomes more complicated because
you now need to create two or more WebAssembly modules rather than one.

 Rather than having one WebAssembly module to download, you’ll have at least
two modules initially, which means you’ll also have more network requests.

 The modules need to be linked together, so there’s more processing involved
during instantiation.

 Browser vendors are working on improving performance for various types of
calls, but, according to Emscripten, function calls between linked modules can
be slower than calls within the module. If you have a lot of calls between the
linked modules, you may see performance issues.

Now that you know the pros and cons of dynamic linking, let’s look at the different
ways it can be implemented with WebAssembly modules.

7.2 Dynamic linking options
There are three options available for dynamic linking when using Emscripten:

 Your C or C++ code can manually link to a module by using the dlopen
function.

 You can instruct Emscripten that there are WebAssembly modules to link to by
specifying them in the dynamicLibraries array of Emscripten’s generated
JavaScript file. When Emscripten instantiates the WebAssembly module, it will
automatically download and link modules that are specified in this array.

 In your JavaScript, you can manually take the exports of one module and pass
them in as imports to another using the WebAssembly JavaScript API.

INFO You can find a brief overview of the WebAssembly JavaScript API in
chapter 3. The following MDN Web Docs page also has a good overview:
http://mng.bz/vln1.

Before you learn how to use each dynamic linking technique, let’s look at what the dif-
ferences are between side modules and main modules.

http://mng.bz/vln1

138 CHAPTER 7 Dynamic linking: The basics
Side modules and main modules7.2.1

In the previous chapters of this book, you created WebAssembly modules as side mod-
ules so that the Emscripten JavaScript file wasn’t generated. This let you manually
download and instantiate the WebAssembly modules using the WebAssembly Java-
Script API. Although creating a side module so that you can manually use the API is a
useful side effect to aid in learning how things work under the hood, side modules are
actually intended for dynamic linking.

 With side modules, Emscripten omits the standard C library functions and the
JavaScript file because the side modules will be linked to a main module at runtime
(figure 7.2). The main module will have the Emscripten-generated JavaScript file and
standard C library functions; when linked, the side module gains access to the main
module’s features.

Side modules are created by including the SIDE_MODULE flag as part of the command
line to instruct Emscripten to not generate the JavaScript file or include any standard
C library functions in the module.

 Main modules are created similar to how you create a side module but using the
MAIN_MODULE flag as part of the command line. This flag tells the Emscripten compiler
to include system libraries and logic needed for dynamic linking. As figure 7.3 shows,
the main module will have the Emscripten-generated JavaScript file as well as the stan-
dard C library functions.

NOTE One thing to be aware of with dynamic linking is that while multiple
side modules can be linked to a main module, there can be only one main
module. Also, being a main module has nothing to do with the main() func-
tion, which can actually be placed in any of the modules, including a side
module.

EmscriptenC or C++ file

Emscripten generates a WebAssembly
side module that will be linked to a
main module at runtime.

The generated JavaScript file and standard C library
functions in the module aren’t included because
they’ll be included with the main module.

Wasm file JavaScript file

Figure 7.2 Using Emscripten to generate a WebAssembly module as a side module. No standard
C library functions are included in the module, and the Emscripten JavaScript file isn’t generated in
this case.

139Dynamic linking options
The first type of dynamic linking you’ll learn is the dlopen approach.

7.2.2 Dynamic linking: dlopen

Suppose your boss has asked you to create a WebAssembly module, and one of the
things it will need to do is determine the prime numbers that exist in a certain number
range. Thinking back, you remember that you already built this logic in chapter 3 as a
normal WebAssembly module (calculate_primes.c). You’d rather not just copy and
paste the logic into this new WebAssembly module because you don’t want to maintain
two identical sets of code; if an issue was discovered in the code, you’d need to modify
the same logic in two places, which could lead to one spot being missed if a developer
isn’t aware of the second spot or one of the locations is modified incorrectly.

 Instead of duplicating the code, what you’d like to do is modify the existing calcu-
late_primes code so that it can both be used as a normal WebAssembly module and
also be callable from your new WebAssembly module. As figure 7.4 shows, the steps for
this scenario are as follows:

1 Modify the calculate_primes.c file that you created in chapter 3 so that it can
also be called by the main module. You’ll rename the file calculate_primes.cpp.

2 Use Emscripten to generate the WebAssembly file from the calculate_primes
.cpp file as a side module.

3 Create the logic (main.cpp) that will link to the side module using a call to the
dlopen function.

4 Use Emscripten to generate the WebAssembly file from the main.cpp file as a
main module and to generate the HTML template file.

For this scenario, you’re going to call the dlopen function from your C++ code to link
to the calculate_primes side module. To open the side module, however, dlopen
needs the WebAssembly file to be in Emscripten’s file system.

 The trick with a file system, however, is that a WebAssembly module is running in a
VM and doesn’t have access to the device’s actual file system. To get around this,
Emscripten provides the WebAssembly module with one of several different types of

EmscriptenC or C++ file

Emscripten generates a WebAssembly
main module that can link to side
modules at runtime.

The standard C library
functions will be included.

Wasm file JavaScript file

Figure 7.3 Using Emscripten to generate a WebAssembly module as a main module.
The standard C library functions are included in the module, and the Emscripten
JavaScript file is also generated in this case.

140 CHAPTER 7 Dynamic linking: The basics
file system depending on where the module is running (in a browser or in Node.js, for
example) and how persistent the storage needs to be. By default, Emscripten’s file sys-
tem is in memory, and any data written to it will be lost when the web page is
refreshed.

 Emscripten’s file system is accessed through the FS object in Emscripten’s gener-
ated JavaScript file, but this object is included only if your WebAssembly module’s
code accesses files. (To learn more about Emscripten’s file system, visit https://
emscripten.org/docs/api_reference/Filesystem-API.html.) In this chapter, you’ll only
learn how to use the emscripten_async_wget function, which will allow you to down-
load a WebAssembly module to Emscripten’s file system so that you can open it with
the dlopen function.

 When using the dlopen approach to dynamic linking, your module will be able to
call the main function in the calculate_primes module even if your module also has a
main function. This might be useful if the module is from a third party and contains
initialization logic. Being able to call a main function in another module is possible
because dlopen returns a handle to the side module, and you then get a reference to
the function you want to call based on that handle.

Emscriptencalculate_primes.cpp

1. Modify the logic to
work as a side module.

2. Emscripten generates
the WebAssembly file
as a side module.

The generated JavaScript file
and standard C library functions
aren’t included with side modules.

Wasm side
module JavaScript file

Emscriptenmain.cpp

3. Create the logic for the
main module. This will
call dlopen to link to
the side module.

The standard
C library functions
will be included.

4. Emscripten generates the
WebAssembly file as a main
module and also generates
the HTML file.

Wasm
main module
(main.wasm)

main.htmlmain.js

Figure 7.4 Steps for modifying calculate_primes.cpp so that it can be compiled into a
WebAssembly side module, and steps for creating a WebAssembly main module that will link to the
side module by calling the dlopen function.

https://emscripten.org/docs/api_reference/Filesystem-API.html
https://emscripten.org/docs/api_reference/Filesystem-API.html
https://emscripten.org/docs/api_reference/Filesystem-API.html

141Dynamic linking options
TIP This is one advantage of using the dlopen approach of dynamic linking
compared with using the dynamicLibraries approach that you’ll learn about
in the next section. When it comes to using the latter approach, calling a
function in another module when you already have a function with the same
name in your module won’t work. You’ll end up just calling the function in
your module, which could result in a recursive function call.

The first step of the process for implementing dynamic linking (figure 7.5) is to mod-
ify the calculate_primes.cpp file so that it can be compiled into a side module.

MODIFYING THE CALCULATE_PRIMES.CPP FILE
In your WebAssembly\ folder, create a folder named Chapter 7\7.2.2 dlopen\source\
for the files that you’ll use in this section. Copy the calculate_primes.c file from your
Chapter 3\3.5 js_plumbing\source\ folder to your newly created source\ folder, and
change the file extension to .cpp. Open the calculate_primes.cpp file with your favor-
ite editor.

 Replace the stdlib.h header file with cstdlib and the stdio.h header file with cstdio;
then add the extern "C" opening block between the emscripten.h header file and
before the IsPrime function. The beginning of your calculate_primes.cpp file should
now look like the code in the following snippet:

#include <cstdlib>
#include <cstdio>
#include <emscripten.h>

#ifdef __cplusplus
extern "C" {
#endif

In the calculate_primes.cpp file, after the IsPrime function and before the main func-
tion, create a function called FindPrimes that returns void and accepts two integer
parameters (start and end) for the start and end range of the prime number search.

 Delete the start and end variable declaration lines of code from the main function
and then move the remaining code—except for the return 0 line—from the main
function into the FindPrimes function.

Emscriptencalculate_primes.cpp

1. Modify the logic to
 work as a side module.

Wasm side
module JavaScript file

Figure 7.5 Step 1 in implementing dynamic linking using dlopen is to modify the
calculate_primes.cpp file so that it can be compiled into a side module.

Replaces the stdlib.h header
Replaces the stdio.h header

Adds the opening extern "C" block

142 CHAPTER 7 Dynamic linking: The basics
 Add the EMSCRIPTEN_KEEPALIVE declaration above the FindPrimes function so
that the function is automatically added to the list of exported functions when you
compile. Doing this simplifies things when you use Emscripten to generate the Web-
Assembly module because you don’t have to explicitly specify the function at the com-
mand line.

 Modify the main function to call the new FindPrimes function and pass in the orig-
inal range of 3 and 100000. Finally, after the main function, add the closing bracket for
the extern "C" block.

 Your new FindPrimes function, the modified main function, and the closing bracket
for the extern "C" block should now look like the code in the following listing.

...
EMSCRIPTEN_KEEPALIVE
void FindPrimes(int start, int end) {
 printf("Prime numbers between %d and %d:\n", start, end);

 for (int i = start; i <= end; i += 2) {
 if (IsPrime(i)) {

printf("%d ", i);
 }
 }
 printf("\n");
}

int main() {
 FindPrimes(3, 100000);

 return 0;
}

#ifdef __cplusplus
}
#endif

Now that you’ve modified the code so that other modules can call it, it’s time to move
to step 2 (figure 7.6) and compile the code into a WebAssembly side module.

Listing 7.1 The new FindPrimes function and the modified main function

New function that’s now exported
and callable by other modules

Displays the original
range of prime numbers

Adds the closing bracket
for the extern "C" block

Emscriptencalculate_primes.cpp

2. Emscripten generates
the WebAssembly file
as a side module.

The generated JavaScript file
and standard C library functions
aren’t included with side modules.

Wasm side
module JavaScript file

Use Emscripten to generate the WebAssembly file as a side module.Figure 7.6

143Dynamic linking options
USING EMSCRIPTEN TO GENERATE THE WEBASSEMBLY FILE
AS A SIDE MODULE FROM CALCULATE_PRIMES.CPP

In previous chapters, when you created WebAssembly side modules, you replaced the
standard C library functions with some replacement code that you built in chapter 4.
You did this so the side module would still work, even though the standard C library
functions weren’t available. You don’t need the replacement code in this case because
the side module will be linked to the main module at runtime, and the main module
will have the standard C library functions.

 To compile the modified calculate_primes.cpp file as a WebAssembly side module,
open a command prompt, navigate to the Chapter 7\7.2.2 dlopen\source\ folder, and
run the following command:

emcc calculate_primes.cpp -s SIDE_MODULE=2 -O1

➥ -o calculate_primes.wasm

Now that you’ve created the side module, the next step (figure 7.7) is to create the
main module.

CREATING THE LOGIC THAT WILL LINK TO THE SIDE MODULE

In your Chapter 7\7.2.2 dlopen\source\ folder, create a file named main.cpp, and then
open it in your favorite editor. The first things you need to add to the main.cpp file
are the includes for the header files. In this case, you’ll want to include the dlfcn.h
header file—along with cstdlib and emscripten.h—because it has declarations related
to dynamic linking when using dlopen. Then, you need to add the extern "C" block.

 The code in your main.cpp file should now look like that in the next listing.

#include <cstdlib>

#ifdef __EMSCRIPTEN__
 #include <dlfcn.h>
 #include <emscripten.h>
#endif

#ifdef __cplusplus
extern "C" {

The main.cpp file with the header file includes anListing 7.2 extern "C" block

Emscriptenmain.cpp

3. Create the logic for the main module.
 This will call dlopen to link to the
 side module.

Wasm
main module
(main.wasm)

main.htmlmain.js

Figure 7.7 Step 3 in implementing dynamic linking using dlopen is to create the logic that will
use dlopen to link to the side module.

The header file needed for
dlopen-related logic

144 CHAPTER 7 Dynamic linking: The basics
#endif

#ifdef __cplusplus
}
#endif

In the code you’re about to write, you’ll be using the dlopen function to get a han-
dle to a WebAssembly side module. Once you have that handle, you’ll use the dlsym
function to get a function pointer to the desired function in that module. To sim-
plify the code when you call the dlsym function, the next thing you’ll need to do is
define the function signature for the FindPrimes function that you’ll be calling in
the side module.

 The FindPrimes function returns void and has two integer parameters. The func-
tion pointer signature for the FindPrimes function is shown in the following snippet,
which you need to include in the main.cpp file within the extern "C" block:

typedef void(*FindPrimes)(int,int);

You’ll now add a main function to your file so that the Emscripten compiler will add
the function to the WebAssembly module’s Start section. This will cause the main func-
tion to run automatically once the module has been instantiated.

 In your main function, you’ll add a call to the emscripten_async_wget function to
download the side module to Emscripten’s file system. This call is asynchronous and
will call a callback function—which you will specify—once the download is complete.
The parameters that you’ll pass to the emscripten_async_wget function, and their
order, will be as follows:

1 The file to download: "calculate_primes.wasm".
2 The name to give the file when it gets added to Emscripten’s file system. In this

case, it will be given the same name it already has.
3 A callback function if the download is successful, CalculatePrimes.
4 You’ll leave the fourth parameter NULL in this case because you won’t specify a

callback function. If you wanted to, you could specify a callback function in the
event that there was an error downloading the file.

Following the FindPrimes function pointer signature in your main.cpp file, and
within the extern "C" block, add the following code:

int main() {
 emscripten_async_wget("calculate_primes.wasm",

"calculate_primes.wasm",
CalculatePrimes,
NULL);

 return 0;
}

Your module’s code will
be placed here.

File to download
Name to give to the file in
Emscripten’s file systemCallback function

on success
Callback function
on error

145Dynamic linking options
The last thing that you’ll need to add to the main.cpp file is a function that will hold
the logic to open the side module, get a reference to the FindPrimes function, and
then call that function.

 When the emscripten_async_wget function finishes downloading the calculate_
primes WebAssembly module, it will call the CalculatePrimes function that you spec-
ified and pass in a parameter indicating the file name that was loaded. To open the
side module, you’ll use the dlopen function, passing in two parameter values:

 The file name to open from the file name parameter the CalculatePrimes
function receives

 An integer indicating the mode : RTLD_NOW

DEFINITION When an executable file is brought into a process’s address
space, it might have references to symbols that aren’t known until the file is
loaded. These references need to be relocated before the symbols can be
accessed. The mode value is used to tell dlopen when the relocation should
happen. The RTLD_NOW value is asking dlopen for the relocations to happen
when the file is loaded. More information about dlopen and the mode flags
can be found in the Open Group Base Specifications at http://mng.bz/
4eDQ.

The dlopen function call will return a handle to the file, as the following code snippet
shows:

void* handle = dlopen(file_name, RTLD_NOW);

Once you have a handle to the side module, you’ll call the dlsym function, passing in
the following parameter values to get a reference to the function you want to call:

 The handle of the side module
 The name of the function you want a reference to: "FindPrimes"

The dlsym function will return a function pointer to the requested function:

FindPrimes find_primes = (FindPrimes)dlsym(handle, "FindPrimes");

Once you have a function pointer, you can call it the same way you would call a nor-
mal function. When you’ve finished with a linked module, you can release it by pass-
ing the file’s handle to the dlclose function.

 Pulling everything together, your CalculatePrimes function should look like the
code in listing 7.3. Add the code in this listing to your main.cpp file between the
FindPrimes function pointer signature and the main function.

http://mng.bz/4eDQ
http://mng.bz/4eDQ
http://mng.bz/4eDQ

146 CHAPTER 7 Dynamic linking: The basics

...
void CalculatePrimes(const char* file_name) {
 void* handle = dlopen(file_name, RTLD_NOW);
 if (handle == NULL) { return; }

 FindPrimes find_primes =
(FindPrimes)dlsym(handle, "FindPrimes");

 if (find_primes == NULL) { return; }

 find_primes(3, 100000);

 dlclose(handle);
}
...

Now that you’ve created the code for your main module, you can move on to the final
step (figure 7.8) and compile it into a WebAssembly module. You’ll also have
Emscripten generate the HTML template file.

TheListing 7.3 CalculatePrimes function that calls a function in the side module

Opens the side module

Gets a reference to the
FindPrimes function

Calls the function
in the side module

Closes the
side module

Emscriptenmain.cpp

The standard
C library functions
will be included.

4. Emscripten generates the
WebAssembly file as a main
module and also generates
the HTML file.

Wasm
main module
(main.wasm)

main.htmlmain.js

Figure 7.8 Step 4 in implementing dynamic linking using dlopen is to use Emscripten to generate
the WebAssembly module as a main module from the main.cpp file. In this case, you’ll also have
Emscripten generate the HTML file.

USING EMSCRIPTEN TO GENERATE THE WEBASSEMBLY FILE

AS A MAIN MODULE FROM MAIN.CPP

Rather than creating an HTML page to view the results, you’ll use Emscripten’s
HTML template by specifying the output file with an .html extension. To compile
your main.cpp file into a main module, you’ll need to include the -s MAIN_MODULE=1

flag. Unfortunately, if you were to view the generated HTML page using only the fol-
lowing command line, you would see the error shown in figure 7.9:

emcc main.cpp -s MAIN_MODULE=1 -o main.html

You can see that the WebAssembly module was loaded and dlopen linked to the side
module without issue, because the text "Prime numbers between 3 and 100000" is
written by the FindPrimes function in the side module. If there was an issue with the
dynamic linking, your code wouldn’t have reached this point. None of the prime
numbers have been written to the screen, which suggests that the issue is in your side
module’s FindPrimes function but after the printf call to indicate the range.

147Dynamic linking options

Link error about
a missing
_putchar function

When the web page is viewed, a link error is thrown about a missingFigure 7.9 _putchar function.

It turns out that the issue is with the calculate_primes.cpp file’s use of the printf

function when passing in only one character. In this case, the linefeed character (\n)
at the end of the FindPrimes function is causing the error. The printf function uses a
putchar function under the hood that isn’t being included by default.

There are three options for correcting this error:

 Include the _putchar function in the EXPORTED_FUNCTIONS array as part of the
command line when generating the WebAssembly module. When testing this
as a possible fix, including this function alone would cause the error to go
away, but, unfortunately, nothing would be displayed on the web page. If you
use this approach, you’ll need to include the _main function of the module in
the array, too.

 You could modify the printf call in the calculate_primes.cpp file so that it out-
puts at least two characters to prevent the printf call from using the putchar

function internally. The problem with this approach is that if a printf of one

148 CHAPTER 7 Dynamic linking: The basics
character is used anywhere else, the error will happen again. Consequently, this
isn’t a recommended fix.

 You could include the -s EXPORT_ALL=1 flag to force Emscripten to include all
the symbols when it generates the WebAssembly module and JavaScript file.
This will work, but using this approach isn’t recommended unless there are no
other workarounds because, in this case, it results in a doubling of the gener-
ated JavaScript file’s size just to have one function exported.

Unfortunately, all three approaches feel like a hack. The first approach appears to be
the best option available, so, to correct the error, you’ll use the EXPORTED_FUNCTIONS
command-line array to have the module export the _putchar and _main functions.

 To compile the main.cpp file into a WebAssembly main module, open a command
prompt, navigate to the Chapter 7\7.2.2 dlopen\source\ folder, and run the following
command:

emcc main.cpp -s MAIN_MODULE=1

➥ -s EXPORTED_FUNCTIONS=['_putchar','_main'] -o main.html

Once your WebAssembly modules have been created, you can view the results.

VIEWING THE RESULTS

Open your browser and type http://localhost:8080/main.html into the address
box to see the generated web page. As figure 7.10 shows, the web page should display
the list of prime numbers in both the text box and in the console window of the
browser’s developer tools. The prime numbers are determined by the side module,
which calls the printf function that’s part of the main module.

 Now that you’ve learned how to do dynamic linking using dlopen, you’ll learn how
to use the dynamicLibraries approach.

The prime numbers that
were found between
3 and 100,000

Figure 7.10 The prime numbers determined by the side module and displayed to
the web page using the printf function that’s part of the main module

149Dynamic linking options
Dynamic linkin7.2.3 g: dynamicLibraries

Imagine that your coworkers and boss have had a chance to see your new WebAssembly
modules in action. They’re quite impressed with what you’ve done with dlopen, but
your boss read up on dynamic linking while you were building the modules and discov-
ered that you can also implement it using Emscripten’s dynamicLibraries array. Your
boss is curious to know how the dynamicLibraries approach compares with dlopen,
so you’ve been asked to leave the calculate_primes side module as is but create a main
module that links to it using dynamicLibraries.

 As figure 7.11 shows, the steps for this scenario will be as follows:

1 Create the logic (main.cpp) that will talk to the side module.
2 Create a JavaScript file that will be included in Emscripten’s generated Java-

Script file to instruct Emscripten about the side module you’ll want it to link to.
3 Use Emscripten to generate the WebAssembly file from the main.cpp file as a

main module and to also generate the HTML template file.

CREATING THE LOGIC THAT WILL TALK TO THE SIDE MODULE

For this scenario, the first step of the process (figure 7.12) is to create the main.cpp
file that will hold the logic that talks to the side module. In your Chapter 7 \ folder,
create a 7.2.3 dynamicLibraries\source\ folder. In this folder,

 Copy in the calculate_primes.wasm file from your 7.2.2 dlopen\source\ folder.
 Create a main.cpp file and then open it with your favorite editor.

Emscriptenmain.cpp

1. Create the logic that will
 talk to the side module.

2. Define the JavaScript to tell
 Emscripten to dynamically
 link the side module.

3. Emscripten generates the
 WebAssembly file as a main
 module and also generates
 the HTML file.

Wasm
main module
(main.wasm)

main.htmlmain.js

pre.js

Figure 7.11 The steps for creating the WebAssembly main module that will instruct Emscripten’s
dynamicLibraries array about which side module you want it to dynamically link to.

150 CHAPTER 7 Dynamic linking: The basics
Add the header files for the standard C library and Emscripten. Then add the extern
"C" block. The code in your main.cpp file should now look like the code in the next
listing.

#include <cstdlib>

#ifdef __EMSCRIPTEN__
 #include <emscripten.h>
#endif

#ifdef __cplusplus
extern "C" {
#endif

#ifdef __cplusplus
}
#endif

In a moment, you’ll write a main function that will call the FindPrimes function in the
calculate_primes side module. Because the FindPrimes function is part of a different
module, you need to include its function signature, prefixed with the extern keyword,
so that the compiler knows that the function will be available when the code is run.

 Add the following function signature within the extern "C" block in the main.cpp
file:

extern void FindPrimes(int start, int end);

The last thing you need to do in the main.cpp file is add the main function so that the
code is run automatically when the WebAssembly module is instantiated. In the main
function, you’ll simply call the FindPrimes function, passing in the number range of 3
to 99.

The main.cpp file with the header file including anListing 7.4 extern "C" block

Emscriptenmain.cpp

1. Create the logic that will
talk to the side module.

Wasm
main module
(main.wasm)

main.htmlmain.js

pre.js

Figure 7.12 The first step toward implementing dynamic linking using dynamicLibraries is to
create the main.cpp file.

Your module’s code
will be placed here.

151Dynamic linking options
 Add the following snippet to your main.cpp file within the extern "C" block but
after the FindPrimes function signature:

int main() {
 FindPrimes(3, 99);

 return 0;
}

Your C++ code is now ready to be turned into a WebAssembly module. Before you use
Emscripten to do that, you need to create the JavaScript code that will instruct
Emscripten to link to your side module (figure 7.13).

CREATING JAVASCRIPT TO INSTRUCT EMSCRIPTEN ABOUT THE SIDE MODULE
YOU WANT IT TO LINK TO

Because your boss just wants to know what the differences are between the dlopen and
dynamicLibraries approaches, you’re going to create the WebAssembly module and
have Emscripten generate the HTML template to run it for you, rather than creating
an HTML web page of your own.

 To link a side module to your main module using the dynamicLibraries
approach, you need to write some JavaScript to specify the side module that
Emscripten needs to link to. To do this, you specify the side module file names in
Emscripten’s dynamicLibraries array before Emscripten instantiates the module.

 When using Emscripten’s HTML template, you can include JavaScript near the
beginning of the Emscripten-generated JavaScript file by specifying a JavaScript file in
the command line using the --pre-js flag when creating the WebAssembly module.
If you were building your own web page, you could specify settings, like the
dynamicLibraries array, in a Module object before the HTML page’s script tag for
Emscripten’s generated JavaScript file. When Emscripten’s JavaScript file loads, it cre-
ates its own Module object; but, if there’s an existing Module object, it will copy the val-
ues from that object into the new Module object.

Emscriptenmain.cpp

2. Define the JavaScript to tell
 Emscripten to dynamically
 link the side module.

Wasm
main module
(main.wasm)

main.htmlmain.js

pre.js

Figure 7.13 Step 2 when implementing dynamic linking using dynamicLibraries is to create
the JavaScript code that will instruct Emscripten to link to your side module.

152 CHAPTER 7 Dynamic linking: The basics

MORE INFO A number of settings can be adjusted to control the execution of
Emscripten’s generated JavaScript code. The following web page lists some of
them: https://emscripten.org/docs/api_reference/module.html.

If you’re using the Emscripten-generated HTML template, it specifies a Module object
so that it can respond to certain things. For example, it handles the printf calls so
that they’re displayed in the text box on the web page and in the browser’s console
window, rather than just in the console window.

 It’s important not to specify your own Module object when using the HTML tem-
plate because, if you do, you’ll remove all of the template’s settings. When using the
HTML template, any values you want to set need to be set directly on the Module
object rather than creating a new object.

 In your Chapter 7 \7.2.3 dynamicLibraries\source\ folder, create a file named pre.js
and then open it with your favorite editor. You’ll need to add an array, containing the
name of the side module you want linked, to the dynamicLibraries property of the
Module object. Add the following snippet to your pre.js file:

Module['dynamicLibraries'] = ['calculate_primes.wasm'];

Now that the JavaScript has been written, you can move to the final step of the process
(figure 7.14) and have Emscripten generate the WebAssembly module.

Emscriptenmain.cpp

3. Emscripten generates the WebAssembly file as
a main module and also generates the HTML file.

Wasm
main module
(main.wasm)

main.htmlmain.js

pre.js

The standard C library
functions will be included.

Figure 7.14 The last step of the process when implementing dynamic linking using
dynamicLibraries is to have Emscripten generate the WebAssembly module.

USING EMSCRIPTEN TO GENERATE THE WEBASSEMBLY FILE

AS A MAIN MODULE FROM MAIN.CPP

When you use Emscripten to generate your WebAssembly module, you’ll want it to
include the pre.js file’s contents in the generated JavaScript file. To have Emscripten
include the file, you’ll need to specify it using the --pre-js command-line flag.

TIP The pre.js file name is used here as a naming convention because it will
be passed to the Emscripten compiler via the --pre-js flag. You don’t have to
use this naming convention, but it makes it easier to understand the file’s pur-
pose when you see it in your file system.

https://emscripten.org/docs/api_reference/module.html

153Dynamic linking options

To generate your WebAssembly module as a main module, open a command prompt,
navigate to the Chapter 7\7.2.3 dynamicLibraries\source\ folder, and run the following
command:

emcc main.cpp -s MAIN_MODULE=1 --pre-js pre.js

➥ -s EXPORTED_FUNCTIONS=['_putchar','_main'] -o main.html

Once your WebAssembly main module has been created, you can view the results.

VIEWING THE RESULTS

To view your new WebAssembly module in action, open your browser and type
http://localhost:8080/main.html into the address box to see the generated web
page, shown in figure 7.15.

7.2.4

Figure 7.15 The prime numbers determined by the side module when both modules were
linked together using Emscripten’s dynamicLibraries array

Now, imagine that, as you were finishing up the WebAssembly module that was using
the dynamicLibraries approach, you started to wonder if your boss might also want
to see how manual dynamic linking might work.

Dynamic linking: WebAssembly JavaScript API

With dlopen, you need to download the side module, but, after that, the dlopen func-
tion handles linking it for you. With dynamicLibraries, Emscripten handles down-
loading and instantiating the modules for you. With this approach, you’ll need to
write the JavaScript code to download and instantiate the modules yourself using the
WebAssembly JavaScript API.

For this scenario, you’ve decided to take the calculate_primes.c file from chapter 3
and split it in two, where one WebAssembly module will hold the IsPrime function
and the other will have the FindPrimes function. Because you’ll want to use the Web-
Assembly JavaScript API, both WebAssembly modules will need to be compiled as side
modules, which means neither will have access to the standard C library functions.
Without the standard C library available, you’ll need to replace the printf calls with a
call to your own JavaScript function to log the prime numbers to the browser’s console
window.

154 CHAPTER 7 Dynamic linking: The basics
 As figure 7.16 shows, the steps for this scenario will be as follows:

1 Split the logic in calculate_primes.c into two files: is_prime.c and find_primes.c.
2 Use Emscripten to generate the WebAssembly side modules from the

is_prime.c and find_primes.c files.
3 Copy the generated WebAssembly files to the server for use by the browser.
4 Create the HTML and JavaScript files needed to download, link, and interact

with the two WebAssembly modules using the WebAssembly JavaScript API.

SPLITTING THE LOGIC IN THE CALCULATE_PRIMES.C FILE INTO TWO FILES

As figure 7.17 shows, the first thing you’ll need to do is make a copy of the calculate_
primes.c file so that you can adjust the logic and split the file in two. In your Chapter
7\ folder, create a 7.2.4 ManualLinking\source\ folder:

Emscripten
is_prime.c

find_primes.c

find_primes.c

is_prime.c

calculate_primes.c

2. Emscripten generates two
WebAssembly files as side modules
from is_prime.c and find_primes.c.

JavaScript files aren’t generated,
and standard C library functions
aren’t included with side modules.

3. WebAssembly files are
copied to the server for
use by the browser.

4. HTML and JavaScript files
are created to load, link,
and interact with the modules.

Wasm JavaScript file

Browser

is_prime.wasm
find_primes.wasm

1. Split the logic into two files.

Wasm

Figure 7.16 The steps for modifying the calculate_primes.c file so that it can be compiled into two
WebAssembly side modules. The generated WebAssembly files are copied to the server, and then the
HTML and JavaScript files are created to load, link, and interact with the two WebAssembly modules.

155Dynamic linking options
 Copy the calculate_primes.cpp file from your Chapter 7 \7.2.2 dlopen\source\
folder to your new source\ folder. Rename the calculate_primes.cpp file that
you just copied to is_prime.c.

 Make a copy of the is_prime.c file, and call it find_primes.c.

Open the is_prime.c file with your favorite editor, and then delete the following items:

 The cstdlib and cstdio header files
 The opening extern "C" block and the closing curly brace at the end of the file
 The FindPrimes and main functions so that IsPrime is the only function left in

the file
Add the EMSCRIPTEN_KEEPALIVE declaration above the IsPrime function so that the
IsPrime function is included in the module’s exported functions.

 Open the find_primes.c file with your favorite editor, and delete the following
items:

 The cstdlib and cstdio header files
 The opening extern "C" block and the closing curly brace at the end of the file
 The IsPrime and main functions so that FindPrimes is the only function left in

the file

The FindPrimes function will be calling the IsPrime function that’s in the is_prime
module. Because the function exists in another module, you’ll need to include the func-
tion signature for the IsPrime function, preceded by the extern keyword, so the
Emscripten compiler knows that the function will be available when the code is run.

 Add the following snippet before the FindPrimes function in your find_primes.c
file:

extern int IsPrime(int value);

In a moment, you’ll modify the FindPrimes function to call a function in your Java-
Script code called LogPrime, rather than calling the printf function. Because this
function is also external to the module, you’ll need to include a function signature for

find_primes.c

is_prime.c

calculate_primes.c

1. Split the logic into two files.

Figure 7.17 The first step toward implementing manual dynamic
linking using the WebAssembly JavaScript API is to modify the
calculate_primes.c file so that its logic is now part of two files.

156 CHAPTER 7 Dynamic linking: The basics

it, too. Add the next snippet before the IsPrime function signature in your find_
primes.c file:

extern void LogPrime(int prime);

Finally, the last thing that you need to modify in the find_primes.c file is the Find-
Primes function so that it no longer calls the printf function. Delete the printf calls
from the beginning and end of the function; replace the printf call that’s within the
IsPrime if statement with a call to the LogPrime function, but don’t include the
string. Pass in only the variable i to the LogPrime function.

 The modified FindPrimes function should look like the following snippet in your
find_primes.c file:

EMSCRIPTEN_KEEPALIVE
void FindPrimes(int start, int end) {
 for (int i = start; i <= end; i += 2) {
 if (IsPrime(i)) {

LogPrime(i);
 }
 }
}

Now that your C code has been created, you can move on to step 2 (figure 7.18),
which is to use Emscripten to compile the code into WebAssembly side modules.

printf is replaced with
a call to LogPrime.

Emscripten
is_prime.c

find_primes.c

2. Emscripten generates two
WebAssembly files as side modules
from is_prime.c and find_primes.c.

JavaScript files aren’t generated,
and standard C library functions
aren’t included with side modules.

Wasm JavaScript file

Step 2 is to use Emscripten to generate the WebAssembly side modules from yourFigure 7.18
two files.

USING EMSCRIPTEN TO GENERATE THE WEBASSEMBLY SIDE MODULES

To generate your WebAssembly module from the is_prime.c file, open a command
prompt, navigate to the 7.2.4 ManualLinking\source\ folder, and then run the follow-
ing command:

emcc is_prime.c -s SIDE_MODULE=2 -O1 -o is_prime.wasm

To generate your WebAssembly module from the find_primes.c file, run the following
command:

emcc find_primes.c -s SIDE_MODULE=2 -O1 -o find_primes.wasm

157Dynamic linking options
Once your two WebAssembly modules have been created, the next steps are to create
the web page and JavaScript files that will load, link, and interact with the modules
(figure 7.19).

CREATING THE HTML AND JAVASCRIPT FILES
In your Chapter 7\7.2.4 ManualLinking\ folder, create a frontend\ folder:

 Copy the is_prime.wasm and find_primes.wasm files from your 7.2.4 Manual-
Linking\source\ folder to your new frontend\ folder.

 Create a main.html file in your frontend\ folder, and then open it with your
favorite editor.

The HTML file will be a very basic web page. It will have some text so that you know
the page has loaded and then a script tag to load in the JavaScript file (main.js) that
will handle loading and linking the two side modules together.

 Add the contents of the next listing to your main.html file.

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8"/>
 </head>
 <body>
 HTML page I created for my WebAssembly module.

 <script src="main.js"></script>
 </body>
</html>

Your next step is to create the JavaScript file that will handle downloading and linking
the two WebAssembly modules together. In your 7.2.4 ManualLinking\frontend\
folder, create a main.js file, and then open it with your editor.

The contents of the main.html fileListing 7.5

3. WebAssembly files are
 copied to the server for
 use by the browser.

4. HTML and JavaScript files
 are created to load, link,
 and interact with the modules.

Browser

is_prime.wasm
find_primes.wasmWasm

Figure 7.19 The final steps are to create the HTML and JavaScript
files that will load, link, and interact with the WebAssembly modules.

158 CHAPTER 7 Dynamic linking: The basics
 The find_primes WebAssembly module will be expecting a function that it can call
to pass the prime number to the JavaScript code. You’ll create a logPrime function to
pass to the module during instantiation that will log the value received from the mod-
ule to the console window of the browser’s developer tools.

 Add the following snippet to the main.js file:

function logPrime(prime) {
 console.log(prime.toString());
}

Because the find_primes WebAssembly module is dependent on the IsPrime function
in the is_prime module, you’ll need to download and instantiate the is_prime module
first. In the then method of the instantiateStreaming call for the is_prime module,

 Create an importObject for the find_primes WebAssembly module. This
importObject will be given the exported _IsPrime function from the is_prime
module as well as the JavaScript logPrime function.

 Call the instantiateStreaming function for the find_primes WebAssembly mod-
ule and return the Promise.

The next then method will be for the successful download and instantiation of the
find_primes WebAssembly module. In this block, you’ll call the _FindPrimes func-
tion, passing in a range of values to have the prime numbers within that range logged
to the browser’s console window.

 Add the code in the following listing to the main.js file after the logPrime function.

...
const isPrimeImportObject = {
 env: {
 __memory_base: 0,
 }
};

WebAssembly.instantiateStreaming(fetch("is_prime.wasm"),
 isPrimeImportObject)
.then(module => {

 const findPrimesImportObject = {
 env: {

__memory_base: 0,
_IsPrime: module.instance.exports._IsPrime,
_LogPrime: logPrime,

 }
 };

 return WebAssembly.instantiateStreaming(fetch("find_primes.wasm"),
findPrimesImportObject);

})
.then(module => {

Listing 7.6 Downloading and linking two WebAssembly modules

The importObject for
the is_prime module

Downloads and
instantiates the
is_prime module

The is_prime module is ready.

The importObject for
the find_primes module

The exported function
is passed to the
find_primes module.

The JavaScript function is passed
to the find_primes module.

Downloads and instantiates the
find_primes module. Returns

the instantiated module.

The
find_primes
module is
ready.

159Dynamic linking options
 module.instance.exports._FindPrimes(3, 100);
});

VIEWING THE RESULTS

Once you’ve created the HTML and JavaScript code, you can open a web browser and
type http://localhost:8080/main.html into the address box to see the web page.
Press F12 to view the console window of the browser’s developer tools. You should see
the prime numbers between 3 and 100 displayed, similar to figure 7.20.

 Now that you’ve learned how to implement dynamic linking using all three
approaches, it’s time to compare them.

Displays the prime numbers
between 3 and 100 to the
console window

The prime numbers
that have been found
between 3 and 100

Figure 7.20 The prime numbers between 3 and 100 logged by the find_primes
WebAssembly module

160 CHAPTER 7 Dynamic linking: The basics
Dynamic linking review7.3
You've learned about three approaches to dynamic linking in this chapter:

 dlopen

– The side module needs to be downloaded to Emscripten’s file system first.
– Calling dlopen returns a handle to the side module file.
– Passing the handle and the function name that you wish to call to the

dlsym function will return a function pointer to the function in the side
module.

– At this point, calling the function pointer is the same as calling a normal
function in your module.

– Because you’re requesting a function name based on the side module’s han-
dle, having a function with the same name in the main module won’t cause
any problems.

– Linking to a side module is performed as needed.
 dynamicLibraries

– You give Emscripten a list of side modules that you want it to link to by
including them in the dynamicLibraries array property of the Module
object. This list needs to be specified before Emscripten’s JavaScript code is
initialized.

– Emscripten handles downloading and linking the side module to the main
module for you.

– Your module’s code calls the functions in the side module the same way it
calls its own functions.

– It’s not possible to call a function in another module if you already have a
function with that name in the current module.

– All the side modules specified are linked as soon as Emscripten’s JavaScript
code is initialized.

 The WebAssembly JavaScript API
– You handle downloading the WebAssembly module using the fetch method

and use the WebAssembly JavaScript API to have that module instantiated.
– You then download the next WebAssembly module and pass the necessary

exports from the first module as the imports for the current module.
– Your module’s code calls the functions in the side module the same way it

calls its own functions.
– As with the dynamicLibraries approach, it’s not possible to call a function

in another module if you already have a function with that name in the cur-
rent module.

In summary, which approach to dynamic linking you want to use really depends on
how much control you want over the process and if you want that control in the mod-
ule or in JavaScript:

161Exercises
 dlopen gives the dynamic linking control to the backend code. This is also the
only approach that’s possible if you need to call a function in a side module
when you already have a function with that name in your main module.

 dynamicLibraries gives the dynamic linking control to the tooling, where
Emscripten does the work for you.

 The WebAssembly JavaScript API gives the dynamic linking control to the front-
end code, where your JavaScript handles the linking.

How can you use what you learned in this chapter in the real world?

Real-world use cases
The following are some possible use cases for what you’ve learned in this chapter:

 A game engine is something that could benefit from dynamic linking. When you
downloaded the first game, the engine would need to be downloaded for the
first time, too, and then cached. The next time you went to play a game, the
framework could check to see if the engine was already on the system and, if so,
download only the requested game. This would save time and bandwidth.

 You could build an image-editing module so that the core logic was down-
loaded initially, but the things that might not be used as often (certain filters,
perhaps) could be downloaded on-demand.

 You might have a web application with multiple subscription tiers. The free tier
would have the fewest features, so only the basic module would be downloaded.
For the Premium tier, additional logic could be included. For example, perhaps
your web application’s Premium tier adds the ability to track expenses. The
add-on module could be used to parse the contents of an Excel file and format
it the way your server expects.

Exercises
You can find the solutions to the exercises in appendix D.

1 Using one of the dynamic linking approaches you’ve learned in this chapter,
create the following:
a A side module containing an Add function that accepts two integer parame-

ters and returns the sum as an integer
b A main module that has a main() function that calls the side module’s Add

function and displays the result to the console window of the browser’s devel-
oper tools

2 Which dynamic linking approach would you use if you needed to call a function
in the side module but that function had the same name as a function in your
main module?

162 CHAPTER 7 Dynamic linking: The basics
Summary
In this chapter, you learned the following:

 As with most things, there are pros and cons to using dynamic linking. Before
pursuing this approach, you should decide if the advantages outweigh the dis-
advantages for your application.

 Dynamic linking can be performed as needed by your WebAssembly’s code
using the dlopen function.

 It’s possible to tell the Emscripten-generated JavaScript that you want certain
side modules linked to your main module. Emscripten will automatically link
the modules together during instantiation.

 Using the WebAssembly JavaScript API, it’s possible to manually download,
instantiate, and link multiple side modules together.

 You can control the execution of Emscripten’s generated JavaScript by creating
a Module object before Emscripten’s JavaScript file is included. You can also
adjust the Module object by including your own JavaScript in Emscripten’s gen-
erated JavaScript file using the --pre-js command-line flag when compiling
the WebAssembly module.

Dynamic linking:
The implementation
In chapter 7, you learned about the different approaches available for dynamically
linking WebAssembly modules:

 dlopen, in which your C or C++ code manually links to a module, obtaining
function pointers to the specific functions as they’re required

 dynamicLibraries, in which your JavaScript provides Emscripten with a list
of modules to link to, and Emscripten automatically links to those modules
during its initialization

This chapter covers
 Using dynamic linking in a single-page application

 Creating multiple instances of Emscripten’s JavaScript
Module object, with each instance dynamically linked to a
different WebAssembly side module

 Reducing the size of the WebAssembly main module by
enabling dead code elimination
163

164 CHAPTER 8 Dynamic linking: The implementation

 Manually linking, in which your JavaScript takes the exports of one module and
passes them as the imports to another module using the WebAssembly Java-
Script API

In this chapter, you’re going to use the dynamicLibraries approach in which
Emscripten handles the dynamic linking for you based on a list of modules that you
specify.

 Suppose the company that created the online version of its point-of-sale application’s
Edit Product page now wants to create the Place Order form shown in figure 8.1. Like
the Edit Product page, the Place Order form will use a WebAssembly module for vali-
dating the user’s entries.

The new Place Order formFigure 8.1

As the company is planning how the new web page will work, it notices that it will need
validation similar to that of the existing Edit Product page:

 Both pages require that a valid item be selected from a drop-down list.
 Both pages need to ensure that a value was provided.

Rather than duplicate the logic listed in the WebAssembly module for each page, the
company would like to take the common logic—the check for whether a value was
provided and the check for whether the selected ID is in the array of valid IDs—and
move it to its own module. Each page’s validation module would then be dynamically
linked at runtime to the module with the common logic to gain access to the core
features that it needs, as figure 8.2 shows. Even though the two modules will remain

165
separate and simply call into each other as needed, as far as the code is concerned, it
feels like you’re only working with one module.

 For this scenario, the company would like to adjust the website so that it works as
an SPA (single-page application).

DEFINITION What’s an SPA? With a traditional website, you have one HTML
file per web page. With SPAs, you have only one HTML page, and that page’s
content is modified by the code that’s executing in the browser based on the
user’s interactions.

Adjusting the web page to work as an SPA adds some interesting twists when it comes
to dynamic linking with the dynamicLibraries approach; you specify all the side mod-
ules that you want Emscripten to link to before Emscripten’s JavaScript is initialized.
Normally, Emscripten’s generated JavaScript code exists as a global object called
Module and is initialized the moment the browser loads the JavaScript file. When
Emscripten’s JavaScript is initialized, all the side modules that you specified are linked
to the main module.

 One advantage of dynamic linking is only loading and linking to a module as it’s
needed, to reduce the download and processing time when the page first loads. When
working with the SPA, you’ll want to specify only the side module for the page that’s
displayed initially. When the user navigates to the next page, how do you specify the
side module for it in the SPA if Emscripten’s Module object has already been initialized?

2. A module with
 common logic

Side module

3. At runtime, Emscripten
 will link the side module
 to the main module. Both
 will act as one.

1. A module with logic that’s
 specific to the web page

ValidateName

ValidateName

Side module

Main module

ValidateValue

IsIdInArray

ValidateValue

IsIdInArray

Main module

Figure 8.2 At runtime, the logic that’s specific to the page (the side module) will be linked to the
common logic (the main module). As far as the code is concerned, the two modules will be acting as one.

166 CHAPTER 8 Dynamic linking: The implementation
 It turns out there’s a flag you can specify when compiling the main module
(-s MODULARIZE=1) that will tell the Emscripten compiler to wrap the Emscripten-
generated JavaScript file’s Module object in a function. This solves two problems:

 You’re now in control of when the Module object gets initialized because you’ll
now need to create an instance of the object to use it.

 Because you can create an instance of the Module object, you’re not limited to a
single instance. This will allow you to create a second instance of your Web-
Assembly main module and have that instance link to the side module specific
to the second page.

Creating the WebAssembly modules8.1
In chapters 3, 4 and 5, you created modules as side modules so that the Emscripten
JavaScript file wasn’t generated, allowing you to manually handle downloading the
module and instantiating it with the WebAssembly JavaScript API. Although that’s a
useful side effect, side modules are actually intended for dynamic linking, which is
what you’ll be using them for in this chapter.

 Side modules don’t have an Emscripten-generated JavaScript file or standard C
library functions because they are linked to a main module at runtime. The main
module has these features, and, when linked, the side modules gain access to them.

REMINDER With dynamic linking, there can be multiple side modules linked
to a main module, but there can be only one main module.

Figure 8.3 shows the following steps for revising the C++ code and generating the
WebAssembly modules:

1 Split the logic in the validate.cpp file into two files: one file for the common
logic that will be shared (validate_core.cpp) and one for the logic that’s specific
to the Edit Product page (validate_product.cpp).

2 Create a new C++ file for the logic that will be specific to the new Place Order
form (validate_order.cpp).

3 Use Emscripten to generate the WebAssembly side modules from validate_
product.cpp and validate_order.cpp.

4 Define a JavaScript function for the C++ code to call if there’s an issue with the
validation. The function will be placed in a mergeinto.js file and included in
Emscripten’s generated JavaScript file during compilation of the main module.

5 Emscripten will be used to generate the WebAssembly file as a main module
from validate_core.cpp.

167Creating the WebAssembly modules
After the WebAssembly modules are created, the following steps remain for modifying
the website (figure 8.4):

6 Adjust the web page to now have a navigation bar and the Place Order form’s
controls. You’ll then modify the JavaScript to show the proper set of controls
based on which navigation link is clicked.

7 Adjust your web page’s JavaScript to link the proper side module to the com-
mon shared logic module. You’ll also add the JavaScript code for validating the
Place Order form.

Emscripten
validate_product.cpp
validate_order.cpp

Common logic
(validate_core.cpp)

Validation logic
(validate.cpp)

Common logic
(validate_core.cpp)

Edit Product
(validate_product.cpp)

3. Emscripten generates two WebAssembly files
 as side modules from validate_product.cpp
 and validate_order.cpp.

4. Define a JavaScript function for the
 C++ code to call. It will be included in
 Emscripten’s generated JavaScript file.

The generated JavaScript files and
standard C library functions aren’t
included with side modules.

Emscripten
Wasm

validate_core
JavaScript

validate_core

1. Split the logic into two files.

Place Order
(validate_order.cpp)

2. Create the Place Order form’s logic.

5. Emscripten generates the WebAssembly
 files for validate_core.cpp as a main module.

mergeinto.js

Wasm JavaScript
file

The steps needed to revise the C++ logic and generate the WebAssembly modulesFigure 8.3

168 CHAPTER 8 Dynamic linking: The implementation
8.1.1 Splitting the logic in the validate.cpp file into two files

As figure 8.5 shows, your first step is to revise the C++ code that you wrote in chapter 5
so that the logic, which will be shared by both the Edit Product and Place Order
forms, is in its own file. The logic specific to the Edit Product form will be moved to a
new file.

In your WebAssembly folder, create a Chapter 8\8.1 EmDynamicLibraries\source\
folder for the files that you’ll use in this section, and then complete the following:

 Copy the validate.cpp file from the Chapter 5\5.1.1 EmJsLibrary\source\ folder
to your newly created source folder.

 Make a copy of the validate.cpp file, and rename it validate_product.cpp.
 Rename your other copy of the validate.cpp file to validate_core.cpp.

6. Files are copied to the
server for use by the
browser and server
code.

Browser

Validation logic
(Wasm and JavaScript)

Server

Validation logic
(Wasm and JavaScript)

 The server aspect is
 discussed in a later chapter.

7. Adjust how the JavaScript
code interacts with the modules.

Wasm JavaScript

Figure 8.4 Steps for modifying the HTML to have a Place Order form and
revising the JavaScript code to implement dynamic linking of the
WebAssembly modules in a browser and by the server-side code. I discuss
the server aspect, Node.js, in a later chapter.

Validation logic
(validate.cpp)

Common logic
(validate_core.cpp)

Edit Product
(validate_product.cpp)

1. Move edit-product-specific
logic to its own file.

Step 1 of the process is to move the Edit Product page’s specific logic to its own file.Figure 8.5

169Creating the WebAssembly modules
The first thing that you’ll need to do is remove the edit-product-specific logic from the
valiate_core.cpp file, because this file will be used to generate the common Web-
Assembly module that will be used by both the Edit Product and Place Order forms.

ADJUSTING THE VALIDATE_CORE.CPP FILE

Open the validate_core.cpp file with your favorite editor, and then remove the Validate-
Name and ValidateCategory functions. Remove the include for cstring because it’s
no longer needed by this file.

 Because the ValidateValueProvided and IsCategoryIdInArray functions will
now be called by other modules, these functions will need to be exported. Add the fol-
lowing code snippet above both the ValidateValueProvided and the IsCategoryId-
InArray functions in the validate_core.cpp file:

#ifdef __EMSCRIPTEN__
 EMSCRIPTEN_KEEPALIVE
#endif

It’s possible to use the IsCategoryIdInArray function to check and see if an ID is in
any array specified, but the name the function uses indicates that it’s only for a cate-
gory ID. You’ll want to modify this function so that its name is more generic, because
it will be used by both side modules.

 Adjust the IsCategoryIdInArray function in the validate_core.cpp file to no lon-
ger use the word category. The function should look like the code in the following
listing.

...

#ifdef __EMSCRIPTEN__
 EMSCRIPTEN_KEEPALIVE
#endif
int IsIdInArray(char* selected_id, int* valid_ids, int array_length) {
 int id = atoi(selected_id);
 for (int index = 0; index < array_length; index++) {
 if (valid_ids[index] == id) {
 return 1;
 }
 }

 return 0;
}
...

Now that you’ve removed the Edit Product page’s logic from the validate_core.cpp file
and modified the IsCategoryIdInArray function to be more generic, you’ll need to
revise the Edit Product page’s logic.

Listing 8.1 The IsCategoryIdInArray function modified to now be called IsIdInArray

Automatically adds the IsIdInArray
function to the module’s list of
exported functions

170 CHAPTER 8 Dynamic linking: The implementation
ADJUSTING THE VALIDATE_PRODUCT.CPP FILE

Open the validate_product.cpp file in your favorite editor, and remove the Validate-
ValueProvided and IsCategoryIdInArray functions because they’re now part of the
validate_core module. With the ValidateValueProvided and IsIdInArray functions
now part of a different module, you’ll have to include their function signatures, pre-
fixed with the extern keyword, so that the compiler knows the functions will be avail-
able when the code is run.

 Add the following function signatures within the extern "C" block and before the
extern UpdateHostAboutError function signature in the validate_product.cpp file:

extern int ValidateValueProvided(const char* value,
 const char* error_message);

extern int IsIdInArray(char* selected_id, int* valid_ids,
 int array_length);

Because you renamed IsCategoryIdInArray to IsIdInArray in the core logic, you
need to revise the ValidateCategory function to call IsIdInArray instead. The
ValidateCategory function in the validate_product.cpp file should look like the code
in the next listing.

...

int ValidateCategory(char* category_id, int* valid_category_ids,
 int array_length) {
 if (ValidateValueProvided(category_id,

"A Product Category must be selected.") == 0) {
 return 0;
 }

 if ((valid_category_ids == NULL) || (array_length == 0)) {
 UpdateHostAboutError("There are no Product Categories available.");
 return 0;
 }

 if (IsIdInArray(category_id, valid_category_ids,
array_length) == 0) {

 UpdateHostAboutError("The selected Product Category is not valid.");
 return 0;
 }

 return 1;
}
...

Once you’ve separated the Edit Product page’s logic from the common logic, the next
step (figure 8.6) is to create the Place Order form’s logic.

The modifiedListing 8.2 ValidateCategory function (validate_product.cpp)

Function renamed
to IsIdInArray

Place Order
(validate_order.cpp)

2. Create the Place
Order form’s logic.

Figure 8.6 Step 2 of the process is to
create the logic for the Place Order form.

171Creating the WebAssembly modules
Creating a new C++ file for the Place Order form’s logic8.1.2

In your Chapter 8\8.1 EmDynamicLibraries\source\ folder, create a validate_order.cpp
file and open it with your favorite editor. When creating a side module in the previous
chapters, you didn’t include the standard C library header files because the functions
used wouldn’t be available at runtime. In this case, because the side module will be
linked to the main module (validate_core), and the main module will have access to
the standard C library, the side module will be able to access those functions.

 Add the includes for the standard C library and Emscripten header files, as well as
the extern "C" block, to the validate_order.cpp file, as shown in the next listing.

#include <cstdlib>

#ifdef __EMSCRIPTEN__
 #include <emscripten.h>
#endif

#ifdef __cplusplus
extern "C" {
#endif

#ifdef __cplusplus
}
#endif

You’ll need to add the function signatures for the ValidateValueProvided and IsId-
InArray functions that are in the validate_core module. You’ll also add the function
signature for the UpdateHostAboutError function that the module will import from
the JavaScript code.

 Add the function signatures, which are shown in the following code snippet,
within the extern "C" block of the validate_order.cpp file:

extern int ValidateValueProvided(const char* value,
 const char* error_message);

extern int IsIdInArray(char* selected_id, int* valid_ids,
 int array_length);

extern void UpdateHostAboutError(const char* error_message);

The Place Order form that you’ll be building will have a product drop-down list and a
quantity field that you’ll need to validate. Both field values will be passed to the mod-
ule as strings, but the product ID will hold a numeric value.

 To validate the user-selected product ID and the quantity that was entered, you’ll
create two functions: ValidateProduct and ValidateQuantity. The first function
that you’ll create is ValidateProduct to ensure a valid product ID was selected.

The header files andListing 8.3 extern "C" block added to the validate_order.cpp file

Your WebAssembly functions
will be placed here.

172 CHAPTER 8 Dynamic linking: The implementation
THE VALIDATEPRODUCT FUNCTION

The ValidateProduct function will receive the following parameters:

 The user-selected product ID
 A pointer to an array of integers holding the valid product IDs
 The number of items in the array of valid product IDs

The function will verify three things:

 Was a product ID provided?
 Was a pointer to the valid product IDs array provided?
 Is the user-selected product ID in the array of valid IDs?

If any of the validation checks fail, you’ll pass an error message to the JavaScript code
by calling the UpdateHostAboutError function. You’ll then exit the ValidateProduct
function by returning 0 to indicate that there was an error. If the code runs to the end
of the function, there were no validation issues, so a 1 (success) message is returned.

 Add the ValidateProduct function, shown in the following listing, below the
UpdateHostAboutError function signature and within the extern "C" block in the
validate_order.cpp file.

#ifdef __EMSCRIPTEN__
 EMSCRIPTEN_KEEPALIVE
#endif
int ValidateProduct(char* product_id, int* valid_product_ids,
 int array_length) {
 if (ValidateValueProvided(product_id,

"A Product must be selected.") == 0) {
 return 0;
 }

 if ((valid_product_ids == NULL) || (array_length == 0)) {
 UpdateHostAboutError("There are no Products available.");
 return 0;
 }

 if (IsIdInArray(product_id, valid_product_ids,
array_length) == 0) {

 UpdateHostAboutError("The selected Product is not valid.");
 return 0;
 }

 return 1;
}

The final function that you’ll need to create is the ValidateQuantity function to ver-
ify that the quantity entered by the user is a valid value.

THE VALIDATEQUANTITY FUNCTION

The ValidateQuantity function will accept a single parameter, the user-entered
quantity, and it will verify two things:

TheListing 8.4 ValidateProduct function

If a value isn’t received,
then returns an error

If the array wasn’t specified,
then returns an error

If the selected product ID
isn’t found in the array,

then returns an errorTells the caller that everything was ok

173Creating the WebAssembly modules

 Was a quantity specified?
 Is the quantity value 1 or greater?

If either validation check fails, you’ll pass an error message to the JavaScript code by
calling the UpdateHostAboutError function and then exit the function by returning 0
(zero) to indicate that there was an error. If the code runs to the end of the function,
there were no validation issues, so a 1 (success) message is returned.

 Add the ValidateQuantity function in the following listing below the Validate-
Product function and within the extern "C" block in the validate_order.cpp file.

#ifdef __EMSCRIPTEN__
 EMSCRIPTEN_KEEPALIVE
#endif
int ValidateQuantity(char* quantity) {
 if (ValidateValueProvided(quantity,
 "A quantity must be provided.") == 0) {
 return 0;
 }

 if (atoi(quantity) <= 0) {
 UpdateHostAboutError("Please enter a valid quantity.");
 return 0;
 }

 return 1;
}

Now that you’ve finished revising the C++ code, the next part of the process (figure
8.7) is to have Emscripten compile the C++ files into WebAssembly modules.

8.1.3

TheListing 8.5 ValidateQuantity function

If a value isn’t received,
then returns an error

If the value is less than
1, then returns an error

Tells the caller that
everything was ok

Emscripten
validate_product.cpp
validate_order.cpp

3. Emscripten generates two WebAssembly files
 as side modules from validate_product.cpp
 and validate_order.cpp.

The generated JavaScript files and
standard C library functions aren’t
included with side modules.

Wasm JavaScript
file

Step 3 is to use Emscripten to compile the C++ files into WebAssembly modules.Figure 8.7

Using Emscripten to generate the WebAssembly side modules

When using dynamic linking with Emscripten, you can have at most one main mod-
ule. The main module will include the standard C library functions and Emscripten’s
generated JavaScript file. The side modules won’t include either of these features, but

174 CHAPTER 8 Dynamic linking: The implementation

when they’re linked to the main module, they gain access to this functionality. Your
validate_core.cpp file will be built as a main module, and the other two C++ files, vali-
date_product.cpp and validate_order.cpp, will be built as side modules.

 By default, when you create a main module, Emscripten will include all the stan-
dard C library functions in the WebAssembly module because it doesn’t know which
ones the side modules will need. This makes the module much larger than it needs to
be, especially if you use only a few standard C library functions.

 To optimize the main module, there’s a way to tell Emscripten to include only spe-
cific standard C library functions. You’ll use this approach, but, before you can do
this, you need to know which functions need to be included. To determine this, you
could always read through the code line by line, but you could miss some that way.
Another approach is commenting out the header files for the standard C library and
then running the command line to generate the WebAssembly module. The
Emscripten compiler will see that there are no function signatures defined for the
standard C library functions that are being used and will display an error about them.

 You’ll use the second approach, so you’ll need to compile the side modules
before you compile the main module. As figure 8.8 shows, the first WebAssembly mod-
ule that you’ll generate will be the side module for the Edit Product page (validate_
product.cpp).

Emscripten
Edit Product

(validate_product.cpp)

Emscripten generates a WebAssembly file
as a side module from validate_product.cpp.

The generated JavaScript file and
standard C library functions aren’t
included with side modules.

Wasm JavaScript
file

Figure 8.8 Emscripten is used to generate the WebAssembly module for the Edit Product
page’s validation.

GENERATING THE EDIT PRODUCT SIDE MODULE: VALIDATE PRODUCT.CPP_
In previous chapters, when you’ve created WebAssembly side modules, you replaced
the standard C library headers with a header for some replacement code that you
built in chapter 4. You don’t need the replacement code in this case because the side
module will be linked to the main module at runtime, and the main module will have
the standard C library functions.

When you compile the main module in section 8.1.5, you’re going to provide
Emscripten with a list of the standard C library functions that your side modules are
using. To determine which functions your code is using, you’re going to comment out
the standard C library header files and then try to compile the module. If there are

175Creating the WebAssembly modules

any standard C library functions in use, the Emscripten compiler will throw errors
about the missing function definitions.

 Before you try to determine which standard C library functions are in use, however,
you need to compile the module normally to make sure there aren’t any issues. You
want to know for sure that the errors you’re seeing when you comment out the header
files are related to the missing function definitions. To compile the module normally,
open a command prompt, navigate to the Chapter 8\8.1 EmDynamicLibraries\source\
folder, and then run the following command:

emcc validate_product.cpp -s SIDE_MODULE=2 -O1

➥ -o validate_product.wasm

There shouldn’t be any errors displayed in the console window, and there should be a
new validate_product.wasm file in your source folder.

 Next you need to determine which standard C library functions your code is using.
In your Chapter 8\8.1 EmDynamicLibraries\source\ folder, open the validate_product
.cpp file and then comment out the include statements for the cstdlib and cstring
files. Save your file, but don’t close it because you’ll need to uncomment those lines of
code in a moment.

 At your command prompt, run the following command, which is the same one you
ran a moment ago:

emcc validate_product.cpp -s SIDE_MODULE=2 -O1

➥ -o validate_product.wasm

This time, you should see an error message displayed in the console window, similar to
figure 8.9, indicating that the strlen function isn’t defined. This error message also
indicates that NULL isn’t defined, but you can ignore that because you don’t need to

A standard C library
function used by the code

Errors about NULL being
undefined can be ignored.

Figure 8.9 Emscripten throws an error about the strlen function and NULL not being defined.

176 CHAPTER 8 Dynamic linking: The implementation
do anything to have that included. Make note of the strlen function because you’ll
need to include it when you use Emscripten to generate the main module.

 In your validate_product.cpp file, remove the comments from in front of the
cstdlib and cstring header files. Then save the file.

 Now that you have your Edit Product page’s WebAssembly module, you need to
create the Place Order form’s module. As figure 8.10 shows, you’ll follow the same
process as you did here.

GENERATING THE PLACE ORDER SIDE MODULE: VALIDATE_ORDER.CPP

As with the Edit Product page’s module, before you try to determine which standard C
library functions this module is using, you need to make sure your code compiles with-
out issue. Open a command prompt, navigate to the Chapter 8 \8.1 EmDynamicLi-
braries\source\ folder, and then run the following command:

emcc validate_order.cpp -s SIDE_MODULE=2 -O1

➥ -o validate_order.wasm

There shouldn’t be any errors displayed in the console window, and there should be a
new validate_order.wasm file in your source folder.

 To determine if your code is using any standard C library functions, open the vali-
date_order.cpp file and comment out the include statement for the cstdlib header
file. Save the file, but don’t close it because you’ll need to uncomment that line of
code in a moment.

 At the command prompt, run the same command that you ran a moment ago:

emcc validate_order.cpp -s SIDE_MODULE=2 -O1

➥ -o validate_order.wasm

You should see an error message displayed in the console window, similar to that in fig-
ure 8.11, indicating that the function atoi isn’t defined. Make a note of that function
because you’ll need to include it when you use Emscripten to generate the main mod-
ule. Again, you can safely ignore the error about NULL being an undeclared identifier.

Emscripten
Place Order

(validate_order.cpp)

Emscripten generates a WebAssembly file
as a side module from validate_order.cpp.

The generated JavaScript file and
standard C library functions aren’t
included with side modules.

Wasm JavaScript
file

Figure 8.10 Emscripten used to generate the WebAssembly module for the Place Order
form’s validation

177Creating the WebAssembly modules

In your validate_order.cpp file, remove the comment from in front of the cstdlib
header file. Then save the file.

 Now that you’ve created both side modules, it’s time to create the JavaScript that
the main module will use (figure 8.12).

8.1.4

Errors about NULL being
undefined can be ignored.

A standard C library
function used by the code

Figure 8.11 Emscripten throws an error about the atoi function and NULL not being defined.

Common logic
(validate_core.cpp)

4. Define a JavaScript function for the
 C++ code to call. It will be included in
 Emscripten’s generated JavaScript file.

Emscripten
Wasm

validate_core
JavaScript

validate_core

mergeinto.js

Figure 8.12 Define the JavaScript function that the C++ code will call if there’s an issue with
the validation. The code in this file will be included in Emscripten’s generated JavaScript file.

Defining a JavaScript function to handle an issue
with the validation

In chapter 5, you created a mergeinto.js file that holds the UpdateHostAboutError

JavaScript function that the C++ functions will call into if there’s an issue with the vali-
dation. The UpdateHostAboutError function will read the message from the module’s
memory and then pass the string to your web page’s main JavaScript.

178 CHAPTER 8 Dynamic linking: The implementation
 As the following code snippet shows, the UpdateHostAboutError function is part
of a JavaScript object passed as the mergeInto function’s second parameter. The
mergeInto function will add your function to Emscripten’s LibraryManager.library
object to be included in Emscripten’s generated JavaScript file:

mergeInto(LibraryManager.library, {
 UpdateHostAboutError: function(errorMessagePointer) {
 setErrorMessage(Module.UTF8ToString(errorMessagePointer));
 }
});

Copy the mergeinto.js file from your Chapter 5\5.1.1 EmJsLibrary\source\ folder to
your Chapter 8\8.1 EmDynamicLibraries\source\ folder. When you use Emscripten to
generate the WebAssembly module in the next step, you’ll also instruct it to add the
JavaScript contained in the mergeinto.js file in its generated JavaScript file. To do this,
you’ll specify the mergeinto.js file by using the --js-library command-line option.

 Once you have the mergeinfo.js file, you can move on to the next step (figure
8.13) and generate the WebAssembly main module.

Using Emscripten to genera8.1.5 te the WebAssembly main module

To have Emscripten generate a main module, you need to include the MAIN_MODULE
flag. If you specify 1 for the value (-s MAIN_MODULE=1), Emscripten disables dead code
elimination.

INFO Dead code elimination prevents functions that aren’t used by your
code from being included in the resulting WebAssembly module.

Disabling dead code elimination is typically desired for a main module because it
doesn’t know what the side modules are going to need. As a result, it keeps all the
functions that are defined in your code and all the standard C library functions. For a

Common logic
(validate_core.cpp)

5. Emscripten generates the WebAssembly
files for validate_core.cpp
as a main module.

Emscripten
Wasm

validate_core
JavaScript

validate_core

mergeinto.js

The standard C library
functions will be included.

Figure 8.13 Use Emscripten to generate the WebAssembly main module from validate_core.cpp.
Have Emscripten include the contents of the mergeinto.js file in its generated JavaScript file.

179Creating the WebAssembly modules
large application, this approach is desired because your code will likely use quite a few
of the standard C library functions.

 If your code is using only a small number of standard C library functions, as it is in
this case, then all those extra functions that are being included just increase the mod-
ule’s size and slow down the download and instantiation. In this case, you’ll want to
enable dead code elimination for the main module; to do this, you specify 2 for the
MAIN_MODULE value:

-s MAIN_MODULE=2

WARNING Enabling dead code elimination for a main module means that it’s
up to you to make sure your side modules’ necessary functions are kept alive.

When you created your validate_product and validate_order WebAssembly modules,
you determined that they needed the following standard C library functions: strlen
and atoi. To tell Emscripten to include these functions in the generated module,
you’ll include the functions in the command-line array EXPORTED_FUNCTIONS.

 Your JavaScript code will be using the ccall, stringToUTF8, and UTF8ToString
Emscripten helper functions, so you’ll need to include them in the generated Java-
Script file. To do this, you’ll include them in the EXTRA_EXPORTED_RUNTIME_METHODS
command-line array when you run the Emscripten compiler.

 Normally when you create a WebAssembly module, Emscripten’s generated Java-
Script code exists as a global object called Module. This works when you have only one
WebAssembly module per web page, but, for this chapter’s scenario, you’ll be creating
a second WebAssembly module instance:

 One instance for the Edit Product form
 One instance for the Place Order form

You can allow for this to work by specifying the -s MODULARIZE=1 command-line flag,
which will cause the Module object in Emscripten’s generated JavaScript code to be
wrapped in a function.

INFO When you don’t use the MODULARIZE flag, just including a link to
Emscripten’s JavaScript file in your web page will cause the WebAssembly
module to be downloaded and instantiated when the page loads the file.
When using the MODULARIZE flag, however, you’re responsible for creating an
instance of the Module object in your JavaScript code to trigger the download
and instantiation of the WebAssembly module.

Open a command prompt, navigate to the Chapter 8\8.1 EmDynamicLibraries\source\
folder, and run the following command to create your validate_core WebAssembly
module:

emcc validate_core.cpp --js-library mergeinto.js -s MAIN_MODULE=2

➥ -s MODULARIZE=1

➥ -s EXPORTED_FUNCTIONS=['_strlen','_atoi']

180 CHAPTER 8 Dynamic linking: The implementation
➥ -s EXTRA_EXPORTED_RUNTIME_METHODS=['ccall','stringToUTF8',

➥'UTF8ToString'] -o validate_core.js

Now that the WebAssembly modules have been created, you can move on to the next
steps (figure 8.14), which are to copy the WebAssembly files and Emscripten’s gener-
ated JavaScript file to the location where they’ll be used by your website. You’ll modify
the web page’s HTML to now also have a Place Order form section. You’ll then update
the JavaScript code to implement dynamic linking of the modules.

Adjusting the web page8.2
In your Chapter 8\8.1 EmDynamicLibraries\ folder, create a frontend\ folder and then
copy the following files into it:

 validate_core.js, validate_core.wasm, validate_product.wasm, and validate_
order.wasm from your Chapter 8\8.1 EmDynamicLibraries\source\ folder

 editproduct.html and editproduct.js from your Chapter 5\5.1.1 EmJsLibrary\
frontend\ folder

Because the Place Order form will be added to the same web page as the Entry Prod-
uct form, you’ll rename the files to be more generic. Rename editproduct.html to
index.html and editproduct.js to index.js.

 Open the index.html file with your favorite editor so that you can add the new nav-
igation bar and controls for the Place Order form, as shown in figure 8.15. To create a
navigation section on your web page for things like menus, you’ll use a Nav tag.

 When creating menu systems, it’s common practice to define the menu’s items by
using UL and LI tags and then using CSS to style them. The UL tag stands for Unordered
List, which uses bullets. An OL tag, which stands for an Ordered List (a numbered list),
can also be used but is a less common approach. Within the UL tag, you specify one or

6. Files are copied to the
server for use by the
browser and server code.

Browser

Validation logic
(Wasm and JavaScript)

7. Adjust how the JavaScript
code interacts with
the modules.

Wasm JavaScript

Figure 8.14 You’ll adjust the
HTML to have a Place Order
form and then revise the
JavaScript code to implement
dynamic linking of the
WebAssembly modules in a
browser.

181Adjusting the web page
more LI (list item) tags for each menu item. If you’d like more information about
building navigation bars, you can visit www.w3schools.com/css/css_navbar.asp.

 Between the <body onload="initializePage()"> tag and the first opening div
tag (<div class="container">) in the index.html file, add the HTML from the fol-
lowing listing for the new navigation bar.

...

<nav class="navbar navbar-expand-sm bg-dark navbar-dark">
 <ul class="navbar-nav">
 <li class="nav-item">
 <a id="navEditProduct" class="nav-link" href="#Edit Product"
 onclick="switchForm(true)">Edit Product

 <li class="nav-item">
 <a id="navPlaceOrder" class="nav-link" href="#PlaceOrder"
 onclick="switchForm(false)">Place Order

</nav>
...

The HTML for the new navigation barListing 8.6

The new navigation bar

The new Place Order form

The new navigation bar and Place Order foFigure 8.15 rm controls that you will add to the web page

The new
navigation bar

Clicking this link will show
the Edit Product form.

Clicking this link will show
the Place Order form.

www.w3schools.com/css/css_navbar.asp

182 CHAPTER 8 Dynamic linking: The implementation
Add an id attribute to the H1 tag called formTitle so the JavaScript code will be able
to change the value displayed to the user that indicates which form is displayed.
Remove the text from the tag. The tag should look like this:

<h1 id="formTitle"></h1>

Because you’ll need to hide the Edit Product form’s controls when the Place Order
form is displayed, you’ll wrap them with a div that the JavaScript code can show or
hide. Add an opening div tag—with an id value of productForm—before the div tag
that surrounds the Name field. Because the Place Order form, rather than the Edit
Product form, might be displayed when the web page first loads, you’ll also include a
style attribute on the productForm div to have it hidden by default. Add the closing
div tag after the save button tag.

 Change the onclick value of the Save button from onClickSave to onClickSave-
Product so it’s obvious that the save function is for the Edit Product form. The
HTML for the Edit Product form’s controls in index.html should look like the HTML
in the next listing.

...

<div id="productForm" style="display:none;">
 <div class="form-group">
 <label for="name">Name:</label>
 <input type="text" class="form-control" id="name">
 </div>
 <div class="form-group">
 <label for="category">Category:</label>
 <select class="custom-select" id="category">

<option value="0"></option>
<option value="100">Jeans</option>
<option value="101">Dress Pants</option>

 </select>
 </div>

 <button type="button" class="btn btn-primary"
onclick="onClickSaveProduct()">Save</button>

</div>
...

You’ll now need to add the Place Order form’s controls to the HTML. As with the Edit
Product controls, you’ll surround the Place Order form’s controls with a div having
an id value of orderForm.

 The Place Order form will have three controls:

 A drop-down list of products
 A Quantity text box
 An Add to Cart button

Listing 8.7 The modified HTML for the Edit Product form section in index.html

New opening div tag surrounding
the Edit Product form’s controls

onclick value changed to
onClickSaveProduct

Closing div tag for the productForm
tag that was added

183Adjusting the web page
Add the HTML from the next listing following the closing div that you added for the
productForm div in the index.html file.

...

<div id="orderForm" style="display:none;">
 <div class="form-group">
 <label for="product">Product:</label>
 <select class="custom-select" id="product">
 <option value="0"></option>
 <option value="200">Women's Mid Rise Skinny Jeans</option>
 <option value="301">
 Men's Relaxed Classic Fit Flat Front Pant
 </option>
 </select>
 </div>
 <div class="form-group">
 <label for="quantity">Quantity:</label>
 <input type="text" class="form-control" id="quantity" value="0">
 </div>

 <button type="button" class="btn btn-primary"
 onclick="onClickAddToCart()">Add to Cart</button>
</div>
...

The final edits that you’ll need to make will be the links to the JavaScript files at the
end of the index.html file:

 Because you renamed the editproduct.js file to index.js, change the src attri-
bute value of the first script tag to index.js.

 When you used Emscripten to create the main module, you gave it the name
validate_core.js, so you’ll need to change the src attribute value of the second
script tag to validate_core.js.

The two script tags should look like this:

<script src="index.js"></script>
<script src="validate_core.js"></script>

Now that the HTML has been modified to contain a new navigation bar and the new
Place Order form’s controls, it’s time to revise the JavaScript to work with the new
WebAssembly modules.

8.2.1 Adjusting your web page’s JavaScript

Open your index.js file in your favorite editor. This file will now handle the logic for
two forms: Edit Product and Place Order. Because of this, the first thing you’ll need to
do is modify the name of the initialData object so it’s clear that the object is for the
Edit Product form. Change the name from initialData to initialProductData so
that it looks like the following snippet:

The new HTML for the Place Order formListing 8.8

184 CHAPTER 8 Dynamic linking: The implementation
const initialProductData = {
 name: "Women's Mid Rise Skinny Jeans",
 categoryId: "100",
};

The Place Order form’s product drop-down list will need to be validated to ensure the
user’s selection is a valid ID. To do this, you’ll pass an array to the Place Order form’s
WebAssembly module indicating what the valid IDs are. Add the following global array
of valid IDs after the VALID_CATEGORY_IDS array in the index.js file:

const VALID_PRODUCT_IDS = [200, 301];

When you compiled the main module (validate_core.wasm), you instructed
Emscripten to wrap its Module object in a function so that multiple instances of that
object could be created. You did this because you’ll be creating two WebAssembly
module instances for this web page.

 The Edit Product form will have a WebAssembly instance in which the main mod-
ule is linked to the Edit Product side module: validate_product.wasm. The Place
Order form will also have a WebAssembly instance, in which the main module is
linked to the Place Order form’s side module: validate_order.wasm.

 To hold these two Emscripten Module instances, you need to add the global variables
in the following code snippet after the VALID_PRODUCT_IDS array in the index.js file:

let productModule = null;
let orderModule = null;

That’s it for the changes for the global objects. Now you’ll need to make a few changes
to the initializePage function.

THE INITIALIZEPAGE FUNCTION

The first change that’s needed in the initializePage function is the name of the
object used to populate the name field and category drop-down. The object’s name
needs to be changed from initialData to initialProductData.

 This web page is being built as an SPA, so clicking the links in the navigation bar
won’t bring you to a new page. Instead, a fragment identifier is placed at the end of the
address in the browser’s address box, and the web page’s contents are adjusted to
show the desired view. If you were to give someone the address to the web page, and it
included the fragment identifier, the web page should display that section as if the
user had navigated to it by clicking that navigation link.

INFO A fragment identifier is an optional portion at the end of a URL that
starts with a hash (#) symbol, as figure 8.16 shows. It’s typically used to iden-
tify a section of the web page. When you click a hyperlink that points to a frag-
ment identifier, the web page jumps to that location, which is useful when
navigating large documents.

Will hold the validate_core and
validate_product linked modules

Will hold the validate_core and
validate_order linked modules

185Adjusting the web page
Because you’ll want the web page to show the proper view based on whether a frag-
ment identifier was specified in the page’s address, you’ll add some code to the end of
the initializePage function to check and see if an identifier was included. By
default, the web page will show the Edit Product form; but if the #PlaceOrder identi-
fier is included in the address, you’ll display the Place Order form instead. After the
fragment identifier detection code, you’ll add a call to a function that will cause the
proper form to be displayed.

 Revise the initializePage function in the index.js file so that it matches the code
in the next listing.

...

function initializePage() {
 document.getElementById("name").value = initialProductData.name;

 const category = document.getElementById("category");
 const count = category.length;
 for (let index = 0; index < count; index++) {
 if (category[index].value === initialProductData.categoryId) {
 category.selectedIndex = index;
 break;
 }
 }

 let showEditProduct = true;
 if ((window.location.hash) &&

The modifiedListing 8.9 initializePage function

Figure 8.16 The URL of your web page with “PlaceOrder” as the
fragment identifier

Fragment identifier

initialData changed to
initialProductData

initialData changed to
initialProductData

Displays the Edit Product
view by default

186 CHAPTER 8 Dynamic linking: The implementation

M
th

The

i
dis
 (window.location.hash.toLowerCase() === "#placeorder")) {
 showEditProduct = false;
 }

 switchForm(showEditProduct);
}
...

You’ll need to create the switchForm function to handle adjusting the web page so
that it displays the requested form: the Edit Product form or the Place Order form.

THE SWITCHFORM FUNCTION

The switchForm function will perform the following steps:

 Clear any error message that might be displayed.
 Highlight the item in the navigation bar that matches the form that needs to be

displayed.
 Modify the title in the H1 tag on the web page to reflect the section that’s dis-

played.
 Show the requested form and hide the other.

Because the main module was compiled with the MODULARIZE flag, Emscripten doesn’t
automatically download and instantiate the WebAssembly module for you. It’s up to
you to create an instance of the Emscripten Module object.

 If an instance of this object hasn’t been created for the requested form yet, the
switchForm function will also create one. The Emscripten Module object can accept a
JavaScript object to control code execution, so your code will use it to pass in the name
of the side module that it needs to link to via the dynamicLibraries array property.

 Add the code in the next listing after the initializePage function in your
index.js file.

...

function switchForm(showEditProduct) {
 setErrorMessage("");
 setActiveNavLink(showEditProduct);
 setFormTitle(showEditProduct);

 if (showEditProduct) {
 if (productModule === null) {
 productModule = new Module({
 dynamicLibraries: ['validate_product.wasm']
 });
 }

 showElement("productForm", true);
 showElement("orderForm", false);
 } else {
 if (orderModule === null) {

TheListing 8.10 switchForm function

If a fragment identifier was
included in the website’s address,

and it is #placeorder...

...the Place Order form
is to be displayed.Displays the

proper form

Highlights the navigation
bar item for the view

odifies
e title

for the
view

The Edit Product view
is to be displayed.

Only creates an instance if
one hasn’t been created yet

Creates a new WebAssembly
instance of the main module

Tells Emscripten that
it needs to link to the
Product side module

Shows the Edit Product form
and hides the Order form

 Order
form

s to be
played.

187Adjusting the web page
 orderModule = new Module({
 dynamicLibraries: ['validate_order.wasm']
 });
 }

 showElement("productForm", false);
 showElement("orderForm", true);
 }
}
...

The next function that you need to create is the setActiveNavLink function, which
will highlight the displayed form’s navigation bar.

THE SETACTIVENAVLINK FUNCTION

Because navigation bar items can have multiple CSS class names specified, you’ll use
the DOM element’s classList object, which allows you to insert and delete individual
class names. Your function will make sure both navigation bar items have the
"active" class name removed and will then apply it to only the navigation bar item
for the view that’s being displayed.

 Add the setActiveNavLink function shown in the next listing after the switch-
Form function in the index.js file.

...

function setActiveNavLink(Editproduct) {
 const navEditProduct = document.getElementById("navEditProduct");
 const navPlaceOrder = document.getElementById("navPlaceOrder");
 navEditProduct.classList.remove("active");
 navPlaceOrder.classList.remove("active");

 if (editProduct) { navEditProduct.classList.add("active"); }
 else { navPlaceOrder.classList.add("active"); }
}
...

The next function that you need to create is the setFormTitle function, which will
adjust the text on the web page to indicate which form is displayed.

THE SETFORMTITLE FUNCTION

Following the setActiveNavLink function in the index.js file, add the setFormTitle
function to display the form’s title in the H1 tag on the web page:

function setFormTitle(editProduct) {
 const title = (editProduct ? "Edit Product" : "Place Order");
 document.getElementById("formTitle").innerText = title;
}

Originally, only the web page’s error section needed to be shown or hidden, so the
code to show or hide the element was part of the setErrorMessage function. Now that

TheListing 8.11 setActiveNavLink function

Creates a new WebAssembly
instance of the main module

Tells Emscripten that it needs to
link to the Order side module

Hides the Edit Product form
and shows the Order form

Makes sure both elements have
the “active” class name removed

Applies the “active” class name to
the item for the form being displayed

188 CHAPTER 8 Dynamic linking: The implementation
there are additional elements of the web page that need to be shown or hidden, you’ll
move that logic to its own function.

THE SHOWELEMENT FUNCTION

Add the showElement function following the setFormTitle function in your index.js
file, as in the following snippet:

function showElement(elementId, show) {
 const element = document.getElementById(elementId);
 element.style.display = (show ? "" : "none");
}

The validation for the order form will need to get the user-selected product ID from
the product drop-down list. The getSelectedCategoryId function already gets the
user-selected ID from a drop-down list but is specific to the category drop-down of the
Edit Product form. You’ll now revise that function to be more generic so that it can
also be used by the Place Order form.

THE GETSELECTEDCATEGORYID FUNCTION

Change the name of the getSelectedCategoryId function to getSelectedDrop-
downId, and add elementId as a parameter. Within the function, change the variable
name from category to dropdown and replace the string "category" with elementId
in the getElementById call.

 The getSelectedDropdownId function should look like the code in the following
snippet:

function getSelectedDropdownId(elementId) {
 const dropdown = document.getElementById(elementId);
 const index = dropdown.selectedIndex;
 if (index !== -1) { return dropdown[index].value; }

 return "0";
}

Now that you’ve created the showElement function to handle showing or hiding ele-
ments on the web page, you can revise the setErrorMessage function to call the new
function rather than adjust the visibility of the element directly.

THE SETERRORMESSAGE FUNCTION

Modify the setErrorMessage function in your index.js file to call the showElement
function rather than setting the element’s style directly. Your function should look
like this:

function setErrorMessage(error) {
 const errorMessage = document.getElementById("errorMessage");
 errorMessage.innerText = error;
 showElement("errorMessage", (error !== ""));
}

The function name
is changed and the
elementId
parameter added.

The variable name is changed, and
elementId is passed to getElementById.

Shows the errorMessage
element if there’s an error
and hides it if not

189Adjusting the web page
Because your web page will now have two sets of controls, having an onClickSave
function would be confusing, so you’ll rename the function so its name indicates that
it’s used by the Edit Product form.

THE ONCLICKSAVE FUNCTION

Rename the onClickSave function to now be onClickSaveProduct. Because you
renamed the getSelectedCategoryId function to getSelectedDropdownId, you’ll
need to rename the function call. You’ll also need to pass in the drop-down’s ID
("category") as a parameter to the getSelectedDropdownId function.

 Your onClickSaveProduct function should look like the code in the next listing.

...

function onClickSaveProduct() {
 setErrorMessage("");

 const name = document.getElementById("name").value;
 const categoryId = getSelectedDropdownId("category");

 if (validateName(name) && validateCategory(categoryId)) {

 }
}
...

Because the main module was compiled with the MODULARIZE flag, you needed to
create an instance of Emscripten’s Module object. The validateName and validate-
Category functions will need to be modified to call the Module instance that you cre-
ated, productModule, rather than calling Emscripten’s Module object.

THE VALIDATENAME AND VALIDATECATEGORY FUNCTIONS

You’ll need to modify each spot in the validateName and validateCategory func-
tions that calls Emscripten’s Module object to now use the Module instance: product-
Module. Your validateName and validateCategory functions in index.js should look
like the code in the following listing.

...

function validateName(name) {
 const isValid = productModule.ccall('ValidateName',
 'number',
 ['string', 'number'],
 [name, MAXIMUM_NAME_LENGTH]);

 return (isValid === 1);
}

function validateCategory(categoryId) {
 const arrayLength = VALID_CATEGORY_IDS.length;

TheListing 8.12 onClickSave function renamed to onClickSaveProduct

The modifiedListing 8.13 validateName and validateCategory functions

Name changed
from onClickSave

Changes the function
name and specifies
the drop-down’s ID

There were no issues. The data can
be passed to the server-side code.

Module replaced
with productModule

190 CHAPTER 8 Dynamic linking: The implementation
 const bytesPerElement = productModule.HEAP32.BYTES_PER_ELEMENT;
 const arrayPointer = productModule._malloc((arrayLength *

bytesPerElement));
 productModule.HEAP32.set(VALID_CATEGORY_IDS,

(arrayPointer / bytesPerElement));

 const isValid = productModule.ccall('ValidateCategory',
'number',
['string', 'number', 'number'],
[categoryId, arrayPointer, arrayLength]);

 productModule._free(arrayPointer);

 return (isValid === 1);
}

Now that you’ve finished modifying the existing Edit Product code, it’s time to add
the Place Order code. Your first step is to create the onClickAddToCart function.

THE ONCLICKADDTOCART FUNCTION

The onClickAddToCart function for the Place Order form will be very similar to the
onClickSaveProduct function of the Edit Product form. Here, you’ll get the selected
ID from the product drop-down as well as the user-entered quantity value. You’ll then
call the validateProduct and validateQuantity JavaScript functions to call into the
WebAssembly module and have the user-entered values validated. If there are no vali-
dation issues, the data can be saved.

 Add the code in the following listing after the validateCategory function in your
index.js file.

...

function onClickAddToCart() {
 setErrorMessage("");

 const productId = getSelectedDropdownId("product");
 const quantity = document.getElementById("quantity").value;

 if (validateProduct(productId) &&
validateQuantity(quantity)) {

 }
}

You’ll now need to create the validateProduct function that will call into the Web-
Assembly module to verify that the user-selected product ID is valid.

THE VALIDATEPRODUCT FUNCTION

The validateProduct function will call the module’s ValidateProduct function. The
ValidateProduct function has the following signature in C++:

int ValidateProduct(char* product_id,

Listing 8.14 The onClickAddToCart function in index.js

Module replaced
with productModule

Gets the user-selected ID from
the product drop-down

Gets the user-
entered quantity

Validates the
product ID

Validates the
quantity

There were no issues with
the user-entered values.
The data can be saved.

191Adjusting the web page

 int* valid_product_ids,
 int array_length);

Your validateProduct JavaScript function will pass the following parameters to the
module’s function:

 The user-selected product ID
 An array of valid IDs
 The length of the array

You’ll pass the user-selected product ID to the module as a string and let Emscripten’s
ccall function handle the string’s memory management for you by indicating the
parameter type as a 'string'.

 Your array of valid IDs are integers (32-bit), but Emscripten’s ccall function can
handle the memory management of an array for you only if you’re dealing with 8-bit
integers. As a result, you’ll need to manually allocate some of the module’s memory to
hold the array’s values and then copy the values into the memory. You’ll pass the
memory location pointer for the valid IDs to the ValidateProduct function. In Web-
Assembly, pointers are represented as 32-bit integers, so you’ll indicate this parameter
type as 'number'.

 Add the validateProduct function shown in the next listing to the end of the
index.js file.

...

function validateProduct(productId) {
 const arrayLength = VALID_PRODUCT_IDS.length;
 const bytesPerElement = orderModule.HEAP32.BYTES_PER_ELEMENT;
 const arrayPointer = orderModule._malloc((arrayLength *
 bytesPerElement));
 orderModule.HEAP32.set(VALID_PRODUCT_IDS,
 (arrayPointer / bytesPerElement));

 const isValid = orderModule.ccall('ValidateProduct',
 'number',
 ['string', 'number', 'number'],
 [productId, arrayPointer, arrayLength]);

 orderModule._free(arrayPointer);

 return (isValid === 1);
}

TheListing 8.15 validateProduct function in index.js

Allocates enough memory
for each item of the array

Copies the array’s
elements into the
module’s memory

Calls the ValidateProduct
function in the module

Frees the memory that was
allocated for the array

The final JavaScript function that you’ll need to create is the validateQuantity func-
tion that will call into the module to validate the user-entered quantity.

THE VALIDATEQUANTITY FUNCTION

The validateQuantity function will call the module’s ValidateQuantity function,
which has the following signature in C++:

int ValidateQuantity(char* quantity);

192 CHAPTER 8 Dynamic linking: The implementation
You’ll pass the user-entered quantity value to the module as a string and let
Emscripten’s ccall function handle the string’s memory management for you by indi-
cating the parameter type as a 'string'.

 Add the validateQuantity function from the following code snippet to the end of
the index.js file:

function validateQuantity(quantity) {
 const isValid = orderModule.ccall('ValidateQuantity',

'number',
['string'],
[quantity]);

 return (isValid === 1);
}

Viewing the results8.2.2

Now that you’ve finished modifying the JavaScript code, open your browser and type
http://localhost:8080/index.html into the address box to see the web page. You can
test the navigation by clicking the navigation bar’s links. As shown in figure 8.17, the dis-
played view should switch between the Edit Product and Place Order forms, and the
address box should have a matching fragment identifier based on the last link you
clicked.

Figure 8.17 When you click the Place Order navigation link, the Place Order form’s controls are
displayed, and the fragment identifier is added to the address in the browser’s address box.

Fragment identifier

The navigation
links

193Real-world use cases
You can test the validation by selecting an item in the Product drop-down list, leaving
the Quantity at 0, and then pressing the Add to Cart button. An error should display
on the web page, as figure 8.18 shows.

 Now, how can you use what you learned in this chapter in the real world?

Real-world use cases
The following are some possible use cases for what you’ve learned in this chapter:

 If your WebAssembly module doesn’t need to be downloaded and instantiated
until some point after the web page has loaded, you can include the -s
MODULARIZE=1 flag when compiling the module. This will allow you to control
when the module gets downloaded and instantiated, which will help speed up
your website’s initial load time.

 Another use case for the -s MODULARIZE=1 flag is that it allows you to create
multiple instances of the WebAssembly module. A single-page application can
potentially be long-running, and you might want to reduce memory use by cre-
ating an instance of the module when needed and destroying the instance
when it’s no longer needed (because the user navigated to another portion of
the application, for example).

The new Place Order form’s validationFigure 8.18 error message when a quantity of 0 is specified.

Validation error
because a quantity
of 0 was specified

194 CHAPTER 8 Dynamic linking: The implementation
Exercises
You can find the solutions to the exercises in appendix D.

1 Suppose you have a side module called process_fulfillment.wasm. How would
you create a new instance of Emscripten’s Module object and tell it to dynami-
cally link to this side module?

2 What flag do you need to pass to Emscripten when compiling a WebAssembly
main module in order to have the Module object wrapped in a function in
Emscripten’s generated JavaScript file?

Summary
In this chapter, you learned how to create a simple SPA that uses a fragment identifier
in the URL to indicate which form should be displayed.

 You also learned the following:

 It’s possible to create multiple instances of Emscripten’s JavaScript Module object
if you specify the -s MODULARIZE=1 flag when compiling the main module.

 When a main module is compiled using the MODULARIZE flag, customizations for
the Module object are passed as a JavaScript object to the Module’s constructor.

 Dead code elimination can be enabled for a main module by using the -s
MAIN_MODULE=2 flag. Doing so, however, requires you to explicitly indicate
which functions to keep alive for the side modules by using the command-line
array: EXPORTED_FUNCTIONS.

 You can test to see which standard C library functions are in use by a side mod-
ule by commenting out the header files and trying to compile the module.
Emscripten will throw errors at the command line indicating which functions
are undefined.

Threading: Web workers
and pthreads
This chapter covers
 Using a web worker to fetch and compile a WebAssembly

module

 Instantiating a WebAssembly module on behalf of
Emscripten’s JavaScript code

 Creating a WebAssembly module that uses pthreads

In this chapter, you’re going to learn about different options for using threads in a
browser with relation to WebAssembly modules.

DEFINITION A thread is a path of execution within a process, and a process
can have multiple threads. A pthread, also known as a POSIX thread, is an
API defined by the POSIX.1c standard for an execution module that’s
independent of programming language (see https://en.wikipedia.org/
wiki/POSIX_Threads).

By default, a web page’s UI and JavaScript all operate in a single thread. If your
code does too much processing without periodically yielding to the UI, the UI can
become unresponsive. Your animations will freeze, and the controls on the web
page won’t respond to a user’s input, which can be frustrating for the user.
195

https://en.wikipedia.org/wiki/POSIX_Threads
https://en.wikipedia.org/wiki/POSIX_Threads
https://en.wikipedia.org/wiki/POSIX_Threads

196 CHAPTER 9 Threading: Web workers and pthreads

If the web page remains unresponsive for long enough (typically around 10 seconds),
a browser might even prompt the user to see if they want to stop the page, as figure 9.1
shows. If a user stops the script on your web page, the page may no longer function as
expected unless the user refreshes it.

TIP To keep web pages as responsive as possible, whenever you interact with
a Web API that has both synchronous and asynchronous functions, it’s a best
practice to use the asynchronous functions.

Being able to do some heavy processing without interfering with the UI is desirable, so
browser makers created web workers.

9.1 Benefits of web workers
What do web workers do, and why would you want to use them? Web workers enable
the creation of background threads in browsers. As figure 9.2 shows, they allow you to
run JavaScript in a thread that’s separate from the UI thread; communication
between the two is accomplished by passing messages.

 Unlike with the UI thread, using synchronous functions in a web worker is permit-
ted, if desired, because doing so won’t block the UI thread. Within a worker, you can

The browser is prompting the user to see
if they want to terminate the script because
the web page has become unresponsive.

Figure 9.1 A long-running process has caused Firefox to become unresponsive. The browser is
prompting the user to see if they want to terminate the script.

Web worker

onmessage

postMessage

Your JavaScript creates
a web worker.

Communication is
accomplished by
passing messages.

Create web worker

UI thread

postMessage

onmessage

Figure 9.2 Your JavaScript creates a web worker and then communicates
with it by passing messages.

197Considerations for using web workers
spawn additional workers, and you have access to many of the same items that you
have access to in the UI thread, such as fetch, WebSockets, and IndexedDB. For a
complete list of APIs available to web workers, you can visit this MDN Web Docs page:
http://mng.bz/gVBG.

 Another advantage of web workers is that most devices now have multiple cores. If
you’re able to split up your processing across several threads, the length of time it
takes to complete the processing should decrease. Web workers are also supported in
nearly all web browsers, including mobile ones.

 WebAssembly modules can use web workers in several ways:

 As you’ll learn in section 9.3, a web worker can be used to prefetch a Web-
Assembly module. The web worker can download and compile the module and
then pass that compiled module to the main thread, which can then instantiate
the compiled module and use it as per normal.

 Emscripten supports the ability to generate two WebAssembly modules, in
which one sits in the main thread and the other in a web worker. The two mod-
ules communicate using Emscripten helper functions defined in Emscripten’s
Worker API. You won’t learn about this approach in this chapter, but you’ll see
the JavaScript versions of many of Emscripten’s functions. For more informa-
tion about Emscripten’s Worker API, you can visit this page in the documenta-
tion: http://mng.bz/eD1q.

INFO You would need to create two C or C++ files in order to compile
one to run in the main thread and one to run in the web worker. The web
worker file would need to be compiled with the -s BUILD_AS_WORKER=1
flag set.

 A post-MVP feature is being developed that creates a special kind of web worker
that allows a WebAssembly module to use pthreads (POSIX threads). At the
moment, this approach is still considered experimental, and flags need to be
enabled in some browsers to allow the code to run. You’ll learn about this
approach in section 9.4, where I’ll also explain pthreads in greater detail.

9.2 Considerations for using web workers
You’ll learn to use web workers shortly, but before you do, you should be aware of the
following:

 Web workers have a high startup cost and a high memory cost, so they’re not
intended for use in large numbers, and they’re expected to be long-lived.

 Because web workers run in a background thread, you have no direct access to
the web page’s UI features or the DOM.

 The only way to communicate with a web worker is by sending postMessage
calls and responding to messages via an onmessage event handler.

http://mng.bz/gVBG
http://mng.bz/eD1q

198 CHAPTER 9 Threading: Web workers and pthreads
 Even though the background thread’s processing won’t block the UI thread,
you still need to be mindful of needless processing and memory usage because
you’re still using some of the device’s resources. As an analogy, if a user is using
a phone, a lot of network requests can use up their phone’s data plan, and a lot
of processing can use up the battery.

 Web workers are available only in browsers at the moment. If your WebAssembly
module needs to also support Node.js, for example, this is something you’ll need
to keep in mind. As of version 10.5, Node.js has experimental support for worker
threads, but they’re not yet supported by Emscripten. More information about
Node.js worker thread support can be found here: https://nodejs.org/api/
worker_threads.html.

9.3 Prefetching a WebAssembly module using a web worker
Suppose you have a web page that will need a WebAssembly module at some point
after the page has loaded. Rather than download and instantiate the module as the
page is loading, you decide to defer the download until after it’s loaded to keep the
page load time as fast as possible. To keep your web page as responsive as possible,
you also decide to use a web worker to handle downloading and compiling the Web-
Assembly module on a background thread.

 As figure 9.3 illustrates, in this section, you’ll learn how to

 Create a web worker
 Download and compile the WebAssembly module while in a web worker
 Pass and receive messages between the main UI thread and worker
 Override Emscripten’s default behavior, in which it usually handles download-

ing and instantiating a WebAssembly module, and use the module that’s already
compiled

Browser
(main UI thread)

1. Create a web worker.

Web worker
(background thread)

2. Download and compile the
WebAssembly module.

4. Emscripten uses the
compiled module.

3. Pass the compiled module
to the main UI thread.

Communication between the worker
and UI thread is by passing messages.

The steps to prefetch a WebAssembly module using a web worker

Figure 9.3 Your JavaScript creates a web worker. The worker will download
and compile the WebAssembly module and then pass the compiled module to
the main UI thread. Emscripten then uses the compiled module rather than
downloading the module itself.

https://nodejs.org/api/worker_threads.html
https://nodejs.org/api/worker_threads.html
https://nodejs.org/api/worker_threads.html

199Prefetching a WebAssembly module using a web worker
The following steps enumerate the solution for this scenario (figure 9.4):

1 Adjust the calculate_primes logic that you built in chapter 7 to determine how
long it takes the calculations to complete.

2 Use Emscripten to generate the WebAssembly files from the calculate_primes
logic.

3 Copy the generated WebAssembly files to the server for use by the browser.
4 Create the HTML and JavaScript for a web page that will create a web worker,

and have Emscripten’s JavaScript use the compiled WebAssembly module
received from the worker.

5 Create the web worker’s JavaScript file, which will download and compile the
WebAssembly module.

The first step, shown in figure 9.5, is to adjust the calculate_primes logic to determine
how long it takes to do the calculations.

3. WebAssembly files are
 copied to the server for
 use by the browser.

Browser

UI thread
prefetch.html
(prefetch.js)

Web worker
(prefetch.worker.js)

5. Create the JavaScript for the web
 worker that will download and
 compile the WebAssembly module.

4. Create the HTML and JavaScript for the
 web page that will create a web worker,
 and have Emscripten’s JavaScript use the
 compiled module received from the worker.

Emscriptencalculate_primes.cpp

1. Adjust the logic to determine
 how long it takes the
 calculations to complete.

2. Emscripten generates the
 WebAssembly files from
 calculate_primes.cpp.

Wasm
file

JavaScript
file

Figure 9.4 The steps for implementing the prefetch scenario. Modify calculate_primes.cpp to
determine how long the computations take. Instruct Emscripten to generate the WebAssembly files
and then create the HTML and JavaScript files. The JavaScript will create a web worker to download
and compile the WebAssembly module. Finally, the compiled module will be passed back to the web
page, where it will be instantiated by your code instead of Emscripten’s JavaScript.

200 CHAPTER 9 Threading: Web workers and pthreads

Emscriptencalculate_primes.cpp

1. Adjust the logic to determine
how long it takes the
calculations to complete.

Wasm
file

JavaScript
file

Modify the calculate_primes logic to determine how long the calculations take.Figure 9.5

9.3.1 Adjusting the calculate_primes logic

Let’s get started. In your WebAssembly\ folder create a Chapter 9\9.3 pre-fetch\source\
folder.

Copy the calculate_primes.cpp file from your Chapter 7\7.2.2 dlopen\source\
folder to your newly created source\ folder. Open the calculate_primes.cpp file with
your favorite editor.

For this scenario, you’ll be using a vector class that’s defined in the vector header
to hold the list of prime numbers found within the range specified. You’ll also use the
high_resolution_clock class, defined in the chrono header, to time how long it
takes your code to determine the prime numbers.

Add the includes for the vector and chrono headers following the cstdio header
in the calculate_primes.cpp file, as shown in the following code snippet:

#include <vector>
#include <chrono>

Now, remove the EMSCRIPTEN_KEEPALIVE declaration from above the FindPrimes

function—this function won’t be called from outside the module.
Rather than call printf for every prime number as it’s found, you’re going to

modify the logic in the FindPrimes function to add the prime number to a vector

object instead. You’ll do this so that you can determine the execution duration of the
calculations themselves without the delay due to a call to the JavaScript code on every
loop. The main function will then be modified to handle sending the prime number
information to the browser’s console window.

DEFINITION A vector object is a sequence container for dynamic sized arrays
in which the storage is automatically increased or decreased as needed. More
information on the vector object can be found here: https://en.cppreference
.com/w/cpp/container/vector.

You’ll make the following modifications to the FindPrimes function:

 Add a parameter to the function that accepts an std::vector<int> reference.
 Remove all of the printf calls.
 Within the IsPrime if statement, add the value in i to the vector reference.

https://en.cppreference.com/w/cpp/container/vector
https://en.cppreference.com/w/cpp/container/vector
https://en.cppreference.com/w/cpp/container/vector

201Prefetching a WebAssembly module using a web worker
In your calculate_primes.cpp file, revise the FindPrimes function to match the code
in the following snippet:

void FindPrimes(int start, int end,
 std::vector<int>& primes_found) {
 for (int i = start; i <= end; i += 2) {
 if (IsPrime(i)) {
 primes_found.push_back(i);
 }
 }
}

Your next step is to modify the main function to

 Update the browser’s console window with the range of numbers that will be
checked for prime numbers.

 Determine how long the FindPrimes function takes to execute by getting the
value of the clock before and after the call to the FindPrimes function and sub-
tracting the difference.

 Create a vector object to hold the prime numbers found, and pass it to the
FindPrimes function.

 Update the browser’s console to indicate how long it took for the FindPrimes
function to execute.

 Output each of the prime numbers that were found by looping through the
vector object’s values.

Your main function in your calculate_primes.cpp file should now look like the code in
the following listing.

...

int main() {
 int start = 3, end = 1000000;
 printf("Prime numbers between %d and %d:\n", start, end);

 std::chrono::high_resolution_clock::time_point duration_start =
 std::chrono::high_resolution_clock::now();

 std::vector<int> primes_found;
 FindPrimes(start, end, primes_found);

 std::chrono::high_resolution_clock::time_point duration_end =
 std::chrono::high_resolution_clock::now();

 std::chrono::duration<double, std::milli> duration =
 (duration_end - duration_start);

TheListing 9.1 main function in calculate_primes.cpp

A vector reference
parameter has been added.

The prime number is
added to the list.

Gets the current time to
mark the start of the
FindPrimes execution

Creates a vector object
that will hold integers,

and passes it to the
FindPrimes function

Gets the current time to
mark the end of the
FindPrimes execution

Determines the amount of
time, in milliseconds, that it
took FindPrimes to execute

202 CHAPTER 9 Threading: Web workers and pthreads

 printf("FindPrimes took %f milliseconds to execute\n", duration.count());

 printf("The values found:\n");
 for(int n : primes_found) {
 printf("%d ", n);
 }
 printf("\n");

 return 0;
}

Now that the calculate_primes.cpp file has been modified, the second step (figure
9.6) is where you’ll have Emscripten generate the WebAssembly files.

Loops through each value in
the vector object and outputs
the value to the console

Emscriptencalculate_primes.cpp

2. Emscripten generates the
 WebAssembly files from
 calculate_primes.cpp.

Wasm
file

JavaScript
file

Use Emscripten to generate the WebAssembly files from calculate_primes.cpp.Figure 9.6

9.3.2 Using Emscripten to generate the WebAssembly files
Because the C++ code in calculate_primes.cpp is now using chrono, which was intro-
duced as one of the features in the ISO C++ 2011 standard, you’ll need to tell Clang,
Emscripten’s frontend compiler, to use that standard by specifying the -std=c++11 flag.

INFO Emscripten uses Clang as the frontend compiler that takes your C++
code and compiles it to LLVM IR. By default, Clang uses the C++98 standard,
but other standards can be enabled using the -std flag. Clang supports the
C++98/C++03, C++11, C++14, and C++17 standards. If you’re interested, the
following web page gives more details on the C++ standards Clang supports:
https://clang.llvm.org/cxx_status.html.

Also, because you’ll be initializing Emscripten’s Module object after the web page has
loaded, you’ll specify the -s MODULARIZE=1 flag as well. This flag will tell Emscripten
to wrap the generated JavaScript file’s Module object in a function. Being wrapped in a
function prevents the Module object from being initialized until you create an instance
of it, allowing you to control when initialization happens.

To compile calculate_primes.cpp into a WebAssembly module, open a command
prompt, navigate to the Chapter 9\9.3 pre-fetch\source\ folder, and then run the fol-
lowing command:

emcc calculate_primes.cpp -O1 -std=c++11 -s MODULARIZE=1

➥ -o calculate_primes.js

https://clang.llvm.org/cxx_status.html

203Prefetching a WebAssembly module using a web worker
Copying files to the correct location9.3.3

Now that you’ve created your WebAssembly files, your next steps are to copy those files
to a location where your website can use them (figure 9.7). You’ll then create the
HTML and JavaScript files for the web page that will create a web worker. When the
web page receives the compiled WebAssembly module from the worker, it will have
Emscripten’s JavaScript use the compiled module rather than download it itself.

In your Chapter 9\9.3 pre-fetch\ folder, create a frontend\ folder and then copy the
following into your new folder:

 The calculate_primes.wasm and calculate_primes.js files from your source\
folder.

 The main.html file from your Chapter 7\7.2.4 ManualLinking\frontend\ folder;
rename the file to prefetch.html.

9.3.4 Creating the HTML file for the web page

In your Chapter 9\9.3 pre-fetch\frontend\ folder, open the prefetch.html file in your
editor. Add a new script tag before the current script tag, and give its src attribute
a value of prefetch.js for the JavaScript file of this web page, which you’ll create in a
moment.

 You’ll also need to modify the other script tag’s src value to be calculate_
primes.js to load in the Emscripten-generated JavaScript file. Your prefetch.html
file’s code should now match the code in the following listing.

3. WebAssembly files are copied
 to the server for use by
 the browser.

Browser

UI thread
prefetch.html
(prefetch.js)

Web worker
(prefetch.worker.js)

4. Create the HTML and JavaScript
 for the web page that will create
 a web worker, and have Emscripten’s
 JavaScript use the compiled module
 received from the worker.

Wasm
file

JavaScript
file

Figure 9.7 Copy the WebAssembly files to the server for use by the browser. Then create
the HTML and JavaScript for the web page. The JavaScript will create a web worker and
will then have Emscripten’s JavaScript use the compiled module received from the worker.

204 CHAPTER 9 Threading: Web workers and pthreads
<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8"/>
 </head>
 <body>
 HTML page I created for my WebAssembly module.

 <script src="prefetch.js"></script>
 <script src="calculate_primes.js"></script>
 </body>
</html>

Creating the JavaScript file for the web page9.3.5

Now that you’ve created the HTML, you need to create the JavaScript file for the web page.
In your Chapter 9\9.3 pre-fetch\frontend\ folder, create a prefetch.js file and open it with
your favorite editor.

 Your JavaScript will need to perform the following tasks:

1 Create a web worker and attach an onmessage event listener:
a When the worker calls the onmessage event listener, place the compiled

module that’s received into a global variable.
b Then create an instance of the Emscripten Module object and specify a call-

back function for Emscripten’s instantiateWasm function.
2 Define your callback function for Emscripten’s instantiateWasm function.

When called, your function will instantiate the compiled module that’s held by
your global variable and pass the instantiated WebAssembly module to
Emscripten’s code.

INFO The instantiateWasm function is called by Emscripten’s JavaScript
code to instantiate the WebAssembly module. By default, Emscripten’s Java-
Script will download and instantiate a WebAssembly module automatically for
you, but this function allows you to handle the process yourself.

The first thing that your JavaScript code will need is a couple of global variables:

 One variable will hold the compiled module that you’ll receive from the web
worker.

 The other variable will hold an instance of Emscripten’s JavaScript Module
object.

Add the variables in the following code snippet to your prefetch.js file:

let compiledModule = null;
let emscriptenModule = null;

You’ll now need to create a web worker and attach an onmessage event listener so that
you can receive messages from that worker.

The HTML in prefetch.htmlListing 9.2

Adds a new script
tag for prefetch.js

Changes the src value
to calculate_primes.js

205Prefetching a WebAssembly module using a web worker
CREATING A WEB WORKER AND ATTACH AN ONMESSAGE EVENT LISTENER

You can create a web worker by creating an instance of a Worker object. The Worker
object’s constructor expects a path to a JavaScript file that will be the worker’s code. In
this case, that file will be prefetch.worker.js.

 Once you have an instance of a Worker object, you can pass the worker messages by
calling the postMessage method of the instance. You can also receive messages by
attaching to the onmessage event of the instance.

 When you create your web worker, you’ll set up an onmessage event handler to lis-
ten for a message from the worker. When the event is called, your code will place the
compiled WebAssembly module that it receives in the global compiledModule variable.

INFO The onmessage event handler will receive a MessageEvent object that
has the data sent by the caller in the data property. The MessageEvent object
is derived from an Event object to represent a message received by a target
object. More information about the MessageEvent object can be found on
the MDN Web Docs page at http://mng.bz/pyPw.

Your onmessage event handler will then create an instance of Emscripten’s JavaScript
Module object and will specify a callback function for Emscripten’s instantiateWasm
function. You’ll be specifying this callback function in order to override the normal
Emscripten behavior and instantiate the WebAssembly module from the compiled
module that you have in the global variable.

 Add the code in the following snippet to your prefetch.js file:

const worker = new Worker("prefetch.worker.js");
worker.onmessage = function(e) {
 compiledModule = e.data;

 emscriptenModule = new Module({
 instantiateWasm: onInstantiateWasm
 });
}

Now you’ll need to implement the onInstantiateWasm callback function that you’ve
specified for Emscripten’s instantiateWasm function.

DEFINING YOUR CALLBACK FUNCTION FOR EMSCRIPTEN’S INSTANTIATEWASM FUNCTION

The instantiateWasm callback function accepts two parameters:

 imports

– This parameter is the importObject that you’ll need to pass to the instantiate
function of the WebAssembly JavaScript API.

 successCallback

– Once the WebAssembly module has been instantiated, you need to pass the
instantiated module back to Emscripten using this function.

Creates a web worker
Adds an event listener for
messages from the worker

Specifies a callback function
for instantiateWasm

Places the compiled module
into the global variable

Creates a new instance of
Emscripten’s Module object

http://mng.bz/pyPw

206 CHAPTER 9 Threading: Web workers and pthreads
The return value of the instantiateWasm function depends on whether you instanti-
ate the WebAssembly module asynchronously or synchronously:

 If you choose to use an asynchronous function, as you will in this case, the
return value needs to be an empty JavaScript object ({}).

 Synchronous WebAssembly JavaScript API calls aren’t recommended if your
code is running in the browser’s main thread and may even be blocked by some
browsers. If a synchronous function is used, then the return value needs to be
the module instance’s exports object.

You won’t be able to use the WebAssembly.instantiateStreaming function to instan-
tiate the WebAssembly module in this case because the instantiateStreaming func-
tion doesn’t accept a compiled module. Instead, you’ll need to use the overloaded
WebAssembly.instantiate function:

 The main overloaded WebAssembly.instantiate function accepts the Web-
Assembly binary’s bytecode, in the form of an ArrayBuffer, and then compiles
and instantiates the module. When the promise resolves, you’re given an object
that has both a WebAssembly.Module (the compiled module) and a WebAssembly
.Instance object.

 The other overloaded WebAssembly.instantiate function is the one that
you’ll be using here. The overloaded function accepts a WebAssembly.Module
object and instantiates it. When the promise resolves in this case, you’re given
only the WebAssembly.Instance object.

Add the code in the following snippet after your onmessage event handler in the
prefetch.js file:

function onInstantiateWasm(importObject, successCallback) {
 WebAssembly.instantiate(compiledModule,

importObject).then(instance =>
 successCallback(instance)
);

 return {};
}

Now that you’ve created the web page’s main JavaScript, your final step is to create the
web worker’s JavaScript (figure 9.8). The JavaScript will fetch and compile the WebAs-
sembly module and will then pass the compiled module to the UI thread.

Callback for
Emscripten’s
instantiateWasm
function

Instantiates the
compiled module

Passes the instantiated
module to Emscripten’s
callback function

Because this was handled
asynchronously, returns an

empty JavaScript object

207Prefetching a WebAssembly module using a web worker

9.3.6 Creating the web worker’s JavaScript file

In your Chapter 9\9.3 pre-fetch\frontend\ folder, create a prefetch.worker.js file and
open it with your favorite editor.

TIP The name of the JavaScript file doesn’t matter, but this naming conven-
tion ([file name of the JavaScript that will create the worker].worker.js)
makes it easier to distinguish between normal JavaScript files and those that
are used in web workers when you’re browsing your file system. It also makes
it easier to determine the relationship between the files, which will help if you
need to debug or maintain the code.

The first thing your web worker’s code will do is fetch and compile the calcu-
late_primes.wasm WebAssembly module. To compile the module, you’ll use the Web-
Assembly.compileStreaming function. Once compiled, your code will pass the
module to the UI thread by calling postMessage on its global object, self.

INFO In a web browser’s UI thread, the global object is the window object. In
a web worker, the global object is self.

Add the code in the following snippet to your prefetch.worker.js file:

WebAssembly.compileStreaming(fetch("calculate_primes.wasm"))
.then(module => {
 self.postMessage(module);
});

Now that everything has been created, you can view the results.

9.3.7 Viewing the results

You can open your browser and type http://localhost:8080/prefetch.html into
the address box to see the generated web page. If you press the F12 key to display the
browser’s developer tools (figure 9.9), the console window should show you the list of
prime numbers that were found. You should also see the duration of how long the cal-
culations took to execute.

Browser

UI thread
prefetch.html
(prefetch.js)

Web worker
(prefetch.worker.js)

5. Create the JavaScript for the web
 worker that will download and
 compile the WebAssembly module.

Figure 9.8 The final step is to create the JavaScript file for the web worker that will
download and compile the WebAssembly module. Once compiled, the WebAssembly
module will be passed to the UI thread.

Downloads and
compiles the
WebAssembly
module

Passes the compiled
module to the main thread

208 CHAPTER 9 Threading: Web workers and pthreads
Suppose you want to speed up the execution time needed to determine the prime
numbers between 3 and 1,000,000. To do this, you decide that it will help to create sev-
eral pthreads that will each process a smaller block of numbers in parallel.

9.4 Using pthreads
WebAssembly supports pthreads by using web workers and a SharedArrayBuffer.

REMINDER A thread is a path of execution within a process, and a process
can have multiple threads. A pthread, also known as a POSIX thread, is an API
defined by the POSIX.1c standard for an execution module that’s indepen-
dent of programming language (see https://en.wikipedia.org/wiki/POSIX_
Threads).

A SharedArrayBuffer is similar to an ArrayBuffer, which is usually used for a Web-
Assembly module’s memory. The difference is that a SharedArrayBuffer allows the
module’s memory to be shared between the main module and each of its web work-
ers. It also allows for atomic operations for memory synchronization.

 Because the memory is shared between a module and its web workers, each area
can read and write to that same data in memory. Atomic memory access operations
ensure the following:

The total duration
of the calculations

The prime numbers that
were found between
3 and 1,000,000

Figure 9.9 The prime numbers found by the WebAssembly module with the total duration for
the calculations indicated

https://en.wikipedia.org/wiki/POSIX_Threads
https://en.wikipedia.org/wiki/POSIX_Threads
https://en.wikipedia.org/wiki/POSIX_Threads

209Using pthreads
 Predictable values are written and read.
 The current operation is finished before the next one starts.
 Operations aren’t interrupted.

For more information about WebAssembly’s threads proposal, including detailed informa-
tion about the various atomic memory access instructions available, you can visit this
GitHub page: http://mng.bz/O9xa.

WARNING The WebAssembly threading proposal for pthreads was put on hold
in January 2018 because browser makers disabled support for the Shared-
ArrayBuffer in order to prevent Spectre/Meltdown vulnerabilities from being
exploited. Browser makers are working on solutions to prevent the Shared-
ArrayBuffer from being exploited, but, for the moment, pthreads are available
only in the desktop version of the Chrome browser or if you turn on a flag in
the Firefox browser. You’ll learn how to do the latter in section 9.4.3.

For more information about Emscripten’s support of pthreads, you can visit https://
emscripten.org/docs/porting/pthreads.html.

 The steps to the solution for this scenario (figure 9.10) are as follows:

1 Revise the calculate_primes logic from section 9.3 to create four pthreads. Each
pthread will be given a block of numbers to process, looking for prime num-
bers.

2 Use Emscripten to generate the WebAssembly files with pthread support
enabled. In this case, you’ll use Emscripten’s HTML template to view the
results.

Your first step is to modify the calculate_primes logic to create four pthreads and
instruct each thread to look for prime numbers within a specific block of numbers.

Emscriptencalculate_primes.cpp Wasm
file

HTML
file

JavaScript
file

1. Adjust the logic to create four
 pthreads to look for prime
 numbers in a given range.

2. Emscripten generates the
 WebAssembly files and also
 generates the HTML file.

Figure 9.10 The steps for this scenario modify the calculate_primes.cpp logic to create four
pthreads, each of which will look for prime numbers in a given range. Then Emscripten will be used
to generate the WebAssembly files along with the HTML template.

http://mng.bz/O9xa
https://emscripten.org/docs/porting/pthreads.html
https://emscripten.org/docs/porting/pthreads.html
https://emscripten.org/docs/porting/pthreads.html

210 CHAPTER 9 Threading: Web workers and pthreads
Adjusting the calculate_primes logic9.4.1
to create and use four pthreads

In your Chapter9 \ folder, create a 9.4 pthreads\source\ folder. Copy the calculate_
primes.cpp file from your 9.3 pre-fetch\source\ folder to your newly created source\
folder, and open the file in your favorite editor.

 Because you’ll be using pthreads, you’ll need to add the pthread.h header file to
the calculate_primes.cpp file, as shown in this snippet:

#include <pthread.h>

The first function that you’ll need to modify is the FindPrimes function.

MODIFYING THE FINDPRIMES FUNCTION

The FindPrimes function needs a line of code to check and see if the start value spec-
ified is an odd number or not. If the number is even, you’ll increment the value so
that the loop starts with an odd number.

 In the calculate_primes.cpp file, your FindPrimes function should look like the
following snippet:

void FindPrimes(int start, int end,
 std::vector<int>& primes_found) {
 if (start % 2 == 0) { start++; }

 for (int i = start; i <= end; i += 2) {
 if (IsPrime(i)) {
 primes_found.push_back(i);
 }
 }
}

Your next step is to create a function to serve as a start routine for your pthreads.

CREATING THE PTHREAD START ROUTINE

In a moment, you’ll create a function that will be used as the start routine for each
pthread. The function will in turn call the FindPrimes function, but it will need to
know what the start and end values are. It will also need to receive a vector object to
pass to FindPrimes for the prime numbers that are found.

 A pthread’s start routine accepts only one parameter, so you’ll define an object you
can pass in that holds all the values that are needed. Add the following code after the
FindPrimes function in the calculate_primes.cpp file:

struct thread_args {
 int start;
 int end;
 std::vector<int> primes_found;
};

Now you’ll create the start routine for your pthreads. The start routine needs to
return a void* and accepts a single void* parameter for the arguments that are

If the value is even,
increment it so that it’s odd.

211Using pthreads
passed in. When you create the pthreads, you’ll pass in a thread_args object contain-
ing the values that need to be passed along to the FindPrimes function.

 Add the code in the next snippet after the thread_args struct in your calculate_
primes.cpp file:

void* thread_func(void* arg) {
 struct thread_args* args = (struct thread_args*)arg;

 FindPrimes(args->start, args->end, args->primes_found);

 return arg;
}

The last area that you’ll need to modify is the main function.

MODIFYING THE MAIN FUNCTION

You’ll now modify the main function to create four pthreads and tell each one which
range of 200,000 numbers you want it to search through. To create a pthread, you call
the pthread_create function, passing in the following parameters:

 A reference to a pthread_t variable that will hold the thread’s ID if the thread
is created successfully.

 The attributes for the thread being created. In this case, you’ll pass NULL to use
the default attributes.

 The start routine for the thread.
 The value to pass to the start routine’s parameter.

INFO The attributes object is created by calling the pthread_attr_init func-
tion, which will return a pthread_attr_t variable holding default attributes.
Once you have the object, the attributes can be adjusted by calling various
pthread_attr functions. When you’re finished with the attributes object, you
need to call the pthread_attr_destroy function. The following web page has
more information about the pthread attributes object: https://linux.die.net/
man/3/pthread_attr_init.

Once you’ve created the pthreads, you’ll have the main thread also call the Find-
Primes function to check for the prime numbers between 3 and 199,999.

 When the FindPrimes call completes on the main thread, you’ll want to make
sure that each pthread has finished its computations before moving on to print out
the values found. To have the main thread wait for each pthread to complete, you
call the pthread_join function, passing in the thread ID of the thread you want to
wait for as the first parameter. The second parameter can be used to get the exit sta-
tus of the joined thread, but you don’t need that in this case, so you’ll pass in NULL.
Both the pthread_create and pthread_join functions will return 0 (zero) if the call
is successful.

The start routine that
will be called when you
create the pthreads

Casts the arg value to
a thread_args pointer

Calls the FindPrimes function, passing in
the values received in the args pointer

https://linux.die.net/man/3/pthread_attr_init
https://linux.die.net/man/3/pthread_attr_init
https://linux.die.net/man/3/pthread_attr_init

212 CHAPTER 9 Threading: Web workers and pthreads

T
each

Use
defa

I
the
the

Loops
the ar
 In your calculate_primes.cpp file, modify your main function so that it matches the
code in the next listing.

...

int main() {
 int start = 3, end = 1000000;
 printf("Prime numbers between %d and %d:\n", start, end);

 std::chrono::high_resolution_clock::time_point duration_start =
std::chrono::high_resolution_clock::now();

 pthread_t thread_ids[4];
 struct thread_args args[5];

 int args_index = 1;
 int args_start = 200000;

 for (int i = 0; i < 4; i++) {
 args[args_index].start = args_start;
 args[args_index].end = (args_start + 199999);

 if (pthread_create(&thread_ids[i],
NULL,

 thread_func,
 &args[args_index])) {
 perror("Thread create failed");

return 1;
 }

 args_index += 1;
 args_start += 200000;
 }

 FindPrimes(3, 199999, args[0].primes_found);

 for (int j = 0; j < 4; j++) {
 pthread_join(thread_ids[j], NULL);
 }

 std::chrono::high_resolution_clock::time_point duration_end =
std::chrono::high_resolution_clock::now();

 std::chrono::duration<double, std::milli> duration =
(duration_end - duration_start);

 printf("FindPrimes took %f milliseconds to execute\n", duration.count());

 printf("The values found:\n");
 for (int k = 0; k < 5; k++) {
 for(int n : args[k].primes_found) {

printf("%d ", n);
 }
 }
 printf("\n");

 return 0;
}

TheListing 9.3 main function in calculate_primes.cpp

he ID of
 thread
created

The arguments for each thread, including the
main thread that will do processing

Skips zero so that the main
thread can put its prime
numbers in the first args index

The first background thread will
start computations at 200,000.

Sets the start and end range for
the current thread’s computations

Creates the pthread. If successful,
the thread ID will be placed at this
array index.

Arguments for the
current thread

Uses the main thread to also
find prime numbers, and places
them in the first index of args

Indicates that the main thread is to
wait until all pthreads are finished

s the thread’s
ult attributes

The start
routine for
the thread

ncrements
 values for
 next loop

 through
gs array

Loops through the list of
prime numbers in the
current args array item

213Using pthreads
Now that the calculate_primes.cpp file has been modified, the next step is shown in fig-
ure 9.11, where you’ll have Emscripten generate the WebAssembly files and HTML file.

9.4.2 Using Emscripten to generate the WebAssembly files
To enable pthreads in your WebAssembly module, you’ll specify the -s USE_

PTHREADS=1 flag at the command line when you compile the module. You’ll also need
to indicate how many threads you plan to use at once by using the following flag: -s
PTHREAD_POOL_SIZE=4.

WARNING When you specify a value greater than 0 (zero) for the
PTHREAD_POOL_SIZE flag, all the web workers for the thread pool will be cre-
ated when your module is instantiated rather than when your code calls
pthread_create. If you request more threads than you actually need, you’ll
waste processing time at startup as well as some of the browser’s memory for
threads that aren’t doing anything. It’s also recommended that you test your
WebAssembly module in all browsers that you intend to support. Firefox has
indicated that it supports up to 512 concurrent web worker instances, but this
number may vary by browser.

If you don’t specify a PTHREAD_POOL_SIZE flag, it’s the same as specifying the flag with
a value of 0 (zero). This approach can be used in order to have the web workers cre-
ated when pthread_create is called rather than during the module’s instantiation.
With this technique, however, thread execution won’t start immediately. Instead, the
thread must yield execution back to the browser first. One approach for this function
would be as follows:

 Define two functions in your module—one that calls pthread_create and
another that calls pthread_join.

 Your JavaScript first needs to call the function to trigger the pthread_create
code.

 Your JavaScript then calls the pthread_join function to get the results.

To compile the module, open a command prompt, navigate to the Chapter 9\9.4
pthreads\source\ folder, and run the following command:

Emscriptencalculate_primes.cpp

2. Emscripten generates the
 WebAssembly files and also
 generates the HTML file.

Wasm
file

HTML
file

JavaScript
file

Figure 9.11 The next step is to use Emscripten to generate the WebAssembly files and HTML file
from calculate_primes.cpp.

214 CHAPTER 9 Threading: Web workers and pthreads
emcc calculate_primes.cpp -O1 -std=c++11 -s USE_PTHREADS=1

➥ -s PTHREAD_POOL_SIZE=4 -o pthreads.html

Something that you might have noticed (also depicted in figure 9.12) is that there’s a
file generated with a .mem extension. This file needs to be distributed with the rest of
the generated files.

INFO The .mem file contains the data segments for the module’s Data
known section that will be loaded into the module’s linear memory when
instantiated. Having the data segments in their own file allows a WebAssembly
module to be instantiated multiple times but to only load that data into mem-
ory once. The way pthreads are set up, each thread has its own instance of the
module to communicate with, but all modules share the same memory.

Once the WebAssembly files have been generated, you can view the results.

9.4.3 Viewing the results

At the time of this book’s writing, WebAssembly threading support is available only in
the desktop version of Chrome or if you turn on a flag in Firefox. Before you can view
the pthreads.html file that was generated in the Firefox browser, you’ll need to enable
the flag.

This generated file holds the data segments for the module’s
Data known section. The contents of this file will be loaded
into the module’s linear memory during instantiation.

Figure 9.12 The calculate_primes.cpp source file and the Emscripten-
generated files. In this case, Emscripten has placed the data segments for
the module’s Data known section in their own file.

215Using pthreads

Open your Firefox browser, and type about:config into the address box. You should
see a screen similar to that in figure 9.13. Click the “I accept the risk!” button to enter
the configuration view.

Click this button.

Figure 9.13 Firefox’s configuration warning screen. Click the “I accept the risk!” button to
enter the configuration view.

You should now see a page with a long list of items. Just above the list is a search box.
Type javascript.options.shared_memory into the search box, and the list should
now look like figure 9.14. You can either double-click the list item, or right-click the list
item and select Toggle from the context menu, to change the flag to true.

WARNING This option is currently disabled in Firefox due to security con-
cerns. Once you’ve finished testing, you should turn this flag back to false.

NOTE There have been some reports of Python’s SimpleHTTPServer not
indicating the proper Media Type for JavaScript files used by web workers. It
should use application/javascript but, for some people, it uses
text/plain instead. If you encounter errors in Chrome, try viewing your web
page in Firefox.

To view the results, you can open your browser and type http://localhost:

8080/pthreads.html into the address box to see the generated web page. As figure
9.15 shows, if you press the F12 key to display the browser’s developer tools, the con-
sole window should show you how much time the computations took to execute and
the list of prime numbers that were found.

216 CHAPTER 9 Threading: Web workers and pthreads
In section 9.3.7, the duration for the single threaded WebAssembly module to find the
prime numbers between 3 and 1,000,000 was about 101 milliseconds. Here, using four
pthreads and the main thread to do the calculations has almost tripled the execution
speed.

 How can you use what you learned in this chapter in the real world?

Real-world use cases
The ability to use web workers and pthreads opens the door to a number of possibili-
ties, ranging from prefetching WebAssembly modules to parallel processing. Some of
the options are as follows:

 Although not quite the same as pthreads in WebAssembly, web workers can be used
as a polyfill for parallel processing in browsers that don’t yet support pthreads.

 Web workers can be used to prefetch and compile WebAssembly modules in
anticipation of their need. This improves load time because less is downloaded
and instantiated when the web page first loads, making the web page more
responsive because it’s ready for the user’s interactions.

 The article “WebAssembly at eBay: A Real-World Use Case,” by Pranav Jha and
Senthil Padmanabhan, details how eBay used WebAssembly, in conjunction
with web workers and a JavaScript library, to improve its barcode scanner:
http://mng.bz/Ye1a.

1. Enter the search value
to filter the list.

2. Double-click the list item, or right-click
the list item and choose Toggle from the
context menu, to enable the flag.

Figure 9.14 Type javascript.options.shared_memory into the search box to filter the
list. Either double-click the list item, or right-click the list item and choose Toggle from the
context menu, to change the flag to true.

http://mng.bz/Ye1a

217Summary

The total duration
of the calculations

The prime numbers that
were found between
3 and 1,000,000

Figure 9.15 Emscripten included a message indicating how many web workers it was creating for
the pthreads. The total execution time to find the prime numbers between 3 and 1,000,000 was
38 milliseconds.

Exercises
You can find the solutions to the exercises in appendix D.

1 If you wanted to use a C++17 feature, what flag would you use when compiling
your WebAssembly module to tell Clang to use that standard?

2 Test adjusting the calculate_primes logic from section 9.4 to use three threads
rather than four to see how the calculation duration is impacted. Test using five
threads, and place the main thread’s calculation into a pthread to see if moving
all the calculations off the main thread impacts the calculation duration.

Summary
In this chapter, you learned the following:

 If too much processing happens on a browser’s main UI thread without yielding
periodically, the UI may become unresponsive. If a browser’s main UI thread is
unresponsive for long enough, the browser might prompt the user to see if they
want to terminate the script.

 Browsers have a means of creating background threads called web workers, and
communication with workers is performed by passing messages. Web workers
have no access to the DOM or other UI aspects of the browser.

218 CHAPTER 9 Threading: Web workers and pthreads
 Web workers can be used to prefetch assets that a web page might need in the
future, including WebAssembly modules.

 It’s possible to handle fetching and instantiating a WebAssembly module on
behalf of Emscripten’s JavaScript by implementing the instantiateWasm call-
back function.

 There is experimental support for WebAssembly pthreads (POSIX threads) in
Firefox, but you currently need to enable a flag to use them. The desktop ver-
sion of Chrome supports pthreads without a flag. You also need to compile the
WebAssembly module using the -s USE_PTHREADS and -s PTHREAD_POOL_SIZE
Emscripten command-line flags.

 WebAssembly pthreads use web workers for the threads, a SharedArrayBuffer as
shared memory between the threads, and atomic memory access instructions to
synchronize interactions with the memory.

 All web workers for the pthreads are created when the WebAssembly module is
instantiated if a PTHREAD_POOL_SIZE command-line flag value of 1 or greater is
specified when compiling the module. If a value of 0 is specified, the pthread is
created on demand, but execution won’t start immediately unless the thread
yields execution back to the browser first.

 It’s possible to tell Clang, Emscripten’s frontend compiler, to use a C++ stan-
dard other than the default C++98 standard by specifying the -std command-
line flag.

WebAssembly modules
in Node.js
In this chapter, you’ll learn how to use WebAssembly modules in Node.js. Node.js
has some differences compared with a browser—for example, having no GUI—but,
when working with WebAssembly modules, there are a lot of similarities between
the JavaScript needed in a browser and in Node.js. Even with these similarities,
however, it’s recommended that you test your WebAssembly module in Node.js to
verify that it works as expected on the versions that you want to support.

This chapter covers
 Loading a WebAssembly module using Emscripten’s

generated JavaScript code

 Using the WebAssembly JavaScript API to load a
WebAssembly module

 Working with WebAssembly modules that call into JavaScript
directly

 Working with WebAssembly modules that use function
pointers to call into JavaScript
219

220 CHAPTER 10 WebAssembly modules in Node.js
DEFINITION Node.js is a JavaScript runtime built on the V8 engine—the same
engine that powers the Chrome web browser. Node.js allows for JavaScript to
be used as server-side code. It also has a large number of open source pack-
ages available to help with many programming needs. For a book dedicated
to teaching you about Node.js, see Node.js in Action, Second Edition (Manning):
www.manning.com/books/node-js-in-action-second-edition.

This chapter aims to demonstrate that WebAssembly can be used outside the web
browser. The desire to use WebAssembly outside the browser has led to the creation of
the WebAssembly Standard Interface, or WASI, to ensure that there’s consistency in
how hosts implement their interfaces. The idea is that a WebAssembly module will
work on any host that supports WASI, which could include edge computing, server-
less, and IoT (Internet of Things) hosts, to name a few. For more information about
WASI, the following article has a good explanation: Simon Bisson, "Mozilla Extends
WebAssembly Beyond the Browser with WASI," The New Stack, http://mng.bz/E19R.

10.1 Revisiting what you know
Let’s briefly revisit what you know. In chapters 4 through 6, you learned about the
code-reuse advantages that WebAssembly brings by exploring a scenario in which a
company had an existing desktop point-of-sale application written in C++ that it wanted
to port to an online solution. Being able to reuse code in multiple environments
reduces the chances of bugs being introduced accidently when compared with having
to maintain two or more versions of the same code. Code reuse also leads to consis-
tency, where the logic behaves exactly the same across all systems. In addition, because
there’s only one code source for the logic, fewer developers need to maintain it, free-
ing them up to work on other aspects of systems, which brings higher productivity.

 As figure 10.1 shows, you learned how to adjust the C++ code so that it could be
compiled into a WebAssembly module using Emscripten’s compiler. This allowed you
to use the same code for both the desktop application and in a web browser. You then
learned how to interact with the WebAssembly module in a web browser, but the dis-
cussion about server-side code was left until now.

 In this chapter, you’ll learn how to load a WebAssembly module in Node.js. You’ll
also learn how the module can call into JavaScript directly or by using function
pointers.

10.2 Server-side validation
Suppose the company that created the online version of its point-of-sale application’s
Edit Product page now wants to pass the validated data to the server. Because it’s not
difficult to get around client-side (browser) validation, it’s critical that the server-side
code validate the data it receives from the website before it’s used, as figure 10.2
shows.

www.manning.com/books/node-js-in-action-second-edition
http://mng.bz/E19R

221Server-side validation
The web page’s server-side logic will use Node.js and, because Node.js supports Web-
Assembly, you won’t need to re-create the validation logic. In this chapter, you’ll use
the exact same WebAssembly modules that you created for use in the browser in the
previous chapters. This allows the company to use the same C++ code in three loca-
tions: the desktop application, a web browser, and Node.js.

Emscripten

Emscripten is asked to generate
the WebAssembly and JavaScript
files from validate.cpp.

Desktop application written in C++

Validation logic
(validate.cpp) validate.js validate.wasm

Files are copied to the server
for use by the browser
and server code.

Browser

Validation logic
(validate.wasm validate.js)

Server

Validation logic
(validate.wasm validate.js)

Figure 10.1 The steps for turning the existing C++ logic into a WebAssembly module for use by a
browser and the server-side code. I discuss the server aspect in this chapter.

Node.js

An error message is
returned to the browser

Data is received
from the browser

Process the data (save
to a database, for example)

Is valid?
No

Yes

How validation works in Node.jsFigure 10.2

222 CHAPTER 10 WebAssembly modules in Node.js
Working with Emscripten-built modules10.3
Similar to when working in a browser, in Node.js, you still use Emscripten to generate
the WebAssembly and Emscripten JavaScript files. Unlike when working in a browser,
however, you don’t create an HTML file. Instead, as step 4 of figure 10.3 illustrates,
you create a JavaScript file that loads the Emscripten-generated JavaScript file, which
will then handle loading and instantiating the module for you.

The way you let the Emscripten-generated JavaScript wire itself up is different in
Node.js compared to in a browser:

 In a browser, the Emscripten JavaScript code is wired up by including a reference
to the JavaScript file as a script tag in the HTML file.

 In Node.js, to load JavaScript files, you use the require function, passing in the
path to the file that you want to load.

Using the Emscripten-generated JavaScript file is convenient because the JavaScript
code has checks that detect whether it’s being used in a browser or in Node.js; it loads
and instantiates the module appropriately for the environment it’s being used in. All
you need to do is have the file load, and the code will do the rest.

 Let’s take a look at how you include Emscripten’s generated JavaScript file.

10.3.1 Loading a WebAssembly module

In this section, you’re going to learn how to load in Emscripten’s generated JavaScript
file so that it can then download and instantiate your WebAssembly module for you. In
your WebAssembly\ folder, create a Chapter 10\10.3.1 JsPlumbingPrimes\ backend\
folder for the files that you’ll use in this section. Copy the js_plumbing.wasm and
js_plumbing.js files from your Chapter 3\3.4 js_plumbing\ folder to your newly created
backend\ folder.

 In your backend\ folder, create a js_plumbing_nodejs.js file, and open it with your
favorite editor. In your js_plumbing_nodejs.js file, you’ll add a call to Node.js’s

Emscripten

1. C/C++ code
is written.

3. Copy files to
the website.

4. Create a JavaScript file
that loads the generated
JavaScript file.

2. Emscripten generates
WebAssembly and
JavaScript files.

JavaScript JavaScriptC/C++ Wasm

Figure 10.3 Emscripten is used to generate the WebAssembly and Emscripten JavaScript files. You
then create a JavaScript file that loads the Emscripten-generated JavaScript file, which will in turn
handle loading and instantiating the module for you.

223Working with Emscripten-built modules
require function, passing in the path to the Emscripten-generated JavaScript file
js_plumbing.js. When loaded by Node.js, the Emscripten JavaScript code will detect
that it’s being used in Node.js and will automatically load and instantiate the
js_plumbing.wasm WebAssembly module for you.

 Add the code from the following snippet to your js_plumbing_nodejs.js file:

require('./js_plumbing.js');

VIEWING THE RESULTS

To instruct Node.js to run JavaScript, you need to use the console window to run the
node command, followed by the JavaScript file that you want it to execute. To run the
js_plumbing_nodejs.js file that you just created, open a command prompt, navigate to
the Chapter 10\10.3.1 JsPlumbingPrimes\backend\ folder, and then run the following
command:

node js_plumbing_nodejs.js

As figure 10.4 shows, you can see that the module was loaded and run because the
console window displays the output from the module: “Prime numbers between 3 and
100,000,” followed by the prime numbers that were found within that range.

Now that you know how to load Emscripten’s generated JavaScript file in Node.js, let’s
look into how you call the functions in the WebAssembly module when using Node.js.

10.3.2 Calling functions in the WebAssembly module

In chapter 4, you went through a series of steps (figure 10.5) to extend a desktop
point-of-sale system to the web. Once the web page has verified that the data the user
entered is valid, the data is sent to the server-side code so that it can be saved to a data-
base or processed in some way. Before the server-side code does anything with the
data received, it needs to make sure the data is valid, because there are ways to get

Has the Emscripten plumbing code wire itself up

The output from
the module

The console output from the WebAssembly module in Node.jsFigure 10.4

224 CHAPTER 10 WebAssembly modules in Node.js
around browser validation. In this case, your server is Node.js, and you’ll use the same
WebAssembly module that you were using in the browser to handle validating the data
received.

 You’re now going to implement the final step of the process for extending the
desktop point-of-sale system to the web by implementing the server-side aspect of it.
You’ll copy the generated WebAssembly files to where your Node.js files are and then
create a JavaScript file to interact with the module.

IMPLEMENTING THE SERVER CODE FOR NODE.JS
In your WebAssembly\ folder, create a Chapter 10\10.3.2 JsPlumbing\backend\ folder
to hold the files that you’ll use in this section, and then complete the following:

 Copy the validate.js, validate.wasm, and editproduct.js files from your Chapter
4\4.1 js_plumbing\frontend\ folder to your newly created backend\ folder.

 Rename the editproduct.js file to nodejs_validate.js, and then open it with your
favorite editor.

Rather than receive data from the web page, you’ll simulate having received the data
by using the InitialData object, but you’ll rename the object to clientData. In your
nodejs_validate.js file, rename the InitialData object to clientData as follows:

const clientData = {
 name: "Women's Mid Rise Skinny Jeans",

Emscripten

Desktop application written in C++

Validation logic
(validate.cpp) validate.js validate.wasm

Files are copied to the server
for use by the browser
and server code.

Browser

Validation logic
(validate.wasm validate.js)

Server

Validation logic
(validate.wasm validate.js)

Figure 10.5 The final step of the process in reusing the C++ code is the server aspect, which is
Node.js, in this case. You’ll copy the generated WebAssembly files to where your Node.js files are and
then build the JavaScript code to interact with the module.

An object to simulate
having received data
from a browser

225Working with Emscripten-built modules

 categoryId: "100",
};

Overall, the JavaScript that Node.js needs is similar to what you had in the browser.
The main difference with the Node.js code is that there’s no UI, so there are no input
controls that need to be interacted with. Consequently, some of the helper functions
aren’t needed. Delete the following functions from the nodejs_validate.js file:

 initializePage

 getSelectedCategoryId

Because there’s no UI, there’s no element to display error messages received from the
module. Instead, you output the error messages to the console. Adjust the setError-
Message function to call console.log, as shown in the following snippet:

function setErrorMessage(error) { console.log(error); }

One difference between working with Emscripten’s generated JavaScript file in
Node.js compared to working in the browser is that, in the browser, your JavaScript
code has access to a global Module object, but many of the helper functions are also
in the global scope. In the browser, functions like _malloc, _free, and UTF8ToString
are in the global scope and can be called directly without prefixing them with
Module, like Module._malloc. In Node.js, however, the return object from the
require call is the Module object, and all the Emscripten helper methods are avail-
able only through this object.

TIP You can name the object that gets returned by the require function call
anything you want. Because you’re using the same JavaScript code here that
you had in the browser, it’s easier to use the name Module so that you don’t
have to modify as much of the JavaScript. If you do choose to use a different
name, you’ll need to modify the spots that do Module.ccall, for example, to
use your object name instead of Module.

In the nodejs_validate.js file, after the setErrorMessage function, add a call to the
require Node.js function to load Emscripten’s generated JavaScript file (validate.js).
Name the object received from the require function Module. Your line of code should
look like this:

const Module = require('./validate.js');

Node.js has no UI, so you’ll output any
error messages to the console instead.

Loads Emscripten’s generated
JavaScript and names the
return object Module

The instantiation of the WebAssembly module happens asynchronously, both in the
browser and in Node.js. To be notified when Emscripten’s JavaScript code is ready for
interaction, define an onRuntimeInitialized function.

In your nodejs_validate.js file, convert the onClickSave function to be a function
on the Module object’s onRuntimeInitialized property. Also, revise the code in the

226 CHAPTER 10 WebAssembly modules in Node.js
function to no longer try to pull the name and categoryId from the controls but rather
use the clientData object. Your onClickSave function in your nodejs_ validate.js file
should now look like the code in the following listing.

...

Module['onRuntimeInitialized'] = function() {
 let errorMessage = "";
 const errorMessagePointer = Module._malloc(256);

 if (!validateName(clientData.name, errorMessagePointer) ||
 !validateCategory(clientData.categoryId,
 errorMessagePointer)) {
 errorMessage = Module.UTF8ToString(errorMessagePointer);
 }

 Module._free(errorMessagePointer);

 setErrorMessage(errorMessage);
 if (errorMessage === "") {

 }
}
...

No other changes are needed in the nodejs_validate.js file.

VIEWING THE RESULTS

If you run the code right now, there are no validation issues reported because all the
data in your clientData object is valid. To test the validation logic, you can modify the
data in the clientData object by clearing the value from the name property (name:
""), saving the file, and running the code.

 To run your JavaScript file in Node.js, open a command prompt, navigate to your
Chapter 10\10.3.2 JsPlumbing\backend\ folder, and then run the following command:

node nodejs_validate.js

You should see the validation message shown in figure 10.6.

Listing 10.1 onClickSave adjusted to now be onRuntimeInitialized

Adjusts onClickSave to now
be onRuntimeInitialized

Validates the categoryId
in the clientData object

Validates the
name in the

clientData
object

There were no
issues. The data
can be saved.

The validation
error message

The product name validation error in Node.jsFigure 10.6

227Working with Emscripten-built modules
Now that you know how to load Emscripten’s generated JavaScript file in Node.js and
call functions in the WebAssembly module, let’s look into how the module can call
into the JavaScript file when running in Node.js.

10.3.3 Calling into the JavaScript

As you saw in the previous section, a function can call into the module and wait for a
response. While this approach works, there are times when a module might want to
call the JavaScript directly once it finishes doing some work—perhaps to obtain more
information or to provide an update.

 The WebAssembly module that you’ll be using in this section included a function
in Emscripten’s generated JavaScript file. The module will call that function if there
was an error passing a pointer to the error message. The function will read the error
message from the module’s memory and then pass the string to the setErrorMessage
function in your main JavaScript.

IMPLEMENTING THE SERVER CODE FOR NODE.JS
In your WebAssembly\ folder, create a Chapter 10\10.3.3 EmJsLibrary\backend\ folder
to hold the files that you’ll use in this section, and then complete the following:

 Copy the validate.js, validate.wasm, and editproduct.js files from your Chapter
5\5.1.1 EmJsLibrary\frontend\ folder to your newly created backend\ folder.

 Rename the editproduct.js file to nodejs_validate.js, and then open it with your
favorite editor.

In your nodejs_validate.js file, rename the InitialData object to clientData, as
shown in the following code snippet:

const clientData = {
 name: "Women's Mid Rise Skinny Jeans",
 categoryId: "100",
};

Delete the following functions from the nodejs_validate.js file:

 initializePage

 getSelectedCategoryId

As it turns out, this particular use case for including your own JavaScript in
Emscripten’s generated JavaScript file isn’t ideal when using Node.js. This is because
the require function that’s used to load a JavaScript file puts the code within that file
into its own scope, meaning the code in Emscripten’s generated JavaScript file can’t
access any of the functions in the scope of the parent (the code that loaded it). Java-
Script code loaded by the require function is expected to be self-contained and to
not call into the scope of the parent.

 If the module needs to call into the scope of the parent, a better approach is to use
a function pointer that the parent passes in, which you’ll see in an upcoming section.
But in this case, to get around the issue of the validate.js-generated code being unable

Renamed from
InitialData

228 CHAPTER 10 WebAssembly modules in Node.js
to access the setErrorMessage function that it needs to call, you’ll need to create the
setErrorMessage function on the global object rather than as a normal function.

MORE INFO In browsers, the top-level scope is the global scope (the window
object). In Node.js, however, the top-level scope isn’t the global scope but is
rather the module itself. By default, all variables and objects are local to the
module in Node.js. The global object represents the global scope in Node.js.

To make the setErrorMessage function accessible to the Emscripten-generated Java-
Script, you need to adjust the function to be part of the global object, as the following
code snippet shows. To output the error message to the console, replace the func-
tion’s contents with a call to console.log:

global.setErrorMessage = function(error) {
 console.log(error);
}

After the setErrorMessage function, add a call to the require Node.js function to
load Emscripten’s generated JavaScript file (validate.js). Your line of code should look
like this:

const Module = require('./validate.js');

In your nodejs_validate.js file, convert the onClickSave function to be a function on
the Module object’s onRuntimeInitialized property. Then, revise the code in the
function to no longer call the setErrorMessage function or try to pull the name and
categoryId from the controls. Finally, use the clientData object to pass the name and
categoryId to the validation functions.

 Your modified onRuntimeInitialized function should look like the following
snippet:

Module['onRuntimeInitialized'] = function() {
 if (validateName(clientData.name) &&

validateCategory(clientData.categoryId)){

 }
}

No other changes are needed for the nodejs_validate.js file.

VIEWING THE RESULTS

To test the validation logic, you can adjust the data in the clientData object by chang-
ing the name or categoryId property to a value that’s invalid. For example, you could
change the categoryId to hold a value that isn’t in the VALID_CATEGORY_IDS array
(categoryId: "1001") and save the file.

Creates the function
on the global objectOutputs the error

messages to the console

Loads Emscripten’s generated
JavaScript, and names the
return object Module

Adjusts onClickSave to now be
onRuntimeInitialized

Validates the
name in the
clientData object

Validates the categoryId in
the clientData object

There were no
issues. The data
can be saved.

229Working with Emscripten-built modules
 To run your JavaScript file in Node.js, open a command prompt, navigate to your
Chapter 10\10.3.3 EmJsLibrary\backend\ folder, and run the following command:

node nodejs_validate.js

You should see the validation message shown in figure 10.7.

Using the Emscripten JavaScript library with code that calls into an application’s main
JavaScript isn’t ideal if you plan on using Node.js, owing to scope issues with the
require function. If you add custom JavaScript to Emscripten’s generated JavaScript
file that will be used in Node.js, the best approach is for the code to be self-contained
and not call into the parent code.

 If a WebAssembly module needs to call into the application’s main JavaScript, and
you want to support Node.js, function pointers are the recommended approach, and
you’ll learn about them next.

10.3.4 Calling JavaScript function pointers

Being able to call into the JavaScript directly is useful, but your JavaScript needs to
provide the function during the module’s instantiation. Once a function has been
passed to the module, you can’t swap it out. This is fine in most cases, but there are
times when being able to pass a module the function to call on an as-needed basis is
useful.

IMPLEMENTING THE SERVER CODE FOR NODE.JS
In your WebAssembly\ folder, create a Chapter 10\10.3.4 EmFunctionPointers\back-
end\ folder to hold the files that you’ll use in this section, and then do the following:

 Copy the validate.js, validate.wasm, and editproduct.js files from your Chapter
6\6.1.2 EmFunctionPointers\frontend\ folder to your newly created backend\
folder.

 Rename the editproduct.js file to nodejs_validate.js, and then open it with your
favorite editor.

In your nodejs_validate.js file, rename the InitialData object to clientData, as the
following code snippet shows:

The validation
error message

The product category validation error in Node.jsFigure 10.7

230 CHAPTER 10 WebAssembly modules in Node.js
const clientData = {
 name: "Women's Mid Rise Skinny Jeans",
 categoryId: "100",
};

Delete the following functions from the nodejs_validate.js file:

 initializePage

 getSelectedCategoryId

Modify the setErrorMessage function to call console.log, as shown in the following
snippet:

function setErrorMessage(error) { console.log(error); }

After the setErrorMessage function, add a call to the require Node.js function to
load the validate.js file. Your line of code should look like the following snippet:

const Module = require('./validate.js');

In your nodejs_validate.js file, convert the onClickSave function to be a function on
the Module object’s onRuntimeInitialized property. Revise the code in the function
to no longer call the setErrorMessage function or to try and pull the name and cate-
goryId from the controls. Then, use the clientData object to pass the name and cat-
egoryId to the validation functions.

 Your modified onClickSave function should now look like the code in the follow-
ing listing.

...

Module['onRuntimeInitialized'] = function() {
 Promise.all([

validateName(clientData.name),
validateCategory(clientData.categoryId)

])
 .then(() => {

 })
 .catch((error) => {
 setErrorMessage(error);
 });
}

No other changes are needed in the nodejs_validate.js file.

Listing 10.2 onClickSave adjusted to now be onRuntimeInitialized

An object to simulate having
received data from a browser

Node.js has no UI, so you’ll output any
error messages to the console instead.

Loads Emscripten’s generated JavaScript
and names the return object Module

Adjusts onClickSave to
now be
onRuntimeInitialized

Validates the name in
the clientData object

Validates the categoryId
in the clientData object

There were no issues.
The data can be saved.

231Using the WebAssembly JavaScript API
VIEWING THE RESULTS

To test the validation logic, you can adjust the data in the clientData object by chang-
ing the name property to a value that exceeds the MAXIMUM_NAME_LENGTH value of 50
characters (name: "This is a very long product name to test the validation
logic.") and saving the file.

 To run your JavaScript file in Node.js, open a command prompt, navigate to
your Chapter 10\10.3.4 EmFunctionPointers\backend\ folder, and run the following
command:

node nodejs_validate.js

You should see the validation message shown in figure 10.8.

By this point in the chapter, you’ve learned how to work with WebAssembly modules in
Node.js when those modules were built with Emscripten’s generated JavaScript code.
In the rest of this chapter, you’ll learn how to use WebAssembly modules in Node.js
when the modules have been built without generating Emscripten’s JavaScript file.

10.4 Using the WebAssembly JavaScript API
When using the Emscripten compiler, production code typically includes the gener-
ated Emscripten JavaScript file. This file handles downloading the WebAssembly mod-
ule and interacting with the WebAssembly JavaScript API for you. It also contains a
number of helper functions to make interacting with the module easier.

 Not generating the JavaScript file is useful for learning because it gives you a
chance to download the .wasm file and work with the WebAssembly JavaScript API
directly. You create a JavaScript object holding the values and functions that the mod-
ule is expecting to import, and then you use the API to compile and instantiate the
module. Once it’s instantiated, you have access to the module’s exports, allowing you
to interact with the module.

 As WebAssembly’s use increases, it’s likely that many third-party modules will be
created to extend a browser’s abilities. Knowing how to work with modules that don’t
use the Emscripten JavaScript code will also be useful if you ever need to use a third-
party module that’s been built using a compiler other than Emscripten.

The validation
error message

Validation message about the product name’s length in Node.jsFigure 10.8

232 CHAPTER 10 WebAssembly modules in Node.js

 In chapters 3 through 6, you used Emscripten to generate only the .wasm file by
using the SIDE_MODULE flag. This created a module that didn’t include any standard C
library functions and didn’t generate Emscripten’s JavaScript file. Because the Java-
Script file wasn’t generated, it’s now up to you to create the JavaScript needed to load
and instantiate the module by using the WebAssembly JavaScript API, as step 4 of fig-
ure 10.9 shows.

Emscripten

1. C/C++ code
is written.

3. Copy the file to
the website.

4. Create a JavaScript file that
loads and instantiates the
WebAssembly file.

2. Emscripten generates only
the WebAssembly file.

JavaScriptC/C++ Wasm

Figure 10.9 Using Emscripten to generate only the WebAssembly file. You’ll then create the
JavaScript to load and instantiate the module using the WebAssembly JavaScript API.

10.4.1 Loading and instantiating a WebAssembly module

To load and run your side_module.wasm file from chapter 3 in Node.js, you’ll need to
load and instantiate the module using the WebAssembly JavaScript API.

IMPLEMENTING THE SERVER CODE FOR NODE.JS
The first thing that you need to do is create a folder for the files you’ll use in this sec-
tion. In your WebAssembly\ folder, create a Chapter 10\10.4.1 SideModuleIncrement\
backend\ folder, and then do the following:

 Copy the side_module.wasm file from your Chapter 3\3.5.1 side_module\ folder
to your newly created backend\ folder.

 Create a side_module_nodejs.js file in your backend\ folder, and then open it
with your favorite editor.

Because Node.js is already running on the server, you don’t need to fetch the .wasm
file because it’s sitting on the hard drive in the same folders as the JavaScript files.
Instead, you’ll use the File System module in Node.js to read in the WebAssembly
file’s bytes. Then, once you have the bytes, the process of calling WebAssembly

.instantiate and working with the module is the same as in a browser.
You include the File System module by using the require function, passing in

the string 'fs'. The require function returns an object that gives you access to vari-
ous File System functions, such as readFile and writeFile. In this chapter, you’ll
use only the readFile function, but if you’re interested in learning more about the
Node.js File System object and the functions that are available, you can visit
https://nodejs.org/api/fs.html.

https://nodejs.org/api/fs.html

233Using the WebAssembly JavaScript API
 You’re going to use File System’s readFile function to read in the contents of
the side_module.wasm file asynchronously. The readFile function accepts three
parameters. The first parameter is the path of the file to read. The second is optional
and allows you to specify options like the file’s encoding. You won’t use the second
parameter in this chapter. The third parameter is a callback function that will receive
either an error object—if there was an issue reading in the file’s contents—or, if the
read was successful, the file’s bytes.

MORE INFO If you’d like to read more about the File System module’s
readFile function and the optional second parameter, you can visit http://
mng.bz/rPjy.

Add the following code snippet to your side_module_nodejs.js file to load the File
System object ('fs') and then call the readFile function. If an error is passed to the
callback function, then throw the error. Otherwise, pass the bytes that were received
to the instantiateWebAssembly function that you’ll create next:

const fs = require('fs');
fs.readFile('side_module.wasm', function(error, bytes) {
 if (error) { throw error; }

 instantiateWebAssembly(bytes);
});

Create an instantiateWebAssembly function that accepts a parameter called bytes.
Within the function, create a JavaScript object called importObject with an env object
holding the __memory_base property of 0 (zero). You then need to call the WebAssembly
.instantiate function, passing in the bytes received as well as the importObject.
Finally, within the then method, call the exported _Increment function from the Web-
Assembly module, passing in a value of 2. Output the result to the console.

 The instantiateWebAssembly function in your side_module_nodejs.js file should
look like the code in the next listing.

function instantiateWebAssembly(bytes) {
 const importObject = {
 env: {
 __memory_base: 0,
 }
 };

 WebAssembly.instantiate(bytes, importObject).then(result => {
 const value = result.instance.exports._Increment(2);
 console.log(value.toString());
 });
}

TheListing 10.3 instantiateWebAssembly function

Loads the File
System object Reads in the file

asynchronously

If there was an error
reading the file, then just
rethrows the error

Passes the file’s bytes to the
instantiateWebAssembly function

Logs the result to
the console window

http://mng.bz/rPjy
http://mng.bz/rPjy
http://mng.bz/rPjy

234 CHAPTER 10 WebAssembly modules in Node.js
VIEWING THE RESULTS

To run your JavaScript file in Node.js, open a command prompt, navigate to your Chap-
ter 10\10.4.1 SideModuleIncrement\backend\ folder, and run the following command:

node side_module_nodejs.js

You should see the result of the _Increment function call, as shown in figure 10.10.

10.4.2 Calling functions in the WebAssembly module

The final step of the process, shown in figure 10.11, is to copy the WebAssembly file,
validate.wasm (generated in chapter 4, section 4.2.2) to a folder where you’ll host
your Node.js files. You’ll then create a JavaScript file that will bridge the gap between
interacting with the data received from the browser and interacting with the module.

The result from the
_Increment call

The console output from your call to the module’sFigure 10.10 _Increment function in Node.js

Emscripten

Desktop application written in C++

Validation logic
(validate.cpp) validate.wasm

File is copied to the server
for use by the browser
and server code.

Emscripten generates
only the WebAssembly
file from validate.cpp.

Browser

Validation logic
(validate.wasm)

Server

Validation logic
(validate.wasm)

Figure 10.11 The final step of the process is to copy the generated WebAssembly file to
where your Node.js files are and build the JavaScript code to interact with the module.

235Using the WebAssembly JavaScript API

IMPLEMENTING THE SERVER CODE FOR NODE.JS
In your WebAssembly\ folder, create a Chapter 10\10.4.2 SideModule\backend\ folder,
and then do the following:

 Copy the editproduct.js and validate.wasm files from your Chapter 4\4.2 side_
module\frontend\ folder to your newly created backend\ folder.

 Rename the editproduct.js file to nodejs_validate.js, and open it with your favor-
ite editor.

The JavaScript in the nodejs_validate.js file was written to work in a web browser, so
you’ll need to make a few modifications for it to work in Node.js.

 Your JavaScript uses the JavaScript TextEncoder object to copy strings to the mod-
ule’s memory. In Node.js, the TextEncoder object is part of the util package. The
first thing that you’ll need to do in your JavaScript file is add a require function for
the util package at the beginning of the file, as the following snippet shows:

const util = require('util');

Next, rename the initialData object to clientData:

const clientData = {
 name: "Women's Mid Rise Skinny Jeans",
 categoryId: "100",
};

In your nodejs_validate.js file, just before the initializePage function, add the fol-
lowing code to have the bytes from the validate.wasm file read in and passed to the
instantiateWebAssembly function:

const fs = require('fs');
fs.readFile('validate.wasm', function(error, bytes) {
 if (error) { throw error; }

 instantiateWebAssembly(bytes);
});

Loads the util package in
order to have access to
the TextEncoder object

Renamed from initialData

Reads in the
validate.wasm
file’s bytes

Passes the bytes
to this function

Your next steps are to make the following modifications to the initializePage function:

 Rename the function to instantiateWebAssembly, and give it a parameter
called bytes.

 Remove the line of code setting the name, as well as the category code that follows,
so that the first thing in the instantiateWebAssembly function is the module-

Memory line of code.
 Replace WebAssembly.instantiateStreaming with WebAssembly.instantiate,

and replace the fetch("validate.wasm") parameter with bytes.
 Last, within the then method of the WebAssembly.instantiate call, and follow-

ing the moduleExports line of code, add a call to the validateData function,
which you’ll create in a moment.

236 CHAPTER 10 WebAssembly modules in Node.js
The modified initializePage function in your nodejs_validate.js file should now
look like the code in the next listing.

...

function instantiateWebAssembly(bytes) {
 moduleMemory = new WebAssembly.Memory({initial: 256});

 const importObject = {
 env: {

__memory_base: 0,
memory: moduleMemory,

 }
 };

 WebAssembly.instantiate(bytes, importObject).then(result => {
 moduleExports = result.instance.exports;
 validateData();
 });
}
...

In your nodejs_validate.js file, delete the getSelectedCategoryId function. Then
replace the content of the setErrorMessage function with a console.log call for the
error parameter, as in the following snippet:

function setErrorMessage(error) { console.log(error); }

The next adjustment that you need to make to the nodejs_validate.js file is to rename
the onClickSave function to validateData so that it will be called once the module
has been instantiated. Within the validateData function, remove the two lines of
code above the if statement that get the name and categoryId. In the if statement,
prefix the name and categoryId variables with your clientData object.

 The validateData function in your nodejs_valdiate.js file should now look like the
code in the following listing.

...

function validateData() {
 let errorMessage = "";
 const errorMessagePointer = moduleExports._create_buffer(256);

 if (!validateName(clientData.name, errorMessagePointer) ||
!validateCategory(clientData.categoryId,
errorMessagePointer)) {

 errorMessage = getStringFromMemory(errorMessagePointer);
 }

Listing 10.4 initializePage renamed to instantiateWebAssembly

Listing 10.5 onClickSave renamed to validateData

Renamed from
initializePage, and
bytes added as
the parameter

Uses instantiate instead of
instantiateStreaming and bytes

passed in instead of the fetch call

Calls validateData once
the module has been
instantiated

Outputs any
error messages
to the console

Renamed from onClickSave

The clientData object’s name value
is passed to validateName.

The clientData object’s
categoryId is passed to

validateCategory.

237Using the WebAssembly JavaScript API
 moduleExports._free_buffer(errorMessagePointer);

 setErrorMessage(errorMessage);
 if (errorMessage === "") {

 }
}
...

The final area that you need to modify is the copyStringToMemory function. In a
browser, the TextEncoder object is global; but in Node.js, the object is found in the
util package. In your nodejs_validate.js file, you need to prefix the TextEncoder
object with the util object that you loaded earlier, as the following code snippet
shows:

function copyStringToMemory(value, memoryOffset) {
 const bytes = new Uint8Array(moduleMemory.buffer);
 bytes.set(new util.TextEncoder().encode((value + "\0")),
 memoryOffset);
}

No other changes are needed to the JavaScript in the nodejs_validate.js file.

VIEWING THE RESULTS

To test the logic, you can adjust the data by changing the value for the categoryId
property to a value that isn’t in the VALID_CATEGORY_IDS array (categoryId:
"1001"). To run your JavaScript file in Node.js, open a command prompt, navigate to
your Chapter 10\10.4.2 SideModule\backend\ folder, and run the following command:

node nodejs_validate.js

You should see the validation message shown in figure 10.12.
 In this section, you learned how to modify the JavaScript to load and instantiate a

WebAssembly module that your code calls into. In the next section, you’ll learn how to
work with a module that makes calls into your JavaScript.

There were no issues with the
validation. The data can be saved.

The TextEncoder
object is part of
the util package
in Node.js.

The validation
error message

The product category validation error in Node.jsFigure 10.12

238 CHAPTER 10 WebAssembly modules in Node.js
10.4.3 The WebAssembly module calling into JavaScript

As an example, a module calling into JavaScript directly would be useful if your mod-
ule needs to perform a long-running operation. Rather than the JavaScript making a
function call and waiting for the results, a module could periodically call into the
JavaScript to get more information or provide an update on its own.

 When not using Emscripten’s generated JavaScript, which you won’t be doing
here, things are a bit different because all the JavaScript code is in the same scope. As
a result, a module can call into the JavaScript and have access to the main code, as fig-
ure 10.13 shows.

IMPLEMENTING THE SERVER CODE FOR NODE.JS
In your WebAssembly\ folder, create a Chapter 10\10.4.3 SideModuleCallingJS\back-
end\ folder, and then do the following:

 Copy the editproduct.js and validate.wasm files from your Chapter 5\5.2.1 Side-
ModuleCallingJS\frontend\ folder to your newly created backend\ folder.

 Rename the editproduct.js file to nodejs_validate.js, and then open it with your
favorite editor.

You’re going to modify the nodejs_validate.js file to work in Node.js. The code uses
the TextEncoder JavaScript object in the copyStringToMemory function; in Node.js,
the TextEncoder object is part of the util package. You’ll need to include a reference
to the package so that your code can use the object. Add this code at the beginning of
your nodejs_validate.js file:

const util = require('util');

setErrorMessage

error

UpdateHostAboutError

Module

1. Your code calls the
ValidateName function.

2. If there’s an issue with the user’s
entry, an error message is passed
to a function you’ve defined in
your JavaScript.

Your JavaScript

validateName

errorPointer

ValidateName

3. The message is read from the module’s
memory and then displayed to the user.

Figure 10.13 How the callback logic will work when not using Emscripten’s
generated JavaScript code

Loads the util package so that you’ll
have access to the TextEncoder object

239Using the WebAssembly JavaScript API
Rename the initialData object to clientData. Then, in your nodejs_validate.js file,
before the initializePage function, add the code from the following snippet to
read in the bytes from the validate.wasm file and pass them to the instantiateWeb-
Assembly function:

const fs = require('fs');
fs.readFile('validate.wasm', function(error, bytes) {
 if (error) { throw error; }

 instantiateWebAssembly(bytes);
});

Next, you need to modify the initializePage function by doing the following:

 Rename the function to instantiateWebAssembly, and add a bytes parameter.
 Remove the lines of code that appear before the moduleMemory line of code.
 Change WebAssembly.instantiateStreaming to WebAssembly.instantiate,

and replace the fetch("validate.wasm") parameter value with bytes.
 Add a call to the validateData function after the moduleExports line of code

in the then method of the WebAssembly.instantiate call.

The modified initializePage function in your nodejs_validate.js file should now
look like the code in the next listing.

...

function instantiateWebAssembly(bytes) {
 moduleMemory = new WebAssembly.Memory({initial: 256});

 const importObject = {
 env: {
 __memory_base: 0,
 memory: moduleMemory,
 _UpdateHostAboutError: function(errorMessagePointer) {
 setErrorMessage(getStringFromMemory(errorMessagePointer));
 },
 }
 };

 WebAssembly.instantiate(bytes, importObject).then(result => {
 moduleExports = result.instance.exports;
 validateData();
 });
}
...

In your nodejs_validate.js file, delete the getSelectedCategoryId function. Then,
replace the contents of the setErrorMessage function with a console.log call for the
error parameter, as shown in the following snippet:

function setErrorMessage(error) { console.log(error); }

Listing 10.6 initializePage renamed to instantiateWebAssembly

Reads in the
validate.wasm
file’s bytes

Passes the bytes
to this function

Renamed from initializePage, and
bytes added as the parameter

Uses instantiate instead of
instantiateStreaming and bytes

passed in instead of the fetch call

Calls validateData once
the module has been
instantiated

Outputs any
error messages
to the console

240 CHAPTER 10 WebAssembly modules in Node.js

R
o

Revise the onClickSave function by completing the following steps:

 Rename the function to validateData.
 Remove the setErrorMessage(), const name, and const categoryId lines of

code.
 Add the clientData object prefix to the name and categoryId values in the if

statements.

The modified onClickSave function in your nodejs_validate.js file should now look
like this:

function validateData() {
 if (validateName(clientData.name) &&
 validateCategory(clientData.categoryId)) {

 }
}

The last item that you need to adjust is the copyStringToMemory function. You need
to prefix the TextEncoder object with the util object that you loaded earlier.

 Your copyStringToMemory function in your nodejs_validate.js file should look like
the code in the following snippet:

function copyStringToMemory(value, memoryOffset) {
 const bytes = new Uint8Array(moduleMemory.buffer);
 bytes.set(new util.TextEncoder().encode((value + "\0")),

memoryOffset);
}

No other changes are needed in the nodejs_validate.js file.

VIEWING THE RESULTS

To test the validation logic, you can adjust the data in clientData by changing the
name property to a value that exceeds the MAXIMUM_NAME_LENGTH value of 50 charac-
ters (name: "This is a very long product name to test the validation logic.").

 Open a command prompt, navigate to your Chapter 10\10.4.3 SideModule-
CallingJS\backend\ folder, and run the following command:

node nodejs_validate.js

You should see the validation message shown in figure 10.14.
 In this section, you learned how to load and work with a WebAssembly module that

calls into your JavaScript code directly. In the next section, you’ll learn how to work
with a module that calls JavaScript function pointers.

enamed from
nClickSave

The clientData object’s name
value is passed to validateName.

The clientData object’s
categoryId is passed to
validateCategory.There were no issues with the

validation. The data can be saved.

The TextEncoder
object is part of
the util package
in Node.js.

241Using the WebAssembly JavaScript API
10.4.4 The WebAssembly module calling JavaScript function pointers

Being able to pass a module a JavaScript function pointer adds flexibility to your code
compared to calling into JavaScript directly, because you’re not dependent on a single
specific function. Instead, the module can be passed a function as needed, as long as
the function signature matches what’s expected.

 Also, depending on how the JavaScript is set up, calling a function may require
multiple function calls to reach your JavaScript. With a function pointer, the module
is calling your function directly.

 WebAssembly modules can use function pointers that point to functions that
are within the module, or the functions can be imported. In this case, you’ll be using
the WebAssembly module that you built in section 6.2 of chapter 6, which is expecting
the OnSuccess and OnError functions to be specified, as figure 10.15 shows. When the
module calls either function, it’s calling into the JavaScript code.

The validation
error message

Validation message about the product name’s length from Node.jsFigure 10.14

onError

onSuccess

ModuleYour JavaScript

onError

onSuccess

validateName ValidateName

2. The appropriate callback function
 is called depending on whether
 there was an issue with the
 user’s entry.

1. Your code calls the
 ValidateName function.

Figure 10.15 A module that has imported the onSuccess and onError JavaScript
functions at instantiation. When the ValidateName module function calls either
function, it’s calling into the JavaScript code.

242 CHAPTER 10 WebAssembly modules in Node.js
IMPLEMENTING THE SERVER CODE FOR NODE.JS
You’re now going to modify the JavaScript code that you wrote for use in the browser
in chapter 6 so that it can work in Node.js. In your WebAssembly\ folder, create a
Chapter 10 \10.4.4 SideModuleFunctionPointers\backend\ folder, and then do the
following:

 Copy the editproduct.js and validate.wasm files from your Chapter 6\6.2.2 Side-
ModuleFunctionPointers\frontend\ folder to your newly created backend\
folder.

 Rename the editproduct.js file to nodejs_validate.js, and then open it with your
favorite editor.

Your JavaScript code uses the TextEncoder JavaScript object. Because the object is
part of the util package in Node.js, the first thing that you’ll need to do is include a
reference to the package. Add the code in the following snippet at the beginning of
your nodejs_validate.js file:

const util = require('util');

Rename the initialData object to clientData.
 In your nodejs_validate.js file, before the initializePage function, add the fol-

lowing code to read in the bytes from the validate.wasm file and pass them to the
instantiateWebAssembly function:

const fs = require('fs');
fs.readFile('validate.wasm', function(error, bytes) {
 if (error) { throw error; }

 instantiateWebAssembly(bytes);
});

Modify the initializePage function by doing the following:

 Rename the function to instantiateWebAssembly, and add a bytes parameter.
 Remove the lines of code that appear before the moduleMemory line of code.
 Change WebAssembly.instantiateStreaming to WebAssembly.instantiate,

and replace the fetch("validate.wasm") parameter value with bytes.
 Add a call to the validateData function in the then method of the WebAssembly

.instantiate call after the last addToTable function call.

The modified initializePage function in your nodejs_validate.js file should now
look like the code in the next listing.

...

function instantiateWebAssembly(bytes) {

Listing 10.7 initializePage renamed to instantiateWebAssembly

Loads the util package so
that you’ll have access to
the TextEncoder object

Reads in the
validate.wasm
file’s bytes

Passes the bytes
to this function

Renamed from initializePage, and
bytes added as the parameter

moduleMemory = new WebAssembly.Memory({initial: 256});

243Using the WebAssembly JavaScript API
moduleTable = new WebAssembly.Table({initial: 1, element: "anyfunc"});
 const importObject = {
 env: {
 __memory_base: 0,
 memory: moduleMemory,
 __table_base: 0,
 table: moduleTable,
 abort: function(i) { throw new Error('abort'); },
 }
 };

 WebAssembly.instantiate(bytes, importObject).then(result => {
 moduleExports = result.instance.exports;
 validateOnSuccessNameIndex = addToTable(() => {
 onSuccessCallback(validateNameCallbacks);
 }, 'v');

 validateOnSuccessCategoryIndex = addToTable(() => {
 onSuccessCallback(validateCategoryCallbacks);
 }, 'v');

 validateOnErrorNameIndex = addToTable((errorMessagePointer) => {
 onErrorCallback(validateNameCallbacks, errorMessagePointer);
 }, 'vi');

 validateOnErrorCategoryIndex = addToTable((errorMessagePointer) => {
 onErrorCallback(validateCategoryCallbacks, errorMessagePointer);
 }, 'vi'); validateData();
 });
}
...

The next change you need to make in your nodejs_validate.js file is to delete the get-
SelectedCategoryId function. Then replace the contents of the setErrorMessage
function with a console.log call for the error parameter:

function setErrorMessage(error) { console.log(error); }

Modify the onClickSave function by completing the following steps:

 Rename the function to validateData.
 Remove the setErrorMessage(), const name, and const categoryId lines of

code.
 Add the clientData object prefix to the name and categoryId values that are

passed to the validateName and validateCategory functions.

The modified onClickSave function in your nodejs_validate.js file should now look
like the code in the following listing.

Uses instantiate instead of
instantiateStreaming, and
bytes passed in instead of

the fetch call

Calls validateData
once the module has
been instantiated

Outputs any
error messages
to the console

244 CHAPTER 10 WebAssembly modules in Node.js
...

function validateData() {
 Promise.all([
 validateName(clientData.name),
 validateCategory(clientData.categoryId)
])
 .then(() => {

 })
 .catch((error) => {
 setErrorMessage(error);
 });
}
...

Finally, you need to modify the copyStringToMemory function to prefix the Text-
Encoder object with the util object. Your copyStringToMemory function in the nodejs_
validate.js file should look like this:

function copyStringToMemory(value, memoryOffset) {
 const bytes = new Uint8Array(moduleMemory.buffer);
 bytes.set(new util.TextEncoder().encode((value + "\0")),

memoryOffset);
}

No other changes are needed in the nodejs_validate.js file.

VIEWING THE RESULTS

To test the validation logic, you can adjust the data in the clientData object by clear-
ing the value from the name property (name: "") and saving the file. Open a com-
mand prompt, navigate to your Chapter 10\10.4.4 SideModuleFunctionPointers\
backend\ folder, and run the following command:

node nodejs_validate.js

You should see the validation message shown in figure 10.16.
 Now: how can you use what you learned in this chapter in the real world?

Listing 10.8 onClickSave renamed to validateData

Renamed from onClickSave

The clientData object’s
name value is passed to
validateName.

The clientData object’s
categoryId is passed to
validateCategory.

There were no issues with the
validation. The data can be saved.

The TextEncoder
object is part of
the util package
in Node.js.

The validation
error message

The product name validation error in Node.jsFigure 10.16

245Summary
Real-world use cases
The following are some possible use cases for what you’ve learned in this chapter:

 As you saw in this chapter, Node.js can be run from the command line, which
means you can use your WebAssembly logic locally on your development
machine to help you with your day-to-day tasks.

 With web sockets, Node.js can help implement real-time collaboration in your
web application.

 You could use Node.js to add a chat component to your game.

Exercises
You can find the solutions to the exercises in appendix D.

1 Which Node.js function do you need to call in order to load Emscripten’s gen-
erated JavaScript file?

2 What Emscripten Module property do you need to implement in order to be
informed of when the WebAssembly module is ready to be interacted with?

3 How would you modify the index.js file from chapter 8 so that the dynamic link-
ing logic works in Node.js?

Summary
 WebAssembly modules in Node.js are possible, and the JavaScript needed is

quite similar to what you used when working in a web browser.
 Modules that include the Emscripten JavaScript code can load and instantiate

themselves when you load the JavaScript using the require function. Unlike in
the browser, however, there are no global Emscripten helper functions avail-
able. All functions within the Emscripten-generated JavaScript file need to be
accessed through the return object from the require function.

 Node.js doesn’t support the WebAssembly.instantiateStreaming function.
Instead, you need to use the WebAssembly.instantiate function. If you’re writ-
ing a single JavaScript file to use a WebAssembly module in both a web browser
and Node.js, then you’ll need the feature detection you learned about in chap-
ter 3, section 3.6.

 When loading a WebAssembly file manually in Node.js, you don’t use the fetch
method because the WebAssembly file is on the same machine as the JavaScript
code that’s being executed. Instead, you read in the WebAssembly file’s bytes
from the File System, and then pass the bytes to the WebAssembly.instanti-
ate function.

 Due to scope issues between the code that calls the require function and the
generated Emscripten JavaScript, if you add custom JavaScript to Emscripten’s
JavaScript file, it should be self-contained and not try to call into the parent code.

Part 4

Debugging and testing

With most development, there comes a time when we run into an issue
that needs to be tracked down. This could be as simple as reading over the code,
but sometimes you need to dig deeper. In this part of the book, you’ll learn
about the options available for debugging and testing a WebAssembly module.

 Chapter 11 teaches you about the WebAssembly text format by building a
card-matching game. In chapter 12, you’ll extend the card-matching game to
learn about the various options available to debug a WebAssembly module. And
chapter 13 rounds out your WebAssembly development skills by teaching you
how to write integration tests for your modules.

WebAssembly text format
WebAssembly is designed with a binary file format so that the WebAssembly files are
as small as possible, allowing for fast transmissions and downloads; this doesn’t
mean it’s a way for developers to hide their code. In fact, quite the opposite is true.
WebAssembly is designed with the web’s openness in mind. As a result, a text for-
mat equivalent of the binary format also exists.

 The text format allows browser users to inspect a web page’s WebAssembly in
much the same way that they’d inspect JavaScript. The binary format’s text format
equivalent is also presented for debugging in the browser if the WebAssembly mod-
ule doesn’t include source maps, as highlighted in figure 11.1.

This chapter covers
 Creating a WebAssembly text format version of a module

 Compiling the text format code into a binary module using
the WebAssembly Binary Toolkit’s online tool

 Linking the Binary Toolkit’s generated module to an
Emscripten-generated module

 Building the HTML and JavaScript for the UI aspect of a
game
249

250 CHAPTER 11 WebAssembly text format
Suppose that you’re going to build the card-matching game figure 11.2 shows. Level 1
will start with two rows of two cards, all facedown. The player will click two of the
cards, and they’ll turn faceup as they’re clicked. If the cards are a match, they’ll disap-
pear. If the two cards don’t match, they’ll turn facedown again.

A breakpoint placed in
the _ValidateName
function

The WebAssembly
file selected

Figure 11.1 Developer tools in Firefox, with a breakpoint placed in the _ValidateName
function of the WebAssembly module you built in chapter 4, section 4.1

Level 1 of the card-matching
game with two cards selected
just before they’re turned
facedown because they
don’t match

Figure 11.2 Level 1 of the card-matching game, showing two cards clicked
before they turn facedown because they’re not a match

251
The player will win the level by causing all cards to disappear. As figure 11.3 illustrates,
when the player wins, the game shows a message giving them the opportunity to
replay the current level or play the next level.

 We’ll look at debugging a WebAssembly module in the next chapter, but before that,
you need to have an understanding of the text format and how it works. In this chapter,
you’ll build the core logic for the card-playing game using the WebAssembly text format
to see how it works in more detail. You’ll then compile it into a WebAssembly module
using the WebAssembly Binary Toolkit’s online tool. HTML, CSS, and images will be
used for the game’s UI aspect.

 When building a module using only the text format, you won’t have access to the
standard C library functions like malloc and free. As a workaround, you’ll build a
simple Emscripten-generated module that will export the additional functions that
your text format module needs.

 Figure 11.4 shows the following steps for creating this chapter’s game:

1 Create the game’s core logic using the WebAssembly text format.
2 Use the WebAssembly Binary Toolkit to generate a WebAssembly module from

the text format (cards.wasm).
3 Create a C++ file that will allow the cards.wasm module to access certain stan-

dard C library functions.
4 Use Emscripten to generate a WebAssembly module from the C++ file.
5 Copy the generated WebAssembly files to the server for use by the browser.

Then create the HTML and JavaScript that will load and link the two Web-
Assembly modules together. Also, create the JavaScript that will pass the infor-
mation about the player’s interactions to the module.

The summary screen when the
player wins. They’re given the
opportunity to replay the current
level or play the next level.

Figure 11.3 When the player wins, they can replay the current level or play
the next level.

252 CHAPTER 11 WebAssembly text format
Creating the game’s core logic11.1
using WebAssembly text format
WebAssembly text format uses s-expression nodes, which let you represent the module’s
elements in a simple way.

REMINDER The s-expression (shorthand for symbolic expression) was
invented for the Lisp programming language. An s-expression can be either
an atom or an ordered pair of s-expressions, allowing you to nest s-expressions.
An atom is a symbol that’s not a list: foo or 23, for example. A list is repre-
sented by parentheses and can be empty, or can hold atoms or even other lists.
Each item is space-delimited: () or (foo) or (foo (bar 132)), for example.

In WebAssembly text format, each s-expression is surrounded by parentheses, and the
first item within the parentheses is the label indicating the type of node it is. Following
the label, the node can have a whitespace-separated list of attributes or even other
nodes. Because the text format is meant for humans to read, child nodes are typically
separated by a linefeed and indented to help show the parent/child relationship.

WebAssembly
Binary Toolkitcards.wast

1. Create the game’s core logic
using the WebAssembly
text format.

2. The WebAssembly Binary
Toolkit generates the Wasm
file from the text format.

cards.wasm

main.cpp Emscripten

3. Create the logic needed
by the cards.wasm module.

4. Emscripten generates
the WebAssembly files
from main.cpp.

The standard
C library functions
will be included.

5. WebAssembly files are copied to
the server for use by the browser.

HTML and JavaScript are
created to load, link, and
interact with the modules.

main.wasm

cards.wasm
main.wasm

main.js

main.js

Browser

cards.wasm
main.wasm

Steps for building the gameFigure 11.4

253Creating the game’s core logic using WebAssembly text format
 With the text format, you can refer to most items, like a function or a parameter,
by the item’s index. If you have a number of functions or variables, however, referring
to everything by an index can sometimes get confusing. You can optionally include a
variable name for an item when defining it, which is what you’ll do for all variables
and functions in this chapter.

 Variable names in the text format start with a $ character, followed by alphanu-
meric characters indicating what the variable represents. Typically, the variable name
represents the type of data it’s for, like $func for function, but you could also use a
variable name like $add for an add function. Sometimes, you’ll even see the name of
the variable end with a number indicating its index, like $func0.

 WebAssembly supports four value types (32-bit integers, 64-bit integers, 32-bit
floats, and 64-bit floats). Booleans are represented using a 32-bit integer. All other
value types, like strings, need to be represented in the module’s linear memory. The
four value types represented in the text format are

 i32 for a 32-bit integer
 i64 for a 64-bit integer
 f32 for a 32-bit float
 f64 for a 64-bit float

To make working with the four types of data easier, the text format has an object for
each type with that type’s name. For example, to add two i32 values together, you
would use i32.add. As another example, if you needed to use a float value of 10.5,
you would use f32.const 10.5. A list of the memory and numeric instructions for the
object types can be found here: http://webassembly.github.io/spec/core/text/
instructions.html.

11.1.1 The module’s sections

In chapter 2, you learned about the known and custom sections of a module. Known
sections each have a specific purpose, are well-defined, and are validated when the
WebAssembly module is instantiated. Custom sections are used for data that doesn’t
apply to the known sections, and they won’t trigger a validation error if the data isn’t
laid out correctly.

 Figure 11.5 represents the binary bytecode’s basic structure. Each known section is
optional but, if included, can be specified only once. Custom sections are also
optional but, if included, can be placed before, after, or in between known sections.

http://webassembly.github.io/spec/core/text/instructions.html
http://webassembly.github.io/spec/core/text/instructions.html
http://webassembly.github.io/spec/core/text/instructions.html

254 CHAPTER 11 WebAssembly text format
As table 11.1 shows, the text format uses s-expression labels that correspond to the
binary format’s known sections.

Table 11.1 Known sections and their corresponding s-expression labels

Binary format Text format Binary format Text format

preamble module Global global

Type type Export export

Import import Start start

Function func elemElement

Table table Code

Memory memory Data data

Module

Continued

1. List of
unique function
signatures used
in the module

2. Items to be
imported

3. List of all
functions in
the module

4. An array
of references
to items like
functions

5. The module’s
linear memory

6. The module’s
global variables

7. Items that will be
exposed to the host

8. An index to a function
in the module that will
be called automatically
once the module has
been initialized

9. Data to load into the
Table section during
instantiation

10. The body of each
function defined in
the Function section

11. Data to load into the
linear memory during
instantiation

The preamble: this is a WebAssembly module and is built
according to version 1 of the WebAssembly binary format.

Type

Import

Table

Memory

(i32, i32) → (i32)

(i64, i64) → ()

() → ()

Type 0

Type 2

Type 1

00000100

Function

Size0

Version 1

"mathlib", "multiply", Type 0

Global

Export

Element

Global variables

Function 1

Initialization data for Table

Code

Code for Function 0

Code for Function 1

Code for Function 2

Start

Initialization data for memory

Data

Any kind of data

Custom sections

"add", Function 0

Basic structure of the WebAssembly binarFigure 11.5 y bytecode, highlighting the known and custom sections

255Creating the game’s core logic using WebAssembly text format

You might have noticed in the table that the text format equivalent of the binary for-
mat’s Code section wasn’t specified. In the binary format, the function signature and
the function’s body are in separate sections. With the text format, the body of the
function is included with the function as part of the func s-expression.

In the binary format, each known section is optional but, if included, can be
included only once and must appear in the order shown in table 11.1. On the other
hand, with the text format, the only node whose position matters is the import

s-expression. If included, this s-expression must appear before the table, memory,
global, and func s-expressions.

TIP For code maintainability, it’s recommended that all related nodes be
kept together and that the sections be placed in the same order as you would
expect to see those sections in the binary file.

11.1.2 Comments

If you wish to include a comment in the text format code, there are two ways to write
one. A double semicolon is used for a single-line comment, and everything to the
right of the semicolons is commented out, as in the following example:

;; this is a single-line comment

If you wish to comment out a section of code—either a portion of an element or sev-
eral elements at once—you can begin the comment with an opening parenthesis and
semicolon, and then close the comment later with a semicolon and closing parenthe-
sis. Some tools include these types of comments within the elements to indicate which
index something has, as in the following example:

(; 0 ;)

In some of the known sections that you’ll define for this game, you’ll need to include
a function signature. Because function signatures are used by multiple sections, you’ll
learn about them next.

11.1.3 Function signatures

A function signature is a function definition without a body. The s-expression for the
function signature starts with a label using the word func, optionally followed by a
variable name.

If the function has parameters, a param s-expression is included that indicates the
parameter’s value type. For example, the following function signature has a single 32-
bit integer parameter and doesn’t return a value:

(func (param i32))

If a function has multiple parameters, you can include an additional param node for
each parameter. For example, the following signature would be for a function with
two i32 parameters:

(func (param i32) (param i32))

256 CHAPTER 11 WebAssembly text format
You can also define parameters with a shorthand method that uses one param node
but a space-separated list of each parameter’s type, as in the following example, which
is the same as the example shown previously with the two param nodes:

(func (param i32 i32))

If the function has a return value, a result s-expression is included, indicating the
return value’s type. The following is an example of a signature that has two 32-bit
parameters and returns a 32-bit value:

(func (param i32 i32) (result i32))

If a function doesn’t have parameters or a return value, you don’t include param or
result nodes:

(func)

Now that you understand some of the basics of the text format, your next step is to
start building the game’s logic (figure 11.6).

11.1.4 The module node

In your WebAssembly\ folder, create a Chapter 11\source\ folder for the files that
you’ll use in this section. Create a cards.wast file for your text format code, and then
open it with your favorite editor.

 The root s-expression node used for the WebAssembly text format is module, and
all elements of a module are represented as child nodes of this node. Because all sec-
tions of a module are optional, it’s possible to have an empty module, which is repre-
sented in the text format as (module).

 As figure 11.7 shows, the module node is the equivalent of the binary format’s pre-
amble section. The version of the binary format used will be included by the tool
that’s used to convert the text format into the binary format file.

 Your first step in building the core logic for this game is to add the module node to
the cards.wast file, as shown in the following snippet:

(module

WebAssembly
Binary Toolkitcards.wast

1. Create the game’s core logic
using the WebAssembly
text format.

cards.wasm

Creating the game’s core logic using the WebAssembly text formatFigure 11.6

The root module node

) All elements of the module will
be children of the module node.

257Creating the game’s core logic using WebAssembly text format
With the module node created, you can now move on and add the known sections as
children of the module node. The type nodes will appear as the first children of the
module node, but you won’t know what function signatures your module needs until
you’ve imported or built the necessary functions for your module’s logic. Because of
this, you’ll skip the type nodes for now, but will come back and add them once you’ve
written the module’s functions.

 The first section to add to the module node are the import nodes.

11.1.5 The import nodes

The Import known section (figure 11.8) declares all the items to be imported into the
module, which can include Function, Table, Memory, or Global imports. For the mod-
ule you’re building, you’ll import the memory needed as well as several functions.

An import is defined using an s-expression that has the label import, followed by a
namespace name, followed by the name of the item that will be imported, and then
followed by an s-expression representing the data being imported. To match what you
usually see with Emscripten-generated modules, the namespace name used will be
"env". Emscripten puts an underscore character in front of the name of the item
being imported, so you’ll do the same here to make your JavaScript code consistent.

 The following is an example of an import node defined for a function that has two
i32 parameters and an i32 return value:

Module

The preamble: this is a WebAssembly module and is built
according to version 1 of the WebAssembly binary format.

Version 1
Figure 11.7 The module node is the
equivalent of the binary format’s preamble
section. The version will be specified by the
tool used to create the binary format file.

Module

Items to be
imported

Type

Import

(i32, i32) → (i32)
(i64, i64) → ()

() → ()

Version 1

"mathlib", "multiply", Type 0
Figure 11.8 The Import known section
declares all the items to be imported
into the module.

258 CHAPTER 11 WebAssembly text format
(import "env" "_Add"
 (func $add (param i32 i32) (result i32))
)

When the WebAssembly module is instantiated, a JavaScript object needs to be passed
to the WebAssembly.instantiateStreaming function that’s providing the imports
that the module expects. The following is an example of a JavaScript object for a mod-
ule expecting the _Add function defined earlier:

const importObject = {
 env: {
 _Add: function(value1, value2) {

return value1 + value2;
 }
 }
};

Now that you understand how import nodes are defined, it’s time to add them to the
game.

ADDING THE IMPORT NODES TO THE GAME

The logic in this game will need to import some functions from the JavaScript so that
the module can call into the JavaScript to update it at various stages of the game. The
functions listed in table 11.2 will be imported from the JavaScript code.

Table 11.2 JavaScript functions that need to be imported

Item name Parameters Purpose

_ rowsGenerateCards , columns,
level

Tells the JavaScript how many rows and columns of cards to
create.
level is for display purposes so that the player knows

which level they’re playing.

_ rowFlipCard , column,
cardValue

Tells the JavaScript to flip the card at the specified row, col-
umn index.

A cardValue of -1 indicates to flip the card facedown (the
cards aren’t a match). Otherwise, flip the card faceup because
the player just clicked on.

_ row1RemoveCards , column1,
row2, column2

Tells the JavaScript to remove two cards, based on their row
and column indexes, because they’re a match.

_ levelLevelComplete ,
anotherLevel

Tells the JavaScript that the player completed the level and
whether there’s another level. The JavaScript will show a sum-
mary screen and allow the player to replay the current level. If
there’s another level, the player will also be given the option to
play it.

"env" is the namespace name.
"_Add" is the name of the item
being imported.

The import is for a function that has two i32
parameters and returns an i32 result.

The object’s name must
match the namespace
name (env in this case).

The name of the item is left of the colon,
with the item being imported on the right.

259Creating the game’s core logic using WebAssembly text format
The JavaScript code uses the item’s name (_GenerateCards, for example) to specify
the requested item. Your code here in the module, however, refers to the imported
item by index or by a variable name (if you specify one). Rather than working with
indexes, which can get confusing, you’ll include a variable name for each of your
import items.

 Within your module s-expression in your cards.wast file, add the import s-expressions
in the following listing for the functions specified in table 11.2.

...

(import "env" "_GenerateCards"
 (func $GenerateCards (param i32 i32 i32))
)
(import "env" "_FlipCard"
 (func $FlipCard (param i32 i32 i32))
)
(import "env" "_RemoveCards"
 (func $RemoveCards (param i32 i32 i32 i32))
)
(import "env" "_LevelComplete"
 (func $LevelComplete (param i32 i32))
)
(import "env" "_Pause" (func $Pause (param i32 i32)))
...

Later in this chapter, you’re going to build an Emscripten-generated module that will
be manually linked to this one at runtime. The Emscripten-generated module will
provide access to functions like malloc and free to help with memory management.
The module will also provide functions to help with generating random numbers.

 The items listed in table 11.3 will be imported from the Emscripten-generated
module.

_ namePointerPause ,
milliseconds

Called to pause the module’s logic to allow the two cards to
remain visible briefly before being flipped back facedown or
removed, depending on whether they were a match.
namePointer is an index in the module’s memory where

the string for the function name to call is located.
milliseconds indicates how long to wait before calling

the function.

TheListing 11.1 import s-expressions for items from the JavaScript code

JavaScript functions that need to be importedTable 11.2 (continued)

Item name Parameters Purpose

Tells the JavaScript how many
rows and columns to display
as well as which level it is

Tells the JavaScript which
card to flip and its value

Tells the JavaScript to remove
the two cards based on their
row and column positions

Tells the JavaScript that
the level is complete
and whether there’s
another levelTells the JavaScript to call the

function specified after the
specified number of milliseconds

260 CHAPTER 11 WebAssembly text format

The function imports will be defined the same way here that you did for the JavaScript
imports. The one thing that’s different with this set of imports is the memory import.

 Regardless of what you import, the first part of the import node is the same: the
s-expression’s label import, the namespace, and the item’s name. The only thing that
changes is the s-expression for the item being imported.

 The s-expression for memory starts with the label memory, followed by an optional
variable name, the initial number of memory pages desired, and, optionally, the maxi-
mum number of memory pages desired. Each page of memory is 64 KB (1 KB is 1,024
bytes, so 1 page holds 65,536 bytes). The following example would define a module’s
memory with 1 page of memory initially and a maximum of 10 pages:

(memory 1 10)

Within your module s-expression in your cards.wast file, add the import s-expressions
in the next listing for the items specified in table 11.3. Place these import nodes after
the _Pause import node.

...

(import "env" "memory" (memory $memory 256))
(import "env" "_SeedRandomNumberGenerator"
 (func $SeedRandomNumberGenerator)
)
(import "env" "_GetRandomNumber"
 (func $GetRandomNumber (param i32) (result i32))
)
(import "env" "_malloc" (func $malloc (param i32) (result i32)))
(import "env" "_free" (func $free (param i32)))
...

Items that need to be imported from the Emscripten-generated moduleTable 11.3

Item name Type Parameters Purpose

memory The Emscripten-generated module’sMemory
linear memory that this module will
share

_SeedRandomNumberGenerator Function Seeds the random number generator

_GetRandomNumber RangeFunction Returns a random number within the
range specified

_malloc SizeFunction Allocates memory for the number of
bytes specified

_free PointerFunction Deallocates the memory that was
allocated for the specified pointer

Listing 11.2 The import s-expressions for items from the Emscripten-generated module

The module’s memory

Seeds the random number generator

Gets a random number
from a range specified

261Creating the game’s core logic using WebAssembly text format
Now that the imports have been specified, your next step is to define some global vari-
ables to help with the game’s logic.

11.1.6 The global nodes

The Global known section (figure 11.9) defines all the global variables that are built
into the module. Global variables can also be imported.

Global variables are declared at the module level for use by all functions and can be
either immutable (a constant) or mutable. They are defined with an s-expression node
that starts with the label global, followed by an optional variable name, the variable’s
type, and then an s-expression holding the variable’s default value. For example, the
following global node defines an immutable (constant) variable with the name $MAX
that’s a 32-bit integer and has a default value of 25:

(global $MAX i32 (i32.const 25))

If you need a mutable global variable, the global’s type is wrapped in an s-expression
with the label mut. For example, the following global variable with the name $total is
a mutable 32-bit float with a default value of 1.5:

(global $total (mut f32) (f32.const 1.5))

Now that you understand how global nodes are defined, it’s time to add them to the
game.

ADDING THE GLOBAL NODES TO THE GAME

All the global variables the game needs will be 32-bit integers with a default value of
zero. Following the import s-expressions, and within the module s-expression, add the
following immutable global variable to your cards.wast file to indicate that the game
will support a maximum of three levels:

(global $MAX_LEVEL i32 (i32.const 3))

The rest of the global variables that you’ll create will be mutable, including the next
one that you need to add, called $cards. This will be a pointer to the location in the
module’s memory where the array of card values is held. Add the code in the follow-
ing snippet after the $MAX_LEVEL variable in your cards.wast file:

(global $cards (mut i32) (i32.const 0))

The module’s
global variablesGlobal

Global variables Figure 11.9 The Global known section declares
the module’s built-in global variables.

262 CHAPTER 11 WebAssembly text format

You now need some variables to keep track of the game’s current level ($current_
level) and how many matches remain before the player beats the level ($matches_
remaining). You also need $rows and $columns variables to hold the number of rows
and columns displayed for the current level.

Add the code in the following snippet after the $cards variable, and within the
module s-expression, in your cards.wast file:

(global $current_level (mut i32) (i32.const 0))
(global $rows (mut i32) (i32.const 0))
(global $columns (mut i32) (i32.const 0))
(global $matches_remaining (mut i32) (i32.const 0))

When the player clicks the first card, you need to remember what the card’s row and
column positions are so that you can either flip it facedown if the second card isn’t a
match or remove the card if it is. You also need to keep track of the card’s value so that
you can compare the second card’s value to see if they’re a match or not.

When the player clicks the second card, execution will be handed off to the Java-
Script. This pauses the game briefly so that the second card remains visible long
enough for the player to see it before it gets flipped facedown or removed. Because
the executing function will exit, you also need to remember the second card’s row and
column positions as well as the card value.

In your cards.wast file, add the following code after the $matches_ remaining vari-
able and within the module s-expression:

(global $first_card_row (mut i32) (i32.const 0))
(global $first_card_column (mut i32) (i32.const 0))
(global $first_card_value (mut i32) (i32.const 0))
(global $second_card_row (mut i32) (i32.const 0))
(global $second_card_column (mut i32) (i32.const 0))
(global $second_card_value (mut i32) (i32.const 0))

When the module’s execution is handed off to the JavaScript to pause the logic before
the cards are flipped facedown or removed, you don’t want the user continuing to trig-
ger clicks by clicking the cards. The following global variable will be a flag for the logic
to know that things are currently paused until the JavaScript calls back into the mod-
ule. In your cards.wast file, add the code in the following snippet after the $second_

card_value variable and within the module s-expression:

(global $execution_paused (mut i32) (i32.const 0))

With the global variables defined, the next area that you need to implement are the
exports.

11.1.7 The export nodes

As figure 11.10 shows, the Export known section holds a list of all items that will get
returned to the host environment once the module is instantiated. These are the por-
tions of the module that the host environment can access. Exports can include Func-
tion, Table, Memory, or Global items. For this module’s logic, you only need to export
functions.

263Creating the game’s core logic using WebAssembly text format
To export an item, you need an s-expression that has the label export, followed by the
name that you want the caller to use, and then by an s-expression that specifies the
item being exported.

 To export a function, the s-expression at the end of the export node is a func with
either the zero-based index or the variable name of the function that the export is
pointing to in the module. For example, the following would export a function that
the host will see as _Add that points to a function in the module with the variable
name $add:

(export "_Add" (func $add))

Now that you understand how export nodes are defined, it’s time to add them to the
game.

ADDING THE EXPORT NODES TO THE GAME

In a moment, you’ll create the functions for the game’s logic. Of the functions that
you create, you need to export the following:

 $CardSelected—This function is called by the JavaScript code whenever the
player clicks a card. The logic calls the imported $Pause JavaScript function if
this function call was for a second card. The $Pause function is also told to call
the $SecondCardSelectedCallback function after a brief delay.

 $SecondCardSelectedCallback—Called by the JavaScript code from the
$Pause function, this function checks to see if the two cards are a match or not
and flips them facedown if they’re not a match or removes them if they are. If
the number of matches remaining reaches zero, this function calls the $Level-
Complete JavaScript function.

 $ReplayLevel—This function is called by the JavaScript code when the player
clicks the Replay button on the summary screen after completing the current
level.

 $PlayNextLevel—A Next Level button is displayed on the summary screen if
the player hasn’t reached the final level of the game. This function is called by
the JavaScript code when the player clicks the Next Level button.

After the global s-expressions, and within the module s-expression, add the following
export s-expressions to your cards.wast file:

(export "_CardSelected" (func $CardSelected))
(export "_SecondCardSelectedCallback"

Items that will be
exposed to the host

Global

Export

Global variables

"add", Function 0
Figure 11.10 The Export known section
lists all items in the module that the host
environment can access.

Called to tell the module
which card was clicked

264 CHAPTER 11 WebAssembly text format

Calle
rese

current
 (func $SecondCardSelectedCallback)
)
(export "_ReplayLevel" (func $ReplayLevel))
(export "_PlayNextLevel" (func $PlayNextLevel))

With the exports defined, the next area to implement is the Start section.

11.1.8 The start node

As figure 11.11 shows, the Start known section specifies a function that’s to be called
after the module is instantiated but before the exported items are callable. If speci-
fied, the function can’t be imported and must exist within the module.

For this game, the start function is used to initialize the global variables and mem-
ory. It also starts the game’s first level.

 To define the start section, you use an s-expression with the label start, followed
by either the function’s index or the variable name. Add the code in the following
snippet to your cards.wast file after the export s-expressions and within the module
s-expression to have the $main function called automatically once the module is
instantiated:

(start $main)

The next step is to define this module’s functions and their code.

11.1.9 The code nodes

As figure 11.12 shows, in the binary format, the Function (definition) and Code
(body) known sections are separate. In the text format, the function definition and
body are together in one func s-expression. When looking at Emscripten’s generated
text format or the browser’s code, functions are usually shown in the Code known sec-
tion’s position, so you’ll do that here, too, for consistency.

 The code execution in WebAssembly is defined in terms of a stack machine, in
which instructions push or pop a certain number of values onto and off the stack.
When a function is first called, the stack for that function is empty. The WebAssembly
framework validates the stack when the function ends to ensure that, if the function is

Callback function when the Pause
function’s timeout completes

d to
t the
level

Called to set up the next level

A function in the
module that will be
called automatically
once the module has
been instantiated

Global

Export

Global variables

Function 1

Start

"add", Function 0
Figure 11.11 The Start known
section specifies the function that’s
to be called after the module is
instantiated.

265Creating the game’s core logic using WebAssembly text format
returning an i32 value, for example, the last item on the stack when the function
returns is an i32 value. If the function doesn’t return anything, then the stack must be
empty when the function returns.

MORE INFO Within the body of a function, the text format supports s-expression
style, stack machine style, or a combination of the two. In this chapter, you’ll
use the stack machine style because that’s the style that browsers use. For
s-expression examples, see appendix E for alternative ways that you can
write if statements and loops.

Before you start building the game’s functions, let’s look at how you interact with
variables.

WORKING WITH VARIABLES

WebAssembly has two types of variables: globals and locals. Globals are accessible by
all functions, whereas local variables are accessible only within the function that
defined them.

Module

Continued

List of all functions
in the module

The body of each
function defined in
the Function section

Type

Import

Table

Memory

(i32, i32) → (i32)

(i64, i64) → ()

() → ()

Type 0

Type 2

Type 1

00000100

Function

Size0

Version 1

"mathlib", "multiply", Type 0

Global

Export

Element

Global variables

Function 1

Initialization data for Table

Code

Code for Function 0

Code for Function 1

Code for Function 2

Start

Initialization data for Memory

Data

Any kind of data

Custom sections

"add", Function 0

The Function and Code known sections in the binary formatFigure 11.12

266 CHAPTER 11 WebAssembly text format
 Local variables need to be defined before anything else in the function and are
defined as an s-expression with the label local, followed by an optional variable
name, and then by the variable’s type. The following is an example of an f32 local
variable declaration with the variable name $float followed by an i32 local variable
declaration without a variable name:

(local $float f32)
(local i32)

If you don’t specify a name for a variable, you can reference it using its zero-based
index. One thing to be aware of with local variables is that a function’s parameters are
considered locals as well, and are first in the index order.

 To assign a value to a variable, the value needs to be on the stack first. You can then
use either the set_local or tee_local instruction to pop the value off the stack and
set the local variable’s value. The difference between set_local and tee_local is that
tee_local also returns the value that was set. For a global variable, you use the set_
global instruction in the same way you use the set_local instruction.

 As an example, the following code snippet places the value 10.3 on the stack and
then calls the set_local instruction for the $float variable. The set_local instruc-
tion will pop the top value off the stack and place it in the variable specified:

f32.const 10.3
set_local $float

To get a value from a variable and push it onto the stack, you use the get_local
instruction for local variables and get_global for global variables. For example, if
your function had a parameter called $param0, the following code would place its
value on the stack:

get_local $param0

INFO The set_local, tee_local, get_local, set_global, and get_global
instructions are used in this chapter because web browsers are still using this
format. However, the WebAssembly specification has been adjusted to use
local.set, local.tee, local.get, global.set, and global.get. The new
format is called the exact same way as the old format. When Emscripten out-
puts a .wast file, it now uses the new format, and the WebAssembly Binary
Toolkit can now accept text format code that uses either format. The new
variable instructions can be found at http://mng.bz/xljX.

Now that you understand how variables work, the first func node that you’ll build for
the game’s logic will be the $InitializeRowsAndColumns function.

THE $INITIALIZEROWSANDCOLUMNS FUNCTION

The $InitializeRowsAndColumns function has a single i32 parameter with the name
$level and doesn’t have a return value. This function is called to set the global $rows
and $columns variables to their appropriate values based on the level parameter
received.

http://mng.bz/xljX

267Creating the game’s core logic using WebAssembly text format
 Because each level has a different combination of rows and columns for the cards,
the function needs to determine which level has been requested. To check and see if
the parameter value is 1 (one), you place the parameter value onto the stack and then
place i32.const 1 onto the stack. To determine if the two values on the stack are
equal, you call the i32.eq instruction, which pops the top two items off the stack,
checks to see if they’re equal, and then pushes the result onto the stack (1 for true, 0
for false), as shown in the following snippet:

get_local $level
i32.const 1
i32.eq

Once you have the Boolean value on the stack, you’ll use an if statement to check if
the Boolean value is true and, if so, to set the $rows and $column values each to an
i32.const 2. An if statement will pop the top item off the stack to do its evaluation.
An if statement considers a zero value as false and any nonzero value as true. The fol-
lowing snippet extends the logic of the previous snippet to include an if statement:

get_local $level
i32.const 1
i32.eq
if

end

The code shown in the previous snippet will be repeated three times, once for each
level being checked. The i32.const value will be changed to 2 when checking if the
level specified is two and will be changed to 3 when checking if the level specified is
three.

 Set the global $rows and $columns values to the following based on the level speci-
fied:

 Level 1: both are i32.const 2
 Level 2: $rows is i32.const 2, $columns is i32.const 3
 Level 3: $rows is i32.const 2, $columns is i32.const 4

The game is capable of six levels, but only the first three are defined in this function
to simplify the code. Add the code in the next listing after the start node in your
cards.wast file.

...

(func $InitializeRowsAndColumns (param $level i32)

 get_local $level

 i32.const 1

 i32.eq

TheListing 11.3 $InitializeRowsAndColumns function for your cards.wast file

1 will be placed on the stack if
$level holds the value 1. Otherwise,
0 is placed on the stack.

If the top value on the stack is
nonzero, then the code in this
block will run.

Pushes the parameter
value onto the stack

Pushes 1 onto the stack

Pops the top two values, checks to
see if they’re equal, and pushes

the result onto the stack

268 CHAPTER 11 WebAssembly text format
 if
 i32.const 2
 set_global $rows

 i32.const 2
 set_global $columns
 end

 get_local $level
 i32.const 2
 i32.eq
 if
 i32.const 2
 set_global $rows

 i32.const 3
 set_global $columns
 end

 get_local $level
 i32.const 3
 i32.eq
 if
 i32.const 2
 set_global $rows

 i32.const 4
 set_global $columns
 end
)

The next func node that you’ll need to define is the $ResetSelectedCardValues
function.

THE $RESETSELECTEDCARDVALUES FUNCTION

The $ResetSelectedCardValues function has no parameters or return value. This
function is called to set the global variables for the first and second cards that are
clicked to -1. Setting these card values to -1 indicates to the rest of the game’s logic
that all cards are currently facedown.

 Add the code in the following listing after the $InitializeRowsAndColumns node
in your cards.wast file.

TheListing 11.4 $ResetSelectedCardValues function for your cards.wast file

Pops the top item off the stack; if
true, then sets the global variablesPushes 2

onto the
stack Pops the top item off the

stack and puts it into the
global variable $rows

Pops the top item off the
stack and puts it into the
global variable $columns

If level 2 was requested, sets
the global variable $rows to 2

If level 2 was requested, sets
the global variable $columns to 3

If level 3 was requested, sets
the global variable $rows to 2

If level 3 was requested, sets
the global variable $columns to 4

...

(func $ResetSelectedCardValues
i32.const -1
set_global $first_card_row

i32.const -1
set_global $first_card_column

i32.const -1
set_global $first_card_value

i32.const -1

269Creating the game’s core logic using WebAssembly text format
 set_global $second_card_row

 i32.const -1
 set_global $second_card_column

 i32.const -1
 set_global $second_card_value
)

The next func node that you’ll need to define is the $InitializeCards function.

THE $INITIALIZECARDS FUNCTION

The $InitializeCards function has an i32 parameter with the name $level and
doesn’t return a value. This function is called to set the global variables to their appro-
priate values based on the $level parameter received, create and populate the
$cards array, and then shuffle the array.

 Local variables need to be defined in a function before any other code, so the first
thing that’s needed in the function is an i32 local variable called $count that will
be populated later in the function. The following snippet shows the local variable’s
definition:

(local $count i32)

The next thing the function does is push the $level parameter received onto the
stack and then call set_global to pop the value off the stack and place it into the
global variable $current_level:

get_local $level
set_global $current_level

Next, the $level parameter value is pushed onto the stack again, and the $Initialize-
RowsAndColumns function is called to have the $rows and $columns global variables set
appropriately based on the requested level. Because the function has a single parame-
ter, WebAssembly will pop the top value off the stack (the level value) and will pass it
to the function, as shown in the following snippet:

get_local $level
call $InitializeRowsAndColumns

To have the first and second card global variables reset to -1, the code calls the
$ResetSelectedCardValues function. This function has no parameters, so nothing
needs to be placed on the stack for this function call:

call $ResetSelectedCardValues

The function then determines how many cards are needed for the current level based
on the values in the $rows and $columns global variables. These global variable values
are placed on the stack, and then the i32.mul instruction is called. i32.mul pops the
top two items off the stack, multiplies the values together, and pushes the result back
onto the stack. Once the result is on the stack, set_local is called to put the value
into the $count variable. The set_local call will pop the top item off the stack and

270 CHAPTER 11 WebAssembly text format
place it into the variable specified. The following snippet shows the code that deter-
mines how many cards the current level has:

get_global $rows
get_global $columns
i32.mul
set_local $count

The next step is to determine the $matches_remaining value by dividing the $count
value by 2. The $count value and i32.const 2 are pushed onto the stack, and then
the i32.div_s instruction is called. This instruction pops the top two items off the
stack, divides them, and pushes the result back onto the stack. The set_global
instruction is then called to pop the top item off the stack and put the value in the
$matches_remaining global variable:

get_local $count
i32.const 2
i32.div_s
set_global $matches_remaining

The next thing that needs to happen in the function is for a block of memory to be
allocated to hold the number of i32 values based on the value in $count. Because i32
values are 4 bytes each, the $count value needs to be multiplied by 4 to get the total
number of bytes to allocate. You could use i32.mul, but it’s more efficient to use the
i32.shl (shift left) instruction. A shift left of 2 is the same as multiplying by 4.

 Once the total number of bytes has been determined, the $malloc function that
you imported from the Emscripten-generated module is called to have that number of
bytes allocated. The $malloc function will return the memory index where the allo-
cated memory block starts. You’ll then call the set_global instruction to place that
value in the $cards variable.

 The following snippet shows the number of bytes being determined from the
$count value and then being passed to the $malloc function, with the result being
placed in the $cards variable:

get_local $count
i32.const 2
i32.shl
call $malloc
set_global $cards

Now that a block of memory has been allocated for your $cards array, you’ll call the
$PopulateArray function, passing it the number of cards that the current level has, as
shown in the following snippet. The function will add pairs of values to the $cards array
based on the number of cards there are for the current level (0, 0, 1, 1, 2, 2, for example):

get_local $count
call $PopulateArray

Finally, the function will call the $ShuffleArray, to have the contents of the $cards
array shuffled:

271Creating the game’s core logic using WebAssembly text format
get_local $count
call $ShuffleArray

Putting it all together, add the code in the next listing after the $ResetSelectedCard-
Values node in your cards.wast file.

...

(func $InitializeCards (param $level i32)
 (local $count i32)

 get_local $level
 set_global $current_level

 get_local $level
 call $InitializeRowsAndColumns

 call $ResetSelectedCardValues

 get_global $rows
 get_global $columns
 i32.mul
 set_local $count

 get_local $count
 i32.const 2
 i32.div_s
 set_global $matches_remaining

 get_local $count
 i32.const 2
 i32.shl
 call $malloc
 set_global $cards

 get_local $count
 call $PopulateArray

 get_local $count
 call $ShuffleArray
)

The next func node that you’ll need to define is the $PopulateArray function.

THE $POPULATEARRAY FUNCTION

Loop through the array, as shown in the following listing, adding pairs of values based
on the number of cards there are for the current level (0, 0, 1, 1, 2, 2, for example).

TheListing 11.5 $InitializeCards function for your cards.wast file

TheListing 11.6 $PopulateArray function for your cards.wast file

Remembers the requested level

Sets the rows and columns global
variables based on the current level

Makes sure the first and
second card values are reset

Determines how many cards
there are for this level

Determines how many pairs of
cards there are for this level

Shifts left by 2 because each item
in the array represents a 32-bit
integer (4 bytes each)

Allocates the memory needed
by calling the malloc function

Fills the array with pairs of values

Shuffles the array

...

(func $PopulateArray (param $array_length i32)
(local $index i32)
(local $card_value i32)

i32.const 0
set_local $index

272 CHAPTER 11 WebAssembly text format
 i32.const 0
 set_local $card_value

 loop $while-populate
 get_local $index
 call $GetMemoryLocationFromIndex
 get_local $card_value
 i32.store

 get_local $index
 i32.const 1
 i32.add
 set_local $index

 get_local $index
 call $GetMemoryLocationFromIndex
 get_local $card_value
 i32.store

 get_local $card_value
 i32.const 1
 i32.add
 set_local $card_value

 get_local $index
 i32.const 1
 i32.add
 set_local $index

 get_local $index
 get_local $array_length
 i32.lt_s
 if

br $while-populate
 end
 end $while-populate
)

The next func node that you need to define is the $GetMemoryLocationFromIndex
function.

THE $ GETMEMORYLOCATIONFROMINDEX FUNCTION

The $GetMemoryLocationFromIndex function has an i32 parameter called $index
and an i32 return value. This function is called to determine the memory location of
the index in the $cards array.

 The function pushes the parameter value ($index) as well as an i32.const 2 value
onto the stack. It then calls the i32.shl instruction (shift left), which pops the top two
values off the stack, shifts the $index value by 2 (the same as multiplying it by 4), and
pushes the result back onto the stack.

 The function then calls get_global for $cards to push the start location of the
$cards array in memory onto the stack. The i32.add instruction is then called; it pops
the top two items off the stack, adds them together, and pushes the result back onto

Sets the memory value at $index
to the content of $card_value

Increments the index

Sets the memory value at $index
to the content of $card_value

Increments $card_value
for the next loop

Increments the index
for the next loop

If the index is less than
$array_length, loop again.

273Creating the game’s core logic using WebAssembly text format
the stack. Because the function will be returning a value, the result of the i32.add
operation is left on the stack to be returned to the caller.

 Add the code in the following snippet after the $PopulateArray node in your
cards.wast file:

(func $GetMemoryLocationFromIndex (param $index i32) (result i32)
 get_local $index
 i32.const 2
 i32.shl

 get_global $cards
 i32.add
)

The next func node that you need to define is the $ShuffleArray function.

THE $SHUFFLEARRAY FUNCTION

The $ShuffleArray function has an i32 parameter called $array_length and no
return value. This function is called to have the contents of the $cards array shuffled.

INFO The type of shuffling that will be used for this array will be the Fisher-
Yates shuffle. You can find more information at https://gist.github.com/
sundeepblue/10501662.

This function first defines several local variables for use in the upcoming loop. It then
calls the $SeedRandomNumberGenerator function that was imported from the
Emscripten-generated module to seed the random number generator.

 The $index value is initialized at 1 less than the $array_length value because the
loop through the cards will be from the end of the array to the beginning. A loop is
then started that will continue while the $index value hasn’t yet reached zero.

 Within the loop, a call is made to the $GetRandomNumber function that was
imported from the Emscripten-generated module to get a random number from the
range specified. The range specified is the current index adjusted to be one-based to
get a random number between 1 and $index + 1. The random number received is
then placed in the local $card_to_swap variable:

get_local $index
i32.const 1
i32.add
call $GetRandomNumber
set_local $card_to_swap

Once the index of a random card to swap has been determined, the card’s memory
location at the current index and card to swap index is determined and placed in the
$memory_location1 and $memory_location2 local variables, respectively.

 After the two memory locations have been found, the value at the current index
($memory_location1) is read from memory by calling i32.load. This instruction will
pop the top item—the memory location—off the stack and read the i32 value from

Shifts the index value left by 2

Adds the start location of the
array to the index location

Adds 1 to the value in $index
to get a one-based index

https://gist.github.com/sundeepblue/10501662
https://gist.github.com/sundeepblue/10501662
https://gist.github.com/sundeepblue/10501662

274 CHAPTER 11 WebAssembly text format
that memory location, placing it on the stack. Your function will then place the value
in the local variable $card_value so that it isn’t lost while the data from $memory_
location2 is placed in $memory_location1, as shown in the following snippet:

get_local $memory_location1
i32.load
set_local $card_value

The next snippet can be confusing. The code pushes the value in $memory_location1
onto the stack (the current index) and then pushes the value in $memory_location2
(the card to swap index) onto the stack. It then calls i32.load, which pops the top
item off the stack ($memory_location2—the card to swap index), reads the value
from that memory location, and pushes that memory location’s value onto the stack.

 Because $memory_location1 (the current index) is already on the stack, and now
the value from $memory_location2 is on the stack, the code can call the i32.store
instruction. The i32.store call will pop the top two items off the stack and place the
value in memory. The topmost item is the value to store, and the next item is the loca-
tion in memory to store the value:

get_local $memory_location1
get_local $memory_location2
i32.load
i32.store

Now that the value from $memory_location2 is in $memory_location1, the code
places the value that was in $memory_location1 into $memory_location2, as follows:

get_local $memory_location2
get_local $card_value
i32.store

The loop then decrements the $index value by 1. If the $index value is still greater
than zero, the loop starts again.

 Putting it all together, add the code in the next listing after the $PopulateArray
node in your cards.wast file.

...

(func $ShuffleArray (param $array_length i32)
 (local $index i32)
 (local $memory_location1 i32)
 (local $memory_location2 i32)
 (local $card_to_swap i32)
 (local $card_value i32)

 call $SeedRandomNumberGenerator

TheListing 11.7 $ShuffleArray function for your cards.wast file

Pushes the memory
location for $index
onto the stack

Pushes the memory
location for the card to
swap index onto the stack

Pops $memory_location2 off
the stack; pushes the memory
location value onto the stack

Stores $memory_location2’s
value in $memory_location1’s
memory index

Seeds the random number generator

275Creating the game’s core logic using WebAssembly text format
 get_local $array_length
 i32.const 1
 i32.sub
 set_local $index

 loop $while-shuffle
 get_local $index
 i32.const 1
 i32.add
 call $GetRandomNumber
 set_local $card_to_swap

 get_local $index
 call $GetMemoryLocationFromIndex
 set_local $memory_location1

 get_local $card_to_swap
 call $GetMemoryLocationFromIndex
 set_local $memory_location2

 get_local $memory_location1
 i32.load
 set_local $card_value

 get_local $memory_location1
 get_local $memory_location2
 i32.load
 i32.store

 get_local $memory_location2
 get_local $card_value
 i32.store

 get_local $index
 i32.const 1
 i32.sub
 set_local $index

 get_local $index
 i32.const 0
 i32.gt_s
 if
 br $while-shuffle
 end
 end $while-shuffle
)

The next func node that you’ll need to define is the $PlayLevel function.

THE $PLAYLEVEL FUNCTION

The $PlayLevel function has an i32 parameter called $level and no return value.
This function is called to initialize the cards and then have them displayed for the
player.

 To initialize the cards, push the $level parameter value onto the stack and then
call the $InitializeCards function. Because the function expects a single parameter,
the top item on the stack is popped off and passed as the parameter to the function.

The loop will start at the
end of the array and
move to the beginning.

Determines a random
card to swap the item
at this index with

Determines the memory
location based on the index

Determines the memory location
based on the card_to_swap index

Gets the card value from
memory at the current
index in the array

Pops $memory_location2 and pushes that
memory location’s value onto the stack

Stores the value from
$memory_location2 at
$memory_location1

Puts the card value into the memory
where card_to_swap’s value was

Decrements the index
by 1 for the next loop

If the index is still
greater than zero,
then loop again.

276 CHAPTER 11 WebAssembly text format
 Next, you need to call the $GenerateCards JavaScript function so that the proper
number of cards for the current level are displayed for the player. To do this, you push
the global $rows and $columns values onto the stack and then the $level parameter
value. Then call the $GenerateCards function. This function expects three parame-
ters, so the top three items will be popped off the stack and passed to the function’s
parameters.

 Add the code in the following snippet after the $ShuffleArray function in your
cards.wast file:

(func $PlayLevel (param $level i32)
 get_local $level
 call $InitializeCards

 get_global $rows
 get_global $columns
 get_local $level
 call $GenerateCards
)

The next func node that you’ll need to define is the $GetCardValue function.

THE $GETCARDVALUE FUNCTION

The $GetCardValue function accepts two i32 parameters ($row and $column) and
returns an i32 result. This function is called to get the card value associated with a
card at a specific row and column position.

 The following equation is used to determine the index in the $cards array in
which the requested row and column value resides:

row * columns + column

The next snippet shows the text format code that implements this formula. The
parameter value $row is pushed onto the stack, and then the $columns global variable
is pushed onto the stack. The i32.mul instruction pops the top two items off the stack,
multiplies them together, and then pushes the result onto the stack.

 The $column parameter value is pushed onto the stack, and then the i32.add
instruction is called, which pops the top two items off the stack, adds them together,
and pushes the result onto the stack, giving you the index within the array to find the
card value:

get_local $row
get_global $columns
i32.mul
get_local $column
i32.add

Pushes the parameter
value onto the stack

Has the cards and global
variables initialized for
the requested level

Pushes the $rows
value onto the stack

Pushes the $columns
value onto the stack

Pushes the parameter
value onto the stack

Tells the JavaScript
to display the cards

Multiplies $row by $columns

Adds $column to the result

277Creating the game’s core logic using WebAssembly text format
Once the array index has been determined, you need to shift the index left by 2
(multiply by 4) because each index represents a 4-byte, 32-bit integer. Then the start
location of the $cards array in memory is added to the adjusted index to get the
spot in the module’s memory where that index resides. With the memory index now
on the stack, the i32.load instruction is called, which pops the top item off the
stack, reads the item from that memory location, and pushes the value onto the
stack. Because this function returns an i32 result, you just leave the result of the
i32.load call on the stack, and it will be returned to the calling function when this
function ends.

 Add the code in the next listing after the $PlayLevel function in your cards.wast
file.

...

(func $GetCardValue (param $row i32) (param $column i32) (result i32)
 get_local $row
 get_global $columns
 i32.mul
 get_local $column
 i32.add

 i32.const 2
 i32.shl
 get_global $cards
 i32.add
 i32.load
)

The next func node that you’ll need to define is the $CardSelected function.

THE $CARDSELECTED FUNCTION

The $CardSelected function accepts two i32 parameters ($row and $column) and
doesn’t return a value. This function is called by the JavaScript code when the player
clicks a card.

 As the following snippet shows, before this function does anything, it checks to see
if the execution is paused. Execution will be paused if the player just clicked a second
card and the module is giving them a short delay before either flipping the cards face-
down or removing them. If execution is paused, the function exits by calling the
return statement:

get_global $execution_paused
i32.const 1
i32.eq
if

TheListing 11.8 $GetCardValue function for your cards.wast file

Multiplies the $row and
$columns values together

Adds the $column value to the
result of the multiplication

Shifts the index value left by 2
(multiplies by 4) because each
index represents a 32-bit integer

Adds the start position of the
$cards pointer array to the
index position

Reads the value from memory;
leaves it on the stack to be
returned to the calling function

278 CHAPTER 11 WebAssembly text format
 return
end

If execution isn’t paused, the function will then determine what the card value is for
the $row and $column specified in the parameter values by calling the $GetCardValue
function. The card value determined is placed in the $card_value local variable, as
shown in the following snippet:

get_local $row
get_local $column
call $GetCardValue
set_local $card_value

Next, the function calls the JavaScript $FlipCard function to have the card that was
clicked flipped faceup:

get_local $row
get_local $column
get_local $card_value
call $FlipCard

The code then checks to see if the $first_card_row value is set to -1. If so, then the
first card isn’t yet faceup, and the then block of the if statement executes. If the value
is not -1, the first card is already faceup, so the else block of the if statement exe-
cutes, as the following snippet shows:

get_global $first_card_row
i32.const -1
i32.eq
if

else

end

In the then block of the if statement, the values of $row, $column, and $card_value
are placed in the global variables $first_card_row, $first_card_column, and
$first_card_value, respectively.

 In the else block of the if statement, the code first checks to see if the $row and
$column values belong to the first card by calling the $IsFirstCard function. If the
player has clicked the same card again, the function exits, as shown in the following
snippet:

get_local $row
get_local $column
call $IsFirstCard
if
 return
end

$first_card_row’s value is
-1. The first card isn’t
faceup yet.

$first_card_row’s value isn’t -1.
The first card is faceup.

279Creating the game’s core logic using WebAssembly text format
If the player has clicked a different card, the else branch places the values of $row,
$column, and $card_value in the global variables $second_card_row, $second_
card_column, and $second_card_value, respectively. The else branch code then
gives the $execution_paused variable the value i32.const 1 to flag that execution is
now paused and this function isn’t to respond to clicks until execution is unpaused.

 Finally, as the next snippet shows, the code in the else branch pushes the value
i32.const 1024 onto the stack and then pushes i32.const 600 onto the stack. The
1024 value is the memory location of the string "SecondCardSelectedCallback" that
you’ll specify when you define the Data known section later in this chapter. The 600
value is the number of milliseconds for which you want the JavaScript code to pause
execution.

 Once the two values have been pushed onto the stack, the $Pause JavaScript func-
tion is called. The function expects two parameters, so the top two items on the stack
are popped off and passed as the parameters to the function:

i32.const 1024
i32.const 600
call $Pause

Putting it all together, add the code in the next listing after the $GetCardValue func-
tion in your cards.wast file.

...

(func $CardSelected (param $row i32) (param $column i32)
 (local $card_value i32)

 get_global $execution_paused
 i32.const 1
 i32.eq
 if
 return
 end

 get_local $row
 get_local $column
 call $GetCardValue
 set_local $card_value

 get_local $row
 get_local $column
 get_local $card_value
 call $FlipCard

 get_global $first_card_row
 i32.const -1
 i32.eq
 if
 get_local $row
 set_global $first_card_row

TheListing 11.9 $CardSelected function for your cards.wast file

Ignores clicks while
the game is paused

Gets the value of the card
for the row and column
specified

Tells the JavaScript
to show this card

If no card has been
clicked yet...

...remembers the details about
the card that was clicked

280 CHAPTER 11 WebAssembly text format

C
Jav

f

 get_local $column
 set_global $first_card_column

 get_local $card_value
 set_global $first_card_value
 else
 get_local $row
 get_local $column
 call $IsFirstCard
 if

return
 end

 get_local $row
 set_global $second_card_row

 get_local $column
 set_global $second_card_column

 get_local $card_value
 set_global $second_card_value

 i32.const 1
 set_global $execution_paused

 i32.const 1024
 i32.const 600
 call $Pause
 end
)

The next func node that you’ll need to define is the $IsFirstCard function.

THE $ISFIRSTCARD FUNCTION

The $IsFirstCard function accepts two i32 parameters ($row and $column) and
returns an i32 result. This function is called to determine if the $row and $column val-
ues are for the first card that’s displayed to the user.

 The function first checks to see if the $row parameter value matches the $first_
card_row global value and puts the result in the $rows_equal local variable. In the
same fashion, the function checks to see if the $column parameter value matches the
$first_card_column global value and puts the result in the $columns_equal local
variable.

 The function next pushes the $rows_equal and $columns_equal values onto the
stack and calls the i32.and instruction. This instruction pops the top two items off the
stack and does a bitwise AND operation on the values to determine if they’re both
equal; it then pushes the result back onto the stack. Because this function returns an
i32 result, you leave the result of the i32.and call on the stack; it will be returned to
the calling function when this function ends.

 Add the code in the next listing after the $CardSelected function in your
cards.wast file.

The first card is already shown.

If the player clicked the first
card again, exit the function.

Remembers the second card’s details

Don’t respond to clicks
until the Pause function
calls back into this module.

Location in memory of the string
"SecondCardSelectedCallback"

Duration before the
$SecondCardSelectedCallback function
is to be called by the JavaScript

alls the
aScript
$Pause
unction

281Creating the game’s core logic using WebAssembly text format

...

(func $IsFirstCard (param $row i32) (param $column i32) (result i32)
 (local $rows_equal i32)
 (local $columns_equal i32)

 get_global $first_card_row
 get_local $row
 i32.eq
 set_local $rows_equal

 get_global $first_card_column
 get_local $column
 i32.eq
 set_local $columns_equal

 get_local $rows_equal
 get_local $columns_equal
 i32.and
)

The next func node that you’ll need to define is the $SecondCardSelectedCallback
function.

THE $SECONDCARDSELECTEDCALLBACK FUNCTION

The $SecondCardSelectedCallback function doesn’t have any parameters or a return
value. This function is called by the JavaScript $Pause function when the timeout com-
pletes. It checks to see if the two cards that are selected are a match. If they are, the
JavaScript function $RemoveCards is called to have the two cards hidden, and then the
$matches_remaining global variable is decremented. If the two cards aren’t a match,
the JavaScript function $FlipCard is called for each card to have them flipped back
facedown. The global variables indicating which cards have been clicked are then
reset, and the $execution_paused variable is set to 0 (zero), indicating that the mod-
ule isn’t paused anymore.

 The function next checks to see if the $matches_remaining value is at 0 (zero),
indicating that the level is complete. If so, the memory for the $cards array is released
by calling the $free function that’s imported from the Emscripten-generated module.
The $LevelComplete JavaScript function is then called to inform the player that they
completed the level.

 Add the code in the next listing after the $IsFirstCard function in your cards.wast
file.

...

(func $SecondCardSelectedCallback
 (local $is_last_level i32)

TheListing 11.10 $IsFirstCard function for your cards.wast file

TheListing 11.11 $SecondCardSelectedCallback function for your cards.wast file

Determines if the first
card’s row matches the
current row

Determines if the first
card’s column matches the
current column

A bitwise AND to determine
if the rows and columns are
both equal

282 CHAPTER 11 WebAssembly text format
 get_global $first_card_value
 get_global $second_card_value
 i32.eq
 if
 get_global $first_card_row
 get_global $first_card_column
 get_global $second_card_row
 get_global $second_card_column
 call $RemoveCards

 get_global $matches_remaining
 i32.const 1
 i32.sub
 set_global $matches_remaining
 else
 get_global $first_card_row
 get_global $first_card_column
 i32.const -1
 call $FlipCard

 get_global $second_card_row
 get_global $second_card_column
 i32.const -1
 call $FlipCard
 end

 call $ResetSelectedCardValues

 i32.const 0
 set_global $execution_paused

 get_global $matches_remaining
 i32.const 0
 i32.eq
 if
 get_global $cards
 call $free

 get_global $current_level
 get_global $MAX_LEVEL
 i32.lt_s
 set_local $is_last_level

 get_global $current_level
 get_local $is_last_level
 call $LevelComplete
 end
)

The next func node that you’ll need to define is the $ReplayLevel function.

THE $REPLAYLEVEL FUNCTION

The $ReplayLevel function has no parameters or return value and is called by the
JavaScript when the player presses the Replay button. This function simply passes the
$current_level global variable to the $PlayLevel function.

 Add the code in the following snippet after the $SecondCardSelectedCallback
function in your cards.wast file:

If the two selected cards match...

...tells the JavaScript to hide the two cards

Decrements the global variable by 1
The two cards were not a match.

Tells the JavaScript to flip
the first card facedown

Tells the JavaScript to flip
the second card facedown

Sets the global variables for
the selected cards to -1

Turns off the flag, allowing
the $CardSelected function
to accept clicks again

If there are no matches remaining...

...frees the memory used by
the $cards global variable

Determines if the current
level is the last one

Calls the JavaScript function to tell the player they
beat the level and whether there’s another level

283Creating the game’s core logic using WebAssembly text format
(func $ReplayLevel
 get_global $current_level
 call $PlayLevel
)

The next func node that you’ll need to define is the $PlayNextLevel function.

THE $PLAYNEXTLEVEL FUNCTION

The $PlayNextLevel function has no parameters or return value and is called by the
JavaScript when the player presses the Next Level button. This function calls the
$PlayLevel function, passing it a value that’s 1 greater than the $current_level
global variable’s value.

 Add the code in the following snippet after the $ReplayLevel function in your
cards.wast file:

(func $PlayNextLevel
 get_global $current_level
 i32.const 1
 i32.add
 call $PlayLevel
)

The next func node that you’ll need to define is the $main function.

THE $MAIN FUNCTION

The $main function has no parameters or return value. This function is called auto-
matically when the module is instantiated because you specify it as part of the start
node. It calls the $PlayLevel function, passing it a value of 1 to start the first level of
the game.

 Add the code in the following snippet after the $PlayNextLevel function in your
cards.wast file:

(func $main
 i32.const 1
 call $PlayLevel
)

Now that you have all the functions defined for your core logic, your next step is to
add in the type nodes.

11.1.10The type nodes

As figure 11.13 shows, the Type known section declares a list of all unique function sig-
natures that will be used in the module, including those that will be imported. When
using the Binary Toolkit to generate a module, the type s-expression nodes are
optional because the toolkit can determine the signatures based on the import func-
tion definitions and the defined functions within the module. Because you’ll see the
type s-expressions defined when viewing the text format in a browser’s developer
tools, you’ll define them here also for completeness.

284 CHAPTER 11 WebAssembly text format
A type is defined using an s-expression that has the label type, followed by an optional
variable name, and then by the function signature. For example, the following would
be a type definition for a function signature that has no parameters and no return
value:

(type (func))

You can give a type any name you wish, but we’ll follow Emscripten’s naming conven-
tion, which is a variable name similar to $FUNCSIG$vi. The value following the second
dollar sign indicates the function’s signature. The first character is the function’s
return value type, and each additional character indicates the parameter types. The
characters Emscripten uses are

 v—Void
 i—32-bit integer
 j—64-bit integer
 f—32-bit float
 d—64-bit float

The Type known section appears as the first section in the module, but you waited
until now to implement it so that you could create the module’s functions first. Now
you can go through your functions and imports to put together a list of all unique
function signatures.

ADDING THE TYPE NODES TO THE GAME

Looking over the imported functions and the function’s you’ve built for this module,
you have seven unique function signatures, shown in table 11.4.

Table 11.4 The seven unique function signatures this module uses

Return type Param 1 Param 2 Param 3 Param 4
Emscripten
signature

v----void

vi---i32void

vii--i32i32void

Module

List of unique
function signatures
used in the module

Type

(i32, i32) → (i32)
(i64, i64) → ()

() → ()

Version 1

Figure 11.13 The Type known section
declares a list of all unique function
signatures that will be used in the module,
including those that will be imported.

285Creating the game’s core logic using WebAssembly text format
With the unique function signatures determined in table 11.4, all that’s left to do is
create the type nodes for each signature. Add the type s-expressions from the follow-
ing snippet to your cards.wast file before the import nodes and within the module
s-expression:

(type $FUNCSIG$v (func))
(type $FUNCSIG$vi (func (param i32)))
(type $FUNCSIG$vii (func (param i32 i32)))
(type $FUNCSIG$viii (func (param i32 i32 i32)))
(type $FUNCSIG$viiii (func (param i32 i32 i32 i32)))
(type $FUNCSIG$ii (func (param i32) (result i32)))
(type $FUNCSIG$iii (func (param i32 i32) (result i32)))

The final section that you need to define for this game is the Data section.

11.1.11The data node

As figure 11.14 shows, the Data known section declares the data to load into the mod-
ule’s linear memory during instantiation.

viii-i32i32i32void

viiiii32i32i32i32void

ii---i32i32

iii--i32i32i32

The seven unique function signatures this module usesTable 11.4 (continued)

Return type Param 1 Param 2 Param 3 Param 4
Emscripten
signature

Signature with no return
value or parameters

No return value, one
32-bit integer parameter No return value, two

32-bit integer parameters

No return value, three
32-bit integer parameters

No return value, four
32-bit integer parameters

32-bit integer return value,
two 32-bit integer parameters

32-bit integer return
value, one 32-bit
integer parameter

Data to load into the
linear memory during
instantiation

Code

Code for Function 0
Code for Function 1
Code for Function 2

Initialization data for memory

Data

Any kind of data

Custom sections

Figure 11.14 The Data known section
declares the data to load into the module’s
linear memory during instantiation.

286 CHAPTER 11 WebAssembly text format
The data s-expression starts out with the label data, followed by an s-expression indi-
cating where in the module’s memory the data should go, and then by a string con-
taining the data to place in memory.

 You need to place the string "SecondCardSelectedCallback" into the module’s
memory. This module will be manually linked to an Emscripten-generated module at
runtime, and Emscripten-generated modules sometimes place data of their own in the
module’s memory. As a result, you’ll place the string at memory index 1024 to leave
room in case the Emscripten-generated module wants to put something in memory
too.

 Add the code in the following snippet to your cards.wast file after the func
s-expressions and within the module s-expression to have the string "SecondCard-
SelectedCallback" placed at index 1024 in the module’s memory:

(data (i32.const 1024) "SecondCardSelectedCallback")

Once your text format module is complete, your next step is to convert it into a binary
module (figure 11.15).

11.2 Generating a WebAssembly module from the text format
To compile the WebAssembly text format into a WebAssembly module using the
wat2wasm online tool, go to the following website: https://webassembly.github.io/
wabt/demo/wat2wasm/. As figure 11.16 shows, in the tool’s top-left pane, you can
replace the existing text with the text from your cards.wast file. The tool automatically
creates the WebAssembly module for you. Click the Download button to download the
generated WebAssembly file to your Chapter 11\ source\ folder, and name it
cards.wasm.

 Now that you’ve generated the WebAssembly module from the text format code,
you can move on to the next step and create the Emscripten-generated module (fig-
ure 11.17).

WebAssembly
Binary Toolkitcards.wast

2. The WebAssembly Binary Toolkit generates
the Wasm file from the text format.

cards.wasm

Generating a Wasm file from the WebAssembly text formatFigure 11.15

https://webassembly.github.io/wabt/demo/wat2wasm/
https://webassembly.github.io/wabt/demo/wat2wasm/
https://webassembly.github.io/wabt/demo/wat2wasm/

287The Emscripten-generated module
The Emscripten-generated module11.3
The Emscripten-generated module provides your cards.wasm module with the neces-
sary standard C library functions, like malloc, free, and the random number genera-
tor functions srand and rand. The two modules will be manually linked at runtime. As
shown in figure 11.18, now you’ll create the C++ file.

2. Download the
 WebAssembly file.

1. Replace the contents of this pane with
 the contents of your cards.wast file.

Figure 11.16 Replace the contents of the top-left pane with the contents of your cards.wast
file. Then download the WebAssembly file.

Emscriptenmain.cpp

3. Create the logic needed by
 the cards.wasm module.

4. Emscripten generates
 the WebAssembly files
 from main.cpp.

The standard C library
functions will be included.

main.wasm main.js

Creating the C++ file containingFigure 11.17 the logic needed for your cards.wasm module

288 CHAPTER 11 WebAssembly text format
11.3.1 Creating the C++ file

In your Chapter 11\source\ folder, create a main.cpp file, and open it with your favor-
ite editor. You need to define two functions that will be exported for use by the game’s
logic module.

 The first function is called SeedRandomNumberGenerator and passes the srand
function a seed value. The seed value will be the current time, which will be obtained
by calling the time function. The time function can accept a pointer to a time_t
object to populate with the time, but you don’t need that here, so you’ll just pass NULL,
as follows:

EMSCRIPTEN_KEEPALIVE
void SeedRandomNumberGenerator() { srand(time(NULL)); }

The second function that you need to create is called GetRandomNumber; it accepts a
range and returns a random number within that range. For example, if the value for
the range is 10, the random number will be between 0 and 9. The following is the
GetRandomNumber function:

EMSCRIPTEN_KEEPALIVE
int GetRandomNumber(int range) { return (rand() % range); }

The logic module also needs access to the malloc and free functions, but the
Emscripten-generated module will include those automatically. Add the code in the
next listing to your main.cpp file.

#include <cstdlib>
#include <ctime>
#include <emscripten.h>

#ifdef __cplusplus
extern "C" {
#endif

EMSCRIPTEN_KEEPALIVE
void SeedRandomNumberGenerator() { srand(time(NULL)); }

The contents of the main.cpp fileListing 11.12

Emscriptenmain.cpp

3. Create the logic needed by
the cards.wasm module.

main.wasm main.js

Creating the C++ file containingFigure 11.18 the logic needed for your cards.wasm module

289The Emscripten-generated module
EMSCRIPTEN_KEEPALIVE
int GetRandomNumber(int range) { return (rand() % range); }

#ifdef __cplusplus
}
#endif

Now that you’ve created your main.cpp file, you’ll use Emscripten to turn it into a
WebAssembly module, as figure 11.19 shows.

11.3.2 Generating a WebAssembly module

To compile the code into a WebAssembly module, open a command prompt, navigate
to the folder where you saved the main.cpp file, and then run the following command:

emcc main.cpp -o main.js

Your next step, shown in figure 11.20, is to copy the generated files to a location for
use by the browser. You’ll then create the HTML and JavaScript files needed for the
web page to interact with the modules.

Emscriptenmain.cpp

4. Emscripten generates
 the WebAssembly files
 from main.cpp.

The standard C library
functions will be included.

main.wasm main.js

Using Emscripten to generate a WebAssembly module from main.cppFigure 11.19

5. WebAssembly files are copied to
 the server for use by the browser.

HTML and JavaScript files
are created to load, link,
and interact with the modules.

cards.wasm
main.wasm

main.js

Browser

cards.wasm
main.wasm

Figure 11.20 Copying the generated files to the server for use by the
browser. You’ll then create the HTML and JavaScript files needed for the web
page to interact with the modules.

290 CHAPTER 11 WebAssembly text format
11.4 Creating the HTML and JavaScript files
In your WebAssembly\Chapter 11\ folder, create a frontend\ folder for the files that
you’ll use in this section. Then copy the following files from your source\ folder to
your frontend\ folder:

 cards.wasm
 main.wasm
 main.js
 editproduct.html from your Chapter 4\4.1 js_plumbing\frontend\ folder;

rename to game.html

You’ll start building the game’s web page by first adjusting the game.html file.

11.4.1 Modifying the HTML file

Open the game.html file in your favorite editor, and change the text in the title tag
from Edit Product to Wasm Match, as shown in the following snippet:

<title>Wasm Match</title>

After the last script tag in the head tag, add the following link tag, which will load
the CSS needed for styling the cards in the game:

<link rel="stylesheet" href="game.css">

NOTE The game.css file can be found with the source code for this book,
which is available for download from the publisher’s website at www.manning
.com/books/webassembly-in-action. Add the game.css file to the same folder
as your game.html file.

Modify the body tag so that it no longer has an onload="initializePage()" attri-
bute. The body tag should now look like this:

<body>

Following the body tag, revise the div tag so that its class attribute value becomes
root-container. Then delete the HTML within the div. The div should now look
like the following snippet:

<div class="root-container">

</div>

Within the root-container div, add the HTML in the following snippet. The HTML
shows the name of the game on the web page as well as the current level that’s being
played. If the player decides to advance to the next level, the JavaScript will adjust the
h3 tag to indicate the new level:

<header class="container-fluid">
 <h1>Wasm Match</h1>
 <h3 id="currentLevel">Level 1</h3>

The class name is
renamed to root-
container from container.

The HTML within the div
has been removed.

Shows the name of the game on the web page
Shows the current level being played

</header>

www.manning.com/books/webassembly-in-action
www.manning.com/books/webassembly-in-action
www.manning.com/books/webassembly-in-action

291Creating the HTML and JavaScript files
After the header tag, and still within the root-container div, add the div tag shown
in the following snippet. The game’s cards will be placed within this div by the Java-
Script code:

<div id="cardContainer" class="container-fluid"></div>

The next thing you need to do is add some HTML that will be presented to the player
when they win a level. The HTML will indicate which level they completed and will
give them the option to either replay the current level or play the next level (if there is
a next level). Add the following HTML after the cardContainer div, and within the
root-container div:

<div id="levelComplete" class="container-fluid summary"

➥ style="display:none;">
 <h1>Congratulations!</h1>
 <h3 id="levelSummary"></h3>

 <button class="btn btn-primary"

➥ onclick="replayLevel();">Replay</Button>

 <button class="btn btn-primary" id="playNextLevel"

➥ onclick="playNextLevel();">Next Level</Button>
</div>

The final changes that you need to make to the game.html file are the script tag src
values at the end of the file. You’ll create a game.js file in a moment that will handle
linking the two modules together and interacting with the module. Change the first
script tag’s value to game.js and the second script tag’s value to main.js (the
Emscripten-generated JavaScript code):

<script src="game.js"></script>
<script src="main.js"></script>

With the HTML now adjusted, the next step is to create the JavaScript that will link
the two modules together and interact with the main logic in the cards.wasm module.

11.4.2 Creating the JavaScript file

In your frontend\ folder, create a game.js file, and then open it with your favorite edi-
tor. Add the global variables in the following code snippet to your game.js file to hold
the module’s memory and exported functions:

let moduleMemory = null;
let moduleExports = null;

Your next step is to create a Module object so that you can handle Emscripten’s
instantiateWasm function. This will allow you to control the process of downloading
and instantiating the Emscripten-generated WebAssembly module. You’ll then be

Not shown by default. The
JavaScript will show this
div if the player wins.

Will hold details
about the level that

was completed

Button the player can
click to replay the
current level

Button the player
can click to play the
next level; hidden if
there are no other
levels

Was editproduct.js
Was validate.js

292 CHAPTER 11 WebAssembly text format

ref

mo
able to download and instantiate the cards.wasm file, linking it to the Emscripten-
generated module.

 Within the instantiateWasm function, you need to implement the following:

 Place a reference to the importObject’s memory object into the moduleMemory
global variable for use by your JavaScript later.

 Define a variable that will hold the instance of the main.wasm module once
instantiated.

 Then call the WebAssembly.instantiateStreaming function, fetching the
main.wasm file and passing in the importObject received from Emscripten.

 In the then method of the instantiateStreaming Promise, define the import
object for the cards.wasm module, passing in functions from the main.wasm
module as well as JavaScript functions from your own JavaScript code. Then call
WebAssembly.instantiateStreaming to fetch the cards.wasm module.

 In the then method of the cards.wasm instantiateStreaming Promise, place a
reference to the module’s exports in the moduleExports global variable. Finally,
pass the module instance of the main.wasm module to Emscripten.

Add the code in the next listing to your game.js file after your global variables.

...

var Module = {
 instantiateWasm: function(importObject, successCallback) {
 moduleMemory = importObject.env.memory;
 let mainInstance = null;

 WebAssembly.instantiateStreaming(fetch("main.wasm"),
importObject)

 .then(result => {
 mainInstance = result.instance;

 const sideImportObject = {
 env: {
 memory: moduleMemory,

 _malloc: mainInstance.exports._malloc,
 _free: mainInstance.exports._free,
 _SeedRandomNumberGenerator:

➥ mainInstance.exports._SeedRandomNumberGenerator,
 _GetRandomNumber: mainInstance.exports._GetRandomNumber,
 _GenerateCards: generateCards,
 _FlipCard: flipCard,
 _RemoveCards: removeCards,
 _LevelComplete: levelComplete,
 _Pause: pause,

Listing 11.13 The Module object in the game.js file

Emscripten’s JavaScript will look for
this object to see if your code is
overriding anything. Allows you to control the main

module’s instantiation

Keeps a reference to
the memory object for
use by your JavaScript

Keeps a
erence to the

main.wasm
dule instance

Downloads and instantiates
the Emscripten-generated
WebAssembly module

Creates the import
object needed by the
cards.wasm module

Uses the same memory as
the main module instance

293Creating the HTML and JavaScript files
 }
 };

 return WebAssembly.instantiateStreaming(fetch("cards.wasm"),
 sideImportObject)

 }).then(sideInstanceResult => {
 moduleExports = sideInstanceResult.instance.exports;

 successCallback(mainInstance);
 });

 return {};
 }
};

When the cards.wasm module is instantiated, it will automatically start level 1 and call
your JavaScript generateCards function to have the proper number of cards dis-
played on the screen. This function will also be called when the player chooses to
replay the level or play the next level. Add the code in the next listing to your game.js
file after the Module object.

...

function generateCards(rows, columns, level) {
 document.getElementById("currentLevel").innerText
 = `Level ${level}`;

 let html = "";
 for (let row = 0; row < rows; row++) {
 html += "<div>";

 for (let column = 0; column < columns; column++) {
 html += "<div id=\"" + getCardId(row, column)
 + "\" class=\"CardBack\" onclick=\"onClickCard("
 + row + "," + column + ");\"></div>";
 }

 html += "</div>";
 }

 document.getElementById("cardContainer").innerHTML = html;
}

Each card displayed is given an ID based on its row and column values. The get-
CardId function will return the ID of the card specified by the row and column values.
Add the function in the following code snippet after the generateCards function in
the game.js file:

function getCardId(row, column) {
 return ("card_" + row + "_" + column);
}

TheListing 11.14 generateCards function in the game.js file

Downloads and instantiates
the cards.wasm module

Keeps a reference to the
cards.wasm module’s

exports for use by
your JavaScript

Passes the main
module instance to

Emscripten’s
JavaScript code

Because this is done
asynchronously, passes
back an empty object

Called by the module to have the
proper number of cards displayed

Adjusts the header section to
indicate the current level

Will hold
the HTML

for the
cards

Each row’s cards will be in a div tag.

Builds the HTML
for the current
cardCloses the div tag for the current row

Updates the web
page with the HTML

294 CHAPTER 11 WebAssembly text format
Whenever the player clicks a card, the module will call the flipCard function to have
the card’s face shown. If the player clicks a second card, and the cards don’t match,
then—after a brief delay so that the player can see the cards they clicked—the module
will call the flipCard function again for both cards to have them flipped facedown.
When the module wants the card flipped facedown, it will specify a cardValue of -1.
Add the flipCard code in the following snippet after the getCardId function in your
game.js file:

function flipCard(row, column, cardValue) {
 const card = getCard(row, column);
 card.className = "CardBack";

 if (cardValue !== -1) {
 card.className = ("CardFace "

+ getClassForCardValue(cardValue));
 }
}

The getCard helper function returns the DOM object for the card requested based on
the row and column value specified. Add the getCard function after the flipCard
function in your game.js file:

function getCard(row, column) {
 return document.getElementById(getCardId(row, column));
}

When a card is faceup, it includes a second CSS class name to indicate which image to
display. The card values used in the game are 0, 1, 2, and up depending on how many
levels there are. The getClassForCardValue function will return a class name starting
with Type and with the card’s value appended to the end (Type0, for example). Add
the following code after the getCard function in your game.js file:

function getClassForCardValue(cardValue) {
 return ("Type" + cardValue);
}

When the player successfully finds two cards that match, the module will call the
removeCards function to have those cards removed. Add the code in the following
snippet after the getClassForCardValue function in your game.js file:

function removeCards(firstCardRow, firstCardColumn,
 secondCardRow, secondCardColumn) {
 let card = getCard(firstCardRow, firstCardColumn);
 card.style.visibility = "hidden";

 card = getCard(secondCardRow, secondCardColumn);
 card.style.visibility = "hidden";
}

Called by the module to flip the card
either faceup or facedown

Gets a reference to
the card in the DOM

Defaults the card
to be facedown

If a value was specified, then
the card needs to be faceup.

CardFace is for the card and the
value from getClassForCardValue
for the image.

Gets a reference to the
first card in the DOM

The card is hidden but still
occupies the same space to
prevent the cards from
moving around.

Hides the second card

295Creating the HTML and JavaScript files

he

ls,

Once the player has found all the matches for the current level, the module will call
the levelComplete function so that the JavaScript can inform the player and offer the
option to replay the current level. If the module indicates that there’s another level
available, the player will also get the opportunity to play the next level. Add the code
in the next listing after the removeCards function in your game.js file.

...

function levelComplete(level, hasAnotherLevel) {
 document.getElementById("levelComplete").style.display

➥ = "";

 document.getElementById("levelSummary").innerText =
 `You've completed level ${level}!`;

 if (!hasAnotherLevel) {
 document.getElementById("playNextLevel").style.display =

➥ "none";
 }
}

When the player clicks a second card, the module will give the player a brief pause
before either flipping the cards facedown if they don’t match or hiding them if they do
match. To pause execution, the module calls the pause JavaScript function, indicating
which module function it wants the JavaScript to call once the timeout completes. It
also passes the duration that it wants the timeout to be, in milliseconds. Add the code
in the following snippet to your game.js file after the levelComplete function:

function pause(callbackNamePointer, milliseconds) {
 window.setTimeout(function() {
 const name = ("_" +
 getStringFromMemory(callbackNamePointer));

 moduleExports[name]();
 }, milliseconds);
}

The getStringFromMemory function that you’ll create next is copied from the Java-
Script code used by previous chapters to read a string from the module’s memory.
Add the code in the next listing after your pause function in the game.js file.

TheListing 11.15 levelComplete function in the game.js file

TheListing 11.16 getStringFromMemory function for the game.js file

Shows the level complete section

Indicates which level t
player just completed

If there are no other leve
then hide the button for
playing the next level.

Creates an anonymous
function that will be called
when the timeout completes

Gets the function’s name
from the module’s memory
and prefixes it with the
underscore character

Calls the function
that was specified

The timeout will trigger
after the specified
number of milliseconds.

...

function getStringFromMemory(memoryOffset) {
let returnValue = "";

const size = 256;
const bytes = new Uint8Array(moduleMemory.buffer, memoryOffset, size);

296 CHAPTER 11 WebAssembly text format
 let character = "";
 for (let i = 0; i < size; i++) {
 character = String.fromCharCode(bytes[i]);
 if (character === "\0") { break;}

 returnValue += character;
 }

 return returnValue;
}

Whenever the player clicks a card, the card’s div tag will call the onClickCard func-
tion, passing in the card’s row and column values. Your onClickCard function needs
to pass these values to the module by calling the _CardSelected function. Add the
code in the following snippet after your getStringFromMemory function in your
game.js file:

function onClickCard(row, col) {
 moduleExports._CardSelected(row, col);
}

When the player completes the level, they’re presented with a button allowing them
to replay the current level. The button will call your replayLevel function. In your
function, you’ll need to hide the level complete section and then tell the module that
the player wants to replay the level by calling the _ReplayLevel function. Add the fol-
lowing code after your onClickCard function in your game.js file:

function replayLevel() {
 document.getElementById("levelComplete").style.display

➥ = "none";

moduleExports._ReplayLevel();
}

Also, when the player completes the level, they’ll see a button letting them play the
next level (if there is one). When clicked, the button will call your playNextLevel
JavaScript function. In this function, you’ll need to hide the level complete section
and then tell the module that the player wants to play the next level by calling the
_PlayNextLevel function. Add the code in the following snippet after your
replayLevel function in your game.js file:

function playNextLevel() {
 document.getElementById("levelComplete").style.display = "none";

 moduleExports._PlayNextLevel();
}

Now that all your files have been created, you can view the results.

Tells the module that the
card at this row and column
position was clicked

Hides the level complete section

Tells the module that the player
wants to replay the current level

Tells the module that the player
wants to play the next level

297Exercises
Viewing the results11.5
To view the results, open your browser and type http://localhost:8080/game.html
into the address box to see the game’s web page, shown in figure 11.21.

How can you use what you learned in this chapter in the real world?

Real-world use cases
The following are some possible use cases for what you’ve learned in this chapter:

 As you’ll see in chapter 12, the text format is used by browsers when showing
the contents of a WebAssembly module if source maps are unavailable. It’s also
possible to set a breakpoint and step through the text format code, which might
be necessary to track down an issue if you can’t reproduce it locally.

 As you saw in chapter 6 and will see again in chapter 12, you can include the -g
flag with the emcc command to have Emscripten also output a .wast file. If
you’re receiving errors when trying to instantiate a module, or you’re not sure
why something isn’t working, sometimes it helps to take a look at the contents
of this file.

Exercises
You can find the solutions to the exercises in appendix D.

1 When using the WebAssembly Binary Toolkit to create a WebAssembly module,
which s-expression nodes have to appear before the table, memory, global, and
func s-expressions?

Level 3 of the
card-matching
game

Figure 11.21 The card-matching game looks like this when the player
reaches level 3.

298 CHAPTER 11 WebAssembly text format
2 Try modifying the InitializeRowsAndColumns function in the text format code
so that it now supports six levels rather than three:
a Level 4 should have 3 rows and 4 columns.
b Level 5 should have 4 rows and 4 columns.
c Level 6 should have 4 rows and 5 columns.

Summary
In this chapter, you learned the following:

 There is a text equivalent of the WebAssembly binary format called the Web-
Assembly text format. This allows you to see and work with a module using
human-readable text, rather than having to work with the binary format
directly.

 The text format allows a browser user to inspect a WebAssembly module in
much the same way they would inspect a web page’s JavaScript.

 The text format isn’t intended to be written by hand, but it’s possible to do so
using tools like the WebAssembly Binary Toolkit.

 The text format uses s-expressions to represent the elements of the module
in a simple way. The root element is the module s-expression, and all other
s-expressions are children of this node.

 There are s-expressions that correspond to the binary format’s known sections.
Only the import node’s position matters; if it’s included, it needs to appear
before the table, memory, global, and func nodes. Also, the Function and
Code known sections in the binary format are represented by a single func
s-expression in the text format.

 The four value types supported by WebAssembly are represented in the text for-
mat as i32 (32-bit integer), i64 (64-bit integer), f32 (32-bit float), and f64 (64-
bit float).

 To make working with the four types of data easier, the text format has an object
for each type with that type’s name (i32.add, for example).

 The code in a function acts as a stack machine in which values are pushed onto
and popped off the stack. The code within a function can be written using
either the stack machine format or the s-expression format. Browsers display a
function’s code using the stack machine format.

 If a function doesn’t return a value, the stack must be empty when the function
exits. Otherwise, an item of that type must be on the stack when the function
exits.

 You can reference items by their index or variable name.
 A function’s parameters are considered local variables, and their indexes come

before any local variables defined in the function. Also, local variables must be
defined before anything else in the function.

299Summary
 At the moment, browsers display the get and set instructions for local and
global variables in the format set_local or get_global. The WebAssembly
specification was changed—the new format is local.set or global.get—but
the way you make the calls remains the same as the original format.

Debugging
At some point during development, you’ll likely discover that your code isn’t work-
ing as expected, and you need to find a way to track down the issue. Sometimes
tracking it down is as simple as reading over the code. Other times, you need to dig
deeper.

 At the time of writing, WebAssembly’s debugging options are a bit limited, but
this will change as browser and IDE (integrated development environment) tool-
ing improve. At the moment, you have the following options for debugging a Web-
Assembly module:

 You can make a small number of changes and then compile and test often so
that if there’s an issue, it’s easier to track down. In this case, reading over
your code changes might shed some light on the issue.

 If there are compiler issues, you can tell Emscripten to include verbose out-
put by enabling debug mode. In this mode, debug logs and intermediate
files are output. The EMCC_DEBUG environment variable or the -v compiler

This chapter covers
 Various debugging methods for WebAssembly modules

 Error handling during compilation and at runtime

 Debugging with browser developer tools
300

301Extending the game
flag are used to control debug mode. You can find more information about
debug mode in the Emscripten documentation at http://mng.bz/JzdZ.

 You could output information from your module to the browser’s console using
an imported JavaScript function, one of Emscripten’s macros, or functions like
printf. Doing this allows you to see which functions are being called and what
values the variables you’re interested in hold at that point. With this approach,
you start off by logging areas that you think may hold clues about the issue. You
can add more logging as you narrow down the location. (Appendix C has more
information about Emscripten’s macros.)

 In some browsers, you can view the text format version of the WebAssembly
module, set breakpoints, and step through the code. You’ll learn how to use this
approach to debug a module in this chapter.

 Emscripten has a number of -g flags (-g0, -g1, -g2, -g3, -g4) that include pro-
gressively more debug information in the compiled output. The -g flag is the
same as using -g3. When using -g flags, Emscripten also generates a text format
file (.wast) equivalent of the binary file that’s generated, which is helpful if
you’re having issues with linking—for example, passing the proper items to the
module during instantiation. You could check the text format file to see what it’s
importing to make sure you’re providing the expected items. More information
on -g flags can be found at http://mng.bz/wlj5.

 The -g4 flag is interesting because it generates source maps, allowing you to
view your C or C++ code in the browser’s debugger. This is promising as a future
debugging option. But although this approach does show your C or C++ code
in the debugger, and breakpoints are hit, the debugging doesn’t work very well
at the time of writing. For example, if your function has a parameter variable
with a specific name, you can’t do a watch on it because the text format might
actually be using a variable like var0. Asking the debugger to step over the code
might also take several tries because, under the hood, several text format steps
are happening for that one statement, and the step-over call is happening per
text format statement.

In this chapter, you’ll put some of the debugging options to use as you add a feature
to the card-matching game that you built in chapter 11.

12.1 Extending the game
Imagine that you’re going to extend the card-matching game so that it keeps track of
how many tries it takes the player to complete the level, as figure 12.1 shows. It’s con-
sidered a try when the player clicks the second card, regardless of whether it’s a match.

 In this chapter, to learn about available debugging options, I’ll have you make
intentional mistakes so that you’ll need to debug the code to determine where and
what the issue is. Rather than making all these changes in the WebAssembly module

http://mng.bz/JzdZ
https://emscripten.org/docs/porting/Debugging.html#debug-information
http://mng.bz/wlj5

302 CHAPTER 12 Debugging
first and then adjusting the JavaScript, you’ll make changes to both the module and
JavaScript one function at a time.

 Figure 12.2 graphically represents the following high-level steps you’ll use to adjust
the game to include the number of tries:

1 Adjust the HTML so that the subtitle includes a section for the number of tries.
2 Adjust the text format and JavaScript code to display the number of tries on the

web page when the level starts.
3 Add the code to increment the number of tries and display the new value when

the player clicks the second card.
4 Pass the number of tries to the summary screen when the player completes the

level.

Your first step is to adjust the HTML so that it now includes a section for the number
of tries.

12.2 Adjusting the HTML
Before you can adjust the HTML to include the number of tries, you’ll need to create
a folder for this chapter’s files. In your WebAssembly\ folder, create a Chapter 12 \
folder, and then copy the frontend\ and source\ folders from your Chapter 11\ folder.

 In the frontend\ folder, open the game.html file in your editor. At the moment,
your JavaScript code replaces the content of the h3 tag—your header tag—with the
word Level followed by the level’s value (Level 1, for example). You need to modify
the h3 tag so that it also includes the number of tries:

 Remove the id attribute and its value from the h3 tag.
 Add the text Level: and then a span tag with an id attribute having the value

currentLevel (id="currentLevel"). This span will now hold the current level.
 Add the text Tries: and then a span tag with an id attribute having the value

tries (id="tries"). This span will display the number of tries.

Adjust the subtitle
to include the number
of tries.

Figure 12.1 Level 2 of the card-matching game with the subtitle
adjusted to include the number of tries

303Adjusting the HTML
Your header tag in the game.html file should now match the code in the following
snippet:

<header class="container-fluid">
 <h1>Wasm Match</h1>
 <h3>
 Level: 1
 Tries:
 </h3>
</header>

Now that the HTML has been adjusted, your next step is to modify the WebAssembly
text format and JavaScript code to display the value for the number of tries when the
level starts.

1. Adjust the HTML to include a
section for the number of tries.

2. Adjust the code to display the number
of tries when the level starts.

3. Add code to increment the number of tries
when the player clicks the second card.

4. Pass the number of tries to
the summary screen when the
player completes the level.

The high-level steps that will be used to adjust the game to include the number of triesFigure 12.2

Removes the id attribute

304 CHAPTER 12 Debugging
Display12.3 ing the number of tries
In the next part of the process, you need to modify the code to show the number of
tries when the level starts. To do this, you’ll use the following steps, also depicted in
figure 12.3:

1 Adjust the generateCards JavaScript function to receive another parameter
indicating the number of tries to display when the level starts.

2 In the text format, create the global $tries variable to hold the number of
tries. Then modify the $PlayLevel function to pass the number of tries to the
generateCards JavaScript function.

3 Use the WebAssembly Binary Toolkit to generate a WebAssembly module from
the text format (cards.wasm).

4 Copy the generated WebAssembly file to the server for use by the browser, and
then test that the changes are working as expected.

The first item that you need to modify is the generateCards function in the game.js
file.

WebAssembly
Binary Toolkit

game.js

1. Adjust the generateCards JavaScript
function to receive the number of tries
to display when the level starts.

cards.wast

2. Create a $tries global variable in the
text format, and pass its value to the
generateCards JavaScript function.

3. Use the WebAssembly Binary
Toolkit to generate the Wasm
file from the text format.

4. Copy the WebAssembly file to
the server for use by the browser,
and then test the changes.

cards.wasm

Browser

cards.wasm
main.wasm

Figure 12.3 Adjust the JavaScript and text format code
to display the number of tries when the level starts.

305Displaying the number of tries
12.3.1 The generateCards JavaScript function

Open the game.js file and locate the generateCards function. You need to add a
fourth parameter called tries to the function, after the existing parameters. This
parameter will be passed to this function by the WebAssembly module so that it can be
displayed on the web page when the level starts.

 Adjust the generateCards function in the game.js file to look like the code in the
following listing.

...

function generateCards(rows, columns, level, tries) {
 document.getElementById("currentLevel").innerText = level;
 document.getElementById("tries").innerText = tries;

 let html = "";
 for (let row = 0; row < rows; row++) {
 html += "<div>";

 for (let column = 0; column < columns; column++) {
html += "<div id=\"" + getCardId(row, column)

+ "\" class=\"CardBack\" onclick=\"onClickCard("
+ row + "," + column + ");\"></div>";

 }

 html += "</div>";
 }

 document.getElementById("cardContainer").innerHTML = html;
}
...

As figure 12.4 shows, the next change that you need to make is to create a $tries
global variable in the text format to hold the number of tries that the player makes.
You then need to pass that value to the generateCards JavaScript function.

Listing 12.1 The generateCards function in game.js

Adds the parameter tries

Just passes
the level
value itself

Add this line of code
to update the number
of the tries element.

WebAssembly
Binary Toolkitcards.wast

2. Create a $tries global variable in the
text format, and pass its value to the
generateCards JavaScript function.

cards.wasm

Figure 12.4 Create the $tries global variable in the text format code, and pass the
value to the generateCards JavaScript function.

306 CHAPTER 12 Debugging
12.3.2 Adjusting the text format

In this section, you’ll create a $tries global variable and pass it to the generateCards
JavaScript function. Open the cards.wast file, and then navigate to the Global known
section.

 Add a mutable i32 global variable called $tries after the $matches_remaining
global variable in your cards.wast file. The global variable should look like the follow-
ing snippet:

(global $tries (mut i32) (i32.const 0))

Now that you’ve defined the global variable, you need to pass it as the generateCards
JavaScript function’s fourth parameter. Navigate to the $PlayLevel function, and put
the $tries value on the stack as the fourth parameter to the $GenerateCards func-
tion call (between the $level variable and the call $GenerateCards line of code).

 In your cards.wast file, the modified $PlayLevel function should now look like
this:

(func $PlayLevel (param $level i32)
 get_local $level
 call $InitializeCards

 get_global $rows
 get_global $columns
 get_local $level
 get_global $tries
 call $GenerateCards
)

At the end of the $InitializeCards function, following the call $ShuffleArray line
of code in your cards.wast file, add the following code to reset the $tries value every
time a level is started:

get_global 6
set_global $tries

Once the text format code has been adjusted, figure 12.5 shows your next step, in
which you’ll use the WebAssembly Binary Toolkit to turn the text format code into the
cards.wasm file.

The tries value is placed on the
stack for generateCard’s fourth
parameter.

WebAssembly
Binary Toolkitcards.wast

3. Use the WebAssembly Binary
Toolkit to generate the Wasm
file from the text format.

cards.wasm

Figure 12.5 Use the WebAssembly Binary Toolkit to generate the
cards.wasm file from the text format.

307Displaying the number of tries
12.3.3 Generating the Wasm file

To compile the WebAssembly text format into a WebAssembly module using the
wat2wasm online tool, go to the following website and copy the contents of your
cards.wast file into the tool’s top-left pane: https://webassembly.github.io/wabt/
demo/wat2wasm/. Unfortunately, you’ll see an error displayed in the tool’s top-right
pane, as figure 12.6 shows.

The following is the full error message:

test.wast:329:5: error: type mismatch in function, expected [] but got [i32]
call $GenerateCards

Because the cards.wast file compiled without issue in chapter 11, and because the
error message mentions the $GenerateCards function, the error probably has some-
thing to do with the change made in the $PlayLevel function. Look through the code
for instances of the string $GenerateCards, and you’ll likely discover what went
wrong. In the Import known section, you have an import node for the JavaScript
_GenerateCards function, but you didn’t add the fourth i32 parameter to the func-
tion signature.

 If you look at your $PlayLevel function, shown in the following snippet, it still
thinks the $GenerateCards function needs three parameters. The result is that the top
three items on the stack will be popped off and passed to the $GenerateCards func-
tion. This will leave the $rows value on the stack. When the $GenerateCards function
returns, the $PlayLevel function will end with something still on the stack. The

The contents of your
A compilation errorcards.wast file

A compilation error with the contents of the cards.wast fileFigure 12.6

The error message is complaining
about the $GenerateCards call.

https://webassembly.github.io/wabt/demo/wat2wasm/
https://webassembly.github.io/wabt/demo/wat2wasm/
https://webassembly.github.io/wabt/demo/wat2wasm/

308 CHAPTER 12 Debugging
$PlayLevel function isn’t supposed to return anything, so having something on the
stack throws the error:

(func $PlayLevel (param $level i32)
 get_local $level
 call $InitializeCards

 get_global $rows
 get_global $columns
 get_local $level
 get_global $tries
 call $GenerateCards
)

To fix this issue, navigate to the Import known section in your cards.wast file and add
a fourth i32 parameter to the $GenerateCards function, as the following snippet
shows:

(import "env" "_GenerateCards"
 (func $GenerateCards (param i32 i32 i32 i32))
)

Copy and paste the contents of your cards.wast file into the top-left pane of the
wat2wasm tool again, and then download the new Wasm file to your frontend\ folder.

 Now that you have the new cards.wasm file, figure 12.7 shows your next step, in
which you test the changes.

12.3.4 Testing the changes

When you modified the games.html file, you didn’t place a value within the tries span
tag; this means that if the changes don’t work, the website will show only the text Tries:
when the level starts. If the changes you made work, you’ll see the text Tries: 0 when
the level starts. Open your browser and type http://localhost:8080/game.html into
the address box to see the modified web page shown in figure 12.8.

Doesn’t return a value. The stack must
be empty when the function ends.

Pushed onto the stack first. It will remain
on the stack when $GenerateCards is called.

The top three items are popped off the
stack and passed to $GenerateCards.

4. Copy the WebAssembly file to
the server for use by the browser,
and then test the changes.

cards.wasm

Browser

cards.wasm
main.wasm

Figure 12.7 Copy the cards.wasm
file for use by the browser and then
test your changes.

309Displaying the number of tries
Figure 12.9 shows the next step needed to implement the number of tries logic. When
the player clicks the second card, the $tries global variable will be incremented and
the web page updated with the new value.

Because a value is shown,
you know that the changes
you made are working.

Figure 12.8 The changes you made are
working because a value of 0 is shown next
to the Tries label.

3. Add code to increment the
 number of tries when the player
 clicks the second card.

Figure 12.9 The number of tries is
incremented when the player clicks the
second card.

310 CHAPTER 12 Debugging
Incrementing the number of tries12.4
In the next part of the process, you need to increment the number of tries when the
player clicks the second card. To do this, you’ll use the following steps, which are also
illustrated in figure 12.10:

1 Add a JavaScript function (updateTriesTotal) to the game.js file that will
receive the tries value from the module and update the web page with the
value.

2 Adjust the text format to import the updateTriesTotal JavaScript function.
Have the text format increment the $tries value when the player clicks the sec-
ond card and then pass that value to the JavaScript function.

3 Use the WebAssembly Binary Toolkit to generate a WebAssembly module from
the text format (cards.wasm).

4 Copy the generated WebAssembly file to the server for use by the browser, and
then test that the changes are working as expected.

Your first step is to create the updateTriesTotal function in the game.js file.

WebAssembly
Binary Toolkit

game.js

1. Add a JavaScript function to receive the
tries value from the module and then
update the web page with the value.

cards.wast

2. Adjust the text format to increment
the $tries value when the player clicks
the second card. Pass the value to the
new JavaScript function.

3. Use the WebAssembly Binary
Toolkit to generate the Wasm
file from the text format.

4. Copy the WebAssembly file to
the server for use by the browser,
and then test the changes.

cards.wasm

Browser

cards.wasm
main.wasm

Figure 12.10 Incrementing the number of tries
value when the player clicks the second card

311Incrementing the number of tries
12.4.1 The updateTriesTotal JavaScript function

In your game.js file, create an updateTriesTotal function that receives a tries
parameter and updates the web page with the value. Place the function after the
generateCards function, and then copy the document.getElementById line of code for
the tries value from the generateCards function into the updateTriesTotal function.

 Your updateTriesTotal function in the game.js file should look like the following
snippet:

function updateTriesTotal(tries) {
 document.getElementById("tries").innerText = tries;
}

In the generateCards function of your game.js file, replace the document.getElement-
ById line of code for the tries value with a call to the updateTriesTotal function:

updateTriesTotal(tries);

With the JavaScript modified, you can move to the next step, shown in figure 12.11, and
adjust the text format code to increment the $tries value when the player clicks the
second card. The new $tries value is then passed to the new JavaScript function.

12.4.2 Adjusting the text format

You need to add an import node for the updateTriesTotal JavaScript function so
that you can pass the updated $tries value to the JavaScript code and have it dis-
played on the web page. In your cards.wast file, navigate to the Import known section
and add an import node for the $UpdateTriesTotal function that receives one i32
parameter. Place the import node after the $GenerateCards import node.

 Your import node in the cards.wast file should look like the this:

(import "env" "_UpdateTriesTotal"
 (func $UpdateTriesTotal (param i32))
)

Navigate to the $SecondCardSelectedCallback function. This function is called after
a short pause when the player clicks the second card so that they can see the card

WebAssembly
Binary Toolkitcards.wast

2. Adjust the text format to increment the $tries
 value when the player clicks the second card.
 Pass the value to the new JavaScript function.

cards.wasm

Figure 12.11 The text format will increment the $tries value when the player clicks
the second card. You’ll then pass the value to the new JavaScript function.

312 CHAPTER 12 Debugging

Th

Th

Incr
th
before it is either removed or flipped facedown, depending on whether the cards are
a match.

 After the if statement, increment the $tries global variable. Then pass the
$tries value to the $UpdateTriesTotal function so that the JavaScript code updates
the web page with the new value.

 The code in the next listing shows the modifications made to the $SecondCard-
SelectedCallback function in the cards.wast file. Some of the code in the function has
been omitted in the listing to make it easier to focus on the changes.

(func $SecondCardSelectedCallback
 (local $is_last_level i32)

 get_global $first_card_value
 get_global $second_card_value
 i32.eq
 if

 else

 end

 get_global $tries
 i32.const 10
 i32.add
 set_global $tries

 get_global $tries
 call $UpdateTriesTotal

)

With the text format code modified, you can now generate the WebAssembly file from
the text format, as figure 12.12 shows.

TheListing 12.2 $SecondCardSelectedCallback function in cards.wast

e cards
are a

match.

The JavaScript is told to remove the cards. The
$matches_remaining value is decremented by 1.e cards

aren’t a
match. The JavaScript is told to flip

the cards facedown.

ements
e value

Passes the value to the JavaScript so
that the web page can be updated

The rest of the
function

WebAssembly
Binary Toolkitcards.wast

3. Use the WebAssembly Binary Toolkit to
generate the Wasm file from the text format.

cards.wasm

Figure 12.12 You’ll use the WebAssembly Binary Toolkit to generate the
WebAssembly file.

313Incrementing the number of tries
12.4.3 Generating the Wasm file

To compile the WebAssembly text format into a WebAssembly module using the
wat2wasm online tool, go to the following website: https://webassembly.github
.io/wabt/demo/wat2wasm/. Paste the contents of your cards.wast file into the top-left
pane of the tool, as shown in figure 12.13. Then click the Download button to down-
load the WebAssembly file to your frontend \ folder, and name the file cards.wasm.

 Once you have your new cards.wasm file, figure 12.14 shows your next step, in
which you test the changes.

1. Paste the contents of
 your cards.wast file.

2. Click the Download button, and
 save the file as cards.wasm.

Figure 12.13 Paste the contents of your cards.wast file into the tool’s top-left pane and then
download the WebAssembly file, naming it cards.wasm.

4. Copy the WebAssembly file to
 the server for use by the browser,
 and then test the changes.

cards.wasm

cards.wasm
main.wasm Figure 12.14 Copy the cards.wasm

file to the server, and test your
changes.

https://webassembly.github.io/wabt/demo/wat2wasm/
https://webassembly.github.io/wabt/demo/wat2wasm/
https://webassembly.github.io/wabt/demo/wat2wasm/

314 CHAPTER 12 Debugging
12.4.4 Testing the changes

With the changes you’ve made to the JavaScript and text format, when you click the
second card, the $tries value will be incremented by 1, and then the value will be
updated on the web page. Open your browser and type http://localhost:8080/
game.html into the address box to see that your changes are working as expected.
Unfortunately, as figure 12.15 shows, something isn’t working properly: your game
isn’t being displayed.

When a web page doesn’t behave as you’d expect—like not displaying properly in this
case or not responding to mouse clicks, for example—sometimes the issue is a Java-
Script error. Press F12 to open your browser’s developer tools, and then view the con-
sole to see if there are any errors reported. As it turns out, as figure 12.16 shows,
there’s a JavaScript error about the _UpdateTriesTotal field.

 Figure 12.16 gives us two useful pieces of information, with the first being the word
LinkError. A LinkError is an error that’s thrown when there’s an issue instantiating a
WebAssembly module. More information about LinkErrors can be found on the MDN
Web Docs page at http://mng.bz/qXjx.

 The other piece of information that’s of use is that the error has something to do
with the _UpdateTriesTotal field. _UpdateTriesTotal is the function name you gave

Something isn’t working properly,
so your game isn’t being displayed.

Something isn’t working properly—the game isn’t being displayed.Figure 12.15

There’s a JavaScript error about
the _UpdateTriesTotal field.

A JavaScript error is logged about theFigure 12.16 _UpdateTriesTotal field.

http://mng.bz/qXjx

315Incrementing the number of tries

to the import node to import a JavaScript function, as shown in the following snippet
of the code you wrote earlier:

(import "env" "_UpdateTriesTotal"
 (func $UpdateTriesTotal (param i32))
)

Looking at the text format code, the import node appears to be correct. You were also
able to compile the module without issue, so the problem doesn’t seem to be with the
module itself. If the problem isn’t with the module, then you need to take a look at
the JavaScript.

 Open your game.js file. The updateTriesTotal JavaScript function shown in the
following snippet has the proper signature (accepts a single parameter and doesn’t
return a value), so the function itself appears correct:

function updateTriesTotal(tries) {
 document.getElementById("tries").innerText = tries;
}

Because you have a LinkError, and it has to do with the cards.wasm file, take a look at
the WebAssembly.instantiateStreaming section of code for cards.wasm. If you look
at the sideImportObject, you’ll notice that the _UpdateTriesTotal property hasn’t
been included.

 In your game.js file, adjust the sideImportObject to have an _UpdateTriesTotal
property for your updateTriesTotal function. Place the property after the _Generate-
Cards property, as shown in the next listing.

const sideImportObject = {
 env: {
 memory: moduleMemory,
 _malloc: mainInstance.exports._malloc,
 _free: mainInstance.exports._free,
 _SeedRandomNumberGenerator:
 mainInstance.exports._SeedRandomNumberGenerator,
 _GetRandomNumber: mainInstance.exports._GetRandomNumber,
 _GenerateCards: generateCards,
 _UpdateTriesTotal: updateTriesTotal,
 _FlipCard: flipCard,
 _RemoveCards: removeCards,
 _LevelComplete: levelComplete,
 _Pause: pause,
 }
};

TheListing 12.3 sideImportObject in your game.js file

Passes the updateTriesTotal
function to the module

Save the game.js file and then refresh the web page, and you should see that the Java-
Script error is gone, and the page is displayed as expected.

When you click two cards, after the cards are flipped facedown or removed, you see
the Tries value updated on the web page. Unfortunately, as figure 12.17 shows, some-
thing’s not right because Tries is increasing in increments of 10.

316 CHAPTER 12 Debugging
To debug this issue, you’ll step through the running text format code in the browser.
If you’re using the Firefox web browser, you can skip the following section and view
the “Debugging in Firefox” section.

DEBUGGING IN CHROME

As figure 12.18 shows, to view the content of your WebAssembly modules in Chrome,
you need to press F12 to view the developer tools and then click the Sources tab.
Under the wasm section in the left pane, the modules are displayed in the order that
they were loaded. In this case, the first module is main.wasm and the second is
cards.wasm.

TIP Sometimes when you first open the developer tools, the wasm section
isn’t visible. Refresh the web page, and it should load.

When you expand the WebAssembly module, you’ll see a list of each of the module’s
built-in functions, identified by their zero-based index. The imported functions aren’t
shown, but their indexes are before the built-in functions’ indexes, which is why the
indexes shown in figure 12.18 start at 10 and not 0.

 When you click a function, you see its text format version in the right-hand pane.
You can then click one of the line numbers in the right-hand pane to set a breakpoint.
Once you have a breakpoint set, you just need to cause the web page to run that sec-
tion of code, and the code will pause at that breakpoint, allowing you to step through
the code to see what’s happening.

 With the text format, you can call functions and variables by their index, or you
can use a variable name. Chrome’s developer tools use indexes rather than variable
names. This can make things confusing, so it’s helpful to have the original code or
text format open at the same time so that you can compare what you’re looking at.

 If you’re using the Chrome web browser, you can skip the following section, which
shows the areas of the Firefox developer tools when debugging a WebAssembly module.

The Tries value is increasing in
increments of 10 rather than 1.

Figure 12.17 The Tries value
shows that something's not
right.

317Incrementing the number of tries
DEBUGGING IN FIREFOX

As figure 12.19 shows, to view the content of your WebAssembly modules in Firefox,
you need to press F12 to view the developer tools and then click the Debugger tab. In
the left-hand pane, click the WebAssembly file that you’re interested in; the text for-
mat version of that file will be displayed in the right-hand pane.

 You can then click one of the line numbers in the right-hand pane to set a break-
point. Once you have a breakpoint set, you just need to cause the web page to run that
section of code, and the code will pause at the breakpoint, letting you step through
the code to see what’s happening.

 When looking at the function in figure 12.19, the variable names given aren’t very
helpful. If the code is referencing a local variable, that variable is either a parameter

1. Click this tab to view the files that
 have been loaded for the web page.

4. Click the line number
 to set a breakpoint.

3. Built-in functions
 are listed based
 on their index.

5. Buttons to
 step through
 the code when a
 breakpoint is hit

main.wasm

cards.wasm

Debugging a WebAssembly module using Chrome's developer tools

2. WebAssembly
 modules are listed
 in the order they
 were loaded.

The areas of Chrome’s developer tools for debugging a WebAssembly moduleFigure 12.18

318 CHAPTER 12 Debugging
or defined at the beginning of the function, so it’s not that hard to determine what
the value represents. Global variables, on the other hand, are defined at the begin-
ning of the file, so variables like $global7 and $global12 are more difficult to under-
stand. To make things easier, it’s helpful to have the original code or text format open
at the same time so that you can compare what you’re looking at.

 To determine the issue with the $tries value incrementing in values of 10 rather
than 1, you’ll debug the $SecondCardSelectedCallback function.

DEBUGGING THE $SECONDCARDSELECTEDCALLBACK FUNCTION

Before you start debugging the $SecondCardSelectedCallback function, it’s helpful
to know what each global variable index represents, because both Firefox and
Chrome reference the global variables by their index in the function’s code. Looking

1. Click this tab to view the files that
have been loaded for the web page.

2. The WebAssembly
file of interest

3. Click the line
number to set
a breakpoint.

4. Buttons to step
through the code
when a breakpoint
is hit

Debugging a WebAssembly module using Firefox's developer tools

The areas of Firefox’s developer tools for debugging a WebAssembly moduleFigure 12.19

319Incrementing the number of tries

at your cards.wast file’s Global known sec-
tion, your global variables and their indexes
are listed in table 12.1.

 In your browser’s developer tools, navi-
gate to the $SecondCardSelectedCallback
function and place a breakpoint on the first
get_global line of code after the local vari-
able declaration. For the rest of this section,
we’ll use the Firefox developer tools.

 To trigger the breakpoint, click two cards.
As figure 12.20 shows, one of the panes in
the Debugger window is Scopes. If you
expand the Block sections, you’ll find that
one of them shows you the values of the
global variables for this function’s scope. The
first two get_global calls in the function are
for global9 and global12, which, according
to table 12.1, hold the first and second card
values, respectively. The values for the global
variables might differ from what you see in
your browser’s developer tools because the
cards are randomly sorted. Here, the values
for global9 and global12 hold 1 and 0,
respectively.

Table 12.1 Global variables and their
corresponding indexes

Global variable index

$MAX_LEVEL 0

$cards 1

$current_level 2

$rows 3

$columns 4

$matches_remaining 5

$tries 6

$first_card_row 7

$first_card_column 8

$first_card_value 9

$second_card_row 10

$second_card_column 11

$second_card_value 12

$execution_paused 13

INFO In Chrome’s developer tools, the Scopes pane doesn’t show the value
of global variables. If you expand the local item in the Scopes pane, there’s a
stack item that shows you the values that are currently on the stack. Firefox
doesn’t show you what’s on the stack. Depending on your debugging needs,
you may need to use one browser’s debugging tools in some cases and
another browser’s debugger in other cases.

The values in global9 (1, in this case) and global12 (0, in this case) are placed on the
stack, and then i32.eq is called. The i32.eq call pops the top two values off the stack,
compares them, and then puts a value on the stack indicating if they were equal. The
if statement then pops the top item off the stack and enters the if block if the value
was true. If the value was false, and if there’s an else condition, the code will enter
the else condition. In this case, the two global values aren’t equal, so the code enters
the else condition.

The code in the else condition puts the values from global7 and global8 (the first
selected card’s row and column values, respectively) on the stack along with a -1 value.
It then calls the FlipCards JavaScript function. The -1 tells the FlipCards function to
turn the card facedown. FlipCards is called again with the values from global10 and
global11 to have the second card flipped facedown.

320 CHAPTER 12 Debugging
After the if statement, global6 (the $tries counter) is placed on the stack along
with the i32.const value of 10. The value in global6 and the i32.const 10 are
popped off the stack by the i32.add call, the two values are summed, and then the
result is pushed back onto the stack, where it’s then placed in the global6 variable.

 It turns out that the issue with the Tries value incrementing by 10 rather than by 1
is a typo in which i32.const 10 was used rather than i32.const 1. In your cards.wast
file, locate the $SecondCardSelectedCallback function. Adjust the code that incre-
ments the $tries value so that it uses i32.const 1 rather than 10, as shown in the
following code snippet:

1. Expand the
 Scopes section.

2. Expand the Block
 sections until you
 find the one with
 your global values.

The value held
by global9

Viewing the values held by the global variables

The Scopes section in Firefox showing the global variables in this function’s scopeFigure 12.20

321Updating the summary screen
get_global $tries
i32.const 1
i32.add
set_global $tries

REGENERATING THE WASM FILE

To compile the WebAssembly text format into a WebAssembly module, paste the con-
tents of your cards.wast file into the top-left pane of the wat2wasm online tool:
https://webassembly.github.io/wabt/demo/wat2wasm/. Click the Download button
to download the WebAssembly file to your frontend \ folder, and name the file
cards.wasm. Refresh the web page to verify that clicking two cards now increments the
Tries value by 1 rather than by 10.

 Now that the number of tries is updated every time the player clicks the second
card, it’s time to implement the last step. As figure 12.21 shows, you’ll pass the num-
ber of tries to the summary screen when a level is completed.

12.5 Updating the summary screen
For the next part of the process, you need to update the congratulatory message to
include the number of tries. To accomplish this, you’ll use the following steps, also
depicted in figure 12.22:

1 Update the levelComplete JavaScript function to accept another parameter for
the number of tries. Then adjust the summary screen’s text to include the num-
ber of tries.

2 Adjust the text format to pass the $tries value to the levelComplete JavaScript
function.

3 Use the WebAssembly Binary Toolkit to generate a WebAssembly module from
the text format (cards.wasm).

4 Copy the generated WebAssembly file to the server for use by the browser, and
then test that the changes are working as expected.

Your first step is to modify the levelComplete function in the game.js file.

Change from 10 to 1.

4. Pass the number of tries to
 the summary screen when the
 player completes the level.

Figure 12.21 The number of tries will be passed to the summary screen when the
player completes the level.

https://webassembly.github.io/wabt/demo/wat2wasm/

322 CHAPTER 12 Debugging
12.5.1 The levelComplete JavaScript function

In your game.js file, adjust the levelComplete function so that there’s a tries parameter
as the second parameter between the level and hasAnotherLevel parameters. Then
adjust the text passed to the levelSummary DOM element so that it includes the number
of tries. The levelComplete function in your game.js file should match the code in the
next listing.

function levelComplete(level, tries, hasAnotherLevel) {
 document.getElementById("levelComplete").style.display = "";
 document.getElementById("levelSummary").innerText = `Good job!

➥ You've completed level ${level} with ${tries} tries.`;

if (!hasAnotherLevel) {
 document.getElementById("playNextLevel").style.display = "none";
 }
}

With the JavaScript adjusted, figure 12.23 shows your next step, in which you adjust
the text format to pass the $tries value to levelComplete.

TheListing 12.4 levelComplete function in your game.js file

WebAssembly
Binary Toolkit

game.js

1. Update the levelComplete function to accept
a tries parameter. Then adjust the summary
screen’s text to include the number of tries.

cards.wast

2. Adjust the text format to pass the
$tries value to the levelComplete
JavaScript function.

3. Use the WebAssembly Binary
Toolkit to generate the Wasm
file from the text format.

4. Copy the WebAssembly file to
the server for use by the browser,
and then test the changes.

cards.wasm

Browser

cards.wasm
main.wasm

Figure 12.22 The steps for including the number of
tries in the summary screen’s congratulatory message

Tries
parameter
added

Text adjusted to include
the number of tries

323Updating the summary screen
12.5.2 Adjusting the text format

In your text format code, you need to adjust the logic so that it passes the $tries value
to the levelComplete JavaScript function. Before you adjust the call to level-
Complete, however, you need to adjust the import node signature for that function so
that it has three i32 parameters.

 In your cards.wast file, locate the import node for the levelComplete JavaScript
function and add a third i32 parameter. The modified import node should now look
like the code in the following snippet:

(import "env" "_LevelComplete"
 (func $LevelComplete (param i32 i32 i32))
)

The $LevelComplete function is called at the end of the $SecondCardSelected-
Callback function, so navigate to that function in your cards.wast file. The $tries
value is expected as the second parameter to levelComplete, so place a get_global
call for the $tries value between the get_global call for the $current_level and the
get_local call for the $is_last_level values.

 In your cards.wast file, the call to the $LevelComplete function should now look
like this:

get_global $current_level
get_global $tries
get_local $is_last_level
call $LevelComplete

Once the text format code has been adjusted, you can generate the WebAssembly file
from the text format, as figure 12.24 shows.

WebAssembly
Binary Toolkitcards.wast

2. Adjust the text format to pass the $tries value
 to the levelComplete JavaScript function.

cards.wasm

Pass theFigure 12.23 $tries value to the levelComplete JavaScript function.

Pushes the value from $tries onto the stack

WebAssembly
Binary Toolkitcards.wast

3. Use the WebAssembly Binary
 Toolkit to generate the Wasm
 file from the text format.

cards.wasm Figure 12.24 Generate the
WebAssembly file from the
text format.

324 CHAPTER 12 Debugging
12.5.3 Generating the Wasm file

To compile the contents of your cards.wast file into a WebAssembly module using the
wat2wasm online tool, go to the following website: https://webassembly.github.io/
wabt/demo/wat2wasm/. Paste the contents of your cards.wast file into the top-left
pane of the tool, as shown in figure 12.25. Click the Download button, and download
the WebAssembly file to your frontend\ folder. Give the downloaded file the name
cards.wasm.

 With your new cards.wasm file, you can move on to the next step, shown in figure
12.26, in which you test the changes.

1. Paste the contents of
your cards.wast file.

2. Click the Download button, and
save the file as cards.wasm.

Figure 12.25 Paste the contents of your cards.wast file into the top-left pane, and then download
the WebAssembly file. Give the downloaded file the name cards.wasm.

4. Copy the WebAssembly file to
the server for use by the browser,
and then test the changes.

cards.wasm

Browser

cards.wasm
main.wasm

Figure 12.26 Copy the
cards.wasm file to the server,
and then test your changes.

https://webassembly.github.io/wabt/demo/wat2wasm/
https://webassembly.github.io/wabt/demo/wat2wasm/
https://webassembly.github.io/wabt/demo/wat2wasm/

325Summary
12.5.4 Testing the changes

To test that the changes you made are working properly, open your browser and type
http://localhost:8080/game.html into the address box. When you win the level,
the summary screen will display the number of tries, as figure 12.27 shows.

Exercises
You can find the solutions to the exercises in appendix D.

1 In what two ways can you access a variable or call a function?
2 Something you might have noticed is that the Tries value doesn’t reset when

you replay the level or play the next level. Use the logging approach to locate
the source of the issue.

Summary
In this chapter, you learned the following:

 Emscripten offers the EMCC_DEBUG environment variable and the -v flag to con-
trol debug mode. When enabled, debug mode causes logs and intermediate
files to be output.

 Emscripten also has several -g flags to provide progressively more debug infor-
mation in the compiled output. In addition to the increased debug informa-
tion, Emscripten also outputs a text format equivalent version (.wast) of the
generated binary file that can be helpful in tracking down issues.

The summary screen’s
message now includes
the number of tries.

The summary screen with the number of tries includedFigure 12.27

326 CHAPTER 12 Debugging
 Logging information to the browser’s console is one way to debug what’s hap-
pening in your module.

 The -g4 flag can be used to instruct Emscripten to generate source maps so that
your C or C++ code can be viewed in the browser. At the time of this book’s writ-
ing, this feature still needs some work in the browsers.

 In some browsers, you can view the text format version of the binary file that
was loaded. You can set breakpoints, step through the code, and, depending on
the browser, either view the variable’s value or view the values that are on the
stack.

 At the moment, browser debugging features aren’t uniform across browsers, so
you might need to switch between browsers based on your debugging needs.

Testing—and then what?
There comes a point during project development when you need to test things to
be sure they’re working as expected. Doing manual tests at the beginning of the
project might seem like it would suffice, but, as the code gets more and more
involved, the testing steps need to become more detailed to ensure that there are
no bugs. The problem with this is that testing becomes tedious—as focused as you
try to be, it’s easy to miss something, and a bug can slip through.

 With manual testing, you’re also dependent on your tester because tests can
only be performed based on their availability. At times, testers can test only one
thing at a time, and they can go only so fast before they start making mistakes.

 When working with a product that needs to support multiple platforms, testing
becomes even more involved because every time you make a change to your code,
you need to repeat the exact same tests on every platform that you support.

 Automated testing takes a bit of work up front to create the tests; but once you
have them written, they have the following advantages:

This chapter covers
 Creating automated tests using Mocha

 Running your tests at the command line in Node.js

 Running your tests in the browsers you intend to support
327

328 CHAPTER 13 Testing—and then what?

 Depending on the type of test, they can run quickly.
 They can be run as often as you’d like. For example, you can run them before

you check in your code to be confident that the change you just made didn’t
break something else in the system.

 You can run them at any time you’d like. For example, you can schedule longer-
running tests to execute during the night and view the results in the morning
when you return to work.

 They’ll run exactly the same way every time.
 You can run the same tests on different platforms. This is helpful when writing

WebAssembly modules for web browsers because you need to verify that the
modules work as expected across several browsers.

Automated tests don’t remove the need for manual testing but can handle the monot-
onous items, allowing you to focus on other areas.

You can implement several different types of testing when developing:

 Unit tests are written by the developer to test individual units (a function, for
example) to ensure the logic is working as expected. Unit tests are designed to
be fast because you write the test in such a way that the code under test doesn’t
depend on things like the file system, a database, or web requests.

Unit tests are highly recommended as they help you catch bugs early in the
development process. They also help you catch regression issues quickly if you
make a change that impacts other areas.

 Integration tests verify that two or more areas are working together as expected.
In this case, the tests might take longer to run because they may have external
dependencies on things like a database or file system.

 There are many other types of testing, like acceptance tests to ensure the system
satisfies the business requirements and performance tests to verify that the system
performs adequately under a heavy load. The following website has more infor-
mation on the different types of software testing available: https://en.wikipedia
.org/wiki/Software_testing.

Suppose you’ve written a WebAssembly module, and now you’d like to create some
tests to verify that the functions work as expected. You want to use a JavaScript frame-
work that lets you run the tests from the command line so that you can verify that
things are working as you write your code. But what works in one browser might not
work exactly the same in another. In some cases, a feature in one browser won’t exist
in another, so you also want a JavaScript framework that will allow you to run your tests
in a browser.

In this chapter, you’ll learn how to write automated integration tests so that you
can quickly and easily verify that your WebAssembly modules are working as expected.
You’ll also learn how to run those tests in the browsers you intend to support. This
chapter gives you an overview of how you can test WebAssembly modules, but won’t be
a review of the different frameworks available or a deep dive of the chosen framework.

https://en.wikipedia.org/wiki/Software_testing
https://en.wikipedia.org/wiki/Software_testing
https://en.wikipedia.org/wiki/Software_testing

329Installing the JavaScript testing framework

INFO There are many JavaScript testing frameworks available, with some of the
more popular being Jest, Mocha, and Puppeteer, to name a few. Several frame-
works are listed in the Medium article “Top Javascript Testing Frameworks in
Demand for 2019” by Nwose Lotanna at http://mng.bz/py1w. For teaching
purposes, we’ll use Mocha in this book.

The first thing that you need to do is install the JavaScript testing framework.

13.1 Installing the JavaScript testing framework
For this chapter, you have two requirements for a testing framework:

 The tests need to run from your IDE, or command line, so that you can quickly
test that everything is working as expected before you check in your code.

 The tests also need to run in a browser so that you can confirm that everything
is working as expected in the browsers you intend to support.

Based on these two requirements, the framework I’ve chosen for this chapter is
Mocha, which runs on Node.js when run from the command line and can also run in
the browser. (If you’d like to learn more about Mocha, you can visit https://
mochajs.org.)

If you’re planning to use Mocha in only a Node.js environment, you can use the
built-in Node.js assert module as your assertion library. An assertion library is a tool
that verifies that the test result meets the expectation. For example, the following
code snippet shows the code under test called and then the assertion library used to
verify that the result is equal to 2:

const result = codeUnderTest.increment(1);
expect(result).to.equal(2);

The assertion library also does the verification in a way that’s easier to read and main-
tain compared to a bunch of if statements throwing exceptions, as in the following
example:

const result = codeUnderTest.increment(1);
if (result !== 2) {

throw new Error(`expected 2 but received ${result}`);
}

In this chapter, because you’ll be running the tests in both Node.js and in the browser,
I chose Chai for consistency because it can be used in both locations. Chai also has
several assertion styles, letting you use a style that you’re most comfortable with. In
this chapter, you’ll use the Expect style, but you could also use the Assert style
because it’s also browser-compatible and very similar to the Node.js assert module.
More information on the assertion styles available with Chai can be found at
www.chaijs.com/api.

INFO Although Chai was chosen as the assertion library for this chapter, with
Mocha, you can use any assertion library. A list of several available libraries
can be found at https://mochajs.org/#assertions.

http://mng.bz/py1w
www.chaijs.com/api
https://mochajs.org/#assertions
https://mochajs.org
https://mochajs.org
https://mochajs.org

330 CHAPTER 13 Testing—and then what?
As mentioned, the Mocha framework runs on Node.js, which is convenient because
Node.js was installed when you installed the Emscripten SDK. Node.js comes with a
tool called npm (Node Package Manager), which is a package manager for the Java-
Script language. It has a huge number of packages available (more than 350,000),
including Mocha and Chai. (For more information, you can search npm’s packages at
www.npmjs.com).

 In order to install Mocha locally for use with your project, you’ll need a package
.json file first.

13.1.1 The package.json file

To create a package.json file, you can use the npm init command. This command will
prompt you with several questions about your project. If there’s a default value for the
question, the value will be indicated in parentheses. You can either enter your own
value for the questions or press the Enter key to accept the default.

 In your WebAssembly folder, create a Chapter 13\13.2 tests\ folder. Open a com-
mand prompt, navigate to your 13.2 tests\ folder, and then run the npm init command.
Specify the following values:

 For package name, enter tests.
 For test command, enter mocha.
 For the rest of the questions, you can accept the defaults.

A package.json file will now exist in your 13.2 tests\ folder, with the contents shown in
listing 13.1. The test property, under scripts, indicates which tool to run when you
run the command npm test in your 13.2 tests\ folder. In this case, the test command
will run Mocha.

{
 "name": "tests",
 "version": "1.0.0",
 "description": "",
 "main": "tests.js",
 "scripts": {
 "test": "mocha"
 },
 "author": "",
 "license": "ISC"
}

Now that you have your package.json file, you can install Mocha and Chai.

13.1.2 Installing Mocha and Chai

To install Mocha and Chai for use with your current project, open a command
prompt, navigate to your Chapter 13\13.2 tests\ folder, and then run the following
command to add them as dependencies to your package.json file:

Contents of the package.json file that was createdListing 13.1

Mocha will be run when you use
the command npm test.

www.npmjs.com

331Creating and running tests
npm install --save-dev mocha chai

Once you have Mocha and Chai installed, you can move on to learning how to write
and run tests.

13.2 Creating and running tests
Figure 13.1 graphically represents the following high-level steps you’ll use to create
and run tests for your WebAssembly modules:

1 Write the tests.
2 Run the tests from the command line.
3 Create an HTML page that loads your tests.
4 Run your tests in the browsers you intend to support.

13.2.1 Writing the tests

For this chapter, you’ll write some tests for the WebAssembly module that you created
in chapter 4, which validated the product name and category that were entered. In
your 13.2 tests\ folder,

tests.js
CLI

(Node.js)

1. Write the tests.

3. Create an HTML page
 that loads your tests.

4. Run your tests in
 the browsers you
 intend to support.

2. Run the tests from
 the command line.

tests.html

Use the same tests
for both the command
line and browsers.

Figure 13.1 The steps for creating your tests and then running them at the
command line and in the browsers you intend to support

332 CHAPTER 13 Testing—and then what?
 Copy the validate.js and validate.wasm files from your Chapter 4 \4.1 js_plumbing\
frontend \ folder.

 Create a tests.js file, and then open it with your editor.

Rather than creating two sets of tests, one for the command line and one for the
browser, you’ll create one set. This saves time and effort because you won’t need to
maintain two sets that test the exact same thing.

 There are some differences between running the tests at the command line and in
the browser, because Mocha uses Node.js for the former. The first thing that you need
to do is write a line of code to test if Node.js is where the test is running. Add the fol-
lowing code snippet to your tests.js file:

const IS_NODE = (typeof process === 'object' &&
 typeof require === 'function');

Your tests need access to the Chai assertion library as well as the Module object created
by Emscripten’s JavaScript code. When running in Node.js, your tests will need to load
these libraries using the require method within Mocha’s before method (the before
method will be explained in a moment). For now, you need to define the variables so
that they’re available to your code later.

 Add the code in the following snippet after the const IS_NODE line in your tests.js
file. You’ll add code to the else condition in a moment:

if (IS_NODE) {
 let chai = null;
 let Module = null;
}
else {
}

When you’re running in a browser, the chai and Module objects will be created for
you when you include those JavaScript libraries using the Script tag in your HTML.
The Module object might not be ready to be interacted with if you include
Emscripten’s JavaScript file on the web page and then immediately tell Mocha to run.
To ensure that the Module object is ready for use, you need to create a Module object
that the Emscripten JavaScript will see as it’s being initialized. Within the object, you
define the onRuntimeInitialized function, which—when called by Emscripten’s
JavaScript—will tell the Mocha framework to run the tests.

 Add the code in the following snippet within the else condition of the if state-
ment you just created in your tests.js file:

var Module = {
 onRuntimeInitialized: () => { mocha.run(); }
};

Now that your tests know if they’re running in Node.js or not, and the necessary
global variables have been declared, it’s time to start creating the tests.

Your tests are running in Node.js.

Your tests are running in a browser.

When Emscripten indicates the
module is ready to be interacted
with, start the tests.

333Creating and running tests
THE DESCRIBE FUNCTION

Mocha uses a describe function to hold a collection of tests. The first parameter to
the function is a meaningful name, and the second parameter is the function that exe-
cutes one or more tests.

 If you wish, you can have nested describe functions. For example, you might
decide to use a nested describe function to group multiple tests for one of your mod-
ule’s functions.

 Add the following describe function to your tests.js file after your if statement:

describe('Testing the validate.wasm module from chapter 4', () => {
});

With the describe function created to hold your collection of tests, you now need to
set up a function to make sure your tests have everything they need when they run.

PRE- AND POST-HOOK FUNCTIONS

Mocha has the following pre- and post-hook functions that your tests can use to set
preconditions so that they have what they need when they run, or to clean up after the
tests have run:

 before—Runs before all the tests in the describe function
 beforeEach—Runs before each test
 afterEach—Runs after each test
 after—Runs after all the tests in the describe function

For your tests, you need to implement the before function to load in the Chai library
and WebAssembly module if the tests are running in Node.js. Because the WebAssembly
module’s instantiation happens asynchronously, you need to define the onRuntime-
Initialized function so that you’re notified by the Emscripten JavaScript code when
the module is ready for interaction.

INFO If you return a Promise object from a Mocha function (the before function,
for example), Mocha will wait until the promise completes before proceeding.

In your tests.js file, add the code in the following listing within your describe function.

...

before(() => {
 if (IS_NODE) {
 chai = require('chai');

 return new Promise((resolve) => {
 Module = require('./validate.js');
 Module['onRuntimeInitialized'] = () => {
 resolve();
 }
 });
 }
});

Listing 13.2 before function

Will be run before all the tests
in this describe function Only do the following

if this is Node.js.

Returns a
promise

Loads the Chai assertion library

Loads in Emscripten’s
generated JavaScript

Listens for Emscripten’s notification
that the module is ready

Indicates that the
promise has completed

successfully

334 CHAPTER 13 Testing—and then what?
Now that everything is set up for the test, it’s time to write the test itself.

THE IT FUNCTION

Mocha uses an it function for the tests themselves. The first parameter to the func-
tion is the name of the test, and the second parameter is a function that executes the
code for the test.

 The first test that you’ll create will verify that the ValidateName function in the
module returns the proper error message when an empty string is provided for the
name. You’ll use the Chai assertion library to verify that the message returned is the
one you’re expecting.

 With test-driven development (TDD), you write the test before writing the code
under test and watch the test fail because the feature hasn’t been implemented yet.
You then refactor the code so that the test passes, create the next test, and repeat the
process. The test failures serve as a guide as you build out the feature.

 In this case, because this is a book, the process is reversed, and implementation is
performed before the tests. As a result, you want your tests to fail as a sanity check to
ensure that they’re testing the expected behavior when they pass. Once you run the
test and verify that it fails, you can then correct the issue so that it passes. To cause this
test to fail, you’ll use the word "something" as the expected error message, but you
can use any string you’d like as long as it doesn’t match the one that gets returned.

 Add the code in the next listing within your describe function and after your
before function.

...

it("Pass an empty string", () => {
 const errorMessagePointer = Module._malloc(256);
 const name = "";
 const expectedMessage = "something";

 const isValid = Module.ccall('ValidateName',
'number',
['string', 'number', 'number'],
[name, 50, errorMessagePointer]);

 let errorMessage = "";
 if (isValid === 0) {
 errorMessage = Module.UTF8ToString(errorMessagePointer);
 }

 Module._free(errorMessagePointer);

 chai.expect(errorMessage).to.equal(expectedMessage);
});

Listing 13.3 Testing the ValidateName function with an empty string for the name

Defines the test itself

Sets the name to an empty string

The error message you’re
expecting; intentionally
wrong so the test fails

Calls the ValidateName
function in the module

If there was an error, reads
the error message from the

module’s memory

Checks to make sure the
message returned matches

the one you’re expecting

335Creating and running tests
The second test that you’ll create will verify that the ValidateName function returns
the correct error message when the name is too long. To create this test, do the
following:

 Make a copy of your first test, and paste this copy below the first one.
 Change the name of the it function to "Pass a string that's too long".
 Set the name variable’s value to "Longer than 5 characters".
 Adjust the value passed for the second parameter of the ValidateName function

from 50 to 5.

Your new test should now look like the code in the following listing.

...

it("Pass a string that's too long", () => {
 const errorMessagePointer = Module._malloc(256);
 const name = "Longer than 5 characters";
 const expectedMessage = "something";

 const isValid = Module.ccall('ValidateName',
 'number',
 ['string', 'number', 'number'],
 [name, 5, errorMessagePointer]);

 let errorMessage = "";
 if (isValid === 0) {
 errorMessage = Module.UTF8ToString(errorMessagePointer);
 }

 Module._free(errorMessagePointer);

 chai.expect(errorMessage).to.equal(expectedMessage);
});

Congratulations! You’ve now written your first set of WebAssembly tests. Your next
step is to run them.

13.2.2 Running the tests from the command line

Your next step is to run the tests from the command line. To run your tests, open a
command prompt, navigate to your Chapter 13\13.2 tests\ folder, and then run the fol-
lowing command:

npm test tests.js

Figure 13.2 shows the results of the tests, which are listed with a number if they fail
and a check mark if they pass. The tests that fail are also listed below the summary sec-
tion showing details about why they didn’t pass. In this case, all the tests failed because
you intentionally provided the wrong values for the expected result.

Testing theListing 13.4 ValidateName function with a name that’s too long

Adjust the name of the
test to reflect what
you’re testing for.

Provides a name
that’s longer than
5 characters

Tells the function that the maximum
length the string can be is 5 characters

336 CHAPTER 13 Testing—and then what?
Before you correct the tests so that they pass, you’ll create an HTML page so that you
can run them in a browser, too.

13.2.3 An HTML page that loads your tests

As figure 13.3 shows, in this section, you’ll create an HTML page that will allow you to
run your tests in a browser. You’ll use the same tests in the browser that you used at the
command line. Being able to use the same tests in both places saves effort because you
don’t need to maintain two sets of tests for the same thing.

 In your 13.2 tests \ folder, create a tests.html file and open it with your editor.

INFO The HTML file that you’re about to create was copied from Mocha’s
website and modified slightly. The original file can be found at https://
mochajs.org/#running-mocha-in-the-browser.

When running in the browser, the Chai assertion library and WebAssembly module
are loaded by including them in Script tags. When run in Node.js, they’re loaded by
using the require method. The areas that are changed from the Mocha HTML tem-
plate are after the Script tag with the class "mocha-init". The Script tags for

The tests that were
run. There would be
a check mark if the
test passed.

Details about the first
test that failed

The actual result

The expected result

Figure 13.2 The results of the tests at the command line. Both tests failed because you
intentionally provided the wrong expected string of 'something'.

https://mochajs.org/#running-mocha-in-the-browser
https://mochajs.org/#running-mocha-in-the-browser
https://mochajs.org/#running-mocha-in-the-browser

337Creating and running tests
test.array.js, test.object.js, and test.xhr.js and the class "mocha-exec" have been
replaced with the Script tag for your test file tests.js and Emscripten’s generated
JavaScript file validate.js.

 One thing to note is that your tests.js file needs to be included in the HTML before
Emscripten’s generated JavaScript file (validate.js). This is because you included code in
your tests.js file to tell Emscripten to call the onRuntimeInitialized function when the
module is ready. When that function is called, your code will have Mocha run the tests.

 Add the code in the next listing to your tests.html file.

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8" />
 <title>Mocha Tests</title>
 <meta name="viewport"
 content="width=device-width, initial-scale=1.0" />
 <link rel="stylesheet" href="https://unpkg.com/mocha/mocha.css" />
 </head>
 <body>
 <div id="mocha"></div>

 <script src="https://unpkg.com/chai/chai.js"></script>
 <script src="https://unpkg.com/mocha/mocha.js"></script>

 <script class="mocha-init">
 mocha.setup('bdd');
 mocha.checkLeaks();
 </script>

 <script src="tests.js"></script>

The HTML for your tests.html fileListing 13.5

tests.js

3. Create an HTML page
 that loads your tests.

tests.html

Use the same tests
for both the command
line and browsers.

Figure 13.3 Your next step is to
create an HTML page so that you can
also run your tests in a browser.

Your tests (must be included
before Emscripten’s generated
JavaScript file)

338 CHAPTER 13 Testing—and then what?
 <script src="validate.js"></script>
 </body>
</html>

Now that you have your HTML file, it’s time to run your tests in a browser.

13.2.4 Running the tests from a browser

As figure 13.4 shows, you’ll now run the same tests that you ran at the command line
but this time in a browser. You can now open your browser and type http://local-
host:8080/tests.html into the address box to see the results of your tests, as shown
in figure 13.5.

With your tests now running at the command line and in browsers, you can adjust
them so that they pass.

13.2.5 Making the tests pass

Once you’ve verified that your tests run, you can adjust them so that they pass. Open
your tests.js file, and make the following adjustments:

 In the "Pass an empty string" test, set the expectedMessage value to "A
Product Name must be provided."

 In the "Pass a string that's too long" test, set the expectedMessage value
to an empty string (""), and change the value passed as the second parameter
to the ValidateName module function from 5 to 50.

Emscripten’s generated
JavaScript file

tests.js

tests.html

Use the same tests
for both the command
line and browsers.

4. Run your tests in
 the browsers you
 intend to support.

Figure 13.4 Your next step is to run your tests in a browser.

339Creating and running tests
Now you need to verify that your tests are passing. At the command prompt, navigate
to your Chapter 13\13.2 tests\ folder, and then run the following command:

npm test tests.js

The tests should pass, as figure 13.6 shows.

The tests will have an x if they
fail or a check mark if they pass.

Details about why
the test failed

The results of your tests running in a browserFigure 13.5

Both tests passed.

Both of your tests now pass when run at the command line.Figure 13.6

340 CHAPTER 13 Testing—and then what?
You can verify that your tests are passing in the browser, too, by typing http://
localhost:8080/tests.html into the address box to see the results, as shown in fig-
ure 13.7.

13.3 Where do you go from here?
WebAssembly hasn’t been sitting still since it entered MVP status in 2017. Since the
MVP, the introduction of the WebAssembly.instantiateStreaming function brought
faster compilation and instantiation, the ability to import or export mutable globals
was added, the desktop version of the Chrome browser went live with pthread sup-
port, and improvements to the browsers continue to be made.

 The WebAssembly Community Group is hard at work on features that will be
added to WebAssembly to allow other programming languages to use it more easily
and to open even more use cases. For a list of WebAssembly feature proposals and
their current status, you can visit https://github.com/WebAssembly/proposals.

 Work has also begun on a WASI specification to standardize how WebAssembly will
work outside the browser. Mozilla has a good article introducing WASI: “Standardizing
WASI: A system interface to run WebAssembly outside the web” by Lin Clark, at
http://mng.bz/O9Pa.

 Because WebAssembly will continue to improve and expand, the following are
some options you can pursue to find help if you have an issue:

 Emscripten’s documentation is at https://emscripten.org.
 If you find an issue with Emscripten itself, you can check to see if someone filed

a bug report or knows how to work around the issue you’re having at
https://github.com/emscripten-core/emscripten.

 Emscripten has a very active community, with frequent releases. If there’s a
newer version of Emscripten available, you could try upgrading to the latest

Both tests now pass.

The results of your tests runningFigure 13.7 in a browser show that the tests pass.

http://mng.bz/O9Pa
https://github.com/WebAssembly/proposals
https://emscripten.org
https://github.com/emscripten-core/emscripten

341Summary
version to see if that corrects your issue. Upgrade instructions are found in
appendix A.

 The Mozilla Developer Network has good documentation on WebAssembly at
https://developer.mozilla.org/en-US/docs/WebAssembly.

 Feel free to leave a comment in this book’s liveBook at https://livebook
.manning.com/#!/book/webassembly-in-action/welcome.

 Follow me on twitter (@Gerard_Gallant) and my blog as I continue to explore
all that WebAssembly has to offer: https://cggallant.blogspot.com.

Exercises
You can find the solutions to the exercises in appendix D.

1 Which Mocha function would you use if you wanted to group several related
tests together?

2 Write a test to verify that the proper error message is returned when you pass an
empty string for the categoryId value of the ValidateCategory function.

Summary
In this chapter, you learned the following:

 Automated tests take a bit of time up front to write, but, once they’re written,
they can run fast, can be run as often as you’d like and at any time you’d like,
will run exactly the same way every time, and can be run on different platforms.

 Automated tests don’t remove the need for manual testing but can handle the
monotonous items, letting you focus on other areas.

 Mocha is one of several JavaScript testing frameworks available and supports
any assertion library. It can also run tests both at the command line and in the
browser. When run from the command line, Mocha uses Node.js to run the
tests.

 With Mocha, tests are grouped using a describe function, and the tests them-
selves use an it function.

 Mocha has several pre- and post-hook functions available (before, beforeEach,
afterEach, and after) that you can use to set preconditions before the tests
are run and to clean up afterward.

 When a promise is returned from Mocha’s functions, Mocha waits for the promise
to complete before continuing. This is helpful when you have asynchronous
operations.

 If a test fails, details are given as to why it didn’t pass.
 If a test passes, a check mark is shown in the output.

https://developer.mozilla.org/en-US/docs/WebAssembly
https://twitter.com/Gerard_Gallant
https://cggallant.blogspot.com
https://livebook.manning.com/#!/book/webassembly-in-action/welcome
https://livebook.manning.com/#!/book/webassembly-in-action/welcome
https://livebook.manning.com/#!/book/webassembly-in-action/welcome

appendix A
Installation and tool setup

In this appendix, you’ll install and set up all tools needed to follow along with the
examples in this book. The main tool that you’ll need is Emscripten. Originally cre-
ated to transpile C and C++ code into asm.js, it has since been modified to also
compile code into WebAssembly modules.

A.1 Python
You’ll need to have Python installed on your system to run the Emscripten SDK
installation. The minimum version of Python that’s needed is 2.7.12. You can check

This appendix covers
 Installing Python

 Starting a local web server using Python

 Checking to see if the WebAssembly media type is
configured for Python and, if not, learning how to configure it

 Downloading and installing the Emscripten SDK

 An overview of the WebAssembly Binary Toolkit
343

344 APPENDIX A Installation and tool setup
to see if Python is already installed and what version it is by running the following
command in a console window:

python -V

If Python is installed, you should see a message similar to the one shown in figure A.1.
 If Python isn’t installed, you can download the installation from www.python

.org/downloads/. If you’re using a version of Linux that has APT (Advanced Package
Tool), Python can also be installed by running the following command in a terminal
window:

sudo apt install python-minimal

A.1.1 Running a local web server

Most of the examples in this book will require you to use a local web server because
some browsers won’t allow access to the file system to load other files by default. This
will prevent some of the WebAssembly JavaScript API functions from working in cer-
tain browsers if the HTML file is run directly from the file system.

DEFINITION A web server is a special program that uses HTTP to pass files
used by web pages to the caller (the browser, in our case).

Conveniently, Python can run a local web server, and there are two ways to start it,
depending on the version of Python installed. For both approaches, you open a con-
sole window, navigate to the folder where the HTML file is located, and then run a
command.

 If you’re using Python 2.x, the following command starts the local web server:

python -m SimpleHTTPServer 8080

For Python 3.x, the command is

python3 -m http.server 8080

You’ll see a message indicating that HTTP is being served on port 8080, as figure A.2
shows.

 At this point, all you have to do is open a browser and set the address to
http://localhost:8080/, followed by the HTML file name you wish to view.

Python 2.7.13
is installed.

Verifying that Python is installedFigure A.1

www.python.org/downloads/
www.python.org/downloads/
www.python.org/downloads/
http://localhost:8080/

345Python
The other option that’s available is to use a tool called emrun that comes with
Emscripten. Emrun starts Python’s local web server and then launches the file speci-
fied in your default browser. The following is an example of using the emrun com-
mand to launch a test.html file:

emrun --port 8080 test.html

NOTE For all three commands, the path where the files are served will be
based on the directory that you’re in when you start the local web server.

A.1.2 The WebAssembly media type

A media type was originally known as a MIME type. MIME stands for Multipurpose
Internet Mail Extensions and is used to indicate the type of an email message’s con-
tent and attachment. Browsers also use a file’s media type to determine how to process
the file.

 Originally, WebAssembly files were passed to browsers using the application/
octet-stream media type because a .wasm file is binary data. This has since been
changed to a more formal media type: application/wasm.

 Unfortunately, it takes time for new media types to be registered with IANA (the
Internet Assigned Numbers Authority), which is responsible for standardizing media
types. Because of this, not all web servers include the WebAssembly media type, so
you’ll need to make sure that it’s defined for your web server in order for the browser
to know what to do with the WebAssembly modules.

 Python doesn’t need to be used as the local web server if you prefer to use some-
thing else. Since it was installed for the Emscripten SDK, it’s convenient if you don’t
have any other web servers installed on your computer. On a Mac or Linux, before try-
ing to add the WebAssembly media type to Python’s media types list, you can check
and see if it already exists by running the following command:

grep 'wasm' /etc/mime.types

If the wasm extension hasn’t yet been added to Python, nothing will be displayed. If
the extension was already added, you should see something similar to the screenshot
in figure A.3.

 On a Mac or Linux, if the media type hasn’t yet been added to Python, you can
manually add it by editing the mime.types file. The following command uses gedit as

Python 2.x’s local web server running on port 8080Figure A.2

346 APPENDIX A Installation and tool setup
the editor, but, if it’s unavailable, most other editors can be substituted for gedit in the
following command:

sudo gedit /etc/mime.types

Add the following to the list of media types and then save and close the file:

application/wasm wasm

On Windows, to check if Python has the media type configured, you need to check
the mimetypes.py file. If you open a console window and navigate to the Lib folder
where Python is installed, you can check to see if the WebAssembly media type is in
the file by running the following command:

type mimetypes.py | find "wasm"

If the wasm extension hasn’t yet been added to Python, nothing will be displayed. If
the extension was already added, you should see something similar to figure A.4.

If the media type isn’t in the file, then you’ll need to edit the file. Open it in the editor
of your choice. A search for the text types_map = { should bring you to the section of
the file where you need to add the media type, as figure A.5 shows.

 Add the following to the list in the types_map section and then save and close the
file:

'.wasm' : 'application/wasm',

WebAssembly’s media
type is defined.

The WebAssembly media type is part of Python’s list of media types on Ubuntu Linux.Figure A.3

WebAssembly’s media
type is defined.

The WebAssembly media type is also in Python’s list of media types onFigure A.4
Windows.

347Emscripten
EmscriptenA.2
At the time of this book’s writing, 1.38.45 was the latest version of the Emscripten
SDK. The toolkit is updated regularly, so you may have a newer version.

 Before you go through the process of downloading and installing the SDK, you
should check and see if it’s already installed. To do this, you can run the following com-
mand in a console window to view the list of tools that were installed with the SDK:

emsdk list

If the SDK is installed, you should see a list similar to that in figure A.6. If the SDK is
installed and is the version you need for this book (or higher), you can skip to sec-
tion A.3.

The list of media types

Figure A.5 The types_map section in
the mimetypes.py file, opened with Visual
Studio Code

The Emscripten SDK, version 1.38.16, is installed.Figure A.6

348 APPENDIX A Installation and tool setup
If the SDK is installed but isn’t at the version you need for this book, run the following
command to instruct the SDK to get the latest list of available tools:

emsdk update

You can skip the next section and jump to section A.2.2 if you’re using Windows or
section A.2.3 if you’re using a Mac or Linux.

 If the SDK isn’t installed, your next step is to download the Emscripten SDK.

Downloading the Emscripten SDKA.2.1

Navigate to the following website: https://github.com/emscripten-core/emsdk. Click
the green “Clone or Download” button located on the right side of the screen, and
then click the Download ZIP link from the pop up, as figure A.7 shows.

 Extract the files to the desired location. Then, open a console window and navi-
gate to the extracted emsdk-master folder.

1. Click this
button.

2. Then click
this button.

Figure A.7 Click the “Clone or Download” button and then click the Download ZIP button to
download the Emscripten SDK.

https://github.com/emscripten-core/emsdk

349Emscripten
If you’re using WindowsA.2.2

The following command will download the SDK’s latest tools:

emsdk install latest

Run the following command to make the latest SDK active for the current user. You
may need to open the console window as an Administrator because the console will
need to access the Windows registry when using the --global flag:

emsdk activate latest --global

INFO The --global flag is optional but is recommended so that the environ-
ment variables are also placed in the Windows registry. If the flag isn’t used,
the emsdk_env.bat file will need to be run every time a new console window is
opened, to initialize the environment variables.

If you’re using a Mac or LinuxA.2.3

Run the following command to download the SDK’s latest tools:

./emsdk install latest

Run the following command to activate the latest SDK:

./emsdk activate latest

You’ll need to run the following command so that the current terminal window knows
the environment variables:

source ./emsdk_env.sh

The nice thing about running this command is that you no longer have to prefix the
commands, like emsdk, with the ./ characters. Unfortunately, the environment vari-
ables are not cached, so you’ll need to run the command every time you open a new
terminal window. Alternatively, you can put the command into your .bash_profile or
equivalent file. When adding the command to your .bash_profile or equivalent file,
you’ll need to adjust the path based on where the emsdk-master folder was placed.

Working around installation issuesA.2.4

If you run into installation issues, the following website has platform-specific instruc-
tions for installing Emscripten on Windows, Mac, and Linux that might be of some
help: https://emscripten.org/docs/getting_started/downloads.html.

 In some cases, downloading and installing the Emscripten SDK might not work
due to conflicts with existing system libraries on your machine. In this case, you might
need to build Emscripten from source. You can find the instructions for this at
https://emscripten.org/docs/building_from_source/index.html.

https://emscripten.org/docs/getting_started/downloads.html
https://emscripten.org/docs/building_from_source/index.html

350 APPENDIX A Installation and tool setup
Node.jsA.3
When you installed the Emscripten SDK, it installed several tools in addition to
Emscripten, one of which was Node.js. Node.js is a JavaScript runtime built on the V8
engine, which is the engine that also powers the Chrome web browser. Node.js allows
for JavaScript to be used as server-side code, and it also has a large number of open
source packages available to help with many programming needs. It’s possible to use
WebAssembly modules in Node.js, so we’ll include some examples for Node.js in this
book.

 WebAssembly support was added to Node.js in version 8, so that’s the minimum
version needed. Run the following command to see the list of tools that were installed
when you installed the Emscripten SDK. You should see something similar to figure
A.8, where the installed version of Node.js is pointed out:

emsdk list

If the version of Node.js that was installed with the SDK isn’t version 8 or higher, then
you’ll need to uninstall it from the SDK. To do this, at the command line, type emsdk
uninstall, followed by the full name of the version of Node.js that’s installed:

emsdk uninstall node-4.1.1-64bit

Once Node.js 4 has been uninstalled, you can use the emsdk install command to
install Node.js version 8.9, which was listed as available for download when you ran
emsdk list:

emsdk install node-8.9.1-64bit

Node.js 8.9.1
is installed.

Node.js version 8.9.1 was installed with the Emscripten SDK.Figure A.8

351Bootstrap
A.4 WebAssembly Binary Toolkit
The WebAssembly Binary Toolkit contains the tools that will allow you to convert
between the WebAssembly binary format and the text format. The wasm2wat tool con-
verts from the binary format to the text format, and the wat2wasm tool does the oppo-
site, converting from the text format to the binary format. There’s even a wasm-interp
tool, which allows the WebAssembly binary file to run stand-alone outside the browser,
which can be useful for automated testing of the WebAssembly module.

 Because browsers will use the WebAssembly text format if the user does a View
Source, or for debugging if the WebAssembly module doesn’t have source maps
included, having a basic understanding of the text format is important. So, you’ll work
with the text format to build a game in chapter 11.

 Source maps are files that map the current code—which may have been modified
and renamed during the compilation process—to the original code so that debuggers
can reconstruct the code being debugged to something closer to the original and
make debugging easier.

 There’s no download of the WebAssembly Binary Toolkit executables. To get a
copy, you need to clone the repository that’s on GitHub and then build them. If you
aren’t comfortable using git, the toolkit’s GitHub repository has some demos that you
can work with using your web browser:

 The wat2wasm demo allows you to enter the text format and download the
Wasm file: https://webassembly.github.io/wabt/demo/wat2wasm.

 The wasm2wat demo allows you to upload a Wasm file and view the text format:
https://webassembly.github.io/wabt/demo/wasm2wat.

For the examples in this book, you’ll simply use the wat2wasm-online demo, but you
can download the source code for the toolkit and build the Wasm files locally if you
wish. The instructions for cloning and building the toolkit can be found at
https://github.com/WebAssembly/wabt.

A.5 Bootstrap
For a more professional-looking web page, instead of styling everything manually,
you’ll be using Bootstrap. Bootstrap is a popular framework for web development that
includes a number of design templates to help make web development easier and
faster. The examples in this book will simply point to files that are hosted on CDNs,
but Bootstrap can be downloaded from the following location if you’d prefer to use a
local copy: https://getbootstrap.com.

INFO A CDN, or content delivery network, is geographically distributed with
a goal of serving the files needed as close to the device requesting them as
possible. This distribution speeds up the process of downloading the files,
which improves website load times.

https://webassembly.github.io/wabt/demo/wat2wasm
https://webassembly.github.io/wabt/demo/wasm2wat
https://github.com/WebAssembly/wabt
https://getbootstrap.com

352 APPENDIX A Installation and tool setup
Bootstrap depends on the jQuery and Popper.js libraries. jQuery is a JavaScript library
that makes working with the DOM, events, animations, and Ajax simpler. Popper.js is a
positioning engine that helps with the positioning of elements on a web page.

 Popper.js is included with the bootstrap.bundle.js and bootstrap.bundle.min.js
files, but jQuery isn’t. You’ll have to download jQuery, too, if you don’t want to use the
CDNs. You can do so from the following location: https://jquery.com/download.

https://jquery.com/download

appendix B
ccall, cwrap, and

direct function calls

When working with Emscripten’s generated JavaScript plumbing code, you have a
few options for calling into a module. The most common approach is to use the
ccall and cwrap functions, which help with memory management when passing
and returning strings, for example. You can also call a module function directly.

This appendix covers
 Calling a module’s function from JavaScript using the

Emscripten helper functions ccall and cwrap

 Calling a module’s function directly from JavaScript without
using the Emscripten helper functions

 Passing arrays to a function
353

354 APPENDIX B ccall, cwrap, and direct function calls

B.1

B.1.1

ccall
The ccall function allows you to call a function in the WebAssembly module and
receive the results. This function accepts four parameters:

 A string indicating the name of the function in the module that you want to call.
When Emscripten creates a WebAssembly module, it will add an underscore
character before the function name. Don’t include the leading underscore
character, as the ccall function will include that for you.

 The function’s return type. The following values can be specified:
– null if the function returns void.
– 'number' if the function returns an integer, float, or pointer.
– 'string' if the function returns a char*. This is optional and is here for con-

venience. If used, the ccall function will handle the memory management
of the returned string for you.

 An array indicating the data types of the parameters. This array needs to have the
same number of items as there are parameters to the function, and they needed
to be in the same order. The values that can be specified are
– 'number' if the parameter is an integer, float, or pointer.
– 'string' can be used for a char* parameter. If used, the ccall function will

handle the string’s memory management for you. When using this approach,
the value is considered temporary because the memory will be freed the
moment the function returns.

– 'array' can be used, but only for 8-bit array values.
 An array of values to pass to the function. Each array item corresponds to the

parameters of the function and must be in the same order.

The third parameter’s string and array data types are there for convenience, by han-
dling the work of creating a pointer, copying the value into memory, and then freeing
that memory once the function call has completed. These values are considered tem-
porary and will be there only while the function is executing. If the WebAssembly
module code saves the pointer for future use, it might point to invalid data.

If you want objects to live longer, then you need to allocate and deallocate the mem-
ory manually using the Emscripten functions _malloc and _free. In this case, you
won’t use string or array for the parameter type but rather number, because you’ll be
passing a pointer directly and not using Emscripten’s memory management help.

If you need to pass an array that has values greater than 8-bit—for example, 32-bit
integers—then you’ll need to pass a pointer rather than the array type. Section B.3
shows how to pass an array to a module manually.

Building a simple WebAssembly module

To demonstrate the ccall function, you’ll need a WebAssembly module. Create an
Appendix B\B.1 ccall\ folder for your files. Create the file add.c in the folder, and then
open it with your favorite editor. The following C code for an Add function will accept

355ccall
two values, add them together, and then return a result. Place this code snippet in the
add.c file:

#include <stdlib.h>
#include <emscripten.h>

EMSCRIPTEN_KEEPALIVE
int Add(int value1, int value2) {
 return (value1 + value2);
}

You’ll reuse this module for the cwrap and direct call sections that follow. Because
you’ll want the ccall and cwrap functions available in the Module object of
Emscripten’s generated JavaScript, you’ll need to include them as part of the EXTRA_
EXPORTED_RUNTIME_METHODS command-line array. To compile the code into a Web-
Assembly module, open a command prompt, navigate to the folder where you saved
the add.c file, and then run the following command:

emcc add.c -o js_plumbing.js

➥ -s EXTRA_EXPORTED_RUNTIME_METHODS=['ccall','cwrap']

B.1.2 Building the web page that will talk to the WebAssembly module

You’ll now need to create a simple HTML web page, and you’ll also include the Java-
Script to call the Add function in the web page rather than in a separate file. In your
B.1 ccall folder, create an add.html file, and then open it with your editor. The web
page will simply have a button that, when clicked, calls a JavaScript function that you’ll
create called callAdd. The JavaScript function will call the Add function in the module
using the ccall Emscripten helper function and then display the result of the addi-
tion to the console window of the browser’s developer tools. Add the code in the fol-
lowing listing to the add.html file.

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8"/>
 </head>
 <body>
 <input type="button" value="Add" onclick="callAdd()" />

 <script>
 function callAdd() {
 const result = Module.ccall('Add',
 'number',
 ['number', 'number'],
 [1, 2]);

 console.log(`Result: ${result}`);
 }
 </script>

HTML for the add.html fileListing B.1

First parameter is the
name of the function

Return type is an
integer in the module

Passes the
values for the

parameters

Parameter types are both
integers in the moduleDisplays

the result

356 APPENDIX B ccall, cwrap, and direct function calls
 <script src="js_plumbing.js"></script>
 </body>
</html>

Now that you have the completed JavaScript code, you can open your browser and
type http://localhost:8080/add.html into the address box to see the web page you
just built. Open the browser’s developer tools (press F12) to view the console and,
then click the Add button to see the result of the call to the module’s Add function, as
figure B.1 shows.

cwrapB.2
The cwrap function is similar to the ccall function. With the cwrap function, you only
specify the first three parameters, which are identical to those of ccall:

 The function name
 The function’s return type
 An array indicating the function’s parameter types

Unlike with ccall, which executes the function right away, when you call the cwrap
function, you’re given a JavaScript function. In JavaScript, functions are first-class citi-
zens and can be passed around like you would a variable, which is one of JavaScript’s
most powerful features. The JavaScript function can then be used to call the module’s
function, similar to how you’d call a normal function in which you specify the parame-
ter values directly rather than using an array.

Adjusting the JavaScript code to use cwrapB.2.1

To demonstrate using the cwrap function, create an Appendix B\B.2 cwrap\ folder for
your files. Copy the add.html, js_plumbing.js, and js_plumbing.wasm files from
Appendix B\B.1 ccall\ to Appendix B\B.2 cwrap\. Open the add.html file with your
favorite editor so that you can adjust the callAdd function to now use the Emscripten
cwrap helper function.

The Emscripten-generated
JavaScript file

The result of calling the module’sFigure B.1 Add function using ccall and passing in the
parameter values 1 and 2

357Direct function calls
 Because cwrap will be returning a function rather than the result of the module’s
Add function, the first change you’ll want to make is change the const result vari-
able to be const add. Also change Module.ccall to be Module.cwrap. Finally, remove
the fourth parameter, in which you specified the values for the parameters, because
the cwrap function only accepts three parameters.

 Now that you’ve defined a function that can call the module’s Add function, you
need to actually call the function. To do this, you can simply call the add function that
was returned from the cwrap call the same way you would any other function (you
don’t use an array). Replace the code in the callAdd function with the code from the
following snippet:

function callAdd() {
 const add = Module.cwrap('Add',
 'number',
 ['number', 'number']);

 const result = add(4, 5);
 console.log(`Result: ${result}`);
}

With the changes to the callAdd function, you can open your browser and type
http://localhost:8080/add.html into the address box to see the web page you just
adjusted. If you click the Add button, you should see the result of the Add call in the
console window of the browser’s developer tools, as figure B.2 shows.

Direct function callsB.3
The Emscripten ccall and cwrap functions are typically the ones used when calling a
function in a module because they help with things like memory management of
strings when it’s not necessary for the string to be long-lived.

 It’s possible to call the module’s function directly, but doing so means your code
will need to handle all the necessary memory management. If your code is already
doing all the necessary memory management, or the calls involve only floats and

Return value of cwrap
is a JavaScript function.

Calls the JavaScript function,
passing in the values directly

The result of calling the module’sFigure B.2 Add function using cwrap and passing in the
parameter values 4 and 5

358 APPENDIX B ccall, cwrap, and direct function calls

integers, which don’t require memory management, then this might be an
approach for you to consider.

 When the Emscripten compiler creates the WebAssembly module, it puts an
underscore character in front of the function names. It’s important to remember the
following differences:

 When calling ccall or cwrap, you don’t include the underscore character.
 When you call the function directly, you need to include the underscore character.

The following code snippet shows how to call the Add function in the module directly:

function callAdd() {
 const result = Module._Add(2, 5);
 console.log(`Result: ${result}`);
}

B.4

Calling the Add function directly. Don’t
forget the leading underscore character.

Passing an array to a module
The ccall and cwrap functions accept an 'array' type, but the automatic memory
management is only for 8-bit values. If your function is expecting an array with inte-
gers, for example, you’ll need to handle the memory management yourself by allocat-
ing enough memory for each element in the array, copying the contents of the array
to the module’s memory, and then freeing the memory after the call returns.

A WebAssembly module’s memory is simply a typed array buffer. Emscripten pro-
vides several views that allow you to view the memory in different ways so that you can
work with different data types more easily:

 HEAP8—8-bit signed memory using the JavaScript Int8Array object
 HEAP16—16-bit signed memory using the JavaScript Int16Array object
 HEAP32—32-bit signed memory using the JavaScript Int32Array object
 HEAPU8—8-bit unsigned memory using the JavaScript Uint8Array object
 HEAPU16—16-bit unsigned memory using the JavaScript Uint16Array object
 HEAPU32—32-bit unsigned memory using the JavaScript Uint32Array object
 HEAPF32—32-bit float memory using the JavaScript Float32Array object
 HEAPF64—64-bit float memory using the JavaScript Float64Array object

If you have an array of integers, for example, you’d use the HEAP32 view, which is really
an Int32Array JavaScript object. To allocate enough memory for the array pointer,
you’d call Module._malloc, passing in a value that’s the result of multiplying the
number of items in the array by the number of bytes for each item. The Module.

HEAP32 object is the object for 32-bit integers, so you’d use the constant Module.HEAP32
.BYTES_PER_ELEMENT, which holds a value of 4. Each heap object has a BYTES_

PER_ELEMENT constant.
Once you have the memory allocated for the array pointer, you can use the HEAP32

object’s set function. The first parameter of the set function is the array that’s to be
copied into the WebAssembly module’s memory. The second parameter is an index
for where the set function should start writing the data in the underlying array (the

359Passing an array to a module
module’s memory). In this case, because you’re working with the memory’s 32-bit
view, each index refers to one of the groupings of 32 bits (4 bytes). As a result, you
need to divide the memory address by 4. You can use standard division, but you may
also see the use of the bitwise right-shift operator in some code, like the Emscripten
JavaScript plumbing code. The following would be the same as a divide-by-four opera-
tion, but uses the bitwise right-shift operator arrayPointer >> 2.

 The next listing shows how your JavaScript would pass an array of integers to a
module.

const items = [1, 2, 3, 4];
const arrayLength = items.length;
const bytesPerElement = Module.HEAP32.BYTES_PER_ELEMENT;

const arrayPointer = Module._malloc((arrayLength * bytesPerElement));

Module.HEAP32.set(items, (arrayPointer / bytesPerElement));

Module.ccall('Test',
 null,
 ['number', 'number'],
 [arrayPointer, arrayLength]);

Module._free(arrayPointer);

Listing B.2 JavaScript passing an array of integers to a module

The array to pass
to the module The number of bytes per

element for the HEAP32 object
Allocates enough
memory for each
item of the array

Copies the
array’s elements
into the module’s
memory

Calls the ‘Test’ function
in the module

The module’s
return type is void.

A pointer uses the number type.
Passes in the array pointer
and the array’s length

Frees the memory that was
allocated for the array

appendix C
Emscripten macros

Emscripten provides three types of macros that can help you talk to the host and
can be quite helpful when you need to do things like debug issues with your code.
Emscripten macros come in two flavors. The first type of macro is the
emscripten_run_script series, and the other types are the EM_JS and EM_ASM
series of macros.

C.1 emscripten_run_script macros
The emscripten_run_script series of macros executes JavaScript code directly
using the JavaScript eval function. This function is a special JavaScript function
that takes a string and turns it into JavaScript code. Using evals in JavaScript is gen-
erally frowned upon—it’s slower compared to the alternatives, but, more impor-
tantly, if the string you pass in contains user-supplied data, that data is turned into

This appendix covers
 An overview of the emscripten_run_script series of

macros

 The EM_JS Emscripten macro

 The EM_ASM series of Emscripten macros
360

361EM_JS macros
code that can do anything, which poses a serious
security risk. Another disadvantage of using the eval
function is that, depending on the browser’s security
settings, a browser may prevent eval from working
altogether, and your code might not work as
expected.

It’s recommended that the emscripten_run_

script series of macros never be used in production
code and especially never with user-supplied data.
The macros, however, could be of use for things like
debugging. For example, as figure C.1 shows, if the
WebAssembly module isn’t working as expected, and
a review of the code doesn’t help narrow down the
cause, you could drop in macros at specific points in
your code. Perhaps you’d start by adding one macro
per function to try to narrow down the source of the
issue by displaying an alert or console message. You
could add additional macros to further narrow down
the source of the issue and then, once the issue has
been identified and fixed, remove the macros.

The emscripten_run_script macro accepts a
const char* pointer and return void. The following is an example of using emscripten_
run_script to write a string to the console:

emscripten_run_script("console.log('The Test function')");

The emscripten_run_script_int and emscripten_run_script_string macros also
accept a const char* pointer, but the difference between these two is their return types:

 emscripten_run_script_int returns an integer.
 emscripten_run_script_string returns a char* pointer.

C.2 EM_JS macros
The second type of Emscripten macro available to WebAssembly modules is the EM_JS
and EM_ASM series. The EM_JS macro offers a way of declaring JavaScript functions
right in your C or C++ code, whereas the EM_ASM macros allow for the use of inline
JavaScript.

Although the JavaScript code for all these macros is within your C or C++ code, the
Emscripten compiler actually creates the necessary JavaScript functions and calls those
functions behind the scenes when the module is running. For this section, you’re
going to focus on the EM_JS macro; you’ll see the EM_ASM macros in the next section.

The EM_JS macro accepts four parameters:

 The function’s return type.
 The function’s name.

Code review doesn’t
yield any answers

Code is fixed and
macros removed

WebAssembly code isn’t
working as expected

Emscripten macros added to
write data to the browser’s
console or display an alert

Source
of issue
found?

No

Yes

Figure C.1 Debugging a
WebAssembly module using macros

362 APPENDIX C Emscripten macros
 The arguments for the function surrounded by parentheses. If there are no
arguments to pass to the function, empty opening and closing parentheses are
still needed.

 The code for the body of the function.

WARNING One thing to keep in mind with this macro is that the first three
parameters are written using C++ syntax. The fourth parameter, the body of
the function, is JavaScript code.

No parameter valuesC.2.1

The first EM_JS macro that you’ll define is a JavaScript function that doesn’t have a
return value or parameters. To begin, you need to create an Appendix C\C.2.1 EM_JS\
folder for your files. Then create the file em_js.c in the folder, and open it with your
favorite editor.

For the macro, you don’t want a value returned from the function, so you’ll specify
void for the first parameter. The name of the macro will be NoReturnValueWithNo-
Parameters, and because there won’t be any parameters, the third parameter to the
macro will simply be opening and closing parentheses. The JavaScript code itself will
be a console.log call to send a message to the console window of the browser’s devel-
oper tools indicating that the macro was called.

Once the macro is defined, calling the function is the same as a normal C or C++
function. You’ll place the call to the function in a main function so that the code will
run automatically when the module is downloaded and instantiated. Add the follow-
ing code snippet to your em_js.c file:

#include <emscripten.h>

EM_JS(void, NoReturnValueWithNoParameters, (), {
 console.log("NoReturnValueWithNoParameters called");
});

int main() {
 NoReturnValueWithNoParameters();
 return 0;
}

There’s no need to go through the process of creating a simple HTML page just to see
the results of the macros in this appendix. Instead, you’ll compile the code you create
into WebAssembly modules and use the Emscripten HTML template.

To compile the code you just wrote, open a command prompt, navigate to the
folder where you saved the em_js.c file, and run the following command:

emcc em_js.c -o em_js.html

INFO You may see a warning message that there were no arguments provided
for the macro’s function. You can ignore this warning.

Declares the macro
Logs a message to the
browser’s developer
tools console

Calls the JavaScript
function that you defined
with the EM_JS macro

363EM_JS macros
Now that you’ve generated the WebAssembly file, you can open your browser and type
http://localhost:8080/em_js.html into the address box to see the web page. If you
open the browser’s developer tools by pressing the F12 key, you should see the text
NoReturnValueWithNoParameters called written to the console window, as figure
C.2 shows.

C.2.2 Passing parameter values

In this example, you’ll look into how to pass values to the EM_JS macro and how the
JavaScript code inside interacts with the parameters. In the Appendix C\ folder, create
a new folder called C.2.2 EM_JS\ , and then create a file named em_js.c in the folder.
Open the file with your favorite editor.

Your macro won’t return a value, so you’ll set the first parameter to void. You’ll give
the macro the name NoReturnValueWithIntegerAndDoubleParameters because the
function will receive an int and a double for the parameters. The JavaScript code will
simply call console.log to display a message in the console window indicating that
the function was called and what values were passed in.

You’ll create a main function that will be called automatically when the module is
instantiated. In the main function, you’ll call your macro, passing in the integer and
double the same way you would call a normal function.

 Add the following code snippet to em_js.c:

#include <emscripten.h>

EM_JS(void, NoReturnValueWithIntegerAndDoubleParameters,
 (int integer_value, double double_value), {
 console.log("NoReturnValueWithIntegerAndDoubleParameters
 ➥ called...integer_value: " +

Figure C.2 The console window’s output from the NoReturnValueWithNoParameters
EM_JS macro

The macro has two
parameters, an int
and a double.

364 APPENDIX C Emscripten macros
integer_value.toString() + " double_value: " +
double_value.toString());

});

int main() {
 NoReturnValueWithIntegerAndDoubleParameters(1, 5.49);
 return 0;
}

To compile the code, open a command prompt, navigate to the folder where you
saved the em_js.c file, and then run the following command:

emcc em_js.c -o em_js.html

Now that you’ve generated the WebAssembly file, you can open your browser and type
http://localhost:8080/em_js.html into the address box to see the web page. In the
browser’s console window, you should see the text indicating that the NoReturn-
ValueWithIntegerAndDoubleParameters function was called, as figure C.3 shows.

C.2.3 Passing pointers as parameters

Pointers can also be passed as parameters to the EM_JS macro. The thing to be aware
of with this, however, is that WebAssembly code works only with integer and float data
types. All other types, like strings, are placed in the module’s linear memory. Although
in your C or C++ code, it will feel like you’re passing a string literal to the function,
when the module is compiled, the WebAssembly code will now be pointing to a mem-
ory location and will be passing that to the function.

Figure C.3 The console window’s output from the
NoReturnValueWithIntegerAndDoubleParameters macro

365EM_JS macros
 In the Appendix C\ folder, create a new folder called C.2.3 EM_JS\ and then create
a file named em_js.c. Open the file with your favorite editor.

The macro won’t return a value, will have the name NoReturnValueWithString-
Parameter, and will accept const char* for the parameter. You’ll use the console
.log function to send a message to the browser’s console window indicating that the
macro was called and the string value that was received. Because the string will be in
the module’s memory, you’ll use the Emscripten helper function UTF8ToString to
read the string from memory. Add the following code snippet to your em_js.c file:

#include <emscripten.h>

EM_JS(void, NoReturnValueWithStringParameter,
 (const char* string_pointer), {
 console.log("NoReturnValueWithStringParameter called: " +
 Module.UTF8ToString(string_pointer));
});

int main() {
 NoReturnValueWithStringParameter("Hello from WebAssembly");
 return 0;
}

Because the JavaScript code will need the UTF8ToString Emscripten helper function,
you’ll need to include that function in the EXTRA_EXPORTED_RUNTIME_METHODS array
command-line flag when you build the WebAssembly module. The following is the
command line to compile your code:

emcc em_js.c -s EXTRA_EXPORTED_RUNTIME_METHODS=['UTF8ToString']

➥ -o em_js.html

You can view the web page in your browser by typing http://localhost:8080/
em_js.html into the address box. In the browser’s console window, you should see the
text indicating that the NoReturnValueWithStringParameter function was called and
that it received the text Hello from WebAssembly, as figure C.4 shows.

C.2.4 Returning a string pointer

None of the EM_JS examples that you’ve created so far have returned a value. You can
return values from the EM_JS functions, but, as with the parameters, you need to be
mindful that WebAssembly code works only with integer and float data types. All other
types, like strings, need to be placed in the module’s linear memory.

In the Appendix C\ folder, create a new folder called C.2.4 EM_JS\ , and then create
a file named em_js.c in the folder. Open the file with your editor.

For this example, you’ll define a function called StringReturnValueWithNo-

Parameters that will have no parameters and will return a char* pointer. In the Java-
Script code, you’ll define a string variable with a message to return to the module’s code.

To pass the string to the module, you’ll need to determine how many bytes it con-
tains; to do this, you’ll use the Emscripten helper function lengthBytesUTF8. Once
you know how many bytes are in the string, you’ll ask the module to allocate some of

The macro accepts a const
char* for the parameter.

Reads the string from
the module’s memory

366 APPENDIX C Emscripten macros
its memory for the string by using the standard C library function malloc. You’ll then
copy the string into the module’s memory using the Emscripten helper function
stringToUTF8. Finally, the JavaScript code will return the pointer to the string.

In the module’s main function, you’ll call the macro and receive the returned string
pointer. You’ll then pass the string pointer to the printf function so that the
Emscripten plumbing code will log the message to the console window of the
browser’s developer tools, as well as to the text box on the web page.

NOTE The main thing to be mindful of is that, if you use malloc, you need to
make sure to free the memory, or you’ll end up with a memory leak. To
release the memory, you use the standard C library function free.

Place the contents of the following listing into your em_js.c file.

#include <stdlib.h>
#include <stdio.h>
#include <emscripten.h>

EM_JS(char*, StringReturnValueWithNoParameters, (), {
 const greetings = "Hello from StringReturnValueWithNoParameters";
 const byteCount = (Module.lengthBytesUTF8(greetings) + 1);

Listing C.1 EM_JS macro that returns a string (em_js.c)

Figure C.4 The console window’s output indicating that the
NoReturnValueWithStringParameter macro was called

Defines a macro that returns char*

The string to return to the module

Determines how many bytes are in the
string; adds a byte for the null terminator

367EM_ASM macros

ing

g
’s
 const greetingsPointer = Module._malloc(byteCount);
 Module.stringToUTF8(greetings, greetingsPointer, byteCount);

 return greetingsPointer;
});

int main() {
 char* greetingsPointer = StringReturnValueWithNoParameters();

 printf("StringReturnValueWithNoParameters was called and it returned the
 ➥ following result: %s\n", greetingsPointer);

 free(greetingsPointer);

 return 0;
}

Because the JavaScript code will be using the lengthBytesUTF8 and stringToUTF8
functions, you need to include them in the EXTRA_EXPORTED_RUNTIME_METHODS array
command-line flag. The following is the command line to compile your code into a
WebAssembly module:

emcc em_js.c -s EXTRA_EXPORTED_RUNTIME_METHODS=['lengthBytesUTF8',

➥'stringToUTF8'] -o em_js.html

INFO You may see a warning message that there were no arguments provided
for the macro’s function. You can ignore this warning.

To view the web page in your browser, type http://localhost:8080/em_js.html into
the address box. You should see the text indicating that the StringReturnValueWith-
NoParameters function was called and that it received the text Hello from String-
ReturnValueWithNoParameters, as figure C.5 shows.

C.3 EM_ASM macros
As mentioned in the previous section, the EM_JS macro offers a way of declaring Java-
Script functions right in your C or C++ code. With the EM_ASM macros, you don’t
declare a JavaScript function explicitly. Instead, you write inline JavaScript in your C
code. With both the EM_JS and EM_ASM macros, the JavaScript code isn’t really within
the C code. The Emscripten compiler actually creates the necessary JavaScript func-
tions and calls them behind the scenes when the module is running.

There are several variations of the EM_ASM macro available:

 EM_ASM

 EM_ASM_

 EM_ASM_INT

 EM_ASM_DOUBLE

Allocates a section of the
module’s memory for the str

Copies the strin
into the module
memoryReturns the pointer to the string’s

location in the module’s memory

Calls the JavaScript
function and
receives the

string pointer

Has the string displayed
in the browser’s console
window on the web page

Frees the memory
that was allocated for

the string pointer

368 APPENDIX C Emscripten macros

C.3.1

Figure C.5 The console window’s output indicating that the
StringReturnValueWithNoParameters macro was called

The EM_ASM and EM_ASM_ macros don’t return a value. The EM_ASM_INT macro returns
an integer, and the EM_ASM_DOUBLE macro returns a double.

EM_ASM

The EM_ASM macros are used to execute JavaScript that’s specified within the macro’s
opening and closing parentheses. To demonstrate this, in your Appendix C\ folder,
create a C.3.1 EM_ASM\ folder, and then create a file named em_asm.c in the folder.
Open the file with your editor.

You’ll create a main function and add a call to the EM_ASM macro to simply write a
string to the console of the browser’s developer tools. Add the following code snippet
to your em_asm.c file:

#include <emscripten.h>

int main() {
EM_ASM(console.log('EM_ASM macro calling'));

}

You can have Emscripten compile the code into a WebAssembly module and generate
the HTML template by opening a command prompt, navigating to where you saved
your em_asm.c file, and then running the following command:

emcc em_asm.c -o em_asm.html

You can view the web page in your browser by typing http://localhost:8080/

em_asm.html into the address box. In the browser’s console window, you should see
the text EM_ASM macro calling written to the console, as figure C.6 shows.

369EM_ASM macros
EM_ASM_C.3.2

The EM_ASM_ macro is used to pass one or more values from the C or C++ code to the
JavaScript code defined within the macro. Although the EM_ASM macro shown previ-
ously can also be used to pass values to the JavaScript code it contains, it’s recom-
mended that you use the EM_ASM_ macro instead. The advantage is that if the
developer forgets to pass a value, the compiler will throw an error.

The first parameter of the EM_ASM and EM_ASM_ macros contains the JavaScript
code, while any additional parameters are the values to pass from the C or C++ code to
the JavaScript code within the macro:

 Each parameter passed in will be seen by the JavaScript code as $0, $1, $2, and
so on.

 Each parameter passed into the macro can be only an int32_t or double, but
pointers are 32-bit integers in WebAssembly, so they can be passed in as well.

Having curly braces around the JavaScript code in the EM_ASM macros isn’t required,
but it helps distinguish between the JavaScript code and the C or C++ values being
passed in.

In your Appendix C\ folder, create a C.3.2 EM_ASM_\ folder, and then create a file
named em_asm_.c. Open the file with your editor.

You’ll now create a main function, and, within the function, you’ll call the EM_ASM_
macro, passing in an integer value of 10. The JavaScript within the macro will simply
write a message to the browser’s console indicating the value that was received. Add
the following code snippet to your em_asm_.c file:

The console window’s output from theFigure C.6 EM_ASM function call

370 APPENDIX C Emscripten macros

#include <emscripten.h>

int main() {
 EM_ASM_({
 console.log('EM_ASM_ macro received the value: ' + $0);
 }, 10);
}

To create the WebAssembly module, open a console window, navigate to the folder
where your em_asm_.c file is located, and then run the following command:

emcc em_asm_.c -o em_asm_.html

As figure C.7 shows, if you type http://localhost:8080/em_asm_.html into your
browser’s address box, you should see the text indicating that the EM_ASM_ macro
received a value of 10.

C.3.3

Values are received as the
variables $0, $1, $2, and so on.

Only int32_t or double C/C++ values
can be passed to the JavaScript code.

The console window’s output from theFigure C.7 EM_ASM_ function call

Passing pointers as parameters

In this example, you’re going to pass a string to the JavaScript code of the EM_ASM_

macro. The only data types that WebAssembly modules support are integers and
floats. Any other type of data, like strings, needs to be represented in the module’s lin-
ear memory.

Before you start, you’ll need to create a C.3.3 EM_ASM_\ folder in your Appendix
C\ folder and then create a file named em_asm_.c. Open the file with your editor.

You’re going to create a main function. Within the main function, you’ll call the
EM_ASM_ macro, passing in the string literal "world!". Because WebAssembly modules

371EM_ASM macros
support only integers and floats, when the code is compiled into a WebAssembly mod-
ule, the string "world!" will actually be placed in the module’s linear memory. A
pointer will be passed to the JavaScript code within the macro, so you’ll need to use
the Emscripten helper function UTF8ToString to read the string from the module’s
memory before you can write the string to the console window of the browser’s devel-
oper tools. Add the following code snippet to the em_asm_.c file:

#include <emscripten.h>

int main() {
 EM_ASM_({
 console.log('hello ' + Module.UTF8ToString($0));
 }, "world!");
}

Because the JavaScript code will be using the UTF8ToString Emscripten helper func-
tion, you’ll need to include that function in the EXTRA_EXPORTED_RUNTIME_METHODS
array command-line flag when you build the WebAssembly module. The following is
the command line to compile your code:

emcc em_asm_.c -s EXTRA_EXPORTED_RUNTIME_METHODS=['UTF8ToString']

➥ -o em_asm_.html

Type http://localhost:8080/em_asm_.html into the address box of your browser to
see your web page. As figure C.8 shows, in the browser’s developer tools console win-
dow, you should see the text hello world!

Reads the string from
the module’s memory

The string is being passed as a
pointer to the JavaScript code.

The console window’s output from theFigure C.8 EM_ASM_ function call

372 APPENDIX C Emscripten macros
EM_ASM_INT and EM_ASM_DOUBLEC.3.4

There might be times when you need to call into JavaScript to request a value. To do
this, you will use either the EM_ASM_INT macro, which returns an integer, or the
EM_ASM_DOUBLE macro, which returns a double.

As with the EM_ASM_ macro, optional values can be passed from the C or C++ code
to the JavaScript code. For this example, you’ll call the EM_ASM_DOUBLE macro, passing
in two double values as parameters. The JavaScript will sum the two values and return
the result. You’ll place the code in the main function and pass the result from the
macro and Emscripten’s JavaScript using the printf function.

In your Appendix C\ folder, create a C.3.4 EM_ASM_DOUBLE\ folder. Create a file
named em_asm_double.c, and open it with your editor. Add the following code snip-
pet to your file:

#include <stdio.h>
#include <emscripten.h>

int main() {
 double sum = EM_ASM_DOUBLE({
 return $0 + $1;
 }, 10.5, 20.1);

 printf("EM_ASM_DOUBLE result: %.2f\n", sum);
}

Open a command prompt, navigate to the folder where you saved the em_asm_double
.c file, and then run the following command to create the WebAssembly module:

emcc em_asm_double.c -o em_asm_double.html

You can open your browser and type http://localhost:8080/em_asm_double.html
into the address box to see the web page you just generated. In the browser’s devel-
oper tools console window, and in the text box on the web page, you should see the
text EM_ASM_DOUBLE result: 30.60 (figure C.9).

Returning a string pointerC.3.5

It’s possible to return a string pointer from the EM_ASM_INT macro because pointers are
represented as 32-bit integers in WebAssembly. Memory management is required, how-
ever. To pass a string from the JavaScript code to the module, the string needs to be
copied into the module’s memory; then the pointer is returned to the module. When
the module is finished with the pointer, it needs to free the memory that was allocated.

In your Appendix C\ folder, create a C.3.5 EM_ASM_INT\ folder. Create a file
named em_asm_int.c, and open it with your editor.

In the EM_ASM_INT macro’s JavaScript, you’ll define a string and then use
Emscripten’s lengthBytesUTF8 helper function to determine how many bytes are in
the string. Once you know this, you can ask the module to allocate the necessary
amount of its linear memory to hold the string. To allocate the memory, you’ll use
the standard C library’s malloc function. The final step is to copy the string into the

373EM_ASM macros
module’s memory using the stringToUTF8 Emscripten helper function and then
return the pointer to the C code.

The code will be placed within the main function, and the result of the EM_ASM_INT
macro call will be cast from an integer into a char*. The code will then pass the
pointer to the printf function so that the Emscripten plumbing code will log the mes-
sage to the console window of the browser’s developer tools, as well as to the web
page’s text box. Before the main function ends, the memory that was allocated will be
freed using the standard C library’s free function:

#include <stdlib.h>
#include <stdio.h>
#include <emscripten.h>

int main() {
 char* message = (char*)EM_ASM_INT({
 const greetings = "Hello from EM_ASM_INT!";
 const byteCount = (Module.lengthBytesUTF8(greetings) + 1);

 const greetingsPointer = Module._malloc(byteCount);
 Module.stringToUTF8(greetings, greetingsPointer, byteCount);

 return greetingsPointer;
 });

 printf("%s\n", message);
 free(message);
}

Because the JavaScript code will be using the lengthBytesUTF8 and stringToUTF8
functions, you’ll need to include them in the EXTRA_EXPORTED_RUNTIME_METHODS

The result ofFigure C.9 30.60 from the call to the EM_ASM_DOUBLE macro

Casts the integer
return value to char*

Displays the message in the
browser’s console window

Frees the memory that was
allocated for the pointer

374 APPENDIX C Emscripten macros
array command-line flag. The following is the command line needed to compile your
code into a WebAssembly module:

emcc em_asm_int.c

➥ -s EXTRA_EXPORTED_RUNTIME_METHODS=['lengthBytesUTF8',

➥'stringToUTF8'] -o em_asm_int.html

If you open your browser and type http://localhost:8080/em_asm_int.html into
the address box, you’ll see the web page you just generated. In the browser’s console
window, and in the text box on the web page, you should see the text Hello from
EM_ASM_INT! (figure C.10).

Figure C.10 The message from the EM_ASM_INT macro written to the console window
of the browser’s developer tools, as well as in the text box on the web page

appendix D
Exercise solutions

Chapter 3D.1
Chapter 3 has two exercises.

Exercise 1D.1.1

Which four data types does WebAssembly support?

SOLUTION

32-bit integers, 64-bit integers, 32-bit floats, and 64-bit floats

Exercise 2D.1.2

Add a Decrement function to the side module you created in section 3.6.1.

1 The function should have an integer return value and an integer parameter.
Subtract 1 from the value received, and return the result to the calling function.

2 Compile the side module, and then adjust the JavaScript to call the function
and display the result to the console.

This appendix covers
 Solutions for the chapter exercises
375

376 APPENDIX D Exercise solutions

D.2

D.2.1

SOLUTION

In your WebAssembly\ folder, create an Appendix D\D.1.2 \source\ folder. Copy your
side_module.c file from your Chapter 3\3.6 side_module\ folder into your new source\
folder.

Open the side_module.c file, and add the function shown in the following code
snippet after your Increment function:

int Decrement(int value) {
return (value - 1);

}

To compile your code into a WebAssembly module, navigate to your Appendix
D\D.1.2\source\ folder and then run the following command:

emcc side_module.c -s SIDE_MODULE=2 -O1

➥ -s EXPORTED_FUNCTIONS=['_Increment','_Decrement']

➥ -o side_module.wasm

In your Appendix D\D.1.2\ folder, create a frontend\ folder and copy the following
files into it:

 side_module.wasm from your source\ folder
 side_module.html from your Chapter 3\3.6 side_module\ folder

Open the side_module.html file in your editor. In the then method of the WebAssem-

bly.instantiateStreaming call, change the variable value from const to let. After
the console.log call, add a call to the _Decrement function, passing in a value of 4
and logging the result to the console. The then method’s code should now look like
the following snippet:

.then(result => {
let value = result.instance.exports._Increment(17);
console.log(value.toString());

value = result.instance.exports._Decrement(4);
console.log(value.toString());

});

Chapter 4
Chapter 4 has two exercises.

Exercise 1

What two options are there to have Emscripten make your functions visible to the
JavaScript code?

SOLUTION

The two options are

 Include the EMSCRIPTEN_KEEPALIVE declaration with the function.
 Include the function names in the command line’s EXPORTED_FUNCTIONS array

when compiling the module.

377Chapter 5

D.2.2

D.3

D.3.1

D.3.2

Exercise 2

How do you prevent function names from being mangled when compiled so that your
JavaScript code can use the expected function name?

SOLUTION

By using extern "C"

Chapter 5
Chapter 5 has two exercises.

Exercise 1

Which keyword do you need to use to define a signature in your C or C++ code so that
the compiler knows the function will be available when the code is run?

SOLUTION

extern

Exercise 2

Suppose you need to include a function in Emscripten’s JavaScript code that your
module will call to determine if the user’s device is online or not. How would you
include a function called IsOnline that returns 1 for true and 0 (zero) for false?

SOLUTION

In your C code, you’d define the function as shown in the following snippet:

extern int IsOnline();

When needed, your C code calls the IsOnline function as it would any other function.
For example,

if (IsOnline() == 1) { /* request data from the server perhaps */ }

To include your JavaScript function in Emscripten’s generated JavaScript code, you use
the mergeInto function. Web browsers have a navigator object that you can access to
determine if the browser online or not by using the navigator.onLine method. If
you’d like to know more about this method, you can visit the following MDN Web Docs
page: http://mng.bz/yzZe.

In the JavaScript file that you’ll specify at the command line (mergeinto.js), you’d
have a function similar to the following:

mergeInto(LibraryManager.library, {
IsOnline: function() {

return (navigator.onLine ? 1 : 0);
}

});

At the command line, you tell Emscripten to include your function in its generated
JavaScript file by specifying the --js-library flag, followed by your JavaScript file
with the mergeInto code, as the following example shows:

emcc test.cpp --js-library mergeinto.js -o test.html

http://mng.bz/yzZe

378 APPENDIX D Exercise solutions
Chapter 6D.4
Chapter 6 has two exercises.

Exercise 1D.4.1

Which two functions do you use to add and remove function pointers from
Emscripten’s backing array?

SOLUTION

addFunction and removeFunction

Exercise 2D.4.2

Which instruction does WebAssembly use to call a function defined in the Table sec-
tion?

SOLUTION

call_indirect

Chapter 7D.5
Chapter 7 has two exercises.

Exercise 1D.5.1

Using one of the dynamic linking approaches you’ve learned in this chapter, create
the following:

1 A side module containing an Add function that accepts two integer parameters
and returns the sum as an integer

2 A main module that has a main() function that calls the side module’s Add func-
tion and displays the result to the console window of the browser’s developer
tools

SOLUTION FOR THE SIDE MODULE

In your WebAssembly\ folder, create an Appendix D\D.5.1\source\ folder. In your new
source\ folder, create an add.c file, and then open it with your favorite editor.

Place the header file for Emscripten and the Add function shown in the following
snippet in the add.c file:

#include <emscripten.h>

EMSCRIPTEN_KEEPALIVE
int Add(int value1, int value2) {
 return (value1 + value2);
}

Next, you’ll need to compile the add.c file as a WebAssembly side module. Open a
command prompt, navigate to your Appendix D\D.5.1\source\ folder, and then run
the following command:

emcc add.c -s SIDE_MODULE=2 -O1 -o add.wasm

Alternatively, you could use
the EXPORTED_FUNCTIONS
command-line array.

379Chapter 7

t

t

The second part of the exercise is to create a main module that has a main function.
Although the manual approach for dynamic linking using the WebAssembly Java-
Script API can be used to link two modules together, that approach uses two side mod-
ules. The two approaches that use main modules are dlopen and dynamicLibraries.

In the main function, you need to call the side module’s Add function and then dis-
play the result to the console window of the browser’s developer tools. Let’s look at
the dlopen approach first.

SOLUTION FOR THE MAIN MODULE: DLOPEN

In your Appendix D\D.5.1\source\ folder, create a main_dlopen.cpp file. Add the code
in the following listing to the file.

#include <cstdlib>
#include <cstdio>
#include <dlfcn.h>
#include <emscripten.h>

typedef int(*Add)(int,int);

void CallAdd(const char* file_name) {
 void* handle = dlopen(file_name, RTLD_NOW);
 if (handle == NULL) { return; }

 Add add = (Add)dlsym(handle, "Add");
 if (add == NULL) { return; }

 int result = add(4, 9);

 dlclose(handle);

 printf("Result of the call to the Add function: %d\n", result);
}

int main() {
 emscripten_async_wget("add.wasm",
 "add.wasm",
 CallAdd,
 NULL);

 return 0;
}

Your next step is to compile the main_dlopen.cpp file as a WebAssembly main module
and have Emscripten also generate the HTML template file. Open a command
prompt, navigate to your Appendix D\D.5.1\source\ folder, and then run the follow-
ing command:

emcc main_dlopen.cpp -s MAIN_MODULE=1 -o main_dlopen.html

Listing D.1 The dlopen approach for the main module

Header file for dlopen and
related functions

Function signature for the Add
function in the side module

Callback function when
the add.wasm file has
finished downloading

Opens
he side
module Gets a reference to

the Add function

Calls the Add function
using the function pointer

Closes
he side
module Displays the result from

the Add function to the
browser’s console window

Downloads the add.wasm
file to Emscripten’s file
system

Names the downloaded
file add.wasm

The CallAdd function will be called
on a successful download.

No error callback
function was provided
in the event the
download fails.

380 APPENDIX D Exercise solutions

C

f

If you chose to use the dynamicLibraries approach for the main module, let’s take a
look at how you could accomplish that.

SOLUTION FOR THE MAIN MODULE: DYNAMICLIBRARIES

The first step with this approach is to create the JavaScript file that will hold your
JavaScript to update Emscripten’s dynamicLibraries property of the Module object.
In your Appendix D\D.5.1\source\ folder, create a pre.js file and open it with your edi-
tor. Add the code in the following snippet to your pre.js file, to have Emscripten link
to the add.wasm side module during initialization:

Module['dynamicLibraries'] = ['add.wasm'];

The second step is to create the C++ for your main module. In your Appendix
D\D.5.1\source\ folder, create a main_dynamicLibraries.cpp file, and open it with your
editor. Add the code in the following listing to your main_dynamicLibraries.cpp file.

#include <cstdlib>
#include <cstdio>
#include <emscripten.h>

#ifdef __cplusplus
extern "C" {
#endif

extern int Add(int value1, int value2);

int main() {
 int result = Add(24, 76);
 printf("Result of the call to the Add function: %d\n", result);

 return 0;
}

#ifdef __cplusplus
}
#endif

Your final step is to compile the main_dynamicLibraries.cpp file as a WebAssembly
main module and have Emscripten also generate the HTML template file. Open a
command prompt, navigate to your Appendix D\D.5.1\source\ folder, and then run
the following command:

emcc main_dynamicLibraries.cpp -s MAIN_MODULE=1

➥ --pre-js pre.js -o main_dynamicLibraries.html

D.5.2 Exercise 2

Which dynamic linking approach would you use if you needed to call a function in the
side module, but that function had the same name as a function in your main module?

SOLUTION

The dlopen approach

TheListing D.2 dynamicLibraries approach for the main module

So the compiler knows the
function will be available
when the code is run

alls the
Add

unction Displays the results in the
browser’s console window

381Chapter 9
Chapter 8D.6
Chapter 8 has two exercises.

Exercise 1D.6.1

Suppose you have a side module called process_fulfillment.wasm: how would you cre-
ate a new instance of Emscripten’s Module object and tell it to dynamically link to this
side module?

SOLUTION

const fulfillmentModule = new Module({
 dynamicLibraries:

['process_fulfillment.wasm']
});

D.6.2 Exercise 2

What flag do you need to pass to Emscripten when compiling a WebAssembly main
module in order to have the Module object wrapped in a function in Emscripten’s gen-
erated JavaScript file?

SOLUTION

-s MODULARIZE=1

D.7 Chapter 9
Chapter 9 has two exercises.

D.7.1 Exercise 1

If you wanted to use a C++17 feature, what flag would you use when compiling your
WebAssembly module, to tell Clang to use that standard?

SOLUTION

-std=c++17

D.7.2 Exercise 2

Test adjusting the calculate_primes logic from section 9.4 to use three threads rather
than four to see how the calculation duration is impacted. Test using five threads, and
place the main thread’s calculation into a pthread to see if moving all the calculations
off the main thread impacts the calculation duration.

SOLUTION FOR THREE THREADS

In your WebAssembly\ folder, create the Appendix D\D.7.2\source\ folder. Copy the
calculate_primes.cpp file from your Chapter 9\9.4 pthreads\source\ folder to your new
source\ folder, and rename it calculate_primes_three_pthreads.cpp.

Open calculate_primes_three_pthreads.cpp with your favorite editor. Make the fol-
lowing modifications to the main function:

Creates a new
WebAssembly instance
of the main module

Tells Emscripten that it needs to
link to the process_fulfillment
side module

382 APPENDIX D Exercise solutions
 The thread_ids array will now hold three values.
 The args array will now hold four values.
 Adjust the args_start initial value to be 250000 (one quarter of the total

1,000,000 range).
 The pthread_create loop needs to loop while i is less than 3.
 Within the pthread_create loop, sets the args[args_index].end value to

args_start + 249999. The args_start value at the end of the loop needs to
be incremented by 250000.

 Adjust the FindPrimes call for the main thread so that the end value (second
parameter) is 249999.

 The pthread_join loop now needs to loop while j is less than 3.
 Finally, the loop that outputs the prime numbers that were found needs to loop

while k is less than 4.

Your main function should now look similar to the code in the next listing.

...

int main() {
 int start = 3, end = 1000000;
 printf("Prime numbers between %d and %d:\n", start, end);

 std::chrono::high_resolution_clock::time_point duration_start =
 std::chrono::high_resolution_clock::now();

 pthread_t thread_ids[3];
 struct thread_args args[4];

 int args_index = 1;
 int args_start = 250000;

 for (int i = 0; i < 3; i++) {
 args[args_index].start = args_start;
 args[args_index].end = (args_start + 249999);

 if (pthread_create(&thread_ids[i], NULL, thread_func,
 &args[args_index])) {
 perror("Thread create failed");
 return 1;
 }

 args_index += 1;
 args_start += 250000;
 }

 FindPrimes(3, 249999, args[0].primes_found);

 for (int j = 0; j < 3; j++) {
 pthread_join(thread_ids[j], NULL);
 }

 std::chrono::high_resolution_clock::time_point duration_end =
 std::chrono::high_resolution_clock::now();

TheListing D.3 main function of calculate_primes_three_pthreads.cpp

Reduced to 3
Reduced to 4

The first thread’s range
will start at 250,000.

Reduced to 3

The end of the range is
now 249,999 after the
args_start value.

Increments by 250,000

Increases the end
value to 249,999Reduced to 3

383Chapter 9
 std::chrono::duration<double, std::milli> duration =
 (duration_end - duration_start);

 printf("FindPrimes took %f milliseconds to execute\n", duration.count());

 printf("The values found:\n");
 for (int k = 0; k < 4; k++) {
 for(int n : args[k].primes_found) {
 printf("%d ", n);
 }
 }
 printf("\n");

 return 0;
}

Your next step is to compile the calculate_primes_three_pthreads.cpp file and have
Emscripten also generate the HTML template file. Open a command prompt, navi-
gate to your Appendix D\D.7.2\source\ folder, and then run the following command:

emcc calculate_primes_three_pthreads.cpp -O1 -std=c++11

➥ -s USE_PTHREADS=1 -s PTHREAD_POOL_SIZE=3

➥ -o three_pthreads.html

A summary comparing these results with those from chapter 9 and the five threads
solution is included after the five threads solution.

SOLUTION FOR FIVE THREADS

In your Appendix D\D.7.2 \source\ folder, make a copy of the calculate_primes_
three_pthreads.cpp file, and name it calculate_primes_five_pthreads.cpp. Open the file
with your favorite editor, and make the following modifications to the main function:

 The start value will now be 0.
 The thread_ids and args array will both hold five values.
 Delete the int args_index = 1 line of code, and then adjust the args_start

initial value to be 0.
 The pthread_create loop needs to loop while i is less than 5.
 Within the pthread_create loop

– Set the args[args_index].end value to args_start + 199999.
– The args_start value at the end of the loop needs to be incremented by

200000.
– Delete the args_index += 1 line of code at the end of the loop. In the

args[args_index] lines of code in the loop, replace args_index with i.
 Remove the FindPrimes call from the main thread (just before the pthread_

join loop).
 The pthread_join loop needs to loop while j is less than 5.
 Finally, the loop that outputs the prime numbers that were found needs to loop

while k is less than 5.

Reduced to 4

384 APPENDIX D Exercise solutions
Your main function should now look similar to the code in the next listing.

...

int main() {
int start = 0, end = 1000000;

 printf("Prime numbers between %d and %d:\n", start, end);

 std::chrono::high_resolution_clock::time_point duration_start =
std::chrono::high_resolution_clock::now();

 pthread_t thread_ids[5];
 struct thread_args args[5];

 int args_start = 0;

 for (int i = 0; i < 5; i++) {
 args[i].start = args_start;
 args[i].end = (args_start + 199999);

 if (pthread_create(&thread_ids[i], NULL, thread_func, &args[i])) {
perror("Thread create failed");
return 1;

 }

 args_start += 200000;
 }

 for (int j = 0; j < 5; j++) {
 pthread_join(thread_ids[j], NULL);
 }

 std::chrono::high_resolution_clock::time_point duration_end =
std::chrono::high_resolution_clock::now();

 std::chrono::duration<double, std::milli> duration =
(duration_end - duration_start);

 printf("FindPrimes took %f milliseconds to execute\n", duration.count());

 printf("The values found:\n");
 for (int k = 0; k < 5; k++) {
 for(int n : args[k].primes_found) {

printf("%d ", n);
 }
 }
 printf("\n");

 return 0;
}

Your next step is to compile the calculate_primes_five_pthreads.cpp file and have
Emscripten also generate the HTML template file.

TheListing D.4 main function of calculate_primes_five_pthreads.cpp

Set this to 0.

Set this to 5.

The first thread’s range will start at 0.

Loops while less than 5

The end of the range is now 199,999
after the args_start value.

Increments by 200,000

Set this to 5.

Set this to 5.

385Chapter 10
Open a command prompt, navigate to your Appendix D\D.7.2\source\ folder, and
then run the following command:

emcc calculate_primes_five_pthreads.cpp -O1 -std=c++11

➥ -s USE_PTHREADS=1 -s PTHREAD_POOL_SIZE=5

➥ -o five_pthreads.html

SUMMARY

The following table breaks down the results of performing the calculations using dif-
ferent numbers of threads. The tests were run 10 times each and the durations aver-
aged out:

 Four pthreads and calculations also being performed on the main thread
(chapter 9)

 Three pthreads and calculations also being performed on the main thread
(“Solution for three threads”)

 Five pthreads with no calculations on the main thread

Chapter 10D.8
Chapter 10 has three exercises.

Exercise 1D.8.1

Which Node.js function do you need to call in order to load Emscripten’s generated
JavaScript file?

SOLUTION

require

Exercise 2D.8.2

What Emscripten Module property do you need to implement in order to be informed
of when the WebAssembly module is ready to be interacted with?

SOLUTION

onRuntimeInitialized

Exercise 3D.8.3

How would you modify the index.js file from chapter 8 so that the dynamic linking
logic works in Node.js?

Number of threads Firefox (in milliseconds) Chrome (in milliseconds)

40.8757.44 pthreads + main thread

42.1161.73 pthreads + main thread

5 pthreads (no processing
on the main thread)

36.0652.2

386 APPENDIX D Exercise solutions
SOLUTION

In your WebAssembly\ folder, create an Appendix D\D.8.3\backend\ folder, and then
complete the following steps:

 Copy all the files except index.html from your Chapter 8\8.1 EmDynamicLi-
braries\frontend\ folder to your newly created backend\ folder.

 Open the index.js file with your favorite editor.

Because index.js can be called by either the Edit Product or the Place Order web
page, you’ll need to adjust the initialProductData object to have a Boolean flag
(isProduct) indicating which form’s data needs to be validated. You’ll also need to
add two new properties for the Place Order form’s values (productId and quantity).
The name of the object itself will need to be changed to better reflect its purpose.

Adjust the initialProductData in your index.js file to match the code in the fol-
lowing snippet:

const clientData = {
 isProduct: true,
 name: "Women's Mid Rise Skinny Jeans",
 categoryId: "100",
 productId: "301",
 quantity: "10",
};

Because the server-side code will be called to validate only one web page at a time, you
don’t need both the productModule and orderModule global variables. Rename the
productModule variable to validationModule and then delete the orderModule line
of code. Do a search of the code, and change all instances of productModule and
orderModule to use validationModule.

Your next step is to have the Emscripten-generated JavaScript file (validate_core.js)
loaded. To do this, add the require function call shown in the following snippet
before the initializePage function in your index.js file:

const Module = require('./validate_core.js');

The validate_core WebAssembly module has been generated using the MODULARIZE=1
command-line flag. By using this flag, the Emscripten-generated JavaScript code
doesn’t run as soon as you load it. The code will run only once you’ve created an
instance of the Module object. Because the code won’t run as soon as you load it, you
can’t implement the Module['onRuntimeInitialized'] function as the starting
point for your code in this case.

What you’ll do instead is replace the contents of the initializePage function with
the creation of the validationModule instance based on what the clientData object
indicates needs to be validated. When you create an instance of the Module object,
you’ll specify the onRuntimeInitialized function at that point.

Renamed from
initialProductData

Flag to indicate if the validation
is for the Edit Product or Place
Order web page

The Place Order form’s
selected product IdThe Place Order form’s

quantity entered

387Chapter 10
Adjust your initializePage function in your index.js file to match the code in the
following snippet:

function initializePage() {
 const moduleName = (clientData.isProduct ?
 'validate_product.wasm' : 'validate_order.wasm');

 validationModule = new Module({
 dynamicLibraries: [moduleName],
 onRuntimeInitialized: runtimeInitialized,
 });
}

After your initializePage function, create the runtimeInitialized function that
will call the validateName and validateCategory functions that are currently in the
onClickSaveProduct function if you’re validating the Edit Product web page data.
Otherwise, the function will call the validateProduct and validateQuantity func-
tions that are currently in the onClickAddToCart function if you’re validating the
Place Order form’s web page data.

Add the code in the next listing to your index.js file after your initializePage
function.

...

function runtimeInitialized() {
 if (clientData.isProduct) {
 if (validateName(clientData.name) &&
 validateCategory(clientData.categoryId)) {

 }
 }
 else {
 if (validateProduct(clientData.productId) &&
 validateQuantity(clientData.quantity)) {

 }
 }
}
...

Your next step is to delete the following UI-specific functions from the index.js file:

 switchForm

 setActiveNavLink

 setFormTitle

 showElement

 getSelectedDropdownId

 onClickSaveProduct

 onClickAddToCart

TheListing D.5 runtimeInitialized function in your index.js file

Determines which
file will need to be
linked to

Creates a new Module instance
linking to the module with the
validation logic you need

Calls runtimeInitialized once
the module has been loaded

The Edit Product web
page data needs to
be validated.

There were no issues. The data can be saved.

The Place Order web page
data needs to be validated.

There were no issues. The data can be saved.

388 APPENDIX D Exercise solutions
When the Emscripten-generated JavaScript file was created in chapter 8, you had it
include the UpdateHostAboutError function, which will read the error message from
the module’s memory and then call the setErrorMessage function in this file.
Because the UpdateHostAboutError function is part of the JavaScript loaded by the
require function call, its scope doesn’t let it access the setErrorMessage function in
this file. To let the UpdateHostAboutError function have access to the setErrorMes-
sage function, you’ll need to adjust the setErrorMessage function so that it’s part of
the global object. You also need to adjust the contents of the file to use console.log
to output the error message.

Update the setErrorMessage function in your index.js file so that it matches the
code in the following snippet:

global.setErrorMessage = function(error) { console.log(error); }

The final modification needed to the index.js file is to add a call to the initialize-
Page function at the end of the file to have the validation logic start. Add the following
snippet to the end of your index.js file:

initializePage();

VIEWING THE RESULTS

At the moment, the content of your clientData contains only valid data, so running
the code right now won’t show any validation errors. You can test the validation logic
for the quantity, for example, by changing the isProduct flag to false and setting the
quantity to "0" (zero).

To run your JavaScript file in Node.js, open a command prompt, navigate to your
Appendix D\D.8.3\backend\ folder, and then run the following command:

node index.js

You should see the validation message Please enter a valid quantity.

Chapter 11D.9
Chapter 11 has two exercises.

Exercise 1D.9.1

When using the WebAssembly Binary Toolkit to create a WebAssembly module, which
s-expression nodes have to appear before the table, memory, global, and func
s-expressions?

SOLUTION

If included, the import s-expression nodes must appear before the table, memory,
global, and func s-expressions.

389Chapter 11
Exercise 2D.9.2

Try adjusting the InitializeRowsAndColumns function in the text format code so that
it now supports six levels rather than three:

 Level 4 should have 3 rows and 4 columns.
 Level 5 should have 4 rows and 4 columns.
 Level 6 should have 4 rows and 5 columns.

SOLUTION

In your WebAssembly\ folder, create an Appendix D\D.9.2\source\ folder, and then
copy in the cards.wast file from your Chapter 11\source\ folder. Open the cards.wast
file.

In the $InitializeRowsAndColumns function, after the third if statement, add the
code shown in the next listing.

...

(func $InitializeRowsAndColumns (param $level i32)

 get_local $level
 i32.const 4
 i32.eq
 if
 i32.const 3
 set_global $rows

 i32.const 4
 set_global $columns
 end

 get_local $level
 i32.const 5
 i32.eq
 if
 i32.const 4
 set_global $rows

 i32.const 4
 set_global $columns
 end

 get_local $level
 i32.const 6
 i32.eq
 if
 i32.const 4
 set_global $rows

 i32.const 5
 set_global $columns
 end
)
...

Additional code for theListing D.6 $InitializeRowsAndColumns function

If statements for levels 1, 2,
and 3 are here but not shown.If level 4 was requested

Sets the rows to 3

Sets the columns to 4

If level 5 was requested

Sets the rows to 4

Sets the columns to 4

If level 6 was requested

Sets the rows to 4

Sets the columns to 5

390 APPENDIX D Exercise solutions
To continue past level 3, one more change is needed. You need to adjust the $MAX
_LEVEL global variable to now hold i32.const 6, as the following snippet shows:

(global $MAX_LEVEL i32 (i32.const 6))

To compile the WebAssembly text format into a WebAssembly module using the
wat2wasm online tool, go to the following website: https://webassembly.github
.io/wabt/demo/wat2wasm/. Replace the text in the top-left pane of the tool with the
contents of your cards.wast file, and then download the WebAssembly module to your
Appendix D\D.9.2\ source\ folder. Name the file cards.wasm.

Create an Appendix D\D.9.2\ frontend\ folder, and copy the cards.wasm file that
you just downloaded into this folder. Copy all the files except cards.wasm from your
Chapter 11\frontend\ folder to your Appendix D\D.9.2\ frontend\ folder.

To view the results, you can open your browser and type http://local-
host:8080/game.html into the address box to see the game’s web page. The game
should now allow you to continue to level 6.

D.10 Chapter 12
Chapter 12 has two exercises.

D.10.1 Exercise 1

In what two ways can you access a variable or call a function?

SOLUTION

You can access a variable or call a function by using its zero-based index. You can also
use the item’s name if one was specified for the item.

D.10.2 Exercise 2

Something you might have noticed is that the Tries value doesn’t reset when you
replay the level or play the next level. Use the logging approach to locate the source
of the issue.

SOLUTION

In your WebAssembly \ folder, create an Appendix D\D.10.2\source\ folder, and then
copy in the cards.wast file from your Chapter 12\source\ folder. Open the cards.wast file.

The first thing that you need to do is define an import s-expression for a logging
function called _Log that takes two i32 parameters. The first parameter will be a
pointer to a memory location for a string indicating which function the log value is
coming from. The second parameter will be the $tries value.

The JavaScript will handle the logging, so the _Log function in the following snip-
pet is added after the _Pause function import:

(import "env" "_Log" (func $Log (param i32 i32)))

A search of the code for every function that interacts with the $tries value results in
the following functions:

https://webassembly.github.io/wabt/demo/wat2wasm/
https://webassembly.github.io/wabt/demo/wat2wasm/
https://webassembly.github.io/wabt/demo/wat2wasm/

391Chapter 12
 $InitializeCards

 $PlayLevel

 $SecondCardSelectedCallback

The data node at the end of the cards.wast file already has the function name for the
SecondCardSelectedCallback, so you only need to add the other two function
names. Add the characters \0 (zero—a null terminator) between the function names
as a separator:

(data
 (i32.const 1024)
 "SecondCardSelectedCallback\0InitializeCards\0PlayLevel"
)

At the top of the $InitializeCards function, after the $count local variable declara-
tion, place the value i32.const 1051 on the stack. This is the start location of the
data node in memory (1024), plus the number of characters to get to the first charac-
ter of the InitializeCards string (\0 is one character).

Add the $tries value to the stack, and then call the $Log function:

i32.const 1051
get_global $tries
call $Log

At the top of the $PlayLevel function, repeat what you did for the $InitializeCards
function, but adjust the i32.const value to be at the start of the PlayLevel string:

i32.const 1067
get_global $tries
call $Log

At the top of the $SecondCardSelectedCallback function, add the $Log call, passing
i32.const 1024 for the string location in memory:

i32.const 1024
get_global $tries
call $Log

With the text format modified, compile the WebAssembly text format into a Web-
Assembly module using the wat2wasm online tool at the following website:
https://webassembly.github.io/wabt/demo/wat2wasm/. Replace the text in the top-
left pane of the tool with the contents of your cards.wast file, and then download the
WebAssembly module to your Appendix D\D.10.2\source\ folder. Name the file
cards.wasm.

Create an Appendix D\D.10.2 \ frontend\ folder, and copy the cards.wasm file that
you just downloaded into this folder. Copy all the files except cards.wasm from your
Chapter 12\frontend\ folder to your Appendix D\D.10.2\ frontend\ folder, and then
open the game.js file.

https://webassembly.github.io/wabt/demo/wat2wasm/

392 APPENDIX D Exercise solutions
Adjust the sideImportObject to have a _Log function after the _Pause function, as
shown in the following snippet:

const sideImportObject = {
 env: {

 _Pause: pause,
 _Log: log,
 }
};

At the end of the game.js file, add the following log function that reads the string
that’s specified from memory and then logs information to the browser’s console
window:

function log(functionNamePointer, triesValue) {
 const name = getStringFromMemory(functionNamePointer);
 console.log(`Function name: ${name} triesValue: ${triesValue}`);
}

If you run the game.html file and display the console window of the browser’s devel-
oper tools, you’ll see the function calls being logged. To narrow down the issue fur-
ther, you could call the Log function in more spots.

Eventually, you’ll discover that the source of the issue is at the end of the
$InitializeCards function. The value of a global variable with an index of 6 is
placed on the stack, and then the $tries global variable is given the value that’s on
the stack.

If you look at the global variables, you’ll discover that the $tries global variable
has the index of 6. Rather than a get_global 6 call, the stack should be given an
i32.const 0 value to reset the $tries variable, as the following snippet shows:

i32.const 0
set_global $tries

With the issue tracked down, the calls to the $Log function can be removed from your
cards.wast file.

D.11 Chapter 13
Chapter 13 has two exercises.

D.11.1 Exercise 1

Which Mocha function would you use if you wanted to group several related tests
together?

SOLUTION

The describe function

The other functions are
still part of the object
but aren’t shown.

393Chapter 13
D.11.2 Exercise 2

Write a test to verify that the proper error message is returned when you pass an
empty string for the categoryId value of the ValidateCategory function.

SOLUTION

In your WebAssembly\ folder, create an Appendix D\D.11.2\ tests\ folder. Do the
following:

 Copy the validate.wasm, validate.js, package.json, tests.js, and tests.html files
from your Chapter 13\13.2 tests\ folder to your new D.11.2\ tests\ folder.

 Open a command prompt, and navigate to your D.11.2\tests\ folder. Because
your package.json file already lists the dependencies for Mocha and Chai, you
can simply run the following command, and npm will install the packages listed
in your file:

npm install

 Open your tests.js file in your favorite editor.

After the "Pass a string that's too long" test, add the test in the next listing,
which will intentionally fail.

...

it("Pass an empty categoryId string to ValidateCategory", () => {
 const VALID_CATEGORY_IDS = [100, 101];
 const errorMessagePointer = Module._malloc(256);
 const categoryId = "";
 const expectedMessage = "something";

 const arrayLength = VALID_CATEGORY_IDS.length;
 const bytesPerElement = Module.HEAP32.BYTES_PER_ELEMENT;
 const arrayPointer = Module._malloc((arrayLength * bytesPerElement));
 Module.HEAP32.set(VALID_CATEGORY_IDS, (arrayPointer / bytesPerElement));

 const isValid = Module.ccall('ValidateCategory',
 'number',
 ['string', 'number', 'number', 'number'],
 [categoryId, arrayPointer, arrayLength, errorMessagePointer]);

 Module._free(arrayPointer);

 let errorMessage = "";
 if (isValid === 0) {
 errorMessage = Module.UTF8ToString(errorMessagePointer);
 }

 Module._free(errorMessagePointer);

 chai.expect(errorMessage).to.equal(expectedMessage);
});

Listing D.7 Testing ValidateCategory with an empty string for categoryId

New test added for the categoryId test of
the ValidateCategory function

The error message you’re
expecting; intentionally wrong
so the test fails

Checks to make sure
the message returned
matches the one
you’re expecting

394 APPENDIX D Exercise solutions
To run the tests, open a command prompt, navigate to your D.11.2\ tests\ folder, and
run the following command:

npm test tests.js

Your new test should fail.
Edit your test so that the expectedMessage variable now holds the value "A Product

Category must be selected." If you run the tests again, they should now all pass.

appendix E
Text format extras

As mentioned in chapter 11, the code execution in WebAssembly is defined in
terms of a stack machine in which instructions push or pop a certain number of val-
ues onto and off the stack.

When a function is first called, the stack for that function is empty. The Web-
Assembly framework will validate the stack when the function ends to ensure that,
if the function is returning an i32 value, for example, the last item on the stack
when the function returns is an i32 value. If the function doesn’t return anything,
then the stack must be empty when the function returns. If there happens to be a
value on the stack, you can remove the item by using the drop instruction, which
will pop the top item off the stack, as in the following example:

This appendix covers
 Working with if statements

 Working with loops

 The WebAssembly module’s Table section and function
pointers
395

396 APPENDIX E Text format extras
i32.const 1

i32.const 2

drop

drop

There might be times when you need to exit a function before it reaches the end. To
do this, there’s a return instruction that will pop the necessary items off the stack and
then exit the function. The following example would pop two items off the stack if
those are the only two on the stack, and the function is returning void:

i32.const 1
i32.const 2
return

Control flow statementsE.1
WebAssembly has several control flow statements available, like block, loop, and if.
Blocks and loops have no effect on the values on the stack and are simply constructs
that have a sequence of instructions and a label. A block can be used to specify a label
for use with the branching pattern the code needs.

If statementsE.1.1

Writing if blocks is interesting because there are multiple ways that they can be struc-
tured. Both the then and else branches of the if block are optional. When using the
stack machine style, the then statement is implied. In both styles—stack or nested s-
expression—you can use a block statement rather than the then statement because a
block statement is just a series of instructions with a label.

If statements pop an i32 value off the stack in order to do their check. A value of 0
(zero) is considered false, and any nonzero value is considered true. Because the if
statement needs to pop an i32 value off the stack, with the stack machine style, you do a
check, like i32.eq, before the if statement to put a Boolean value onto the stack. The
nested s-expression style can do the check either before or within the if statement.

Let’s take a look at a stack machine style if statement.

STACK MACHINE STYLE IF STATEMENT

The example in the following listing is a module containing a function that uses the
stack machine style to check whether the parameter’s value is 0 (zero) or not. If a
value is 0, the function will return the value 5. Otherwise, it will return 10.

(module
 (type $type0 (func (param i32) (result i32)))
 (export "Test" (func 0))

 (func (param $param i32) (result i32)
 (local $result i32)

Example of anListing E.1 if/else block written using the stack machine style

Adds the value 1 to the stack
Adds the value 2 to the stack

Pops value 2 off the stack
Pops value 1 off the stack

If the function returns void, the
return instruction in this case will
pop the two values off the stack.

397Control flow statements
 get_local $param
 i32.const 0
 i32.eq
 if
 i32.const 5
 set_local $result
 else
 i32.const 10
 set_local $result
 end

 get_local $result
)
)

You can test the code in listing E.1 by using the wat2wasm online tool.

TEST THE CODE

To test the code, go to the following website and copy the contents of listing E.1 into
the top-left pane of the tool: https://webassembly.github.io/wabt/demo/wat2wasm/.
As figure E.1 shows, in the tool’s bottom-left pane, you can replace the contents with
the following code snippet to load the module and call the Test function, passing in a
value of 4. The result of the call to the Test function will be displayed in the bottom-
right pane:

const wasmInstance = new WebAssembly.Instance(wasmModule, {});
console.log(wasmInstance.exports.Test(4));

You can adjust the value passed to the Test function to verify that passing 0 (zero)
does indeed return 5, while all other values return 10. Let’s take a look at a nested
s-expression version of the if statement you just saw in listing E.1.

NESTED S-EXPRESSION IF STATEMENT: EQUALITY CHECK BEFORE THE IF STATEMENT

With the stack machine style, the equality check needs to happen before the if state-
ment because the Boolean value needs to already be on the stack for the if statement.
With the nested s-expression style, you can place the equality check before the if
statement or within it. Listing E.2 shows the same code as in listing E.1, but using the
nested s-expression style instead.

Pushes the parameter
value onto the stack

Pops the top two values off the
stack, checks if they’re equal,
pushes the result onto the stack

Pops the top item off the
stack; if the value is 1 (true)

Pushes the value 5
onto the stack

Pops the top item off the stack
and puts it into $result

The if statement
check was 0 (false).

Pushes the value 10 onto
the stack

Pops the top item off the
stack and puts it into $result

Pushes the value in $result onto
the stack so that it will be
returned when the function ends

https://webassembly.github.io/wabt/demo/wat2wasm/

398 APPENDIX E Text format extras
...

(func (param $param i32) (result i32)
 (local $result i32)

 (i32.eq
 (get_local $param)
 (i32.const 0)
)
 (if
 (then

(set_local $result
(i32.const 5)

)
)
 (else

(set_local $result
(i32.const 10)

)
)
)

 (get_local $result)

Nested s-expression style with the equality check before theListing E.2 if statement

1. Place the contents
of listing E.1 here.

2. Place your JavaScript
in this pane. Adjust the
value passed to Test.

3. The return value
from the Test call
is placed here.

Figure E.1 The code from listing E.1 is placed in the top-left pane, and the JavaScript is placed in
the bottom-left pane. The result of the function call is displayed in the bottom-right pane.

Checks to see if the
parameter value equals 0

If the i32.eq check was 1 (true)...

...sets the return value to 5

The if statement check was 0 (false)...

...sets the return value to 10

Places the return value on
the stack to be returned
when the function ends

)
...

399Control flow statements
You can test this code by replacing the content of the top-left pane in the wat2wasm
online tool. The JavaScript you used in the bottom pane for listing E.1 will work for
this example code too.

Let’s take a look at an example in which the equality check is within the if statement.

NESTED S-EXPRESSION IF STATEMENT: EQUALITY CHECK WITHIN THE IF STATEMENT

Although the layout of the if statement in listing E.2 makes sense based on how if
checks work, writing if statements this way isn’t typically how developers see them
written. When using the nested s-expression style, you can modify the if statement to
have the check within the if statement block, as the next listing shows.

...

(func (param $param i32) (result i32)
 (local $result i32)

 (if
 (i32.eq
 (get_local $param)
 (i32.const 0)
)
 (then
 (set_local $result
 (i32.const 5)
)
)
 (else
 (set_local $result
 (i32.const 10)
)
)
)

 (get_local $result)
)
...

You can test this code by replacing the content of the top-left pane in the wat2wasm
online tool. The JavaScript you used in the bottom pane for listing E.1 will work for
this example code too.

If statements can use a block statement instead of a then statement.

NESTED S-EXPRESSION IF STATEMENT: BLOCK INSTEAD OF THEN

If you choose to have Emscripten output the text format equivalent of a module’s
binary, you’ll notice that it uses block statements instead of then statements. To
demonstrate a nested s-expression with an if statement that uses a block instead of a
then statement, you’ll modify the code in listing E.3 to set a default value of 10 for the
$result value at the beginning of the function. Giving the $result variable a default
value of 10 allows you to remove the else condition from the if statement.

Example that has the value check within theListing E.3 if block

The equality check is now
within the if statement.

400 APPENDIX E Text format extras
Adjust the if statement to use the block statement instead of the then statement,
as the following listing shows.

...

(func (param $param i32) (result i32)
 (local $result i32)
 (set_local $result
 (i32.const 10)
)

 (if
 (i32.eq

(get_local $param)
(i32.const 0)

)
 (block

(set_local $result
(i32.const 5)

)
)
)

 (get_local $result)
)
...

The stack machine style of the if statement can also use a block statement instead of
a then statement.

STACK MACHINE IF STATEMENT: BLOCK INSTEAD OF THEN

You can modify the code from listing E.4 to set the $result variable to a default value
of 10 at the beginning of the function, allowing you to remove the else condition
from the if statement. Within the if statement, you then wrap the i32.const and
set_local lines of code with a block and end statement, as the next listing shows.

...

(func (param $param i32) (result i32)
 (local $result i32)

 i32.const 10
 set_local $result

 get_local $param
 i32.const 0
 i32.eq
 if
 block

i32.const 5

Example of anListing E.4 if condition using a block statement instead of then

Stack machine style of the previous codeListing E.5

Assigns a default value of 10

The then statement is replaced
by a block statement.

Assigns a default value of 10

Checks to see if the
parameter value is 0

set_local $result
end

401Control flow statements
 end

 get_local $result
)
...

The next control flow statements that you’ll learn about are loops.

E.1.2 Loops

There are three types of branches available to WebAssembly code:

 br—Branches to the label specified
 br_if—Conditionally branches to the label specified
 br_table—A jump table to branch to the label specified

It’s only possible to branch to a label that’s defined by the construct that the branch is
within, which means, for example, that you can’t branch to the middle of a loop when
the branch is outside the loop.

When in a loop, branches to a block effectively act like a break statement in high-
level languages, whereas a branch to the loop acts like a continue statement. A loop is
simply a type of block that’s used to form loops.

To demonstrate how loops work, you’ll build a GetStringLength function that
receives an i32 parameter indicating where in the module’s memory the string is that
it needs to check. The function will return an i32 value for the string’s length.

You’ll build the function using the branch to a block approach (acts like a break state-
ment) first, and then, in a later section, you’ll modify the loop to branch to the loop
instead (acts like a continue statement).

NESTED S-EXPRESSION LOOP STATEMENT: BRANCH TO BLOCK

Before you create your function, you need to define memory that the module will use.
Memory is defined by using an s-expression with the label memory, followed by an
optional variable name, the initial number of memory pages desired, and, optionally,
the maximum number of memory pages desired. Each page of memory is 64 KB
(65,536 bytes).

For this module, one page of memory is more than enough, so your memory
s-expression is shown in the following snippet:

(memory 1)

Once you’ve created this module, you’ll create some JavaScript code for the wat2wasm
online tool that will place a string in the module’s memory and then call the Get-
StringLength function. Because the JavaScript needs access to the module’s memory,
you’ll need to export it. The following snippet shows the export statement needed for
the memory. Because a variable name wasn’t given to the memory s-expression, you’ll
specify the memory by its index:

(export "memory" (memory 0))

402 APPENDIX E Text format extras

L
by

valu
The GetStringLength function needs two local variables: one to keep track of how
many characters are in the string so far ($count) and one to keep track of where in
memory the function is currently reading ($position). When the function starts,
$count will be set to a default value of 0, and $position will be set to the parameter
value received, which is the start position of the string in the module’s memory.

A block statement will surround the loop that you’ll break out to if the character
read from memory is the null terminator. The block statement will be given a variable
name called $parent. Within the block statement, you’ll have a loop statement with
the variable name $while.

At the beginning of the loop, you’ll load in the current character from memory
based on the $position value using the i32.load8_s instruction. The value loaded by
i32.load8_s is the decimal version of the character.

The i32.eqz instruction will then test the memory value to see if it’s equal to zero
(the null terminator; the zero ASCII character is decimal 48). If the value is zero, the
br_if statement branches to the block ($parent), which exits the loop, and the code
continues on after the end of the loop.

If the loop doesn’t exit, the $count and $position variables are each incre-
mented by 1, and then the br statement branches to the loop in order to loop again.
After the loop ends, the $count value is placed on the stack to be returned to the
calling function.

The next listing is the module containing the GetStringLength function.

(module
 (type $type0 (func (param i32) (result i32)))

 (memory 1)

 (export "memory" (memory 0))
 (export "GetStringLength" (func 0))

 (func (param $param i32) (result i32)
 (local $count i32)
 (local $position i32)

 (set_local $count
(i32.const 0)

)

 (set_local $position
(get_local $param)

)

 (block $parent
(loop $while
(br_if $parent

 (i32.eqz
 (i32.load8_s
 (get_local $position)
)

Listing E.6 GetStringLength using nested s-expressions and breaking out of the loop

Will hold the number of characters
in the string to return to the caller

The current position in the module’s
memory that you need to read

The parent block that you’ll use to break out
of the loop when you find a null terminator

The start of
your loop

Branches to the parent block, breaking out of
the loop if 0 is found (the null terminator)

oads the current
te from memory
and checks if the
e is equal to zero

403Control flow statements
)
)

 (set_local $count
 (i32.add
 (get_local $count)
 (i32.const 1)
)
)

 (set_local $position
 (i32.add
 (get_local $position)
 (i32.const 1)
)
)

 (br $while)
)
)

 (get_local $count)
)
)

You can test the code in listing E.6 by using the wat2wasm online tool.

TESTING THE CODE

To test the code, copy the contents of listing E.6 into the top-left pane of the
wat2wasm online tool. In the bottom-left pane (figure E.2), replace the contents with
the next code snippet, which will load the module and place a reference to the mod-
ule’s memory in a wasmMemory variable. A copyStringToMemory function is defined
that accepts a string and memory offset and writes the string, along with a null termi-
nator, to the module’s memory.

The code calls the copyStringToMemory function, passing it a string. The module’s
GetStringLength function is then called, specifying the memory position where the
string was written. The result of the call to the GetStringLength function is displayed
in the bottom-right pane:

const wasmInstance = new WebAssembly.Instance(wasmModule, {});
const wasmMemory = wasmInstance.exports.memory;

function copyStringToMemory(value, memoryOffset) {
 const bytes = new Uint8Array(wasmMemory.buffer);
 bytes.set(new TextEncoder().encode((value + "\0")),
 memoryOffset);
}

copyStringToMemory("testing", 0);
console.log(wasmInstance.exports.GetStringLength(0));

You can adjust the string passed to the copyStringToMemory function to test and see
what the various string lengths are.

Increments the character count

Increments the memory position
for the next iteration of the loop

Branches to the top of the
loop so that it loops again

Places the count on the stack
to be returned to the caller

404 APPENDIX E Text format extras
Let’s take a look at a stack machine version of the loop you just built.

STACK MACHINE LOOP STATEMENT: BRANCH TO BLOCK

The code in the next listing shows the same function as listing E.6, but written using
the stack machine style.

...

(func (param $param i32) (result i32)
 (local $count i32)
 (local $position i32)

 i32.const 0
 set_local $count

 get_local $param
 set_local $position

Listing E.7 GetStringLength using stack machine style and breaking out of the loop

1. Place the contents
of listing E.6 here.

2. Place your JavaScript
in this pane. Adjust
the string.

3. The return value from
the GetStringLength
call is placed here.

Figure E.2 The code from listing E.6 is placed in the top-left pane, and the JavaScript is placed in
the bottom-left pane. The result of the function call is displayed in the bottom-right pane.

Will hold the number of
characters in the string

The current position in the
module’s memory that you
need to read

405Control flow statements

e

Inc
va
 block $parent
 loop $while
 get_local $position
 i32.load8_s
 i32.eqz
 br_if $parent

 get_local $count
 i32.const 1
 i32.add
 set_local $count

 get_local $position
 i32.const 1
 i32.add
 set_local $position

 br $while
 end
 end

 get_local $count
)
...

You’ll now modify the loop to branch to the loop instead of a branch, which acts like a
continue statement.

NESTED S-EXPRESSION LOOP STATEMENT: BRANCH TO LOOP

The logic within the loop will need to be modified to work using this technique, but a
branch-to-loop approach doesn’t have the surrounding block statement. If your code
doesn’t branch to the loop, then the loop ends. Your new loop will continue to loop
while the current character isn’t the null terminator.

Modify your listing E.6 code so that it no longer has a block s-expression around
the loop s-expression. Replace the (br_if $parent statement with (if to do an if
statement rather than a branch statement. Remove the closing parenthesis from the
br_if statement that’s just before the (set_local $count line of code. Place a closing
parenthesis for the if statement after the (br $while) statement.

The if statement will check to see if the current character isn’t equal to zero.
Change the i32.eqz (equal to zero) statement to an i32.ne (not equal) statement,
and then put the following s-expression after the i32_load8 s-expression:

(i32.const 0)

After the closing parenthesis for the i32.ne s-expression, place a (then s-expression
with the closing parenthesis after the (br $while) statement.

The next listing shows the modified loop using the continue approach.

...

(func (param $param i32) (result i32)

Listing E.8 GetStringLength using nested s-expressions and continuing the loop

Loads the current byte from
memory and pushes it onto
the stack

Is the value
qual to zero? If true, then you found the null

terminator. Branch to the parent
block to break out of the loop.

rements the
lue in $count

Increments the value in $position

Branches to the top of
the loop (loop again)

Places the count on the stack
to be returned to the caller

406 APPENDIX E Text format extras
 (local $count i32)
 (local $position i32)

 (set_local $count
 (i32.const 0)
)

 (set_local $position
 (get_local $param)
)

 (loop $while
 (if

(i32.ne
(i32.load8_s
 (get_local $position)
)
(i32.const 0)

)
(then

(set_local $count
 (i32.add
 (get_local $count)

 (i32.const 1)
)
)

(set_local $position
 (i32.add
 (get_local $position)
 (i32.const 1)
)
)

(br $while)
)

)
)

 (get_local $count)
)
...

Let’s look at a stack machine version of the loop you just built.

STACK MACHINE LOOP STATEMENT: BRANCH TO LOOP

The next listing shows the same code as listing E.8, but in the stack machine style.

...

(func (param $param i32) (result i32)
 (local $count i32)
 (local $position i32)

 i32.const 0
 set_local $count

Stack machine style of the previous codeListing E.9

The start of the loop

Replaces the br_if statement
Replaces

i32.eqz The value from the memory
will be compared to zero
(null terminator).

If the value from
memory is not zeroIncrements

$count

Increments $position

Branches to the top of
the loop (loop again)

407Function pointers
 get_local $param
 set_local $position

 loop $while
 get_local $position
 i32.load8_s

 i32.const 0
 i32.ne
 if
 get_local $count
 i32.const 1
 i32.add
 set_local $count

 get_local $position
 i32.const 1
 i32.add
 set_local $position

 br $while
 end
 end

 get_local $count
)
...

The next area that you’ll learn about is how to use the module’s Table section for
function pointers.

E.2 Function pointers
WebAssembly modules have an optional Table known section, which is a typed array of
references, like functions, that can’t be stored in memory as raw bytes for security rea-
sons. If the addresses were stored in the module’s memory, there would be a chance
that a malicious module would try to modify an address to access data that it shouldn’t
have access to.

When a module’s code wants to access the data referenced in the Table section, it
asks for the WebAssembly framework to operate on the item at a specific index in the
table. The WebAssembly framework then reads the address stored at that index and
performs the action.

The Table section is defined with an s-expression that starts with a label using the
word table, followed by an initial size, optionally followed by a maximum size, and
finally followed by the type of data the table will hold. This is currently only functions,
so funcref is the term used.

INFO The WebAssembly specification has been adjusted to use the word
funcref rather than anyfunc for the table’s element type. When Emscripten
outputs a .wast file, it uses the new name, and the WebAssembly Binary Tool-
kit can accept text format code that uses either name. At the time of this
book’s writing, developer tools in the browsers are still using the word

New for the i32.ne check

Replaces i32.eqz

Replaces br_if $parent

408 APPENDIX E Text format extras
anyfunc when you inspect a module. Firefox allows you to use either word
when constructing a WebAssembly.Table object in your JavaScript, but, at the
moment, other browsers allow only the old name. Right now, for production
JavaScript code, it’s recommended that you continue to use anyfunc.

To demonstrate using the Table section, you’re going to create a module that imports
two functions. The module will have a built-in function that accepts an i32 parameter
indicating the function’s index in the Table section to call.

The first thing your module will need are two import s-expressions for the two
functions, as shown in the following snippet:

(import "env" "Function1" (func $function1))
(import "env" "Function2" (func $function2))

Next you need to define the table s-expression with a size of 2 for the two functions:

(table 2 funcref)

After the table s-expression, you’ll have your export s-expression for the function
that the JavaScript will call to indicate which function needs to be called:

(export "Test" (func $test))

When the module is instantiated, you want the imported functions added to the Table
section. To do this, you need to define an element s-expression. The items in this
s-expression will be added to the Table section automatically when the module is
instantiated.

The element s-expression starts with the label elem, followed by the start index in
the table where the object references will be placed, and then followed by the items to
place in the Table section. The following code snippet will add the two functions to
the Table section starting at table index 0 (zero):

(elem (i32.const 0) $function1 $function2)

Your next step is to define your $test function, which receives an i32 parameter value
and has no return value, as shown in the following snippet:

(func $test (param $index i32)
)

Within your $test function, you need to call the requested table item. To call an item
in the Table section, you pass the index to the call_indirect instruction, but you
also indicate the type (function signature) that you’re calling, as the following snippet
shows:

(call_indirect (type $FUNCSIG$v)
 (get_local $index)
)

Putting it all together, the module’s code is shown in the following listing.

$FUNCSIG$v is a variable name
for a type s-expression (an
index can also be used).

409Function pointers

ith
le
(module
 (type $FUNCSIG$v (func))

 (import "env" "Function1" (func $function1))
 (import "env" "Function2" (func $function2))

 (table 2 funcref)

 (export "Test" (func $test))

 (elem (i32.const 0) $function1 $function2)

 (func $test (param $index i32)
 (call_indirect (type $FUNCSIG$v)
 (get_local $index)
)
)
)

Now that you’ve created the module’s code, you can test it.

E.2.1 Test the code

To test the code, copy the contents of listing E.10 into the top-left pane of the
wat2wasm online tool. In the bottom-left pane of the tool (figure E.3), replace the
contents with the following code snippet, which will define an importObject object
for the module containing the two functions to import. Each function will write a mes-
sage to the console of the browser’s developer tools indicating which function was
called.

Once you have an instance of the module, you can call the Test function, passing
in either 0 or 1 to have the functions in the Table section called:

const importObject = {
 env: {
 Function1: function() { console.log("Function 1"); },
 Function2: function() { console.log("Function 2"); },

 }
};

const wasmInstance = new WebAssembly.Instance(wasmModule,
 importObject);

wasmInstance.exports.Test(0);

Listing E.10 Function pointer module using the nested s-expression style

The signature of the two
functions that will be imported

Creates a table with
an initial size of 2

Has the two functions placed in
the table starting at index 0

Calls the item in the table
using the index received
in the parameter

Creates the importObject w
two functions for the modu

Writes to the browser’s console
indicating that function 1 was called

Writes to the browser’s console
indicating that function 2 was called

Calls the Test function, passing
in an index of 0 or 1

410 APPENDIX E Text format extras
1. Place the contents
of listing E.10 here.

2. Place your JavaScript in
this pane. Pass 0 or 1.

3. The return value from
the Test call is placed here.

Figure E.3 The code from listing E.10 is placed in the top-left pane, and the JavaScript is placed in
the bottom-left pane. The result of the function call is displayed in the bottom-right pane.

index

Symbols

\n (linefeed character) 147
&& (and) condition 95
(hash) symbol 184
|| (or) condition 95
$ character 253
$add variable 253
$array_length parameter 273
$cards array 272, 276, 281
$cards variable 261–262, 270, 319
$CardSelected function 263, 277–280
$card_to_swap variable 273
$card_value variable 278–279
$column parameter 276–277, 279–280
$columns variable 262, 266, 269, 276, 319
$columns_equal value 280
$count variable 269–270, 391, 402
$current_level variable 262, 269, 282–283, 319,

323
$execution_paused variable 279, 281, 319
$first_card_column variable 319
$first_card_row value 278, 280
$first_card_row variable 319
$first_card_value variable 319
$FlipCard function 278, 281
$float variable 266
$free function 281
$FUNCSIG$vi variable 284
$GenerateCards function 276, 306–307
$GetCardValue function 276–279
$GetMemoryLocationFromIndex

function 272–273
$GetRandomNumber function 273
$global12 variable 318
$global7 variable 318

$index value 272–273
$InitializeCards function 269–271, 275, 306,

391–392
$InitializeRowsAndColumns function 266–268,

389
$IsFirstCard function 278, 280–281
$level parameter 269, 275–276, 306
$LevelComplete function 263, 281, 323
$main function 264, 283
$malloc function 270
$matches_remaining variable 262, 270, 281,

306, 319
$MAX variable 261
$MAX_LEVEL variable 261, 319, 390
$memory_location1 variable 273–274
$memory_location2 variable 273–274
$param0 parameter 266
$parent variable 402
$Pause function 263, 279, 281
$PlayLevel function 275–277, 282–283, 304,

306–307, 391
$PlayNextLevel function 263, 283
$PopulateArray function 270–271, 273–274
$position variable 402
$RemoveCards function 281
$ReplayLevel function 263, 282–283
$ResetSelectedCardValues function 268–269,

271
$result variable 399–400
$row parameter 276–277, 279
$rows variable 262, 266, 269, 276, 307, 319
$second_card_column variable 319
$second_card_row variable 319
$SecondCardSelectedCallback function 263,

281–282, 311, 318–320, 323, 391
$second_card_value variable 262, 319
411

412 INDEX

$SeedRandomNumberGenerator function 273
$ShuffleArray function 270, 273–276, 306
$test function 408
$total variable 261
$tries variable 304–306, 309, 311, 314, 319, 321,

390, 392
$UpdateTriesTotal function 311–312
$while variable 402

Numerics

32-bit floats 26, 253
32-bit integer parameters 20
32-bit integers 26, 253
3D graphics 104
64-bit floats 26, 253
64-bit integer parameters 20, 253
64-bit integers 26

A

a variable 4
abort function 125
acceptance tests 328
_Add function 258
Add function 8, 161, 354–358, 378–379
addFunction 112, 114–115, 378
Advanced Package Tool (APT) 344
after function 333
afterEach function 333
AllocatedMemoryChunks array 74
alphanumeric characters 253
and (&&) condition 95
AND operation 280
anotherLevel parameter 258
anyfunc function 124, 407
application/octet-stream media type 345
application/wasm media type 345
APT (Advanced Package Tool) 344
args array 382–383
args_start value 382–383
array data type 354
ArrayBuffer 14, 21–22, 46, 80, 208
asm pragma statement 4
asm.js 4–5
AssemblyScript 14
assert module 329
Assert style 329
assertion library 329
async attribute 38
atoi function 99, 176, 179
atomic operations 208
atoms 252

B

before method 332–334
beforeEach function 333
Blazor language 15
block flow statement 396
block s-expression 405
block statement 396, 400, 402
body tag 37, 290
Boolean values 11
Bootstrap 64, 351–352
br branch 401
break statement 401
br_if branch 401, 405
br_table branch 401
buffer property 80
BUILD_AS_WORKER=1 flag 197
bytes parameter 233, 235, 239, 242
BYTES_PER_ELEMENT constant 358

C

C or C++
compiling with Emscripten

as side module 41–42
using Emscripten-generated JavaScript

34–37
using HTML template 29–34

creating modules that call into JavaScript with
Emscripten 96

adjusting C++ code 90–91
adjusting web page code 94–96
compiling code into module 93–94
creating JavaScript 92
viewing results 96

creating modules that call into JavaScript with-
out Emscripten 97–104

adjusting JavaScript to interact with module
100–102

compiling code into module 100
making C++ modifications 99–100
viewing results 103–104

creating modules using function pointers with
Emscripten 107–119

adjusting C++ code 108–111
adjusting web page code 113–118
compiling code into module 112–113
using function pointer given to

module 107
viewing results 119

creating modules using function pointers with-
out Emscripten 119–131

adjusting JavaScript to interact with
module 122–130

413INDEX
C or C+, creating modules using function pointers
without Emscripten (continued)

compiling code into WebAssembly module
122

making C++ modifications 121–122
using function pointers given to module

120–121
viewing results 131

module creation with Emscripten 58–71
compiling code into WebAssembly module

63
creating JavaScript to interact with module

66–70
creating web pages 64
making C++ modifications 58–62
viewing results 71

module creation with text format 288–289
module creation without Emscripten 72–83

compiling code into WebAssembly module
78

creating JavaScript to interact with module
78–82

making C++ modifications 72–77
viewing results 83

CalculatePrimes function 144–145
calculate_primes side module 139
calculate_primes.c file 30, 32, 34, 139
calculate_primes.cpp file 141, 143, 200, 210
calculate_primes.js file 203
calculate_primes.wasm file 207
callAdd function 355–357
call_indirect instruction 408
cardContainer div tag 291
cards.wasm file 324
cards.wast file 256, 261–262, 277, 307, 312
cardValue parameter 258
catch method 44
catch statement 113
categoryId property 226, 228, 230, 237
categoryId value 67, 243, 393
categoryId variable 236
ccall function 63, 68–70, 72, 93, 95, 179, 191–192,

354–357
building simple module 354–355
building web page to talk to module 355–356

CDN (content delivery network) 64, 351
Chai library 329–331
char* pointer parameter 69, 354, 365
Chrome, debugging in 316
chrono header 200
Clang 25
classList object 187
clientData object 224, 226–229, 235, 239,

243–244, 386, 388

code nodes 264–283
$CardSelected function 277–280
$GetCardValue function 276–277
$GetMemoryLocationFromIndex function

272–273
$InitializeCards function 269–271
$InitializeRowsAndColumns function 266–268
$IsFirstCard function 280–281
$main function 283
$PlayLevel function 275–276
$PlayNextLevel function 283
$ReplayLevel function 282–283
$ResetSelectedCardValues function 268–269
$SecondCardSelectedCallback function

281–282
$ShuffleArray function 273–275
PopulateArray function 271–272
working with variables 265–266

code reuse 7, 55–84
module creation using C or C++ with

Emscripten 58–71
compiling code into WebAssembly module

63
creating JavaScript to interact with module

66–70
creating web page 64
making C++ modifications 58–62
viewing results 71

module creation using C or C++ without
Emscripten 72–83

compiling code into WebAssembly module
78

creating JavaScript to interact with module
78–82

making C++ modifications 72–77
viewing results 83

Code section 22
column parameter 258
columns parameter 258
comments 255
compile function 47
compilers

compiling modules 10–11
how compilers work 9

compileStreaming function 47
console.log function 225, 228, 230, 236, 243,

362–363, 365
const add variable 357
const char* parameter 109, 116
const char* pointer 90, 361
const IS_NODE 332
const result variable 357
content delivery network (CDN) 64, 351
Content Security Policy (CSP) 50

414 INDEX
continue statement 401, 405
control flow statements 396–407

if statements 396–401
nested s-expression if statement 397–400
stack machine if statement 396–397,

400–401
testing code 397

loops 401–407
copyStringToMemory function 81, 237–238, 240,

244, 403
create_buffer function 75–76, 79
createPointers function 115–117, 129–130
cross-site scripting (XSS) 50
CSP (Content Security Policy) 50
cstdio file 141, 155
cstdlib file 59, 77, 99, 122, 141, 143, 155, 175
cstring file 77, 99, 122, 169, 175
current_allocated_count variable 74
custom module sections 13, 23, 253–255
cwrap function 355–357
cwrap helper function 356–357

D

Data known module section 22, 285
data node 285–286, 391
data property 205
data types of parameters 354
dead code elimination 178
debugging 300–326

adjusting HTML 302–303
displaying number of tries 304–309

adjusting text format 306
generateCards function 305
generating Wasm file 307–308
testing changes 308–309

extending game 301–302
incrementing number of tries 310–322

adjusting text format 311–312
generating Wasm file 313
testing changes 314–321
updateTriesTotal function 311

updating summary screen 321–325
adjusting text format 323
generating Wasm file 324
levelComplete function 322
testing changes 325

Decrement function 51, 375
describe function 333–334, 392
direct function calls 357–358
div tag 181–182, 290–291
divide-by-four operation 359
dlclose function 145
dlopen function 137, 139, 144–149, 151, 153,

160–161, 379–380

creating logic that will link to side
module 143–146

modifying calculate_primes.cpp file 141–142
using Emscripten to generate file as main mod-

ule from main.cpp 146–148
-using Emscripten to generate file as side mod

ule from calculate_primes.cpp 143
viewing results 148

dlsym function 144–145, 160
DocType declaration 37
document.getElementById 311
double values 372
dynamic linking 29, 135–194

dlopen function 139–148
creating logic that will link to side module

143–146
modifying calculate_primes.cpp file 141–142
using Emscripten to generate file as main

module from main.cpp 146–148
using Emscripten to generate file as side

module from calculate_primes.cpp 143
viewing results 148

dynamicLibraries array 149–153
creating JavaScript to instruct Emscripten

about side module 151–152
creating logic to talk to side module 149–151
using Emscripten to generate file as main

module from main.cpp 152–153
viewing results 153

module creation 166–193
adjusting JavaScript for web page 183–192
adjusting validate_core.cpp file 169
adjusting validate_product.cpp file 170
adjusting web page 180–183
creating new C++ file for Place Order form

logic 171–173
defining JavaScript function to handle valida-

tion issues 177–178
generating Edit Product side module

174–176
generating Place Order side module

176–177
getSelectedCategoryId function 188
initializePage function 184–186
onClickAddToCart function 190
onClickSave function 189
setActiveNavLink function 187–188
setErrorMessage function 188–189
showElement function 188
splitting logic in validate.cpp file into two

files 168–170
switchForm function 186
using Emscripten to generate main module

178–180

415INDEX
dynamic linking, module creation (continued)
using Emscripten to generate side

modules 173–177
validateName and validateCategory

functions 189–190
ValidateProduct function 172
validateProduct function 190–191
ValidateQuantity function 172–173
validateQuantity function 191–192
viewing results 192–193

pros and cons of 136–137
side modules and main modules 138–139
WebAssembly JavaScript API 153–159

creating HTML and JavaScript files 157–158
splitting logic in calculate_primes.c file into

two files 154–156
using Emscripten to generate side modules

156–157
viewing results 159

dynamically linking 28
dynamicLibraries array 137, 141, 148–149,

151–153, 160–161, 164, 186, 379–380
creating JavaScript to instruct Emscripten about

side module 151–152
creating logic to talk to side module 149–151
using Emscripten to generate file as main mod-

ule from main.cpp 152–153
viewing results 153

E

ECMAScript (ES) 10
Edit Product page 56
editproduct.html file 79, 94, 123, 180
editproduct.js file 66–67, 81, 94, 123, 127, 180,

224
elem label 408
element property 124
Element section 22
element s-expression 408
else condition 332, 399
else statement 110
EM_ASM macros 367–374

EM_ASM 368, 372
EM_ASM_ 369–370
EM_ASM_DOUBLE 368, 372
EM_ASM_INT 368, 372–374
passing pointers as parameters 370–371
returning string pointer 372–374

em_asm_.c file 370
em_asm_double.c file 372
emcc command 31, 41, 297
EMCC_DEBUG variable 300
EM_JS macro 87, 361–367

no parameter values 362–363

passing parameter values 363–364
passing pointers as parameters 364–365
returning string pointer 365–367

em_js.c file 362
emrun command 345
Emscripten

compiling C or C++
as side module 41–42
using Emscripten-generated JavaScript

34–37
using HTML template 29–34

creating modules that call into JavaScript using
C or C++ 96

adjusting C++ code 90–91
adjusting web page code 94–96
compiling code into module 93–94
creating JavaScript 92
viewing results 96

creating modules to talk to JavaScript using
function pointers 107–119

adjusting C++ code 108–111
adjusting web page code 113–118
compiling code into module 112–113
using function pointer given to module 107
viewing results 119

defining callback function for instantiateWasm
function 205–206

dynamic linking
creating JavaScript to instruct about side

module 151–152
generating file as main module from

main.cpp 146–148, 152–153
generating file as side module from

calculate_primes.cpp 143
generating side modules 156–157

installing and setting up 347–349
downloading SDK 348
Linux 349
Mac 349
Windows 349
working around installation issues 349

macros 360–374
EM_ASM macros 367–374
EM_JS macro 361–367
emscripten_run_script macros 360–361

module creation using C or C++ 58–71
compiling code into WebAssembly module

63
creating JavaScript to interact with module

66–70
creating web pages 64
making C++ modifications 58–62
viewing results 71

module creation with dynamic linking
using to generate main module 178–180
using to generate side modules 173–177

416 INDEX

Emscripten (continued)
module creation with text format 287–289

creating C++ file 288–289
generating module 289

modules in Node.js 222–231
calling functions in modules 223–227
calling into JavaScript 227–229
calling JavaScript function pointers 229–231
loading modules 222–223

output options 28–29
SDK 345, 347, 349
toolkit overview 25
using to generate files

prefetching modules using web workers 202
pthreads 213–214

__EMSCRIPTEN__ conditional compilation
symbol 58–59, 84

Emscripten HTML template 362
emscripten.h file 141, 143
emscripten_async_wget function 140, 144–145
EMSCRIPTEN_KEEPALIVE declaration 60, 142,

155, 200, 376
emscripten_run_script macros 87, 360–361
emscripten_run_script_int macro 361
emscripten_run_script_string macro 361
emsdk install command 350
emsdk install latest command 349
emsdk uninstall command 350
emsdk_env.bat file 349
end parameter 141
end statement 400
Error function 117–118, 128
error_message parameter 109
errorMessage variable 94, 102
errorMessagePointer parameter 94–95, 102, 127
ES (ECMAScript) 10
ES6 modules 10
eval function 360
Expect style 329
expectedMessage variable 338, 394
Export known module section 22, 263
export nodes 262–264
export s-expressions 263, 408
EXPORTED_FUNCTIONS array 42, 60, 147–148,

179, 376
exports object 206
extern 59, 99
extern keyword 90, 99, 101, 150, 155
EXTRA_EXPORTED_RUNTIME_METHODS

array 63, 93, 112, 179, 355, 365, 367, 371,
373

F

fetch method 45–46, 48, 160
File System module 232
FindPrimes function 141–142, 144–146, 150, 156,

200–201, 210, 382–383
find_primes WebAssembly module 158
find_primes.c file 154
Firefox browser

debugging in 317–318
turn on threading support in 215–216

_FlipCard function 258
flipCard function 294, 319
float parameter 354
Float32Array object 358
Float64Array object 358
formTitle attribute 182
fragment identifier 184
_free function 68, 225, 260, 354
free function 29, 40, 58, 73, 251, 287–288, 366,

373
free_buffer function 76
freePointers function 116–117
FS object 140
func s-expression 255, 264, 286
funcref function 124, 407
Function import 257
function pointers 407–409

creating modules to talk to JavaScript using
105

using C or C++ with Emscripten 107–119
using C or C++ without Emscripten 119–131

testing code 409
Function section 19, 265
function signatures 108–109, 255–256

G

-g flag 124, 297, 301
-g4 flag 301
game.html file 303
game.js file 294–295
garbage collection (GC) 14
_GenerateCards function 258, 315
generateCards function 293, 304–306, 311
getCard function 294
getCardId function 293
getClassForCardValue function 294
getElementById function 188
get_global instruction 272, 323
get_local instruction 323
_GetRandomNumber function 260
GetRandomNumber function 288
getSelectedCategoryId function 67, 188–189,

225, 227, 230, 236, 239, 243
f32 variable 266 getSelectedDropdownId function 188–189, 387

417INDEX
getStringFromMemory function 80–81, 101–102,
128, 295–296

GetStringLength function 401–403
--global flag 349
Global import 257
Global known module section 22, 261
global nodes 261–262
global object 228
global s-expression 255
global variables 123–124, 261
global12 variable 319
global9 variable 319
Go 1.11 15
Google’s Native Client (PNaCL) 25

H

H1 tag 182
h3 tag 290, 302
hash (#) symbol 184
head tag 37, 290
header tag 291, 302–303
HEAP8 view 358
HEAP16 view 358
HEAP32 object 70, 80, 82
HEAP32 view 358
HEAPF32 view 358
HEAPF64 view 358
HEAPU8 view 358
HEAPU16 view 358
HEAPU32 view 358
Hello from StringReturnValueWithNoParame-

ters function 367
high_resolution_clock class 200
HTML

adjusting 302–303
compiling C or C++ with Emscripten 29–34
creating web pages

module creation with JavaScript 37–39
prefetching modules using web workers 203
that load tests 336–338
WebAssembly file 48–49

dynamic linking 157–158
module creation with text format 290–291
overview 37–38
viewing web pages 38–39

html tag 37
html_template.html file 33

I

i32 parameter 269, 272, 308, 323, 401, 408
i32 value 395–396
i32.add instruction 272, 276

i32.eq instruction 267
i32.eqz instruction 402
i32.shl instruction 272
IANA (Internet Assigned Numbers Authority)

345
id attribute 182, 302
IDE (integrated development environment) 300
if statements 94, 102, 113, 236, 240, 267, 278, 329,

332, 389, 395–396, 399–401
nested s-expression if statement

block instead of then 399–400
equality check before if statement 397–399
equality check within if statement 399

stack machine if statement 396–397, 400–401
testing code 397

immutable variables 261
import nodes 257–258, 260–261, 307, 315, 323
Import section 19
import s-expressions 124, 255, 259, 261, 390, 408
importObject 47–48, 101, 158, 233, 292, 409
_Increment function 48, 234
Increment function 42, 49, 233, 376
index.js file 245
IndexedDB 197
indexes 122
inequality checks 102
initial object 124
InitialData object 66–67, 183–184, 224, 227, 229,

235, 239
initializePage function 67, 79, 101, 127, 186, 225,

227, 230, 235–236, 239, 242, 386–388
creating modules to talk to JavaScript using

function pointers 127
module creation and dynamic linking 184–186
modules that call into JavaScript 101

InitializeRowsAndColumns function 298, 389
initialProductData object 183–184, 386
instance property 46
instantiate function 46–47, 51
instantiateStreaming function 45–48, 50–51, 158,

206
instantiateStreaming promise 292
instantiateWasm function 204–206, 291
instantiateWebAssembly function 233, 235, 239,

242
instantiation 10
Int16Array object 358
Int32Array object 80, 82, 358
Int8Array object 358
integer parameter 354
integrated development environment (IDE) 300
integration tests 328
intermediate representation (IR) 9, 25
Internet Assigned Numbers Authority

(IANA) 345

418 INDEX
Internet of Things (IoT) 220
interpreted programming language 6
IR (intermediate representation) 9, 25
IsCategoryIdInArray function 61–62, 91,

110–111, 169–170
isForName 129
IsIdInArray function 170–171
IsOnline function 104, 377
IsPrime function 30, 141, 153, 155, 158
isProduct flag 386, 388
it function 334–335

J

JavaScript 27, 34–44
compiling C or C++ with Emscripten-generated

JavaScript 34–37
creating HTML web pages 37–39

creating pages 38
overview 37–38
viewing pages 38–39

creating modules to talk to JavaScript using
function pointers 105

using C or C++ with Emscripten 107–119
using C or C++ without Emscripten 119–131

dynamic linking
creating files 157–158
creating JavaScript to instruct Emscripten

about side module 151–152
fetching and instantiating modules 48
installing testing framework 329–331

installing Mocha and Chai 330–331
package.json file 330

module creation using C or C++ with
Emscripten 66–70

module creation using C or C++ without
Emscripten 78–82

module creation with dynamic linking
adjusting for web page 183–192
defining function to handle validation

issues 177–178
module creation with text format 291–296
modules in Node.js and WebAssembly Java-

Script API
calling into JavaScript 238–240
calling JavaScript function pointers 241–244

modules in Node.js built using Emscripten
calling into JavaScript 227–229
calling JavaScript function pointers 229–231

modules that call into 85–104
using C or C++ with Emscripten 96
using C or C++ without Emscripten 97–104

object creation shorthand 44
prefetching modules using web workers

creating JavaScript file for web page 204–206

creating JavaScript file web worker 207
javascript.options.shared_memory 216
Jest 329
JIT (just-in-time) compiling 6
jQuery 352
--js-library command-line option 178
--js-library flag 93, 377
js_plumbing.html file 48
js_plumbing.js file 222
js_plumbing.wasm file 222
js_plumbing_nodejs.js file 222
just-in-time (JIT) compiling 6

K

known module sections 13, 19–23, 253–255

L

lengthBytesUTF8 function 365, 367, 372–373
level parameter 258
_LevelComplete function 258
levelComplete function 295, 321–322
levelSummary DOM element 322
LI (list item) tag 180–181
LibraryManager.library object 92, 178
linefeed character (\n) 147
link tags 37, 290
LinkError 314
Lisp programming language 13, 252
list item (LI) tag 180–181
LLVM compiler 25
_Log function 390, 392
log function 392
logPrime function 155, 158
loop flow statement 396
loop s-expression 405
loop statement 402
loops 401–407

M

main() function 26, 31, 138, 141, 144, 150, 161,
201, 362–363, 366, 369–370, 372–373,
378–379, 381, 384

MAIN_MODULE flag 138, 178
_malloc function 68, 225, 260, 354
malloc function 29, 40, 58, 73, 251, 287–288, 366,

372
matplotlib 15
maximum property 47, 124
MAXIMUM_NAME_LENGTH value 66, 231, 240
media type, Web Assembly 34
Memory import 257

419INDEX
memory label 401
memory property 124
Memory section 21
memory s-expression 255
MemoryAllocated 74
__memory_base property 48, 233
mergeInto function 92, 178, 377
mergeinto.js file 92, 166
MessageEvent object 205
milliseconds parameter 259
MIME (Multipurpose Internet Mail Extensions)

345
mimetypes.py file 346
minimum viable product (MVP) 13–14, 23, 25,

50, 340
Mocha 329–331
MODULARIZE flag 179, 186, 189
module creation 24–52

dynamic linking 166–193
adjusting JavaScript for web page 183–192
adjusting web page 180–183
creating new C++ file for Place Order form

logic 171–173
defining JavaScript function to handle valida-

tion issues 177–178
splitting logic in validate.cpp file into two

files 168–170
using Emscripten to generate main module

178–180
using Emscripten to generate side modules

173–177
viewing results 192–193

Emscripten
compiling C or C++ with 29–34
output options 28–29
toolkit overview 25

feature detection 50–51
JavaScript 34–39

compiling C or C++ with Emscripten-
generated JavaScript 34–37

creating HTML web pages 37–39
modules that call into JavaScript 85–104

using C or C++ with Emscripten 96
using C or C++ without Emscripten 97–104

modules to talk to JavaScript using function
pointers 105

using C or C++ with Emscripten 107–119
using C or C++ without Emscripten 119–131

text format 286
creating HTML and JavaScript files 290–296
Emscripten-generated modules 287–289

using C or C++ with Emscripten 58, 71
compiling code into WebAssembly

module 63
creating JavaScript to interact with

module 66–70
creating web pages 64
making C++ modifications 58–62
viewing results 71

using C or C++ without Emscripten 72–83
compiling code into WebAssembly

module 78
creating JavaScript to interact with module

78–82
making C++ modifications 72–77
viewing results 83

WebAssembly file 40–49
compiling C or C++ as side module with

Emscripten 41–42
loading and instantiating in browser 43–49

module node 256–257
Module object 46, 151–152, 160, 165, 179, 184,

194, 225, 245, 293, 332, 355, 380, 385
module s-expression 259, 261–262
Module.ccall function 117–118, 225, 357
Module.cwrap function 357
Module.HEAP32 object 358
Module.HEAP32.BYTES_PER_ELEMENT 70,

358
Module._malloc function 70, 225, 358
Module.UTF8ToString 94
moduleExports variable 79, 235, 239
moduleMemory variable 79–80, 235, 239, 242,

292
modules 26–27

compiling 10–11
fetching and instantiating 48
in Node.js 219–245

Emscripten-built modules 222–231
server-side validation 220–221
WebAssembly JavaScript API 231–244

instantiating 10–11
loading 10–11
passing arrays to 358–359
prefetching using web workers 198–208

adjusting calculate_primes logic 200–202
copying files to correct location 203
creating HTML file for web page 203
creating JavaScript file for web page 204–206
creating JavaScript file for web worker 207
using Emscripten to generate files 202
viewing results 207–208

structure of 11–13, 17–23
custom sections 13, 23
known sections 13, 19–23
preamble 12

supported languages 14–15
supported locations 15–16
use of term 11
when not to use 27

420 INDEX
Multipurpose Internet Mail Extensions (MIME)
345

mut label 261
mutable variables 261
MVP (minimum viable product) 13–14, 23, 25,

50, 340

N

name property 226, 240, 244
name value 243
name variable 236
namePointer parameter 259
Nav tag 180
navigator.onLine method 377
nested s-expression if statement

block instead of then 399–400
equality check before If statement 397–399
equality check within If statement 399

nested s-expression style 397
new Object() function 44
node command 223
Node Package Manager (npm) 330
Node.js 15

installing and setting up 350
modules in 219–245

Emscripten-built modules 222–231
server-side validation 220–221
WebAssembly JavaScript API 231–244

nodejs_validate.js file 227, 230, 236, 239, 242–243
nonzero value 11, 26, 267, 396
NoReturnValueWithIntegerAndDouble-

Parameters macro 363–364
NoReturnValueWithNoParameters macro

362–363
NoReturnValueWithStringParameter macro 365
npm (Node Package Manager) 330
npm init command 330
npm test command 330
NULL parameter 144
null value 354
number type 117
Numpy 15

O

-o flag 32
-O0 flag 42
-O1 optimization flag 41
odejs_validate.js file 240
OL (Ordered List) tag 180
onClickAddToCart function 190, 387
onClickCard function 296

onClickSave function 68–69, 80–81, 95, 101–102,
113–114, 116, 128, 182, 225–226, 228, 230,
236, 240, 243

creating modules to talk to JavaScript using
function pointers 113–114, 128

module creation and dynamic linking 189
modules that call into JavaScript 102

onClickSaveProduct function 182, 189–190, 387
_OnError function 129
OnError function 121, 241
onErrorCallBack function 127–128
onload= 290
onmessage event handler 197
onmessage event listener 204–205
onRuntimeInitialized function 225, 332–333,

337, 385–386
onRuntimeInitialized property 225, 228, 230
_OnSuccess function 129
OnSuccess function 121, 132, 241
onSuccessCallback function 127–128
or (||) condition 95
OR operation 4
Ordered List (OL) tag 180
orderForm 182
orderModule variable 386

P

package name value 330
package.json file 330
Pandas 15
param node 255
param s-expression 255
_Pause function 259, 390, 392
pause function 295
_Pause import node 260
performance issues 5–6
performance tests 328
PlayLevel string 391
_PlayNextLevel function 296
playNextLevel function 296
plumbing file, JavaScript 28, 32, 56, 72
PNaCL (Google’s Native Client) 25
pointer parameter 354
Popper.js 352
PopulateArray function 271–272
POSIX thread 195
postMessage method 197, 205
pre- and post-hook functions 333–334
preamble 12
--pre-js flag 151–152
printf function 31, 34, 39, 41, 51, 146–148, 156,

200, 301, 366, 372–373
productForm 182

421INDEX
productId value 386
productModule variable 189, 386
programming languages

supported 14–15
using languages other than JavaScript 7

Promise object 43, 46, 113, 129, 132, 158, 206,
333

Promise.all method 113
promises 43–44
pthread.h header file 210
pthread_attr_t variable 211
pthread_create function 211, 213
pthread_create loop 382–383
pthread_join function 211, 213
pthread_join loop 382–383
PTHREAD_POOL_SIZE flag 213
pthreads 208–216

adjusting calculate_primes logic to create and
use four pthreads 210–213

creating pthread start routine 210–211
modifying FindPrimes function 210
modifying main function 211–213

using Emscripten to generate WebAssembly
files 213–214

viewing results 214–216
pthread_t variable 211
Puppeteer framework 329
_putchar function 147–148
putchar function 147
Pyodide 15
Python 15, 343–346

running local web server 344–345
WebAssembly media type 345–346

Q

quantity value 386

R

rand function 287
readFile function 232–233
reject method 115, 123, 128–129
_RemoveCards function 258
removeCards function 294–295
removeFunction 112, 115, 378
_ReplayLevel function 296
replayLevel function 296
require function 222–223, 225, 227–229, 232,

336, 385–386, 388
RESERVED_FUNCTION_POINTERS flag 112
resolve method 115–116, 123, 127–129
result s-expression 256
return instruction 277, 396

return statement 44, 117–118
return type 354
return_error_message parameter 90–91
returnPointers 115, 129
root s-expression node 256
root-container attribute 290
root-container div tag 290–291
row parameter 258
rows parameter 258
RTLD_NOW mode 145
runtimeInitialized function 387
Rust language 7, 14

S

-s EXPORTED_FUNCTIONS command line
array 42

-s MODULARIZE flag 179
-s MODULARIZE=1 flag 193
-s SIDE_MODULE=2 flag 41
save function 182
Scopes section, Firefox 320
script tag 38, 151, 157, 183, 203, 222, 290–291,

332, 336
SecondCardSelectedCallback 286
sections, of modules 12
SeedRandomNumberGenerator 288
_SeedRandomNumberGenerator function 260
selectedIndex property 67
server-side validation 220–221
set method 70, 358
setActiveNavLink function 187, 387
setErrorMessage function 67–68, 92, 94, 101–102,

187–189, 225, 227–228, 230, 236, 239–240,
243, 388

setFormTitle function 187–188, 387
set_global instruction 266, 269–270
set_local instruction 266, 269
s-expression (symbolic expression) 13, 252
s-expression nodes 252, 388
SharedArrayBuffer 208
showElement function 188, 387
sideImportObject 315, 392
SIDE_MODULE flag 138, 232
side_module.wasm file 232
side_module_nodejs.js file 233
side_module_system_functions.cpp file 74–75, 77
side_module_system_functions.h file 99, 121
SIMD (Single Instruction, Multiple Data) 11
source maps 351
SPA (single-page application) 165
span tag 302, 308
s_prime.c file 154
srand function 288

422 INDEX
src attribute 38, 183, 203, 291
stack machine if statement 396–397, 400–401
start node 264, 267
start parameter 141
Start section 22
start value 383
startup times 7
-std=c++11 flag 202
stdio.h header file 141
stdlib.h header file 59, 141
strcpy function 90, 99
string data type 354
StringReturnValueWithNoParameters

function 365, 367
stringToUTF8 function 179, 366–367, 373
strlen function 60, 72, 99, 175, 179
Success function 117–118, 128
successCallback 205
switchForm function 186–187, 387
symbolic expression (s-expression) 13, 252

T

Table import 257
table object 124
Table section 21, 120
table s-expression 255
__table_base property 124
TDD (test-driven development) 334
TeaVM tool 15
tee_local instruction 266
template file, HTML 28
test command value 330
Test function 397, 409
test property 330
test-driven development (TDD) 334
testing 327–341

installing JavaScript testing framework 329–331
installing Mocha and Chai 330–331
package.json file 330

making tests pass 338–340
running tests from browser 336–338
running tests from command line 335–336
writing tests 331–340

describe function 333
it function 334–335
pre- and post-hook functions 333–334

tests.js file 332
text format 249–299, 395–409

adjusting 306, 311–312, 323
control flow statements 396–407

if statements 396–401
loops 401–407

core logic for game using 252–286
code nodes 264–283

comments 255
data node 285–286
export nodes 262–264
function signatures 255–256
global nodes 261–262
import nodes 257–261
module node 256–257
sections 253–255
start node 264
type nodes 283–285

function pointers 407–409
testing code 409

module creation 286
creating HTML and JavaScript files 290–296
Emscripten-generated modules 287–289

viewing results 297
TextEncoder object 81, 235, 237–238, 240, 242,

244
then method 43–44, 113, 158, 233, 235, 239, 292,

376
then s-expression 405
then statement 396
thread_ids array 382–383
threading 195–218

pthreads 208–216
adjusting calculate_primes logic to create

and use four pthreads 210–213
using Emscripten to generate files 213–214
viewing results 214–216

web workers
benefits of 196–197
considerations for using 197–198
prefetching modules using 198–208

time function 288
time_t object 288
title tag 290
transpiling 4
tries parameter 305
type nodes 257, 283–285
Type section 19
type s-expressions 283, 285
typedef keyword 108
type-hints 4–5
TypeScript 15
types_map section 347

U

Uint8Array object 81, 358
Uint16Array object 358
Uint32Array object 358
UL (Unordered List) tag 180
unit tests 328
Unordered List (UL) tag 180

423INDEX
_UpdateHostAboutError function 101, 125
UpdateHostAboutError function 90–94, 97, 109,

111, 170–173, 177, 388
UpdateHostOnError function 110–111
_UpdateTriesTotal field 314
updateTriesTotal function 310–311, 315
UTF8ToString function 63, 68, 92–93, 179, 225,

365, 371
util package 235, 237–238, 242

V

-v compiler flag 301
validate.cpp file 59, 62, 72, 90, 100, 109, 121
validate.js file 66, 224, 332, 337
validate.wasm file 66, 123, 224, 332
validateCallbacks parameter 127
ValidateCategory function

calling 70
creating 62
creating modules to talk to JavaScript using

function pointers 110–111
validateCategory function 59, 61–62, 68, 70, 82,

91, 95–96, 101, 118, 169, 189, 243, 387,
393

creating modules to talk to JavaScript using
function pointers 118, 130

module creation and dynamic linking 189–190
modules that call into JavaScript 102

validateCategoryCallbacks 127
validate_core module 386
validate_core.cpp file 166, 169, 174
validate_core.js 183
validateData function 235–236, 239–240, 242–243
_ValidateName function 250
ValidateName function 60, 91, 110, 335

calling 69
creating 60–61
creating modules to talk to JavaScript using

function pointers 109–110
validateName function 59–60, 66, 68–69, 81, 95,

101, 117, 169, 189, 241, 243, 334, 387
creating modules to talk to JavaScript using

function pointers 117–118, 129–130
module creation and dynamic linking 189–190
modules that call into JavaScript 102

validateNameCallbacks 127
validate_order.cpp file 166, 174, 176
ValidateProduct function 172–173
validateProduct function 190–191
validate_product.cpp file 166, 170, 174
validate_product.wasm file 175
ValidateQuantity function 172–173
validateQuantity function 191–192

ValidateValueProvided function 60–62, 77,
90–91, 109, 111, 169–171

creating 59–60
creating modules to talk to JavaScript using

function pointers 109
validationModule variable 386
VALID_CATEGORY_IDS array 66, 70, 82, 184,

228, 237
VALID_PRODUCT_IDS array 184
var0 variable 301
vector class 200, 210
virtual machine (VM) 10–11, 14
void* parameter 210

W

WASI (WebAssembly Standard Interface) 15, 340
Wasm file 10

generating 307–308, 313, 324
regenerating 321

Wasm Match 290
wasm2wat tool 351
wasmMemory variable 403
wat2wasm tool 321, 351, 397, 399, 401, 403
web sockets 245
web workers, prefetching modules using 198–208

adjusting calculate_primes logic 200–202
copying files to correct location 203
creating HTML file for web page 203
creating JavaScript file for web page 204–206
creating JavaScript file for web worker 207
using Emscripten to generate files 202
viewing results 207–208

WebAssembly 3–16
asm.js as forerunner to 4–5
compiling to WebAssembly alone 40–49

compiling C or C++ as side module with
Emscripten 41–42

loading and instantiating in browser 43–49
defined 4
how it works 8–11

compilers 9
loading, compiling, and instantiating

modules 10–11
module structure 11–13

custom module sections 13
known module sections 13
preamble 12

problems solved by 7
code reuse 7
languages other than JavaScript 7
performance 5–6
startup times 7

security 14

424 INDEX
WebAssembly (continued)
supported languages 14–15
supported locations 15–16
text format 13–14

WebAssembly Binary Toolkit 251, 306, 351, 388
WebAssembly Community Group 340
WebAssembly JavaScript API 153–159, 161, 344

creating HTML and JavaScript files 157–158
modules in Node.js 231–244

calling functions in module 234–237
calling into JavaScript 238–240
calling JavaScript function pointers 241–244
loading and instantiating modules 232–234

overview 45–47
splitting logic in calculate_primes.c file into two

files 154–156
using Emscripten to generate side

modules 156–157
viewing results 159

WebAssembly Standard Interface (WASI) 15, 340
WebAssembly.compile function 47

WebAssembly.compileStreaming function 47, 207
WebAssembly.Instance object 46, 206
WebAssembly.instantiate 232, 235, 239, 242
WebAssembly.instantiate function 46, 50, 233
WebAssembly.instantiateStreaming function

45–46, 48, 50, 206, 235, 239, 242, 258, 292,
315, 340, 376

WebAssembly.Memory object 47, 80
WebAssembly.Module object 46, 206
WebAssembly.Table object 124, 408
WebGL 34
WebSockets 197
window object 228
Worker API, Emscripten 197
Worker object 205
writeFile function 232

X

XSS (cross-site scripting) 50

WebAssembly in Action

A representation of the basic structure
of the WebAssembly binary bytecode

Module

Continued

1. List of
 unique function
 signatures used
 in the module

2. Items to be
 imported

3. List of all
 functions in
 the module

4. An array
 of references
 to items like
 functions

5. The module’s
 linear memory

6. The module’s
 global variables

7. Items that will be
 exposed to the host

8. An index to a function
 in the module that will
 be called automatically
 once the module has
 been initialized

9. Data to load into the
 Table section during
 instantiation

10. The body of each
 function defined in
 the Function section

11. Data to load into the
 linear memory during
 instantiation

The preamble: this is a WebAssembly module and is built
according to version 1 of the WebAssembly binary format.

Type

Import

Table

Memory

(i32, i32) → (i32)

(i64, i64) → ()

() → ()

Type 0

Type 2

Type 1

00000100

Function

Size0

Version 1

"mathlib", "multiply", Type 0

Global

Export

Element

Global variables

Function 1

Initialization data for Table

Code

Code for Function 0

Code for Function 1

Code for Function 2

Start

Initialization data for Memory

Data

Any kind of data

Custom sections

"add", Function 0

Gerard Gallant

ISBN-13: 978-1-61729-574-4
ISBN-10: 1-61729-574-4

W
rite high-performance browser-based applications
without relying just on JavaScript! By compiling to the
WebAssembly binary format, your C, C++, or Rust

code runs at near-native speed in the browser. WebAssembly
delivers greater speed, opportunities to reuse existing code,
and access to newer and faster libraries. Plus, you can easily
interact with JavaScript when you need to.

WebAssembly in Action teaches you how to write and run high-
performance browser-based applications using C++ and other
languages supported by WebAssembly. In it, you’ll learn to
create native WebAssembly modules, interact with JavaScript
components, and maximize performance with web work-
ers and pthreads. And you’ll love how the clearly organized
sections make it a breeze to fi nd the important details about
every function, feature, and technique.

What’s Inside
● Dynamic linking of multiple modules at runtime
● Communicating between modules and JavaScript
● Debugging with WebAssembly Text Format
● Threading with web workers and pthreads

Written for developers with a basic understanding of C/C++,
JavaScript, and HTML.

Gerard Gallant is a Microsoft Certifi ed Professional and a
Senior Software Developer at Dovico Software. He blogs
regularly on Blogger.com and DZone.com.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/books/webassembly-in-action

$49.99 / Can $65.99 [INCLUDING eBOOK]

WebAssembly IN ACTION

WEB DEVELOPMENT

M A N N I N G

“This step-by-step practical
guide demystifi es the
complex ecosystem

of technologies around
 WebAssembly.”

—Daniel Budden, Envato

“A deep dive into
WebAssembly, an exciting
enabler of the new wave

of high-performing
 web applications.”—Milorad Imbra

Galgo Marketing

“Concepts are well
explained and fun to read

 and try. Loved it!”—Satej Sahu, Ellucian

“A great introduction to the
future of the web.”
—Denis Kreis, Zalando

See first page

	WebAssembly in Action
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized
	About the code
	liveBook discussion forum
	Other online resources

	about the author
	about the cover illustration
	Part 1 First steps
	1 Meet WebAssembly
	1.1 What is WebAssembly?
	1.1.1 Asm.js, the forerunner to WebAssembly
	1.1.2 From asm.js to MVP

	1.2 What problems does it solve?
	1.2.1 Performance improvements
	1.2.2 Faster startup times compared with JavaScript
	1.2.3 Ability to use languages other than JavaScript in the browser
	1.2.4 Opportunity for code reuse

	1.3 How does it work?
	1.3.1 Overview of how compilers work
	1.3.2 Loading, compiling, and instantiating a module

	1.4 Structure of a WebAssembly module
	1.4.1 Preamble
	1.4.2 Known sections
	1.4.3 Custom sections

	1.5 WebAssembly text format
	1.6 How is WebAssembly secure?
	1.7 What languages can I use to create a WebAssembly module?
	1.8 Where can I use my module?

	2 A look inside WebAssembly modules
	2.1 Known sections
	2.2 Custom sections

	3 Creating your first WebAssembly module
	3.1 The Emscripten toolkit
	3.2 WebAssembly modules
	3.2.1 When would you not use a WebAssembly module?

	3.3 Emscripten output options
	3.4 Compiling C or C++ with Emscripten and using the HTML template
	3.5 Having Emscripten generate the JavaScript plumbing code
	3.5.1 Compiling C or C++ with Emscripten-generated JavaScript
	3.5.2 Creating a basic HTML web page for use in browsers

	3.6 Having Emscripten generate only the WebAssembly file
	3.6.1 Compiling C or C++ as a side module with Emscripten
	3.6.2 Loading and instantiating in a browser

	3.7 Feature detection: How to test if WebAssembly is available

	Part 2 Working with modules
	4 Reusing your existing C++ codebase
	4.1 Using C or C++ to create a module with Emscripten plumbing
	4.1.1 Making the C++ modifications
	4.1.2 Compiling the code into a WebAssembly module
	4.1.3 Creating the web page
	4.1.4 Creating the JavaScript that will interact with the module
	4.1.5 Viewing the results

	4.2 Using C or C++ to create a module without Emscripten
	4.2.1 Making the C++ modifications
	4.2.2 Compiling the code into a WebAssembly module
	4.2.3 Creating the JavaScript that will interact with the module
	4.2.4 Viewing the results

	5 Creating a WebAssembly module that calls into JavaScript
	5.1 Using C or C++ to create a module with Emscripten plumbing
	5.1.1 Adjusting the C++ code
	5.1.2 Creating the JavaScript that you want included in Emscripten’s generated JavaScript file
	5.1.3 Compiling the code into a WebAssembly module
	5.1.4 Adjusting the web page’s JavaScript code
	5.1.5 Viewing the results

	5.2 Using C or C++ to create a module without Emscripten plumbing
	5.2.1 Making the C++ modifications
	5.2.2 Compiling the code into a WebAssembly module
	5.2.3 Adjusting the JavaScript that will interact with the module
	5.2.4 Viewing the results

	6 Creating a WebAssembly module that talks to JavaScript using function pointers
	6.1 Using C or C++ to create a module with Emscripten plumbing
	6.1.1 Using a function pointer given to the module by JavaScript
	6.1.2 Adjusting the C++ code
	6.1.3 Compiling the code into a WebAssembly module
	6.1.4 Adjusting the web page’s JavaScript code
	6.1.5 Viewing the results

	6.2 Using C or C++ to create a module without Emscripten plumbing
	6.2.1 Using function pointers given to the module by JavaScript
	6.2.2 Making the C++ modifications
	6.2.3 Compiling the code into a WebAssembly module
	6.2.4 Adjusting the JavaScript that will interact with the module
	6.2.5 Viewing the results

	Part 3 Advanced topics
	7 Dynamic linking: The basics
	7.1 Dynamic linking: Pros and cons
	7.2 Dynamic linking options
	7.2.1 Side modules and main modules
	7.2.2 Dynamic linking: dlopen
	7.2.3 Dynamic linking: dynamicLibraries
	7.2.4 Dynamic linking: WebAssembly JavaScript API

	7.3 Dynamic linking review

	8 Dynamic linking: The implementation
	8.1 Creating the WebAssembly modules
	8.1.1 Splitting the logic in the validate.cpp file into two files
	8.1.2 Creating a new C++ file for the Place Order form’s logic
	8.1.3 Using Emscripten to generate the WebAssembly side modules
	8.1.4 Defining a JavaScript function to handle an issue with the validation
	8.1.5 Using Emscripten to generate the WebAssembly main module

	8.2 Adjusting the web page
	8.2.1 Adjusting your web page’s JavaScript
	8.2.2 Viewing the results

	9 Threading: Web workers and pthreads
	9.1 Benefits of web workers
	9.2 Considerations for using web workers
	9.3 Prefetching a WebAssembly module using a web worker
	9.3.1 Adjusting the calculate_primes logic
	9.3.2 Using Emscripten to generate the WebAssembly files
	9.3.3 Copying files to the correct location
	9.3.4 Creating the HTML file for the web page
	9.3.5 Creating the JavaScript file for the web page
	9.3.6 Creating the web worker’s JavaScript file
	9.3.7 Viewing the results

	9.4 Using pthreads
	9.4.1 Adjusting the calculate_primes logic to create and use four pthreads
	9.4.2 Using Emscripten to generate the WebAssembly files
	9.4.3 Viewing the results

	10 WebAssembly modules in Node.js
	10.1 Revisiting what you know
	10.2 Server-side validation
	10.3 Working with Emscripten-built modules
	10.3.1 Loading a WebAssembly module
	10.3.2 Calling functions in the WebAssembly module
	10.3.3 Calling into the JavaScript
	10.3.4 Calling JavaScript function pointers

	10.4 Using the WebAssembly JavaScript API
	10.4.1 Loading and instantiating a WebAssembly module
	10.4.2 Calling functions in the WebAssembly module
	10.4.3 The WebAssembly module calling into JavaScript
	10.4.4 The WebAssembly module calling JavaScript function pointers

	Part 4 Debugging and testing
	11 WebAssembly text format
	11.1 Creating the game’s core logic using WebAssembly text format
	11.1.1 The module’s sections
	11.1.2 Comments
	11.1.3 Function signatures
	11.1.4 The module node
	11.1.5 The import nodes
	11.1.6 The global nodes
	11.1.7 The export nodes
	11.1.8 The start node
	11.1.9 The code nodes
	11.1.10 The type nodes
	11.1.11 The data node

	11.2 Generating a WebAssembly module from the text format
	11.3 The Emscripten-generated module
	11.3.1 Creating the C++ file
	11.3.2 Generating a WebAssembly module

	11.4 Creating the HTML and JavaScript files
	11.4.1 Modifying the HTML file
	11.4.2 Creating the JavaScript file

	11.5 Viewing the results

	12 Debugging
	12.1 Extending the game
	12.2 Adjusting the HTML
	12.3 Displaying the number of tries
	12.3.1 The generateCards JavaScript function
	12.3.2 Adjusting the text format
	12.3.3 Generating the Wasm file
	12.3.4 Testing the changes

	12.4 Incrementing the number of tries
	12.4.1 The updateTriesTotal JavaScript function
	12.4.2 Adjusting the text format
	12.4.3 Generating the Wasm file
	12.4.4 Testing the changes

	12.5 Updating the summary screen
	12.5.1 The levelComplete JavaScript function
	12.5.2 Adjusting the text format
	12.5.3 Generating the Wasm file
	12.5.4 Testing the changes

	13 Testing—and then what?
	13.1 Installing the JavaScript testing framework
	13.1.1 The package.json file
	13.1.2 Installing Mocha and Chai

	13.2 Creating and running tests
	13.2.1 Writing the tests
	13.2.2 Running the tests from the command line
	13.2.3 An HTML page that loads your tests
	13.2.4 Running the tests from a browser
	13.2.5 Making the tests pass

	13.3 Where do you go from here?

	Appendix A Installation and tool setup
	A.1 Python
	A.1.1 Running a local web server
	A.1.2 The WebAssembly media type

	A.2 Emscripten
	A.2.1 Downloading the Emscripten SDK
	A.2.2 If you’re using Windows
	A.2.3 If you’re using a Mac or Linux
	A.2.4 Working around installation issues

	A.3 Node.js
	A.4 WebAssembly Binary Toolkit
	A.5 Bootstrap

	Appendix B ccall, cwrap, and direct function calls
	B.1 ccall
	B.1.1 Building a simple WebAssembly module
	B.1.2 Building the web page that will talk to the WebAssembly module

	B.2 cwrap
	B.2.1 Adjusting the JavaScript code to use cwrap

	B.3 Direct function calls
	B.4 Passing an array to a module

	Appendix C Emscripten macros
	C.1 emscripten_run_script macros
	C.2 EM_JS macros
	C.2.1 No parameter values
	C.2.2 Passing parameter values
	C.2.3 Passing pointers as parameters
	C.2.4 Returning a string pointer

	C.3 EM_ASM macros
	C.3.1 EM_ASM
	C.3.2 EM_ASM_
	C.3.3 Passing pointers as parameters
	C.3.4 EM_ASM_INT and EM_ASM_DOUBLE
	C.3.5 Returning a string pointer

	Appendix D Exercise solutions
	D.1 Chapter 3
	D.1.1 Exercise 1
	D.1.2 Exercise 2

	D.2 Chapter 4
	D.2.1 Exercise 1
	D.2.2 Exercise 2

	D.3 Chapter 5
	D.3.1 Exercise 1
	D.3.2 Exercise 2

	D.4 Chapter 6
	D.4.1 Exercise 1
	D.4.2 Exercise 2

	D.5 Chapter 7
	D.5.1 Exercise 1
	D.5.2 Exercise 2

	D.6 Chapter 8
	D.6.1 Exercise 1
	D.6.2 Exercise 2

	D.7 Chapter 9
	D.7.1 Exercise 1
	D.7.2 Exercise 2

	D.8 Chapter 10
	D.8.1 Exercise 1
	D.8.2 Exercise 2
	D.8.3 Exercise 3

	D.9 Chapter 11
	D.9.1 Exercise 1
	D.9.2 Exercise 2

	D.10 Chapter 12
	D.10.1 Exercise 1
	D.10.2 Exercise 2

	D.11 Chapter 13
	D.11.1 Exercise 1
	D.11.2 Exercise 2

	Appendix E Text format extras
	E.1 Control flow statements
	E.1.1 If statements
	E.1.2 Loops

	E.2 Function pointers
	E.2.1 Test the code

	index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides true
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 18
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

