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Copyright

In order to illustrate how the DOOM game engine works, a few screenshots, images,
sprites, and textures belonging to and copyrighted by id Software are reproduced in this
book. The following items are used under the "fair use" doctrine:

1. All in-game screenshots, title screen.

2. All in-game menu screenshots.

3. All 3D sequence textures.

4. All 3D sequence sprites.

5. All screenshots of DOOM.

6. DOOM name.

Photographs with "ROME.RO" watermark belong to John Romero and are reproduced with
his authorization.

DOOM Survivor’s Strategies & Secrets essays are copyrighted by Jonathan Mendoza and
reproduced with his authorization.
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How To Send Feedback
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http://fabiensanglard.net/gebbdoom

Thanks :) !
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Foreword by John Carmack

In many ways, DOOM was almost a "perfect" game.

With hindsight and two decades more skill building, I can think of better ways to imple-
ment almost everything, but even if I could time machine back and make all the changes,
it wouldn’t have really mattered. DOOM hit a saturation level of success, and the legacy
wouldn’t be any different if it was 25% faster and had a few more features.

The giant aliased pixels make it hard to look at from a modern perspective, but DOOM
felt "solid" in a way that few 3D games of the time did, largely due to perspective correct,
subpixel accurate texture mapping, and a generally high level of robustness.

Moving to a fully textured and lit world with arbitrary 2D geometry let designers do mean-
ingful things with the levels. Wolfenstein 3D could still be thought of as a "maze game",
but DOOM had architecture, and there were hints of grandeur in some of the compositions.

Sound effects were actually processed, with attenuation and spatialization, instead of sim-
ply being played back, and many of them were iconic enough that people still recognize
them decades later.

The engine was built for user modification from the ground up, and the synergy of share-
ware distribution, public tool source release, and early online communities led to the origi-
nal game being only a tiny fraction of the content created for it. Many careers in the gaming
industry started with someone hacking on DOOM.

Blasting through the game in cooperative mode with a friend was a lot of fun, but compet-
itive FPS deathmatch is one of the greatest legacies of the game. Seeing another player
running across your screen, converging with the path of the rocket that you just launched,
is something that still makes millions of gamers grin today.

There was a lot of clever smoke and mirrors involved in making DOOM look and feel as
good as it did, and it is a testament to the quality of the decisions that so many people
thought it was doing more than it actually was. This remains the key lesson that still mat-
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ters today: there are often tradeoffs that can be made that gets you a significant advantage
in exchange for limitations that you can successfully cover up with good design.

– John Carmack
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Foreword by Dave Taylor

I find the technology behind great products fascinating, but I’m even more fascinated by
the conditions that lead to that technology.

I don’t feel in any way responsible for the greatness of DOOM. Technologically, that was all
Carmack, and anything that came close in my code was only due to his influence.

In the course of struggling to keep up with Carmack, I would sometimes fall asleep in the
office. I remember hearing that at least for a window there, Carmack felt guilty that I was
working so hard. Knowing his intense work ethic, perhaps that put a little more spring in
his already indefatigable step.

What I do know is that I had joined an already well-oiled development team in the form of
Carmack, Romero, Adrian, and Kevin. This wasn’t their first rodeo.

I later learned the mother of their invention was a harsh time constraint at Soft Disk, a com-
pany that sold a subscription of curious demos on diskette. They wanted to start making
games instead of just toy applications, and their manager allowed them, but only if they
could deliver a game every two months like clockwork.

Back then, there were no game engines. In fact, DOS was not a complete operating
system, and you had to finish writing the drivers for your game to work. So this was an
incredibly harsh time constraint, and it forced them into doing constant triage on what they
wanted to achieve with each game.

I was so convinced that this painful constraint is what led to the team’s impressive work on
DOOM, that years later, I would teach a university class inspired by id’s path to success.
The other teachers warned me not to be nice to the students, or they would take advantage
of me. Relishing an acting challenge, these were my first words to the class: "My name is
Dave Taylor. I’m a working producer, and I don’t have time for you. You owe me a shipped
game every week, and if you don’t ship, you’ll get an F."

Three classes and 127 games later, almost all of my students went on to jobs in the game
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industry, no mean feat with a game design degree, and many of them credit the painful
time constraints of the class. Terror works. I recommend it.

Which brings me to our newest source of terror. I am not popular amongst my peers for
having a low opinion of games. I consider what we make an opiate for the mind with about
as much redeeming value. I met one too many DOOM fans who expressed their enthusi-
asm in how it threatened their GPA’s, their relationships with their significant others, and
their employment. That used to be funny and flattering until I integrated the area under the
curve.

Scalar money commerce does not formally motivate us to make games that are good for
you, just to make money, which unfortunately makes us complicit in the Holocene Extinc-
tion now threatening the planet. We need to start changing behaviors quickly, which means
we desperately need games to help us change those behaviors.

Terrified? Good. Get to work!

=-ddt->
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Foreword by John Romero

The year of 1993 was a magical one, more so than any other. It was the only time we
challenged ourselves as a group to create a game that was as good as anything we could
have imagined at the time. We didn’t challenge ourselves like that before DOOM, nor after
it. It was the right time to shoot for the stars.

Incredibly, and perhaps a bit naively, we made a list of the technological wizardry we
planned to create, and boldly stated in a press release in January 1993, that DOOM would
be a major source of productivity loss around the world. We truly believed it, and worked
hard that year to make it happen. I don’t recommend writing a press release at the start of
your project, especially one like that.

We did so many new things while creating DOOM. It was our first 3D game to use an
engine that broke away from the 2D paradigm we were in from the start of the company,
and even stayed in with Wolfenstein 3D and Spear of Destiny, at least for the map layouts.
We wanted to use a video camera to scan in our weapons and monsters because we were
using real workstations this time around - the mighty NeXTSTEP computers and operating
system of Steve Jobs.

Making DOOM was difficult. We were creating a darker-themed game with our creative
director Tom Hall who is an absolutely positive guy, and it was anathema to his design
ethos. He laid the initial design groundwork by creating the DOOM Bible which outlined
several design concepts we never implemented, some of which were included in 2016’s
reboot.

The engine was revolutionary in that it represented a type of world that no one had seen
on a computer screen before. Angled walls and halls that darken in the distance. A high-
framerate nightmare some would call it, but it was a high octane blastfest that opened
everyone’s eyes to the potential of the PC’s gaming future. Today’s first-person shoot-
ers trace their lineage back to this game that bears the distilled essence of what a shooter
should be: balanced weapons, insidious level design, a complementary enemy menagerie,
and lots of fast action.
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Throughout the year we tweaked, and added, and removed elements of the game to make
it just right. Gone were the score and lives, remnants of the arcades we grew up in. The
items that supported a score were removed. The game was far better for it, and those
choices influenced our future designs.

The application of Bruce Naylor’s binary space partition was a huge advance for 3D render-
ing speed, and the abstract level design style broke games out of the 90-degree maze wall
design rut they had been in for 20 years. This was something new, with textured floors and
ceilings, stairs, platforms, doors, and blinking lights. We loved having this design palette to
work with, and it fit well with the subject matter we based the game upon: Hell.

As a group, we played Dungeons & Dragons for years. Our main campaign was destroyed
by demons teleporting onto the material plane and destroying everything in it. This gave
us the idea of a demonic invasion, but we decided to base it in the future where we could
have some really powerful weapons. Besides, the combination of Hell and science fiction
was too great to ignore. We felt even the storyline was slightly new because of it.

Writing the DoomEd map editor to create levels was a dream. I was finally using a real
operating system with an incredible programming language, Objective-C, and getting to
program in a way I had never known. The fact that we had monitors at 1120x832 let us
see our game in a way we couldn’t under DOS. Using these tools of the future helped us
immensely.

There was so much we did that was new, it was a little mind-boggling. We were using high-
end workstations, a brand-new 3D engine that allowed for incredible graphics and design
expression, graphical scanning of our game sprites, and for the first time we were putting
multiplayer into our game with a mode I called Deathmatch because that name just made
sense.

The inclusion of multiplayer co-op and deathmatch modes changed everything about games.
We knew that playing a game as fast and over-the-top as DOOM would signal a new era. I
visualized what E1M7 would look like with two players shooting rockets at each other over
a large room and it got me more excited than I had been since Wolfenstein 3D’s chaingun
audio.

We couldn’t wait to see what players would do with our game, so we made sure it was
open and available to modify all the data we had. We had hoped people would change
textures, sounds, and make lots of new levels. We were enabling players to let us play
their creations finally. It was a major move that would eventually end up with us releasing
the source code. Open your game and your fans will own it, and keep it alive after you’re
gone.

For our small team, we took these huge changes in stride and tried to use them to the
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edge of their capabilities. The technical stretches we made matched the design stretches
we were exploring. I felt that we hit a lot of walls and climbed right over them. When Tom
Hall left in August 1993, we quickly hired Sandy Petersen to help us in the final stretch.
Dave Taylor came aboard to help us fill out the game.

At six developers, we were a tight team. Adrian and Kevin held down the art side confi-
dently, while John Carmack handled the meat of the code. I loved being able to play with
all of their output, and added a lot of my own code into the game’s environments to support
my level designs and Sandy’s. When we were finished, we knew that we made something
pretty great. We couldn’t wait for everyone else to see it.

It’s been an amazing 25 years, and I must first and foremost thank the fans that made it
possible and kept it alive all this time as well as the game press who have always sup-
ported DOOM through its may iterations. Your appreciation of our work means everything.
I also must thank John, Adrian, Tom, Sandy, Dave and Kevin. It was our crazy dream that
made DOOM possible. Lastly, I want to thank the current DOOM team for their great work
on the latest DOOM (I’m not at all involved in it, except as a player). Like everyone else, I
am super excited for DOOM Eternal.

Then, here’s to a quarter century of Rip and Tear!

Cheers,

– John Romero
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Preface

This is the second Game Engine Black Book. It picks up right where the first one ended
with the release of Wolfenstein 3D in May 1992. It carries on all the way up to December
1993 with id Software’s second breakthrough of the 90s, DOOM.

Like its predecessor, this volume attempts to describe in great detail both the hardware
and the software of the era. It opens a window back in time peeking over the engineering
used to solve the various problems id Software encountered during the eleven months it
took them to ship their next title.

It may seem odd to write a book about a game twenty-five years after its release. After
all, who would be interested in seemingly outdated technology found in extinct hardware
running obsolete operating systems? Given the success of the first Black Book, it turns
out many. Whether readers are into history, nostalgia, engineering, or even philosophy, it
seems there is an edge for everyone.

DOOM has had such a profound and sustained impact that it has become part of modern
history. It is an unquestionable milestone that entertained millions and catalyzed vocations.
Because the source code was made available, programmers have learned the game en-
gine’s architecture with it. Because it was easy to modify and the tools were available,
countless aspiring game makers had their first experiences designing or drawing assets.
To this day, because it is such an icon, it is often the go-to title for hackers wanting to
demonstrate their skills1. From the MacBook Touchbar, to ATMs, CT scanners, watches,
and even fridges, pretty much any piece of electronics has run DOOM 2.

It was a financial and critical success that reshaped the PC gaming industry3. During 1994
it received several awards, including Game of the Year by both PC Gamer and Computer
Gaming World, Award for Technical Excellence from PC Magazine, and Best Action Ad-

1Upon cracking the BitFi wallet in Aug 2018, the hacker team demonstrated it by running DOOM on the
device.

2"Will it run DOOM?" has become a common joke in the computer/gaming worlds. There is even a website,
"itrunsdoom.tumblr.com", to provide the answer.

3And even killed the Amiga. Source: "Commodore: The Amiga Years" by Brian Bagnall.
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venture Game Award from the Academy of Interactive Arts & Sciences. With more than
two million copies sold and an estimated 20 million shareware installations, at its height
the phenomenon generated close to $100,000 per day. Before the term was overtaken by
"First Person Shooter" people talked about "Doom clones".
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Usenet posts per month containing the phrase "doom clone" vs "first person shooter"

There is also tremendous sentimental value. DOOM is one of those titles that made an
ever-lasting impression upon first contact. Those who were able to play it upon release or
shortly after are still able to remember the circumstance under which they first saw it run-
ning. It is an exhilarating feeling to learn the internals of something once deemed magical.
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Beyond the nostalgia, and this is the most important reason this book is relevant, the mak-
ing of DOOM is the ever-repeating story of inventors, engineers and builders gathered
around a common vision. There was no clear path from where id Software was to where
they wanted to be – only the certainty that nobody else had gone there before. They
worked days and nights, slept on the floors, and waded across rivers to make their dreams
come true.

The making of DOOM summarizes well how achieving a colossal task breaks down to a
thousand small things done right. This is the story of a group of dreamers who combined
skills, dedication and good fortune, resulting in a breathtaking combination of technology,
artwork and design.

To narrate this wonderful adventure, the black book had to respond to two seemingly or-
thogonal constraints. On the one hand, to be able to stand alone without need for supple-
mental information or cross-references. On the other hand, to avoid boring faithful readers
with content already visited in the series. The middle ground was to allow people who had
read about Wolfenstein 3D to get more out of this book without making it a necessity.

Topics which would have been interesting to re-visit, such as the architecture of the VGA
hardware, DOS TSRs, 386 Real-Mode, PC Speaker sound synthesis, the PIC and PIT,
DDA algorithms and a few others are mentioned but not extensively described since they
were part of Game Engine Black Book: Wolfenstein 3D. This trade-off allowed reaching
the target, which was a book around 400 pages that can be held in one hand while sipping
a cup of tea.

A few liberties were taken with regard to code samples. Due to the restricted real-estate of
the paper version, code sometimes had to be slightly modified to fit. Other times, in order
to introduce complexity progressively and not overwhelm the reader, portions of the code
in functions were removed. Some code samples are from the original source code before
it was cleaned up during the open sourcing effort so it may differ from what you can find
on github.com. Rest assured the semantics and spirit remain intact.

This book is the fruit of an exercise inspired by Nicolas Boileau who reportedly stated:
"Whatever we well understand, we express clearly". It is also the volume I wish someone
else had written so I could just have purchased it (I am quite lazy).

I hope you will enjoy reading it!

– Fabien Sanglard (fabiensanglard.net@gmail.com)
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Chapter 1

Introduction

In May of 1992, id Software was the rising star of the PC gaming industry. Wolfenstein 3D
had established the First Person Shooter genre and sales of the sequel "Spear of Destiny"
were skyrocketing1. The game engine and the associated tools which had taken years to
develop were far above the competition. They had an efficient game production pipeline
and the talent to use it well with gorgeous levels and assets. Nobody even came close to
challenging them... but for how long? They could have kept milking their technology but
the evolution of hardware would have doomed them.

“ Because of the nature of Moore’s law, anything that an extremely clever
graphics programmer can do at one point can be replicated by a merely
competent programmer some number of years later.

— John Carmack ” .

Competitors were coming with their own games. Since its inception around the techno-
logical breakthrough named "Adaptive Tile Refresh", id Software’s core value had been
innovation. They had already released a sequel to Wolfenstein 3D and it was time to move
on. The Right Thing to Do (and the most risky2) was to throw away everything they had
worked so hard to build and start their next game from a blank sheet. Assets, levels, tools,
and game engine – everything would be new and innovative.

Before getting started, id Software had to decide what hardware they would target, and
then what tools to use. A summary assessment of the consumer landscape showed that

1By the end of 1993, combined sales of Wolfenstein 3D and Spear of Destiny reached over 200,000 units.
By the end of 1994, that figure increased to 300,000 units.

2Things You Should Never Do (Netscape 6 development), by Joel Spolsky.
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PCs had significantly evolved since their last hit:

∙ Intel’s latest CPU, the 486 announced in 1989, was finally becoming affordable. Pro-
viding twice the processing power of the previous generation, more and more cus-
tomers now declined to go for an "old", twice as slow, Intel 386.

∙ The advent of Microsoft Windows 3.1 and its hungry GUI had prompted hardware
manufacturers to offer more powerful graphic adapters. Rendering still had to be
done in software but chipsets were faster and had more capacity.

∙ Frustrated with the bus bottleneck, vendors had teamed up to produce a new stan-
dard. PCs often came equipped with a bus ten times faster than the old legacy ISA,
called VESA Local Bus (VLB/VL-Bus).

∙ The price of RAM was dropping significantly. The once-standard 2 MiB of RAM was
now forecast to be 4 MiB..

∙ The audio ecosystem had become even more fragmented with many SoundBlaster
"compatible" audio card clones on the market and also new innovative technology
such as the Gravis Ultrasound’s wavetable synthesis.

Not only had the hardware evolved, the software was also different. Better compilers such
as Watcom allowed faster code to be generated. There was less need for time-consuming
hand-crafted assembly, which was slowly becoming a thing of the past3. DOS extenders
broke the machine free from 16-bit programming and its infamous limited 1 MiB address
space.

On the developer hardware side, new options had appeared. Powerful workstations were
now available and affordable to professionals. One company in particular, founded by
Steve Jobs after his departure from Apple, combined strong hardware with efficient de-
velopment tools. NeXT produced impressive machines running on their UNIX-based OS
called NeXTSTEP.

In this whirlwind of novelties, it would have been easy to go in the wrong direction. Yet,
id Software seems to have made all the right choices. How did they manage to start from
nothing and make one of the best games of all time in just eleven months? This is the
question this book will attempt to answer.

To do so, the two first chapters take a close look at the hardware of the time – not only the
IBM PC on which DOOM ran but also the NeXT machines which id Software elected as
the foundation of its production pipeline. The third chapter focuses on the team and the
tools they wrote to bridge the hardware and the software. With all these capabilities and

3Intel would bring that trend back with its super-scalar processor, the Pentium, and make Quake development
ASM intensive, but this is another story altogether.
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restrictions in mind the last chapters are a deep dive into the game engine which hopefully
will help the reader to appreciate why things are designed the way they are.

Now load your shotgun, pack a few medkits and let’s dive!

Figure 1.1: "DOOM means two things: demons and shotguns!" – John Carmack
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Chapter 2

IBM PC

The PC environment had morphed significantly between the development of Wolfenstein
3D in 1991 and the development of DOOM in 1993. The previous "recommended configu-
ration" based on an Intel 386 with 2 MiB of RAM and a VGA graphics card was no more.

The "new" top of the line PC still had six subsystems: 1 Inputs, 2 Bus, 3 CPU, 4 RAM,
5 Video output, and 6 Audio output together forming a pipeline. Each of them had be-

come faster or increased in capacity.

1

INPUTS OUTPUTS

RAM VGA
SOUND

  

CARD

Figure 2.1: The six components of an IBM PC.
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Before describing each component in detail, an important clarification is required. Since
this chapter is structured as a delta comparing what was available for DOOM to what was
available for Wolfenstein 3D, it carries a feeling of abounding power which is deceiving.

Despite the impressive list of improvements listed next, keep in mind that the IBM PCs
were still not machines well suited for video games. They were riddled with limitations due
to the original target, which was office work. They were designed to perform word process-
ing, crunch spreadsheets and maybe occasionally display a static graph – the intent was
never to build something allowing real time, 70Hz1 animations.

Looking back it is hard to believe that studios focused solely on producing titles for a ma-
chine "obviously" less capable than consoles. The list of problems was substantial:

∙ A CPU unable to perform floating-point operations and no co-processors.

∙ An archaic graphic system seemingly unable to double-buffer and with an aspect
ratio different from the monitor, resulting in distorted images.

∙ A de-facto sound system only capable of irritating "beeps" and a fragmented sound
card ecosystem when the customer had elected to buy one.

∙ A price tag where a top of the line machine fetched close to $3,000. To compare with
the competition, the SNES and the SEGA Genesis were both priced at US$199 while
the Neo-Geo which provided arcade-like experience was priced at US$649.992.

A PC was unappealing at best and seemingly less likely to generate good games, espe-
cially compared to cheaper systems which had been built with 60Hz animation in mind and
benefited from sprite engines.

Obviously, given the title of the book in your hands, with a few software tricks the hardware
of the PC was capable of far more than what it was designed for. PCs were not good at
certain types of games but they could excel at certain types requiring a framebuffer. In a
world without Internet and little documentation, it was far from a trivial challenge.

Figure 2.2 on the opposite page reproduces the kind of advertisement one could find in
abundance in the many computer magazines of the 90s. Notice the featured IBM PS/1
with an Intel 486 CPU emphasizes office work and its ability to run static-screened office
applications. Productivity and profit were the only way to justify the high price of a machine
that represented 5% of the US median yearly income in 19933.

1VGA’s most common refresh rate used for games (320x200) was 70Hz, contrary to today’s ubiquitous 60Hz.
2Adjusted for inflation the figure would be, as of 2018: $10,476 for a PC, $377.00 for a SNES/Genesis, and

$1,134 for a Neo-Geo.
3"statista.com" lists 1993 US median income at $52,335. Byte Magazine’s Spring 1993 ads show 486 DX2-

66 VESA PCs at $2,575.
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Figure 2.2: IBM PS/1 ad circa 1993. Notice the ridiculously small 14" CRT standard
monitor allowing a resolution up to 800x600.
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Figure 2.3: Motherboard PX486P3 by QDI Computer, Inc

A practical way to get an overview of the hardware available is to open up a PC and take
a look at the component that connects everything together. In 1994, the best-selling moth-
erboard was the PX486P3 by QDI Computer, Inc4.

The most prominent novelty is of course the heart of the computer, the Intel i486 CPU
1 . A closer look reveals many more features which would turn out to be of paramount

importance for the architecture of DOOM.

The black connectors show the traditional ISA bus expansion ports. One 8-bit 2 and three
dual-slot 16-bit 3 allow four ISA cards. Also present are three connectors of a new kind
with an additional brown slot 4 . These are VLB slots5, a bus up to 10x faster than ISA.

4A Canadian company !
5a.k.a: VL-Bus, a.k.a: VESA Local Bus.
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Figure 2.4: Component diagram of the PX486P3.

In the upper left 6 , the main memory of the system had grown in capacity, speed and
complexity. Thanks to a sharp decline in manufacturing price, the standard DRAM6 in-
stalled would be 4 MiB7.

Finally, in the upper right 5 , a new type of RAM had found its way into these new PCs.
Eight black chips of SRAM8 offered a total of 256 KiB acting as L2 "cache". Used in
a new system designed to prevent CPU data and instruction starvation, the SRAM was
much faster (access time of 20ns, which was 10x faster than DRAM) but had the double
drawbacks of being far more expensive to produce and being less dense than DRAM,
limiting its usability.

6Dynamic RAM.
7DOOM would not run on PCs equipped with only 2 MiB.
8Static RAM.
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Trivia : Several of the most impressive game studios of the era speculated on the projected
RAM price drop. The most impressive titles of 1994 (including DOOM) required a minimum
of 4 MiB installed. Strike Commander, Ultima 8, and Comanche Maximum Overkill are
prime examples.

Ironically this time period would end up coinciding with the great RAM shortage of 1994
which saw the price go back up. The legend attributes the surge to a resin factory burning
down in Taiwan. In all likelihood the fluctuation was probably due to Microsoft’s announce-
ment of Windows 95, which recommended a machine with at least 8 MiB of RAM.
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2.1 The Intel 486

Announced in 1989, the 80486 was a performance evolution that
addressed all the bottlenecks of the 80386. However, its price tag
of $950 ($1,920 in 2018) kept it away from most consumers. By
1993 it was finally becoming affordable ($500) and would become
DOOM’s recommended CPU.

The design had changed significantly compared to its predecessor. The pipeline was gifted
with two extra stages, extending its depth to five elements. The FPU10, which used to be
optional and somewhere on the motherboard was brought on-die. Most importantly, man-
ufacturing improvements11 allowed the 486 a more elaborate design that finally featured
an integrated L1 cache – something Intel had attempted with the 386 without success.

“ The 386 actually had a small cache that eventually got exited because it didn’t
have enough performance for the size of the cache that we could put on board
the chip. The problem was that if you made the chip bigger, it literally wouldn’t
fit inside the lithography machine’s field of view, to flash on the chip.

— Gene Hill - Intel 386 Microprocessor Design and Development

”

Prefetch

Bus Unit
FPU

8 KiB unified cache

Registers

Instruction Pipeline

INTEL 486

WritebackExecutionDecode 2Decode 1

Figure 2.5: Intel 486 architecture

9Source: John C. McCallum survey.
10Floating Point Unit.
11Manufacturing technology improved from 1.5𝜇 to 1.0𝜇 allowing five times more transistors on die.
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Like with the 386, Intel marketed its new CPU in two flavors. The DX version was the pure
technology, while the SX version had an unavailable FPU. A decades-old diehard myth is
that the DX/SX distinction was a marketing stunt from Intel to sell chips coming out of the
factory with malfunctioning parts due to manufacturing problems. It was in fact an inten-
tional commercial operation12 to provide a discounted (50%) price and an opportunity to
sell i487 FPU co-processors.13.

If in retrospect the 486 was Intel’s 1994 champion and an unquestionable powerhouse
(both in terms of performance and sales14), it had to sustain a period of uncertainty. Just
as the 386 had to face its brother (the i960), the i486 also had to face a challenger from
the same company. The competing sibling was named the "Intel 860".

“ ...We now had two very powerful
chips that we were introducing
at just about the same time:
the 486, largely based on CISC
technology and compatible with
all the PC software, and the
i860, based on RISC technol-
ogy, which was very fast but
compatible with nothing. We
didn’t know what to do. So we
introduced both, figuring we’d let
the marketplace decide. However, things were not that simple. Supporting a
microprocessor architecture with all the necessary computer-related products
— software, sales, and technical support — takes enormous resources. Even
a company like Intel had to strain to do an adequate job with just one architec-
ture. And now we had two different and competing efforts, each demanding
more and more internal resources. Development projects have a tendency to
want to grow like the proverbial mustard seed. The fight for resources and
for marketing attention (for example, when meeting with the customer, which
processor should we highlight) led to internal debates that were fierce enough
to tear apart our microprocessor organization. Meanwhile, our equivocation
caused our customers to wonder what Intel really stood for, the 486 or i860?

— Andy Grove, "Only the paranoid survive".

”
12Source: "Lies, Damn Lies, and Wikipedia" by Michal Necasek; The timeline did not make sense since "The

486DX started shipping in volume in late 1989. The 486SX was only introduced in mid-1991. In the first 18
months or so when yield problems would have been the worst, there was no SX.".

13Amusingly, the i487 FPU upgrade was a full-blown 486DX that disabled the 486SX completely!
14As of late 2015, the 486 was still manufactured and used inside network routers.
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On paper, the i860 was impressive and a serious opponent. Relying on a heavily pipelined
super-scalar architecture crushing VLIWs15, it had three units (X, Y, and Z) allowing paral-
lel processing and when used efficiently could outperform the Intel 486.

But whereas later CPUs such as the Pentium chose to hide the chip’s complexity by auto-
matically executing instructions in parallel when possible, the i860’s architecture mandated
direct manipulation of its parallel pipelines. The chip did nothing behind the scenes and
relied on compiler writers to sequence instructions appropriately.

Unfortunately, compiler technology was not there yet. Without Intel’s full backing to gen-
erate the precious tool, none of the compilers available came even remotely close to gen-
erating instructions able to exploit its super-scalar capability. The i860 was never able to
reach its full potential. If only Intel had been willing to build the tools it desperately needed,
the history of the i860 could have been different.

Figure 2.6: The Intel 80486 package

Figure 2.6 shows the Intel 486 die featuring 1,180,235 transistors inside its package.
Around this time period, Intel started to stamp its CPU with a trademarked logo in an
attempt to distance itself from increasingly aggressive AMD and Cyrix clones.

Trivia : The i860 played a part in DOOM anyway since it was used in the NeXTDimension’s
video processing boards.

15Very Long Instruction Word.
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2.1.1 Pipeline improvements

Charting the 486’s MIPS performance against the previous generation makes the perfor-
mance boost appear vividly. Thanks to a better manufacturing process, top of the line
486s were able to run at 50Mhz16, but frequency increase was not the main source of the
improvement.

Looking closely at the chart, one will notice that even at equal frequencies, a 486 offered
more than twice the processing power of a 386.

386 16Mhz 386 25Mhz 386 33Mhz 486 25Mhz 486 33Mhz 486 50Mhz

4

6

8

15

20

30
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Figure 2.7: Comparison of Intel CPUs with MIPS 17.

The way it achieves higher performance is through a higher average throughput. Accord-
ing to its documentation, the 386 was a smooth three-stage pipelined processor. Under
ideal conditions, figure 2.8 shows how it should have in theory been able to execute one
instruction per cycle. In practice the CPU behaved as shown in figure 2.9, twice slower
than suggested.

16To reach this frequency, 486 DX 50Mhz were manufactured at 1.0𝜇.
17Source: "Roy Longbottom’s PC Benchmark Collection: http://www.roylongbottom.org.uk/mips.htm".
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Figure 2.8: 386 pipeline in theory according to Intel documentation.

Even if the Prefetch Unit and the Execution Unit were properly fed, the Decode unit always
took a minimum of two cycles to decode an instruction18. Since the maximum throughput
of a pipeline cannot exceed the speed of its slowest stage, the Intel 386 could process at
most one instruction every two cycles.
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Figure 2.9: 386 pipeline in practice: Two cycles per instruction.

To solve this problem, Intel broke down the three stage pipeline into five (Prefetch, De-
code1, Decode2, Execute, WriteBack). With all stages performing at 1 CPI19, the total
throughput of the 486 was doubled (as long as the pipeline never starved).

CYCLES
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INSTRUCTION  3
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INSTRUCTION  4

D1 EP D2 W
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Figure 2.10: 486 pipeline: One cycle per instruction.

18Decoding is complex since x86 uses variable-length instructions, contrary to RISC’s fixed-length approach.
19Cycle Per Instruction.
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2.1.2 Caching

Modifying the pipeline and making each stage run as fast as the others was one step in the
right direction. But making the pipeline deeper also made it more vulnerable to starvation.
Starting from an empty pipeline, the 486 had a latency of 5 cycles compared to the 386
which had only three stages. A frequently stalling 486 would have been slower than a 386.
Halting processing due to missing data or instructions was to be avoided at all cost.

It was a difficult constraint to fulfill for physical reasons. Since 1980, RAM performance
had been lagging behind CPU performance. Each year, CPUs performance improved by
60% while DRAM had only improved by 7%, the gap increasing by 50%/year. By 1989,
DRAM access time was 10 times slower than CPU cycle time.
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Figure 2.11: Source: "Computer Organization and Design" by Hennessy and Patterson

Until the 486, a CPU requesting either instructions or data from DRAM always had to stall
and go through its Bus Unit to talk to the motherboard memory controller. As optimized as
the ISA bus protocol was, it took at the very minimum two cycles.

A first cycle initialized the bus request, placed the address on the address line and set the
control line (Read/Write). Then, a wait cycle ran (which Intel called Wait State since while
waiting on the Bus Unit, the CPU did absolutely nothing) while the device on the other side
of the bus fulfilled the request.
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Figure 2.12: 386 CPU-RAM communication elements

If a device was able to answer the bus request within the first wait state cycle, the CPU
was able to resume operations having reached Zero Wait state. Otherwise, additional Wait
States were inserted in order to wait for the request to complete. From a performance
perspective, these Wait States were a disaster. Not only because it took longer for the
instruction to finish but also because it stalled all other instructions in the pipeline.

BUS REQ (FAST)

BUS REQ (SLOW)

INIT WAIT

INIT WAIT WAIT WAIT WAIT

ZERO WAIT STATE

CPU CYCLES

0 1 2 3 4 5

A two cycle bus request was the fastest a CPU could achieve. In practice, DRAM access
required several Wait State insertions. To avoid this meant avoiding using the bus com-
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pletely. Therefore, Intel inserted a new component between the pipeline and the bus unit
called the L1 (Level 1) cache. The idea was to exploit both the spatial and temporal locality
of a program.

Temporal locality relies on the iterative nature of programs. While in a loop, a recently ac-
cessed instruction is likely to be accessed again on the next iteration. Spatial locality has
to do with the way programs sequentially read or write arrays containing data. If a memory
address is accessed, it is likely a neighboring address will also be accessed shortly after.

By leveraging these two properties, a well-designed cache located between the CPU and
the Bus Unit would often already contain the requested data or instruction, making a bus
request unnecessary.

BUS

CHIPSET

C

A

DBUS

UNIT

SRAM

CACHE
PIPELINE

REGISTERS

Figure 2.13: 486 CPU-RAM communication elements

2.1.3 L1 Cache

Hopefully it is now abundantly clear that the cache was the cornerstone of the entire CPU.
Designing the cache to yield the highest hit rate possible and making it as fast as possible
were paramount.

2.1.3.1 DRAM vs SRAM

The first thing the cache had going for itself was the lower latency of its RAM. While the
main RAM in the SIMM slots used DRAM (Dynamic RAM), the cache was made of a differ-
ent type called SRAM (Static RAM), with a much faster access time. DRAM typically had
an access time of 200ns while SRAM was capable of 20ns, 10x faster.
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The difference in speed comes from the design of their elementary cells.

A DRAM cell holds a single bit. Its simple design features one transistor and one stor-
age capacitor which allow tight packing and high capacity. However, the capacitor loses
its charge over time and each time it is accessed. Every time the cell is read, it must be
written back with its value. Even if it is not accessed, it must be refreshed every 15𝜇𝑠.

Figure 2.14: Dynamic RAM and its two elements holding one bit of data

The slowness comes from the high maintenance cost of each cell. The DRAM also has
the disadvantage of being far away. Located somewhere on the motherboard, it requires
using the ISA bus which is shared with other devices.

Thanks to a more elaborate design (which made it less dense but more expensive to man-
ufacture), an SRAM cell has none of these disadvantages.

ADDRESS

LINE

!BIT LINE BIT LINE

Figure 2.15: Static RAM made of six elements

Without a capacitor, an SRAM cell doesn’t leak. It does not need a periodic refresh and
it does not need to be written back each time it is accessed. Its two bit lines allow twice
as fast voltage variation detection and faster timing. Since it is located inside the chip,
accessing it doesn’t require an expensive bus request and there is no contention with
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other devices20

2.1.3.2 Cachelines

Not only did the L1 cache have better hardware, it was also cleverly designed. Its small
size (8 KiB) and heavy duty (unified cache for both code and data) placed a considerable
stress on it, yet it managed an impressive 92% hit rate21 under normal operation.

To achieve this, Intel engineers used a four-way associative design where the 232 address
space is divided into 2,097,152 pages of 2 KiB. Within each page there are 128 lines of 16
bytes (called cachelines).

F E D C B A 9 8 7 6 5 4 3 2 1 05 6 A X E

Figure 2.16: The 16 bytes in a cacheline.

The cache system is made of one directory and four banks (also called ways). Each way
can store 128 cachelines of 16 bytes and therefore has a capacity of 2 KiB. These lines of
16 bytes are the elementary units of the cache.

031 310

TAG LINE OFFSET

411

Figure 2.17: How a memory address is interpreted by the cache controller

Upon receiving a 32-bit address access request, the cache controller splits it into three
fields.

1. Use the LINE field [4-10] to look up one of the 128 dictionary entries.

2. Look at the four tags in the entry. If one matches the TAG [11-31] then it means the
cacheline is present in one of the four ways.

3. Check the flag F in the directory entry to make sure the cacheline is valid.

4. Use the OFFSET [0-3] field to access one of the 16 values in the cacheline.

5. Update the flag F in the directory entry to update the LRU value.

A memory address’ content can be in any of the four ways but always at the same LINE
offset. With 232/128 = 33, 554, 432 addresses competing for four slots, the unavoidable

20DRAM speed improved over the years. Fast Page Mode "cached" rows of DRAM cells with an SDRAM row
buffer. udacity.com’s UPCF courses are excellent if you want to learn more about this topic.

21Source: "The i486 CPU: Executing Instructions in One Clock Cycle".
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cacheline evictions are arbitrated via an LRU22 policy23.
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Figure 2.18: The cache controller and its four ways (banks).

Trivia : What about increasing the number of ways or the cache size? With 8 KiB of
cache, four ways grant the best trade-off24. A two-ways cache yields a 14% miss rate and
a 4-ways cache yields a 10.5% miss rate. However, going up to eight only improves the
percentage to 10%, and fully associative to 9%.

DIRECT

M
IS

S
 R

A
T
E
 %

2-WAY 4-WAY 8-WAY FULL

0

5

10

15

20

25

30

35
8KIB2KIB 16KIB 32KIB

22Least Recently Used.
23Eviction can happen on read but also on write if the cache is write-allocate, which all Intel 486s were

(Source: "Internal Cache Architecture of X86 Processors").
24Source: "Computer Architecture: A Quantitative Approach" by Hennessy/Patterson.
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2.1.4 Bus Burst Transfer

Any cache miss within the 486 pipeline triggered the eviction of a cacheline and a full 16
bytes had to be transfered from DRAM to SRAM25. Normally this would have been a very
costly operation and a huge issue for the CPU. But Intel added something called "Burst
Transfer" capability to make it all work together.

The principle was simple: While waiting for data to arrive, latch the next request so the bus
controller can use it right away without waiting for the CPU to initialize a bus request.

0 1 2 3 4 5

INIT WAIT INIT WAIT INIT WAIT INIT WAIT

6 7 8

INIT

WAIT

INIT

WAIT

INIT

WAIT

INIT

WAIT

Figure 2.19: "Burst Transfer" allows for 65% faster cacheline filling.

2.1.5 Overdrive and L1 Writeback

Intel managed to improve performance by 33% with its line of 80486 OverDrive chips.
These CPUs featured a frequency multiplier that made them run two times faster than the
bus (the 33Mhz model CPU ran at 66Mhz)26. Furthermore, the L1 cache policy became
write-back (instead of write-through) which reduced bus traffic significantly.

Figure 2.20: The "DX2-66" was the golden standard and absolute best to run DOOM

25The prefetcher also worked with units of 16 bytes. It retrieved and stored cachelines into a prefetch queue
of 32 bytes.

26To this day, designers still try to solve the problem of having a CPU so much faster than the bus.
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Figure 2.21: Comparison of CPUs with MIPS 27.

On the chart above, notice how a 486DX2-66Mhz is faster than a 486DX-50Mhz but not
by the full 20% that frequency would make us expect. This is because the DX2 bus runs
at 33Mhz while on the DX, both the CPU and bus run at 50Mhz.

2.1.6 Die

If you are holding a physical 9.25”x7.5” copy of this book, the CPU packaging is 30mm
square and the die is 15.5 x 9.9 mm, both represented at 1:1 scale.

27Source: "Roy Longbottom’s PC Benchmark Collection: http://www.roylongbottom.org.uk/mips.htm".
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Trivia : On the previous page, the transistor layout differs between the data path, which
was hand-crafted, and the control path, which was created with CAD tools built especially
for the 48628.

2.1.7 Programming the 486

With the architecture in mind we can now understand how a programmer could take best
advantage of the 486. The good news was that most of the performance improvement was
the characterized free-lunch of the 90s. The exact same binary would run twice as fast on
the new CPU.

Apart from a few peculiarities29, as long as the programmer was mindful of the cache-
lines and maximized time and space locality30, the CPU would fly in processing integers.
Floating-point operations had improved by a factor of 2 compared to the i386’s FPU (i387).
In fact, floating point operations had improved so much that the i487 FPU could FMUL faster
than the i386 could IMUL.

CPU FADD FMUL FDIV FXCH

Intel 387 23-34 29-57 88-91 18
Intel 487 8-20 16 73 4

Figure 2.22: FPU cycles per instruction: 387 vs 487.

But the FPU performance was still a far cry compared to the ALU and its barrel shifter.
This mandated DOOM to use integer operations exclusively31.

CPU ADD MUL DIV

i487 (FPU) 8-20 16 73
i486 (ALU) 1 12-42 43

Figure 2.23: Cycles per instruction: ALU vs FPU.

Trivia : Difficulty in accessing information birthed myths about DOOM and floating point
units. One endless thread that occurred on alt.games.doom in 1994 helps to appreciate
the state of things. The topic, "Does a 486DX run Doom faster than an SX?" from July
1994 and its (filtered) five answers shows how difficult it was to reach the truth.

28Source: Coping with the Complexity of Microprocessor Design at Intel – A CAD History.
29"Pushing the 486" by Michael Abrash.
30And avoided branching. Without a branch predictor, jmps are ignored and usually incur a two cycle stall.
31The dawn of floating-point in games would begin with Intel’s Pentium and Quake in 1996.
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“ My friend is buying a computer and doesn’t see much reason to
buy a DX. Any opinions? (or hard facts :) ?).

— Dave Gates@bestsd.sdsu.edu - 23 Jul 1994 05:28 ”
“ DOOM runs *MUCH* faster on a 486DX/33 than on a 486SX/33.

Believe me, I’ve seen it running on the 2 different machines
in the same room.

— BillyBoB 4@aol.com - 23 Jul 1994 10:45

”
“ They are *NOT* any different as far as CPU speed go. Period.

The reason one (DX) is faster must have something to do
with probably the SX has an ISA video card, or no cache,
or less memory. Doom does NOT NOT NOT NOT use an FPU (math
co-processor) so there will be no slowdown for the SX.

— Chad Anson@daisy.cc.utexas.edu - 23 Jul 1994 11:48

”
“ We have a 486SX/25 and a 486DX/50 and the DX 50 runs faster at

full screen high detail then the SX runs at postage stamp. It
is so slow as to be almost unplayable.

— BonesBro@aol.com - 23 Jul 1994 12:36 ”
“ An SX is considerably slower than a DX for most

processor-intensive applications and games, including DOOM.

— Neal W.Miller@@rebecca.its.rpi.edu - 23 Jul 1994 13:34

”
“ Thats wrong ! A 486 SX runs Doom with exactly the same speed

like a 486 DX (if you use the same VGA Card and Motherboard).

— Grassl Wolfgang@papin.HRZ.Uni-Marburg.DE - 23 Jul 1994 14:24

”
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2.2 Video System

At first glance, the video output system, the VGA (Video Graphic Array), was still the same
weird beast Wolfenstein 3D had to deal with. With its infamous 50 registers to configure,
its palette system limiting colors to 256, and the awkward four banks of 64 KiB mandating
interleaved framebuffers, the VGA was an unappealing programming interface.

A GC (Graphic Controller) and an SC (Sequence Controller) controlled access to 256 KiB
of Video RAM. A CRTC (Cathode Ray Tube Controller) controlled how the framebuffer was
sampled. Finally, a DAC converted digital levels to analog levels for output to a CRT.

To Monitor

DAC

CRTC 

Sequence Controller

Bus to CPU

Palette

Graphic Controller

64 

KiB

64 

KiB

64 

KiB

64 

KiB

Figure 2.24: Architecture of the VGA

During the early 90s, a vast majority of PC video games used the VGA in tweaked mode
13h (also called Mode-Y) which offered a resolution of 320x200, 1 byte per pixel and a
256 color palette. Using this undocumented mode, developers manipulated the four banks
in the video card directly. How the framebuffer was laid out across banks was far from
obvious. As figure 2.25 shows, due to historically slow RAM access times, pixels were
interleaved four by four.
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Figure 2.25

Notice how the first pixel 0 is stored in bank 0, pixel 1 is stored in bank 1 and so on. With
a horizontal resolution of 320 columns, 80 non-horizontally adjacent yet vertically adjacent
pixels are stored in each bank32.

To access the 256 KiB of VRAM, IBM had established a hard-coded memory mapping in
RAM from 0xA0000 to 0xAFFFF. An eye accustomed to hexadecimal will immediately no-
tice that 0xFFFF translates to 64KiB addresses, far fewer than the total available VRAM.

To compensate for the lack of addresses, IBM designed a bank-switching system managed
through a map mask register. In practice this meant a RAM address in the range 0xA0000
to 0xAFFFF could correspond to four locations in VRAM as shown in figure 2.26. The mask
was cumbersome but allowed magic, such as writing four pixels in one write operation33.

32The design of the VGA are a huge topic covered extensively in Game Engine Black Book: Wolfenstein 3D.
33VGA mask tricks are discussed in Game Engine Black Book: Wolfenstein 3D.
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Figure 2.26

Another difficulty came from the differing aspect ratios of the mode Y framebuffer layout
and the CRT display which resulted in distortion.

Figure 2.27

In figure 2.27 a programmer drew a circle into the framebuffer; notice the 320/200 = 1.6
aspect ratio.
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Figure 2.28

Figure 2.28 shows how the same framebuffer appears when displayed on the monitor. No-
tice the 320/240 = 1.333 aspect ratio. The circle appears as an ellipse.

2.3 Hidden improvements

Despite this bleak description, a closer inspection of the world of graphic cards unveiled
two tremendous changes which ended up deeply impacting DOOM.

Since 1992 with the release of new operating systems by Microsoft and IBM (Windows 3.1
and OS/2 2.0, respectively), demand for fast graphic cards had been growing strong. It
was a huge technological leap for devices designed to push 4,000 bytes of information34

in text mode to instead move 153,600 bytes35 for GUIs.

342,000 bytes for the characters, and 2,000 bytes for screen attributes
3516 colors at 640x480
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Despite its simple interface, Windows 3.1’s 640x480, 16 colors was able to bring PCs to
their knees. Moving a window had to be done via its outlines since no hardware was
capable of refreshing the screen fast enough in order to also show the content36.

2.3.1 VGA Chip manufacturers

The first improvement came from VGA chip manufacturers. Sensing that demand for per-
formance was growing, companies such as ATI, Cirrus Logic and Tseng Labs went to
great effort to compete and achieve higher performance. Hardware GUI acceleration had
not yet become mainstream so host-throughput was the dominating factor in redraw speed
for graphical applications. They started to tightly integrate every component of a VGA card
into a single chip (RAM, RamDAC, BIOS, Memory controller, Blitter, Ram Refresh, Cache
controller, Timing Sequencer37 to name only a few).

Some manufacturers such as Cirrus Logic even adopted a fabless business model where
they sold semiconductor designs while outsourcing the fabrication.

36NeXT workstations could do it and Steve Jobs mentioned it often during demos :)!
37Tseng Labs ET4000
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One optimization among many others was to leverage the fact that VGA RAM was more
subject to write operations than reads. Using a FIFO SRAM cache to buffer operations and
return right away tremendously improved screen blitting. Peeking at a card featuring one
of the most notorious chip of the era by Tseng Labs, the ET4000 gives a good overview of
what a customer could purchase.

Figure 2.29: ILLETW32 Britek Electronics. Photo courtesy http://www.amoretro.de/

By licensing the ET4000 1 , Britek Electronics only had to provide RAM 2 , RAMDAC 3 ,
a Timer 4 and apply a few customizations via a Programmable Array Logic TIBPAL16L8
5 . The VGA BIOS chip 6 could also be purchased from Tseng Labs.

Figure 2.30
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2.3.2 VL-Bus

As much as the video card manufacturer could optimize their product, there was still a
huge bottleneck that was out of their control. Information written by the CPU still had to
transit over the ISA bus.

Introduced in 1981, the first incarnation of the ISA bus had an 8-bit data path running at
4.77 MHz. It was upgraded in 1984, bringing its width to 16 bits and running at 6 MHz. After
10 years of service it was starting to show its age and was considered a performance killer.

Figure 2.31: ISA Bus

Fed up with the state of things, hardware manufacturers teamed up to form VESA (Video
Electronics Standards Association) and created a new Bus standard. They did not go for
something complicated – the protocol was exactly the Intel 486 Bus Unit protocol, which
made it a frictionless medium.

The VLB (VESA Local Bus) doubled ISA’s bus data lines to 32 bits and increased its fre-
quency to 33 Mhz, making it up to 10x faster when compared to the slowest ISA bus.

The chip design for the VLB controller was relativity simple because many of the core in-
structions (interrupts and port-mapped I/O) were still hosted by the ISA circuits already on
the motherboard, while memory-mapped I/O and DMA data paths were on the same local
bus as the one used by the CPU (see figure 2.32). The speed of the system data bus was
based on the clock rate of the motherboard’s crystal which meant the bus ran at the same
speed as the CPU.
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VESA VL-Bus

Figure 2.32: VL-Bus, a.k.a VESA Local Bus, a.k.a VLB

Closely tying the VL-Bus architecture to the 486 Bus Unit brought unmatched performance
and considerably facilitated adoption since there was no need for a chipset. The term ’lo-
cal bus’ meant that the address, data and control signals were directly connected to the
processor, so devices on the bus were connected via nothing more than some electrical
buffering. This is one of the reasons for its simplicity, but it is also the reason for many of
its limitations.

Forced to run at the same speed as the CPU, the VL-Bus suffered instability as frequencies
reached 40 Mhz, resulting in crashes. Past this speed, the system became increasingly
intolerant to timing variations38. The root problem is that a local bus is by definition syn-
chronous. Expansion card vendors had the difficult task of ensuring their products could
run at a range of speeds, the upper limit of the range being undefined as new processors

38The issue did not affect 486 DX-66Mhz, where the bus ran at only 33Mhz.
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were introduced. This was a recipe for compatibility problems39.

The second problem was that the electrical load driven by the CPU onto the bus decreased
as the clock speed increased. Three slots could be provided at 33MHz, but only two at
40MHz and just one at 50MHz. This resulted in configuration hell since motherboard
speed was configurable and came with three slots. Users would find some VLB slots "did
not work" or "stopped working" as they tuned the frequency.

Cards were also hard to install due to their length and required pressure to force them into
the VLB slot resulting in physical breakage40.

Worst of all, Intel’s 1993 Pentium Bus Unit protocol was instead based on PCI which was
entirely incompatible. Unable to adapt, the VL-Bus found itself obsolete and the standard
died within a year.

ISA 8-bit (4.77Mhz) ISA 16-bit (8Mhz) ISA 16-bit (10Mhz) VLB 32-bit (33Mhz)

4.6
15.6 19.5

128.9

M
iB

/s

Figure 2.33: Theoretical Maximum Speeds (MiB/sec)41.

The next page shows three VGA cards available in 1994. The connectors instantly tell you
what kind of bus and performance to expect.

∙ Top: an ATI 8800, with an ISA 8-bit interface.

∙ Middle: an ATI Mach32, with an ISA 16-bit interface.

∙ Bottom: a Cirrus Logic MachSpeed, with a VLB 32-bit interface.

Notice how the VLB connector uses only the 8-bit part of the ISA connector but has no
teeth for the 16 other bits.

39Such problems were experienced by users of VL-Bus systems using the AMD 80MHz processors, which
had a 40MHz bus clock.

40Friends jokingly renamed VLB to "Very Long Bus".
41At least one cycle is used to place the address on the bus, which halves payload bandwidth.
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2.4 Sound System

PC were equipped with a "PC speaker", a device able to produce monotonic and annoying
"beeps". The intent was to help diagnose system health at startup (one short beep meant
the system was okay). But serious gamers always invested in a sound card. Thanks to
its aggressive marketing, superior technology, and cheaper cards, Creative Labs domi-
nated the market. In order to survive, any newcomer had to label itself "SoundBlaster-
compatible". The unofficial standard meant OPL2-based FM synthesizer capability for
music and a DSP able to play back digitized sounds at 22Khz, 8-bit per sample in stereo.

The early 90s were the theater of the last wave of innovation for gaming audio and saw the
extinction of a previously key manufacturer named AdLib42. Two cards nonetheless man-
aged to bring something new to the table. They were the Sound Blaster 16 by Creative
Labs and the Gravis Ultrasound by Advanced Gravis Computer Technology Ltd.

2.4.1 Sound Blaster 16

In June 1992, with the release of the Sound Blaster 16, Creative Labs solved the problem
of PC audio for gaming forever with a card capable of CD quality playback – 44Khz 16-bit
stereo samples. It was an instant hit and immensely successful with customers.

Solving the audio problem turned out to be a problem of its own for Creative Labs’ business.
Even though they subsequently managed to release new products, those were mainly of
interest to audio professionals. A few attempts to innovate with ASP and EAX technologies

42Which ironically had established the OPL2 chipset necessity.
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were made but consumers remained deaf to the melody of these improvements. As audio
chips became cheaper and with technical requirements stagnating, manufacturers started
to provide audio capability built in on motherboards.

For a short time the extra Panasonic/Matsushita connectors permitting connection of a
CD-ROM allowed sound cards to survive, in bundle products. But that was not enough to
save them. Within ten years the market for sound cards disappeared.

Above, a Sound Blaster 16 model CT1740 from 1994. 1 Panasonic/Matsushita connec-
tor (for CD-ROM), 2 C1741 DSP Chip, 3 C1748 ASP chip, 4 CT1746B Bus Inter-
face, 5 46.61512 Mhz oscillator, 6 CT1745A Mixer, 7 WaveBlaster Connector for MIDI
"wavetable synthesizer" daughterboard, 8 (top to bottom) line-in, mic-in, volume wheel,
line/speaker-out and MIDI/joystick port.

2.4.2 Gravis UltraSound

Gravis Computer Technology originally built what was universally accepted as the best PC
joypad, the Gravis PC GamePad. With strong cash flow they decided to enter the sound
card market with an audacious and innovative card. The Gravis UltraSound (nicknamed
GUS) was released in 1992.

The GUS claimed Sound Blaster 2.0 music playback via TSR software emulation. On
top of that the card had a capability like no other on the market. It was able to play back
music not with FM synthesis but with digitized instrument samples. The technology, named
"wavetable synthesis", achieved an audio quality far superior to its competitors.
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The Gravis UltraSound Pro, 1 2 SIMM slots allowing up to 8 MiB RAM, 2 IDE/AT-
API Connector, 3 CD audio connector, 4 IW78C21M1 chip (1 MiB Flash ROM), 5
HM514260ALJ7 70ns DRAM, 6 Main CPU InterWave AM78C201KC and 7 from top to
bottom: mic-in, line-in, line-out, MIDI/joystick port.
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The concept was aggressive and so was the hardware that came out of the Gravis’ facto-
ries. The red resin they used made their card unmistakably recognizable.

The cost of this technology was twofold. First, the card needed audio samples. This prob-
lem was "solved" via a Gravis driver that installed more than 12 MiB of sound samples43.
Second, the card had to be able to access the samples at runtime, meaning it had to have
its own RAM. Since samples take up more space than sine equations, the original GUS
shipped with 256 KiB, upgradeable to 1 MiB.

It rapidly developed a cult following among demo-makers who loved the high music qual-
ity it could achieve. For the gamer market however, things were more complicated. The
GUS’s GF1 main chip had difficulties emulating the OPL2 and setup was complicated (a
mediocre TSR emulator had to be loaded manually by the user). The GUS also suffered
from an unfortunate release date concurrent to the RAM shortage of 1993/1994. Players
were reluctant to fork over the $169 it cost, being $40 more than a Sound Blaster 16. Ini-
tially selling well, sales slowed around 1995 and it was discontinued in 1996.

id Software was one of the few companies to support the Gravis UltraSound. DOOM
included a mapping file that translated MIDI instrument IDs to Gravis .PAT instrument
files44. Listening to the electric guitars and drums of "At Doom’s Gate" from DOOM’s OST
makes the SoundBlaster version pale in comparison. But all success stories must have
the right timing and sadly the GUS was ahead of its time.

2.4.3 Roland

It would be a big omission to conclude without mentioning Roland’s hardware. Established
in 1972, Roland Corporation not only manufactured equipment for audio playback, it also
provided the best hardware to author and record music. The breakthrough for DOS gaming
was the Roland SC-55 (a.k.a SoundCanvas) released in 1991. Not only was it the very first
General MIDI standard device (which defined 128 instruments that every device following
the standard could adopt), it synthesized music using Roland’s proprietary combination of
prerecorded samples and subtractive synthesis which was far superior to Yamaha’s OPL.

43That was enormous at the time, when the full version of DOOM was 12 MiB as a matter of comparison.
44It also controls which samples get loaded into RAM at various card configurations.
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Roland’s equipment was built entirely around the MIDI protocol which was carried via ca-
bles employing a special 5-pin circular connector.

The precursor of the SC-55, the MT-32 synthesizer, could be connected to a PC via an
MPU-401 ISA MIDI adapter card. There was also a combo LAPC-I card which combined
both the adapter and an MT-32 successor, the CM-32L, inside a single ISA card.

Figure 2.34: Roland LAPC-I

Roland also released the SCC-1 which combined the SC-55 and an MPU-401 onto a sin-
gle ISA card.

Figure 2.35: Roland SCC-1
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For recording, an artist connected a musical keyboard to a "note recording program"
called a MIDI sequencer. Once captured on the computer, the MIDI-based music could
be tweaked and edited like any media.

For playback, things were a tiny bit more complicated. When Sierra On-Line pioneered
support for Roland sound cards in 1988, the games leveraged the hardware to play beau-
tiful music. The audio effects were either done via the PC Speaker or later using General
MIDI stock audio effects45. As games became increasingly elaborate with PCM digitized
effects (which Roland cards could not play), gamers faced a dilemma where the best music
needed a Roland but the best sound effects needed either a SoundBlaster or a GUS. The
expensive ($499 in 1991) solution was to buy both cards and mix the streams externally.

PC

Roland

GUS

2.5 Network

The early 90s predated the wide adoption of the Internet and Wi-Fi. Connecting computers
together was difficult and expensive46. Even if you had the means, bandwidth and latency
were abysmal. Most of the time, playing with friends meant getting all your computers into
the same room (a LAN party). Playing from the comfort of your room was extremely un-
common. Amusingly, an unconnected computer is now deemed useless. Communication
with other machines is something natural and the bare minimum for a machine to be useful.

But back in the early 90s, to pack your 50lb machine (including the CRT) on your bike, make
it to a friend’s place alive, plug in the cables, start DOOM and finally see your character
move on the other computer’s screen was an indescribable feeling. To witness machines
actually communicating felt unreal and almost magical.

To achieve the impossible, players had three technologies available: Null-Modem cable,
modems, and LAN via network cards.

45Another World in 1991 used the stock audio effects.
46Computer-to-computer games existed since the early 1980s. Some, like Battle Chess, were even cross-

platform.
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2.5.1 Null-Modem Cable

The cheapest way and what most people used was the $20 cable known as a "Null-
Modem" which was directly plugged in each PC’s COM port. The cable offered no modu-
lation at all (hence the name). For obvious reasons, only two players could participate.

Figure 2.36: Null-Modem cable

A two player game may sound lame by today’s standards but back then it was so new and
cool that it felt like the most amazing thing in the world.

2.5.2 BNC 10Base2 LAN (Local Area Network)

To play with more than one opponent was substantially more difficult. Besides the rela-
tively easy financial burden of buying the equipment, you had to overcome the much more
difficult task of convincing a parent to let four teenagers come to their house where they
would scream all night. The famous saying, "fool me once, shame on you; fool me twice,
shame on me" is rumored to have originated from betrayed mothers and fathers who had
been doomed all night.

Leaving creative ways to ask for forgiveness aside, on the tech-
nical side a player had to plug in a 10Base2 network card via the
ISA bus.

The card had a BNC connector upon which was to be plugged
a T-shaped connector known as a T-piece. Each PC node was
connected to up to two other nodes via 10Base2 coaxial cables. There was no central
point in this type of networking; all machines involved in the network formed a chain. At
both ends of the chain a signal terminator had to be connected to prevent an RF signal
from being reflected back from each end, causing interference, or power loss.
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The coaxial cables were bulky and so were the con-
nectors. Connecting an end to a T-piece connector
was fully achieved with a cool quarter turn of the
coupling nut.

Once physically connected, games relied on the In-
ternetwork Packet Exchange (IPX) which is a net-
work level protocol like IP. There was no need to
configure the host or the network since, contrary to IP, the IPX protocol was able to use the
Ethernet MAC address as the machine’s IPX address.

1
32

4

PEER1 PEER2 PEER3 PEER4

Figure 2.37: 10Base2 BNC based network.

Figure 2.37 shows the four elements of a 1994 LAN. 1 the T-piece connector connecting
two 2 coaxial cables, forming a link. Each end of the chain must be closed with two load
terminators 3 . The network card connects to both the PC via its ISA bus extension slots
4 and the LAN T-base slots.

Trivia : Adding a new machine on the network meant either unplugging one of the T-piece
connectors or unplugging a chain terminator. In both cases, the central bus was broken
and all other machines lost connectivity. Everybody remembers the one friend who was
always late to the LAN, forcing everybody to disconnect so he/she could join. The band-
width was shared meaning the theoretical 10Mb/s was often closer to 5Mb/s. This does
not account for friends who wanted to exchange a 30MiB song in .wav format (there was
no MP3 at the time).

Trivia : Really fancy people could use a 10baseT network which required a "hub" central
device resulting in a star-shaped network.
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2.5.3 Modem

The most fortunate players were able to afford the luxury of networking from home. That
was very expensive since they not only had to pay for a modem but they also had to pay
for every single minute spent online. Before broadband, modems used phone landlines
to connect to the Internet provider. This meant nobody could use the telephone while the
connection was active. Anybody picking up the phone in the house created enough distur-
bance to kill the connection.

Internet was unattractive since gaming and accessing Bulletin Board Systems was done
by calling phone numbers directly. Finding a cool BSS or a gaming partner phone number
was an adventure of its own. If one really wanted to read the few HTML pages available,
AOL (America OnLine) offered a package of five hours for $9.95 with each extra hour billed
$3.50 per unit. An user averaging 2h/day was billed 9.95 + 55 * 3.5 = $202 for a month47

not to forget a one-time fee of $39948 for a 9600 baud model .

Figure 2.38: US Robotics 28.8k baud modem. The top of the line in 1994.

While establishing the initial handshake, the modem speaker was kept open. An attuned
ear could easily recognize the different phases of V.X bis transaction, speed negotiation,
echo canceller disabling, and modulation mode selection, together making the unforget-
table melody of a deathmatch in the making.

47Adjusted to inflation: $352 in 2018.
48Adjusted to inflation: $696 in 2018.
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Figure 2.39: 18 second spectrogram of a V.34 handshake49

Stage Description

1 Modem goes off hook.
2 Telephone exchange sends a dial tone.
3 DTMF: Model dials 1-(570)-234-0001 a DOOM player in Pennsylvania, USA.
4 Answering modem initiates a V.8 bis transaction.
5 Answering modem asks caller for a list of its capabilities.
6 Caller responds to V8 bis initiation, agrees to list its capabilities and request to

escape from telephony into information transfer mode.
7 FSK Data @ 300 bps: I’m capable of full V.8. I can transmit ACK. My country is

US and I was made by Net2phone Inc.
8 FSK Data @ 300 bps: Why don’t we use V8 then.
9 Ok, mode acknowledged. Terminating V.8 bis transaction.

A Answering modem disables echo suppressors and cancellers in PSTN.
B FSK Data @ 300 bps: Repeated 6x Here are my modulation modes: V.34, V.32,

v.23 duplex ...
C FSK Data @ 300 bps: Repeated 3x: I can do any of those.
D Both modems send a wide-spectrum probing signal in both directions to do

measurements on the line.
E Both modems go to scrambled data

Figure 2.40

Throughout the ’90s, bandwidth steadily improved. Upon DOOM’s release most modems
were capable of 14.4 Kbit/s. Those who downloaded the shareware version in December
1993 had to wait 25 minutes to retrieve the 2,166,955 bytes of the ZIP archive.

49Source: "The sound of the dialup, pictured" by Oona Räisänen.
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Year Version Bandwidth

1990 V.32 9.6 kbit/s
1991 V.32bis 14.4 kbit/s
1994 V.34 28.8 kbit/s
1995 V.34 33.6 kbit/s
1996 V.90 56.0/33.6 kbit/s
1999 V.92 56.0/48.0 kbit/s

Figure 2.41: Modem speeds through the 90s.50

On top of the V.XX hardware communication layer, modems were driven using Hayes com-
mands51. Notice how the command ATDT translated to DTMF in the previous spectrogram.

Modem A Modem B Comments

ATDT15551234 Modem A issues a dial command: AT-Get the
modem’s ATtention; D-Dial; T-Touch-Tone;
15551234-Call this number

RING Modem A begins dialing. Modem B’s phone-line
rings, and the modem reports the fact.

ATA Modem B issues answer command.

CONNECT CONNECT The modems connect, and both modems report
"connect"..

abcdef abcdef When the modems are connected, any characters
typed at either side will appear on the other side.

+++ Modem B issues the modem escape command.

OK The modem acknowledges it.

ATH Modem B issues a hang up command.

NO CARRIER OK Both modems report that the connection has ended.
Modem B responds "OK" as the expected result of
the command; modem A says NO CARRIER to
report that the remote side interrupted the
connection.

Figure 2.42: AT layer dialog between caller and callee.

Trivia : The fragility of these connections led to humorous ways to end a message. People
would finish forum posts with "Hey! Wait! Don’t pick up the ph{#‘${%&‘+’%NO CARRIER".

50Bit rate increased at the expense of latency. A 9600 baud modem played DOOM better than the default
configurations on 56kbit modems. Quake needed more bandwidth than DOOM’s controller replication, so it
became a different tradeoff.

51A nice abstraction layer, but DOOM still has a long file with initialization parameters for 49 modems.
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2.6 RAM

With the price of RAM dropping, game developers now could count on 4 MiB. This increase
should have been good news, resulting in video games with richer worlds, better assets,
more characters and bigger maps. Due to the infamous way memory had to be managed
it instead meant more complexity to handle and more headache.

The fault fell a little bit on Intel and a lot on Microsoft. In 1981, IBM released its first PC, the
5150, which was built around the Intel 8088. The CPU was limited to 16-bit registers, but
Intel wanted it to be able to access a 20-bit address space. To reconcile both elements,
Intel’s designers came up with an abomination called segmented addressing where two
16-bit registers were combined to form a 20-bit address.

16-bit segment register

16-bit offset register

20-bit memory address

+

=
Figure 2.43

Pointer manipulation was error prone since different segment/offset combinations could
point to the same RAM location. There were also issues related to pointer arithmetic
where once the offset wrapped around, the segment was not automatically updated.

The RAM system became a mess with the Intel 286 and the 386SX which addressed 24
bits and worsened with the 386DX and the 486 which both had a 32-bit address bus. The
address space was too much for what the 20-bit segmentation trick was capable of. The
solution was to resort to memory managers such as EMM386.EXE and HIMEM.SYS52, which
both provided the means to work with non-addressable RAM located beyond the 1 MiB
barrier.

There would have been a simpler solution. Intel allowed its CPUs to function in two modes:
the backward-compatible real mode which made the CPU behave like a very fast 8088,
and protected mode which unleashed the full power of the CPU. In protected mode, 32-bit
registers were large enough to address all RAM on board (this is known as flat addressing).

It would have worked out if the operating system had been able to run in protected mode.
However, in the name of backward compatibility, Microsoft’s DOS could only handle real
mode which effectively locked developers into 16-bit programming.

With the growing pain and frustration of DOS, some people saw an opportunity.

5216-bit programming and memory managers were covered in Game Engine Black Book: Wolfenstein 3D.
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While there were many products which could address this, two companies in particular
stood out with a winning combination. Watcom International Corporation’s C compiler and
Rational Systems’ DOS/4GW "DOS extender" together allowed programs to run in pro-
tected mode while still having access to 16-bit DOS functions.

2.6.1 DOS/4GW Extender

Under DOS the normal way to perform a "system call" is to use a software interrupt in-
struction with parameter 21h. In C programming, this was abstracted away by the header
DOS.H which performed all the lower level work behind the scenes.

APPLICATION

DOS.LIB

OPERATING SYSTEM (DOS)

real mode

int 21h

Figure 2.44

To allow the app to run in one mode and the OS to run in another, the two worlds had to be
bridged. A middle layer called the "DOS extender" – able to run in both modes – inserted
itself between the program and the operating system.

APPLICATION
DOS.LIB

OPERATING SYSTEM (DOS)

DOS EXTENDER
int 21h (DPMI)int 31h 

protected

mode

protected

mode

real mode

real mode

Upon startup, the DOS extender would place hooks into the OS’s Interrupt Vector Table
and place its own routines there. From an application’s standing point everything was
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transparent, the developer had no code to change. To perform a system call not hooked
by the extender (e.g. int 33h to read mouse inputs), the extender offered a special inter-
face called DPMI on interrupt 31h which took care of translating 32-bit register requests to
16-bit so IVT routines would understand them.

Trivia : DPMI (DOS Protected Mode Interface) was originally created to allow Windows
3.0 to run 32-bit applications and to be compatible with a joint operating system project
with IBM called OS/2.

When the extender intercepted an operating system call, it had a lot of work to do:

1. Perform all translation needed (e.g. a 32-bit address had to be expressed as a 16-bit
offset with a 16-bit segment).

2. Switch the CPU to real mode.

3. Forward the call to DOS.

4. Retrieve the results and convert 16-bit register values back to 32-bit.

5. Switch the CPU back to protected mode.

The performance-sensitive operations were in switching between real mode and protected
mode. Originally this was a problem on 286 CPUs since Intel never imagined a program
might want to switch back to real mode from protected mode. Various tricks had to be
used53, among them faking a keyboard Ctrl-Alt-Del reboot to reset the CPU without actu-
ally rebooting.

On the other hand, switching from real mode to protected mode is simple. Setting the
Control Register from bit 0 to 1 takes six instructions.

cli ; disable interrupts.
lgdt [gdtr] ; set Global Descriptor Table address.
mov eax , cr0
or al, 1 ; Prepare Protected Mode.
mov cr0 , eax

; Flush of the pipeline via a far jump instruction.
JMP 08h:PModeMain

PModeMain:
; load DS, ES, FS , GS , SS, ESP.

53These are detailed in Game Engine Black Book: Wolfenstein 3D.
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DOOM used the DOS/4GW extender by Rational Systems. Its presence could briefly be
seen on startup. Executing DOOM.EXE triggered DOS to load the tiny extender. Once
loaded, DOS/4GW switched the CPU into protected mode, loaded DOOM’s code into
memory and branched to the main function.

C:\DOOM >doom
DOS/4GW Professional Protected Mode Run -time Version 1.95
Copyright (c) Rational Systems , Inc. 1990 -1993

2.7 Watcom

The DOS extender was magical but hard to set up in a standalone
product. A bootstrap which would locate DOS4GW.EXE and the
program to run, and set up both, required multiple steps and close
to 100 lines of C code54. The ramp-up time was significant and
raised the barrier to entry. What was really needed was an inte-
grated environment where the compiler and the linker would take
care of bundling the extender and the application together into
one executable. The solution would once again come from the
Great White North.

The Watcom compiler project was started in 1979 at the University of Waterloo in Ontario,
Canada. Initially only supporting BASIC, it was improved over the years by students with
support for new OSes and languages. In 1987, three Ph.Ds (Fred Crigger, Ian McPhee,
and Jack Schueler) made it the first C compiler to run on an IBM PC.

Sensing commercial potential, they incorporated Watcom International Corporation and
picked a lightning bolt for their logo to advertise their focus on performance. Five years
later, in 1993, Watcom C had considerably improved. The latest version (9.0), retailing for
"only" $63955, was deemed the best available on MS-DOS56.

Not only were they talented programmers, they also excelled at marketing their products.
In the early 90s, a reader could not open a computer magazine without finding a full page
advertising Watcom’s compiler. Every ad underlined the presence of a DOS extender that
freed programmers from the hated 16-bit mode and "unleashed 32-bit power".

54Source: Watcom C/C++ Programmer’s Guide, "7.1.1 The Stub Program"
55Inflation adjusted, USD$1,116 in 2018. Nowadays compilers are "free".
56Editor’s choice – PC Magazine, April 1995.
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Not only were they in the press, they also advertised online, such as on BBSes and Usenet.

“ WATCOM C/C++ will produce code which is at *least* twice as fast as your
current 16-bit compiler, and more typically around five times as fast.

— rec.games.programmer

”
Trivia : One of the many marketing tricks up Watcom’s sleeves was to never have released
a Watcom v1.0 or even a Watcom v2.0. They started directly at "version 6". This was at
least one version ahead of their competitors (Borland and Microsoft). A higher number
unconsciously carried a notion of "more advanced than its competitors". Version one was
also likely to feature many bugs whereas the sixth installment was likely to have been
battle-hardened.

2.7.0.1 Popularity

id Software was not the only team to value Watcom’s solution. Many other studios en-
trusted it with their code, and as a result much well-known software of the 90s was built
with Watcom technology:

1. id Software

(a) DOOM (1993)
(b) DOOM II (1994)

2. Blizzard Entertainment

(a) Warcraft (1994)
(b) Warcraft II (1995)

3. Ken Silverman’s BUILD Engine based games

(a) Duke Nukem 3D (1996)
(b) Shadow Warrior (1997)
(c) Blood (1997)

4. LucasArts Entertainment Company

(a) Full Throttle (1995)
(b) The Dig (1995)
(c) Dark Forces (1995)
(d) Rebel Assault II (1995)

82



CHAPTER 2. IBM PC 2.7. WATCOM

2.7.1 ANSI C

The Watcom/extender combo made programming simpler and it also made programs run
faster but the best has yet to be mentioned. There is a third aspect of protected-mode
programming – less obvious but very important – that had a significant impact on DOOM.

To bring C to the world of PC/DOS’s real mode and accommodate for segment manipu-
lation, the language had been "augmented". An example from Wolfenstein 3D’s memory
manager shows what "C for DOS" looked like.

void MM_Startup (void) {
int i;
unsigned long length;
void far *start;
unsigned segstart ,seglength ,endfree;

// get all available near conventional memory segments
length=coreleft ();
start = (void far *)(nearheap = malloc(length));

length -= 16-( FP_OFF(start)&15);
length -= SAVENEARHEAP;
seglength = length / 16; // now in paragraphs
segstart = FP_SEG(start)+( FP_OFF(start)+15) /16;
MML_UseSpace (segstart ,seglength);
mminfo.nearheap = length;

// get all available far conventional memory segments
length=farcoreleft ();
start = farheap = farmalloc(length);
length -= 16-( FP_OFF(start)&15);
length -= SAVEFARHEAP;
seglength = length / 16; // now in paragraphs
segstart = FP_SEG(start)+( FP_OFF(start)+15) /16;
MML_UseSpace (segstart ,seglength);
mminfo.farheap = length;
mminfo.mainmem = mminfo.nearheap + mminfo.farheap;

}

Notice the wart keywords such as near, far, macros like FP_OFF and FP_SEG, and the
DOS.H library functions such as farmalloc, coreleft, and farcoreleft. Neither "C for
DOS" nor the I/O functions were portable. As a result, It was impossible to take a UNIX
program and compile it directly on DOS.
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Using the Watcom compiler, C could be written using the ANSI standard, which opened
the door to authoring programs on different machines running a different operating system.

One system in particular would end up catching id Software’s attention. The name was
NeXTSTEP, running on hardware manufactured by NeXT, Inc.
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NeXT

3.1 History

NeXT’s history starts (and amusingly, also ends) at Apple. In May
of 1985, the mediocre sales of the Macintosh painted a bleak fu-
ture for the company. Steve Jobs, co-founder and then General
Manager of the Mac department, wanted to lower the price and in-
crease marketing in order to boost the Mac. John Sculley then CEO,
wanted to abandon the Mac and refocus the company’s resources
on the Apple II, the only profitable product Apple had marketed until
then.

A vote was called and the board of directors sided with Sculley. Steve Jobs found himself
stripped of all responsibilities. A few months later, on September 13, 1985, he resigned
and went on to work on his next project.

NeXT, Inc. was incorporated in February 1986 with $7 million of Jobs’ own money. Many
members of the Mac division left Apple to join the newly formed company, among them
Joanna Hoffman, Guy "Bud" Tribble (head of software division), George Crow, Rich Page,
Susan Barnes, Susan Kare, and Dan’l Lewin.

With NeXT, Jobs went back to a project he had contemplated for Apple in August 1985.
While touring universities to boost Mac sales, he had met Paul Berg, a Nobel Laureate in
chemistry. Paul was frustrated with the cost1 of teaching students about recombinant DNA
in wet laboratories. It would have been cheaper to simulate them. It seemed there was a
market for 3M2 workstations targeted at universities and students3. NeXT set itself to build

1$100,000.
2One Megabyte of RAM, a Megapixel display and MegaFLOP performance.
3The Second Coming of Steve Jobs.
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something powerful yet cheap enough that college students could afford it.

“ I want some kid at Stanford to be able to cure cancer in his dorm room.

— Steve Jobs, 1987

”
Steve Jobs spared no expenses. For $100,000, Paul Rand was commissioned with a logo.
An automated factory featuring automated surface-mount motherboard assembly4 capable
of producing 10,000 units per month was built in Fremont, CA. The design firm Frogdesign,
which had proven itself with the Apple IIc, was hired. The goal was to ship by the end of
1986.

The machine was to be perfect, following Alan Kay’s concept of creating both the hardware
and the software to run it.

“ People who are really serious about software should make their own hardware.

— Alan Kay, 1980

”
Using their experience from Apple and particularly their work on the Macintosh, the com-
pany defined the three pillars of the NeXT Computer: GUI, Networking and Object-Oriented
programming.

“ I went to Xerox PARC. And they were very kind. They showed me what they
are working on. And they showed me really three things. But I was so blinded
by the first one that I didn’t even really see the other two. One of the things
they showed me was object oriented programming – they showed me that
but I didn’t even see that. The other one they showed me was a networked
computer system... they had over a hundred Alto computers all networked
using email etc., etc., I didn’t even see that. I was so blinded by the first thing
they showed me, which was the graphical user interface. I thought it was the
best thing I’d ever seen in my life.

— Steve Jobs, 1995

”
4Source: "The Machine to Build The Machines" mini documentary.
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3.2 The NeXT Computer

The first machine shipped in 1989 after three years of hard work. Not meeting the initial
release target was not a problem according to Jobs who famously replied to a journalist
inquiring about the delay: "Late? This computer is five years ahead of its time!".

Based on a Motorola 68030 25 Mhz with 8 MiB RAM and featuring powerful co-processors
such as a DSP and a FPU, the high-performance hardware delivered. The machine also
happened to be gorgeous. In an era where most computer cases were made of beige
plastic, the elegance of the one foot perfect cube made of painted magnesium stood out.

Figure 3.1: The Next Computer

The monitor was a piece of art itself. The 17" MegaDisplay allowed a high5 resolution of
1120 x 832 pixels with a density of 92 DPI. The Cube’s 256 KiB of VRAM allowed four
shades of gray per pixel. At launch the supply chain was so tight that when ordering a
NeXT Computer, the customer received two parcels – one from Fremont containing the
central unit, and another directly from Sony containing the MegaDisplay.

5At the time, a 14" monitor delivering a resolution of 640x480 was high-end standard on PC.
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Figure 3.2: Motorola 68030

One of the many innovations of the NeXT Computer was its reliance on the 256 MiB
magneto-optical drive, a hybrid between a HDD and floppy disk aimed at filling both use
cases. According to Steve Jobs, it was supposed to allow users to "take their whole world
in their backpacks".

At the heart of the machine, the 32-bit 68030 was the latest in Motorola’s 68000 series.
The choice was likely influenced by the experience NeXT hardware engineers had built
while working on Apple’s Macintosh and Lisa (both were powered by a 68000).

Running at a frequency of 25Mhz, it was able to execute nearly 5 MIPS. It did not feature
a built-in FPU, so a Motorola 68882 was placed next to the CPU on the motherboard.
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Figure 3.3: Motorola 68030 diagram6

Above, the 273,000 transistors of the 68030, made up of 1 Memory Management Unit,
2 𝜇ROM, 3 nROM, 4 Control Section, 5 Instruction Pipe, 6 Program Counter Exe-

cution Unit, 7 Address Execution Unit, 8 Data Execution Unit, 9 256 bytes i-cache, A
256 bytes d-cache, and B Clock Generator.

It is unclear how much of a performance boost the two caches provided. Their small size
of 256 bytes each would have meant a significant cache miss rate (Intel had discarded its
on-die cache from their 386 for this very reason). Interestingly, the designer decided to use
both micro-code and nano-code. Sixteen general-purpose registers were available which
is pretty common for a RISC architecture where load and store have to be done manually7.

6Source: "The NeXT Book" by Bruce F. Webster.
7Intel’s CISC-based 486 had eight.
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Contrary to PCs which were a mess of wires, the NeXT
Computers formed a chain. The mouse was connected to
the keyboard, itself connected to the screen, connected to
the Cube.

If initially the NeXT Computer was acclaimed for its specs,
there was a serious issue with the price. Market studies
showed that students and researchers wanted a worksta-
tion priced at $3,000. The NeXT Computer started at more
than twice the ideal price at $6,500. To make it worse, the optical drive that powered the
basic configuration would turn out to be great for backup but way too slow for runtime. Not
only was it noisy and unreliable, it offered an access time of 90 ms, 10 times slower than a
hard-drive and made the operating system crawl. This rendered the "optional" $3,500 330
MiB SCSI hard-drive an absolute necessity, pushing the final price tag to $10,000! A big
price to pay for a machine not even able to output color.

3.3 Line of Products

Given the low sales of the NeXT Computer, the original machine was discontinued and the
line of products refreshed. In 1991 NeXT released three new products8. The NeXTcube
was the direct successor to the NeXT Computer. A smaller, flattened version of the
NeXTcube called the NeXTstation offered built-in color capability but no expansion slots.
Last but not least, there was a graphic and video processor expansion board called NeXTdi-
mension.

Name Year CPU Price in 2018

NeXT Computer 1989 68030 25 Mhz $6,500 $12,938

NeXTstation 1991 68040 25 Mhz $4,995 $9,157
NeXTcube 1991 68040 25 Mhz $12 395 $21,171
NeXTdimension 1991 i860 33 Mhz $3,995 $7,552
NeXTstation Color 1991 68040 25 Mhz $7,995 $14,656

NeXTcube Turbo 1992 68040 33 Mhz $10,000 $18,121
NeXTstation Turbo 1992 68040 33 Mhz $5995 $11,932
NeXTstation TurboColor 1992 68040 33 Mhz $8995 $17,904

Figure 3.4: NeXT products from 1989 to 19939.

8Announced four months in advance on September 18, 1990.
9Source: kevra.org (Competing Hardware Comparisons), https://simson.net/ref/NeXT/specifications.htm,

and "The Second Coming of Steve Jobs".
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In 1992, they buffed up their entire line with Turbo versions and what would become the
Gold Standard at id Software: The NeXTstation TurboColor.

3.4 NeXTcube

From the outside the NeXTcube’s 12" cubic central unit looked exactly like its predecessor
the NeXT Computer. However, the inside told a different story.

The CPU was bumped to a Motorola 68040 25Mhz, a chip capable of three times the
68030’s throughput with 15 MIPS10. The machine’s RAM capacity was doubled, with an
out of factory 16 MiB, expandable to 64 MiB. The magneto-optical disc was abandoned in
favor of a mandatory HDD, floppy disk reader, and an optional CD-ROM drive. The HDD
capacity was augmented with a choice of 400 MiB, 1.4GiB or 2.8GiB SCSI drive. The
floppy disks were twice the capacity of PCs at 2.88 MiB.

The NeXTcube Turbo released in 1992 was almost the same machine, except the 68040’s
frequency was bumped to 33 MHz and the max RAM capacity increased to 128 MiB.

The only weakness of the standard and turbo versions was the display. Shipping with 256
KiB of VRAM, the machine could only output four colors (white, black and two shades of
gray). To bring color to the NeXTcube, customers had to invest in a NeXTdimension board.

Trivia : The NeXTcube Turbo expansion slot could welcome a Nitro board that replaced
the 68040 33Mhz with a 68040 40 Mhz. Only 10 Nitro boards are known to exist, they are
extremely rare and highly sought after by collectors.

10Source: "Fast New Systems from NeXT", B.Y.T.E Nov 1990
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Figure 3.5: NeXTcube motherboard

Opening the machine revealed the minutiae NeXT had adopted as its standard. The
NeXTcube motherboard above shows that aesthetics were not sacrificed for performance.
Surface mounting allowed components to be placed much closer to others than usual.

Hidden under a heat-sink11 and packing 1.2 million transistors, the CPU was a big step
up. The Harvard architecture (separated storage and signal pathways for instructions and
data), write-back capability, 8 KiB cache (4 KiB data and 4 KiB instructions), and integrated
FPU tripled throughput compared to the 68030.

11Heat dissipation was always a problem for the 68040 which prevented running at high frequencies, a hand-
icap against Intel’s 486 capable of 66 Mhz.
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Figure 3.6: NeXTcube motherboard diagram

Chipsets and components of the NeXTcube motherboard:

1 NeXTBus connector, 2 VLSI NeXTBus Interface Chip, 3 CPU Motorola 68040, 4
256 KiB VRAM, 5 DRAM Controller CS38PG017CG01, 6 Integrated Channel Processor
(DMA Controller Fujitsu MB610313), 7 Optical Storage Processor (Fujitsu MB600310),
8 16 SIMM slots max 4MiB each for total 64 MiB, 9 DSP-56001RC20, A Battery,
B NeXT BIOS PROM, C DSP 768K Slot, D Hard-Drive and Floppy connectors. E

Many connectors (top to bottom): 56001 DSP, Serial Port A&B, SCSI2, Printer, Ethernet
RJ45&CoaxBNC, DB19 Monitor. F Intel n82077 Disk controller. G DSP SRAM (8KiB)
MCM56824A. H SCSI Controller (NCR 53C90A) I 100.000Mhz Oscillator K1149AA
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3.5 NeXTstation

Since cost was the main issue with their product line, NeXT attempted to introduce a less
expensive product. They designed something close to the NeXTcube but removed non-
essential elements in order to produce a three times cheaper, all-in-one machine.

The NeXTstation’s pricing and appearance made it a direct competitor to the SPARCsta-
tion. No longer a perfect cube, the case, nicknamed "the slab" (and also, banned by Steve
Jobs, the "pizza box") was well-received by customers and became NeXT’s most success-
ful computer.

Figure 3.7: A NeXTstation ad from NeXTWorld 1991 magazine.

Designers picked elements from the NeXTcube and the NeXTdimension in order to pro-
duce an all-in-one, non-extensible machine. The three NeXTBus expansion slots were
removed and so was the CD-ROM. A 2.88MiB floppy disk was added on the right side.
The most notable difference came in the color version that had 2 MiB of VRAM, making
the machine capable of 16-bit RGB colors. To accommodate the increased bandwidth re-
quirements, the motherboard was redesigned to include a Bt463 RAMDAC.

“ The 16-bit color was only 4444, 1555 was not supported, which was unfortu-
nate for us. It was also in a linear color space12, as opposed to the non-linear
PC standard that became sRGB. I didn’t understand how to properly convert
back then, so our graphics always looked washed out on the NeXT systems.

— John Carmack ”
12NeXT, SGI, and Apple had linear color space. PC of course did not.
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Figure 3.8: A NeXTstation TurboColor (non-ADB)

In an unmistakable Steve Jobsian fashion, several components were renamed to empha-
size subtle differences. The central unit fan was called a "whisper fan"13. The power
supply was a 120-watt unit using a new technology called "parallel resonant switching"
that allegedly allowed a much smaller form factor than conventional power supplies.

Despite its reduced size, the NeXTstation’s performance didn’t suffer compared to the
more imposing NeXTcube. The four variants – NeXTstation, NeXTstation Color, NeXTsta-
tion Turbo, and NeXTstation TurboColor – all relied on a 68040 with 12 MiB of RAM.

Trivia : No button or switch are visible on the computer itself. The machine could only be
turned on and off via the keyboard (a novelty at the time). An update later introduced the
Apple Desktop Bus created by Steve Wozniak which bears many similarities to the USB
standard released in 1996.

13Source: "Fast New Systems from NeXT", B.Y.T.E Nov 1990
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3.6 NeXTdimension
The 256 KiB of VRAM on the NeXTcube only allowed a mediocre four shades of gray. The
NeXTdimension was to take the workstation to a whole new level. Shipping with 4 MiB
of VRAM and 8MiB of RAM (extensible to 32 MiB), it allowed a 24-bit color per pixel GUI
and real-time recording/playback of video signals. Since the board was connected via a
NeXTBus port, up to three NeXTdimensions could be connected, allowing the NeXTcube
to drive four extended screens simultaneously.

On presentation day, Steve Jobs managed to demonstrate the groundbreaking capabilities
in his signature spectacular fashion. A sequence from the black-and-white movie Alice in
Wonderland was played live on a NeXTcube, already a tour-de-force at the time. The audi-
ence was impressed yet the best was to come. As Alice progressed through Wonderland,
frames progressively turned to color. The audience went berserk.

At some point the NeXTdimension was even planned to feature real-time video compres-
sion, but problems prevented it.

“ NeXT has eliminated the C-Cube Microsystems CL-550 JPEG chip from
NeXTdimension. This is because our supplier, C-Cube Microsystems, has
failed to deliver chips that meet their specifications.

— Felipe_Fuster@NeXT.COM

”
The NeXTdimension was not a mere expansion board, but rather a full-featured computer
within the computer. It had its own operating system, RAM, and clock generator which
communicated with NeXTSTEP via Mach messages.

“ The NeXTdimension ran a custom kernel which was designed to do soft
real-time management of multiple threads within a single address space,
provide demand paged virtual memory, and provide a source-compatible Mach
API subset and full Mach messaging interface, along with a minimal UNIX
system call API, just enough to implement the RenderMan back end and the
PostScript device layer. The kernel was called "Graphics aCcelerator Kernel,
or "GaCK". Yes, this was a jape at the funny capitalization of the company
name. It was not Mach, or BSD, or Minix, or Linux.

— M Paquette, NeXT Engineer

”
The card came with the NeXTtv.app which allowed video editing and frame capture.
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Because of Steve Jobs’s "hobby" venture with Pixar, the NeXTdimension had close ties
with RenderMan. It had a built-in hardware acceleration module called Quick RenderMan.

“ Depending on the setup of the Renderman context, a RIB stream can be
spooled to Photorealistic Renderman running on the host CPU (the m68K
for black hardware), or to a Quick Renderman implementation loaded on
demand into the Window Server. The Quick Renderman implementation in
the Window Server may then, if the target window is on a NeXTdimension,
forward the rendering operations to a Quick Renderman context running on
the NeXTdimension board.

— M Paquette, NeXT Engineer

”
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Figure 3.9: NeXTdimension board

Like the NeXTcube and NeXTstation motherboards, the NeXTdimension hardware was
gorgeous and benefited from the same "surface mount" manufacturing process. The most
prominent component is of course the Intel 860.

It had failed to beat Intel’s 486 CPU in the market but its eagerness to participate in the
DOOM phenomenon allowed it to land a gig on the tools team.

Trivia : Notice the Bt463 RAMDAC which would also be used on NeXTstations.

98



CHAPTER 3. NEXT 3.6. NEXTDIMENSION

Figure 3.10: NeXTdimension board diagram

List of chipsets and components of the NeXTdimension motherboard:

1 NeXTBus connector, 2 VLSI NeXTBus Interface Chip (NBIC), 3 Intel i860 CPU
33MHz 64-bit RISC CPU, 4 Motorola U88 Memory Controller, 5 Bt463 Ramdac, 6
Motorola U52 Data Formatter, 7 4 MiB VRAM, 8 SiMM RAM extension slots up to 8x4=
32MiB, 9 Video color space conversion and video input (SAA 7191 WP & SAA 7192 WP),
A Many connectors (top to bottom): Video Out(EGA/VGA, S-Video, Composite), Video

In(S-Video, Composite, Composite), DB19 Monitor, B 33.000Mhz Oscillator K1100AA,
C 100.000Mhz Oscillator K1149AA
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Figure 3.11: An early NeXTdimension ad from NeXT Magazine 1991.

Notice the C-Cube Microsystems JPEG chip which had to be cut from the final design, and
the different resin, resulting in a different color for the motherboard. No doubt the color
tone was the subject of much debates at NeXT headquarters. The "unlucky forever" Intel
i860 was mislabeled "1860".
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To select the i860 as the main chip for a graphics card could have been called overkill but
it was a careful and ultimately sound decision. Video processing is an intensive CPU task.
It benefits so much from the i860’s SIMD pipeline that nothing else but Intel’s "Cray on a
Chip" could have done the job.

“ The Intel 80860 was an impressive chip, able at top speed to perform close to
66 MFLOPS at 33 MHz in real applications, compared to a more typical 5 or
10 MFLOPS for other CPUs of the time. Much of this was marketing hype, and
it never become popular, lagging behind most newer CPUs and Digital Signal
Processors in performance. The 860 has several modes, from regular scaler
mode to a super-scalar mode that executes two instructions per cycle and a
user visible pipeline mode (instructions using the result register of a multi-cycle
op would take the current value instead of stalling and waiting for the result).
It can use the 8K data cache in a limited way as a small vector register (like
those in supercomputers). The unusual cache uses virtual addresses, instead
of physical, so the cache has to be flushed any time the page tables changes,
even if the data is unchanged. Instruction and data buses are separate, with
4G of memory, using segments. It also includes a Memory Management Unit
for virtual storage.

The 860 has thirty two 32 bit registers and thirty two 32 bit (or sixteen 64 bit)
floating point registers. It was one of the first microprocessors to contain not
only an FPU as well as an integer ALU, and also included a 3-D graphics
unit (attached to the FPU) that supports lines drawing, Gouraud shading,
Z-buffering for hidden line removal, and operations in conjunction with the
FPU. It was also the first able to do an integer operation, and a (unique at
the time) multiply and add floating point instruction, for the equivalent of three
instructions, at the same time.

However actually getting the chip at top speed usually requires using assembly
language - using standard compilers gives it a speed closer to other proces-
sors. Because of this, it was used as a co-processor, either for graphics, or
floating point acceleration, like add in parallel units for workstations. Another
problem with using the Intel 860 as a general purpose CPU is the difficulty
handling interrupts. It is extensively pipelined, having as many as four pipes
operating at once, and when an interrupt occurs, the pipes can spill and lose
data unless complex code is used to clean up. Delays range from 62 cycles
(best case) to 50 microseconds (almost 2000 cycles).

— John Bayko’s "Great Microprocessors of the Past and Present"

”
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3.7 NeXTSTEP

NeXT’s 1990 24-pages brochure, "Welcome to the NeXT decade" introducing the NeXT
Computer System, laid out the seven pillars of the system they were about to build.

“ Our collaboration with Higher Education provided the insight needed to visu-
alize the seven breakthroughs that would ultimately define the NeXT Computer:

1. A new architecture optimized for total system throughput, not just individ-
ual component benchmarks.

2. A pioneering technology for vast and reliable storage, opening the door
for new ways to access and use information.

3. Built-in CD-quality sound, allowing sound to be integrated into applica-
tions that are used every day.

4. A unified imaging system - Display PostScript - for both the display and
the printer. So what you see on the screen is unequivocally what you get
on paper.

5. An intuitive interface that gives everyone access to UNIX, with all of its
power for networking and multitasking.

6. A multimedia mail system that enables communication combining text,
graphics, and voice.

7. A new development environment that dramatically cuts the time it takes
to create and customize software.

”
The first three points were the hardware team’s responsibility. Everything else was on the
software team and the amount of work ahead of them was overwhelming. The magical
operating system described did not exist. To deliver their vision, they had to build it.

To create an OS from scratch would have been a humongous effort. To save time, the
software team decided to reuse available components. They selected a microkernel called
Mach from Carnegie Mellon University and combined it with elements from BSD (from
University of California, Berkeley), such as the network stack, multi-user, multi-processing
and filesystem. That was enough to bring the machine up to a command prompt.
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3.7.1 GUI

To achieve the "unified imaging system", NeXT engineers started from PostScript – the
language designed by Adobe for high-end printers – and modified it to meet the need of a
GUI in terms of look-and-feel and performance. The result was called Display PostScript14.

Figure 3.12: NeXTSTEP 1.0 running on a NeXT Computer in four color mode.

The resulting graphical system had many impressive features.

Some were raw power accomplishments, like for example the ability to see the content of
a window while moving it (in all competing GUI-based OSes, windows had to be moved
with only the outline visible because of graphic card and bandwidth limitations). Others
were purely based on superior design and so solid that they remain in one form or another
all the way up to Mac OS X running on 2018 Apple computers. The desktop metaphor,
the unified titlebar scheme, the Dock, the bundles, and File Manager column view flow are
only the most famous in a long list of GUI innovations.

14When OpenSTEP was used to build Rhapsody at Apple, the display system was changed to Portable
Document Format (PDF) imaging model.
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“ The Display PostScript system can be broken into two pieces, the PostScript
interpreter and the device. The interpreter processes the language, and
passes marking, imaging, and compositing directions to the device layer.

The device layer takes the high level marking, imaging, and compositing
operations and (eventually) converts these to bitmap level operations. The
Display PostScript system spends the majority of its time down here. In
the case of the NeXTdimension board, the device layer is implemented on
the NeXTdimension board. Marking, imaging, and compositing operations
are asynchronously transmitted to the NeXTdimension for processing while
additional PostScript is interpreted on the 68K processor. A good degree of
parallelism is achieved in normal operation.

— M Paquette

”

Figure 3.13: NeXTSTEP running on system with a 24-bit NeXTdimension
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Figure 3.13 shows NeXTSTEP running on a 24-bit color machine. The composition was
more gorgeous than what any of its competitors was capable of. Notice Mail.app, which
shipped with an email from Steve Jobs lauding the merits of object-oriented programming.

3.8 NeXT at id Software

To say NeXT polarized professionals would be an understatement. It is fair to say that
everybody had a strong opinion about them. Some developers hated it.

“ Develop for it? I’ll piss on it!

— Bill Gates15. ”
Some were interested in having access to a stable Unix system with a powerful GUI.

“ When id Software was stationed in Madison, Wisconsin during the winter of
1991, most of us were gone for the Christmas holiday - except John Carmack.
John’s present, which he bought with $11,000 of his own money, procured by
walking through the snow and ice to remove from the bank16, arrived during
the holiday and he spent the whole time learning as much as he could about
the computer and started working on vector quantization algorithms for com-
pressing graphics. His test graphic was a 256-color screen from King’s Quest 5.

After his research was done it was agreed that the entire company needed to
develop our next game on NeXTSTEP.

— John Romero, rome.ro, December 20, 2006

”
Given the timing of his purchase, the NeXT was first used to produce the Wolfenstein 3D
hint book. One of the best DTP applications at the time, FrameMaker.app proved perfect
for the task. After that, NeXT rapidly conquered id Software for all other operations. PCs
remained in use mostly for Deluxe Paint and to test the game they wanted to ship.

As the needs of the studio evolved with more and more power, id took advantage of
NeXTSTEP’s ability to run on various platforms from HP and Intel (called the "White hard-
ware").

15Found in Walter Isaacson’s book "Steve Jobs" but with no source. Bill Gates may have never said that.
16Emptying his bank account in the process.
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The studio bought so much hardware over the years that twenty-five years later, accounts
differ about which was the first kind of NeXT machine purchased. According to John Car-
mack it was a NeXTstation.

“ I bought our first NeXT (a ColorStation) just out of personal interest. Jason
Blochowiak had talked to me about the advantages of Unix based systems
from his time at college, and I was interested in seeing what Steve Job’s next
big thing was. It is funny to look back - I can remember honestly wondering
what the advantages of a real multi process development environment would
be over the DOS and older Apple environments we were using. I remember
saying "What else would you do when the compiler was running?". Jason
was ahead of the game when we first met; he was using an expensive
Mac II system to cross develop for the lower end Apple IIGS. He was of
course proven right on the value proposition. Actually using the NeXT was
an eye opener, and it was quickly clear to me that it had a lot of tangible
advantages for us, so we moved everything but pixel art (which was still done
in Deluxe Paint on DOS) over. Using Interface Builder for our game editors
was a NeXT unique advantage, but most Unix systems would have provided
similar general purpose software development advantages (the debugger
wasn’t nearly as good as Turbo Debugger 386, though!). Kevin Cloud even
did our game manuals, starting with Wolfenstein 3D, in Framemaker on a NeXT.

This was all in the context of DOS or Windows 3.x; it was revelatory to have
a computer system that didn’t crash all the time. By the time Quake 2 came
around, Windows NT was in a similar didn’t-crash-all-the-time state, it had
hardware accelerated OpenGL, and Visual Studio was getting really good, so I
didn’t feel too bad moving over to it. At that transition point I did evaluate most
of the other Unix workstations, and didn’t find a strong enough reason not to
go with Microsoft for our desktop systems.

Over the entire course of Doom and Quake 1’s development we probably spent
$100,000 on NeXT computers, which isn’t much at all in the larger scheme
of development. We later spent more than that on Unix SMP server systems
(first a quad Alpha, then an eventually 16-way SGI system) to run the time
consuming lighting and visibility calculations for the Quake series. I remember
one year looking at the Top 500 supercomputer list and thinking that if we had
expanded our SGI to 32 processors, we would have just snuck in at the bottom.

— John Carmack, quora.com

”
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John Romero remembers first buying a monochrome NeXTcube.

“ The NeXTCube was purchased in December 1991 and was the only NeXT
Computer we had until December 1992 when we decided we would develop
DOOM with them so we bought 3 NeXTStations: mine, John Carmack’s new
one, Tom Hall’s. John C’s original NeXTCube was the computer used to scan
the clay models, gun toys, and latex models.

id’s first NeXT hardware was all black - both Cubes and Stations. We upgraded
through the years to the Turbo model then to other hardware like the HP
Gecko and then Intel hardware at the end. We were building fat binaries of
the tools for all 3 processors in the office - one .app file that had code for all 3
processors in it and executed the right code depending on which machine you
ran it on. All our data was stored on a Novell 3.11 server and we constantly
used the NeXTSTEP Novell gateway object to transparently copy our files to
and from the server as if it was a local NTFS drive. This was back in 1993!

In fact, with the superpower of NeXTSTEP, one of the earliest incarnations of
DoomEd had Carmack in his office, me in my office, DoomEd running on both
our computers and both of us editing one map together at the same time. I
could see John moving entities around on my screen as I drew new walls.
Shared memory spaces and distributed objects. Pure magic.

— John Romero ”
John Romero in particular liked their production pipeline so much that he decided to cham-
pion it. He managed to successfully advertise it to another gaming studio.

“ DOOM, DOOM II and Quake weren’t the only games developed on NeXTSTEP.
When I got Raven Software to agree to develop Heretic for us I had them buy
several Epson NeXT computers (Intel based) and I flew up to Madison, WI to
get them all set up and teach them how to develop the game with our tools
and engine. It was a great time I’ll never forget - seeing their team get excited
about the power of the new environment and that they got the game developed
and released in under a year. They signed on for another title and developed
Hexen on NeXTSTEP as well.

— John Romero, rome.ro, December 20, 2006

” .
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3.9 Roller coaster

During its seven years in business, NeXT lead a tumultuous life. It was sued by Apple
within its first month of existence (the five people Steve Jobs had taken with him were not
"minor people" as he had told Apple). Carried on by Steve Jobs’ "reality distortion field",
the company was praised for several years even though it had yet to produce anything.
Glorified upon each release, owing a lot to marketing genius, the machines later struggled
to find customers. Disappointing sales led to a near death experience before NeXT man-
aged to re-invent itself.

3.9.1 Downfall

As elegant and powerful as the black hardware was, their high price tag made them a deal-
breaker. Even the "cheaper" NeXTstations were well beyond most developers’ budgets.

In 1988, the factory was building 400 units/month, well below its maximum 10,000/month
capacity. Sales worsened in 1989 with only 360 units/month sold over the year. Production
had to be slowed down to 100 units/month to avoid overflowing storage. By 1990 things
improved slightly with $28 million in revenue – still a far cry from the $2.8 billions Sun Mi-
crosystems generated that same year. 1991 saw yet another improvement with 20,000
units sold and a revenue of $127 million. That figure was still less than what Apple sold in
a single week. By 1992, sales reached $140 million17 and NeXT claimed its first profitable
quarter18, seven years after its founding.

Despite the steady improvements, NeXT still lost $40 million that year. With only 50,000
NeXT machines sold over the course of its short life19 (including thousands to the then
secret National US Reconnaissance Office), Jobs decided that NeXT could not carry on
as a hardware manufacturer. Struggling to close deals and hemorrhaging cash, it fired
300 out of its 500 employee workforce on a Black Tuesday of February 1993 to become a
software-only company.

The purpose of NeXTSTEP was changed. From operating system in charge of making
the black hardware sing, it was to become a white hardware enabler and the sole money
maker. It was re-factored to be portable and capable of running on Intel, SPARC, and PA-
RISC CPUs. Sold as a combination operating system and object-oriented development
environment. NeXTSTEP for Intel became a popular product among large companies
and especially financial institutions for rapidly developing and deploying custom software.
NeXT also started to collaborate with Sun Microsystems on a light version of NeXTSTEP
called OpenSTEP.

17Source:The Next Big Thing.
18In fact it was $40 million from breaking even. Source: "The Next Big Thing"
19In 1993 Apple sold 50,000 units every six days.
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Even in its darkest hours, NeXT curiously never capitalized on id Software’s appreciation
for the platform20. Reportedly due to Steve Jobs disdain for video games, they even turned
down an opportunity which could have helped them tremendously.

“ We loved our NeXTs, and we wanted to launch Doom with an explicit "Devel-
oped on NeXT computers" logo during the startup process21, but when we
asked, the request was denied.

— John Carmack ”

Figure 3.14: DOOM alpha version credit screen featuring "NeXT Computers"

As DOOM’s success grew and became a world-wide hit, NeXT backtracked and attempted
to reverse its decision but by then, as recalls John Carmack, "that ship had sailed"22.

20comp.sys.next.advocacy: "DOOM: NeXTstep’s Most Successful App".
21Tom Hall’s "DOOM Bible" mentioned designing maps with labs featuring "a lot of NeXT-looking computers".
22"I showed up for him" by John Carmack. facebook.com May 14th, 2018.

109



3.9. ROLLER COASTER CHAPTER 3. NEXT

3.9.2 Rebirth

The rest of NeXT’s history is the envy of a Hollywood plot-twist. In 1995, Apple Com-
puter’s failed attempt at producing its own operating system under project "Copland" had
placed the company in a precarious situation with nothing to replace its outdated System 7.

After briefly considering BeOS, Apple elected to buy NeXT in 1996 for $429 million in cash.
The timing could not have been better for NeXT which was on the verge of bankruptcy.
Steve Jobs returned to the company he had co-founded twenty years earlier. After the
sale, he first worked as an advisor but was later appointed acting-CEO, to finally become
CEO of the company. This was not only a rebirth for NeXT, it was also a rebirth for Apple,
which went from being ninety days away from insolvency23 in 1996 to most valuable com-
pany in the world in December 2017.

NeXTSTEP was used as foundation for Apple’s Rhapsody project which became Darwin,
the core of Apple’s OSes. The new operating system was met with enthusiasm by cus-
tomers and professionals who praised the design, look and feel, and stability. Darwin was
later used as a base for Apple’s 2008 iPhone which took the world by storm. It is extremely
likely some of the code that once ran on NeXTSTEP and contributed to DOOM now runs
on the many millions of Apple computers and iOS phones across the world.

23Source: "All Things Digital conference, Jun 1, 2010."
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Team and Tools

After shipping Wolfenstein 3D in May 1992, id Software went right back to work. The team
of five (John Carmack, John Romero, Adrian Carmack, Tom Hall and Kevin Cloud) split in
two. While part of the team would focus on the Wolfenstein 3D’s Hint Manual and Spear of
Destiny, another faction built the technology which would power the next title.

The development of DOOM really started in January 1993 with an impressive press release
by Tom Hall (read it in Appendix D on page 391) promising ground-breaking technology
and unprecedented gameplay. Within just eleven months they managed to have the share-
ware version ready in time for Christmas. Fourteen people would end up being involved.

Name Age Occupation

John Carmack 22 Programmer
John Romero 24 Programmer / Designer
Adrian Carmack1 23 Artist
Tom Hall2 29 Creative Director
Jay Wilbur 31 Business
Kevin Cloud 28 Computer Artist
Donna Jackson 55 id’s Mom
Dave Taylor 24 Programmer
Sandy Petersen 39 Designer
Shawn Green 28 Software Support
American McGee 22 Tech Support
Paul Radek 28 DMX Audio library
Gregor Punchatz 27 Artist, clay models
Bobby Prince 39 Music composer

1The two "Carmacks" in the team are not related.
2Due to creative differences, Tom Hall left six months after completing the "Doom Bible" design doc. He went

to Apogee/3D Realms to work on "Rise of the Triad" using an improved version of Wolfenstein 3D engine.
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92

93

JUL AUG SEP

OCT NOV DEC

JUL AUG SEP

OCT NOV DEC

JAN FEB MAR

APR MAY JUN

v0.2 RELEASE

v0.4 RELEASE

v0.5 RELEASE

v0.99 
PRESS-RELEASE PREβ

TOM HALL QUITS

WOLFENSTEIN 3D

HINT MANUAL

S.PETERSEN HIRED

v0.3 INTERNAL

FPS CAPPED AT 70

FPS CAPPED AT 35

SOUNDS ADDED

MUSIC ADDED

A.I. ADDED

COLLISION DETECTION

HICOLOR DAC OUT

CO-OP LAN ADDED

PRESS RELEASE

DEV

DAVE TAYLOR HIRED

WOLF3D SNES DEAL

SHIPS

STARTS

WITH DEATHMATCH

BINARY PARTITION

THREE NeXTStations

PURCHASED

CANCELLED!

 TRIP TO DISNEYLAND

Figure 4.1: Making of DOOM timeline
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In January of 1995, Electronic Games magazine ran a
series of three articles for the release of DOOM II. This
presented an opportunity to gather all members of the
id team in a group photo.

In the back row, left to right: Kevin Cloud, Amer-
ican Mcgee, John Carmack, Adrian Carmack, and
Sandy Petersen. Front row, left to right: Dave Taylor,
John Romero, and Shawn Green.

The "plank" in the photo is John Romero’s office door
and the hole was the making of John Carmack.

“ Well, Romero’s door jammed one day. He was in his office and was trapped
in there, and we couldn’t get the door open. It was after-hours, so we couldn’t
call building maintenance, and we were all standing around trying to figure out
what to do, when it occurred to me and I said, "You know, I do have a battle
axe in my office."

Yes, this thing really works.

— John Carmack ”
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4.1 Location

Fed up with the winter of Wisconsin, the studio relocated on April 1st, 1992. They left be-
hind the cold of Madison and settled in the Town East Tower in Mesquite TX, better known
as the "Black Cube".

Mesquite

Madison

In an interview for the book "Masters of Doom", Tom Hall recounts how all the team mem-
bers settled into the new environment.

“ On the first day, each guy chose his space. Carmack and Romero took
side-by-side offices, while Adrian and Kevin, who were growing increasingly
close, decided to share a space. Tom liked an open corner spot in a large
room with a window. "This would be a great office area," he said, "we just
need to put some walls up." The rest agreed. But the walls were slow to come.
Whenever Tom asked Jay about it, Jay would say they were on their way. Out
of humor and frustration, Tom put down two long strips of masking tape where
the walls of what he called his creative corner would go.

— David Kushner, Masters of Doom

”
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Kitchen

Game Room

Romero

Carmack

Kevin Adrian

Tom/Sandy

Dave

Pool 
Table

Storage

American 
& 

Shawn

Conference 
Room

Donna

Jay

Figure 4.2: Id Software office layout as can be seen in John Romero’s mini-documentary
"A Visit to id Software (1993)".

Dave Taylor remembers id Software’s unorthodox spirit at the time.

“ I fell asleep on the floors a lot, which is why they got the sofa and had me
test-drive it for comfort, but I only remember them taping my outline once. I
believe it stuck around for a while though.

— Dave Taylor

”
“ I remember companies would send us free sound cards all the time, so many

that we took to using them as ninja throwing stars at one point and would throw
them into the kitchen wall opposite my desk.

— Dave Taylor

”
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4.2 Creative direction

The tone of the new title was to be much darker than the previous games. Initially intending
to adapt the movie Aliens (1986), the team decided against it in order to retain total creative
control3. They wanted to do something scary, inspired by movies such as Evil Dead or The
Thing. They wanted it to be as aggressive as the metal music they occasionally listened to.

Even the name of the next title would be to inspire fear. The idea came to John Carmack
while watching the movie, "The Color of Money".

Midway through the movie, Vincent, played by Tom Cruise, enters a pool bar carrying one
of the best pool cues in the world, a Balabushka. Confident and committed on unleashing
his skills upon his opponents, he is noticed by one of the locals, Moselle. Intrigued by the
pool cue case he asks Vincent: "What you got in there?". "In Here?" exclaims Vincent,
looking up and smiling maliciously: "DOOM!".

Figure 4.3: "In Here? ...... DOOM!"
The game they envisioned would go way beyond what they had accomplished with Wolfen-
stein 3D and Spear of Destiny. DOOM would have eight weapons and seventeen types of
opponent. The hero would fight countless demons. And there would be a lot of gibs4.

3Amusingly, one of the best mods of all time would be the total conversion "Aliens TC".
4"gibs" is short for "giblets" and there were often arguments about the correct pronunciation.
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4.3 Graphic assets

4.3.1 Sprites

Given the ambitions, there was a lot of artwork to produce. Weapons were animated when
firing. Monsters had to have eight poses depending on the viewing angle. Wall surfaces,
ceilings, and floors were to be textured. And this is not to mention all the "utility" art for the
menus, intermission and final screens. It was an immense undertaking for a team of only
two artists working with just Deluxe Paint.

Monsters represented most of the workload. Drawing a single sprite while facing the player
was easy. Drawing it seven more times at increasing angles (45∘, 90∘, 135∘, 180∘, 225∘,
270∘, and 315∘) for each action was hell. To solve this problem they created a new process
leveraging both their artistic talent and the technological power of the NeXTDimension.
First they drew it on paper, then they applied clay on a small posable wooden mannequin.
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Once the character was carved they could change
the pose at will. They only had to connect a Handy-
cam Hi8 Sony video camera to the NextDimension.
Placed on a spinner, the clay model was lit and dig-
itized from eight viewpoints. It was a much faster
and a more fun process.

The output from the NeXTDimension was a 24-bit
TrueColor image which had to be transformed to the
DOOM palette5 of 256 colors via a tool called the "Fuzzy Pumper Palette Shop". To com-
plete each sprite, artists performed touch ups and manual coloring with Deluxe Paint.

The process was not without its own flaws since the clay dried and had a tendency to
break instead of folding. Nevertheless, seven Doom characters were built as sculptures
for DOOM & DOOM II. The first models – the Doomguy, Baron of Hell and Cyberdemon –
were all sculpted by Adrian Carmack. The iconic Imp, Zombieman, and Sergeant were all
mouse-drawn by Kevin Cloud.

Trivia : Most models survived. Some are still in John Romero’s possession while others
are visible at id Software’s headquarters. A few models managed to escape into the wild
and are now highly-prized by collectors.

5See the DOOM palette on page 246.
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Figure 4.4: A. Carmack sculpting the Baron of Hell, working from his preliminary drawing.
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Using clay models was faster than drawing by hand but it was still not fast enough to pro-
duce the many monsters necessary. It also had limited capability in terms of textures since
it was impossible to render specular material such as metal. There were also issues with
intricate details which were way too fine to survive clay modeling. They needed better
models, possibly stop-motion capable.

Don Ivan Punchatz, who had been commissioned for the DOOM package art and logo,
mentioned he had a son doing exactly that. Greg had been successfully providing stop
animation models for big Hollywood productions such as A Nightmare on Elm Street 2,
RoboCop and its sequels, and Coming to America.

Kevin Cloud got in touch with Greg Punchatz and the young artist was promptly commis-
sioned for the Arch-Vile, Mancubus, Revenant and Spiderdemon.

“ The spider creature was made out of parts I had literally just found at hardware
and hobby stores, pieces of Tupperware and PVC pipes. The main body
started out as a sculpture, then a plaster mold was pulled from that. Then we
made the armature to fit that mold, and then foam latex was injected inside the
mould and put into an oven.

Mastermind’s legs pretty much only just moved, and his arms moved, but his
mouth didn’t move. As we went along, the other maquettes become full ball
and socket armatures, so they had a full range of motion. In some ways, these
stop-motion maquettes are easier to get right than they would be in CG. You
don’t have to worry about how your skin is weighted on stop-motion model
because it just sticks to the metal armature.

— Greg Punchatz, Interview by develop-online.net Feb 16, 2016

”
Overall, Greg seems to have only fond memories except for one funny regret.

“ At one stage id offered me points on the backend to take $500 off the price of
one of the characters and I turned that down. It’s a painful lesson. But to be
part of something that has left a long-lasting impression on the world is kind
of crazy – people find out that I worked on Doom and it’s like I played on the
Beatles’ White Album.

— Greg Punchatz, Interview by develop-online.net Feb 16, 2016

”
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Figure 4.5: Notice the spinner, camera, and a virgin wooden mannequin on the table
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4.3.2 Weapons

The starting points for the weapons were mostly toys, digitized with the NeXTDimension
and heavily cleaned up via Deluxe Paint.

The shotgun was in fact the "TootsieToy Dakota" cap shotgun, manufactured by the Strombecker
Corporation of America.

Figure 4.6: TootsieToy Dakota. The thing had a rifle fire mode. (Courtesy of James Miller)

The chainsaw was a real, fully functional, McCulloch Eager Beaver. It was borrowed from
Tom Hall’s girlfriend.

Figure 4.7: McCulloch Eager Beaver (Courtesy of James Miller)

Luckily it was only brought in after Romero locked himself up in his office. That could have
been interesting.

Trivia : The chainsaw worked well but it leaked oil abundantly. They had to store it in a
bowl on the ground.
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Below: the chaingun was another Tootsietoy toy called the Ol’ Painless. To the delight of
many parents it was able to produce loud firing sounds when fitted with a 9V battery.
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The fist was actually Kevin Cloud’s hands wearing a knuckle duster. The Plasma rifle was
based on the grenade launcher of a Rambo III M-60 toy set (upper left element in the box).

The BFG 9000 was the RoarGun by Creatoy. It was photographed sideways, mirrored and
inclined at an acute angle to give it more depth.
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4.3.3 Skies

Since the player was to travel to several satellites of
Mars during the game, matching SKY textures had
to be produced.

In order to generate the "real" touch they wanted,
Kevin and Adrian bought a set of 10 royalty free CD-
ROMs called MediaClips. Each CD had a theme
(Jets, Majestic Places, Props, Wild Places, Worldview) and the whopping 650MiB capacity
allowed one hundred high-resolution (640x480) photos per CD.

Since they did not have much time for Episode I
which had to ship with the shareware in Decem-
ber, they simply cropped Yangshuo Cavern from
China to the sky standard 256x128 resolution. With
more time for the other episodes they became
more creative and composed images from numer-
ous sources. The skylines of Phobos, Deimos and
Hell ended up borrowing from places like China, Zion, and Hawaii.

Because the sky repeats four times in the engine, the texture had to be patched in order
to wrap at the edges. Notice how the right and left edges connect without any discontinuity.

Trivia : Can you guess where the clouds in DOOM II Episode 2 skies are from?
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DOOM, Episode II. Made of Zion’s Watchman rock formation and a red tinted sunset.
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DOOM, Episode I. Yangshuo Cavern in China. (All compositions courtesy of James Miller).
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DOOM II, Map 1. Hawaii beach at sunset.
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DOOM II, Map 13. Challenger rocket take-off used for burning city clouds.
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4.4 Maps

Maps were designed in a top-down view. The one limitation was that walls were perpen-
dicular to floors and both floors and ceilings were horizontal so maps were drawn in 2D. A
designer worked with five types of element: VERTEX6, LINE, SIDEDEF, SECTOR, and THING.

A

D

B

VERTICES: 0 A  X=13, Y=17

          1 B  X=12, Y=10

          2 C  X=11, Y= 3

          3 D  X= 5, Y= 3 

          4 E  X= 4, Y=10

          5 F  X= 3, Y=17

LINES: A-B SIDE 0 SECTOR 0 BRIK-    -    ,XOFF-YOFF 

       B-C SIDE 0 SECTOR 1 BRIK-    -    ,XOFF-  10

       C-D SIDE 0 SECTOR 1 BRIK-    -    ,XOFF-YOFF

       D-E SIDE 0 SECTOR 1 BRIK-    -    ,XOFF-YOFF

       E-F SIDE 0 SECTOR 0 BRIK-    -    ,XOFF-YOFF

       F-A SIDE 0 SECTOR 0 BRIK-    -    ,XOFF-YOFF

       E-B SIDE 0 SECTOR 1     -GRAY-GRAY,XOFF-YOFF

           SIDE 1 SECTOR 0     -    -    ,XOFF-YOFF

SECTORS: 0 FLOOR: 20,RED  CEILING: 40,WOOD LIGHT:10

         1 FLOOR:  0,BLUE CEILING: 60,GREN LIGHT:10

THINGS: 0 X= 7, Y=12, ANGLE=270, TYPE=ID_IMP

        1 X=11, Y=12, ANGLE=270, TYPE=ID_BARREL

        2 X= 8, Y= 7, ANGLE= 90, TYPE=ID_P1_SPAWN

F

C

E

1

0

0 1

2

Figure 4.8: DOOM map and the resulting data authored via DoomED

A SECTOR is a closed area surrounded by LINEs with a specified floor height, floor texture,
ceiling height, ceiling texture, and light level. A sector can be concave, but lines cannot
cross each other.

A LINE can either be a solid wall or a portal between two SECTORs. The difference is in the
number of SIDEDEFs associated with it. A wall has only one SIDEDEF on its right side and
is fully opaque. A portal has two SIDEDEFs and can usually be partially seen though.

A SIDEDEF describes one side of a LINE. To accommodate texturing of both the walls and
portals, it can have up to three textures. The middle texture is used by walls for the full area
they cover. A SIDEDEF can also have a lower and an upper texture for portals connecting
SECTORs with different ceiling/floor heights. If the portal leads to a sector with higher floor,
the lower texture is used to render the "step". If the SECTOR connects to a SECTOR with a
lower ceiling, the upper texture is used to render the "down step". To help alignment of
doors and buttons, SIDEDEF textures can have a vertical/horizontal offset.

6Vertex coordinates were expressed with signed short integers [-32768, 32767]. 32 units translate to roughly
one meter (or 3.28 feet for poor souls who must use the imperial system.)

130



CHAPTER 4. TEAM AND TOOLS 4.4. MAPS

A THING is much simpler in comparison. It only features a 2D-coordinate X,Y, an angle,
and an identifier controlling its type. At the bare minimum a map must have one player-
spawning location THING.

Figure 4.9: Rendering of map shown in figure 4.8.

The resulting scene in figure 4.9 is ugly but the mismatched colors hopefully help to dis-
cern the different elements. All LINEs are walls except for E-B which has two SIDEDEFs
and is therefore a portal. All walls use the BRIK middle texture except for the portal which
uses GRAY for both top and bottom.

SECTOR #0 uses a RED floor texture and a WOOD ceiling texture. The height of the floor is 20
and its ceiling is at 40. SECTOR #1 uses a BLUE floor texture and a GREEN ceiling texture.
Its floor is at 0 and ceiling at 60. Both sectors have the same light level (10).

Notice the portal E-B which does not have a mid-texture but an upper and a lower texture.
These were used to draw the up-step and down-step towards sector #0.

Also notice wall D-E on which the mid-texture vertical offset is not correctly set, resulting in
a vertical tear when connecting with wall E-F. Wall B-C’s vertical offset is properly set and
has no visual artifact. None of the walls use a horizontal offset, but the corresponding field
is labeled XOFF on figure 4.8 to show its location.
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4.4.1 Map Editor (DoomED)

To harness the complexity of the map format, a new tool was created to replace TED57.
The Doom map editor was to be called DoomED. This is where the NeXT solution gave
the most impact. The high resolution of the display allowed a lot of real-estate showing
small details and many widgets. The stability of NeXTSTEP allowed one to never lose
work while writing DoomED or creating a map. The very design of Objective-C also had
a tremendous influence. The language’s message-dispatching system gracefully handled
nullptr8 dereferences, resulting in a fault-forgiving environment where a faulty feature
would not work but did not crash either.

The killer feature was Interface Builder which not only came with a full library of widgets
but also allowed creating new ones and connecting them to the business logic instantly.

The release of the source code in April 2015 allowed programmers to peek inside. There
is half as much code as in the game engine (doom:32kloc, DoomED:20kloc). Without the
power of NeXT, the editor would have taken at least twice that amount of time to make.

7id Software map editor up to that point.
8"Understanding the Objective-C Runtime" by Colin Wheeler.
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$ ./cloc.pl DoomEd

---------------------------------------------------------
Language files blank comment code
---------------------------------------------------------
Objective C 78 4806 5111 18638
C/C++ Header 72 638 222 2083
C 1 8 12 69
make 1 18 8 52
---------------------------------------------------------
SUM: 152 5470 5353 20842
---------------------------------------------------------

DoomED was designed to be the "Adobe Illustrator for World Maps" where the designer
simply drew lines, selected sectors, and picked textures.

Trivia : DoomED’s icon resembles a Baron of Hell. Upon startup an Imp growling sound is
played.
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DoomED did not output data usable by the game engine directly. Instead it generated a
text format output called DWD. A header served as a magic number which was followed by
a list of lines (including sidedefs) and a list of things. Sectors were inferred from a line’s
ceiling/floor textures, ceiling/floor height, and light properties.

WorldServer version 4
lines :475
(1088 , -3680) to (1024 , -3680) : 1 : 0 : 0

0 (0 : - / - / DOOR3 )
0 : FLOOR4_8 72 : CEIL3_5 255 1 0

[...]
things :138
(1056, -3616, 90) :1, 7
[...]

DWD was not designed with space efficiency in mind but rather to be easy to parse since
it was post-processed by the node builder tool, doombsp.

Figure 4.10: Tom Hall, seemingly delighted, working on what would later be called E2M7.
The sticker on his monitor reads, "quality".

134



CHAPTER 4. TEAM AND TOOLS 4.5. MAP PREPROCESSOR (NODE BUILDER)

4.5 Map Preprocessor (Node Builder)

Map pre-processing was not something new at id. Since 1991 with Wolfenstein 3D, maps
were already pre-processed to allow fast sound propagation. With DOOM, it was taken to
a whole new level both in terms of complexity and processing time.

The main issue at hand was to maintain the same rendering speed despite relaxing the
orthogonal grid constraints of Wolfenstein and losing the ability to use the DDA algorithm
9. The solution chosen was to generate a multitude of accelerating data structures for each
map, each dedicated to solving a particular problem.

The tool to do that was called doombsp. It took as input a .DWD map and outputted a .WAD.
Not only was the map expressed in a space-efficient format (e.g. expressing vertices only
once and referencing them via index), but three data structures were generated alongside
it. A binary space-partitioned version of the map expressed a node tree to speed up ren-
dering. A blockmap accelerated collision detection. Finally, a reject table accelerated A.I.
processing.

Trivia : Map preprocessing took a significant amount of time. With a NextStation Turbo-
Color, running doombsp on E1M1 took 10s. On E1M2, it took 30s. On E2M7, it took a full
minute. The first nine maps of the shareware took 3m26s to process. The full twenty seven
maps of the registered version required 11 minutes.

$ ./cloc.pl doombsp

38 text files.
36 unique files.

---------------------------------------------------------
Language files blank comment code
---------------------------------------------------------
Objective C 19 1112 1464 4529
C/C++ Header 9 285 190 613
C 2 244 184 603
make 1 16 20
---------------------------------------------------------
SUM: 31 1657 1846 5765
---------------------------------------------------------

Trivia : DoomED.app, doom and doombsp were tightly coupled. One button in the editor was
enough to save the map, invoke the node builder and start the game with the WIP map.

9Digital Differential Analyzer was used extensively for VSD (Visual Surface Determination), collision detec-
tion, and line-of-sight calculations. This was all gone with DOOM.
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The map as it is generated via DoomED. Portals are red. Walls are black.

The BSP node tree where sectors are split into convex sub-spaces called sub-sectors.
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Blockmap slicing where each block is 128x128 to accelerate collision detection.

The REJECT data structure to speed up enemies’ and monsters’ lines of sight calculations.

137



4.5. MAP PREPROCESSOR (NODE BUILDER) CHAPTER 4. TEAM AND TOOLS

The source code of the node builder was released shortly after the game in May 1994. It
was the NeXTSTEP version but it was quickly converted to DOS and released under the
name IDBSP to the delight of a hoard of modders.

Figure 4.11: Building doombsp on NeXTSTEP.

For each .dwd, doombsp outputs a set of lumps and stores them in a .wad file (see p151).

Lump Name Explanation

EXMY Map start marker where X is the episode and Y the map number.
All subsequent lumps are part of this map "block".

MAPXY Same as EXMY but used in Doom II.
VERTEXES An array of signed short X, Y pairs. All coordinates in this map

block are indexes into this array.
LINEDEFS An array of lines referencing two vertices. This is a direct

translation of the lines used in DoomED. Also points to one or two
SIDEDEFS depending on if this line is a wall or a portal.

SIDEDEFS Defines upper, lower, and middle textures. Also defines texture
horizontal and vertical offsets.

SECTORS Area surrounded by lines, with set ceiling and floor textures/heights
with light level.

THINGS Position and angle for all monster, powerup and spawn location.

NODES BSP with segs, nodes and sub-sector leaves.
SEGS Portions of lines cut due to Binary Space Partitioning (see page

202).
SSECTORS Set of SEGS representing a convex subspace.

REJECT Sector-to-sector visibility matrix to speed-up line of sight
calculations.

BLOCKMAP 128x128 grid partition of the map LINEDEFS to accelerate collision
detection.

Figure 4.12: Map Data lumps as documented in "The Unofficial Doom Specs" v1.666.
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Slicing the map via binary partitioning is non-trivial. doombsp’s heuristic attempts to mini-
mize the number of segments generated while creating a balanced tree and picking axis-
aligned splitting lines. A debug flag -draw allowed monitoring what was happening. BSP
trees and binary partitioning are explained in detail on page 202.

Figure 4.13: Running doombsp in debug mode shows splitter selection.

4.6 Public Relations

In an era before Facebook, Instagram, and Twitter, before social media and before a de-
mocratized Internet, studios had few ways to get directly in touch with their potential cus-
tomers.

Most of the time, newspapers and magazines relayed information which was infrequent,
slow, inaccurate and most of time left the reader with more questions than answers.
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id Software quickly noticed the Unix system that came with their NeXT hardware featured a
tool called finger. Entirely text-based, finger allowed remotely exploring a UNIX system.
A fingerd daemon listened for incoming connections on TCP port 79, ready to respond
to requests. Running finger on a domain name returned a directory of all the accounts
registered on that machine.

$ finger idsoftware.com

[idsoftware.com]

Welcome to id Software ’s Finger Service V1.5!

The following people have information available:

User Name Description Project
--------- ----------------- ------------- --------
johnc John Carmack Programmer
johnr John Romero Programmer
ddt Dave Taylor Programmer
adrianc Adrian Carmack Artist
kevinc Kevin Cloud Artist
donnaj Donna Jackson id Mom
.
.
.
.

Trivia : When it was invented, the term "finger" had, in the 70s, a connotation of "is a
snitch". This imaginary "accusatory finger pointing" was a good reminder/mnemonic to the
semantics of the UNIX command.

Each employee at id Software could create a .plan text file located in the home direc-
tory of their NeXT workstation. Anybody blessed with an Internet connection could consult
the content of each .plan. This was done by prepending a username before the domain
name. The result was a direct one-way connection from developer to consumers and a
unique way of conveying information in the same way as what is known today as a blog.

When this system was first started, few people were aware of it and even fewer had the
means to finger id. It had no update capability nor notifications. Some, like John Carmack,
updated their .plan daily. Originally a bullet point list of bug fixes, the .plan morphed into
blog-like content like John Carmack’s famous "OpenGL vs Direct3D"10. The oldest plan to
have been preserved was authored during the development of Quake on Feb 18, 1996.

10See page 423
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$ finger johnc@idsoftware.com

[idsoftware.com]
Welcome to id Software ’s Finger Service V1.5!

Login name: johnc In real life: John Carmack
Directory: /raid/nardo/johnc Shell: /bin/csh
Never logged in.
Plan:

This is my daily work ...

When I accomplish something , I write a * line that day.

Whenever a bug / missing feature is mentioned during the
day and I don ’t fix it, I make a note of it. Some things
get noted many times before they get fixed.

Occasionally I go back through the old notes and mark
with a + the things I have since fixed.

--- John Carmack

= feb 18 ===================================
* page flip crap
* stretch console
* faster swimming speed
* damage direction protocol
* armor color flash
* gib death
* grenade tweaking
* brightened alias models
* nail gun lag
* dedicated server quit at game end
+ scoreboard
+ optional full size
+ view centering key
+ vid mode 15 crap
+ change ammo box on sbar
+ allow "restart" after a program error
+ respawn blood trail?
+ -1 ammo value on rockets
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4.7 Music

Like in their previous games, id asked Bobby Prince Jr. to create the music and some of
the many audio effects. He was contacted before the game was up and running. To get a
grasp of the ambiance he was only given the "Doom" Bible, a document authored by Tom
Hall which acted as a design doc describing the tone of the game.

“ Much of what was in Doom Bible never appeared in the game, but it set a mood
for starting on the project. Within a few months of receiving that document, I
had roughed out a lot of music and most of what turned out to be final sound
effects.

— Bobby Prince, Retro Gamer 44.

”Even though id Software set a general direction, it did not prevent Bobby from innovating
and taking initiative.

“ The id Software development team originally wanted me to do nothing but
metal songs for DOOM. I did not think that this type of music would be
appropriate throughout the game, but I roughed out several original songs
and also created MIDI sequences of some cover material. This was before
any level design and was before most of the artwork had been created. As
the game came together, the guys at id saw that this type of music was not
appropriate for many of the levels in DOOM. Thinking that this would be the
case, I had also roughed out a lot of ambient moody background music, much
of which ended up in the game. This song ("At Doom’s Gate") was one of the
first of its type that I wrote. I heard it as being on a level that went by real
fast. As it turns out, John Romero (who placed all of the songs on the levels)
decided it was a perfect song for the first level.

— Bobby

”Popular metal bands of the early nineties such as Metallica, Believer, Slayer, Alice in
Chains, AC/DC, and especially Pantera served as sources of inspiration.

4.8 Sounds

For the audio effects, the "The General Series 6000" pack was purchased from Sound
Ideas. The royalty-free set of 5 CDs was of such high quality that its samples are still used
to this day. An attuned ear will recognize the Doom’s door opening sound in the music
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video of "Body Movin’" by the Beastie Boys11 and in the Doctor Who TV series.

Trivia : If you ever wondered what kind of mixture of animal growling sounds could have
possibly been the origin of the Imp dying sample, it was a plain and simple camel.

4.9 Programming

Migrating from the Borland C++ editor on DOS to TextEdit on NeXTSTEP was a trade-off.
On the one hand, convenient features such as syntax highlighting were lost. On the other
hand, apps never crashed. Precious hours of work were never lost. TextEdit also had
markers (//) allowing to "fold" code to improve navigation and readability.

The higher resolution (1120 x 832) of the MegaDisplay allowed seeing much more code
vertically and up to three DOS 80 column windows side by side. Notice how Borland’s IDE
(in its default mode12) shows 21 lines of code while TextEdit can show 57 lines.

115:09 mark.
12Borland’s C++ IDE could be set to use 80 column mode to get 50 lines but readability suffered greatly.
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Figure 4.14: TextEdit.app allowed section folding via special markers
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In figure 4.14, TextEdit tags and folding show close to 700 lines of d_main.c’s’ 1181 lines.
This feature allowed developers to think in terms of systems instead of functions.

4.9.1 Interface Builder, OOP and Objective-C

The list of tools would not be complete without mentioning NeXT’s crown jewel which many
considered to be NeXTSTEP’s killer app, Interface Builder.

"IB" was first written in Lisp by Jean-Marie Hullot in 1984 and commercialized in 1986 un-
der the name "SOS Interface"13. Hullot was hired by NeXT, Inc. where along with a team
he created a similar tool focused around Objective-C.

The NeXTSTEP version he managed to produce would reduce the construction cost of
building GUIs by a factor of 5-10x14.

13Source: "A Brief History of Human Computer Interaction Technology".
14Source: "NeXT vs Sun: A world of a difference", 1991 promotional video.
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With IB, all of the drudge involved in GUI authoring was done with a mouse in the blink of
an eye. The "tedious" part involving writing code was only mandatory for the actual meat
of the application in the business logic layer. Creating the GUI was a two-step process.
First draw all the elements, then connect the UI elements to the Object models.

The first part was, as Steve Jobs qualified it, "insanely easy" since building an interface
was done with a series of drag-and-drop operations from a palette of GUI elements onto a
canvas. An inspector allowed seeing the properties of an element. Everything from min/-
max of a slider to the default value of a text field could be adjusted easily.

The second part, connecting the visual elements to the business logic objects, was also
done with the mouse, by connecting visual boxes to targets/actions. The target could be a
boolean property in the case of a checkbox UI element or it could be a method in the case
of a button UI element.

4.9.1.1 Object Oriented Programming

Beyond its revolutionary design, IB was nicely complemented by the OOP (Object Oriented
Programming) design of a programmer-friendly language called Objective-C.

“ In my 20 years in this industry, I have never seen a revolution as profound as
[object-oriented-programming]. You can build software literally 5 to 10 times
faster, and that software is much more reliable, much easier to maintain and
much more powerful... All software will be written using this object technology
someday. No question about it.

— Steve Jobs, Rolling Stone, June 16, 1994.

”
OOP’s encapsulation, inheritance and polymorphism allowed pushing back the limits of
complexity a human programmer could deal with. A program would be conceptualized
as a collection of potentially nested sub-systems. The mental image did not have to be a
complex monolithic block. It could be decomposed in smaller, easier to summarize opaque
systems.

4.9.1.2 Objective-C

Objective-C was developed around the same time as C++. However, as co-creator Brad
Cox recalls, his creation and Bjarne Stroustrup’s brainchild had opposing philosophies.
Where C++ placed performance first, Objective-C valued the programmer’s productivity
first.
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“ Back in 1980 when both our languages were under construction, I came down
and met with Bjarne Stroustrup. We had radically different views on how our
languages would be designed. The key concept was the relative importance
of machine efficiency vs programmer efficiency. Eventually, we agreed to
disagree.

— Brad Cox (Interview for "The NeXT Bible" book)

”
The version shipping with NeXT computers featured an important library called Founda-
tion Kit. One of its components, NSObject, freed developers from the error-prone memory
management burden by offering reference counting via its retain and release methods.
A collection of swiss army knife containers – NSArray, NSDictionary, NSSet and NSData
– further allowed focusing on the core functionality instead of losing time on infrastructure.

Trivia : Initially using the prefix NX, all objects in Foundation were renamed with a leading
NS for OpenSTEP where "NS" stands for the alliance between NeXT and Sun Microsys-
tems. All these objects are still at the core of macOS and iOS today; the prefix NS was
never removed.

The very core of Objective-C architecture, based on messages routed via a dispatching
method objc_msgSend, allowed programs to be more resilient to errors. By far the most
amazing feat (at least to a C++ developer) was the ability to send a message to nullptr.
When a developer sent a message to an object via the following syntax.

[obj message]

What really happened behind the scenes was a call to the dispatcher.

objc_msgSend(obj , @selector(message));

The highly-optimized15, hand written assembly was called millions of times by the time a
NeXT had booted. Despite the complex mutable nature of ObjC objects (a method can be
added at runtime, changing its duck type) objc_msgSend was able to follow an inheritance
chain at runtime to find the proper target. More importantly, it was also able to detect a
nullptr and simply return the value 0 instead of bringing down the entire process.

Altogether, the four pillars of NeXT development (Unix, IB, OOP, and Obj-C) sped up de-
velopment of DoomED, doombsp, and wadlink to a level that DOS-based tools could not
even compare16.

15Source: "Dissecting objc_msgSend on ARM64" by Mike Ash.
16Many years later, while evangelizing static code analysis, John Carmack would rant a bit about how the

sloppy programming permitted by dynamic languages like ObjC was Not A Good Thing.
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4.10 Distribution

To distribute DOOM, id software once again adopted the shareware model where a small
part of the game was given away for free. Episode I "Knee-Deep in the Dead", consisting
of nine maps, could be downloaded for free and players were encouraged to copy and give
it away as much as possible. To this effect, id Software managed to cut and compress the
game engine and the first episode down to only two 31/2-inch floppy disks.

Players happy with what they saw could send id Software a payment and receive the two
remaining episodes, "The Shores of Hell" and its sequel "Inferno", by mail.

Figure 4.15: "Advertisement Screen" shown at the end of the shareware episode, which
left the player with instructions to follow in order to get more episodes.

This time though, id wanted to take things to another level. Not only did they want the
game to be distributed via players, they also wanted to be in brick-and-mortar stores. But
they did not want the painful logistics of boxing and inventory management tied to physical
distribution.
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As it turned out there was a way to achieve this seemingly impossible task, thanks to an
idea from Jay Wilbur.

“ We told the retailers "we don’t care if you make money off this shareware
demo". "Move it. Move it in mass quantities." The retailers couldn’t believe their
ears, no one had ever told them not to pay royalties. But Jay was insistent.
"Take DOOM for nothing, keep the profit". My goal is distribution. DOOM is
going to be Wolfenstein on steroids, and I want it far and wide. I want you to
stack DOOM high. In fact, I want you to do advertising for it, too, because
you’re going to make money off it. So take this money that you might have
given me in royalties and use it to advertise the fact that you’re selling DOOM.

— Jay

”
John Romero shares the same memory and even elaborates on the creativity he wit-
nessed.

“ The challenge was: "How do we get Doom in the store? How do we get
something free on shelves?

The idea was that the title screen of doom says "Suggested retail price $9
dollars" on it and then we told the companies that were already in the stores "if
you put DOOM in the store in a box on the shelf you just keep all the money.
We don’t want any of it just put it in a box and sell it".

Nutty, except that worked. It was everywhere. If you went into a CompUSA
back then in 1994 you would see ten different boxes of doom and think they’re
all different games but they’re all the same shareware game. Distributors
ended up trying to make the best looking boxes to outperform their competitors
because all they were allowed to sell was the shareware.

— John Romero ”
The success of the formula exceeded their wildest expectations. The shareware version
would find its way everywhere, even into the most surprising packages.

Despite manufacturing difficulties, the famous "DOOM Strategy guides" had the two flop-
pies in an envelope on the back cover of books. Magazines also jumped on the opportunity
even if they had to be wrapped in plastic to hold the floppies.
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Figure 4.16: DOOM shareware floppy disks

Figure 4.16 shows two 31/2" floppy disks containing DOOM shareware, bundled with the
book "Survivor’s Strategies and Secrets". The publisher paid no royalties for that.

The binary packaging was a departure from their previous title. While Wolfenstein 3D
shipped with a WOLF3D.EXE engine and a multitude of .WL6 files, DOOM had only two
relevant files. After installation, besides a few TXT files and network drivers, the gaming
experience was entirely contained in the engine DOOM.EXE and all assets contained in
DOOM.WAD.

11%

DOOM.EXE

89%

DOOM.WAD

The registered version occupied 11,869,745 bytes on the HDD, with 709,905 bytes dedi-
cated to DOOM.EXE and 11,159,840 bytes for DOOM.WAD.
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Trivia : The game was also released on the Internet. On December 10th, 1993 they tried
to seed it on ftp://ftp.wisc.edu/ but they could not connect since gamers were per-
manently connected to the server in order to be the first to get it.

There was no difference between the two DOOM.EXEs from the registered (paid) and the
unregistered (free) versions of the game. The engine scanned the current directory, rec-
ognized the filename of the WAD archive, and branched accordingly.

52.9%

Graphics

29.1%

Map

9.9%

Music

8.1%

Sound Effects

Content of DOOM.WAD

4.10.1 WAD archives: Where’s All the Data?

The goal of the WAD format was partly to replace the OS filesystem but mostly to embrace
the modding community. In a WAD, each asset is stored in a "lump". The WAD is made of
three parts with a header, the lump content, and a directory at the end.

typedef struct {
char magicNumber [4]; // "IWAD" or "PWAD"
int32_t numDirectories; // #lumps in directory
int32_t directoryOffset; // Offset to directory

} header;

typedef struct {
int32_t offset; // Offset to lump
int32_t size; // Size of the lump
char name [8]; // Name of the lump

} directoryEntry;
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Trivia : The extension WAD was coined by Tom Hall during an uncanny dialog. John Car-
mack was looking for a name for the archive format. Upon asking "How do you call a file
Where’s All the Data?", Tom responded immediately: "A WAD!"

I W A D

# LUMPS

DIRECTORY

HEADER

OFFSET

SIZE

LUMP

NAME

OFFSET

SIZE

LUMP

NAME

DIRECTORY

LUMPS

32 bits

Figure 4.17: A wad file containing two lumps.

The archive format was manipulated via two tools. lumpy took a blob and packed it inside
a lump, inside a WAD. wadlink took several WADs and created/appended them into a single
WAD. The structure allows easily adding or removing lumps, since adding a lump only re-
quires moving the small directory at the end and updating the header offset.

DOOM.EXE had a command-line parameter allowing modders to load their own WADs in
order to overwrite DOOM.WAD lump entries. This mechanism permitted to customize almost
everything. A custom WAD containing an E1M1 lump could be used via a simple doom -file
mylevel.wad command (detailed on page 178).
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DOOM.EXEDOOM.WAD
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Figure 4.18: DOOM assets pipeline.
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Software: idTech 1

5.1 Source Code

The source code of DOOM was released on December 23, 1997, roughly four years after
the commercial release of the game. Originally hosted on id Software’s FTP server, the
code was transitioned to github.com where it can still be found to this day.

git clone git@github.com:id-Software/DOOM.git

In the long series of id software source code releases1, DOOM stands apart since what
was released was not what was used to ship the game. There is a little bit of a back story.

In early 1997, Bernd Kreimeier approached id Software with a business proposition. He
wanted to write a book explaining the internals of the game engine, how to compile, and
how to modify it. The idea was to release the book along with the source code.

People at id, especially John Carmack thought it was the "Right Thing" to do2. They
promptly sent him the source code. Upon reviewing it Bernd realized he had to make a
few important decisions. Between the development requirements and Dave Taylor’s ports
there was code specific to many platforms. The engine could be compiled on no less than
five operating systems. Linux, NeXTSTEP, SGI IRIX, and of course MS-DOS were sup-
ported. To make the code easier to understand, Bernd decided to pick one platform and
delete everything unrelated.

The ideal choice would have been the MS-DOS version. It was the dominant operating
system and it was the version players had experienced the game with. However, there

1From 1993 to 2012, id Software released the code for all games it produced.
2"The Right Thing" is a concept mentioned in the book "Hackers: Heroes of the Computer Revolution" by

Steven Levy. It was often quoted in John Carmack’s finger plans.
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was a copyright issue. id Software had licensed an audio library, DMX, the code to which
was proprietary and could not be included with the source. MS-DOS was a no-go.

Another option would have been to release the NeXSTEP version which had seen the
most usage and therefore was the second most stable. However, since NeXT had stopped
manufacturing workstations in 1994 and sold fewer than 50,000 units over its lifetime this
was also a dead end. Few people would have had the software to enjoy it. There was a
second problem with NeXTSTEP – the sound and music systems had never been imple-
mented for this platform. NeXTSTEP was also a no-go.

The third available option was the Linux build, and that is what Bernd picked. As he was
stripping the code of everything not related to Linux and writing the book, hardware and
software kept on evolving. Ultimately, the world of gaming changed faster than he could
write and before he was finished, interest in DOOM had decreased in favor of newer en-
gines such as Quake and Duke Nukem 3D.

With the profitability of the venture compromised, the publisher withdrew and the book
project was abandoned3. With the blessing of id Software, Kreimeier released the Linux
code he had cleaned up. This port has become the base for hundreds of forks since.4.

5.2 Architecture

Before diving into the code and its structure, let’s take some time to understand how id’s
developers worked. Before DOOM, all work was done on a PC. Code was written and
compiled, and the resulting executable started on the same machine. With the introduction
of NeXT workstations into the mix, the process had to be different.

A developer had two machines, a NeXT workstation and a PC. All authoring work was
done on the NeXT. Code was written with TextEdit.app, compiled with gcc, linked with
ld, and the executable ran on the NeXTstation. The biggest advantage of working on a
Unix system was stability. Developers never lost their work due to IDE crashes5.

Once the developer was happy with the result, he switched to his second machine. In order
to do so, he literally rolled his chair over to the PC where the NeXT workstation’s hard-drive
was mounted over NFS. The PC compiled the same source code6 a second time, using

3What survived, "A Brief Summary of DOOM style Rendering by Robert Forsman and Bernd Kreimeier" was
of high quality.

4The original MS-DOS code can largely be reconstructed thanks to Raven who were much less conservative
about DMX-related code. Large portions of previously censored portions of the source, such as i_sound.c and
i_ibm.c can be found in the Heretic and Hexen source code.

5With Borland C++, crashes were a daily occurrence (source: correspondence with John Carmack).
6With some platform specifics.
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WATCOM.EXE and the WLINK.EXE linker which generated DOOM.EXE.

In this setup the PC was relegated to "only" running the game and assessing performance.
The PC’s hard-drive was actually used only to boot the machine and host the WATCOM com-
piler. Everything else including the DOOM.EXE executable was stored on the NeXT SCSI
HDD.

There were significant obstacles to this methodology. First of all, DOS programs had direct
access to the hardware whereas NeXT processes had to use "official" APIs. Second and
perhaps most importantly, the two machines had different endianness. PCs ran on Intel
CPUs which were little-endian whereas NeXT machines used the big endian Motorola
68040 CPU.

NFS SERVERNFS CLIENT

PC NeXT

/home/johnc/doomZ:\DOOM\

Figure 5.1: NeXT HDD user home folder is mounted on DOS machine as Z drive.

5.2.1 Solving Endianness

Endianness was a term introduced by Danny Cohen in his essay "On holy wars and a plea
for peace". His satire, based on Gulliver’s Travels in which civil war erupts over whether
the big end or the little end of a boiled egg is the proper end to crack open, made for an
analogy between two schools of thought among CPU manufacturers. Some wanted bytes
organized in memory from left to right, some wanted them right to left. Each side viewed
their way as the best one.

In a war where programmers paid the price, no side had any incentive toward peace.
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The order of bits in a byte was in universal agreement, but the order of bytes in larger
structure, such as shorts (16 bits) or ints (32 bits) was differently interpreted based on the
vendor’s internal architecture. The stream 0x12, 0x34, 0x56, 0x78 can be interpreted in
two ways. On an Intel little-endian machine, it will be become 0x78563412. On a Motorola
big-endian machine, it will become 0x12345678.

0x12

0x120x12

0x34

0x340x34

0x56

0x560x56

0x78

0x780x78

SOURCE

BE MEMORYLE MEMORY

Figure 5.2: A tiny wiring difference results in a hard frontier between CPU words

At the game engine level, the problem was solved via a layer of indirection with a simple
macro7. When reading from disk, the engine always uses either the LONG or SHORT macro
to interpret data.

#ifdef __BIG_ENDIAN__
long LongSwap(long);
#define LONG(x) LongSwap(x)
#else
#define LONG(x) (x)
#endif

long LongSwap (long dat) {
return ( dat >>24) |

((dat >>8) & 0xff00) |
((dat <<8) & 0xff0000) |
( dat <<24);

}

Even though DOOM was written first on a NeXT , the platform intentionally placed itself at
a disadvantage. Because players would use MS-DOS, data was stored in little-endian so

7As of 2018 it seems the holy war is finally over. The little-endian tribe of Intel, AMD, and ARM has won.
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LONG and SHORT macros translated to zero instructions on consumer Intel based hardware.

5.2.2 Solving APIs

Accommodating the need to run on different operating systems was more challenging. The
solution was to have a common "core" that was platform agnostic. To perform I/O, the core
would tap into sub-systems specific to the platform they targeted.

CORE

VIDEO

CONTROLS

AUDIO

RAM

FILESYSTEM

NETWORK

Figure 5.3: DOOM’s core and its I/O platform-dependent systems. Notice the similarities
with the design of an operating system.

In the case of the video system, it would be using the VGA hardware on MS-DOS but the
NSWindow API on NeXT . A naive implementation would have required a function pointer
acting as a layer of indirection to dispatch each I/O call. A better solution leveraged C’s
linking stage.

While building a C program, all compilation units (.c files) are compiled independently. At
the end of the compilation step, all .c files have been transformed into object (.o) files.
Object files may reference each other but because they were created independently, they
have "holes" called "unresolved symbols". To generate an executable, all objects are given
to a linker which will recognize unresolved symbols from all objects and patch the holes.

Taking the example of s_sound.c which is part of the core and looking at s_sound.o, we
can see this translation unit uses functions such as I_PlaySong and I_StartSound which
are defined in the platform-specific sound system.
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Asking nm for undefined symbols shows an object file’s "holes".

$ clang -c -o s_sound.o s_sound.c

$ nm -u s_sound.o | grep I_
U _I_Error
U _I_GetSfxLumpNum
U _I_PauseSong
U _I_PlaySong
U _I_RegisterSong
U _I_ResumeSong
U _I_SetChannels
U _I_SetMusicVolume
U _I_SoundIsPlaying
U _I_StartSound
U _I_StopSong
U _I_StopSound
U _I_UnRegisterSong
U _I_UpdateSoundParams

After the linker is done, there are no more unresolved symbols. The final executable is
ready to run.

DOS

NeXT

s_sounds.c i_ibm.c i_next.m

gcc

WATCOM.EXE

s_sounds.o

s_sounds.obj

i_ibm.obj

i_next.o

Doom.app/doom

DOOM.EXEWLINK.EXE

ld

SOURCE CODE

Figure 5.4: Most of the DOOM code is shared. Only a few files are platform specific.
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GAMEPLAY

p_ceilng.c

p_doors.c      

p_enemy.c

p_floor.c      

p_inter.c

p_lights.c

p_map.c

p_maputl.c

p_mobj.c

p_plats.c      

p_pspr.c 

p_setup.c

p_sight.c

p_spec.c

p_switch.c

p_telept.c

p_tick.c 

p_user.c 

RENDERER

r_bsp.c

r_data.c 

r_draw.c 

r_main.c 

r_plane.c

r_segs.c 

r_things.c

MEMORY

z_zone.c

VIDEO

v_video.c

STATUSBAR

st_lib.c

st_stuff.c

SOUND

s_sound.c

sound.c

HEADUP

hu_lib.c

hu_stuff.c

MENU

m_menu.c

m_misc.c

MAIN

d_main.c

d_net.c

MISC

am_map.c

dutils.c

f_finale.c

g_game.c
info.c

tables.c

wi_stuff.c

w_wad.c

VIDEO 

SYSTEM

AUDIO 

SYSTEM
NETWORK 

SYSTEM

INPUTS 

SYSTEM

FILE 

SYSTEM

RAM 

SYSTEM

Figure 5.5: DOOM source code architecture

In white are the core components. In grey are the I/O systems which require platform-
specific code. On DOS these are provided by six extra files: i_main.c, i_ibm.c, planar.asm,
i_ibm_a.asm, i_sound.c, and i_cyber.c.
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wcc386p %CFLAGS% i_main.c /fo=pc_obj\i_main.obj
wcc386p %CFLAGS% i_ibm.c /fo=pc_obj\i_ibm.obj
tasm /mx i_ibm_a.asm
wcc386p %CFLAGS% i_sound.c /fo=pc_obj\i_sound.obj
wcc386p %CFLAGS% i_cyber.c /fo=pc_obj\i_cyber.obj
tasm /mx planar.asm
wcc386p %CFLAGS% tables.c /fo=pc_obj\tables.obj
wcc386p %CFLAGS% f_finale.c /fo=pc_obj\f_finale.obj
wcc386p %CFLAGS% d_main.c /fo=pc_obj\d_main.obj
wcc386p %CFLAGS% d_net.c /fo=pc_obj\d_net.obj
wcc386p %CFLAGS% g_game.c /fo=pc_obj\g_game.obj
wcc386p %CFLAGS% m_menu.c /fo=pc_obj\m_menu.obj
wcc386p %CFLAGS% m_misc.c /fo=pc_obj\m_misc.obj
wcc386p %CFLAGS% am_map.c /fo=pc_obj\am_map.obj
wcc386p %CFLAGS% p_ceilng.c /fo=pc_obj\p_ceilng.obj
wcc386p %CFLAGS% p_doors.c /fo=pc_obj\p_doors.obj
wcc386p %CFLAGS% p_enemy.c /fo=pc_obj\p_enemy.obj
wcc386p %CFLAGS% p_floor.c /fo=pc_obj\p_floor.obj
wcc386p %CFLAGS% p_inter.c /fo=pc_obj\p_inter.obj
wcc386p %CFLAGS% p_lights.c /fo=pc_obj\p_lights.obj
wcc386p %CFLAGS% p_map.c /fo=pc_obj\p_map.obj
wcc386p %CFLAGS% p_maputl.c /fo=pc_obj\p_maputl.obj
wcc386p %CFLAGS% p_plats.c /fo=pc_obj\p_plats.obj
wcc386p %CFLAGS% p_pspr.c /fo=pc_obj\p_pspr.obj
wcc386p %CFLAGS% p_setup.c /fo=pc_obj\p_setup.obj
wcc386p %CFLAGS% p_sight.c /fo=pc_obj\p_sight.obj
wcc386p %CFLAGS% p_spec.c /fo=pc_obj\p_spec.obj
wcc386p %CFLAGS% p_switch.c /fo=pc_obj\p_switch.obj
wcc386p %CFLAGS% p_mobj.c /fo=pc_obj\p_mobj.obj
wcc386p %CFLAGS% p_telept.c /fo=pc_obj\p_telept.obj
wcc386p %CFLAGS% p_tick.c /fo=pc_obj\p_tick.obj
wcc386p %CFLAGS% p_user.c /fo=pc_obj\p_user.obj
wcc386p %CFLAGS% r_bsp.c /fo=pc_obj\r_bsp.obj
wcc386p %CFLAGS% r_data.c /fo=pc_obj\r_data.obj
wcc386p %CFLAGS% r_draw.c /fo=pc_obj\r_draw.obj
wcc386p %CFLAGS% r_main.c /fo=pc_obj\r_main.obj
wcc386p %CFLAGS% r_plane.c /fo=pc_obj\r_plane.obj
wcc386p %CFLAGS% r_segs.c /fo=pc_obj\r_segs.obj
wcc386p %CFLAGS% r_things.c /fo=pc_obj\r_things.obj
wcc386p %CFLAGS% w_wad.c /fo=pc_obj\w_wad.obj
wcc386p %CFLAGS% wi_stuff.c /fo=pc_obj\wi_stuff.obj
wcc386p %CFLAGS% v_video.c /fo=pc_obj\v_video.obj
wcc386p %CFLAGS% st_lib.c /fo=pc_obj\st_lib.obj
wcc386p %CFLAGS% st_stuff.c /fo=pc_obj\st_stuff.obj
wcc386p %CFLAGS% hu_stuff.c /fo=pc_obj\hu_stuff.obj
wcc386p %CFLAGS% hu_lib.c /fo=pc_obj\hu_lib.obj
wcc386p %CFLAGS% s_sound.c /fo=pc_obj\s_sound.obj
wcc386p %CFLAGS% z_zone.c /fo=pc_obj\z_zone.obj
wcc386p %CFLAGS% info.c /fo=pc_obj\info.obj
wcc386p %CFLAGS% sounds.c /fo=pc_obj\sounds.obj
wcc386p %CFLAGS% dutils.c /fo=pc_obj\dutils.obj
wlink @newdoom.lnk ..\ dmx\lib\dmx_r.lib
wstrip newdoom
c:\4 gwpro95 \4 gwbind c:\4 gwpro95 \4 gwpro.exe newdoom.exe doom.exe -v
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Trivia : A full DOS build took an average of 3m19s. Linking alone took 19 seconds. Even
incremental builds were time-consuming (e.g: change r_sky.c = 27s).

Notice the prefixed file name in figure 5.5. Since C has no namespaces, these prefixes are
also applied to function names. I_ stands for "implementation-specific", P_ gameplay, R_
is for renderer and so on.

The beauty of this architecture is that once the platform-specific systems are written, there
is zero overhead to writing code that runs on multiple platforms. Most of the code goes
into the core and the platform-specific code needs not be touched any more.

Because portability was not an afterthought but an integral part of the development pro-
cess, DOOM’s code layering is never violated. This rigorous design partly explains why
DOOM has been ported to so many systems: there is very little code to write8.

Additionally, working with multiple compilers such as gcc and Watcom not only surfaced
many bugs, it also ensured the code would be ANSI standard compliant.

5.3 Diving In!

Just before finally jumping in, here are a few stats gathered with the cloc tool, just to know
what volume of code to expect. There is almost twice as much code as in Wolfenstein 3D.

$ ./cloc.pl doom -dos -src
167 text files.
163 unique files.
54 files ignored.

---------------------------------------------------------
Language files blank comment code
---------------------------------------------------------
C 63 6069 6034 31226
C/C++ Header 36 1022 760 4665
Objective C 5 354 310 1061
Assembly 3 167 151 668
make 1 20 8 34
C Shell 4 14 0 23
DOS Batch 2 2 4 9
---------------------------------------------------------
SUM: 114 7648 7267 37686
---------------------------------------------------------

8"I ported DOOM to the Nintendo Switch in 45 minutes" by Modern Vintage Gamer on youtube.com.
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Figure 5.6: Lines of code from id Software game engines.

5.3.1 Where Is My Main?

Exploring a source code repository always starts with finding out what the OS will select as
the entry point. 99% of the time it means finding the int main(int,char**) function9.
In the case of DOOM there is one entry point per OS and they are all in implementation-
specific (I_*) files. For DOS it is in i_main.c10.

Regardless of the platform, all entry points converge on the core main function named
D_DoomMain located in d_main.c.

System DOS Implementation NeXT Implementation

Video System VGA NSWindow/libinterceptor
Audio System DMX Not Implemented
Control System DPMI Interrupts NSWindow/NXEvent
File System WAD/ endian macros WAD/ endian macros
Network System Direct interrupts BSD socket
RAM System greedy malloc tight 4 MiB malloc

Figure 5.7: Platform code specific.

Trivia : NeXT platform-specific code was written in Objective-C. All code was in five files
named DRCoord.m, VGAView.m, Doom_main.m, i_next.m, and r_debug.m.

9Of course, it is different on Microsoft Windows and you have to search for WinMain().
10On NeXT the main function is located in Doom_main.m and all it does is load "DoomRef.nib" into the window

system.
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#include "doomdef.h"

void main (int argc , char **argv) {
myargc = argc;
myargv = argv;
D_DoomMain ();

} /* i_main.c */

void D_DoomMain (void) {
FindResponseFile (); // Search doom.wad , doom1.wad...
IdentifyVersion (); // shareware or registered?

V_Init (); // Video system.
M_LoadDefaults (); // Load params from default.cfg
Z_Init (); // Zone Memory Allocator
M_Init (); // Menu
R_Init (); // Renderer
P_Init (); // gamePlay
I_Init (); // Implementation dependant
D_CheckNetGame (); //
S_Init (); // Sound
HU_Init (); // HUD
ST_Init (); // Status Bar

D_DoomLoop (); // never returns
} /* d_main.c */

No surprises in D_DoomMain, the engine begins by initializing all its sub-systems before
jumping to a loop which will never return (D_DoomLoop).

Prefixes on translation units (and function names inside them) help to build a mental map
of the various sub-systems. V_ is for Video, M_ is for Menu, Z_ is for Zone Memory Allo-
cator, R_ is for Renderer, P_ is for gamePlay, I_ is for Implementation dependent, D_ is for
main Doom, S_ is for Sound, HU_ is for HUD, and ST_ is for STatus bar.

The developers did not try to hide what was going on during startup. DOOM’s openness
needed no splash screen. The text mode messages show the player what is going on
behind the scenes (figure 5.8). For each initializer a line is output to the extent that the
DOS screen on the right closely mirrors the source code in D_DoomMain.

The startup step was fairly fast except for the excruciating renderer initialization in R_Init
which took forever to complete. It featured not only a line but also a progress bar made
up of dots which often required up to a minute to complete on the full version depending
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on the machine’s hard drive access time. The details and meaning behind each dot are
explained in the appendix on page 379.

Trivia : The -devparm command line parameter shows more text output. One of these
is "I_StartupSound: Hope you hear a pop" which refers to the sound old speakers
emitted when they were turned on. In an era before Plug&Play and the Internet, it was an
achievement itself to configure the sound card’s mysterious IRQ and DMA parameters.

DOOM System Startup v1.9
P_Init: Checking cmd -line parameters ...
V_Init: allocate screens.
M_LoadDefaults: Load system defaults.
Z_Init: Init zone memory allocation daemon.
DPMI memory: 0xd59000 , 0x800000 allocated for zone
W_Init: Init WADfiles.

adding ./doom.wad
registered version.

===========================================================
This version is NOT SHAREWARE , do not distribute!

Please report software piracy to the SPA: 1-800-388- PIR8
===========================================================
M_Init: Init miscellaneous info.
R_Init: Init DOOM refresh daemon - [......................]
P_Init: Init Playloop state.
I_Init: Setting on machine state.
I_StartupDPMI
I_StartupJoystick
I_StartupSound
I_StartupTimer ()

calling DMX_Init
D_CheckNetGame: Checking network game status.
startskill 2 deathmatch: 0 startmap: 1 startepisode: 1
player 1 of 1 (1 nodes)
S_Init: Setting up sound.
HU_Init: Setting up heads up display.
ST_Init: Init status bar.

Figure 5.8: DOS output upon starting DOOM.EXE

The game engine executable which shipped with the registered version of the game was
the same that shipped with the shareware version. Two functions, FindResponseFile and
IdentifyVersion, simply looked for the asset file and switched a flag depending on what
WAD had been found (DOOM1.WAD or DOOM.WAD).
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5.4 Fixed Time Steps

Peeking inside D_DoomLoop reveals a standard loop where the machine runs as fast as
possible to update the game simulation according to user input and A.I., and then gener-
ate visual and audio output.

void D_DoomLoop (void) {
I_InitGraphics ();
while (1) {

I_StartFrame (); // frame synchronous IO operations.
TryRunTics (); // Simulate based on I/O and A.I.
S_UpdateSounds (); // Generate audio.
D_Display (); // Generate video.

}
}

The game simulation happens in TryRunTics and uses fixed time steps. The body of the
function is summarized as follow:

void TryRunTics (void) {
int availabletics;
int entertic;
static int oldentertics;

// decide how many tics to run.
entertic = I_GetTime ();
realtics = entertic - oldentertics;
int counts = realtics;

// Run as many tics as necessary.
while (counts --){

M_Ticker ();
G_Ticker ();
gametic ++;
NetUpdate ();

}
}

DOOM’s unit of time is the tic. There are 35 tics in a second (which means a tic is 28ms)
and I_GetTime’s clock unit is also the tic. On each iteration of D_DoomLoop the engine
calculates how many tics have elapsed and advances the simulation by that amount. Only
fully-elapsed tics are simulated. The value of 35 was not random; it is half the frequency of
the VGA mode-Y. Once the game state has been updated, video and audio are generated.
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Figure 5.9

This design choice would end up being controversial. On the one hand it solved the issue
of recording a game session and being able to play back on any machine without desync.
It also enabled network play and multiscreen play. On the other hand, it meant that no mat-
ter how fast the renderer could run, the game would only update at 35Hz which capped
the visible framerate on the next generation of PCs based on Pentium CPUs.

5.5 Game Thread/Sound Thread

MS-DOS did not support processes or threads, yet video and audio had to happen in par-
allel. To make this happen, the audio system is based on interrupts generated at a regular
interval. This is explained in detail in the audio section on page 252.

DOOM ENGINE

RAM

SOUND ENGINE Heartbeats

ticcount

Figure 5.10

To disable register caching (resulting in infinite loops), the variable written by the sound
engine and read by the DOOM engine is declared volatile int ticcount.
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5.6 Fixed-point arithmetic

Since the Intel 486 CPU was unable to execute floating-point instructions fast enough, the
programmers had to find a way to manipulate and store fractional values during calcula-
tions. The answer to this problem was to use fixed-point arithmetic.

Designers at Intel had designed their CPUs to manipulate two types of 32-bit integers. In
unsigned integers each bit represents a value from 0 to 232 − 1 for a decimal range of [0
to 4,294,967,295].

20231

Figure 5.11: 32-bit unsigned integer bit values

Signed integers use two’s complement where all bits represent a positive value except for
the last one which is a negative value. Signed integers are able to represent values from
−231 to 231 − 1 yielding a decimal range of [-2,147,483,648 to 2,147,483,647].

20215216−231

Figure 5.12: 32-bit signed two’s complement bit values

For certain types of calculations, DOOM resorts to using a different layout. The signed
fixed-point format used is 16:16 where bit 31 encodes a negative integer (−215), bits [30-
16] store a positive integer, and bits [15-0] are used to store the fractional part. The decimal
range is [-32768.0 to 32767.9999847]11.

−215 21 20 2−1 2−3 2−16

Figure 5.13: 32-bit DOOM fixed-point bit values

To help differentiate "regular" variables from "fixed-point" variables, a simple typedef fixed_t
is used.

11All 32 bits set to 1 is the maximum value where the negative bit (−215) = -32768 is added to the positive
values: (214 + 213 + 212 + 211 + 210 + 29 + 28 + 27 + 26 + 25 + 24 + 23 + 22 + 21 + 20 + 2−1 + 2−2 +
2−3 + 2−4 + 2−5 + 2−6 + 2−7 + 2−8 + 2−9 + 2−10 + 2−11 + 2−12 + 2−13 + 2−14 + 2−15 + 2−16) =
32767.9999847.
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#define FRACBITS 16
#define FRACUNIT (1<<FRACBITS)
typedef int fixed_t;

The beauty of the fixed-point system is that it "just works" at the ALU level – the CPU exe-
cutes instructions the same way. To convert from one type to another is very simple. From
integer to fixed point is a cheap "<< 16" bitwise left shift. From fixed point to integer is the
reverse operation, a ">> 16" bitwise right shift.

As an example, 0.5 + 3.75 = 4.25 yields the correct result bitwise.

00000000000000010000000000000000

Figure 5.14: Fixed-point representation of 0.5

00000000000000111100000000000000

Figure 5.15: Fixed-point representation of 3.75

00000000000000100010000000000000

Figure 5.16: Fixed Point representation of 4.25

Even bitwise operations work such as fast divide/multiply with left shift ("<<") and right shift
(">>").

00000000000000010001000000000000

Figure 5.17: Fixed Point representation of 4.25 « 1 = 8.5

There are only two limitations to this system:

∙ Contrary to floating point, there is no sliding window compensation to avoid overflow
and adjust precision. Overflows have to be avoided otherwise information is lost
(there are display bugs with extremely large maps caused by this specific problem).

∙ Integers and fixed-point variables cannot be mixed during operations. The program-
mer has to manually convert from one to the other since the C language will not
"promote" types automatically.

171



5.7. ZONE MEMORY MANAGER CHAPTER 5. SOFTWARE: IDTECH 1

5.7 Zone Memory Manager

Like all game engines of the era, DOOM did not trust stock malloc, not even the one pro-
vided by Watcom with libc. Because it could lead to memory fragmentation, a standard
allocator would have jeopardized the stability of the engine. They were also wasteful for
small allocations since they were optimized for big chunk allocations which is not what the
engine does. They lacked good debugging tools to track leaks and buffer overflows. Finally
none of them were portable. So DOOM uses its own memory manager.

Trivia : The engine runs on a clearly-established memory budget. Upon starting up on
NeXT the memory manager allocates 4 MiB of RAM and not a byte more. This is done in
order to make sure the advertised minimum 4 MiB configuration is sufficient. On DOS the
memory manager checks that the machine has at least 4 MiB but will use up to 8 MiB if
available in order to improve its cache retention.

The first incarnation of the memory manager was based on zones. Each zone had a mem-
ory pool from which RAM could be allocated. This design gave the allocator the name
"zone allocator", with the prefix Z_, and filename z_zone.c. Later the multi-zone idea was
abandoned (maybe thanks to DOS/4GW which unified the RAM) in favor of a design fea-
turing one zone containing a chain of blocks. The Zone name was still cool, so it remained.

Looking at the code’s structs sheds light on how the memory manager works.

typedef struct memblock_s {
int size; // header and fragments
void **user; // NULL if a free block
int tag; // purgelevel
int id; // should be ZONEID
struct memblock_s *next , *prev; // Double linked list

} memblock_t;

typedef struct {
int size; // total bytes malloced ,
memblock_t blocklist; // start/end linked list
memblock_t *rover;

} memzone_t;

memzone_t *mainzone;

The memory allocator uses only one zone for the entire available RAM. This "main" zone
is a doubly-linked circular list made of blocks. A block can represent in-use RAM if it has
a **user value or it can represent free RAM if user is NULL. At all times the block chain
tracks all RAM on the machine.

172



CHAPTER 5. SOFTWARE: IDTECH 1 5.7. ZONE MEMORY MANAGER

Each block is tagged with a purge hint so the allocator can know whether it can free this
block when responding to an allocation request.

// -----------
// MEMORY ZONE
// -----------
// tags < 100 are not overwritten until freed
#define PU_STATIC 1 // static entire execution time
#define PU_SOUND 2 // NEVER USED
#define PU_MUSIC 3 // static while playing
#define PU_DAVE 4 // Dave’s static NEVER USED
#define PU_LEVEL 50 // static until level exited
#define PU_LEVSPEC 51 // a special thinker in a level
// tags >= 100 are purgable whenever needed
#define PU_PURGELEVEL 100
#define PU_CACHE 101

In its initial state (assuming the entire RAM is 8000 bytes) all RAM is in a single block which
is marked STATIC. It has a NULL user which means this is a free block. Its size is 8000
bytes. Both next and prev point to itself. The rover points to the only block in existence.

STATIC

8000

N

P
NULL

ROVER

For each call to Z_Malloc, the rover searches for a free block big enough. Once found, it
creates a block and shrinks the free block. Two calls with sizes of 1000 and 3000 result in
three blocks in the chain. Notice the default user value (2) which will be explained later.

MUSIC

1000

N

P

2
LEVEL

3000

N

P
2

STATIC

4000

N

P

NULL

ROVER
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Eventually the allocator will receive a request for an amount of RAM that the "free" block
pointed to by the rover doesn’t have. In the following configuration, the free block has only
500 bytes. Any request asking for more than that amount will fail.

500

N

P

NULL

ROVER

2000

N

P

A

2000

N

P

B

3000

N

P

C

500P

N
D

To fulfill a memory request, the rover will start by marking its current position and scan for
a free block big enough. If the rover comes back to the same position, there is no free
block big enough to satisfy the request. Here the engine will throw an error and terminate.

What is likely to have happened is that some blocks will have been freed via Z_Free in the
meantime. When a block is freed, its user is set back to NULL and both neighboring free
blocks are merged. Let’s assume block B and block C have been freed. They would have
been both merged into one free (owner=NULL) 5000 bytes block.

500

N

P

NULL

ROVER

2000

N

P

A

5000P

N
NULL

500P

N
D

To allocate 1KB, the rover will "roll over", discover the free block and use it for block E.

500

N

P

NULL

ROVER

2000

N

P

A

4000P

N
NULL

500P

N
D

1000P

N
E

There is a third case which is vastly more interesting. So far we have only talked about
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statically-allocated blocks such as STATIC, MUSIC, or LEVEL. But there is a third kind of tag
which belongs to the "purgeable" category.

It is mostly used by the WAD/lump manager described in the next section. If a block is
marked PU_CACHE it means the engine doesn’t need the data now but it may in the future.
However, the memory allocator is allowed to free it. In the following configuration there is
not enough space in any block to successfully allocate 1000 bytes.

500

N

P

NULL

ROVER

N

P 2000
A

500P

N
E

4000P

N
F

PU_CACHE

500P

N
D

The rover will follow the chain and find block F, deallocate it (even though it has an owner)
and use it. The result will be the new block G followed by a free block of size 3000.

500

N

P

NULL

ROVER

N

P 2000

A
500P

N
E

1000P

N
G

500P

N
D

N

3000P

NULL

The memory manager has many other features over libc’s malloc. The field id is used as
a canary marker to detect memory overflow (the value should always be ZONEID). Z_Free
is able to detect mismanagement such as double frees. A dump system accessed via
Z_DumpHeap allows memory inspection. There is even an integrity checker, Z_CheckHeap,
which verifies that each block "touches" the next and that there are no two consecutive
free blocks.

Trivia : Blocks can be "retagged" via the function Z_ChangeTag. It is frequent for the
engine to allocate memory blocks with a PU_STATIC tag while working with assets, only
to change the tag to PU_CACHE after it is done with it. This allows memory to be freed if
needed while potentially avoiding a round trip to the HDD if the block is needed again and
is still in RAM.
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5.8 Filesystem

DOOM barely interacts with the OS’s file system. During a typical gaming session, the
engine DOOM.EXE only needs to open DOOM.WAD in order to access its assets. Therefore,
the engine does not deal with files but rather with something called lumps which are the
atomic unit of a .wad archive and its associated caching system.

While DOOM.EXE remained relatively stable, the asset archive kept on growing, with each
new game being more elaborate than the last, as seen in the following list of .wads.

Game Archive
name

# Lumps Size in bytes

Doom Shareware DOOM1.WAD 1264 4,196,020
Doom Registered DOOM.WAD 2194 11,159,840
Doom II: Hell on Earth DOOM2.WAD 2918 14,604,584
Ultimate Doom UDOOM.WAD. 2306 12,408,292
The Plutonia Experiment PLUTONIA.WAD 2984 17,420,824
TNT: Evilution TNT.WAD 3101 18,195,736
French Doom II DOOM2F.WAD 2913 14,607,420

Heretic Shareware HERETIC1.WAD 1374 5,120,920
Heretic Registered HERETIC.WAD 2633 14,189,976

Hexen Demo HEXENDEMO.WAD 2856 10,644,136
Hexen Registered HEXEN.WAD 4270 20,083,672
Hexen Deathkings of DC HEXDD.WAD 326 4,440,584

Figure 5.18: WAD files in the many versions of DOOM12

Trivia : There was no need for an I_* abstraction layer to access the OS filesystem. Luck-
ily, all systems now offered standard functions such as open, lseek, read, and close.

Lumps are identified by a unique name made of up to eight characters (which conveniently
matches DOS’s filename length limitation).

typedef struct {
char name [8];
int handle ,position ,size;

} lumpinfo_t;

There were more than thirty types of lump. Those associated with maps and music fol-
lowed a naming convention so they could be grouped together. Not all lumps had content,
some were only used to mark the beginning and end of groups of lumps.

12Source: doomgod.com "Internal War Allocation Daemons"
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Lump Name Usage

PLAYPAL The fourteen palettes used at runtime. Detailed on page 246.
COLORMAP Translation tables to simulate 32 shades of each of the 256 colors.

Detailed on page 230.
DEMO? Recordings of game sessions by id Software members. Played on

game startup as "arcade style" demo.

EXMY Zero-sized lump serving as marker for the beginning of a series of
map lumps. X is the episode number and Y is the map id. The
MAPXY variant was used later for the same purpose.

THINGS All monsters, weapons, ammo, and sprites in the current map.
LINEDEFS All lines referenced by SECTORS.
SIDEDEFS All sides referenced by LINEDEFS. A line can have 1 or 2 sides.
VERTEXES All vertices in the current map.
NODES A binary tree allowing efficient sorting of segments.
SSECTORS The sub-sectors, leaves of the binary tree in NODES.
SEGS The segments pointed to by the SSECTORS lumps.
SECTORS Referenced by SSECTORS. Specifies ceiling/floor height, texture,

and lighting properties.
BLOCKMAP A collision detection acceleration structure slicing the map into

128x128 blocks. Provides fast access to all LINEDEFS neighboring
any point on the map. Detailed on page 262.

REJECT Line of sight acceleration data structure.

DP.* Sound effects in PC Speaker format.
DS.* Sound effects in PCM Mono, 8-bit 11kHz (22kHz supported but

used only for DOOM II’s Super Shootgun).
D_.* Music in MUS format (a slightly altered MIDI format).

ENDOOM Text-mode exit screen to entice players to buy the full version.
DMXGUS Translation table to match a MIDI instrument with a Gravis Ultra

Sound sample file.
GENMIDI Bank of instrument data to play MIDI music with an OPL audio chip.
PNAMES Lists all lump names used as wall patches.
TEXTURE1 A dictionary of all wall texture lumps referenced by SIDEDEFS.

Used to speed up access and allocation at runtime.
F_START Zero-sized lump marking the beginning of flat textures.
F_END Zero-sized lump marking the end of flat textures.
S_START Zero-sized lump marking start of item/monster "sprites" section.
S_END Zero-sized lump marking end of item/monster "sprites" section.
P_START Zero-sized lump marking the beginning of wall textures.
P_END Zero-sized lump marking the end of wall textures.
.* Many others, fonts, TITLEPIC, HELP screens, intermission screens,

VICTORY screen...
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5.8.1 Lumps

The lump system is the least glamorous part of the engine but one of the coolest in its
implementation and what it had to offer to players.

Upon starting up, it looks at every WAD archive provided and indexes every lump found
into a gigantic array of lumpinfo_ts cunningly named lumpinfo. If additional archives are
provided via the -file command-line parameter, lumps belonging to official id Software
WADs (DOOM.WAD, DOOM2.WAD,...) are added to the lumpinfo array first.

In the next example, DOOM was started with the command-line:

C:\DOOM >DOOM -file MYMUSIC.WAD -file MYSPRITE.WAD

In this illustration, DOOM.WAD is represented with only three lumps and the two additional
WAD archives have only one lump each. Notice how DOOM.WAD are listed first and how a
lump name can appear several times (there are two lumps named MUSIC1) in the index.

LUMPINFO

DOOM.WAD

MYSPRITE.WAD

WALL1

MUSIC1

SPRITE1

MYMUSIC.WAD

MUSIC1

SPRITE1

WALL1

MUSIC1

MUSIC1

SPRITE1

SPRITE1

0

1

2

3

4

SEARCH ORDER

Figure 5.19: Lump system index

Requests to the lump system are sent via a char[8] name. The first task is to associate
the lump name with an int lump index ID. The lump array is searched sequentially in the
function W_CheckNumForName which in order to speed up comparison uses a cool trick.
Instead of comparing eight characters each time, it compares two 32-bit integers.
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int W_CheckNumForName (char *name) {
union {

char s[9];
int x[2];

} name8;
int v1,v2;
lumpinfo_t *lump_p;

// make the name into two integers for easy comparison
strncpy (name8.s,name ,8);
name8.s[8] = 0; // in case the name was a full 8 chars
strupr (name8.s); // case insensitive

v1 = name8.x[0];
v2 = name8.x[1];

// scan backwards so patch lump files take precedence
lump_p = lumpinfo + numlumps;

while (lump_p -- != lumpinfo)
if (*(int *) lump_p ->name == v1 &&

*(int *)&lump_p ->name [4] == v2)
return lump_p - lumpinfo;

return -1;
}

In the code listing above, you will notice that the index is searched starting from the end.
This is done intentionally to allow modders to provide their own assets in WAD archives to
overwrite id Software’s lumps.

The beauty of this system means that the original DOOM.WAD never had to be modified or
patched. Any of the assets could be overwritten – from maps, music, sfx, to graphics13 –
with a simple command-line.

Trivia : To differentiate official WADs from fan-made ones, the magic number at the begin-
ning of a WAD archive was different. IWAD was reserved for id Software while fan-made
WADs were requested to use PWAD.

Once a lump location has been found, a memory block is requested from the memory al-
locator. The content of the lump is copied from HDD to RAM and returned to the caller.

13With the exception of A.I. and map names which are hard-coded in the executable.
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The lumpinfo array is mirrored by a lump caching system. When a lump is requested,
the index ID is used to look up a lumpcache array first (in W_CacheLumpNum). A non-null
pointer means the lump is already in a zone block. The lump cache slot assigns itself as
the user of the memory block, meaning the cache is automatically invalidated if the block
is freed. This mechanism explains the default owner value set to 2 which means a memory
block is owned but not cached (so there is no cache to invalidate upon deallocation). In
figure 5.20, lumps 0 & 2 are not in the cache and will request WAD access.

lumpinfo[] void** lumpcache

0 LUMPNAME

WADHANDLE

WADPOSITION

WADSIZE

1 LUMPNAME

WADHANDLE

WADPOSITION

WADSIZE

2 LUMPNAME

WADHANDLE

WADPOSITION

WADSIZE

0

1

2

NULL

NULL

memblock_t

LUMP

PAYLOAD

USER

SIZE

TAG

ID

NEXT

PREV

Figure 5.20: Lump 1 is in the cache. Lumps 0 and 2 are not.

void* W_CacheLumpNum(int lump , int tag) {
byte *ptr;
if (( unsigned)lump >= numlumps)

I_Error ("W_CacheLumpNum: %i >= numlumps",lump);

if (! lumpcache[lump]) {
// printf (" cache miss on lump %i\n",lump);
ptr = Z_Malloc(W_LumpLength (lump), tag , &lumpcache[
lump]);
W_ReadLump(lump , lumpcache[lump]);

} else {
// printf (" cache hit on lump %i\n",lump);
Z_ChangeTag(lumpcache[lump],tag);

}

return lumpcache[lump];
}
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id Software explained the assets file format to a few individuals in the community. Within
a month, the "Unofficial DOOM specs", describing the WAD format inside out, was online.
With the format known and a way to inject new lumps, the modding community flourished.

Some fans used the system to replace almost every aspect of the original game. These
mods were known as "Total Conversions" (TCs). The most notorious of them all was
named Aliens Total Conversion.

Released in December 1994, it took Justin Fisher one year of hard work to complete.
Amusingly the result revisited the Aliens motion picture theme id Software briefly consid-
ered before going for demons.

Many sound effects such as doors, weaponry, and explosions were straight from the movie.
Actors’ lines ("let’s rock!") and screams had been digitized. All demons were replaced with
aliens, eggs, facehuggers and even the alien queen. The Pulse Rifle, Grenade Launcher
and Smart-Gun are there and even the chainsaw was replaced with the "Caterpillar P-5000
Work Loader". Map design wasn’t neglected either. Aliens TC replicated the paranoid and
scary atmosphere of the movie with the first level entirely devoid of enemies!
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5.9 Video Manager

Before continuing our trip through the code and looking at the rendering in D_Display, let’s
take a few pages to study the graphics stack where each frame is stored and manipulated.
The video system is located in the core. It maintains and exposes two data structures: a
set of five framebuffers, and one dirtybox (used as a "dirty rectangles"). All write operations
update the framebuffers and the box.

// doomdef.h
#define SCREENWIDTH 320
#define SCREENHEIGHT 200
extern byte *screens [5];

// v_video.c
byte* base = I_AllocLow (SCREENWIDTH*SCREENHEIGHT *4);
for (i=0 ; i<4 ; i++)

screens[i] = base + i*SCREENWIDTH*SCREENHEIGHT;

// st_stuff.c
screens [4] = (byte *) Z_Malloc(ST_WIDTH*ST_HEIGHT ,

PU_STATIC , 0);

Figure 5.21: Five framebuffers.

// doomdef.h
enum {BOXTOP ,BOXBOTTOM ,BOXLEFT ,BOXRIGHT };
extern int dirtybox [4];

Figure 5.22: The dirtybox.

The video system implementation must provide four functions to the core. I_InitGraphics
is to be told when to initialize itself. I_UpdateNoBlit is to be called when a portion of the
framebuffer has been modified. I_FinishUpdate is called when the framebuffer is fully
composed and should be presented to the screen. I_WaitVBL blocks and returns on next
V-Sync.

Method DOS Implementation
I_InitGraphics Set VGA in Mode-Y (320x200 256 colors stretched to 4:3).
I_UpdateNoBlit Send updated area of the screen to the VGA hardware.
I_FinishUpdate Flip buffer (update CRTC start scan address).
I_WaitVBL Wait for V-Sync (Used to wait before updating palette).
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To host the framebuffer in the core and not in the video system itself was an audacious
trade-off: it was a performance hit since data had to be copied twice before reaching
the screen. But it tremendously improved portability since the framebuffer had been ab-
stracted. It also opened the door to reading back from the core framebuffer. This capability
allowed new effects such as the "predator" transparency seen with the "spectre" demon.

Trivia : Because DOOM renders a full screen on every frame, there is no need to "clear"
the framebuffer like Wolfenstein 3D did. If we were to interrupt the engine while rendering
a frame to peek inside framebuffer #0, it would look like a composition of a previous frame
and the unfinished new one.

CORE

DIRTYBOX

SCREENS[4]SCREENS[0] SCREENS[1] SCREENS[2] SCREENS[3]

Video System (DOS)

UPDATEBOX OLDUPDATEBOX VOLDUPDATEBOX

VGA FRAMEBUFFERS

0xA0000 0xAC000 0x40000

I_InitGraphics I_UpdateNoBllt I_FinishUpdate I_WaitVBL

Figure 5.23
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The life of a frame is always the same, regardless of what the game is rendering:

1. All write operations are done in framebuffer #0. Each time the engine updates this
buffer, it also updates the dirtybox to mark which area has been touched.

2. After a major write sequence, the engine calls I_UpdateNoBlit which triggers the
video system to read framebuffer #0, optimizing for the smallest data transfer pos-
sible via the dirtybox. On DOS the VGA subsystem copies content to the VGA
hardware in one of its three VRAM framebuffers. Each VGA buffer has its own dirty-
box updatebox to speed up blitting but this remains an expensive operation.

3. Once a frame has been completed, the engine calls I_FinishUpdate which signals
to the video system that framebuffer #0 will no longer be updated. On DOS, the
implementation of I_FinishUpdate simply updates the start address of the CRTC
which is a lightweight operation.

void I_FinishUpdate (void) {
static int lasttic;
int tics , i;

// page flip
outpw(CRTC_INDEX , CRTC_STARTHIGH +( destscreen &0 xff00);

destscreen += 0x4000;
if ( (int)destscreen == 0xac000)

destscreen = (byte *)0xa0000;
}

The four other framebuffers in the core are used intermittently for temporary storage.

∙ Framebuffer #1 is used when taking a screenshot but also to store the background
when the 3D view is not full screen (R_FillBackScreen).

∙ Framebuffers #2 and #3 are used during the wipe animation to store the start and
end screens while compositing into framebuffer #1 (see detailed wipe system in the
appendix on page 193).

∙ Framebuffer #4 is smaller and only stores a virgin status bar used when content
cannot be delta updated and a full redraw is needed.

The content of function I_UpdateBox to transfer data from RAM to VRAM may look sur-
prising. After all the hardware discussion about 32-bit CPUs and the 32-bit VL-Bus it is
uncanny to see the transfer loop do it 16 bits at a time (short *dest;). It turns out this
was a deliberate choice.
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“ Our artwork was done in 8x8 blocks, or "ebes" as Tom called them. A 32-bit
loop would have needed more code to handle widths that were an odd number
of ebes. It might have been a speedup, but the bus and video card would have
to have handled full 32-bit writes, and I don’t recall that being common back
then. Many VL-Bus cards were still the same basic chipset used on the ISA
cards, and often still 16 bit, which meant that a 32-bit write just took 2x as long.

— John Carmack ”
void I_UpdateBox (int x, int y, int width , int height) {

int ofs;
byte *source;
short *dest;
int p,x1 , x2;
int srcdelta , destdelta;
int wwide;

x1 = x>>3;
x2 = (x+width) >>3;
wwide = x2-x1+1;

ofs = y*SCREENWIDTH +(x1 <<3);
srcdelta = SCREENWIDTH - (wwide <<3);
destdelta = PLANEWIDTH /2 - wwide;
outp (SC_INDEX , SC_MAPMASK);

for (p = 0 ; p < 4 ; p++) { // For each VGA bank
outp (SC_INDEX+1, 1<<p); // Select bank
source = screens [0] + ofs + p; // Read from FB #0
dest = (short *)(destscreen + (ofs >>2));
for (y=0 ; y<height ; y++) {

for (x=wwide ; x ; x--) {
*dest++ = *source + (source [4]<<8);
source += 8;

}
source += srcdelta;
dest+= destdelta;

}
}

}
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5.10 Renderers

With the graphic stack in mind, it is now time to dive into the rendering routine, D_Display,
which contains every renderer in the game.

void D_Display (void) {
R_ExecuteSetViewSize ();

// do 2D drawing
switch (gamestate) {

case GS_LEVEL:
if (automapactive)

AM_Drawer ();
ST_Drawer (); break;

case GS_INTERMISSION: WI_Drawer (); break;
case GS_FINALE: F_Drawer (); break;
case GS_DEMOSCREEN: D_PageDrawer (); break;

}

// signal to video that some stuff has been updated.
I_UpdateNoBlit ();

// draw 3D view
if (gamestate == GS_LEVEL && !automapactive && gametic)

R_RenderPlayerView (& players[displayplayer ]);

HU_Drawer ();

I_SetPalette (W_CacheLumpName ("PLAYPAL",PU_CACHE));

R_FillBackScreen (); // Background when not full screen

M_Drawer (); // menu is drawn even on top of everything
NetUpdate (); // send out any new accumulation

I_FinishUpdate (); // page flip or blit buffer
}

There are several 2D renderers (called "drawers" in the code) and one 3D renderer. Dif-
ferent portions of D_Display are enabled via a switch case depending on gamestate.

Most drawers are requested to draw before the 3D view, then comes the HUD (the text
indicating what was picked up) and finally the menu on top of everything else if it is visible.
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5.11 2D Renderers (Drawers)

All "drawers" in DOOM were the work of Dave Taylor. The self-proclaimed "spackle coder"14

was hired three months before the game shipped but he managed to produce many sys-
tems. His code style and variable naming conventions differ from John Carmack’s and
therefore ownership is immediately recognizable.

∙ Intermission (WI_Drawer())

∙ Status Bar (ST_Drawer())

∙ Menus (M_Drawer())

∙ HUD (HU_Drawer())

∙ Automap (AM_Drawer())

∙ Transition screens (wipe_StartScreen())

5.11.1 Intermission

The intermission screen is simple and fully contained in wi_stuff.c. It starts by loading
a virgin background map from the WAD archive into RAM and placing it in framebuffer #1.

14Source: "Dave Taylor Interview" by blankmaninc.com.
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When a screen refresh is needed, the intermission code does a memcpy (called a "slam" in
the code) from framebuffer #1 to framebuffer #0, then draws sprites and text on top of it.

Once the intermission is finished, method WI_unloadData does not free the RAM, it just
marks all elements it needs as PU_CACHE.

5.11.2 Status Bar

The design of the status bar is similar to the Intermission Drawer. Contained in st_lib.c
and st_stuff.c, the code calls its elements "widgets". There are seven widgets, from
left to right: ready weapon ammo, health percentage, arms, faces, armor percentage, key-
boxes, and all four ammo counts.
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Most of the time, the face widget shows the "normal" animation where the marine’s eyes
look left and right. Notice how there is a set of states for each of the five health brackets.

Perhaps because of the stress incurred during combat, many players never knew this wid-
get showed the origin (left/right) of damage incurred. "Evil" is shown when picking up a
weapon. "Kill" is displayed when the player takes head-on damage, while the player holds
down the fire button, or upon "getting hurt because of your own damn stupidity" (verbatim
code comment found in st_stuff.c).

Even to players who spent a lot of time on DOOM, the "ouch" face is likely to be something
they have never seen. It was intended to show up when the player suffers an enormous
amount of damage (more than 20 hit points), enough to move two brackets down. A bug
in the code prevented this from happening:

#define ST_MUCHPAIN 20

void ST_updateFaceWidget(void) {
// being attacked
if (plyr ->damagecount && plyr ->attacker && plyr ->attacker

!= plyr ->mo) {
if (plyr ->health - st_oldhealth > ST_MUCHPAIN) {

// Show Ouch face
...

}
}

}

The test is the opposite of what it should have been. The ST module shows the ouch face
when 20 life is gained which almost never happens. The test should be reversed.

if (st_oldhealth - plyr ->health > ST_MUCHPAIN) {
// Show Ouch face
...

}

With regards to interaction with the video system, the status bar is similar to the intermis-
sion module. Upon startup, it draws a virgin status bar into framebuffer #4. When the
status bar needs a refresh, it does a memcpy from framebuffer #4 to framebuffer #0 and
draws all the widgets on top of it.
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5.11.3 Menus

There are ten menus and they are all hard-coded in m_menu.c and
m_misc.c. The design is simple with menu_ts containing lists of menuitem_ts.
A name field for each menuitem is used to retrieve the appropriate
sprite.

typedef struct {
short status; // {no cursor , ok, arrow ok}
char name [10];
void (* routine)(int choice); // choice = menu item #.
char alphaKey; // hotkey in menu

} menuitem_t;

typedef struct menu_s {
short numitems; // # of menu items
struct menu_s *prevMenu; // previous menu
menuitem_t *menuitems; // menu items
void (* routine)(); // draw routine
short x,y; // x,y of menu
short lastOn; // last menu menuitem index

} menu_t;

A menu_t* is consumed by the menu drawing routine and a skull is drawn on the left of the
currently selected menuitem_t.

menuitem_t MainMenu []= {
{1,"M_NGAME", M_NewGame , ’n’},
{1,"M_OPTION",M_Options , ’o’},
{1,"M_LOADG", M_LoadGame ,’l’},
{1,"M_SAVEG", M_SaveGame ,’s’},
{1,"M_RDTHIS",M_ReadThis ,’r’},
{1,"M_QUITG", M_QuitDOOM ,’q’}

};

menu_t MainDef = {
main_end ,
NULL ,
MainMenu ,
M_DrawMainMenu ,
97,64,
0

};
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void M_DrawMainMenu(void) {
V_DrawPatchDirect (94,2,0, W_CacheLumpName("M_DOOM",
PU_CACHE));

}

In the previous code sample describing the main menu, notice how the strings M_NGAME,
M_OPTION, M_DOOM are all names of lumps found in the WAD archive.

5.11.4 HUD (Head-Up Display)

In its early instances, DOOM featured a Head-Up Display mimicking Doomguy’s helmet.

Over time the design changed and the HUD shrank to just lines of text. The small code is
contained in hu_lib.c and hu_stuff.c.

5.11.5 Automap

The automap is a small and simple component contained in am_map.c. As the player dis-
covers the level, the map keeps track of lines which have been seen. Red lines indicate
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solid walls. Yellow lines indicate changes in ceiling height (e.g. doors). Brown lines indi-
cate changes in floor height.

Sadly, it is not possible to play the game in this mode (we all have tried to, let’s not kid our-
selves) since marking of visited lines is done by the 3D renderer which is disabled when
the automap is active.

Trivia : The automap almost featured an easter egg. The files am_oids.h/c were to allow
the player to play a remake of Asteroids. Unfortunately the easter egg was left unfinished.

“ I can’t recall whose idea it was, but it was probably mine. I was taken by
the vector art style of the automap, so Asteroids would have been a good
fit, but Doom was behind, and the pace of development at id was incredibly fast.

— Dave Taylor

”
5.11.6 Wipe

Also known as the "screen melt", wipe is used to transition between sections of the game.
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"Wipe" takes whatever is in framebuffer #2 and progressively transforms it into what is
stored in framebuffer #3, writing the output into framebuffer #0.

The first step is to reorganize the two sources of data from row major to column major.
This is done so the read operations on vertical strips play nicely with the 486 cachelines.

After that, a random sequence of 160 numbers is generated in an array y where each value
is within 16 units of its two neighbors. These are used to form the top "wave".

The animation is made so columns of pixels from the source are falling down, letting the
destination show behind, as if the source image had been wiped off the screen.

During the animation, columns two pixels wide and 200 pixels tall are copied repeatedly
from src and dest to framebuffer #0. All columns fall at the same speed but they are offset
by values in y, hence producing the wipe illusion.
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5.12 3D Renderer

Doom’s 3D renderer is an uncanny combination of proper 3D techniques and screen space
tricks. A summary of its main functions (R_RenderPlayerView) reveals it is capable of ren-
dering three things.

void R_RenderPlayerView (player_t *player) {
R_RenderBSPNode (numnodes -1); // root node is last
R_DrawPlanes (); // Draw visplanes
R_DrawMasked ();

}

∙ Segments (walls and portals which are always vertical).

∙ Flats (ceilings and floors which are always horizontal).

∙ Things (also called "masked") which are not only monsters, weapons, ammo, and
sprites but also partially-transparent walls.

Its most breathtaking characteristic is its ability to render walls and flats with zero overdraw
(each pixel is written exactly once). Sprites and transparent walls do introduce a little bit of
overdraw but it is minimal.

The life of a 3D frame can be summarized as follows:

∙ Render wall segments, sorted front to back from the player’s point of view. Both wall
ends are projected into screen-space axis X. Based on the distance and floor/ceiling
heights of the sectors the wall belongs to, calculate a column Y offset and a height.

∙ To render a full wall, generate a set of columns to make ends meet. Interpolate
height and Y vertical columns. While rendering:

– Record screen-space vertical gaps between walls or between wall and screen
boundaries. Infer ceiling (if above mid-screen) and floor areas (if below mid-
screen) and store the area into an array of structures called "visplanes".

– Store sprites to be drawn into an array of structures called "vissprites".

∙ Render all ceilings and floors from the visplanes.

∙ Render transparent elements and sprites in back-to-front order.

∙ Render player sprite (the weapon the Doomguy is holding).

The most important part (and what DOOM’s engine is most famous for) is the ability to sort
walls and things extremely efficiently thanks to its Binary Space Partitioning tree. Interest-
ingly, there is a back story about how the BSP came to be a central part of the game engine.
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In its earlier versions the engine operated on exactly what the designer produced, namely
lines and sectors. Starting in the sector containing the player, the engine would look for
double-sided lines and treat them as portals, traversing the map in front-to-back order.
Each portal lead to adjacent sectors where the process was repeated recursively.

0

1

2

4

3

In the map above, with the player located in sector 0, the renderer will flood into other
sectors using the red portals. A convex sector 1 is relatively easy to deal with. Things
get considerably more complicated when encountering a concave sector like 4. An even
worse case is when nesting occurs like where sector 2 contains another sector 3.

Trivia : The design described is exactly what Ken Silverman’s build engine would settle on
to power Duke Nukem 3D in 1996. By then the Pentium had taken over the world and was
more than able to deal with complex polygons.

“ Doom engine was built out of "sectors" – complex polygonal regions with a
common floor / ceiling texture and height, but it didn’t have the BSP-chopped
"subsectors". It started in the view sector and recursively flowed into the
adjoining sectors, but because they could all be complex polygons it was a lot
of record keeping to know what parts you had already visited or were in the
stack somewhere. It worked, and simple areas were fast, but it slowed down
precipitously with complexity.

— John Carmack ”
Things indeed slowed down significantly with a particular map of John Romero’s creation.
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“ I was working on E1M2 around April 1993, and I created a set of circular stairs.
John C. wrote the renderer with a sector list to know what should be rendered.
The problem is that this set of stairs made his sector list building code take a
really long amount of time to execute because the same sectors needed to be
put into the list over and over due to how the algorithm worked.

— John Romero ”

With the news that their 3D technology was not good enough to ship already a concern,
another serious issue arose.

Back in August 1992, id Software had landed a contract with Nintendo to port Wolfen-
stein 3D to SNES. With a release scheduled for May 1st, 1994, they had subcontracted
the project and forgotten about it to focus on DOOM. In April 1994, the contractor was
nowhere to be seen. They had nothing to deliver to Nintendo. It was a big deal involving a
huge penalty.

Development for DOOM stopped immediately as the team desperately banged their old
game together into a machine not remotely built to do what they wanted. While Tom Hall
dusted off his 6502 assembly skills, John Carmack had a different kind of problem at hand:
the raycasting technology which Wolfenstein relied on was too much for the Nintendo con-
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sole. The SNES and its 6502 on steroids simply did not have enough juice for the DDA
algorithm15.

“ John started searching around for 3D research papers. He had several
VHS tapes of math conferences, and compendiums of graphics papers from
conferences because game books were a rare thing back then, and there was
nothing printed that could help us create the engine we were building – he had
to figure out where to get information that was not directly applicable to games
and figure out how to adapt it to his problem.

Bruce Naylor’s May 1993 AT&T Bell Labs paper was titled "Constructing Good
Partitioning Trees" and was published in the proceedings of Graphics Interface
’93. John had this book in his collection. Bruce’s explanation of BSPs was
mostly to cull backfaces from 3D models, but the algorithm seemed like the
right direction, so John adapted it for Wolfenstein 3D.

— John Romero ”
“ I do remember clearly that I first used BSP for the SNES version of Wolfen-

stein, which was a gentle introduction with everything being axial and easier
to visualize, which gave me more confidence I would be able to make it work
when I went back to working on Doom.

— John Carmack ”
With a visual surface determination not based on raycasting but rather on BSP, and using
a low resolution (112x96 scaled up to 224x192 with Mode 7), Wolfenstein 3D SNES man-
aged to reach an acceptable framerate.

Due to Nintendo’s strict non-violence policy the game had to be heavily censored to reach
a child-friendly quality. Blood was replaced with sweat, guard dogs were replaced with
mutant rats, and Hitler was renamed "Staatmeister" (which translates to State Master).

With that problem solved, Wolfenstein 3D for Super Nintendo was released on schedule.
The whole team resumed cramming for DOOM and the renderer was changed to also use
the power of BSPs.

15You can read everything about DDA in Game Engine Black Book: Wolfenstein 3D.
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Figure 5.24: Bruce Naylor’s paper: "Constructing Good Partitioning Trees"
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5.12.1 Binary Space Partitioning: Theory

Binary Space Partitioning trees have many applications. The one we are interested in is
how DOOM uses them to sort walls rapidly and consistently. Bruce Naylor’s thesis paper,
"On visible surface generation by a priori tree structures" features a pretty good summary.

“ In order to determine the visible surface at each pixel, traditionally tile distance
from the viewing position to each polygon which maps onto that pixel is
calculated. Most methods attempt to minimize the number of polygons to
be so considered. Our approach eliminates these distance calculations
entirely. Rather, it transforms the polygonal data base (splitting polygons when
necessary) into a binary tree which can be traversed at image generation time
to yield a visible priority z value for each polygon.

”
“ When I did the early work on BSPs16, Bruce Naylor came down and visited

here and gave me copies of a bunch of his papers. It’s interesting to talk to
people about the old days. Of course, you’ve got the Internet now. You can
find anything nowadays. But back then, it was really something to get reprints
of old academic papers. There were some clearinghouses I used to use:
you’d pay twenty-five dollars or whatever, and they’d mail you xeroxes of old
research papers. It was just a very, very different world. I learned most of my
programming when I had a grand total of like three reference books. You had
to figure everything else yourself. So I was finding I was reinventing a lot of
classic things, like Huffman encoding or LZW encoding. So I’d be all proud of
myself for having figured something out, and then I’d find it was just classic
method and they did it better than I did.

— John Carmack, Interview for Scarydarkfast

”
To study BSPs, let’s take the example of a map created with DoomED. For simplicity the
map we will be working with is made of eight vertices, four linked together to form a room
made of four lines (A, B, C, and D). Inside the room is a pillar which is also made of four
lines (E, F, G, and H). The map is made of only one complex sector (it has a hole in it).
Notice that all lines have a direction and all lines have only one side (on their right side).
Despite its simplicity it is obvious how it is a difficult problem to solve for a renderer since,
depending on the point of view, the order in which the lines/walls must be drawn will vary.
A naive solution would require a complex sorting algorithm.

16This was during development of Quake; John and Bruce met only after DOOM had shipped.
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A

B

D

C

H

E F

G

8 VERTICES

8 LINES

Figure 5.25

To build the BSP tree from the map, the core idea is to repeatedly select a line to split the
map in two. Split lines become SEGMENTS and split sectors become SUB-SECTORS.

The choice of the splitter is extremely important. There are good splitters and bad splitters.
A list of poor choices for the first splitter would be A, then B, C, and D since they would not
divide the map evenly.

Let’s say our heuristic selected line H which conveniently cuts the room in half. Some lines
are entirely to the left of H and some are entirely to its right. Lines on both sides must be
split into segments. After the split, the two leaves in the BSP contain two sub-sectors. One
is convex ({A, B1, H, D1}) and therefore will not be touched anymore. The other one is
concave ({E, F, G, B2, C, D2}) and will need further splitting.

The process is repeated until all subsectors are convex.

H

A
{A,B1,H,D1}

B1

D1

H

E F

G

B2

D2

C
{E, F,G,B2,C,D2}

Figure 5.26

Let’s follow the process, step by step, until we have a BSP decomposing the space into a
set of convex sub-sectors. Notice how, as the binary tree grows, splitter lines are stored in
the nodes and segments in the leaves. In the next step, line G is selected as the splitter.
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H

A
{A,B1,H,D1}

{G,C1,D2}

B1

D1

C1
H

E F

G

B2

D2

C2
G

{E, F,C2,B2}

At this point in the splitting we are still not done. The area between B2, C2, E, and F is
concave. We need one last split where F is selected as splitter.

H

A
{A,B1,H,D1}

{G,C1,D2}

B1

D1

C1
H

E F

G

B2

D2

C2
G

{B3,C2,F}

F

{B2,E}

B3

Figure 5.27

With all sub-sectors in the leaves now convex, the BSP construction ends. The number
of vertices and segments to deal with has increased by 50% but we now have a data
structure capable of sorting all segments, from any point of view, at the cost of only three
comparisons.

A

B1

D1

C1
H

E F

G

B2

D2

C2

B3

12 VERTICES

12 SEGMENTS

1 BSP TREE

This is only one of the many possible trees which could have been generated from the
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map. Choosing splitters in an alphabetical order would have produced an inefficient BSP.

A

A

{A,B1,

 E,D1}

B1

D1

H

E F

G

B2

D3

C1

B

{}
C

D
{}

{}

{}

E

D2 C2
F

{F,C1,B2}

G

H

{G,C2,D3}

{H,D2}{}

5.12.1.1 Usage

H

F

G

1

2 3

4P1

P2

To use the BSP, we only need to tra-
verse it depth first and choose a branch
based on our position in the map. Let’s
take two examples using the BSP in fig-
ure 5.27 on page 204. For convenience
of notation, sub-sectors have been labeled
1 to 4 and only the splitting lines are
marked.

From point of view P1 , traversing the BSP
takes three tests. P1 is on the right17 of H, on the left of G, and on the left of F. This gives
the front to back order: 1,2,3,4. Notice that it doesn’t matter what order segments within
a subsector are drawn since all subsectors are convex.

From point of view P2 , traversing the BSP also takes three tests. P2 is on the left of H, on
the left of G, and on the right of F. This gives the near to far order: 3,2,4,1.

The beauty of a binary trees is that traversing it always require the same amount of com-
putation. No matter where we try to place the player on this map, it will always take three
tests to sort all subsectors and their segments.

17On the drawing it is on the left but remember that spliting plans have direction (shown via an arrow head). If
your turn the page upside down, sub-sector 1 indeed is on the right of H
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5.12.2 Binary Space Partitioning: Practice

Maps were preprocessed on a NeXTstation Turbo via the in-house tool node builder named
doombsp.

For the tool to build the best BSP possible a splitter selection heuristic had to be estab-
lished. A good splitter divides the map as evenly as possible (limiting the depth of the tree),
and prefers axis-aligned lines (since they are easier to debug and side tests are faster).

doombsp recursively inspects all lines in a subspace and gives a splitting score to each of
them. At the end of the evaluation, the highest-scoring line is selected. The map is split
in two and the process is repeated until only convex subsectors remain. This is a CPU-
intensive task which took eight seconds for E1M1. All thirty maps of DOOM.WAD took eleven
minutes.

Figure 5.28: E1M1, a.k.a Episode 1 Map 1.

Figure 5.29 shows the seven first splitters selected on E1M1. The first level is in red, sec-
ond level in blue and the third level in thick black. Notice how AA splitters are favored.

Switching from a sector flooding algorithm to a Binary Space Partitioning algorithm not
only added preprocessing time and latency to map designers – there was another side
effect that was more of an issue since it affected players. Because the BSP created new
vertices, wall positions are set in stone, there is no way to move walls at runtime.
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Figure 5.29: Seven first splitters (three BSP branches) in the E1M1 BSP

Figure 5.30: All subsectors at the end of E1M1 tree construction; each is a convex leaf.
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5.12.3 Drawing Walls

With the expert knowledge of BSP in mind, let’s take a look at the first step of rendering a
scene, namely, wall rendering. As expected, R_RenderBSPNode traverses the binary tree
front-to-back. Each sub-sector leaf is sent down to the renderer via R_Subsector.

void R_RenderBSPNode (int bspnum)
{

node_t* bsp;
int side;

// Found a subsector?
if (bspnum & NF_SUBSECTOR)
{

if (bspnum == -1)
R_Subsector (0);

else
R_Subsector (bspnum &(~ NF_SUBSECTOR));

return;
}

bsp = &nodes[bspnum ];

// Decide which side the view point is on.
side = R_PointOnSide (viewx , viewy , bsp);

// Recursively divide front space.
R_RenderBSPNode (bsp ->children[side]);

// Possibly divide back space.
if (R_CheckBBox (bsp ->bbox[side ^1]))

R_RenderBSPNode (bsp ->children[side ^1]);
}

To perform the side test (R_PointOnSide), any geometry book will describe how to repre-
sent the plane in general form with a vector (𝑎, 𝑏) combined to a distance 𝑑:

𝑎𝑥+ 𝑏𝑦 + 𝑑 = 0

Using a dot product operation, the coordinate of the test point 𝑃 = (𝑥, 𝑦) is injected into
the plane equation, essentially projecting 𝑃 onto a line perpendicular to the plane. The
sign of the result reveals whether 𝑃 is in front of or behind the plane (zero = on the plane).

This method is far from being optimal. There is a better way, involving neither floating-point
nor fixed-point arithmetic, which uses the awesome power of the cross product.
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typedef struct {
fixed_t x,y,dx,dy; // partition line
fixed_t bbox [2][4]; // child bounding box
unsigned short children [2]; // NF_SUBSECTOR = subsector

} node_t;

int R_PointOnSide(fixed_t x, fixed_t y, node_t* node){
fixed_t dx , dy, left , right;

if (!node ->dx) { // Shortcut if node is vertical.
if (x <= node ->x) {

return node ->dy > 0;
}
return node ->dy < 0;

}

if (!node ->dy) { // Shortcut if node is horizontal.
if (y <= node ->y) {

return node ->dx < 0;
}
return node ->dx > 0;

}
// Calculate node to POV vector
dx = (x - node ->x);
dy = (y - node ->y);

if ( (node ->dy ^ node ->dx ^ dx ^ dy)&0 x80000000 ) {
if ( (node ->dy ^ dx) & 0x80000000 ) {

// (left is negative)
return 1;

}
return 0;

}
// Cross product here
left = FixedMul ( node ->dy >>FRACBITS , dx );
right = FixedMul ( dy , node ->dx >>FRACBITS );

if (right < left) { // front side
return 0;

}
return 1; // back side

}
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A B

AxB

-AxB

Notice in the previous code listing how nodes are not stored as
coordinates of two vertices (Point 1, Point 2) but rather as
(Point 1, Vector to Point 2). This storage technique made
the cross-product faster to generate since one of the vectors (from
the node) was already calculated.

5.12.3.1 Wall Projection

We have now reached the R_Subsector function where all seg-
ments in a subsector are rendered in order. This part of the
pipeline relies heavily on BAM (Binary Angular Measurement) where degrees in the in-
terval [0, 360] are mapped to the full range of a 32-bit integer.

// Binary Angle Measument , BAM.
#define ANG45 0x20000000
#define ANG90 0x40000000
#define ANG180 0x80000000
#define ANG270 0xc0000000
typedef unsigned angle_t;

First, both ends of the segment are converted to an angle with respect to the player’s posi-
tion (via high-school level 𝑎𝑛𝑔𝑙𝑒 = 𝑎𝑟𝑐𝑡𝑎𝑛(𝑂𝐴 )). Segments with a negative angle (angle1 -
angle2 < 0) are culled since they are not facing the camera. Segments passing the angle
test are then reduced from 32 bits to 13 bits with a simple right-shift. Next, the angle is
injected into a lookup table viewangletox[4096] to give a screen-space X coordinate.

PLAYER (x1,y1)

SEG

(x2,y2)

(x3,y3)

32-BIT

ANGLE1

ANGLE2

ANGLE1

ANGLE2

13-BIT

>> 19

Figure 5.31

Values in viewangletox are generated at startup in order to give the player a 90 degree
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field of view. The table is built such that anything not within 90 degrees is projected onto
the edges of the screen.

135

viewangletox[3074] = 0

viewangletox[4095] = 0

0 

viewangletox[0]       = 319

viewangletox[1027] = 319

viewangletox[1028] = 0 

viewangletox[3073] = 319

 45 

180 

PLAYER SPACE

Figure 5.32

At this point the engine has calculated the screen-space X coordinates of both ends of a
segment and the distance z from the player. But it is not time to draw yet. A little bit of
clipping must occur.

5.12.3.2 Wall Clipping

Here the code branches depending on the two types of segment that can be encountered
in a subsector. There are segments with only one side (connected with only one sector)
which are opaque and have only a "middle texture". I call these "walls". There are seg-
ments with two sides (connecting two sectors) which are often transparent with no middle
texture but with an "upper texture" and a "lower texture". I call these "portals".

Clipping is a two step process happening in screen space. The first, crude, step is
horizontal-based. Only walls affect the horizontal occlusion array but all segments are
clipped against it.

The second, finer, step is vertically-based. Both walls and portals affect the vertical occlu-
sion array and both are clipped against it.
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5.12.3.3 Horizontal Crude Wall Clipping

The first clipping pass is crude and only cares about horizontal occlusion. It maintains a
solidsegs array which keeps track of the screen-space horizontal occlusion. Since por-
tals can be partially seen through, they have no impact on solidsegs. Segments entering
this step come out as "fragments" since they may be split due to occlusion.

typedef struct {
int first;
int last;

} cliprange_t;

cliprange_t* newend;
cliprange_t solidsegs [32];

Let’s take a simple example and proceed step-by-step. In the room below, the player is
facing north and four walls (A, B, C, and D) need to be rendered.

B

C D

A

Initially the occlusion array has two entries, one representing what is on the left of the
screen, from infinity to -1 and one on the right of the screen from 320 to infinity.

solidsegs [0] first = -0x7fffffff
last = -1

solidsegs [1] first = 320
last = 0x7fffffff
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The first wall (A) is rendered. There is nothing to occlude it and it is in the middle of the
screen. An entry is added to represent the occlusion state.

solidsegs [0] first = -0x7fffffff
last = -1

solidsegs [1] first = 100
last = 220

solidsegs [2] first = 320
last = 0x7fffffff

The second wall (B) is rendered. Its left side is clamped via angle adjustment and the right
side is not occluded. Since it touches the left edge of the screen no entry in the occlusion
array is added; only the entry boundaries need to be adjusted.

solidsegs [0] first = -0x7fffffff
last = 50

solidsegs [1] first = 100
last = 220

solidsegs [2] first = 320
last = 0x7fffffff

The third wall (C) is rendered. It happens to lie just next to the second wall. It is fully
converted to a wall fragment and nothing is discarded. The occlusion array is updated.

solidsegs [0] first = -0x7fffffff
last = 70

solidsegs [1] first = 100
last = 220

solidsegs [2] first = 320
last = 0x7fffffff

Finally, the last wall (D) is rendered. While occluded against the array, it is split into two
fragments. The occlusion array is updated. All segments end up touching each other.

solidsegs [0] first = -0x7fffffff
last = 0x7fffffff

Notice how little RAM was used to maintain the occlusion state and how fast it is to check
if the full screen is occluded. All the engine has to do is to check the array is of size 1 and
that the range goes from -infinity to +infinity.
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5.12.3.4 Vertical Fine Wall Clipping

The second pass is finer and clips vertical segment fragments emanating from the first
pass. A data structure based on two arrays as wide as the 3D canvas is maintained. It
tracks how much vertical screen-space remains available for each column.

Each rendered segment updates the structure by making increases to ceilingclip and
decreases to floorclip. A column is considered fully opaque when ceilingclip’s
height and floorclip’s height are equal to each other. Wall fragments will mark a column
as completely occluded while portal fragments will only update the occlusion columns with
what they actually cover in screen-space.

#define SCREENWIDTH 320
#define SCREENHEIGHT 200
// clip values are the solid pixel bounding the range
// floorclip starts out SCREENHEIGHT
// ceilingclip starts out -1
short floorclip[SCREENWIDTH ];
short ceilingclip[SCREENWIDTH ];

Let’s take the example of a simple room made of three sectors (1, 2, and 3) connected by
two portals (B and F) and surrounded by walls. Sectors 1 and 3 have the same ceiling and
floor height but 2 is set to have a higher floor and lower ceiling so that it looks like a window.

1

3

2
BA C

F

E

G

H

D

Subsectors are rendered near-to-far in the order 1,
2, and 3. This means segments {A, B, C, D}, {E, F}
and {G, H} (assuming the map was split on lines B
and F). On the opposite page you can see the ef-
fect of each wall and portal on the vertical occlusion
double array.

Walls A, C, and D mark the full height opaque for
each of their columns. The first portal B has no
middle texture. It is therefore rendered with its up-
per texture (to accommodate for subsector 2’s lower
ceiling) and its lower texture (to accommodate for
subsector 2 higher floor) and the occlusion array is
adjusted accordingly. Wall E marks all columns it
covers as fully opaque.

Notice how portal F’s lower and upper textures are not rendered but the occlusion array is
still updated. Walls G and H finish marking the full screen opaque (but were only clipped
during the crude pass since they are smaller than the visible window space).
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After all this clipping, walls and portal are finally rendered. At the ends of each fragment,
a screenspace Y offset is calculated based on sector floor, and a column height is gener-
ated based on floor/ceiling and distance. These are interpolated to generate a full set of
columns of pixels (portals are drawn as a combination of columns according to their upper
texture, middle texture, and lower texture while walls only have a middle texture). Render-
ing is done vertically via the colfunc function pointer (detailed in "performance" on page
286).

5.12.4 Subpixel Accuracy

It is worth mentioning that the engine is subpixel-accurate when calculating the screen
coordinates of a wall’s top and bottom edges. Subpixel accuracy is a subtle concept, the
advantages of which are best demonstrated with an animated screen. Hopefully a few
static drawings will do anyway.

Let’s take the example of two points, A = (0.7, 0.7) and B = (5.3, 3.6) which are to
appear on the screen.

Figure 5.33:

The problem to solve here is: What pixel do you select between A and B? There are many
solutions available here, offering different trade-offs. At the time of DOOM’s engine, most
games discarded the fractional part of a point and then navigated from floor(A)=(0,0)
to floor(B)=(5,3). This is called "pixel-accurate".

Subpixel accuracy is slightly more difficult to perform. Here the fractional part is not dis-
carded but used while navigating from A to B.

Figure 5.34 shows the two methods side by side. The difference looks negligible but it is
one of the most important features of the engine which made the world feel "solid".
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Figure 5.34:

At first sight it seems the two methods are different yet equivalent, but look at what hap-
pens when things start to move, such as in the case where A moves 0.3 units down.

Figure 5.35:
The pixel-accurate method results in five pixels selected differently. The subpixel-accurate
way results in one pixel difference. With subpixel accuracy lines tend to be more stable.

“ Almost every other texture mapped game back then snapped triangle vertexes
to integral pixel values, which meant that the individual texels in a surface
would constantly be jumping around by up to a pixel from even tiny movements.
Basically everything only feels loosely connected, and wiggles around a bit.
DOOM did not have that problem.

— John Carmack ”
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5.12.5 Perspective-Correct Texture Mapping

Before we move on to how DOOM drew flats, it is worth noticing that despite using affine
texturing to draw columns, the visual result is still perspective-correct.

To illustrate the concept, let’s first study what affine texture mapping looks like. We’ll use a
three-wall-room, each textured with a pattern of white and colored squares.

In order to focus on walls, the floor and ceiling are intentionally rendered in light gray.
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In this scene, wall vertices are projected into screen space coordinates (𝑥, 𝑦). A tex-
ture coordinate 𝑢 is generated for each column to draw, based on linear interpolation of
screenspace wall width and the column’s 𝑥 coordinate. The texture coordinate 𝑣 is interpo-
lated linearly based on column height and 𝑦 position relative to the column. As a reminder,
the formula for linear interpolation is as follows:

𝑢𝛼 = (1− 𝛼)𝑢0 + 𝛼𝑢1 𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝛼 ≤ 1

This texturing technique has the advantage of being fast but has the disadvantage of being
visually incorrect. Notice in particular how the "width" of each square is constant even as
the wall columns get further away. In order to generate correct texture coordinates, the 𝑢
coordinate needs to factor in the distance from the player. To this effect, value 1

𝑧 (which is
linear in screen space) is used:

𝑢𝛼 =
(1− 𝛼)

𝑢0

𝑧0
+ 𝛼

𝑢1

𝑧1

(1− 𝛼)
1

𝑧0
+ 𝛼

1

𝑧1

𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝛼 ≤ 1

The calculation is much more expensive but now the result is perspective correct.
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Had DOOM allowed sloped walls, texturing would have required six perspective correct
computations per pixel (both 𝑢 and 𝑣 interpolated twice along vertical and horizontal edges
of a quad) which would have been prohibitively CPU intensive.

By enforcing walls to be strictly vertical, DOOM was able to perform the expensive per-
spective correct computation only once per pixel column, use linear interpolation to draw
each column, and still yield a visually correct result. It works because along a column, the
distance from the player is constant. This trick effectively managed to produce perspective
correct texture mapping at the computational cost of affine texturing.

Given the previous screenshots, it may not be clear why perspective correctness is so im-
portant and why the engine goes to such an extent just to be "correct". Keep in mind these
were just examples to demonstrate the problem. As soon as real textures are used (using
DOOM’s marble textures featured below), the visual disturbance cannot be ignored.

Figure 5.36: MWALL4_1 Figure 5.37: MWALL4_2 Figure 5.38: MWALL5_1

On the opposite page, notice in particular how MWALL4_1’s upper right pentagram edge
appears arched instead of being straight. The same thing happens with MWALL5_1 where
the left horn does not look right. MWALL4_2 suffers none of these issues since it is parallel
to the viewing angle.

Several video game consoles of the era such as the PlayStation, the 3DO, and the Sat-
urn18 featured hardware accelerated graphics but not perspective correctness. On these
machines, affine texture mapping artifacts were supposed to be compensated for either
via triangle sub-divisions or by avoiding texturing altogether. This is why PSX game Crash
Bandicoot ’s characters are devoid of texturing in favor of Gouraud shading.

John Carmack hated affine texturing so much he vetoed all ports attempting to be per-
spective incorrect which sometimes resulted in serious consequences (page 352).

18Thanks to a close collaboration with SGI, Nintendo gifted the Nintendo 64 with perspective correct texturing
which made Zelda and Mario look amazing.
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Above, distorted walls due to affine texturing. Below, perspective correct texturing.
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5.12.6 Drawing Flats

If we were to take a look at the framebuffer at this point in the rendering of a frame, it would
look like mashed potatoes (see opposite page where flats are in white to ease visualiza-
tion). DOOM never clears the framebuffer so instead of white there would be whatever was
drawn last frame.

To render the flats, the engine uses a data structure generated while the walls and portals
were being rendered. These are called "visplanes".

// Now what is a visplane , anyway?
typedef struct {

fixed_t height;
int picnum;
int lightlevel;
int minx;
int maxx;
// 4 padding bytes
byte top[SCREENWIDTH ];
byte bottom[SCREENWIDTH ];

} visplane_t;

// Here comes the obnoxious "visplane ".
#define MAXVISPLANES 128
visplane_t visplanes[MAXVISPLANES ];
visplane_t* lastvisplane;

The concept of visplanes is the most difficult aspect of DOOM to understand. The com-
ments in the source code manifest their esoteric nature and also attest that even people
closely related to id Software did not fully grasp what they were.

A visplane describes a screen-space area representing either a ceiling or a floor. It has a
height, a texture (picnum), and a light level. To describe the limits of its area, it has two
arrays as wide as the screen. Areas are represented as a set of columns with one column
possible per X coordinate.

Trivia : The engine stores visplanes before drawing them. If storage runs out, the engine
terminates execution and returns to DOS with a less than useful error message.

C:\DOOM >R_FindPlane: no more visplanes
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Above is the final frame. Below is the current state of the frame with missing visplanes.
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Visplanes represent the vertical "gaps" in screen-space between fragments and screen
borders or between walls and portals. To better understand how they are generated, let’s
take an example and go back to the simple room we just studied. This time we will focus
on how the visplanes array is populated.

1

3

2
BA C

F

E

G

H

D

As in the previous example, sectors are ren-
dered near to far, resulting in segments in
the following order: A, B, C, D, E, F, G, and
H.

When wall A is rendered, it is clipped hori-
zontally and vertically. Since it uses all the
vertical screen space, no visplanes are cre-
ated.

Things get slightly more interesting when walls
C and D are rendered. Since they do not oc-
cupy the full height (there is a gap between the
screen and the top/bottom edge of the walls),
two visplanes are created per fragment – (1,2)
and (3,4) – and stored in the visplane array.

Likewise, when portal B is rendered, there are gaps above its upper texture and below its
lower texture, so two additional visplanes (5 and 6) are added.

Wall E is another new case. The gaps above and below are not between a wall and the
screen but between E and portal B’s upper and lower parts. To detect the previous bound-
aries, the previously-seen vertical occlusion array is used to create visplanes 7 and 8.

Portal F is yet another special case. Since from this point of view it is connecting to a sector
with a higher ceiling and a lower floor and has no middle texture, nothing is rendered. Yet
the coordinates of its middle part are still generated in order to generate visplanes 9 and 10.

From this point on, the process is repeated. Wall G’s rendering generates visplanes 11 and
12 and wall H’s rendering generates visplanes 13 and 14.

The visplane generation algorithm is quite simple. However it generates many visplanes
and therefore consumes a lot of RAM. To address this issue, DOOM merges visplanes.

Trivia : The visplane_t struct requires 664 bytes per visplane. The engine reserves
space for 128 visplanes. The total represents a significant amount of RAM (84,992 bytes)
accounting for roughly two percent of the minimum required (4MiB).
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Below, the engine was modified to draw walls and flats in plain color to show merging.
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E1M1 benefits from merging. Reproduced below without diminished lighting for clarity.
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Without merging (above) the frame requires 179 visplanes. With merging (below), only 28
are needed.
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On the previous page, the modified engine shows how a visplane does not need to be hor-
izontally continuous. The red floor’s visplane for example is made of three parts yet uses
only one entry in the visplane array, validating the judicious choice to represent visplanes
as an array of columns.

There are several conditions required to merge two visplanes. Mergeable visplanes must
have the same height, light and texture. Even if these conditions are met, the data struc-
ture has to be able to absorb others. This is only possible if visplanes are side-by-side.
Even one pixel above or below with the same X coordinate makes two visplanes ineligible
for merging. Function R_FindPlane looks for candidates; mergability is tested elsewhere.

visplane_t* R_FindPlane(fixed_t height , int picnum , int
lightlevel) {
visplane_t* check;
...
for (check=visplanes; check <lastvisplane; check ++) {

if (height == check ->height &&
picnum == check ->picnum &&
lightlevel == check ->lightlevel)

break;
}

if (check < lastvisplane)
return check;

if (lastvisplane - visplanes == MAXVISPLANES)
I_Error ("R_FindPlane: no more visplanes");

lastvisplane ++;
check ->height = height;
check ->picnum = picnum;
check ->lightlevel = lightlevel;
check ->minx = SCREENWIDTH;
check ->maxx = -1;
memset (check ->top ,0xff ,sizeof(check ->top));

return check;
}

Notice the overflow check which was mentioned earlier. This case was a map designer’s
worst nightmare since its meant abrupt termination without much information provided to
fix the error. Many legends and theories circulated until the source code was released19.

19"The Facts about Visplane Overflows" by Lee Killough
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5.12.7 Drawing Flats (For Real)

We can finally read the flat drawing routine which iterates over the array of visplanes.

void R_DrawPlanes (void) {
visplane_t *pl;
int light;
int x, stop;
int angle;

for (pl = visplanes ; pl < lastvisplane ; pl++) {

if (pl->minx > pl->maxx)
continue;

// sky flat
[...] // Special case where perspective is disabled.

// regular flat
ds_source = W_CacheLumpNum(firstflat + flattranslation[

pl ->picnum],PU_STATIC);
planeheight = abs(pl->height -viewz);
light = (pl->lightlevel >> LIGHTSEGSHIFT)+extralight;
planezlight = zlight[light];

pl ->top[pl ->maxx +1] = 0xff;
pl ->top[pl ->minx -1] = 0xff;

stop = pl ->maxx + 1;
for (x=pl->minx ; x<= stop ; x++)

R_MakeSpans (x,pl->top[x-1],pl ->bottom[x-1] ,
pl ->top[x],pl->bottom[x]);

Z_ChangeTag (ds_source , PU_CACHE);
}

}

Notice how the flat texture resource is not freed at the end of each iteration but rather
marked as PU_CACHE according to what was described in the memory manager section.

Despite being stored as columns, visplanes are converted to horizontal spans. Rendering
this way allows for fast perspective correct texturing since each line is at a constant dis-
tance from the player. This choice also allowed fast rendering of something we have so far
ignored: diminished lighting.

229



5.12. 3D RENDERER CHAPTER 5. SOFTWARE: IDTECH 1

Trivia : The limitation of 128 visplanes was not only necessary to fit within the memory
budget, it was also a runtime necessity. When attempting to merge visplanes, the engine
searches linearly, making it a 𝑂(𝑛) operation which would become a bottleneck as the
number of visplanes increased. In 1997, Lee Killough lifted this limitation, replacing linear
search with a 𝑂(1) chained hash table20.

5.12.8 Diminishing Lighting

So far, in order to introduce complexity gradually, our trip
down the rendering pipeline has completely ignored di-
minishing lighting. It was assumed that texel values from
texture and sprite were used as-is and written directly to
the framebuffer. Now it is time to introduce the concept of
lightmaps.

In order to convey a scary atmosphere, à la Aliens, it was
decided from day one that with increasing distance, colors
would fade to black. Map designers also wanted to be able
to switch the light in a room on and off and also to dim it if
necessary. In response to this requirement, the engine had to be able to draw shades of
color. With the VGA system limited to 256 colors from a palette, a possible implementation
would have been to restrict artists to use 16 colors and use the 240 other slots to generate
15 shades of each "primary" color.

This would have severely impaired the work of the artists, not to mention it would have
looked poor during outdoor scenes where light is not diminished with distance. Once
again a clever trick allowed artists to use the full 256 colors for their assets and not 16 but
32 shades of the same color. On paper that would have meant 256 * 32 = 8192 colors
which the VGA hardware did not support.

The trick to fake more colors than available is to use an indirection "light table" where
the other 255 colors are used to approximate a gradient for each of the 256 entries. The
lightmap is 256 entries tall (one for each index) and 32 wide (one column for each shade).
In figure 5.39 you can see how the original palette lines are unrolled vertically in the left-
most column (notice the isolated white at the top and the pink at the bottom). Each row
is a 32 value gradient toward black, using the same 256 colors. The right-most column is
all black. The trick has its limits. It works well for red but not too well for crimson and yellow.

To use the lightmap, take the original texel value T which is between [0,255]. This will be
the Y coordinate. Take a light value L, with 0 being the brightest and 31 being the dark-
est. This will be the X coordinate. The value to write in the framebuffer is lightmap[X][Y].

20Source: "The Truth about Visplane Overflows".
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Figure 5.39: The COLORMAP contains 32 shades of 256 colors yet still 256 colors total.
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Above shows the vanilla engine (with thing rendering disabled). Below is the same scene
with a modified lightmap-less engine.
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Figure 5.40: Same scene as opposite page, with lightmaps but with texturing disabled.

The visual effect of lightmaps can sometimes be subtle. On the opposite page, a normal
scene (above) shows no banding. Disabling lightmaps altogether (opposite page, below)
makes the colors appear washed out. Disabling texturing by rendering walls in white (0x04)
and flats in brown (0x80) (as in figure 5.40) makes lightmaps and banding vividly apparent.

Because calculating which lightmap to use is based on the distance from the player and
also on the sector light level, it is a slightly expensive operation.

𝑙𝑖𝑔ℎ𝑡𝑚𝑎𝑝𝐼𝑑 = 𝑠𝑒𝑐𝑡𝑜𝑟𝐿𝑖𝑔ℎ𝑡𝐿𝑒𝑣𝑒𝑙 + 𝑧 * 𝑑𝑖𝑚𝑖𝑛𝑖𝑠ℎ𝑖𝑛𝑔𝐹𝑎𝑐𝑡𝑜𝑟

𝑐𝑜𝑙𝑜𝑟 = 𝑙𝑖𝑔ℎ𝑡𝑚𝑎𝑝𝐼𝑑[𝑡𝑒𝑥𝑡𝑢𝑟𝑒𝑇𝑒𝑥𝑒𝑙]

In scene where a lot of visplanes are on screen, even selecting the proper lightmap ID
was a performance hit. Therefore, a cache system keeping track of lightmap ID on a per
screenspace line/sector ID mitigate how often the value is calculated.

The engine uses a cool trick to embellish orthogonal surface rendering. Lightmap selec-
tion is tweaked based on world-space orientation. For north-south walls, the selection is
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lowered by one unit, making them brighter. For east-west walls the lightmap selection is in-
creased by one unit, making them darker. Lightmap selection on other walls is unaffected.

To render the sky, a sector has a special ceiling texture number which the engine recog-
nizes as "sky", in which case its height is 0, lightmap is 0 and perspective is disabled. Each
portion of the sky is stored as a visplane and drawn as a column of pixels (with colfunc).

The COLORMAP contains a 32nd lightmap made of 256 shades of grey. It is used when the
player picks up the invulnerability bonus. There is a bug in the visplane rendering routine’s
special casing that handles skies. Skies are always renderered without diminished lighting
and therefore ignore lightmaps.

This causes a weird visual result when a player is outside and picks up the invulnerability
orb, where everything except for the sky is rendered with a shade of gray.

The effect was difficult to replicate with seemingly "more powerful" hardware accelerated
systems which use 24-bit colors. On iOS, glBlendFunc(GL_ONE_MINUS_DST_COLOR,
GL_ZERO) was used to approximate the same visual with mixed results.
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Above is the invulnerability effect as it appeared on the PC version. Below, how it was
done on iOS via OpenGL ES 1.0 glBlendFunc function.
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5.12.9 Drawing Masked

With the environment rendered, what remains are "masked" elements. This category en-
compasses not only all sprites but also partially-transparent walls and the player’s weapon.

236



CHAPTER 5. SOFTWARE: IDTECH 1 5.12. 3D RENDERER

The function responsible for this task is called R_DrawMasked. It is the last step in the
rendering pipeline. Contrary to the environment which is rendered in front-to-back order,
this step proceeds in back-to-front order (which is the only way to get transparency right).
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Before diving into R_DrawMasked func-
tion, let’s take the example of a simple
room containing all types of "masked" el-
ements and reexamine what needs to be
done.

The diagram shows a room with four walls
(A, B, C, and D), a pillar also made of four
walls (E, F, G, and H), a transparent wall I,
a barrel (in grey), a player spawn point (in
green) and three enemies (in red: a Baron
of Hell, a Cacodemon, and a Demon).

The result as rendered by DOOM is visible in figure 5.41. Notice how the Baron is drawn
on top of wall I, the Cacodemon is partially occluded by wall I, and parts of the demon
are completely clipped behind the pillar. Also notice how the barrel must be drawn in front
of the Baron for correctness. Last, wall I needs to be clipped against the pillar.

Figure 5.41: Scene with all Things and the transparent wall rendered

With the desired result in mind, let’s go back to where we were with only walls and flats
rendered in the framebuffer. In the case of the same room, it would look like figure 5.42.
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Figure 5.42: Same scene as it is currently stored in the framebuffer

To get from figure 5.42 to figure 5.41, the engine needs to generate a list of maskables
(also simply called sprites in the code), to sort them into back-to-front order, iterate over
the sorted list, perform clipping on each of them, and finally render them as columns of
pixels.

5.12.9.1 List Of Things

The list of things was built while the BSP was traversed. Each time a subsector was sent
to rendering (in R_Subsector) the list of things it contained were added to an array of
vissprite_ts. Note that things are only pseudo-ordered and therefore the order is not
usable. In our example the barrel and the Baron would be added based on the subsector
they were in, but in no precise order (in the subsector’s list of things, the baron could be
returned before the barrel).

5.12.9.2 Clipping Information

The clipping information was also built while rendering walls. Ideally it would have been
a depth buffer but RAM was expensive and not fast enough. The solution was to record
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anything that could potentially appear on the screen in an optimized array of drawseg_ts.

The "drawn segments" array drawsegs is made of the following drawseg_t struct.

typedef struct drawseg_s {
seg_t *curline;
int x1 , x2;
fixed_t scale1 , scale2 , scalestep;
int silhouette; // 0=none , 1=bottom , 2=top , 3=both
fixed_t bsilheight; // don’t clip sprites above this
fixed_t tsilheight; // don’t clip sprites below this
// pointers to lists for sprite clipping
short *sprtopclip; // adjusted so [x1] is first value
short *sprbottomclip; // adjusted so [x1] is first value
short *maskedtexturecol; // adjusted so [x1] is first
value

} drawseg_t;

#define MAXDRAWSEGS 256
drawseg_t drawsegs[MAXDRAWSEGS ];

It is not easy to understand at first but it is much easier to think of it as a log of what
occluders were rendered to the screen.

∙ For each wall that generated pixels in the framebuffer, a drawseg_t is added.

∙ For each portal, up to two drawseg_ts are added (one for the upper part and one
for the lower part if the portal had no middle texture).

∙ For each masked segment (like the grid I in our example) that was skipped, one
drawseg_t entry is added to record what should have been drawn.

The log entries are ordered by distance from the player (since each entry was added while
rendering the walls). The distance is not a z value but a scale value. The idea is to replay
a portion of the log for each thing (everything in front of the thing) in order to build an ac-
curate occlusion rectangle. Once the occlusion rectangle is obtained, the Thing is clipped
against it. Each drawseg_t features the screen-space horizontal boundaries (x1 and x2)
as well as their respective scales (scale1 and scale2). Since a scale value is generated
for each Thing (based on its distance from the player), it is used to know what portion of
the drawsegs array to replay.

The screen-space horizontal top and bottom edge of each wall are obtained from pointers
sprtopclip and sprbottomclip which point to an array shared by all drawseg_ts.
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#define MAXOPENINGS SCREENWIDTH *64
short openings[MAXOPENINGS ];
short* lastopening;

draw_segs

openings

top_clip

bottom_clip

top_clip

bottom_clip

last_opening

...

Now that we know how they are clipped, let’s take a look at how sprites are stored.

typedef struct vissprite_s {
struct vissprite_s* prev; // Doubly linked list.
struct vissprite_s* next;
int x1;
int x2;
fixed_t scale;
int patch;
lighttable_t* colormap;

} vissprite_t;

#define MAXVISSPRITES 128
vissprite_t vissprites[MAXVISSPRITES ];
vissprite_t* vissprite_p;
vissprite_t vsprsortedhead;

A vissprite entry contains everything needed to render a sprite on screen. It features infor-
mation similar to the drawn segments such as the screen space horizontal boundaries (x1
and x2), its scale to compare distances with walls, the texture ID (patch) and the lightlevel
(colormap) to be used for shading.

Notice the prev and next fields. Even though vissprites are stored in a linear array, they
need to be sorted into back-to-front order. Instead of moving around array elements, the
sorting method only updates the doubly-linked list. This way, elements remain at the same
array position but a sorted list can be obtained by following the next pointers.
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Let’s finally look at how all this data is used to render the sprites and masked segments in
R_DrawMasked.

void R_DrawMasked (void){
vissprite_t *spr;
drawseg_t *ds;

R_SortVisSprites ();

// draw all vissprites back to front
if (vissprite_p > vissprites) {

for (spr= vsprsortedhead.next ; spr != &vsprsortedhead;
spr = spr ->next)

R_DrawSprite (spr);
}

// render any remaining masked mid textures
for (ds=ds_p -1 ; ds >= drawsegs ; ds --)

if (ds->maskedtexturecol)
R_RenderMaskedSegRange (ds , ds ->x1, ds->x2);

// draw the psprites on top of everything
if (! viewangleoffset) // don’t draw on side views

R_DrawPlayerSprites ();
}

As expected, the list of visible sprites is sorted based on their distances to the player
(R_SortVisSprites). This process is fast since only scale has to be compared and no
data is copied into the array, the doubly-linked list is only updated to move an element.

Next, all sprites are rendered one-by-one in a back-to-front fashion. The method taking
care of this (R_DrawSprite) scans the array of drawsegs linearly to find what wall frag-
ments were drawn in front of the sprite and clips it accordingly. Since the search is based
on the scale of each drawseg_t and the screen-space X boundaries it is a fast operation.

The last step is to render the masked segments which were skipped during BSP traversal.
This is done in function R_RenderMaskedSegRange.

As explained earlier (render all sprites then render all masked segments), there is no way
the grid in figure 5.41 could be interleaved with the sprites. To address this, there is a little
"hack" in R_DrawSprite during the linear scan for occluding drawseg_ts. It detects which
segments were "masked" and renders them via R_RenderMaskedSegRange.
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5.12.10 Drawing Masked Player

The last piece to render is the easiest of all. The sprite representing the Doomguy, a.k.a
"the player sprite" (psprite), is drawn on top of everything. There is no clipping in effect
here, only the need to account for the lightmap induced by the sector the player is cur-
rently standing in and making the hand bob left and right when moving/running. Like other
masked elements this sprite is rendered vertically as columns of pixels.

You may have noticed in R_DrawMasked that the player hand is drawn only if the viewing
angle offset is equal to zero (viewangleoffset). This is an artifact of a feature that was
disabled in later versions. Until v1.2, DOOM supported a "three screen mode" where three
computers with three monitors could be networked to render a wide field of view.

It is likely John Carmack was inspired to add this feature when he visited Alaska Airline
training center, where he was able to see a multi-million dollar wide-screen flight simula-
tor21. The feature was cut in later versions.

Trivia : Only the command-line code to enable/disable multiple screens was removed, the
feature itself remained. Chocolate DOOM re-enabled it and even created a special mode
allowing the "three monitor view" to be experienced on a single machine. This is how the
above screenshot was created.

5.12.11 Picture format

Sprites are written one vertical column at a time but are stored in a way that cuddles the
i486 cachelines during read operations. Each sprite is stored in its own lump and consists
of a collection of lines describing the vertical columns in the sprite (in essence, sprites are
stored rotated 90 degrees counterclockwise).

Each column (also called "post" in the code) is a set of "spans" with one byte giving the
vertical offset where the span starts, then one byte giving the size of the payload and finally
the texel payload.

21Source: "http://leeland.stores.yahoo.net/earlydoomstuff.html"
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The Lost Soul sprite’s row 44 is 4 bytes (one span with: 0x13 vertical offset, 0x02 data
length, 0x54 and 0x59 two texels). Row 33 has two spans, accounting for 48 bytes and
is a rare case where the encoding scheme is less favorable than "uncompressed" which
would have been 47 bytes. Row 10 (also two spans) accounts for 19 bytes which is much
less than the uncompressed length of 47 bytes. This entire Lost Soul sprite is 44x47 and
fits in 1360 bytes for a surface of 2068 pixels, resulting in a rough 50% compression ratio.

5.12.12 Sprite aspect ratio

The framebuffer was distorted when transfered from the VGA hardware to the CRT screen.
The different aspect ratios make pixels taller than they are wide, stretching images verti-
cally.

This distortion had not been an issue when working with Deluxe Paint since the tool could
be set up in 320x200 (so artists did not have square pixels) but it was something to factor
in when id switched to using scanned images from the NextDimension.
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Figure 5.43: Demon storage vs rendered

The Cacodemon was purposely drawn and rendered elliptically but effectively stored as a
rounded shape. In the early days of tool authoring, programmers of asset extractors did
not account for the CRT distortion, resulting in bulky monster visuals22.

Figure 5.44: Cacodemon storage vs rendered
22Even toy manufacturers made the mistake. Reaper Miniatures’ Cacodemon figurine is round instead of

elliptic.
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5.13 Palette Effects

Despite its many weaknesses, the VGA hardware had one re-
ally cool feature, its palette. Only 768 bytes were required to
make the entire screen fade toward a color. DOOM used fad-
ing for three effects – damage, item pickup, and the radiation
suit. To implement these effects, palettes were precalculated and
stored in the PLAYPAL lump. There are fourteen palettes in to-
tal. Palette #0 was the default and was used during most of the
game.

Eight palettes (from #1 to #8) were used to emphasize damage and to let the player know
how badly they were being injured. The effect switches the display to one of the seven
palettes based on the amount of damage taken (the higher the damage the higher the
starting palette). A fully red screen was usually very bad news. If no more damage is
taken, the palette fades back to normal (Palette #1) at the rate of one palette unit every 1/2
second.

Due to an off-by-one bug, palette #1 is never used. Take a good look at the code selecting
the damage palette in ST_doPaletteStuff; it can only generate values within the range
[2,8].

#define STARTREDPALS 1
#define NUMREDPALS 8
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void ST_doPaletteStuff(void) {
int palette;
int cnt = plyr ->damagecount;
...
if (cnt) {

palette = (cnt+7) >>3;
if (palette >= NUMREDPALS) palette = NUMREDPALS -1;
palette += STARTREDPALS;

} else {
...

}
byte *pal = W_CacheLumpNum (lu_palette , PU_CACHE)+palette
*768;

I_SetPalette (pal);
...

}

Palettes #9 to #12 are used briefly when an item is picked up.

Because of the same off-by-one miscalculation, palette #9 is never used. The palette se-
lector can only generate values within range [10,12] whereas a [9,12] range was needed.

The last palette (#13) is not used for fading effects but as a temporary swap when the
player is wearing the radiation suit.
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5.14 Input

The input system is abstracted based on the notion of events – generated when devices
are sampled in subsystems – and responders that consume these events in the core. Key
strokes, joystick status and mouse inputs are stored in the event_t structure.

typedef enum {
ev_keydown ,
ev_keyup ,
ev_mouse ,
ev_joystick

} evtype_t;

typedef struct {
evtype_t type;
int data1; // keys/mouse/joystick buttons
int data2; // mouse/joystick x move
int data3; // mouse/joystick y move

} event_t;

The core system notifies the input system when a new frame starts or when a game tic
starts, giving it an opportunity to sample devices for inputs, wrap them into an event_t
and use a callback function to post it to the core event buffer.

Function Usage

I_StartFrame Called by the core before a visual frame is rendered.
I_StartTick Called by the core when a game tic is rendered.
D_PostEvent Called by the input system to send an event to the core.

Figure 5.45: DOOM’s input system interface

Events are stored in the core via a circular buffer audaciously named events.

#define MAXEVENTS 64

event_t events[MAXEVENTS ];
int eventhead , eventtail; // Circular buffer

void D_PostEvent (event_t *ev) {
events[eventhead] = *ev;
eventhead = (++ eventhead)&(MAXEVENTS -1);

}
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On each game tic, the event queue is emptied. Events are sent one-by-one down a chain
of responders23. Each responder has the choice to ignore the event, in which case it is
passed further down.

void D_ProcessEvents (void) {

event_t *ev;
int head = eventhead;
int tail = eventtail;

for ( ; tail != head ; tail = (++ tail)&(MAXEVENTS -1) ) {
ev = &events[tail];
if (M_Responder (ev))

continue; // menu ate the event
G_Responder (ev);

}
eventhead = eventtail;

}

boolean G_Responder (event_t *ev) {
...

if (HU_Responder (ev))
return true; // chat ate the event

if (ST_Responder (ev))
return true; // status window ate it

if (AM_Responder (ev))
return true; // automap ate it

if (F_Responder (ev))
return true; // finale ate the event

// 3D renderer consumes event here
...

}

If the event is consumed ("eaten" in the code) then it is not passed to subsequent respon-
ders. Notice that the 3D renderer is the last responder in the chain.

23It is likely the "responder" architecture was influenced by NeXT’s NSResponder elements found in the
AppKit framework. It proved to be a robust design since it is still in use to this day.
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Trivia : The file i_cyber.c has nothing to do
with the enemy called the "Cyberdemon". It is
a driver especially written to support a curious
device manufactured by Logitech around 1992
called the "CyberMan". It was a hybrid input de-
vice providing six degrees of freedom. Think of
it as a joystick upon which would be mounted
a mouse. Support for its SWIFT API seems to
have been added later since it doesn’t generate
events like the keyboard, mouse, and joystick
but instead generates a tic command directly
into the tic command stream.

Most responders consume events in their raw (event_t) form but the 3D renderer normal-
izes them into a ticcmd_t containing not inputs but player actions. These "commands" as
they are called have no timestamps since they are part of the game logic stream that runs
at a fixed 35Hz frequency.

// The data sampled per tick (single player)
// and transmitted to other peers (multiplayer).
// Mainly movements/button commands per game tick ,
// plus a checksum for internal state consistency.
typedef struct {

char forwardmove; // *2048 for move
char sidemove; // *2048 for move
short angleturn; // <<16 for angle delta
short consistancy; // checks for net game
unsigned char chatchar;
unsigned char buttons;

} ticcmd_t;

The "commands" design pattern unlocks many features.

Commands are obviously consumed by the 3D engine but they can also be stored to disk
when recording a demo. Later they can be re-injected into the engine to replay the exact
same session. The beauty of this system is that players were able to exchange replays
even if they had computers capable of different framerates.

This feature allowed DOOM to have demos like you could find in arcades. The DEMO1,
DEMO2, and DEMO3 lumps are streams of ticcmd_ts meant to be played at 35Hz. Since
only commands are stored and the game is deterministic, demo files are very small, con-
suming only 8 * 35 = 280 bytes/second.
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Figure 5.46

Putting it all together, 1 the core calls into the Input System once per frame and once per
game tic to allow it to sample devices. 2 Events are sent to the Core. 3 Received events
are stored in a circular event buffer. 4 Events are dispatched to various responders. If the
3D renderer is active, the events are combined into a ticcmd_t which can be consumed,
sent on the network, or stored on disk in the context of a demo recording.

During demo playback the input system is disabled; tics commands are read from disk and
injected into the pipeline.
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5.15 Audio System

Like every other I/O system in the engine, the audio is abstracted behind an interface. To
fulfill DOOM’s core expectations, such a system has to implement at least twenty functions
covering sound effects, music, and also the timer. Here are a few.

Method Usage

I_StartupSound Initialize audio system, detect audio hardware
I_SetChannels Set number of channels and sample rate

I_RegisterSong Upload a music lump and get back an ID.
I_SetMusicVolume Self explanatory.
I_PlaySong Play Song
I_PauseSong ...hm, Pause Song
I_ResumeSong Mysterious function with unknown effects.
I_StopSong Maybe this table was not a good idea after all.
I_UnRegisterSong Free music using ID obtained in I_RegisterSong.

I_GetSfxLumpNum Upload audio sample from WAD and return an ID.
I_SetSfxVolume If you read this, you are a real human being and a real hero.
I_StartSound Start playing SFX sample.
I_StopSound Stop playing SFX sample and free it.
I_SoundIsPlaying Test if SFX is playing.
I_UpdateSoundParams Set pitch, left/right position and volume.

I_StartupTimer On DOS, triggers audio system to hook into the Intel 8259
PIC. No-op on other platforms.

I_ShutdownTimer On DOS, remove the hook. No effect on other platforms.

Figure 5.47: DOOM’s audio system interface

On NeXTSTEP this system was never a problem since only the timer function had to be
implemented. On the PC side however, the game engine had to have sound effects and
music. One difficulty was the fragmentation of the sound card market which had increased
exponentially since Wolfenstein 3D. The previous title required tremendous effort just to
support four types of sound card. Two years later there were more than fifteen available,
all with different bugs, quirks and technologies.

To make things worse, the departure of Jason Blochowiak had left id Software with both a
shortage of expertise and enthusiasm toward audio. They solved the problem by throwing
money at it and licensed the DMX library. For the price of its license, the library authored by
Paul J. Radek offered an all-in-one audio solution. With support for all major sound cards,
a convenient means to detect them, support for many sound and music formats, and an
easy way to integrate with any game engine, DMX was a perfect fit which undoubtedly
saved id several months of development.
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The abstraction layer provided by DMX was a colossal task. The comment before the func-
tion in charge of detecting the hardware leaves no ambiguity as to how much of a burden
it was to tackle this problem.

//
// Why PC’s Suck , Reason #8712
//

void I_sndArbitrateCards(void) {
...

With DMX backing the sound system, ten audio chipsets were supported.

typedef enum {
snd_none , //
snd_PC , // PC Speaker
snd_Adlib , // Adlib
snd_SB , // Sound Blaster
snd_PAS , // Media Vision (Pro AudioSpectrum)
snd_GUS , // Gravis UltraSound
snd_MPU , // Roland MPU -401
snd_MPU2 ,
snd_MPU3 ,
snd_AWE , // Sound Blaster AWE 32
snd_ENS , // ENSONIQ
snd_CODEC , // Compaq Business Audio
NUM_SCARDS

} cardenum_t;

Running on an operating system supporting neither threads nor processes, there was
seemingly no way to generate both the video and audio output simultaneously. Attentive
readers will have noticed the hardware section mentioned two chipsets: the i8259 (Pro-
grammable Interrupt Controller: PIC) and i8254 (Programmable Interval Timer: PIT). To-
gether they can be set up to interrupt the engine’s execution and call into DMX’s routines24.

Upon initialization, DMX installs itself as an interrupt handler to be called by the PIC and
PIT at 140Hz. Upon awakening, DMX’s interrupt handler takes care of feeding the audio
device with music and sound effect data provided by the engine.

Since it was tied to a timer, DMX was also in charge of the game engine’s heartbeat via a
variable called ticcount. Everything in DOOM uses that variable to pace itself.

24The way the PIC and PIT interact is extensively detailed in "Game Engine Black Book: Wolfenstein 3D".
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MPU-401 v1

MPU-401 v2

MPU-401 v3

SB AWE 32

Doom Core

i8254 i8259

DMX

IRQ0

INT8

Figure 5.48: DMX architecture

With such an architecture there are two systems executing pseudo-concurrently but the
audio has more constraints than the video. When an interrupt is triggered, DMX has only a
few milliseconds to refill the sound card’s buffers and go back to sleep. If DMX is too slow,
it can delay video rendering or mask other interrupts.

This explains why allocation of audio assets gets special treatment in the zone allocator.
The audio system has no time to recover from a memory miss (nor could it, since it has no
access to the WAD or memory allocator). Audio data must be ready immediately whenever
it is needed.

254



CHAPTER 5. SOFTWARE: IDTECH 1 5.15. AUDIO SYSTEM

5.15.1 Audio Data: Formats and Lumps

The WAD archive contains hundreds of lumps of five types to feed to DMX. DP* lumps are
for PC speaker sound effects, DS* lumps are for PCM sound effects, D_* lumps are for
music tracks. There is also a GENMIDI lump, and one DMXGUS lump detailed later.

PC speaker audio was meant for PCs without a sound card. The PC speaker was capable
of square waves and meant to emit boot-up diagnostic noises. DOOM found ways to make
it generate something less irritating by changing the square wave frequency every 1/140th
of a second25. The data rate is one byte per 1/140th of a second, describing the square-
wave frequency to set.

The digitized audio samples used in DOOM are 8-bit, 11025 Hz, mono PCM streams. PCM
is a simple audio format that requires little explanation. Each byte in the stream is a mo-
ment in time that describes the amplitude of a waveform and indicates where the speaker
cone should be positioned. The sound card simply translates the byte into a voltage to the
magnet driving the cone position, which happens at a rate of 11025 times per second.

Music data is stored in MUS, a format similar to standard MIDI but slightly more compact.
The format allows eight channels for instruments and a ninth for the drums. The MUS
format describes a series of precisely timed events for each channel which specify which
instrument should play a note and at what pitch. Note that MUS only describes what to do
and when, not how to do it. Each channel refers to the note of an instrument; the instru-
ment itself is described elsewhere in a data structure known as the "instrument bank".

The instrument bank is stored in the GENMIDI lump. It is aimed at SoundBlaster-compatible
sound cards based on the OPL2 chip which synthesize music using Frequency Modula-
tion. The lump describes how to play the note of each instrument in the MIDI instrument
set. There are 175 entries in GENMIDI, one for each of the 128 standard General MIDI
instruments and 47 percussion effects. Each entry describes how to set up a channel in
order to emulate an instrument. A channel is made of two cells, where one cell is used as
carrier and the other as modulator. For each cell, attack, decay, sustain, release, harmonic
type, and waveforms can be selected by the musician. Instrument banks were 90s musi-
cians’ "secret sauce" and DOOM’s General MIDI emulated FM patch set were known for
being particularly good26.

The DMXGUS lump played the same role as GENMIDI but for the Gravis Ultrasound card.
It enabled the GUS to play MUS music notes, not with an FM synthesizer but with the
PCM samples provided with GUS drivers. It is a simple lump mapping MIDI instruments to
GUS instruments with special rules for RAM allocation depending on the amount of RAM
installed on the board (256KiB, 512KiB, 768KiB, and 1024KiB).

25The PC Speaker is detailed in "Game Engine Black Book: Wolfenstein 3D".
26Source: "The dark and forgotten art of GENMIDI" in Freedoom’s documentation.
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Dealing with so much complexity proved difficult for DMX. Some of the craziness Paul
Radek had to deal with surfaced in one of his post on usenet27.

“ All of the sound effects are now mixed in software, rather than on the GUS
hardware. Why, you ask? Because of several reasons. First, is that the GF1
chip has a minimal ramp time that is much to long for very sharp effects.
Second, because loading of the MUSIC patches uses all of the GUS memory,
I had to DMA all eight sound effects to the card when played. This intern
exposed a bug in the GF1 chip that Gravis did not find until my code started
to beat on it. The bug would cause the bus to freeze and any program with it.
The workaround is to keep DMA activities to a minimum by mixing in software
and transferring only 1 channel to the GUS. But since the GF1 can’t support
auto-initialize DMA, and because the only way to play interleaved data on the
card is to set two voices pointing into a single patch and setting the frequency
so the every other sample is skipped, you don’t get the benefit of sample
smoothing from the GF1.

Sorry, but that’s the way it has to be :(

— Paul Radek, Digital Expressions, Inc.

”
The library evolved during the development of DOOM. Sometimes API changes introduced
bugs. Gravis UltraSound support was broken with v1.666. Support for the Audio Spectrum
was also broken so users of the card had to fall back on (poor) SoundBlaster emulation28.

The problem was partly due to poor API practices on DMX’s side and partly because of
hasty adjustments on id Software’s part. Most issues were ultimately fixed except for one
major bug which made it to gamers. The engine was originally supposed to emit sounds at
random pitches to avoid monotony. To this effect, DMX function SFX_PlayPatch was used.

int SFX_PlayPatch(
void *patch , // Patch to play
int x, // Left -Right Positioning
int pitch , // 0..128..255 -1Oct..C..+1 Oct
int volume , // Volume Level 1..127
int priority // Priority , 0= Lowest

);

27Forum thread: "Gravis Ultrasound - Hardware Mixing Game List".
28Source: John Romero post on alt.games.doom.
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In early versions it worked as intended but then the DMX API was modified in an incom-
patible way. It may not be immediately apparent but the parameters to SFX_PlayPatch are
swapped.

int SFX_PlayPatch(
void *patch , // Patch to play
int pitch , // 0..128..255 -1Oct..C..+1 Oct
int x, // Left -Right Positioning
int volume , // Volume Level 1..127
int flags , // Flags
int priority // Priority , 0= Lowest

);

Invocation sites were never adjusted and the game shipped without the random pitch fea-
ture, instead randomly balancing sound between the left and right channel.

int I_StartSound (void *data , int vol , int sep , int pitch ,
int priority) {

...
return SFX_PlayPatch(data , sep , pitch , vol , 0, 100);

}

In retrospect John Carmack regretted using DMX because it led to issues when open
sourcing the game engine (it is unknown if Paul Radek was unwilling to open source DMX
or if id software was unwilling to negotiate with him).

“ Our biggest mistake during DOOM development was the contracting of an
outside party to do dos sound drivers. Because we had this black box
functionality coming, I didn’t simulate it under NS. BAAAAAD mistake. All
future work will be entirely developed under NS, with only DMA buffer flipping
being the hardware layer. We will probably also run midi under NS for music
(which will be dynamically tuned to the game situation in Quake).

— John Carmack ”
One can still find archived Usenet posts from alt.games.doom where John Romero’s
comments hint that the relationship between Radek and id Software was suffering as the
game neared its release date29. Since the tone was less than cordial, it is left as an
exercise to the reader if they want to dig these posts out. I do not recommend it.

29Source: John Romero post on alt.games.doom.
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5.16 Sound Propagation

How enemies react to sounds makes a tremendous impact on how smart the A.I. is per-
ceived as being. id Software made sure sound propagation was realistic. When a shot is
fired in a sector, a flood fill algorithm propagates the noise.

void P_RecursiveSound (sector_t *sec , int soundblocks)
{

int i;
line_t *check;
sector_t *other;

// wake up all monsters in this sector
if (sec ->validcount == validcount &&

sec ->soundtraversed <= soundblocks +1)
return; // already flooded

sec ->validcount = validcount;
sec ->soundtraversed = soundblocks +1;
sec ->soundtarget = soundtarget;

for (i=0 ;i<sec ->linecount ; i++) {
check = sec ->lines[i];
if (! (check ->flags & ML_TWOSIDED) ) // Portal?

continue; // No, this is a wall , skipping.
P_LineOpening (check); // fixed_t openrange = 0 if door
closed.
if (openrange <= 0)

continue; // closed door
if ( sides[ check ->sidenum [0] ]. sector == sec)

other = sides[ check ->sidenum [1] ] .sector;
else

other = sides[ check ->sidenum [0] ]. sector;
if (check ->flags & ML_SOUNDBLOCK)
{

if (! soundblocks) // Blocking noise?
P_RecursiveSound (other , 1);

}
else // Flooding to next sector !

P_RecursiveSound (other , soundblocks);
}

}
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Map E3M9 "finish"

features 38 monsters

and 3 sound blockers

The sector/portal format is leveraged, start-
ing from the player’s sector and flood-filling
into adjacent sectors via portals (two-sided
lines). Sound is stopped when either a door
is encountered or when two "sound blocker"
lines have been crossed. Level E3M9 fea-
tures a section with 38 monsters where the
A.I. cost is lowered by three (red) blocker
lines, ensuring some monsters remain dor-
mant.

Notice how function P_RecursiveSound mentions "waking up all monsters" but never it-
erates over the list of things in the level. This is a speed-up trick aimed at avoiding an
expensive search to find all monsters to be awakened in each sector. Monsters always
look up for the current sector’s soundtarget to pick a target. By simply assigning a value
to sec->soundtarget, all monsters in sec automatically acquire the same target.

E1M1 sound propagation areas (doors closed)

5.16.0.1 Ambushing

Map designers wanted to have sneaky monsters who could hide and wait to jump out at
players. This is achieved via the MF_AMBUSH flag assigned to monsters. It doesn’t make
monsters deaf, rather it makes them not seek the player until they make visual contact.

259



5.16. SOUND PROPAGATION CHAPTER 5. SOFTWARE: IDTECH 1

5.16.0.2 Super Ambushing

Sound propagation was used in an inventive in level E1M9 for its super ambush. The
designers wanted the player to be swarmed with monsters teleporting, seemingly from a
hellish dimension, as soon as the player walked across the center of a pentagram.

Without a scripting language available that was next to impossible to implement. As we’ll
see in the A.I. section, monsters are state machines only able to do three things: stay
dormant, pursue a target, and when they bump into walls and things, change direction.

To achieve the effect, they created
an inaccessible "monster pool" room
next to where they wanted the su-
per ambush and filled it with monsters
(red circles in the diagram). In the
south-east corner of the hidden room,
they placed a teleporter, protected by
walls.

Then they created a very tiny pipe to
allow sound to flow between rooms,
so that monsters from the "pool" room
would wake up and try to reach the
player. Without another way to get
there (the pipe being at ceiling level
and the monsters being too big to
fit through it), monsters will wander
in circles with a tendency to move
towards the player’s location (south-
east).

The last piece of the super ambush trap
was to have four tripwires around the
center of the "pentagram" which lowered
the walls around the teleporter. A tempting bait was placed on it (health and ammunition)
to make sure the player would go there.

As soon as the player crosses the trigger in the "star" room, the walls around the teleporter
lower, monsters move towards it and swarm the player.

Trivia : Comments in the code suggest that monsters screaming awaken other monsters
but this is not the case. It is unknown why this feature was cut. Maybe it was too buggy or
too expensive.
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John Romero himself described how they called these sound conduits, "pipes".

“ We used sound zones in Wolfenstein 3D as another way to alert enemies
to your presence. In DOOM, we did the same thing but used sectors as
the conduits of audio travel. This was a really important part of making
the game scary, as sound could leak all over the place and alert demons.
You might see lots of little sector pipes that connect sectors together just to
alert monsters-sectors that you’d never see because we put them way up
high in the corner of a room. So, we paid a lot of attention to the sound flooding.

— John Romero, p29 in Scarydarkfast

”
The audio pipe for the E1M9 super ambush is so well-hidden in the ceiling that it is very
hard to notice with the vanilla engine. The room is dark and in the distance, the tiny black
rectangle blends in the obscurity. Opening the map with an editor such as SLADE that
allows looking up and down reveals the mechanism.

Figure 5.49

In figure 5.49 the audio conduit is visible in the upper right corner.
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5.17 Collision Detection

Collision detection is a significant part of the engine’s activity. Each moving object (player,
monster or projectile) must check for collisions before it moves. Line of sight also depends
on an efficient collision system. Enemies which inflict direct hit damage also need to check
if they have a clear line of fire.

Collisions could have been detected via the BSP. However it was only after Bruce Naylor
visited id Software that John Carmack became aware this was possible. By then, DOOM
had already shipped with its collision detection data structure called the blockmap.

Figure 5.50: E1M1 sectors and lines

There is one blockmap per map which was generated via doombsp preprocessing on
NeXTstations. Saved in a lump audaciously named BLOCKMAP, it is used at runtime to
lower the number of lines to test intersections with.

The work done by doombsp is simple: divide the map into 128x128 axis-aligned blocks.
For each block a list is made of every line that passes through it. At the end of the process,
an index is constructed based on blockmap coordinates (in 128x128 units) pointing to the
list of lines. Notice that a line can be present in multiple blocks. In the case of map E1M1,
the result is visible in figure 5.51.
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Figure 5.51: E1M1 lines indexed via blockmap. Note that empty blocks are not drawn

All map traversals are done with an abstract method P_PathTraverse which takes as ar-
guments two coordinates making up a line to check collisions with and a function pointer
to call when a hit is detected (a.k.a how to fake OOP with C).

bool P_PathTraverse (fixed_t x1 , fixed_t y1, // origin
fixed_t x2, fixed_t y2, // dest
int flags , // targets
boolean (*trav) (intercept_t *));

Function P_AimLineAttack (used for punching and sawing) uses P_PathTraverse with
flag = PT_ADDLINES|PT_ADDTHINGS so that only lines and things are considered during
traversal. The block coordinates of any map coordinate are easy to obtain via a divide
by 128 (optimized as ≫ 7). To detect collisions with things, their block coordinates are
updated each time they change position.

fixed_t P_AimLineAttack (mobj_t *t1 , angle_t angle , fixed_t
distance) {
P_PathTraverse ( t1->x, t1->y, x2 , y2,

PT_ADDLINES|PT_ADDTHINGS , PTR_AimTraverse );
}
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5.18 Artificial Intelligence

As mentioned earlier, there is no scripting language in DOOM. The A.I. is based on a set of
state machines for each enemy type baked into the engine binary. Designers did not have
to learn C since they could entirely configure an opponent via the text file multigen.txt.
This text file is parsed by a tool (cunningly named multigen) and compiled into C source
code (info.h and info.c).

Let’s dive into the hand-written state machine descriptor text file right away and take a look
at the section of multigen.txt that controls the imp (known as TROOP internally).

; Imps
$ MT_TROOP

doomednum 3001
spawnhealth 60
speed 8
painchance 200
radius 20* FRACUNIT
height 56* FRACUNIT
flags MF_SOLID|MF_SHOOTABLE|MF_COUNTKILL

spawnstate S_TROO_STND
seestate S_TROO_RUN1
meleestate S_TROO_ATK1
missilestate S_TROO_ATK1
deathstate S_TROO_DIE1
xdeathstate S_TROO_XDIE1
raisestate S_TROO_RAISE1
painstate S_TROO_PAIN

attacksound 0
activesound sfx_bgact
deathsound sfx_bgdth1
seesound sfx_bgsit1
painsound sfx_popain
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S_TROO_STND TROO A 10 A_Look S_TROO_STND2
S_TROO_STND2 TROO B 10 A_Look S_TROO_STND

S_TROO_RUN1 TROO A 3 A_Chase S_TROO_RUN2
S_TROO_RUN2 TROO A 3 A_Chase S_TROO_RUN3
S_TROO_RUN3 TROO B 3 A_Chase S_TROO_RUN4
S_TROO_RUN4 TROO B 3 A_Chase S_TROO_RUN5
S_TROO_RUN5 TROO C 3 A_Chase S_TROO_RUN6
S_TROO_RUN6 TROO C 3 A_Chase S_TROO_RUN7
S_TROO_RUN7 TROO D 3 A_Chase S_TROO_RUN8
S_TROO_RUN8 TROO D 3 A_Chase S_TROO_RUN1

S_TROO_ATK1 TROO E 8 A_FaceTarget S_TROO_ATK2
S_TROO_ATK2 TROO F 8 A_FaceTarget S_TROO_ATK3
S_TROO_ATK3 TROO G 6 A_TroopAttack S_TROO_RUN1

S_TROO_PAIN TROO H 2 NULL S_TROO_PAIN2
S_TROO_PAIN2 TROO H 2 A_Pain S_TROO_RUN1

S_TROO_DIE1 TROO I 8 NULL S_TROO_DIE2
S_TROO_DIE2 TROO J 8 A_Scream S_TROO_DIE3
S_TROO_DIE3 TROO K 6 NULL S_TROO_DIE4
S_TROO_DIE4 TROO L 6 A_FALL S_TROO_DIE5
S_TROO_DIE5 TROO M -1 NULL S_NULL

S_TROO_XDIE1 TROO N 5 NULL S_TROO_XDIE2
S_TROO_XDIE2 TROO O 5 A_XScream S_TROO_XDIE3
S_TROO_XDIE3 TROO P 5 NULL S_TROO_XDIE4
S_TROO_XDIE4 TROO Q 5 A_FALL S_TROO_XDIE5
S_TROO_XDIE5 TROO R 5 NULL S_TROO_XDIE6
S_TROO_XDIE6 TROO S 5 NULL S_TROO_XDIE7
S_TROO_XDIE7 TROO T 5 NULL S_TROO_XDIE8
S_TROO_XDIE8 TROO U -1 NULL S_NULL

S_TROO_RAISE1 TROO M 8 NULL S_TROO_RAISE2
S_TROO_RAISE2 TROO L 8 NULL S_TROO_RAISE3
S_TROO_RAISE3 TROO K 6 NULL S_TROO_RAISE4
S_TROO_RAISE4 TROO J 6 NULL S_TROO_RAISE5
S_TROO_RAISE5 TROO I 6 NULL S_TROO_RUN1

There are four sections. Properties include the DoomED id, speed, height, radius, state
names for state machine targets, sound strings, and finally the huge Action definition.
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Property lists and sound names are self-explanatory, and there is no need to spend too
much time on them. What is more difficult to understand is how the state machine is de-
fined.

A thing’s state machine is partly statically defined inside the engine (when a monster is
attacked it goes directly to seestate; when it receives lethal damage, it goes direcly to
diestate) and partly defined in multigen.txt. Each line in the state definition follows a
syntax:

1. State name.

2. Frame family.

3. Frame ID (sprite to render).

4. Duration in tics (engine runs 35 tics/second).

5. Function to call when in this state.

6. Next state.

Let’s take the example of an imp that has just spawned in a level and therefore is in state
spawnstate, which is S_TROO_STND. Upon simulating each game tic, the engine looks at
what to do in this state. In this case, the imp will cycle between the states S_TROO_STND and
S_TROO_STND2. In these sub-states, A_Look is called each tic trying to locate the player. If
the player is found, the engine places the imp into the seestate (a.k.a S_TROO_RUN1)

Suppose this imp was unlucky, the player was fast and managed to hit it with a shotgun at
point blank. In this case the engine places the imp into the deathstate (S_TROO_DIE1).

S_TROO_DIE1 TROO I 8 NULL S_TROO_DIE2
S_TROO_DIE2 TROO J 8 A_Scream S_TROO_DIE3
S_TROO_DIE3 TROO K 6 NULL S_TROO_DIE4
S_TROO_DIE4 TROO L 6 A_FALL S_TROO_DIE5
S_TROO_DIE5 TROO M -1 NULL S_NULL

Notice how values I, J, K, L, and M translate to sprite names.
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Let’s follow the chain of state from here, where an imp dies in five steps:
1. Show first death frame (I) for 8/35ths of a second.

2. Show second death frame (J) for 8/35ths of a second. Scream using deathsound.

3. Show third death frame (K) for 6/35ths of a second.

4. Show fourth death frame (L) for 6/35ths of a second. Mark itself as non-obstacle
(A_FALL).

5. Show fifth death frame (M) forever (-1).

The total dying sequence lasts 8 + 8 + 6 + 6 = 24/35 = 0.68 seconds. Note that this imp
could have been even less lucky and been hit by a rocket. Enough damage would have
caused it to gib, moved it to the xdeathstate (S_TROO_XDIE1) state and made it die in 1
second.

S_TROO_XDIE1 TROO N 5 NULL S_TROO_XDIE2
S_TROO_XDIE2 TROO O 5 A_XScream S_TROO_XDIE3
S_TROO_XDIE3 TROO P 5 NULL S_TROO_XDIE4
S_TROO_XDIE4 TROO Q 5 A_FALL S_TROO_XDIE5
S_TROO_XDIE5 TROO R 5 NULL S_TROO_XDIE6
S_TROO_XDIE6 TROO S 5 NULL S_TROO_XDIE7
S_TROO_XDIE7 TROO T 5 NULL S_TROO_XDIE8
S_TROO_XDIE8 TROO U -1 NULL S_NULL

The engine uses a convention to find which sprite to use when
rendering them. Because an enemy will not always be fac-
ing the player, it uses quantization where all orientations rel-
ative to the player’s position fall into eight ranges (see dia-
gram where 1 is facing the player, 5 facing away, and so
on).

When in the S_TROO_XDIE1 state, according to multigen.txt,
the engine must use the sprite family TROO and frame N. Based
on the orientation (lets say the imp has its back to the player), the engine should use
TROON5. However, there is no such sprite in DOOM.WAD (exploding enemies always face the
player) so the engine falls back to TROON0 (0 being the "always facing" sprite).
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Figure 5.52: Cyberdemon poses in one of its two "walk" positions.

Taking a look at one of the frames for the Cyberdemon in figure 5.52 gives a good idea
of the colossal work required from artists. Twelve monsters times eight states times an
average of five frames per animation would have required close to 480 drawings (for the
monsters only). The power of the NeXTdimension made a tremendous difference in this
department.

The Cyberdemon however is an extreme case since it is not symmetrical. For the imp,
storage is optimized to take advantage of its symmetry. If the engine needs TROOA6 but
doesn’t find it in the WAD, it uses its opposite (TROOA4) and draws it mirrored.

Trivia : You may have noticed that in the list of states there is a non-obvious one named
RAISE. This is used when the Arch-Vile resurrects dead monsters. The animation plays the
death animation in reverse. Note that there is no reverse gib sequence, but the Arch-Vile
still revives gibbed monsters using a reverse normal death animation.
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Figure 5.53

Trivia : When an entity receives more than spawnhealth damage (negative its spawing
state; in the case of an imp that would be -60), the engine triggers not deathstate but the
xdeathstate state that means the entity exploded.

void P_KillMobj (mobj_t *source , mobj_t *target) {
[...]
if (target ->health < -target ->info ->spawnhealth

&& target ->info ->xdeathstate) {
P_SetMobjState (target , target ->info ->xdeathstate);

} else {
P_SetMobjState (target , target ->info ->deathstate);
}
[...]

}
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multigen.txt is compiled to the humongous 5000 line info.c containing an array of
state_ts holding the state machine, and an array of mobjinfo_ts containing the thing
properties.

typedef struct {
spritenum_t sprite;
long frame;
long tics;
void (* action) ();
statenum_t nextstate;
long misc1 , misc2;

} state_t;

state_t states[NUMSTATES] = { // = NUMSTATES = 1109
// [...]
{SPR_TROO ,0,10,A_Look ,S_TROO_STND2 ,0,0} // S_TROO_STND
{SPR_TROO ,1,10,A_Look ,S_TROO_STND ,0,0}, // S_TROO_STND2

{SPR_TROO ,0,3,A_Chase ,S_TROO_RUN2 ,0,0}, // S_TROO_RUN1
{SPR_TROO ,0,3,A_Chase ,S_TROO_RUN3 ,0,0}, // S_TROO_RUN2
{SPR_TROO ,1,3,A_Chase ,S_TROO_RUN4 ,0,0}, // S_TROO_RUN3
{SPR_TROO ,1,3,A_Chase ,S_TROO_RUN5 ,0,0}, // S_TROO_RUN4
{SPR_TROO ,2,3,A_Chase ,S_TROO_RUN6 ,0,0}, // S_TROO_RUN5
{SPR_TROO ,2,3,A_Chase ,S_TROO_RUN7 ,0,0}, // S_TROO_RUN6
{SPR_TROO ,3,3,A_Chase ,S_TROO_RUN8 ,0,0}, // S_TROO_RUN7
{SPR_TROO ,3,3,A_Chase ,S_TROO_RUN1 ,0,0}, // S_TROO_RUN8

{SPR_TROO ,4,8,A_FaceTarget ,S_TROO_ATK2 ,0,0},// S_TROO_ATK1
{SPR_TROO ,5,8,A_FaceTarget ,S_TROO_ATK3 ,0,0},// S_TROO_ATK2
{SPR_TROO ,6,6,A_TroopAttack ,S_TROO_RUN1 ,0,0},// S_TROO_ATK3
// [...]
}

DIE

RAISE

XDIEPAIN

SEE

MELEE

SPAWN

RANGE
Not all automaton state changes can be in-
ferred from the transition array. In the case
of the imp, transitions are partly dictated by
the logic in info.txt (black arrows) and
partly dictated by the game engine (direct
to red state).

In the state diagram, the engine-triggered
transitions to pain, die, and xdie are not
represented since these states can be reached directly from any other state.
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5.18.1 Optimization

Monsters constantly request collision tests. Even the simple SPAWN state, for which a two
frame animation cycles repeatedly (monsters do not have a standing script, they "walk on
the spot"), calls the A_Look function to attempt to locate the player. Furthermore, once
activated, monsters need path-finding and range attack tests. The calculations proved to
be an unacceptable level of load on the CPU. Even using the blockmap structure to speed
up collision detection it still meant hundreds of rays to cast, thirty five times per second
which resulted in thousands of instructions.

To solve this problem, another data structure was introduced with doombsp. Each sector
visibility is precomputed to allow impossible collisions to be rejected early. The visibility
data is stored in a bit array30. This dataset is packed into a matrix of size 𝑛𝑢𝑚_𝑠𝑒𝑐𝑡𝑜𝑟𝑠2/8
and stored in a REJECT lump. At runtime, the engine compares the player’s current sector
with a monster’s sector to potentially bypass sight detections for this monster entirely.

REJECT TABLE

A

B

C

D

A

0

0

1

1

B

0

0

0

0

C

1

0

0

0

D

1

0

0

0
B C

A

D

Figure 5.54

Figure 5.54 features four sectors with five monsters and one player in sector A . The en-
gine needs only to run expensive line of sight calculations for the monster in sector B . All
four others monsters are "rejected" via a cheap lookup. The table is only used for sight.
Monsters will still hear the player since sound is cheaper to propagate.

Trivia : With "unlimited" CPU power, modern "node builders" don’t build REJECT anymore.

30This approach later morphed into the Potentially Visible Set which was instrumental to Quake engine.
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5.19 Map Intelligence

Despite lacking a scripting system, maps still managed to offer a rich experience. They
were full of surprises with numerous elements interacting with the player. Switches and
tripwire-enabled doors, secret passages, elevators, crushing walls, traps and more.

Figure 5.55: UDOOM’s E1M1 features 21 special lines and five of them open secret areas.

All interactions are achieved via a simple association between a line’s special attribute
which designates one action to perform and a tag value that indicates the target sectors
to act on.

The list of action types is impressive – there are more than 130 of them: open/close door
at normal/turbo/blazing speeds; raise/lower floor and ceilings; fast ceiling crush & raise;
stairbuilders; locked door so you are trapped with monsters; lighting level effects; raise
floor to nearest height, texture changes, teleports, level normal and secret exits, and many
others.

The tag designating the target is any number picked by the designer. Any lines the de-
signer wants to be targeted by this action are tagged with the same number. With this
system, a line can trigger only one action but target several sectors.

Trivia : The first maps designed had mostly orthogonal walls and military design. It took
the team a few months to realize DOOM engine was capable of much more.
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Who doesn’t recognize E1M3’s hunt for
the blue key on page 274? After travers-
ing the whole map, it is finally found sit-
ting on a pedestal, guarded by only two
low-level opponents which are easily dis-
patched.

But as soon as the player picks it up,
the lights go out and the sound of a
door opening and growling imps can be
heard. It was a trap the player just
walked into and imps are just behind (page
274)!

To implement this effect, two sets of lines
were used. The first lines (in blue) target
the door sector behind which the monsters
were hiding and opens it. The second lines (in red) target the current sector and set its
light level to "very dark".

EXIT

Another interesting effect in E1M3 is the
rising staircase that leads to a small
room containing the exit to level 4. It
is implemented by having a line with
the "BuildStairs" (#8) type targeting the
first step sector with its tag. The en-
gine has a hardcoded EV_BuildStairs
function that looks up the target sector
via the tag then uses a flood-fill algo-
rithm.

Adjacent sectors are repeatedly looked
up and a bit more height is added with
each iteration. To avoid raising the
whole level, the algorithm stops when
the next sector’s texture is different from
the last elevated sector, which explains
why the stairs are gray, while the top
and bottom surrounding them are dark
brown.

Before and after screenshots can be seen
on page 275.
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Finally, the blue key (above)! Nooo, it’s a TRAP (below)!
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Above, all steps start at the same level. Below, after the "BuildStairs" trigger.
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5.20 Game Tics Architecture

With the knowledge of how opponents and map elements work, we can pick up the code
where we left it with regard to game simulation on page 168. G_Ticker is where all thinkers
are run.

void G_Ticker (void) {
[...]
switch (gamestate) {

case GS_LEVEL:
P_Ticker (); // Update actors
ST_Ticker (); // Status Bar
AM_Ticker (); // Auto Map
HU_Ticker (); // HUD
break;

[...]
}

Most of the meat is in the 3D gameplay (P_Ticker) function.

void P_Ticker (void) {
for (int i=0 ; i<MAXPLAYERS ; i++)

if (playeringame[i])
P_PlayerThink (& players[i]); // player actions

P_RunThinkers (); // Monsters
P_UpdateSpecials (); // Animate planes , scroll walls
P_RespawnSpecials (); // respawn items in deathmatch

}

P_PlayerThink is where the player "thinks". This function consumes the ticccmd_t
(which we already studied on page 250) and controls where the player moves and fires.

P_RunThinkers is how the map and monsters "think". Anything that must occur over more
than one frame is placed in a thinker object and stored in a doubly-linked list. Thinkers are
structs with a function pointer and some data for the function pointer parameters. Each
gameplay tic, every thinker in the list "thinks". When thinkers are done thinking they set
their function pointer to -1 and are dropped from the list. Note that doors have no feelings
but they are nonetheless "thinkers" too.

P_UpdateSpecials takes care of animating special textures such as water, or animated
walls. It also takes care of switching the texture when a button is pushed.

P_RespawnSpecials respawns medikits, weapons, and ammo in deathmatch.

276



CHAPTER 5. SOFTWARE: IDTECH 1 5.20. GAME TICS ARCHITECTURE

typedef void (* think_t) ();

typedef struct thinker_s {
struct thinker_s *prev , *next;
think_t function;

} thinker_t;

C has no OOP capabilities yet the engine managed to implement a polymorphism system.
Semantically, think_t structs are stored in the linked list element (thinker_t) with no
space for the payload.

typedef struct {
thinker_t thinker;
floor_e type;
boolean crush;
sector_t *sector;
int direction;
int newspecial;
short texture;
fixed_t floordestheight;
fixed_t speed;

} floormove_t;

EV_BuildStairs, which creates thinkers to build stairs, shows how to use the system.

void T_MoveFloor(floormove_t *floor);

int EV_BuildStairs(line_t *line ,stair_e type) {
floormove_t *floor;
[...]
floor = Z_Malloc (sizeof (*floor), PU_LEVSPEC , 0);
P_AddThinker (&floor ->thinker);
floor ->thinker.function = (think_t) T_MoveFloor;
floor ->direction = 1;
floor ->sector = sec;
floor ->speed = speed;
floor ->floordestheight = height;
[...]

}

This is a pretty cool mechanism. While iterating over the list of thinker_t, the loop simply
calls thinker->function(thinker) which has no knowledge of either the function called
or the payload involved.
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5.21 Networking

While DOOM’s 3D rendering was breathtaking, it was the networking capability and its fa-
mous deathmatches that really took it to another level. The ability to connect two PCs and
interact with human players was something most gamers had never seen before. Early
during development it was apparent this aspect of the game was going to be amazing.

“ I still remember the day that multiplayer started just barely working in Doom.
I had two DOS boxes set up in my office in addition to my NeXT workstation
to test multiplayer. The IPX networking was forwarding user input between the
systems, but there was no error recovery, so it was very fragile. Still, I could
spawn two marines in a test level, and they could look at each other.

I was strafing back and forth on one system and looking over my shoulder
at the other computer, watching the marine sprite slide side to side in front
of the other player’s pistol. I let it coast down, centered on the screen, and
turned to the other computer. "Bang!" "Urgh!" Twitch. Shuffle. Big smile. :-)
"Bang!" "Bang!" "Bang!" "Bang!" There was a consistency failure before the
first frag was truly logged, but it was blindingly obvious that this was going to
be awesome.

— John Carmack, kotaku.com "Memories Of Doom"

”
5.21.1 Architecture

Most modern FPS games are designed around client/server networking where there are
several clients and one source of truth, the server. Clients can join a game any time, send
their commands to the server, receive world updates, and perform predictions to minimize
communications latency.

There is no central server in DOOM. All peers
run their own copy of the game logic and remain
in sync by performing no prediction and only run-
ning a game tic when all other peers’ actions are
known.

This means all peers must transmit their command
to all other peers, resulting in significant communi-
cation overhead. All peers must be present when a
game starts. A player can leave (and their avatar will
remain in the game without performing any action)
but new players cannot join.
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On NeXT , the implementation used a simple UDP system with Berkeley sockets31. On the
PC side, things were more complicated. Until v1.1 the game engine shipped with built-in
support for LAN over IPX. To minimize communications, Dave Taylor suggested using IPX
packet node number FF:FF:FF:FF:FF:FF to broadcast updates and reduce the amount
of communications. Things did not work exactly as expected.

“ Doom used IPX broadcast packets to communicate between the players. This
seemed like a good efficiency to me a four player game just involved four
broadcast packets each frame. My knowledge of networking was limited to the
couple of books I had read, and my naive understanding was that big networks
were broken up into little segments connected by routers, and broadcast
packets were contained to the little segments. I figured I would eventually
extend things to allow playing across routers, but I could ignore the issue for
the time being.

What I didn’t realize was that there were some entire campuses that were built
up out of bridged IPX networks, and a broadcast packet could be forwarded
across many bridges until it had been seen by every single computer on the
campus. At those sites, every person playing LAN Doom had an impact on
every computer on the network, as each broadcast packet had to be examined
to see if the local computer wanted it. A few dozen Doom players could cripple
a network with a few thousand endpoints.

The day after release, I was awoken by a phone call. I blearily answered it and
got chewed out by a network administrator who had found my phone number
just to yell at me for my game breaking his entire network. I quickly changed
the network protocol to only use broadcast packets for game discovery,
and send all-to-all directed packets for gameplay (resulting in 3x the total
number of packets for a four player game), but a lot of admins still had to add
Doom-specific rules to their bridges (as well as stern warnings that nobody
should play the game) to deal with the problems of the original release.

— John Carmack, kotaku.com "Memories Of Doom"

”
With the proliferation of networking, the embedded IPX support started to show its limits.

Instead of baking support for more types of network into the engine, the IPX code was
removed and networking was refactored around the notion of network drivers.

31The Internet Assigned Numbers Authority (IANA) publishes a list, the Service Name and Transport Protocol
Port Number Registry where UDP port 666 is reserved for DOOM!
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5.21.2 PC Network drivers

In this model, the game engine deals with a data structure named doomcom_t (detailed
on page 282) located in shared memory. Receiving or transmitting packets is done via
interrupts. How this all worked together is a magnificent hack only possible on a system
without proper memory protection.

A "loader" starts first and installs itself as an interrupt handler. It then starts DOOM.EXE with
a special parameter -net X where X is the RAM address of the loader’s doomcom_t vari-
able. The engine literally casts the parameter to an address ((doomcom_t*)(atoi(param)))
to access the structure’s fields. From then on the interrupt handler acts as a network driver.

C:\DOOM > DOOM.EXE -net 54359695

At this point, the engine has everything it needs to communicate in a generic way. It reads
or writes to the doomcom_t and invokes the handler via the interrupt number (also provided
in doomcom_t).

IVT IPXSERV.EXE DOOM.EXE

doomcom_t

NE2000.SYS

0x34
0x33
0x32
0x31

intnum :34

payload:YY

payload

0MiB 4MiB

1

24

3

5

magic  :XX

Figure 5.56

Figure 5.56 summarizes the steps. IPXSETUP.EXE is started up first 1 . The loader reg-
isters itself in the software Interrupt Vector Table. Once registered, IPXSETUP.EXE starts
DOOM.EXE and passes the address of its doomcom_t variable as an integer 2 . Later,
during gameplay 3 , DOOM.EXE reads/writes to the doomcom_t payload field and triggers
transfers via the interrupt found in the intnum field. This triggers 4 the DOOM network
driver to communicate with the network card driver. The actual hardware interaction be-
tween the network card driver and the physical network card happens in step 5 .
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Two network drivers shipped with the game: IPXSETUP.EXE allowed up to four nodes over
IPX, and SERSETUP.EXE allowed two players over serial cable or modem. A company
called DWANGO provided their own driver (DWANGO.EXE) to enable 2+ nodes over modem.

5.21.3 Implementation

To perform network I/O, the core only deals with three elements provided by the network
subsystem.

Element Usage

I_InitNetwork Initialize the network subsystem.
doomcom_t doomcom Shared structure containing both in and out data.
I_NetCmd Signal network to send/receive data based on doomcom.

Figure 5.57: DOOM network subsystem interface

On the PC, in the case of a multi-player session, the network initialization simply retrieves
the address of the interrupt handler. Notice how the atoi return value is cast to a pointer
in the last line, an oddly cavalier move nowadays.

doomcom_t doomcom;

void I_InitNetwork (void) {
int i;

i = M_CheckParm ("-net");
if (!i) { // single player game

doomcom = malloc (sizeof (* doomcom) );
memset (doomcom , 0, sizeof (* doomcom) );
netgame = false;
doomcom ->id = DOOMCOM_ID;
doomcom ->numplayers = doomcom ->numnodes = 1;
doomcom ->deathmatch = false;
doomcom ->consoleplayer = 0;
doomcom ->ticdup = 1;
doomcom ->extratics = 0;
return;

}

netgame = true; // multiplayer game
doomcom = (doomcom_t *)atoi(myargv[i+1]);

}

With access to the doomcom variable comes access to the field intnum which contains
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the software interrupt number that the DOOM network driver registered itself with. When
called (via the int instruction), it interrupts DOOM to let the card’s network driver copy
network data in or out of doomcom.

#define BACKUPTICS 12

typedef struct {
unsigned checksum; // high bit=retransmit request
byte retransmitfrom; // only valid if NCMD_RETRANSMIT
byte starttic;
byte player , numtics;// player is player id.
ticcmd_t cmds[BACKUPTICS ];

} doomdata_t;

typedef struct {
long id; // MUST be = DOOMCOM_ID (0 x12345678l)
short intnum; // DOOM interrupt to execute commands

// communication between DOOM and the driver
short command; // CMD_SEND or CMD_GET
short remotenode; // dest for send
short datalength; // bytes in doomdata to be sent

// info common to all nodes
short numnodes; // console is always node 0
short ticdup; // 1 = no dup , 2-5 =dup for slow nets
short extratics; // 1 = send a backup tic in packets
short deathmatch; // 1 = deathmatch
short savegame; // -1 = new game , 0-5 = load savegame
short episode; // 1-3
short map; // 1-9
short skill; // 1-5

// info specific to this node
short consoleplayer;
short numplayers;

doomdata_t data; // packet data to be sent
} doomcom_t;

The fields are self-explanatory but notice command which tells the driver if data should be
sent or received. The id field allows DOOM to verify the address alleged to be a valid
network driver. The ticcmd_t payload was described on page 250.
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At a high level, DOOM’s core uses a central function called NetUpdate to do all I/O. Notice
how it is called in a loop until ticcmds for all peers are received, allowing only menus to
keep on working. Except for running menus, nothing else will run.

void TryRunTics (void) {
int lowtic;
...
// a gametic cannot be run until nettics [] > gametic
while (lowtic < gametic) {

NetUpdate ();
lowtic = MAXINT;

for (i=0 ; i<doomcom ->numnodes ; i++)
if (nodeingame[i] && nettics[i] < lowtic)

lowtic = nettics[i];

// don’t stay in here forever
if (I_GetTime ()/ticdup - entertic >= 20)
{ // give the menu a chance to work

M_Ticker ();
return;

}
}

...
}

The impossibility for the engine to extrapolate and carry on with gameplay was an issue
since all machines ended up running at the lowest common framerate. To mitigate this
issue, the engine performs an exotic form of "thread multiplexing" where NetUpdate is
called several times during a frame. It is typically called no less than eight times.

void R_RenderPlayerView (player_t *player) {
[...]
NetUpdate (); // check for new console commands
R_RenderBSPNode (numnodes -1);
NetUpdate (); // check for new console commands
R_DrawPlanes ();
NetUpdate (); // check for new console commands
R_DrawMasked ();
NetUpdate (); // check for new console commands

}

Since there is no expectation the medium will guarantee packet delivery, the engine fea-
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tures negative acknowledgments, where the packet sequence number is tracked on a per-
peer (a.k.a. node) basis. If a packet is received but its sequence number indicates a
previous packet was lost, the node requests the missing commands be sent again. This
means each node cannot discard commands once they are sent on the wire.

This resend mechanism was a last resort to be avoided at all costs. To this effect, packets
feature not only the current command but also the last command (if field extratics is set).

5.21.4 DeathManager

Given the complexity of the command-line parameters to set up a network game, several
tools were provided. Originally players could use SETUP.EXE. In December 1994, id Soft-
ware introduced DM.EXE (DeathManager) which was easier to use.

Figure 5.58: Death Manager 1.2 interface.

In "Old DeathMatch" mode, weapons did not disappear when picked up and ammunition
& power-ups never respawned. In July ’94, "Deathmatch 2.0" introduced rules changes
where all items disappears when picked up and respawns after 50 seconds.

Trivia : DOOM was such a trailblazer that its UDP number (666) is still reserved on most
routers and on Windows (file C:\Windows\System32\drivers\etc). The "official" IPX
socket number (0x869C) is also part of Novell’s "well-known static IPX sockets" tables.
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Co-op play was fun (above) but so were incredibly bloody deathmatches (below).
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5.22 Performance

There is a convenient and portable way to assess performance. Thanks to the fixed tic
duration architecture, a demo can be recorded and played back exactly. With frame skip-
ping disabled, a -timedemo will produce the exact same sequence of frames to render
regardless of the machine’s power. Only wall time will vary.

The gold standard of DOOM benchmarking was created by Anton Ertl around 1994. It
consists of playing back DEMO3 from the unregistered version of DOOM shareware v1.9.

C:\DOOM > DOOM.EXE -timedemo demo3

Over the last twenty five years, Anton has gathered metrics for hundreds of configurations32

of the famous game session recorded by John Romero. The machines tested range from
Amiga 1200s up to Core i5s. Because no frames are skipped, the playback duration varies.
Upon completion two values are displayed.

2134 gametics in 1065 realtics

The first value, gametics, is the number of game tics rendered. For demo3 this is always
equal to 2134 since it comes from the recorded lump. The second value, realtics, rep-
resents the wall time in tics that it took to render every frame.

The average frame per second is obtained with the following formula:

𝑓𝑝𝑠 = 𝑔𝑎𝑚𝑒𝑡𝑖𝑐𝑠
𝑟𝑒𝑎𝑙𝑡𝑖𝑐𝑠 * 35

In the previous example33, the game ran at an average of 2134
4268 * 35 = 17.5 fps.

This mechanism allows running benchmarks across varying configurations. Since ma-
chines from 1994 have become difficult to come by these days, a generous collector
named Foone Turing kindly volunteered his impressive fleet of machines. The results of
the archaeological-benchmarking session are visible in figure 5.59.

The results of the session demonstrate that none of the hardware of the time was able
to max out the game. Remember that beyond 35fps there would be no visual improve-
ment since the game logic is hard-coded to run at 35Hz. A machine able to render 70fps

32Source: https://www.complang.tuwien.ac.at/misc/doombench.html
33Benchmark machine was a miniPC Unisys CWD 4001 (486DX2-66/CirrusLogic-GD5424).
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video/audio would render the same game frame twice.

CPU Frequency Graphic card Bus fps

386DX 33 Tseng Labs ET3000 ISA-8 4
386DX34 33 Cirrus Logic CL-GD5420 ISA-16 7

486SX 33 Tseng Labs ET3000 ISA-8 7
486SX 33 Cirrus Logic CL-GD5420 ISA-16 11
486SX 33 Diamond Stealth (Tseng ET4000) VLB 15

486DX2 66 Tseng Labs ET3000 ISA-8 8
486DX2 66 Cirrus Logic CL-GD5420 ISA-16 13
486DX2 66 Diamond Stealth (Tseng ET4000) VLB 24

Figure 5.59: Benchmark with out-of-the-box DOOM shareware.

Using out of the box settings for the game, a top of the line machine could barely reach 25
fps35. Notice the importance of the bus, which yields a 3x performance hit/boost. At equal
frequencies a 486 provides twice the framerate of a 386.

5.22.1 Profiling

Even without special tools, it is possible to gain insight into which parts of the engine are
responsible for CPU cycle consumption, thanks to built-in command line parameters.

Parameter -nodraw skips rendering altogether (but does blit).

C:\DOOM > DOOM.EXE -nodraw -timedemo demo1
2134 gametics in 82 realtics
C:\DOOM >

Without drawing, the game’s framerate improved from 17fps to 878fps.

Parameter -noblit renders to RAM but doesn’t transfer the content to VRAM which is a
good way to assess the impact of the bus speed. Because of optimizations described later
this parameter was only available on non-DOS versions like on NeXTSTEP.

$ ./doom -noblit -timedemo demo1
2134 gametics in 6329 realtics
$

34For reference, this configuration was able to run Wolfenstein 3D at 20 fps.
35It would not be until the Pentium when PCI buses came out that DOOM could be maxed out at 35 fps.
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5.22.2 Profiling With A Profiler

An excellent way of visualizing performance is with a flame graph. These are built by
running a program, repeatedly interrupting it, and unwinding the stack starting from the
Program Counter to generate a backtrace. This is repeated hundreds of times while play-
ing back a demo. After completion, all backtraces are collected and merged together.

This produces a tree where the width represents 100% of the time and each level is a
function call. It provides a visual breakdown of where the machine spends time during a
frame36. On NeXTSTEP, thanks to the multiprocessing capability of the OS it is easy to
use gdb from a second terminal and gather backtraces. The result is as follows.

R_Sto..

R..

R_..

R_DrawPlanes

R_S..

R_MapPlane

D_DoomMain

R_..

R_.. R_Ren..

R_RenderBSPNode

R_RenderBS..

R_Sub..

NXFindPboardType

R_Subsector

D_Display

-[DRCoord appDidInit:]

R_..

R_RenderBSPNode

R_Cli..

R_..

R_RenderBSPNode

R_RenderBSPNode

NXFindPboardType

-[VGAView drawSelf::]

R_..R_AddLine

R_RenderBSPNode

R..

I_FinishUpdate

main

R_RenderBSPNode

NXFindPboardType

R..

R_..

R_D..

R_A..

R_Add..

R_RenderBSPNode

R_RenderBSPNode

-[VGAView updateView]

D_DoomLoop

R_RenderBSPNode

R_Dr..

R..

R_RenderPlayerView

R_RenderBSPNode

NXFindPboardType

R_MakeSpans

Update16

R_DrawSpan

Figure 5.60: Flame graph of ./doom -timedemo demo1 on NeXTstation TurboColor

Obviously, D_DoomLoop accounts for 100% of the time, with D_Display overwhelmingly
dominating37. Gameplay (TryRunTics) (isolated column on the very right) is barely visible.
In a flame graph, bottlenecks are identified by "mesas" which are high flat plateaus with no
children. With that clue, notice the high cost of blitting from framebuffer #0 to the screen
(Update16), the horizontal drawing routine (R_DrawSpan) rendering visplanes and the less
obvious BSP traversal resulting in vertical drawing routines (R_RenderBSPNode) to render
walls/sprites.

36This is a wall time-based flamegraph but there are many other kinds, like CPU-cycle based for example.
37But keep in mind the NeXTSTEP port did not implement the audio system.
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On DOS, generating a flame graph is more difficult since it is a single-threaded operating
system. However, with a little bit of instrumentation it is possible to get something similar.
The following flame graph was generated by instrumenting ten functions.

R_Draw.. R_DrawPlanes

D_DoomLoop

D_Display

main

R_RenderPlayerView

R_RenderBSPNode

G_Ticker

D_DoomMain

Figure 5.61: Flame graph of DOOM running on DOS

The DOS flame graph shows that A.I. run in G_Ticker consumes little CPU time. The
audio routine S_UpdateSounds is even less taxing since it is barely visible as the tiny red
span. This makes sense since the only work it does is to retrieve sound effects and music
data from the .wad and place it into RAM for the audio card to use.

Something weirder to notice is that, despite being instrumented, I_FinishUpdate is not
visible at all whereas it was a huge part of the loop on NeXT. How can the DOS ver-
sion transfer a full framebuffer across the bus so fast? As it turns out, the DOS version
benefited from heavy optimization, and as a result, did not have to blit at the end of a frame.

5.22.3 DOS Optimizations

Given that it was meant to be the money maker, the DOS version received special care.
During optimization sessions, John Carmack identified three areas for improvement. One
was in the math functions and two had to do with the 3D renderer.

“ An exercise that I try to do every once in a while is to "step a frame" in the
game, starting at some major point like common->Frame(), game->Frame(),
or renderer->EndFrame(), and step into every function to try and walk the
complete code coverage.

This usually gets rather depressing long before you get to the end of the
frame. Awareness of all the code that is actually executing is important, and
it is too easy to have very large blocks of code that you just always skip over
while debugging, even though they have performance and stability implications.

— John Carmack ”
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5.22.3.1 Math Optimizations

Fixed-point operations are performed everywhere. The function FixedMul is found 124
times in the source code and is called over a thousand times per frame. Along with
FixedDiv2, it was optimized with inline assembly38. The C version "return ((long
long) a * (long long) b) » 16" was a function call in Watcom resulting in close to
30 instructions but the assembly version only uses two.

#ifdef __WATCOMC__
#pragma aux FixedMul = \

"imul ebx", \
"shrd eax ,edx ,16" \
parm [eax] [ebx] \
value [eax] \
modify exact [eax edx]

#endif

5.22.3.2 Direct Framebuffer Access

A more substantial optimization had to do with layering. On DOS the rules separating the
core and the video system were bent. Renderers like the status bar and the automap
still function as originally designed but 3D drawing functions such as R_DrawColumn and
R_DrawSpan are given direct access to the VGA banks. By bypassing framebuffer #0, one
read and one write per pixel (plus bus transfer) are avoided. Since the menu renderer has
to be able to draw on top of everything, it was also granted direct VGA VRAM access.

5.22.3.3 Assembly Renderer Optimization

Not only were R_DrawColumn and R_DrawSpan given direct access to the VGA bank, they
were hand-optimized with gorgeous assembly using all the tricks in the book. Taking a look
at R_DrawColumn from planar.asm is revealing. The function uses self-modifying code
(see reserved value 12345678h meant to contain the scaling factor, which is patched). We
can also see the loop was unrolled to process two pixels at at time (and therefore avoid
emptying the i486 prefetch queue because of the jnz instruction). Notice the cool trick
where register eax is reused three times, once as a pointer to the texture source, then
as al for texel storage (al), then as al for translated texel (lightmapped) storage again.
Overall this method yields an amortized 7 instructions per pixel for drawing columns which
is remarkable.

Altogether these three optimizations improved performance by a substantial 15%.

38There is next to no assembly in DOOM. Around 1994, John Carmack even declared that "The days of
assembly are numbered". This was without counting on Intel’s Pentium, the super-scalar architecture of which
would require extra care by Michael Abrash for Quake.
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PROC R_DrawColumn_
[...]. ; edi = destscreen + y*80 + x/4
[...] ; set VGA mapmask register
[...] ; ebp= texture delta 7:25 fix point
mov esi ,[ _dc_source] ; esi = texture source
mov ebx ,[ _dc_iscale]
shl ebx ,9
mov eax ,OFFSET patch1 +2 ; patch scaling code
mov [eax],ebx
mov eax ,OFFSET patch2 +2 ; patch scaling code
mov [eax],ebx

mov ecx ,ebp ; begin calculating 1st pixel
add ebp ,ebx ; advance frac pointer
shr ecx ,25 ; finish calculation for 1st pixel
mov edx ,ebp ; begin calculating 2nd pixel
add ebp ,ebx ; advance frac pointer
shr edx ,25 ; finish calculation for 2nd pixel
mov eax ,[ _dc_colormap]
mov ebx ,eax
mov al ,[esi+ecx] ; get first pixel
mov bl ,[esi+edx] ; get second pixel
mov al ,[eax] ; color translate 1st pixel
mov bl ,[ebx] ; color translate 2nd pixel

doubleloop:
mov ecx ,ebp ; begin calculating 3rd pixel

patch1:
add ebp ,12345678h ; advance frac pointer
mov [edi],al ; write first pixel
shr ecx ,25 ; finish calculation for 3rd pixel
mov edx ,ebp ; begin calculating for 4th pixel

patch2:
add ebp ,12345678h ; advance frac pointer
mov [edi+PLANEWIDTH],bl ; write second pixel
shr edx ,25 ; finish calculation for 4th pixel
mov al ,[esi+ecx] ; get third pixel
add edi ,PLANEWIDTH *2 ; advance to 3rd pixel dest
mov bl ,[esi+edx] ; get fourth pixel
dec [loopcount] ; done with loop?
mov al ,[eax] ; color translate 3rd pixel
mov bl ,[ebx] ; color translate 4th pixel
jnz doubleloop

ENDP
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5.23 Performance Tuning

Despite all the care and optimization, most gamers could not get more than 10 fps with the
game out of the box. To help reach a decent framerate, two tuning mechanisms helped to
reduce the number of pixels written.

1. High detail/low detail toggle.

2. Adjust the size of the 3D canvas.

Trivia : These tradeoffs were not specific to the PC. All console ports – from the "weak"
Super Nintendo to the "strong" PlayStation – used a combination of these two settings.

5.24 High/Low detail mode

The first tuning option was to lower the horizontal resolution using column doubling. In low
resolution mode the engine only renders one out of every two columns but it writes them
to the framebuffer twice. Given how the 3D renderer dominates runtime, this resulted in
a tremendous performance improvement since fewer pixel values are generated but they
also don’t have to transit the bus. A performance gain confirmed as the following bench-
mark shows.

High detail
resolution

High detail FPS Low detail
resolution

Low detail FPS

320x200 19 160x200 29
320x168 20 160x168 30
288x144 23 144x144 32
256x128 25 128x128 35
224x112 28 112x112 38
192x096 31 096x096 41
160x080 35 080x080 45
128x064 40 064x064 49
096x048 45 048x048 54

Figure 5.62: DOOM performance in low and high detail mode.

The benchmark above was conducted on a machine which would have been deemed "top
of the line" in 1994, a Unisys CWD 4001 featuring a 486DX2-66 CPU with a Cirrus Logic
VLB graphics card. Using low detail mode instead of high detail yields a variable 20%-50%
performance improvement which brought DOOM up to a playable framerate on "weaker"
PCs running on Intel 386 CPUs.
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Above, the high resolution is 320x168. Below, in low resolution, it is dropped to 160x168
with odd columns duplicated. The resolution drop is particularly noticeable on the non-
magnified sergeant and the door but only because diminished lighting and CRT scaling
are disabled for demonstration purposes. In practice the difference was more subtle.

With direct access to the VGA banks, "low detail mode" is a completely free optimization
without the need to write the same pixel column twice, since the VGA mask is set up to
write the same pixel to two banks simultaneously.
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5.25 3D Canvas size adjustment

Another option to improve the frame rate was to lower the size of the 3D canvas. The
player had access to a sliding bar allowing eight sizes to be selected. The slider was a
multiplier affecting the variable numblocks to produce a value in the range [3,11]. Value
11 was special and hard-coded to be recognized as "full-screen" 320x200.

void R_ExecuteSetViewSize (void) {
viewwidth = numblocks * 32;
viewheight = (numblocks * 168/10) &~7;

}

It is unknown if anybody had the misfortune and courage to play the game in mode 3. This
would have been an achievement in itself.

Figure 5.63: The nine 3D canvas configurations.

Trivia : id shipped DOOM by default in "high detail" with canvas size 9.
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numblocks Width Height # Pixels # Pixels % fps

0xB 320 200 64,000 100 19
0xA 320 168 53,760 84 20
0x9 288 144 41,472 64 23
0x8 256 128 32,768 52 25
0x7 224 112 25,088 39 28
0x6 192 96 18,432 28 31
0x5 160 80 12,800 20 35
0x4 128 64 8,192 12 40
0x3 96 48 4,608 7 45

Figure 5.64: Benchmark of performance gain vs 3D canvas size.39

Gains are not as substantial as the detail level. Reducing the 3D canvas size by 50% yields
only a 31% improvement yet the visible area is so small it is almost not worth it.

Figure 5.65: DOOM out-of-the-box configuration: Mode 9, High detail

39Benchmarked on a miniPC Unisys CWD 4001 (486DX2-66/CirrusLogic-GD5424, 8MiB RAM).
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Chapter 6

Game Console Ports

The success of the PC version and its mind-numbing sales figures made it an extremely
desirable title for any game console publisher. From 1994 to 1997, DOOM was ported to
the six major systems of the era with varying degrees of success.

At the time, the four year "console war" was raging, with consoles ranked by generation
according to their "bitness". The third generation, 8-bit NES and Sega Master System
had long since disappeared. The fourth, 16-bit generation, consisting of Nintendo’s SNES,
Sega’s Genesis and the Turbografx-16 was reaching end of life. The fifth, 32-bit generation,
was starting to appear, featuring Sony’s Playstation and Sega’s Saturn, with marketers try-
ing to brand some systems as 64-bit, including the Nintendo 64 and Atari Jaguar1. In
retrospect, it was a rich period, prone to hardware innovation which contrasts compared to
2018’s uniform world of Sony vs Microsoft where systems barely differ by more than their
name.

The architecture of the DOOM engine, based on a core with system-specific subsystems,
may suggest it would have been an easy task to port it to consoles. This intuition could
not be further from the truth. From design trade-offs due to restricted resources, to crazy
schedules, every version has a unique and rich story to tell.

Technically, the common problem to solve was to deal with smaller memory requirements.
The PC minimum requirement was to have 4 MiB installed on the machine. It was of course
not possible to ask customers to add more RAM to their console. Developers sometimes
had to deal with as little as 512 KiB of RAM which was eight times less than the original
version.

The second technical difficulty was in dealing with exotic hardware. The PC was designed
around a single "big iron" CPU while consoles were made of a constellation of processors.

1After this, consumers realized the silliness of the whole nomenclature. Bitness was soon forgotten.
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6.1 Jaguar (1994)

Development of the Jaguar started in 1990 when Atari
commissioned Cambridge-based Flare Technology to
design not just one but two new game systems simulta-
neously: a fourth generation, 32-bit system called Pan-
ther, and an audacious 64-bit system called Jaguar2.
Three years later, with the Jaguar project ahead of schedule, Atari decided to abandon the
Panther and released the 64-bit Jaguar in November 1993.

Martin Brennan, Ben Cheese, and John Mathieson from Flare Technology made opinion-
ated design decisions. Besides the 18-button controller, the machine had no fewer than
five processors to juggle with.

On the audio side there was a 32-bit 27MHz RISC CPU nicknamed "Jerry". On the video
side, three processors were all contained in a 32-bit 27MHz RISC chip nicknamed "Tom"
with a GPU, blitter, and object processor. To orchestrate everything, there was a 16/32-bit
13Mhz 68000 with 2MiB of RAM. Connecting them all, to the delight of marketing, was a
64-bit data bus.

The bold ad, "Do the Math!" featuring the 64-bit claim triggered mostly suspicion from po-
tential customers. No matter how John Mathieson attempted to explain it in interviews, the
machine felt like an attempt to mislead by an already suspicious Atari marketing depart-
ment. How Atari could have managed to manufacture something four times better than the
16-bit Super Nintendo and Sega Genesis was not clear.

2Atari named all its consoles after big cats. Besides the Jaguar and Panther, its handheld game system from
1989 was called "Lynx".
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Figure 6.1: Architecture of the Jaguar. Notice the uneven buses.

Cautious purchasers on one side were met by incredulous game developers on the other
side. The five-processor architecture was powerful but highly unusual for people accus-
tomed to dealing with a single processor on the 8-bit Nintendo Entertainment System or
Sega Master System. Programming the Jaguar was an art that few took the time to learn.

The limited library of games available at launch prevented the formation of a critical mass
of customers. Low sales figures made developers less likely to invest in the Jaguar which
in turn impacted sales. Over its three-year lifetime, Atari sold about 100,000 units.

299



6.1. JAGUAR (1994) CHAPTER 6. GAME CONSOLE PORTS

Inside the machine: 1 Motorola 68000, 2 2MiB RAM, 3 JERRY, 4 TOM, 5 Operat-
ing System ROM, 6 Cartridge slot, 7 Joystick ports, 8 AC Adapter Jack, 9 DSP Port,
A Monitor (composite, component, and S-Video) Port, and B Channel switch, TV port.

“ Jaguar has a 64-bit memory interface to get a high bandwidth out of cheap
DRAM. ... Where the system needs to be 64 bit then it is 64 bit, so the Object
Processor, which takes data from DRAM and builds the display is 64 bit; and
the blitter, which does all the 3D rendering, screen clearing, and pixel shuffling,
is 64 bit. Where the system does not need to be 64 bit, it isn’t. There is
no point in a 64-bit address space in a games console! 3D calculations and
audio processing do not generally use 64-bit numbers, so there would be no
advantage to 64-bit processors for this.

— John Mathieson ”
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John Mathieson granted many interviews giving more insight into the constraints a hard-
ware engineer has to deal with, from cost-related pressures to mandates from Atari to use
CPUs from Motorola. The grass on the hardware side was not greener than on the soft-
ware side.

“ Atari were keen to use a 68K family device, and we looked closely at various
members. We did actually build a couple of 68030 versions of the early beta
developers systems, and for a while were going to use a 68020. However, this
turned out too expensive. We also considered the possibility of no [Motorola
680x0 chip] at all. I always felt it was important to have some normal processor,
to give developers a warm feeling when they start. The 68K is inexpensive and
does that job well.

— John Mathieson ”
301



6.1. JAGUAR (1994) CHAPTER 6. GAME CONSOLE PORTS

6.1.1 Programming The Jaguar

To unleash the beast meant having all five processors work in parallel3. It was complicated
in theory and complicated in practice.

“ The 68000 may be the CPU in the sense that it’s the center of operation, and
boot-straps the machine, and starts everything else going; however, it is not
the center of Jaguar’s power. ... The 68000 is like a manager who does no real
work, but tells everybody else what to do.

I maintain that it’s only there to read the joysticks.

— John Mathieson ”
6.1.1.1 Theory

The Motorola 68000 is used as a manager. It deals with the outside world and manages
resources for the other processors. It is at the highest control level and has complete con-
trol over the system.

The Object Processor is connected to the TV and is in charge of generating display lines. It
reads an object list usually made of pixels (which can overlap). It performs all the functions
of a traditional sprite engine. Its 16-bit per-pixel CRY (Cyan-Red-Yellow) color model was
unconventional for consoles at that time. One byte is an (X,Y) coordinate in a sRGB cube
flattened into a square which gives a color. The other byte gives the brightness, for a total
of 65,536 colors.

3Source: "Jaguar Technical Reference Manual: Tom & Jerry".
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The Graphics Processor is the powerhouse with a high instruction throughput, a powerful
ALU with a parallel multiplier, barrel-shifter, and a divide unit, in addition to the normal
arithmetic functions. Its internal 4KiB of SRAM is meant to store not only data to operate
on but also its local program instructions.

The Blitter performs fast RAM block move and fill operations. It can generate strips of pixels
for Gouraud-shaded Z-buffered polygons and is also capable of skipping pixels (based on
Z-testing). It is capable of rotating bitmaps, line-drawing, character-painting, and a range
of other effects. It is in charge of loading the SRAM for Tom & Jerry with local data and
instructions

Jerry, the DSP, is the twin brother of the Graphics Processor. Its bigger local SRAM (8
KiB) and smaller 32-bit connection to the 64-bit main bus make it a perfect candidate for
generating music and sound effects. However, it was at the programmer’s discretion to
make it perform other tasks, even graphical ones. The versatility is such that the Jag-Link
connecting two Jaguars together is plugged directly in the "DSP port" on the back of the
console and Jerry is in charge of networking.

All RAM (even SRAM in the RISC CPUs) is addressable by any component thanks to a
flexible memory controller. At any point during execution of their programs, any processor
can become the DMA bus master. Despite its status as governor, the 68000 has the lowest
level of priority (were its DMA master request to conflict with another processor) while the
DSP is king, in order to avoid extremely unpleasant audio glitches.

6.1.1.2 Practice

The hardware had several bugs, especially at the memory controller level, making multi-
tasking hard to rely on and even harder to debug.
It may not be obvious at first sight but the Motorola 68000 and Tom/Jerry had different
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architectures and different instruction sets. The intended workflow was to program the Mo-
torola in C while the GPU/DSP RISC path was more convoluted. The programmer had to
first learn the new instruction set, then write assembly code, use the provided assembler
to generate machine code, and finally write a full pipeline to store and later deliver the
machine code to local program-dedicated SRAM on Tom & Jerry.

6.1.2 Doom On Jaguar

John Carmack took an early interest in the Jaguar and did the port himself with Dave Taylor
taking care of the sound and MIDI music. It was not John’s first contact with the machine.

“ I converted Wolfenstein 3D on a whim. I was thinking about how the Jag’s
hardware could be applied to games other than Doom, and Wolfenstein
seemed a pretty good utilization. I started programming one afternoon and
15 CDs later, when the other guys were coming in the next morning, I had a
functional port of the Jaguar Wolfenstein code running. We sent it to Atari, and
they gave us the go-ahead to stall Doom for a little while and get Wolfenstein
out real quick.

— John Carmack for EDGE Magazine, June 1994

”
For DOOM, the duo had something up and running two weeks after they signed off on the
port, even though it was running at a wretched rate4.

Trivia : To ease the task of generating RISC instructions for Tom & Jerry, John Carmack
wrote his own lcc compiler backend. Output was optimized further by hand.5

To run on a machine with 50% less RAM was difficult. The Cyberdemon and Spiderdemon
were cut. Sprite and texture resolution were reduced. Maps were heavily modified to use
fewer textures, have fewer segments, and create fewer visplanes. Take a look at E1M1
in Figure 6.2 and compare it with the PC version (on page 223). See how the blue floor
texture is gone and there is only one step instead of two.

The 3D renderer had to be rewritten to fit in a small chunk of ASM that ran on the RISCs.
Nine overlays were swapped in and out of the SRAM at runtime based on engine "phases".

4Source: EDGE Magazine, June 1994.
5It was not the last time id Software would use the excellent lcc. in 1999, it was used for Quake 3 to generate

the VM bytecode.
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Figure 6.2
The source code of DOOM for Jaguar was released in May, 2003 by Carl Forhan of Song-
bird Productions. Peeking inside reveals the details of how memory footprint was reduced.
Visplane storage for example was reduced from 128 to 64.

#define MAXVISPLANES 64
extern visplane_t visplanes[MAXVISPLANES ];

A big decision was to cut music playback during game. This was due to the poor perfor-
mance of Tom which was not able to handle the game engine on its own. To resolve this
problem, Jerry (the so-called DSP) was used to run collision detections. Thankfully, there
was still enough juice in Jerry to play sound effects and the engine managed a solid 20
FPS.

The 3D rendering was done at a resolution of 160x180. Columns were doubled to reach
320x180 with 60 pixels at the bottom for the status bar, bringing the overall resolution to
320x240. In many ways the graphical result was better than the PC. With its tailor-made
16-bit CRY mode, the Jaguar really had 65,536 colors with no color banding in sight.
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Further inspection shows the Jaguar code also contains a few artifacts from the Sega 32X
version (MARS was the code name of the Sega 32X). We can also learn that development
was done on NeXTSTEP in what was called "Simulator" mode.

#ifndef JAGUAR
#ifndef MARS
#define SIMULATOR
#endif
#endif

#ifndef MARS
#define SCREENWIDTH 160
#define SCREENHEIGHT 180
#else
#define SCREENWIDTH 128
#define SCREENHEIGHT 144
#endif
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“ The memory, bus, blitter and video processor were 64 bits wide, but the
processors (68k and two custom RISC processors) were 32 bit.

The blitter could do basic texture mapping of horizontal and vertical spans, but
because there wasn’t any caching involved, every pixel caused two ram page
misses and only used 1/4 of the 64-bit bus. Two 64-bit buffers would have
easily tripled texture mapping performance. Unfortunate.

It could make better use of the 64-bit bus with Z buffered, shaded triangles, but
that didn’t make for compelling games.

It offered a useful color space option that allowed you to do lighting effects
based on a single channel, instead of RGB.

The video compositing engine was the most innovative part of the console. All
of the characters in Wolf3D were done with just the back end scalar instead
of blitting. Still, the experience with the limitations and hard failure cases of
that gave me good ammunition to rail against Microsoft’s (thankfully aborted)
talisman project.

The little RISC engines were decent processors. I was surprised that they
didn’t use off the shelf designs, but they basically worked ok. They had some
design hazards (write after write) that didn’t get fixed, but the only thing truly
wrong with them was that they had scratchpad memory instead of caches, and
couldn’t execute code from main memory. I had to chunk the DOOM renderer
into nine sequentially loaded overlays to get it working (with hindsight, I would
have done it differently in about three...).

The 68k was slow. This was the primary problem of the system. Your options
were either taking it easy, running everything on the 68k, and going slow, or
sweating over lots of overlayed parallel asm chunks to make something go fast
on the risc processors.

That is why PlayStation kicked so much ass for development - it was pro-
grammed like a single serial processor with a single fast accelerator. If
the jaguar had dumped the 68k and offered a dynamic cache on the RISC
processors and had a tiny bit of buffering on the blitter, it could have put up a
reasonable fight against Sony.

— John Carmack ”
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6.2 Sega 32X (1994)

In January 1994, Sega was in a delicate position.
The Genesis, its 16-bit moneymaker, was losing
ground in Japan. By 1993 sales had placed the ma-
chine third, behind Nintendo’s Super Famicom and
NEC’s PC Engine. To make things worse, Sega now had to deal with two new competitors
who had entered the game console market in 1993, with Atari’s Jaguar and Panasonic’s
3DO. The consensus at Sega Of Japan (SOJ) was that the company should put all of its
available resources into the 32-bit Saturn project.

While SOJ’s work on the Saturn was moving forward, it was feared it would be a while
before it would be finished. In the US, the Genesis had been selling well (32 million units
as of late 1993) and Sega of America (SOA) was eager to take the financial opportunity to
create a Genesis "booster".

During CES ’94 in Las Vegas, then-CEO of SOJ Hayao Nakayama summoned Sega of
America (SOA) executives Joe Miller – Head of R&D, Marty Franz – SOA Technical Direc-
tor, and Scot Bayless – Senior Producer, into a conference call6.

They were given the green light for project "Mars" with the goal to release a Genesis
Booster within nine months. Incredibly, they managed to reach their target. The Sega 32X
was released in November 1994.

6Source: Retrogamer #77. All quotes in this section are also from Retrogamer interviews.
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The 32X, as it would be marketed, was to be inserted like a cartridge. 32X games were
inserted on top of the overall assembly. Games had access to everything including the
Genesis’s 7.6 MHz Motorola 68000 and the 3.58 MHz Zilog Z80.

“ After the call ended, Marty Franz grabbed one of those little hotel notepads
and drew a couple of Hitachi SH2 processors, each with its own frame buffer.
That’s pretty much where the 32X started.

— Scot Bayless

”

HITACHI 23Mhz 

32-BIT SH-2

2 KiB CACHE

ALU ALU
128 KiB FRAMEBUFFER

HITACHI 23Mhz

32-BIT SH-2

2 KiB CACHE

ALU ALU

128 KiB FRAMEBUFFER

256 KiB SHARED RAM

Figure 6.3: What the notepad may have looked like.

“ The design of the graphics subsystem was brilliantly simple; something of a
coder’s dream for the day. It was built around two central processors feeding
independent frame buffers with twice the depth per pixel of anything else out
there. It was a wonderful platform for doing 3D in ways that nobody else was
attempting outside the workstation market.

— Scot Bayless

”
Besides the dual SH-2, the 32X was gifted an impressive audio chip from QSound. Ca-
pable of Pulse-Width Modulation, it added extra channels and even had multidimensional
sound capability that allowed a regular stereo audio signal to approximate the 3D sounds
heard in everyday life. Also present was a graphics chip named "VDP" that was in charge of
double-buffering to avoid tearing and was also capable of clearing the framebuffers rapidly.
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Figure 6.4: The 32X system as summarized in the developer documentation.

The design bore similarities to the Saturn (which also used two SuperH CPUs) but with a
different philosophy.

“ The Saturn was essentially a 2D system with the ability to move the four
corners of a sprite in a way that could simulate projection in 3D space, It had
the advantage of doing the rendering in hardware, but the rendering scheme
also tended to create a lot of problems, and the pixel overwrite rate was
very high; much of the advantage of dedicated hardware was lost to memory
access stalls. The 32X, on the other hand, did everything in software but gave
two fast RISC chips tied to great big frame buffers and complete control to the
programmer.

— Scot Bayless

”
With engineers pouring their hearts into the system and DevRel doing amazing work to
have a decent portfolio of games for launch date, the 32X managed to sell 665,000 units
by the end of 1994. This promising start was unfortunately followed by a sad story.
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A story best summarized by Damien McFerran, reporter at RetroGamer.

“ How do you take half a decade’s worth of critical and commercial success and
flush it down the toilet?

Easy: you release a device like the Sega 32X.

— Reporter for RetroGamer #77

”
What crippled the 32X was the Saturn. Throughout 1994, work had continued at SOJ on
the 32-bit system. Enough progress was made that Sega decided to release it in Japan
in November 1994, way ahead of its original schedule. This was the same month the 32X
was to be released in USA.

“ Not surprisingly, word got out quickly in the West, US and EU consumers
immediately started asking the obvious question: ’Why should I buy 32X when
Saturn is only a few months away?’ Sadly, the best answer Sega could come
up with was that 32X was a ’transitional device’ - that it would form a bridge
from Mega Drive to Saturn.

It made us look greedy and dumb to consumers, something that a year earlier
I couldn’t have imagined people thinking about us. We were the cool kids.

— Scot Bayless

”
This poor timing made the 32X almost dead on arrival. Not only was the Saturn just around
the corner, the PlayStation was released one month after the 32X on December 3, 1994.
By the end of 1995, inventory of the 32X was sadly liquidated at $19.95 per unit.

Looking back on this era and reading interviews gives a bitter feeling when you keep in
mind that, up until that point in history, Sega had been a colossal competitor to Nintendo.
It had a cool image which had taken five years to build7.

From this point it looks like the company made one bad decision after another. Sega’s
final console, the Dreamcast released in 1998, ended up being widely popular but sales
were not enough to save the hardware business. Sega abandoned the market to focus on
programming games instead.

7During 1993, Sega was the biggest advertiser on MTV (source: "RetroGamer #77").
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Looking back over his time trying to ship the 32X on schedule, Scot Bayless provided in-
sightful memories.

“ 32X games in the queue were effectively jammed into a box as fast as possible,
which meant massive cutting of corners in every conceivable way. Even from
the outset, designs of those games were deliberately conservative because of
the time crunch. By the time they shipped they were even more conservative;
they did nothing to show off what the hardware was capable of.

— Scot Bayless

”
Deeper issues rooted in Sega, Inc.’s culture seem to explain later mistakes.

“ The 32X is a great case study in two things:

First, messaging: your number one job in marketing is to establish the value
proposition. Even with all the rushed hardware and late software, if Sega had
been able to convince people that the 32X was really worth having, it might
have had a chance to succeed. But we never did that; we never managed to
explain to anyone in any credible way what was so unique and worthy about
the 32X. The result is exactly what you’d expect: Sony ate our lunch.

Second: honesty; not in the legal sense, nor in the public sense, but internally.
I remember when I arrived at Microsoft in 1998 I attended an executive
orientation briefing on my first day. The VP who met with us said: ’The one
thing we demand of every one of you guys is to say what you think.’ That
attitude was what kept Microsoft vibrant, healthy and successful for more than
20 years. Sega, by contrast, lacked that ruthless honesty. Nobody wanted to
hurt anyone’s feelings. Even when everybody knew the 32X and Saturn were
way behind the power curve, nobody was willing to stand up and say so. And
it wasn’t just the hardware; during the same period, Sega published some of
the oddest games it ever released. Games that were deeply flawed. Games
that completely failed to connect. And all the while everyone was smiling and
saying, ’Gosh, aren’t we great?” I wasn’t able to articulate all this at the time,
but I know I felt it intuitively. I knew there was something wrong, that we were
losing our way.

— Scot Bayless

”
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6.2.1 Doom On 32X

If porting DOOM to Jaguar had been a tour-de-force, repeating the feat on a system even
less powerful was to require nothing short of a miracle. Once again John Carmack in-
vested himself totally in the project.

“ I spent weeks working with Id Software’s John Carmack, who literally camped
out at the Sega of America building in Redwood City trying to get Doom ported.
That guy worked his ass off and he still had to cut a third of the levels to get it
done in time.

What amazes me now is that with all that going on, nobody at Sega was willing
to say "Wait a minute, what are we doing? Why don’t we just stop?" Sega
should have killed the 32X in the spring of 1994, but we didn’t. We stormed the
hill, and when we got to the top we realized it was the wrong damn hill.

Looking back now I’d say that really was the beginning of the end for Sega’s
credibility as a hardware company.

— Scot Bayless

”
To make the game fit in the 512KiB RAM of the 32X, even more features than the Jaguar
version had to be cut. Another enemy, the Spectre, had to be removed. Additional poses of
monsters were removed except for the ones facing the player. Since they could no longer
face each other, monster infighting was also removed. There were no savegames; players
instead manually selected the starting level instead. The cartridge only had enough room
for seventeen heavily-edited maps. Since none of them had the BFG9000, the weapon
was unavailable (but could be obtained using cheat codes).

There was also a significant problem of performance. Even with its twin SuperHs, the ma-
chine was unable to render at the original resolution.

“ I liked the 32X – it was basically two decent 32-bit processors (SH2) and a
framebuffer, so you programmed like on a PC, but with SMP long before it was
mainstream on PC. It was still pretty underpowered compared to even a 386,
so resolution was low.

— John Carmack ”
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Figure 6.5: E1M1’s legendary entrance hall

In figure 6.5 notice how, like on the Jaguar, E1M1’s blue floor texture had to be replaced
with a brown one to limit RAM consumption. Likewise, the number of steps on the stairs
was also lowered in order to reduce the number of visplanes generated.

The game ran at a resolution of 320x224 but the CPUs struggled so much that the active
window was reduced to 128x144 (column-doubled to reach 256x144), leaving 100 verti-
cal pixels for the status bar and the brown border/background. With all these compromises
the framerate managed to reach the 15-20 FPS8 range, which gave a pleasant experience.

Trivia : Sega named all its projects after planets of the solar system. Besides Saturn and
Mars, two others are known. Neptune was a two-in-one Genesis and 32X console that
Sega planned to release in the fall of 1995. It was canceled because of fears that it would
dilute their marketing for the Saturn while being priced too close to the Saturn to be a
viable competitor. Jupiter is rumored to have been a Saturn without a CD drive.

8Source: Digital Foundry YouTube channel, "DF Retro: Doom - Every Console Port Tested and Analysed!".
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Map complexity was heavily reduced. Above, E1M1’s main room was stripped of many
textures (compare to the PC version on page 226). Below, the "pit" of E1M3 was flattened.
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6.3 Super Nintendo (1995)

The Super Nintendo Entertainment System was re-
leased in 1990 in Japan and the following year in
USA and Europe. It was the 16-bit successor to the
8-bit NES. In Japan, the Super Fami-Com ("FAMIly COMputer") was an instant success
and the initial shipment of 300,000 units sold out within hours. The frenzy was such that
the government requested Nintendo to release its future systems on weekends to avoid
further disturbances.

Nintendo had established a merciless system to ensure quality of its games. Publishers
were only allowed five games per year. To make sure this rule was enforced, only Nintendo
was allowed to produce cartridges; publishers had to buy them from Nintendo. To make
sure everybody played by the rules (and also to protect games from being copied) the
SNES looked for a CIC lockout chip before a game was allowed to start. It was a powerful
mechanism only cracked after the SNES reached its end of life.

During its nine-year lifespan9, 721 games were published, among them several critical and
commercial successes such as Super Mario World, Zelda III, Mario Kart, F-Zero, Super
Metroid, and Donkey Kong Country. Having sold close to 50 million units it is arguably one
of the most popular consoles of all time10 both in terms of sales and catalog.

Figure 6.6: The Super Famicom (a.k.a SNES, Super Nintendo) by Nintendo.

From a technical standpoint, the SNES excelled at 2D. Its 16-bit 65C816 3.58 MHz CPU

9The Super Nintendo was discontinued in 1999.
10Source: "The SNES is the greatest console of all time" by Don Reisinger.
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had 128 KiB RAM available. It piloted a PPU (Picture Processing Unit) with 64 KiB of RAM
to manipulate large sprites, using up to 256 colors at a resolution of 256x240. On the audio
side, the machine had the powerful combo of an 8-bit Sony SPC700 and a 16-bit DSP with
64 KiB of dedicated SRAM.

Despite its impressive 2D sprite engine and especially its "Mode 7" capability, the machine
struggled with computationally-intensive operations such as 3D calculations. Nintendo was
vividly aware that 3D would be the next big thing in gaming but was struggling to make it
happen. As fate would have it, a small UK firm would hold the solution to the problem.

6.3.1 Argonaut Games

Back in 1982, Jez San was a lone game developer working exclusively on the C64, Atari
ST, and Amiga computers. To sell his creations he needed a company. Seeing a similar-
ity between his name (J.San) and the mythological story of Jason and the Argonauts, he
named it Argonaut Games plc.

His venture did not remain a single-man project for long. By 1990 he had gathered talent in
London offices and developed an interest in Nintendo’s 1989 handset, the Game Boy. The
team had managed two feats most deemed impossible: they had a 3D wireframe engine
and they had cracked the CIC protection to install it on the Game Boy.

“ They had the Nintendo logo drop down from the top of the screen, and when it
hit the middle the boot loader would check to see if it was in the right place.

The game would only start if the word was correctly in place in the ROM.
If anyone wanted to produce a game without Nintendo’s permission, they
would be claiming to use the word ’Nintendo’ without a licensed trademark,
and therefore Nintendo would be in a position to sue them for trademark
infringement. We figured out that with just a resistor and capacitor - around 1
cent’s worth of components - we could find out how to beat the protection. The
system read the word ’Nintendo’ twice - once to print it on the screen at the
boot up, and a second time to check if it was correct before starting the game
cartridge. That was a fatal mistake, because the first time they read ’Nintendo’
we got it to return ’Argonaut’, so that was what dropped down the screen. On
the second check, our resistor and capacitor powered up so the correct word
’Nintendo’ was in there, and the game booted up perfectly.

— Jez San11

”
11Source: Jez San interview with Damien McFerran for "Born slippy: the making of Star Fox" article.

317



6.3. SUPER NINTENDO (1995) CHAPTER 6. GAME CONSOLE PORTS

At CES ’90, his demo to the Nintendo booth of the engine on a hacked cartridge was re-
layed all the way up to the Kyoto headquarters. Unknown to Jez at the time, his timing
could not have been better. Back in Japan, Nintendo was working on Super Famicom titles
intended to showcase its superior technology upon launch. Super Mario World was in its
infancy but the flight simulator "Pilotwings", was a bit more advanced.

The SNES PPU’s Mode 7 (capable of
affine transformation such as rotation,
scaling, and shearing) was used along with
the HDMA mode to simulate the terrain
in Pilotwings. The planes however were
still 2D hand-drawn sprites. This bugged
producer Shigeru Miyamoto since it pre-
vented the camera from smoothly rotating
around the planes (quantized sprites were
jaggy).

At the time, it was not in Nintendo’s habit
to deal with outsiders or even foreigners.
This time they made an exception and flew
Jez to their headquarters in Kyoto, along with Dylan Cuthbert who had done the 3D work.

The young pair12 met all of Nintendo’s VPs: Miyamoto, Gunpei Yokoi, Takehiro Izushi, Ya-
suhiro Minagawa and Genyo Takeda. They were shown everything from the secret SNES
to the secret Mario/Pilotwings. Then they were asked if there was a way to draw the planes
as full-faced polygon objects.

“ I told them that this is as good as it’s going to get unless they let us design
some hardware to make the SNES better at 3D. Amazingly, even though I had
never done any hardware before, they said YES, and gave me a million bucks
to make it happen.

— Jez San ” .

Boldly promised a "10x" performance increase by Jez, Nintendo embraced the offer to get
special hardware designed for their game. "Pilotwings" would ship with sprite planes so
that it could be ready for the Super Famicom release, but the "Super FX" chip as it would
be marketed later was to be used for another project Nintendo had up its sleeves.

The name was "Star Fox".
12Jez was 23 and Dylan 18.
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6.3.1.1 Star Fox

The agreement was such that Nintendo would make all game design decisions while fi-
nancing Argonaut Games to produce not only the hardware but also the 3D engine for the
title. Jez-san lost no time hiring and contracting the best UK talent he knew.

For the hardware he contacted Flare Technology (the same people who designed the
Atari Jaguar). Ben Cheese, Rob Macaulay, and James Hakewill’s project was codenamed
Mathematical Argonaut Rotation I/O, or "MARIO". What they ended up designing was so
powerful they jokingly labeled the Super NES "just a box to hold the chip". Since there was
no way to modify the console, the chip was soldered onto each new game cartridge which
increased MSRP significantly.

“ We designed the Super FX chip in a way no one had designed hardware
before - we built the software first, and designed our own instruction set to run
our software as optimally as possible. No one did it that way around! Instead of
designing a 3D chip, we actually designed a full RISC microprocessor that had
math and pixel rendering functions, and the rest was run in software. It was
the world’s first Graphics Processing Unit, and we have the patents to prove it.

— Jez San ”
For the engine, Carl Graham and Pete Warnes worked in the London headquarters while
Dylan Cuthbert, Krister Wombell and Giles Goddard (plus later Colin Reed) permanently
relocated to Kyoto in Nintendo’s offices to work in close collaboration with Miyamoto’s team.

The project resulted in a critical, commercial, and engineering success. Star Fox shipped
on February 21, 1993 and went on to sell four million copies worldwide

The rest of this idyllic story between the two companies is bitter. Star Fox 2, the sequel
to their megahit, was completed by Argonauts and set to release in 1996 when Nintendo
canceled it abruptly, fearing its impact on the launch of the Nintendo 64. Argonaut was
not pleased and the relationship with Nintendo soured. Nintendo subsequently poached
Goddard and Wombell. Dylan Cuthbert would have joined too, but he was prevented from
doing so by a non-compete clause in his contract. He quit his position at Argonaut and
joined Sony to work on the Playstation.

The divorce was finalized when Nintendo refused to let Argonaut use Yoshi for a platform
game they were planing for the PS1. They ended up replacing Yoshi with a crocodile in
"Croc: Legend of the Gobbos". Nintendo later released Mario 64 with mechanism seem-
ingly inspired by "Croc" ... and even beat it to market by around a year.
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The MARIO chip had a simple design based on a 16-bit RISC processor running at 10.74
MHz with a 512 byte i-cache. It had its own instruction set optimized for math and its own
framebuffer optimized for pixel plotting. Its mode of operation was to render to the frame
buffer where the data would be periodically transfered to the SNES RAM via DMA. It was
reportedly capable of rendering 76,458 polygons/s which meant about 15 fps for Starfox.

Upon witnessing Starfox’s phenomenal success, other studios became interested in the
technology. The chip was revised to be able to run at 21.4 Mhz and it was renamed
"GSU"13. The first generation of GSUs powered four games: Dirt Racer, Dirt Trax FX,
Stunt Race FX, and Vortex.

The second generation (GSU-2) was the same processor running at 21.4 Mhz with extra
pins soldered to the bus to increase the size of supported ROM and framebuffer. It was
used in three games: DOOM, Super Mario World 2: Yoshi’s Island, and Winter Gold.

Opening a DOOM game cartridge reveals all the components previously discussed. 1
The 16-bit GSU-2, 2 512 KiB framebuffer where the GSU writes, 3 2MiB ROM where
code and assets are stored, 4 Hex inverter, and 5 Copy protection CIC chip.

13Graphics Support Unit
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“ The ’ten times’ figure was a complete over-promise on my part. We didn’t
really know if that was even possible.

But it allowed us to over-promise and yet also over-deliver. Instead of achieving
just 10x the 3D graphics performance, we actually made things about 40x
times faster. In some areas - like 3D math - it was more like a 100x faster. It
was not only capable of 3D math and vector graphics, but it was also able to
do sprite rotation and scaling - something that Nintendo really wanted for their
own games, like Super Mario World 2: Yoshi’s Island.

— Jez San ”
Trivia : Some passionate fans have managed to collect all 791 games from the SNES
catalog. Seeing them on a shelf is impressive. You can usually spot a DOOM cartridge
from 20 feet away. Only three games were ever allowed not to be made in the standard
gray. Two were red – DOOM and "Maximum Carnage" – while "Killer Instinct" was black.
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Figure 6.7: SNES 721 game library. Zelda stands apart. Because Zelda rules.

322



CHAPTER 6. GAME CONSOLE PORTS 6.3. SUPER NINTENDO (1995)

323



6.3. SUPER NINTENDO (1995) CHAPTER 6. GAME CONSOLE PORTS

6.3.2 Doom On Super Nintendo

DOOM on SNES happened thanks to the genius and determination of a single man: Randy
Linden. The man had an admiration for the game and decided to port it to a mass-market
machine so more players could enjoy it. Randy never had access to the source code or
the assets from either the PC or the console version. He started from nothing.

To retrieve the assets, he was able to leverage the "Unofficial Doom Specs" by Matthew
Fell which explained the .wad lump layout in detail. The sprites, textures, music, sound ef-
fects and maps were extracted from DOOM.WAD. The engine was an entirely different story.

“ DOOM was a truly ground-breaking title and I wanted to make it possible for
gamers without a PC to play the game, too. DOOM on the SNES was an-
other one of those programming challenges that I knew could be accomplished.

I started the project independently and demo’d it to Sculptured Software
when I had a fully operational prototype running. A bunch of people at Sculp-
tured helped complete the game so it could be released in time for the holidays.

The development was challenging for a few reasons, notably there were no
development systems for the SuperFX chip at the time. I wrote a complete set
of tools – assembler, linker and debugger – before I could even start on the
game itself.

The development hardware was a hacked-up Star Fox cartridge (because it
included the SuperFX chip) and a modified pair of game controllers that were
plugged into both SNES ports and connected to the Amiga’s parallel port. A
serial protocol was used to communicate between the two for downloading
code, setting breakpoints, inspecting memory, etc.

I wish there could have been more levels but unfortunately the game used the
largest capacity ROM available and filled it almost completely. I vaguely recall
there were roughly 16 bytes free, so there wasn’t any more space available
anyway! However, I did manage to include support for the SuperScope, Mouse
and XBand modem! – Yes, you could actually play against someone online!

— Randy Linden (Interview with gamingreinvented.com)

”
Trivia : Randy Linden later worked on an even more impressive reverse-engineering
project. In 1999 he was co-author of a commercial PlayStation emulator called "Bleem!" –
a gutsy move since the console was still being produced and sold by Sony at the time.
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What is remarkable with this version is how Randy, with his engine capabilities and restric-
tions, had to cut different corners to other console ports.

Figure 6.8: SNES starting screen on map E1M1

In figure 6.8, despite having only 600 KiB RAM, see how the blue flooring remained (al-
though as a plain color). Notice how the geometry was not altered14, E1M1’s starting room
has all its original steps (compare with the PC on page 223 and the Jaguar on page 305).

The Reality engine, as Randy named it, was able to deal with PC map geometry but must
have had issues with fill rate or texture sampling because ceiling and floor textures were
removed altogether.

14It would have been extremely difficult to alter the geometry since Randy had no access to DoomED or
doombsp.
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Figure 6.9: E1M1 exterior toxic pond

In the screenshot above we can see the window is not actually fullscreen. This was not
an issue exclusive to DOOM since Star Fox, Star Fox 2 and all games using the Super FX
had to reduce the size of the active area. It was likely due to the SNES’s limited bandwidth
which did not permit a DMA transfer for fullscreen rendering15.

Out of the native 256x224 resolution, only 216x176 was actually drawn and only 216x144
for the 3D canvas (32 rows for the status bar). With vertical lines duplicated, the Reality
Engine was actually rendering at 108x144. Even at this low resolution, the average fram-
erate was around 10 FPS which was a remarkable achievement. The "low" framerate was
not enough to discourage players from enjoying DOOM. According to Randy Linden the
game sold very well.

15Although some like anthrofox.org theorized that the Super FX cannot render more than 192 lines.
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Figure 6.10: E1M3, notice the dithering on the floor.

Amazingly, Reality was able to implement diminished lighting for both walls and floors us-
ing a dithering technique as the large floor "shade" in figure 6.10 demonstrates.

On the list of features sacrificed to the holy RAM, sprite resolution was lowered signifi-
cantly to the point that they were sometimes hard to recognize (contrasting with the player
weapon rendered at a higher resolution). Enemy poses were all removed except for the
ones facing the player, monster infighting was also removed, there is no sound propagation
(monsters are only awoken by visual contact), most SFX were cut and all monsters sound
like imps.

Trivia : Nintendo originally forbad blood in SNES games. By the time DOOM came out,
ESRB had come into the picture. Given the amount of blood and the pieces of flesh found
behind every corners, Doom SNES understandably received an M rating.
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6.4 Playstation 1 (1995)

The history of the PlayStation started in 1988 when Nintendo
collaborated with Sony to produce a CD-ROM reader add-on
for the SNES. Under the terms of the contract, Sony could
develop independently for the platform and retained control
over the "Super Disc" format – two unusual concessions on
Nintendo’s part.

The project moved forward until CES ’91 when Sony an-
nounced the joint venture called "Play Station". The next
day, during the same event, Nintendo announced it had in-
stead partnered with Philips (with much more advantageous
terms) much to Sony’s surprise. Betrayed and publicly humiliated, Sony attempted to turn
to Sega’s Board of Directors who promptly vetoed the idea. In a 2013 interview then-Sega
CEO Tom Kalinske remembered the board’s conclusion.

“ That’s a stupid idea, Sony doesn’t know how to make hardware. They don’t
know how to make software either. Why would we want to do this?

”
They were not wrong. Sony had little experience with gaming. It also had almost no in-
terest in trying either, since most of its involvement so far had relied on one man, Ken
Kutaragi. Ever since he had witnessed his daughter play on a Nintendo Famicom, Ken had
been advocating for Sony to enter the market. He had even designed Nintendo’s audio
chip (the SPC700) for their SNES against the advice of Sony VPs.

Despite being considered a risky gamble by other Sony executives, Kutaragi gained the
support of Sony CEO Norio Ohga. In June 1992 Ken got the green light to build a gaming
system from scratch16. The "Father of the PlayStation" as he would later be called had to
be transfered to the financially separate Sony Music to appease the board but he could set
himself to work on what would become the "PlayStation" (without space).

There was originally some uncertainty about the architecture which could focus either on
2D sprite graphics or 3D polygon graphics. The success of Sega’s Oct 1993 Virtua Fighter
in Japanese arcades cleared all doubts17: the PSX was going the 3D route.

The project would culminate two years later with the creation of Sony Computer Entertain-
ment and a Japanese release on December 3, 1994. It was an instant success selling

16Playstation: Anthology by GREEKS-LINE.
17Source: "How Virtua Fighter Saved PlayStation’s Bacon". WIRED. Sept 2012.
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100,000 units on day one, 2 million after six months, and 102 million units over its lifetime.

Figure 6.11: Sony PlayStation

6.4.0.1 Keys to success

Among the numerous good choices, Sony listened to developer feedback and bumped the
RAM from 1 to 2 MiB. They adopted a developer-centric attitude where the development
cycle was easy, tools updated frequently and downloadable online, with third party techni-
cal support. The CD format allowed games to be priced lower and developers did not have
to buy cartridges from Sony.

More importantly, Sony did not censor developers the way Nintendo and Sega did. On top
of it all, royalties were lower which improved profitability18. "The PlayStation set us free"
Kalisto Gaming’s CEO would later testify.

Sony’s stroke of luck was to land Psy-Q, which made the PSX’s SDK a programmer’s
dream. Psygnosis was a UK game company working on the Atari ST, Amiga and SNES.
Sony purchased them in early 1993 and tasked them with creating the then-still-secret
PlayStation games Wipeout and Destruction Derby to showcase the PlayStation on launch.

Until then, Sony had envisioned development for the PlayStation as being based on dedi-
cated Sony NEWS MW.2 workstations19. These were colossal, expensive machines based
on the MIPS R4000 and manufactured by Sony. Psygnosis disliked that solution, especially
when they compared the development experience to their regular tool (Psy-Q) which was
produced by a company called SN Systems.

18Nintendo could sometimes take up to 20%.
19"The development system", Next Generation June 1995.
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Around Christmas ’93, SN Systems co-owner Andy Beveridge
and Martin Day were given an MW.2 by Psygnosis with a re-
quest: Make Psy-Q run on it! The pair worked around the
clock and managed to port the GNU toolchain (cc compiler, ld
linker, lib builder ar, and gdb debugger) to a PC connected to
a Sony’s MW.2 box and demoed it at CES Las Vegas in early
1994.

Sony loved it and promptly ordered 700 dev kits. At the end of Spring
1994, the devkit hardware was shrunk to two ISA cards (called DTL-
H2000) connected to a SCSI drive so there was no need to burn CDs for testing.

Figure 6.12: DTL-H2000 2x ISA card devkit. SCSI HDD and CD-ROM burner not shown

Leveraging PCs not only significantly reduced the financial cost to become a developer, it
also lowered the barrier to entry since most developers were already familiar with Windows.

From September 1993 to June 1995, 500 licensees worldwide jumped on the opportunity
to publish on Sony’s dream machine20. Devs bought both the PSX and its devkit.

20"Sony’s PlayStation game plan", Next Generation June 1995.
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Programming the PlayStation was an unbelievably pleasant experience. Most program-
ming was done in C while allowing handcrafted assembly if necessary. Psy-Q provided a
compiler driver able to take a list of .c/.obj files and output a PlayStation executable in
one keystroke.

The PSX programming philosophy was to not make developers juggle with multiple sys-
tems. The 1MiB video framebuffer for example could not be accessed by the programmer
directly, delegation to the GPU was mandatory. This sample from the PSX Developer Tools
summarizes well how much care was taken to lift the burden on programmers.

“ The CPU is only involved in giving the dedicated hardware very small amounts
of data such as the display location and the start address for data transmission.
Data is transfered via the DMA Controller and consumed by the GPU. The
result of this parallel processing is that the CPU can devote almost all of its
time to creating drawing command lists.

— PlayStation, Net Yaroze Manual

”

MDEC

Main RAM 2 MiB

OS ROM

GPU
VRAM

1 MiB 

512 KiB

SPU

CD-ROM
Controller

Buffer RAM

R3000A

DMA Controller

GTE MDEC

Controller I/F

32-BIT

BUS

ARCHITECTURE

Ext I/O
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Opening a PlayStation and taking a look at the motherboard reveals no fewer than fifteen
chips21

1 , 32-bit 33MHz R3000 CPU (30 Mips) with 4KiB i-cache and 1KiB d-cache. Also con-
tains the 88 Mips Geometry Transfer Engine (GTE), the DMA Controller and Sony’s 80
Mips MDEC video decompression hardware. 2 Operating System ROM. 3 GPU. 4 2
MiB RAM. 5 1 MiB VRAM. 6 DSP. 7 512 KiB DSP RAM. 8 CD Controller: Contains
a CD ROM-XA converter (allowing up to eight simultaneous streams of mixed audio and
CD data) and a small amount of buffer RAM. 9 CD-drive DSP. A 16-bit video digital
converter. B Video decoder and encoder (NTSC or PAL) to TV.

21Source: NEXT Generation Issue #6 June 1995, "Inside the Playstation".
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It was initially difficult to convince developers to
get on board and work with the PlayStation. On
October 27, 1997, Sony gathered 300 develop-
ers representing 60 games publishers for a tour-
de-force. They were shown the "dino demo"22

that featured a real-time controllable T-rex di-
nosaur.

The demo ran at 50 frames per second at a resolu-
tion of 512x256. It processed about 1800 polygons
per frame, and drew up to 1300 polygons per frame. Jurassic Park, released in 1993, was
still fresh in peoples’ memory as a monumental engineering achievement. The breathtak-
ing sight spread rapidly in the gaming community and orders for the SDK soon skyrocketed.

22Source: "PlayStation: Anthology"
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6.4.1 Doom on PlayStation

DOOM was ported to the PSX by Williams Entertainment. It took a little bit less than a year
for a team of five23 to port the engine, change the assets, and make everything work with
"only" 3 MiB of RAM. The final result is universally considered the best console port with
some aspects even outmatching the PC version.

Work did not start from scratch. The team leveraged work from the Jaguar version and in
particular the simplified maps using fewer textures and walls.

“ The graphics were reduced: the textures chopped down in size, the sprites,
monsters, and weapons reduced in size. [...] Sometimes animations had
frames cut.

— Harry Teasley

”
The restrictions did not have to be as drastic as for Atari’s console. Thanks to the CD-ROM
capacity, 59 maps (33 from DOOM and 26 from DOOM II) shipped. To compensate for the
slow access time and the restricted amount of RAM, each map is stored in its own WAD
archive. On the other hand, most monsters are present except for the Arch-Vile.

“ The archvile had twice as many frames of animation as any other monster,
and we just couldn’t do him justice on the PSX. Couldn’t lose his attack, and
couldn’t lose his resurrecting power. He was just too big to include.

— Harry Teasley (Designer) for doomworld.com

”
What may come as a surprise are the improvements over the PC version.

Sound was improved thanks to the SPU processor to render reverberation in small rooms.
The spectre – which faked translucency with a Predator-like "shimmering" – was converted
to subtractive blending. Musics were brought up to CD standard (44KHz, 16-bit, stereo).

The most impressive addition was the 16-bit colored lighting achieved by adding a color
to sectors and 50/50 blending all textures with it. In some cases this feature was used to
improve game mechanisms, as seen on the next page where a red light indicates a door
that requires the red key. To perfect the illusion, the player hand is colored accordingly.

23Three designers/artists and two programmers.

334



CHAPTER 6. GAME CONSOLE PORTS 6.4. PLAYSTATION 1 (1995)

335



6.4. PLAYSTATION 1 (1995) CHAPTER 6. GAME CONSOLE PORTS

There were many other subtle additions such as animated skies. In the following screen-
shot, the marine is in Hell and the sky contains gorgeous flame effects.

In many aspects, this port embodied the bittersweet deal of hardware rendering over soft-
ware rendering.

On the one hand, the hardware acceleration allowed more complex worlds with many
polygons and textured-mapped models with less code written. New effects such as the
Nightmare Spectre subtractively blended against the background were added.

On the other hand, the freedom of software rendering allowed innovative tricks which were
now impossible to achieve. A prime example is the red palette shift when damage occurs
which could not be done and is absent from the PlayStation version. Another example is
that sprites and textures had to have power of two dimensions to improve texture sampling
(a 64x64 texture lookup at coordinate (u,v) can be optimized as (u ≪ 6) + v).

In this instance the bitterness was taken to an extreme. It seems the technical difficulties
were so considerable that some of the developers on the team doubted it could be done.
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“ I worked with Aaron Seeler on the Nintendo 64 (which was a fairly different
game) and Playstation versions. Those were the first versions that weren’t
written "to the metal", since both Sony and Nintendo were forcing (at least
third party) developers to write to API instead of just handing them hardware
register documentation. The SGI culture in particular cramped developers at
the start, but Nintendo eventually walked it back a bit.

Funny story on Playstation development: Aaron and I started out with a
different engine architecture that rendered the world with triangles, since they
were fully hardware accelerated. That worked great on the N64, which had
subpixel accurate, perspective correct rendering (that SGI influence), but
Playstation had integer coordinate, affine texture mapping, and the big wall
and floor triangles looked HORRIBLE.

— John Carmack ”
Affine Texture Mapping is the process of performing texture mapping in screen space with-
out taking perspective into account. Thanks to user Lollie from doomworld.com we can
take a look at what DOOM could have looked like with improper texturing.

The issue is particularly visible on the left wall where the black strip is not parallel to the
ground any more but seems to zig-zag up and down.
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From the previous screenshot we can see that something is wrong but it is not clear what.
There is obviously a distortion but it is not exactly what we saw on page 218. The differ-
ence is that we were able to draw a quad directly whereas the Playstation’s GPU is only
capable of processing triangles.

Without the ability to draw quads, developers had to express everything as triangles. To
draw a wall they had to place two triangles next to each other.

Figure 6.13: Left: Affine texturing. Right: Perspective texturing

In Figure 6.13, the left wall shows how the PSX received two triangles and performed
screen space affine texturing without factoring in the distance from the point of view. The
result differs significantly from what it should have been as the right wall shows.

To rasterize these triangles the GPU has no choice but to use a scanline algorithm. The
process preserves line parallelism and moreover there seems to be no "agreement" be-
tween the two triangles resulting in an unpleasant "zigzag".

In figure 6.14, the visual artifacts become exacerbated as the angle of the wall increases.
Also notice in the right column how the width of each square is always constant, a giveaway
of affine texturing that contrasts with the perspective correct decreasing width seen in the
left column.
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Figure 6.14: Perspective-correct texturing (left) vs affine texture mapping (right)

339



6.4. PLAYSTATION 1 (1995) CHAPTER 6. GAME CONSOLE PORTS

Sony was well aware of the problem but manufacturing cost prevented gifting the PlaySta-
tion with perspective correct hardware (they also lacked a partner with strong computer
graphics experience such as SGI, who deeply influenced the Nintendo 64). The PSX’s
developer manual’s recommended way to mitigate the problem was to subdivide triangles
into more triangles.

That may sound like running away from the problem but the PSX was capable of process-
ing a rather high number of triangles for its time so it was not a bad suggestion. To get a
satisfactory visual result however, the number of triangles had to be high.

With this perspective issue, Williams Entertainment, John, and Harry had a big problem
and some were really nervous about it.
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“ Aaron was always a big ball of stress on the projects we worked together on,
and this abject failure of the plan of record was giving him panicky visions of
project failure. I sort of shrugged and said "back everything up (no source
control back then!), we’re going to do something completely different".

We wound up using the hardware to render triangles that were one pixel wide
columns or rows, just like the PC asm code, and it worked well. The more
common Playstation approach turned out to be tessellating geometry in two
axis, but I was always pretty happy with how Doom felt less "wiggly" than most
other Playstation games of the time.

— John Carmack ”
Switching from world-space triangles to screen-space pixel-wide triangles did the trick.
The engine ran at 30Hz with game logic at 15Hz. The graphical result was exactly like the
PC version. Running at a resolution of 256 x 24024, the engine managed an impressive
20-3025 frames per second in most instances.

DOOM on PSX achieved both critical and commercial success.

“ PlayStation version succeeded in "putting previous efforts for 32X, Jaguar, and
especially Super NES, to shame.

— Next Generation, 1995

”
Even members of id Software stepped forward to assert the quality of the port.

“ This is the best DOOM yet!

— John Romero ”
Trivia : If the player took enough damage to become gibbed, the status bar head reflected
the result in gory detail – not something that would have flown with Nintendo!

24One of the lowest resolutions used by a game; even Ridge Racer rendered at a higher resolution.
25Source: Digital foundry.
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6.5 3DO (1996)

The 3DO Company was founded in 1991 by ex-Electronic Arts
and ex-Apple employee Trip Hawkins. Without the means
to actually produce the hardware, the goal was to develop
not a machine but a standard. 3DO offered to license the
specification of its machine. In exchange for fees a po-
tential manufacturer received the blueprints which consider-
ably cut the R&D cost. The company’s business model was
to collect a royalty on each console and each game sold.
That was far from being a crazy idea since JVC had pulled
it off with its hugely successful VHS Video Cassette sys-
tem.

Sony briefly considered it for its PSX project. The Japanese com-
pany even visited the San Mateo office to see the prototype but
they eventually declined. Several other companies did acquire the rights to build a 3DO
(Samsung, Toshiba, and AT&T) but never built anything.

Finally in October 1993, Panasonic, Goldstar, and Sanyo each released their own ma-
chines, respectively the Panasonic 3DO GZ-1, Goldstar 3DO, and Sanyo TRY 3DO. Later,
Creative released an ISA card you could plug into a PC.

Figure 6.15: Panasonic FZ-1 implementation of 3DO specs

Trivia : The specs of the machine were originally written on the napkin of a restaurant in
1989 by Dave Needle and RJ Mical26.

26Source: RetroGamer #122 "Ahead of its time".
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Announced during CES ’92, the concept and specs made the 3DO an immediate sensa-
tion. It was the first of the fifth generation 32-bit era and there was nothing as powerful on
the market.

“ Under the hood the 3DO used an ARM60 RISC Processor and had two
powerful custom graphics chips and an animation processor. It also sported
3Mb RAM and a multitasking OS. Uniquely for a console, developers wrote
games for the OS and not the hardware, ensuring backwards compatibility.

— RetroGamer #122 ”
3DO had bigger plans than just gaming. Thanks to its CD format, it had the ambition to
replace the VCR and enable movie streaming via the Internet.

But things would end up taking an ugly turn. In February 1993, WIRED magazine ran a full
article "3DO: Hip or Hype?" that raised many concerns about the viability of the adventure.

One of the problems was the business model. To be profitable, 3DO had to make money
on each console and each game sold. This was the opposite of Sega and Nintendo who
would sell their machine at a loss and make it up with games. This pushed the MSRP of
the 3DO up to $699 which made it by far the most expensive console on the market27. By
comparison, the PlayStation’s launch price was less than half the price at only $299. Right
off the bat, the machine gained itself a "rich kid" reputation28.

The other aspect that poisoned the 3DO was its game library. At launch it was rather small
with only six games of low quality besides "Crash ’N Burn". Firmware changes and de-
vkit modifications until the last minute had hampered game studios in their efforts to have
something ready for launch day.

Ironically, 3DO also suffered from its media, the CD-ROM. With a capacity more than 150
times more than what they were used to (650 MiB vs 4MiB), game studios experimented
with lengthy pixelated cut-scenes and borderline interactive movies which turned out to be
no fun at all.

More rushed poor-quality games and the release of the PSX in late 1994 annihilated any
hopes of recovery. By 1995, with less than 700,000 consoles sold29 the standard had lost
momentum. It died soon after along with its creator, the 3DO Company.

27Except for the Neo-Geo which was the same price and always remained a dream for most gamers.
28The price was lowered shortly after release but by then its reputation had been set.
29Source Next Generation magazine, Feb 1995.
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Figure 6.16: 3DO Panasonic model "FZ-10 R.E.A.L" System Board

Panasonic, Goldstar, and Sanyo all designed their own motherboards but all 3DOs had the
same functionality. Opening the most popular model, the "FZ-10", reveals seventeen chips!

Chips

1 50 MHz CEL Engine CLIO, 2 50 MHz CEL Engine Madam, 3 2 MiB RAM, 4 1 MiB
VRAM (framebuffer), 5 12.5 MHz ARM60 main CPU, 6 Corner engine (50Mhz Math
co-pro), 7 1 MiB OS ROM, 8 Digital Video Encoder (25Mhz VDLP), 9 32 KiB Battery
backed SRAM, A ARM CPU 32 KiB SRAM, B DSP (16-bit, 25Mhz), C CD signal pro-
cessing LSI, D CD-ROM Controller MN1882410, E CD-ROM Firmware, All connected
via 50 MiB/s and 36 DMA channels.

Connections

F Gamepads, G Expansion port, H Composite/S-Video ports, I RF Out jack.
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Developers for the 3DO were forbidden direct access to the hardware except for hand-
crafted assembly for the ARM processor.

“ We were never given docs on the register set for the 3DO hardware. Using
reverse engineering, we were able to get the I/O ports, but we were told by the
3DO Company our games would be rejected if they found we bypassed the OS.

— Rebecca Heineman ”
The M2 project – which began as an accelerator add-on for the 3DO – morphed into what
could have been the 3DO 2. It was to feature dual PowerPC 602 processors in addition to
newer 3D and video rendering technologies. It was never completed.

Trivia : Speculating on M2 machines, developers hid cheat codes in their games in order
to improve graphics for the 3DO 2. In DOOM, the sequence "Up, Right, L, Up, Right, Right,
R, A, Left" allowed increasing the active window size all the way to full screen.
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6.5.1 3DO Programming

Graphics programming was done via the 3DO’s "CEL engine", powered by the chips
Clio and Madam, where CEL is a fancy name for "sprite". Each CEL can be drawn in
screenspace with three associated vectors HD, VD, and HDD. Together they allow oper-
ations such as scaling, rotation, skewing, and even something called "perspective" in the
programmer manual. The CEL engine was able to process several CELs simultaneously.

If HD and VD obviously set the horizontal/vertical vectors, the differential vector HDD de-
serves more explanation. Here is how it is described in the manual.

“ When fixed HDX and HDY values set the horizontal offset of a cel and VDX
and VDY values set the vertical offset of a cel, the result is always a strict
parallelogram-all the row edges are parallel as are all the column edges.
Although you change the size and angles of the parallelogram, you cannot
get any perspective effects with row edges converging or diverging. To add
perspective, the projector uses the HDDX and HDDY offset pair. HDDX and
HDDY change HDX and HDY values by a set amount at the beginning of each
row edge. When one row edge is calculated, the projector adds HDDX to HDX
and adds HDDY to HDY. It then uses the new HDX and HDY values to calculate
the next row edge. Because HDDX and HDDY can change the row slope
and pixel spacing from row edge to row edge, they can create converging or
diverging row edges30.

— 3DO Programmer Guide

”
1 normal, 2 rotation, 3 perspective (incorrect), 4 skewing with upscaling.

30This is the same mechanism used for sprite distortion used in the Atari Lynx – and it should be, since RJ
Mical and Dave Needle designed the Lynx too.
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6.5.2 Doom on 3DO

Given the specs of the machine, the 3DO had the potential to be the best console host
for DOOM. The Jaguar version had been positively received, so it would have been logical
that with more RAM and superior graphic hardware, the result would make both gamers
and publishers happy. Alas, in a crazy turn of events, what was released was a massacre
of the original, universally accepted as the worst console version.

In January 1995, for $250,000 (some articles even mentioned $500,000) and an obligation
to release before Christmas 1995, Art Data Interactive had landed the rights to DOOM on
3DO. To the people at the company it felt like "a license to print money". Many features
were promised to the press, among them new weapons, new monsters, new maps, and
Full Motion Video (FMV) sequences with real actors to build up the story.

Figure 6.17: The FMV shooting set (photo released by Rebecca Heineman)

The project was promptly subcontracted to a gaming company with actual experience in
game development. Art Data Interactive quickly learned that the port was much more ex-
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pensive than they thought. It would cost a million dollars and a year of development to
which they agreed.

By July 1995, relations with the subcontractor had deteriorated beyond repair31. With a
long-promised release date of October 1995 looming over their heads, Art Data Interactive
reached out to a contractor that had previously done amazing work on porting Wolfenstein
3D to the 3DO. The name of the poor soul who accepted the project was Rebecca Ann
Heineman from Logicware.

Having committed to the project, Rebecca asked ADI for the source code she assumed
they had received upon signing the contract with id Software. Nothing came. Eventu-
ally, she received a floppy disk. It turned out to just contain the commercial version of
DOOM with the compiled binary DOOM.EXE and DOOM.WAD! Rebecca had to explain to ADI
what source code was and how she could not start working from the binary. After a few
weeks of struggling, she finally emailed John Carmack, who sent her the source code for
the Jaguar version.

With ten weeks before going gold, Rebecca worked heroically and managed to reach the
deadline. The final product however had sustained extensive damage32.

Figure 6.18: Doom on 3DO

31Source: "The unfortunate tale of 3DO DOOM" by Matt Gander.
32Burgertime 7/12/2015: DOOM 3DO.
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The CEL engine was leveraged to render walls (one pixel wide columns like the PSX) but
a bug had forced Rebecca to render flats in software. She had no time to write an audio
driver for music playback so she recorded the PC version and sent them to the CEO of
ADI who also happened to be a guitarist. A band was hired to re-record the music. Their
covers were played directly from the CD.

Performance was terrible. Upon seeing the result, id Software demanded the active win-
dow size be reduced from fullscreen to 1/3 of the screen. Even with that adjustment, the
frame rate was still an abysmal single digit most of the time.

ADI ordered 50,000 copies from 3DO at a price of $150,000 in licensing and manufacturing
fees. The only hope for the company to recover its expenses was to sell every single copy.
With an estimated base of 250,000 users, and with AAA titles selling between 10,000 to
20,000 copies, that was a huge gamble. Unfortunately yet quite logically, players hated it,
the gaming press destroyed it, and ADI declared bankruptcy soon after.

“ Although it’s still Doom, it’s a real duffer of a conversion.

— Ed Lomas for CVG - Rated 60% ”
3DO Architecture32-bit
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Examining the 3DO hardware diagram on the previous page only makes us regret more
that Rebecca didn’t have more time on her hands to complete the project.

“ I was misled about the state of the port when I was offered the project. I
was told that there was a version in existence with new levels, weapons and
features and it only needed "polishing" and optimization to hit the market. After
numerous requests for this version, I found out that there was no such thing
and that Art Data Interactive was under the false impression that all anyone
needed to do to port a game from one platform to another was just to compile
the code and adding weapons was as simple as dropping in the art.

My friends at 3DO were begging for DOOM to be on their platform and with
Christmas 1995 coming soon (I took this job in August of 1995, with a mid
October golden master date), I literally lived in my office, only taking breaks to
take a nap and got this port completed.

I had no time to port the music driver, so I had a band that Art Data hired to
redo the music so all I needed to do is call a streaming audio function to play
the music. This turned out to be an excellent call because while the graphics
were lackluster, the music got rave reviews.

3DO’s operating system was designed around running an app and purging,
there was numerous bugs caused by memory leaks. So when I wanted to load
the Logicware and id software logos on startup, the 3DO leaked the memory
so to solve that, I created two apps, one to draw the 3do logo and the other to
show the Logicware logo. After they executed, they were purged from memory
and the main game could run without loss of memory.

There was a Electronic Arts logo movie in the data, because there was a time
that EA was going to be distributing the game, however the deal fell through.

The vertical walls were drawn with strips using the cell engine. However,
the cell engine can’t handle 3D perspective so the floors and ceilings were
drawn with software rendering. I simply ran out of time to translate the code
to use the cell engine because the implementation I had caused texture tearing.

I had to write my own string.h ANSI C library because the one 3DO supplied
with their compiler had bugs! string.h??? How can you screw that up!?!?! They
did! I spent a day writing all of the functions I needed in ARM 6 assembly.

— Rebecca Ann Heineman ”
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6.6 Saturn (1997)

Development of the Sega Saturn started in June 199233 as a
replacement for the insanely popular yet aging Genesis. At
this point in time, the Genesis had sold more than 30 million
units and had a "cool" image among the 15-25 range - an
image built with many good games and massive TV adver-
tising campaigns. For Sega, It was a colossal yet mandatory
undertaking to at least match its predecessor.

After two years of hard work, Sega demonstrated a prototype
Saturn during the Tokyo Toy Show in June 1994. Unknown
to them, it would cause even more damage than the 32X, ruin Sega International’s image,
and sell poorly.

During its development, Sega worked in partnership with Hitachi to develop a new CPU
tailored to its needs. The joint venture resulted in the "SuperH RISC Engine" (a.k.a SH-2)
at the end of 1993 which Sega used in dual configuration as foundation for the Saturn.

On the graphics side, one video display processor (VDP) was to do most of the job. How-
ever reports of the PlayStation’s capabilities prompted Sega to add a second VDP to im-
prove the system’s 2D performance and texture-mapping.

33Source: "Console Wars: Sega, Nintendo, and the Battle That Defined a Generation".
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Sega managed to release its console before the dreaded PSX and sales in Japan were
initially promising with games such as Daytona USA and especially Virtua Fighter being
well received. The initial success had a lot to do with Virtua Fighter which was by far the
most popular arcade game in Japan at the time34.

Beating Sony came at a great price and the result seemed rushed. During E3 1995 in Los
Angeles, Sega CEO Tom Kalinske surprise-announced that the Saturn would be available
the very same day. Even their supplier did not know about this and the console was out
of stock rapidly. Another consequence of the rush was that only six games were available
upon launch. Panzer Dragoon, which could have made for a perfect flagship title, missed
its deadline35.

The machine was also difficult to program. 3D was achieved in a similar way to the 3DO.
Programmers had to deal with 2D quads which could be distorted in screen space to poorly
fake perspective. It was not a matter of not trying hard, the hardware was complex.

“ Currently we only use the Master SH2, the slave SH2 will be used when we
get around to figuring out how.

— Mick West 1995 Saturn development journal

”
Worldwide, the platform had a lukewarm reception. And then the beast was unleashed.

Two weeks after release, the PSX came out with Ridge Racer and took the world by
storm36. Not only was the Saturn more expensive ($399) than the PSX ($299), games
such as Daytona USA which used to look good now had blatant issues when put side-by-
side with Ridge Racer. The lower framerate, polygon pop-up and letter-boxed presentation
begged for mercy. To add more pressure, in June 1996 the market welcomed another
competitor with the Nintendo 64.

Eventually, several good games were released but the damage had been done. More
issues kept adding up. The copy protection was hacked early on. Electronic Arts refused
to release its popular E.A. Sports games on the platform. With the release of the XBox
and the PS2, Sega found itself technically outgunned. With the failure of both the 32X and
then the Saturn, Sega bled money for years. In late 2001, and on the verge of bankruptcy,
Sega decided to withdraw from the hardware business and focus on producing games on
its successful "Virtua" line of products. Ironically Sega’s last console, the Dreamcast, was
highly regarded by both programmers and players.

34Source: "Virtua Fighter Mania". GamePro. No. 89. February 1996. p28.
35Source: "The Making Of... Panzer Dragoon Saga", nowgamer.com.
36The PlayStation outsold the Saturn by a factor of three.
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6.6.1 Programming the Saturn

Programming the Saturn was a difficult task. The programmer’s manual is broken down
into eight voluminous manuals requiring repeat reading sessions to build a mental image
of the flow of data. The diagram in figure 6.19 gives some idea of the daunting effort re-
quired to coordinates eight chips.

Main programming was done via the two SH-2 processors connected to 2.0MiB of shared
RAM. One SH-2 was deemed the master and the other the slave. In the common config-
uration, the slave was intended to be used as a helper for parallelizable tasks. Communi-
cation between chips (to indicate what to execute) had to be done via a tedious interrupt
system. To deal with static and global variables the programmer had to deal with mutexes
and semaphores which were uncommon concepts for game console programmers. Be-
cause they were on the same bus, one had to wait for the other if both needed to access
either to RAM or a peripheral on the system. Attempts to minimize the issue were made
via a shared unified 4KiB cache that had little impact on the bottleneck.

Audio was done via the SCSP (Saturn Custom Sound Processor) that piloted a sound pro-
cessor (a Motorola 68000). The SCSP was to be configured to perform sound mixing in
the dedicated 512 KiB of RAM, which was then picked up by the Sound Processor. The
combination of these made it a powerful system able to synthesize instruments, play PCM
sound and perform 3D effects/distortion. The chip also polled control inputs from the player
and stored them in internal registers to be polled by the SH-2s.

Graphics programming was done via two chips called VDP1 and VDP2. The VDP1 was
a hardware-accelerated quad renderer. It had the particularity to use forward texture-
mapping which is very efficient when rendering sprites (like in 2D games) but not so much
when magnifying or minifying textures (like in 3D games). Rendering was done targeting
layers which once ready were picked up by the the VDP2, composited according to their
priority and transparency settings, and sends to the TV. Note that the two chips work in
parallel. While the VDP1 works on the next frame, the VDP2 finishes the previous one.

Access to the CD-ROM was done via a driver piloting the SH-1 processor. The double-
speed unit could read at 150 KiB/s but average access time was 300 ms. To compensate,
the SH-1 stored data to a 512KiB buffer. Based on the abysmal access time, programmers
were instructed to request data well in advance.

To control all these components and transfer data between systems, a seventh chip called
the SCU (System Control Unit) acted as DMA controller, DSP and bus controller. The DSP
was able to perform matrix transformations and write the result directly in the VDP RAM.

Trivia : Reading the programmer manual in detail reveals that each component can some-
how interact with each others’ RAM. This made debugging very difficult.
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Figure 6.19: Sega manual: "Introduction to Saturn Game Development", April ’94
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Figure 6.20: Sega Saturn motherboard

Opening a Sega Saturn and taking a look at the motherboard reveals close to twenty chips.

1 32-bit 28.6 MHz SH-2, 2 32-bit 28.6 MHz SH-2, 3 VDP2, 4 The YMF292, aka SCSP
(Saturn Custom Sound Processor), 5 SCU DSP Math coprocessor @ 14.31818 MHz, 6
BIOS, 7 SMPC (System Management & Peripheral Control), 8 Motorola 68CE00, 9
32 KiB Battery-backed SRAM, A 4 MiB RAM (2MiB RAM + 1.5MiB VRAM + 540KiB
Audio RAM), B VDP1, C Hitachi CD-ROM I/O data controller, D 32-bit 20 Mhz SH1
microcontroller with 64k internal ROM, E Two controllers connectors, F A/V OUT socket,
G Sega Communication socket, H Cart slot (RAM extender requested for "X-Men vs

Street Fighter"), I CD-ROM connector.
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Despite its issues and ill-timed release, it is a bitter feeling to see what happened to the Sat-
urn and seeing it considered a failure. Over its four years of life, the platform managed to
host amazing technical and entertaining games such as Radiant Silvergun, Grandia, Sega
Rally Championship, Virtua Fighter 2, Panzer Dragoon Saga, Guardian Heroes, NiGHTS
into Dreams, Panzer Dragoon II Zwei and Virtua Cop. Unfortunately, DOOM would not be
part of the previous list.

“ After years of waiting, Doom finally arrives on Saturn. Unfortunately it is a
breath-takingly bad conversion of a classic game.

— Sega Saturn Magazine #16, February 1997

”
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6.6.2 Doom on Saturn

The port to the Saturn was done by Rage Software on a very tight schedule. The graphic
part of the engine was done via the VDP1 writing quads into three separate layers (a floors,
ceiling, and walls layer, a things layer, and a status bar layer) which were combined by the
VDP2 and sent to the TV. The resulting framerate was outstanding compared to other ports
but the lack of perspective correct texturing ended up disturbing Jim Bagley’s plans37:

“ When I started the project, I had to do a demo for id Software to approve.
I started by extracting all the levels and audio and textures from the WAD
files and made my own Saturn version of this, then got an early version of
the renderer working using the 3D hardware. This got sent off and a couple
days later I got a call from John Carmack, who stipulated that under no
circumstances could I use the 3D hardware to draw the screen. I had to use
the processor like the PC. Thankfully I enjoy challenges, so it turned out to be
a really enjoyable project, using both SH2s to render the display like the PC
did it, using the 68000 to orchestrate them both.

However, it kneecapped the game and the speed-framerate suffered greatly.

— Jim Bagley for RetroGamer #134

”
Years later, by 2014, Carmack had reconsidered.

“ I hated affine texture swim and integral quad verts, but in hindsight, I probably
should have let experiment.

— John Carmack ”
In the end, the VDP1 hardware-accelerated 60 FPS-capable engine was tossed.

Due to time constraints, Jim did not have the time to change the renderer to work with
pixel-wide triangles like the PlayStation. Upon shipping, the game managed a framerate
that could reach 20 FPS but most of the time this dropped to the single digits at a full
screen resolution of 281x235. To compensate for the low framerate, Jim Bagley made the
decision to slow down all movements, a move that enraged the playing community.

37RetroGamer #134.
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Trivia : Another effect of the rushed schedule was a bug with the audio system that made
all sound effects panned left. Players had to play in mono to hear from both speakers.38

In the screenshot above, notice how E1M1 is the same as other console versions (all based
on the initial work for the Jaguar). The status bar however welcomed a makeover.

What "knee-capped" the project was the walls, ceilings and floors rendition (accounting for
most of the computing cost) which ended up being software-rendered via the SH-2s while
the status bar and the things (such as monsters and walls featuring transparent parts)
were hardware-accelerated via the VDP139. When all three layers were ready, the VDP2
composited the three layers toward the TV while the VDP1 started to render the next frame.

Translucency was done in a peculiar way for which the details constitute a testament to
the complexity of the machine. Both the VDP1 and the VDP2 were capable of "half-

38Digital Foundry: "Every Console Port Tested and Analysed!".
39Digital Foundry: "Every Console Port Tested and Analysed!".
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transparency", a term referring to equally blending source and target. However the VDP1
only supported transparency in 15-bit color while the VDP2 only supported transparency
in indexed mode. As a result, you could either have sprites be transparent with regards to
each other or transparent with regards to the VDP2 background layers, but not both.

This limitation was a big problem to render "Spectre" enemies. If the VDP1 marked the
Spectre pixels "half-transparent", they would properly render over the background layer.
However they would also have "swallowed" any other sprites possibly standing behind
them, generating incorrect scenes40.

Sega designers were well-aware of the limitation of the VDPs. To palliate the problem they
introduced the concept of "mesh" sprites which were rendered opaque by the VDP1 but
only every other pixels.

Figure 6.21: A Spectre enemy rendered as a "mesh".

The pixel-perfect screenshot, especially the zoomed-in version next page, may look crude
at first sight. However, you have to keep in mind the composite interleaved display system

40Source: "The Sega Saturn and Transparency" by Matt Greer.
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which ended up blending everything together. Even though the visual result was remark-
ably convincing, this magic-trick did not survive the "HD" pixel-perfect era.

Figure 6.22: Same scene, zoomed-in to show skipped pixels in the Spectre.
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Epilogue

The Game Engine Black Book: DOOM was first published on December 10th 2018, ex-
actly twenty-five years after the December 10th 1993 release of the game. Within that
timespan, it would be an understatement to say the world of DOOM has flourished.

DOOM I was a colossal success, beloved by critics and gamers. At $9 per unit the game
quickly found itself making $100,000/day. According to Sandy Petersen, the game "sold a
couple of hundred thousand copies during its first year". Experts estimate that the game
sold approximately 2-3 million physical copies from its release through 1999. In 1995 it was
estimated DOOM was installed on more computers than the Microsoft Windows operating
system.

The sequel, DOOM II: Hell on Earth, was released in 1994. It was equally well received
and managed to exceed sales expectations. More than 600,000 units where shipped to
stores in preparation for the launch but it found itself sold out within a month. The game
was the United States’ highest-selling computer title of 1994. It placed 10th for 1996, with
322,671 units sold and $12.6 million earned in the region that year alone.

id Software took a break to develop its Quake brand for a few years until they released
DOOM III in August 2004. Featuring technological prowess such as dynamic shadows,
the gameplay was slowed down to match the ambiance of a horror movie. Once again the
title received favorable reviews from critics, and went on to become another successful title
for id. In two years, 760,000 copies were sold for a total of $32.4 million. By 2007, the ti-
tle had gone on to sell over 3.5 million copies, making it id’s most successful project to date.

DOOM 4 development started in 2007 but remained in limbo for several years. After a
tumultuous development process and rumors of cancellation, id Software released Doom
(named the same as the first title in the series) in 2016. It was praised for its return to a fast
pace and innovative game mechanics. It was the second best-selling retail video game in
the US in May 2016, reaching 500,000 copies. By July 2017, the game reached 2 million
copies sold on PC.

The DOOM team from 1993 parted ways over the years, although the legacy and status
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associated with the project continued to follow each of their careers. Before DOOM, John
Romero famously shared his ambition to reach a level of success similar to Scott Miller
and George Broussard from Apogee. He reportedly said to John Carmack:

“ They’re driving bad-ass cars while we drive ass cars. It is time to kick ass.

”
After DOOM, ass car driving was no more. Romero’s Ferrari Testarossa (modified with a
COM port connected to the engine) and John Carmack’s Ferrari F-40 were notorious in
both the gaming and programming worlds.

Beyond sales and fame, DOOM reached a new dimension when its source code was open
sourced on December 23, 1997. Hundreds of ports ensued, some still actively developed
to this day, among them: LinuxDoom, DOOM 95, DosDoom, Chocolate Doom, ZDoom,
BOOM, EDGE, Doom Legacy, Doom Retro, Crispy Doom, Doomsday Engine, GZDoom,
csDoom, MBF, PrBoom, 3DGE, Risen3D, QZDoom, Skulltag, ZDaemon, Odamex, SMMU,
PrBoom+, Zandronum and Eternity Engine – and these are only the most famous.

Personal Note:

DOOM has a special place in my heart. As a 24-year old immigrant in Toronto knowing
only Java, this is the codebase I used to learn C and build up my skills. It is the quality level
I set myself to emulate. It is thanks to the "University of id Software" as I like to call it that
I ended up being noticed by Google and eventually landed a job offer there. Something I
once deemed impossible to achieve.

The title of the book Game Engine Black Book is an homage to Michael Abrash. The
explanations in his Graphics Programming Black Book unlocked the most difficult parts of
Quake. Michael’s book features a quote which resonated with me. I have tried to live by it
and so far it has served me well. Maybe you will also find it inspiring and it will guide you
the same way it has guided me.

“ If you do what you love, and do it as well as you can, good things will eventually
come of it. Not necessarily quickly or easily, but if you stick with it, they will
come.

— Michael Abrash ”
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Appendix A

Bugs

A.1 Bugs

DOOM is known for its stability partly thanks to a development process using seven com-
pilers and systems. Nonetheless it shipped with a few bugs.

A.1.1 Flawed collision detection

One rare collision detection bug was first brought to light (and subsequently explained in
depth) by Colin "cph" Phipps in his article "Shooting Through Things".

“ A monster is getting too close for comfort. You shoot at it, and miss. If you are
unlucky, the monster kills you. But you were so sure that you were pointing
right into the monster, that so close as you were you couldn’t have missed.
Perhaps it was the chaingun playing up, shooting all the bullets off to one side.
Perhaps the game was written by a bunch of losers who failed their high-school
geometry. Or perhaps, in the heat of the moment, you really did miss; nobody’s
perfect.

Well I have good news. You can blame your tools.

— Colin Phipps

”
Some enemies can be really big, almost ten times bigger than the player (16 units), such
as in the case of the Spider Mastermind (128 units). As we saw on page 263, DOOM uses
blockmaps to speed up detection of intersections with things and walls. If a thing is on the
edge of block and the player is a bit unlucky, what should have been a hit can end up as a
miss.
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It is possible to miss a SpiderDemon in a hallway. In the single room map above, the green
player on the left is firing at a red enemy 128 units wide on the right (probably a SpiderDe-
mon). The blue grid shows the blockmap’s alignment.

The line of the bullet and the radius of the monster clearly overlap. This should be a hit. But
only the content of blockmaps 0, 1 and 2 will be checked, resulting in tests with walls D, A
and B. Since the enemy is in block 5 and the bullet doesn’t cross it, the hit is not registered.

This bug is not limited to very large monsters. It can happen with any enemy depending
on how close they are to the player and how the blockmaps align.
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A.1.2 Slime trail

A slime trail happens when there is a horizontal screen space gap between two walls. Vis-
planes "leak" between the space, resulting in graphical glitches. This was a known issue
during development that was never fixed due to deadlines and the fact they only rarely
occurred. John Carmack mentioned it when the doombsp source code was released.

“ There IS a bug in here that can cause up to a four pixel wide column to be
drawn out of order, causing a more distant floor and ceiling plane to stream
farther forward than it should. You can sometimes see this on E1M1 looking
towards the imp up on the ledge at the entrance to the zig zag room. A few
pixel wide column of slime streams down to the right of the walkway. It takes a
bit of fidgeting with the mouse to find the spot. If someone out there tracks it
down, let me know...

— John Carmack ”
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The issue can actually be far wider than four pixels if one knows where to look.

This particular instance of slime trail is the result of the engine’s visplane inference system
combined with the limited precision of integers when a map is sliced up by via doombsp.

Once again, let’s take an example. The two previous screenshots were taken in the very
first map of the game, E1M1, in a zigzag section surrounded by toxic green liquid. At first
glance, there is nothing unusual here but when we take a look at how it was sliced during
binary partitioning, an interesting special case appears.

Line A was selected as a splitter. As it crosses lines B and G, two segments are created as
B1, B2, G1, and G2. The new vertices created are in red. Things are less clear for lines C
and E (or is it F ?). We need to look closer.

If we zoom in on vertex 3, we see the splitter crossed F between integer coordinates. Since
map vertex coordinates are stored as integers, a split is impossible. The error is small, so
doombsp treats the vertex as if it was exactly on the splitting line.
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Let’s position the player along the same split line
we just studied, but facing the opposite direction
(the scene is simpler with fewer walls). The player
is very close to segments E and F (which is where
the rendering error is). Further in the background
are segments G1 and G2 where line G was split.

The frame starts with a blank canvas. Portal E is
rendered first. It has no upper or middle texture but
it does have a lower texture that is drawn (marked
with a green overlay on page 377). As the lower
texture is rendered, the screen space below is in-
ferred to be a floor visplane E-VP (shown with a
pink overlay). The engine then continues down the
BSP and renders G1.

G1’s lower texture is rendered (in red). Everything
below that is inferred to be a floor and therefore
visplane G1-VP is created. Notice that the visplane
goes all the way to the bottom of the screen which
is a rendering bug. Had the BSP been split prop-
erly, F1 would have been rendered before G1 and
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stopped the visplane from flooding in screenspace improperly.

From there, the damage is done. The engine renders the other side of the BSP and hits
F which is clipped against the vertical boundary set by G1 and then drawn (in blue). The
space below F is inferred to be floor and visplane F-VP (turquoise) is generated1.

A.2 Barrel suicide

DOOM monsters are capable of fighting against each other. If friendly fire was to occur
during combat, the damaged monster will automatically attempt to retaliate instead of at-
tacking the player. This is called monster infighting.

There is an amusing special case of infighting which involves exploding barrels. When a
barrel is damaged, the engine "memorizes" which entity was responsible for it. When the
barrel actually explodes the source of the damage is passed to all damaged entities so
they can retaliate.

What can happen is that a monster triggers a barrel to explode and gets injured by the
blast in the process. In this occurrence, monsters with a melee attack (Cacodemon, Imp,
Hellknight) will "tear themselves apart" while those only capable of range attack (former

1The engine actually merges E-VP and F-VP but let’s discard it for the sake of simplicity.
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humans) will go nuts and fire blindly at random, possibly triggering further monster infight-
ing.
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Dots

B.1 Waiting for the Dots

For anybody who played DOOM on a PC in 1994, the most frustrating part was waiting
for the game to load. One step in particular, the mysterious R_Init, seemed to take for-
ever1. An improvised progress bar made of dots informed the player that the game was
loading and to just wait and be patient. Millions of hours were spent watching these tidy
dots progress to the right. Probably a few more were spent trying to guess what R_Init
actually did in the background.

R_Init: Init refresh daemon [..........................]

With access to the source code it is possible to modify the engine to output a "label" match-
ing the current phase performed instead of dots. It turns out there are eleven "phases".

R_Init: Init refresh daemon [0000012333333333333456789A]

Phase OOOOO corresponds to R_InitTextures. Something that was not mentioned in the
3D renderer section of the book (for the sake of simplicity) is that textures are made of
patches. In order to save space, textures reference all patches via an identifier. This is
particularly powerful in the case of textures made of a repeating pattern. This phase is
where all textures attributes such as dimension and patches definition are loaded to RAM
(however the texels remain in the .WAD). Because of the volume of data and the amount of
Z_Malloc memory allocation, it is the most expensive phase.

The first step of this phase is to open a lump named PNAMES that contains all the patch
names. From the order they appear, a mapping of patch name to ID is established.

1In fact, it took anywhere from 15 to 30 seconds depending on the HDD speed.
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The second step (which accounts for the bulk of the processing time) is to open lumps
TEXTURE1 and TEXTURE2. These contain all the texture entries. Each entry features a
name and list of patch IDs, along with patch coordinate and offsets.

Phase 1 is just a marker showing when R_InitTextures returns.

Phase 2 corresponds to R_InitFlats. It looks for lumps F_START and F_END which are
the markers surrounding flat textures. Only the number of flats is retrieved so a proper
malloc of the flat array can be performed.

Phase 333333333333 is similar to phase 0 but this time it involves sprite lumps. Function
R_InitSpriteLumps looks up lumps S_START and S_END to find the width and horizon-
tal offset of all sprites in the WAD and saves that data to a sprite array. In the process
it prints a dot every 64 sprites. This was the second slowest phase in R_Init (after
R_InitTextures) since it had to perform a lot of I/O.

Phase five (4) is a simple marker to show the end of R_InitSpriteLumps.

Phase six (5) is also a marker to show the end of R_InitData which encompasses phases
OOOOO, 1, 2, 333333333333, and 4.

Phase 6 matches function R_InitPointToAngle – when used – to build the tangent
lookup table. This is now an empty function since it is pre-calculated and stored in tables.c

Phase 7 matches function R_InitTables which used to build lookup tables finetangent
and finesine. Like the tangent lookup table, these are now pre-calculated in tables.c
and baked into the executable.

Phase 8 matches function R_InitPlanes and does nothing. What a waste of a dot.

Phase 9 matches function R_InitLightTables and initializes the zlight table used to im-
plement the lightmaps.

Phase A matches function R_InitSkyMap which initializes the static skyflatnum.

B.2 Reload Hack

While developing the game, the long startup time was a problem. Even if a designer made
no change to the geometry of the map (and therefore did not need to run doombsp) it still
took 30 seconds before he could see the result. To avoid breaking the creative flow, the
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engine was gifted with a "reload hack".

By prefixing the path to a WAD with a tilde (~), the engine was set up to reload the WAD
on every level start.

C:\>doom2.exe -file ~mycustom.wad

This allowed artists and designers to see the results of their work almost instantly.
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NeXTstation TurboColor

As of 2018, it has been twenty five years since the last machine came out of NeXT ’s Red-
wood City factory in 1993. It has become a rare occurrence to find one of these pieces of
black hardware in working condition.

Since this book strives to be historically accurate, it was paramount to find an actual
NeXTstation TurboColor – first and foremost to document the development condition of
the time, but also to witness the full game pipeline in motion. Even though passionate and
dedicated programmers have produced a gorgeous emulator called "Previous", the perfor-
mance numbers would not have been accurate.

I lucked out on eBay and found exactly the configuration I needed. The machine was in
working condition but the SCSI hard-drive was making clinking noises, a sign that it was
about to die. Additionally, the MegaDisplay colors had faded out1 and its 50 lbs (23 kg)
made it difficult to move.

Thanks to Rob Blessin, owner and founder of Black Hole Inc., I was able to replace the
HDD with a SD card SCSI2SD providing similar access time. It was difficult to find a
screen compatible with NeXT’s exotic "sync on green" but thanks to the wonderful peo-
ple at www.nextcomputers.org I was pointed to a NEC MultiSync 1980SX which worked
flawlessly.

Words cannot convey how it felt to hear the humming of the machine’s fan. To witness
Doom.app, DoomED, and doombsp compile flawlessly. To witness this NeXTstation Turbo
Color (serial #ABC0053943) come back to life. The machine did not cure cancer as Jobs
wished for but it did provide happiness to countless developers.

1This would have been easily fixable by replacing the capacitors on the monitor control board, but it would
not have solved the issue of the weight.

383



C.1. DEVELOPING THE GAME APPENDIX C. NEXTSTATION TURBOCOLOR

C.1 Developing The Game

On this double page is recreated the typical developer desktop setup. Notice "Interceptor
VGA Console" which gives away libinterceptor.a, a private library provided by NeXT’s
engineers to punch a hole in Display Postscript and bypass the "slow" compositor.

Figure C.1: NeXTSTEP development setup (left part of the screen)
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The MegaDisplay resolution of 1120x832 was so high that id Software had to implement
a 2x software zoom for the game window. Without it, the DOOM window looked like a tiny
stamp with barely any pixels visible.

Figure C.2: NeXTSTEP development setup (right part of the screen)
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C.2 Compiling Maps

Benchmarks for doombsp run time for each level in DOOM and DOOM II2.

Map doombsp runtime (s)
E1M1 8.2
E1M2 32.0
E1M3 26.2
E1M4 18.4
E1M5 19.9
E1M6 44.0
E1M7 22.3
E1M8 6.9
E1M9 15.4
E2M1 6.0
E2M2 55.4
E2M3 19.6
E2M4 36.0
E2M5 46.8
E2M6 32.5
E2M7 60.8
E2M8 2.5
E2M9 1.5
E3M1 2.5
E3M2 9.2
E3M3 38.1
E3M4 23.7
E3M5 34.5
E3M6 22.5
E3M7 23.4
E3M8 1.9
E3M9 8.9

Map doombsp runtime (s)
MAP01 6.1
MAP02 6.6
MAP03 8.7
MAP04 8.5
MAP05 17.6
MAP06 25.0
MAP07 1.9
MAP08 15.2
MAP09 16.3
MAP10 34.0
MAP11 15.7
MAP12 15.2
MAP13 31.5
MAP14 44.7
MAP15 66.0
MAP16 16.2
MAP17 36.2
MAP18 17.2
MAP19 45.8
MAP20 29.2
MAP21 5.7
MAP22 9.4
MAP23 7.5
MAP24 30.5
MAP25 21.1
MAP26 18.8
MAP27 26.2
MAP28 19.6
MAP29 45.8
MAP30 1.0
MAP31 16.4
MAP32 2.7
MAP33 6.6
MAP34 9.3
MAP35 0.3

2Based on .map files released by John Romero on 2015-04-22.
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C.3 Running The Game

Running DOOM on a NeXTstation TurboColor produced a surprisingly poor framerate.

Mode Resolution High Details FPS Low Details FPS
B 320x200 9 13
A 320x168 9 14
9 288x144 11 15
8 256x128 12 16
7 224x112 13 17
6 192x096 15 19
5 160x080 17 20
4 128x064 19 22
3 096x048 21 23

Figure C.3: DOOM framerate on a NeXTstation TurboColor

It gets even worse when running the game with the 2x zoom used during development. In
this mode, the same number of pixels are written to the core’s framebuffer but four times
more data must transit over the bus.

Mode Resolution High Details FPS Low Details FPS
B 640x400 6 8
A 640x336 6 8
9 576x288 7 9
8 512x256 8 9
7 448x224 8 10
6 384x192 9 10
5 320x160 9 10
4 256x128 10 11
3 192x096 11 11

Figure C.4: DOOM 2x zoom framerate on a NeXTstation TurboColor

Lowering the resolution or the detail level helped a little bit but not as much as with the
DOS version. That’s because on NeXT, the video system is implemented differently.

The implementation disregards update signals from I_UpdateNoBlit and defers all work
to I_FinishUpdate where the full content of framebuffer #0 is blitted to the NSWindow.
There is no dirty box optimization and no direct access to the hardware like on DOS.

Trivia : The "low detail" mode was never properly implemented on NeXTSTEP. The engine
writes only half the columns but there is no system to duplicate them like the VGA bank
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mask did. As a result, only the left portion of the NSWindow is updated.

C.4 Framebuffer Non-distortion

The NeXTstation had a "clean" video system where the color space was linear and the pix-
els were "square" (the framebuffer had the same aspect ratio as the MegaDisplay monitor).
As a result DOOM’s’ framebuffer #0 suffers no distortion when presented by the window
system.

The 320x2003 "Interceptor VGA Console" NSWindow is not stretched to 320x240 and there-
fore appears vertically squashed. It is particularly noticeable when the splash screen on
NeXTSTEP (Figure C.5) is displayed next to the DOS version (Figure C.6).

Figure C.5: DOOM on NeXTSTEP. Content appears vertically squashed

Trivia : Many ports got the aspect ratio wrong. DOOM 95 which was to showcase Mi-
crosoft’s Windows 95 graphics drivers low overhead was among the guilty. In its default
setting, the 320x200 hosting window directly maps DOOM’s core framebuffer. As a result,
enemies look shorter, rocket explosions are oval, and everything else is distorted.

3320x200 is the dimension of the active area, not including the title bar.
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Figure C.6: DOOM in 4:3 aspect ratio as presented on a 1993 PC monitor
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Appendix D

Press Release

In January 1993, DOOM development start was shared with the public through a press
Release. The impressive list of graphics features, multiplayer modes, and an unseen be-
fore promise that DOOM would be an "open game" was warmly received.

Id Software
1515 N. Town East Blvd. #138-297, Mesquite, TX 75150

FOR IMMEDIATE RELEASE
Contact: Jay Wilbur
FAX: 1-214-686-9288
Email: jay@idsoftware.com (NeXTMail O.K.)
Anonymous FTP: ftp.uwp.edu (/pub/msdos/games/id)
CIS: 72600,1333

Id Software to Unleash DOOM on the PC

Revolutionary Programming and Advanced Design Make For Great
Gameplay

DALLAS, Texas, January 1, 1993-Heralding another technical
revolution in PC programming, Id Software’s DOOM promises to
push back the boundaries of what was thought possible on a 386sx
or better computer. The company plans to release DOOM for the
PC in the third quarter of 1993, with versions planned for
Windows, Windows NT, and a version for the NeXTall to be
released later.
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In DOOM, you play one of four off-duty soldiers suddenly thrown
into the middle of an interdimensional war! Stationed at a
scientific research facility, your days are filled with tedium
and paperwork. Today is a bit different. Wave after wave of
demonic creatures are spreading through the base, killing or
possessing everyone in sight. As you stand knee-deep in the
dead, your duty seems clear-you must eradicate the enemy and
find out where they’re coming from. When you find out the
truth, your sense of reality may be shattered!

The first episode of DOOM will be shareware. When you register,
you’ll receive the next two episodes, which feature a journey
into another dimension, filled to its hellish horizon with fire
and flesh. Wage war against the infernal onslaught with machine
guns, missile launchers, and mysterious supernatural weapons.
Decide the fate of two universes as you battle to survive!
Succeed and you will be humanity’s heroes; fail and you will
spell its doom.

The game takes up to four players through a futuristic world,
where they may cooperate or compete to beat the invading
creatures. It boasts a much more active environment than Id’s
previous effort, Wolfenstein 3-D, while retaining the
pulse-pounding action and excitement. DOOM features a fantastic
fully texture-mapped environment, a host of technical tour de
forces to surprise the eyes, multiple player option, and smooth
gameplay on any 386 or better.

John Carmack, Id’s Technical Director, is very excited about
DOOM: Wolfenstein is primitive compared to DOOM. We’re doing
DOOM the right way this time. I’ve had some very good insights
and optimizations that will make the DOOM engine perform at a
great frame rate. The game runs fine on a 386sx, and on a
486/33, we’re talking 35 frames per second, fully texture-mapped
at normal detail, for a large area of the screen. That’s the
fastest texture-mapping around-period.

Texture mapping, for those not following the game magazines, is
a technique that allows the program to place fully-drawn art on
the walls of a 3-D maze. Combined with other techniques,
texture mapping looked realistic enough in Wolfenstein 3-D that
people wrote Id complaining of motion sickness. In DOOM, the
environment is going to look even more realistic. Please make
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the necessary preparations.

A Convenient DOOM Blurb

DOOM (Requires 386sx, VGA, 2 Meg) Id Software’s DOOM is
real-time, three-dimensional, 256-color, fully texture-mapped,
multi-player battle from the safe shores of our universe into
the horrifying depths of the netherworld! Choose one of four
characters and you’re off to war with hideous hellish hulks bent
on chaos and death! See your friends bite it! Cause your
friends to bite it! Bite it yourself! And if you won’t bite
it, there are plenty of demonic denizens to bite it for you!

DOOM-where the sanest place is behind a trigger.

An Overview of DOOM Features:

Texture-Mapped Environment

DOOM offers the most realistic environment to date on the PC.
Texture-mapping, the process of rendering fully-drawn art and
scanned textures on the walls, floors, and ceilings of an
environment, makes the world much more real, thus bringing the
player more into the game experience. Others have attempted
this, but DOOM’s texture mapping is fast, accurate, and
seamless. Texture-mapping the floors and ceilings is a big
improvement over Wolfenstein. With their new advanced graphic
development techniques, allowing game art to be generated five
times faster, Id brings new meaning to "state-of-the-art".

Non-Orthogonal Walls

Wolfenstein’s walls were always at ninety degrees to each other,
and were always eight feet thick. DOOM’s walls can be at any
angle, and be of any thickness. Walls can have see-through
areas, change shape, and animate. This allows more natural
construction of levels. If you can draw it on paper, you can
see it in the game.

Light Diminishing/Light Sourcing

Another touch adding realism is light diminishing. With
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distance, your surroundings become enshrouded in darkness. This
makes areas seem huge and intensifies the experience. Light
sourcing allows lamps and lights to illuminate hallways,
explosions to light up areas, and strobe lights to briefly
reveal things near them. These two features will make the game
frighteningly real.

Variable Height Floors and Ceilings

Floors and ceilings can be of any height, allowing for stairs,
poles, altars, plus low hallways and high caves-allowing a great
variety for rooms and halls.

Environment Animation and Morphing

Walls can move and transform in DOOM, which provides an
active-and sometimes actively hostile-environment. Rooms can
close in on you, ceilings can plunge down to crush you, and so
on. Nothing is for certain in DOOM.

To this Id has added the ability to have animated messages on
the walls, information terminals, access stations, and more.
The environment can act on you, and you can act on the
environment. If you shoot the walls, they get damaged, and stay
damaged. Not only does this add realism, but provides a crude
method for marking your path, like violent bread crumbs.

Palette Translation

Each creature and wall has its own palette which is translated
to the game’s palette. By changing palette colors, one can have
monsters of many colors, players with different weapons,
animating lights, infrared sensors that show monsters or hidden
exits, and many other effects, like indicating monster damage.

Multiple Players

Up to four players can play over a local network, or two players
can play by modem or serial link. You can see the other player
in the environment, and in certain situations you can switch to
their view. This feature, added to the 3-D realism, makes DOOM
a very powerful cooperative game and its release a landmark
event in the software industry.
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This is the first game to really exploit the power of LANs and
modems to their full potential. In 1993, we fully expect to be
the number one cause of decreased productivity in businesses
around the world.

Smooth, Seamless Gameplay

The environment in DOOM is frightening, but the player can be at
ease when playing. Much effort has been spent on the
development end to provide the smoothest control on the user
end. And the frame rate (the rate at which the screen is
updated) is high, so you move smoothly from room to room,
turning and acting as you wish, unhampered by the slow jerky
motion of most 3-D games. On a 386sx, the game runs well, and
on a 486/33, the normal mode frame rate is faster than movies or
television. This allows for the most important and enjoyable
aspect of gameplay-immersion.

An Open Game

When our last hit, WOLFENSTEIN 3D was released the public
responded with an almost immediate deluge of home-brewed
utilities; map editors, sound editors, trainers, etc. All
without any help on file formats or game layout from Id
Software. DOOM will be release as an OPEN GAME. We will
provide file formats and technical notes for anyone who wants
them. People will be able to easily write and share anything
from their own map editors to communications and network
drivers.

DOOM will be available in the third quarter of 1993.
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Source Code Release Notes

In December 1997, the much awaited source code of DOOM engine was finally released
to the public. John Carmack wrote a few words for the event.

Here it is, at long last. The DOOM source code is released for your
non-profit use. You still need real DOOM data to work with this code.
If you don’t actually own a real copy of one of the DOOMs, you should
still be able to find them at software stores.

Many thanks to Bernd Kreimeier for taking the time to clean up the
project and make sure that it actually works. Projects tends to rot if
you leave it alone for a few years, and it takes effort for someone to
deal with it again.

The bad news: this code only compiles and runs on linux. We couldn’t
release the dos code because of a copyrighted sound library we used
(wow, was that a mistake -- I write my own sound code now), and I
honestly don’t even know what happened to the port that microsoft did
to windows.

Still, the code is quite portable, and it should be straightforward to
bring it up on just about any platform.

I wrote this code a long, long time ago, and there are plenty of things
that seem downright silly in retrospect (using polar coordinates for
clipping comes to mind), but overall it should still be a usefull base
to experiment and build on.
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The basic rendering concept -- horizontal and vertical lines of constant
Z with fixed light shading per band was dead-on, but the implementation
could be improved dramatically from the original code if it were
revisited. The way the rendering proceded from walls to floors to
sprites could be collapsed into a single front-to-back walk of the bsp
tree to collect information, then draw all the contents of a subsector
on the way back up the tree. It requires treating floors and ceilings
as polygons, rather than just the gaps between walls, and it requires
clipping sprite billboards into subsector fragments, but it would be
The Right Thing.

The movement and line of sight checking against the lines is one of the
bigger misses that I look back on. It is messy code that had some
failure cases, and there was a vastly simpler (and faster) solution
sitting in front of my face. I used the BSP tree for rendering things,
but I didn’t realize at the time that it could also be used for
environment testing. Replacing the line of sight test with a bsp line
clip would be pretty easy. Sweeping volumes for movement gets a bit
tougher, and touches on many of the challenges faced in quake / quake2
with edge bevels on polyhedrons.

Some project ideas:

Port it to your favorite operating system.

Add some rendering features -- transparency, look up / down, slopes,
etc.

Add some game features -- weapons, jumping, ducking, flying, etc.

Create a packet server based internet game.

Create a client / server based internet game.

Do a 3D accelerated version. On modern hardware (fast pentium + 3DFX)
you probably wouldn’t even need to be clever -- you could just draw the
entire level and get reasonable speed. With a touch of effort, it should
easily lock at 60 fps (well, there are some issues with DOOM’s 35 hz
timebase...). The biggest issues would probably be the non-power of two
texture sizes and the walls composed of multiple textures.

I don’t have a real good guess at how many people are going to be
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playing with this, but if significant projects are undertaken, it would
be cool to see a level of community cooperation. I know that most early
projects are going to be rough hacks done in isolation, but I would be
very pleased to see a coordinated ’net release of an improved, backwards
compatable version of DOOM on multiple platforms next year.

Have fun.

John Carmack
12-23-97
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doombsp Release Note

In May 1994, the source code of doombsp was released. Like for other releases, John
Carmack wrote a short note.

The source code for the binary space partitioner we used for DOOM is
now available at ftp.uwp.edu: /incoming/id/doombsp.zip.

The catch is that the source has a few objective-c constructs in it,
so it will take some work to port to dos. The only thing that will
be a hassle is replacing the collection objects, the majority is just
straight C.

This code was written and extended, not evolved, so it probably isn’t
the cleanest thing in the world. Please, PLEASE, PLEASE do not ask
for support on this. I have far too much occupying my time as it is.

Our map editor does NOT work on wad files. It saves an ascii text
representation of the file, then launches doombsp to process that into
a wad file. I have included the input and output for E1M1, so you can
verify any porting work you perform.

Having two programs allowed us to seperate the tasks well under NEXTSTEP,
but people working on dos editors will probably want to integrate a
version of the bsp code directly into the editor.

If you are creating new DOOM maps for other people to use, we would
appreciate it if the wadfiles you create use a PWAD identifier at the
start of the file instead of the normal IWAD. This causes DOOM to tell
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the user that they are playing a modified version, and no technical
support will be given.

If you are creating a map editor for distribution to other people, contact
Jay WIlbur (jayw@idsoftware.com) about getting a license agreement for the
use of our trademark, etc. Its not a money issue, just some legal jazz.

BTW, there IS a bug in here that can cause up to a four pixel wide column
to be drawn out of order, causing a more distant floor and ceiling plane to
stream farther forward than it should. You can sometimes see this on E1M1
looking towards the imp up on the ledge at the entrance to the zig zag room.
A few pixel wide column of slime streams down to the right of the walkway.
It takes a bit of fidgeting with the mouse to find the spot. If someone
out there tracks it down, let me know...

Have fun!

John Carmack
Id Software
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Survivor’s Strategies & Secrets

In 1994, for the publication of "Doom Survivor’s Strategies & Secrets" by Jonathan Men-
doza, three members of id Software wrote essays about their area of expertise. John
Carmack wrote about the engine, Sandy Petersen about the map design, and Kevin Cloud
wrote about the art. These are reproduced here with authorization from Jonathan Men-
doza.

G.1 John Carmack

G.1.1 GOALS

High Speed Doom is an interactive game, so it should be played at a rate of ten frames
per second or faster. Our target audience is people with 386/33 and faster machines. With
the selectable detail and screen size, slower computers can trade visual fidelity for more
usable speed. At the high end, a fast Pentium machine can run Doom at 35 fps, its maxi-
mum speed, under most circumstances.

Freeform World Geometry All of our previous games had been "tile-based," which means
the world was divided up into fixed-sized blocks that are chosen from a palette of pre-
created data. The advantage of tile-based worlds is that you can create them quickly and
easily, by repeating simple tiles many times. But making levels with many unique areas
or with angled corridors can require thousands of small tiles of geometry. We wanted the
ability to design levels without being constrained to a block-based world.

Infinite View Distance Most 3-D games follow the principle that only the objects within a
certain distance are considered for drawing. This simplifies the rendering algorithms, but it
forces the viewing horizon to either fade out rapidly (Ultima Underworld/Shadowcaster) or
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suffer the disconcerting effect of having objects pop into view (most flight simulators and
driving games) rather than appear as a distant speck and grow larger.

G.1.2 IMPLEMENTATION

The work of programming Doom can be divided into four roughly equal parts:

∙ Developing the rendering engine to draw pictures of the world environment.

∙ Developing the utilities used to create data for the game.

∙ Developing the world model that governs the interaction of things in the game world.

∙ Tuning and modifying the code as new circumstances arise.

The main game code consists of just under 30,000 lines of C code. The DOS version has
three functions in assembly language: horizontal texture map, vertical stretch, and read
joystick. The sound code was developed by an outside contractor. A fundamental aspect
of our development strategy is that we use NEXTSTEP systems for almost all program-
ming work. The powerful, stable development environment has enabled us to do much
richer work than if we had restricted ourselves to working under DOS.

The game is structured so that it can be run in a window under NEXTSTEP, where it can be
easily debugged, or recompiled to run full-screen under DOS. The rendering engine was
actually developed mostly on a black-and-white NeXTStation at my home. It was struc-
tured so that the graphics could be drawn in grayscale, eight-bit color, or twelve-bicolor
(native to color NeXTstations). The refresh can also be used at any resolution, not limited
to the PC screen size. Imposing the discipline of developing portable code has led me to
some insights about better game architecture.

I usually categorize game rendering engines on three axes: speed, capabilities, and im-
age fidelity. Speed is the relation of view window size to frame rate. Capabilities covers
limitations to the world model, like 90 degree walls only, sloping floors, variable lighting,
view height variability, etc. Fidelity includes the accuracy of texture mapping, any fudging
done to improve speed, and things like anti-aliasing.

Our game design starts by selecting a speed for the game on our target platform, then
trying to get as many capabilities and as high fidelity as possible. Doom’s world geome-
try is limited to a two-dimensional arrangement of lines representing walls, and flat floors
and ceiling of variable heights. Doom cannot draw sloping floors, overlapping walkways,
or tilted walls. The viewpoint has four axes of freedom: forward/backwards, left/right, up-
/down, and clockwise/counterclockwise. These are significant limitations for, say, an ar-
chitectural walk-through program, but they provided us with a great deal of freedom for
our game design. We are still finding new ways to exploit these capabilities as work pro-
gresses on Doom II. I am proud of the fidelity of the Doom engine. The texture mapping is
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subpixel-accurate, and there are no compromises with distance.

Because of the geometric limitations imposed on Doom, the hidden-surface removal prob-
lem can be reduced to a two-dimensional problem dealing only with the walls. The floors
and ceilings are filled in to the remaining spaces after the walls have been properly drawn.
This is a lot quicker than an arbitrary three-dimensional rendering scheme. The central
algorithm Doom uses for the hidden-surface removal is a two-dimensional binary space-
partition tree traversal. After a map has been drawn, it is passed to a separate utility
which groups lines into sectors and recursively partitions the entire map into convex areas.
This is a time-consuming task, but doing the work ahead of time lets the game perform
less work at run time. The downside of this is that the lines that make up the world cannot
have their endpoints adjusted during play. Thats why there are no swinging doors in Doom.

Our map editor was used day-in, day-out for almost a year by our game designers, so the
effort expended on making it productive to use was well spent. DoomEd is the NEXTSTEP
application we created to build and modify worlds. It allows us to design the geometry
of the world from a top-down perspective, and select the graphics to map onto the walls,
floors, and ceilings.

The game world model was developed to support networking from the start. Each object
in the world is processed through the same routines, regardless of whether it is a bonus
item, a monster, or a networked player. Some of the world utility routines, like the bullet
target and trace call, were actually more involved than the 3-D rendering routines.

The tuning of the entire project is the most important phase for making an enjoyable game.
Subtle elements like the timing of an animation, the pitch of a sound effect, or the motion
of an exploding body all impact the impression a user gets from the game. Proper tuning
takes a long time, and a lot of testing, but the details really count. We experienced an
interesting synergy in Doom, where several of the game elements regarding movement,
combat, and the environment managed to complement each other so well that the game
turned out better than our original vision of it. The normal process of game design starts
with a glorious vision that is slowly torn down to reality as the project progresses. While
our original plan was greatly changed, and some features were lost, the final product ex-
ceeded our early expectations.

G.1.2.1 AFTERTHOUGHTS

Doom is the first project I have worked on that I have still been proud of at its completion.
I was not happy with Wolfenstein by the time it was released, and I was disappointed with
my implementation of the Shadowcaster engine. I see a few warts, but I am still pleased
with my work on Doom. There are a few remaining bugs in the refresh code that are un-
likely to get fixed. Sometimes you will see a one-pixel-wide column stretching from the top
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to the bottom of the screen. This is a result of drawing a line that has its two endpoints
transformed to almost exactly the same polar angle. The fixed-point arithmetic that calcu-
lates the scale for the column sometimes overflows, and the column goes to the maximum
possible scale of 64 times normal height. Cuts on the floor or ceiling that are nearly vertical
will also sometimes show an error.

There is a roundoff error in the map partitioner that can pixel-wide segment of a line to
be drawn in the wrong order in a narrow the strip of the floor and ceiling texture being
drawn pas. line that should have stopped it. Some of the artwork was drawn wider than
the real width of the game object, so it is possible to have a piece of a sprite be seen
past a wall under certain circumstances. I could have made Doom about 15 percent faster
by paying more attention to the low-level Intel architecture. We all learned a lot during the
development of Doom, and there are many new things for us to bring on in the next project.
Watch out!

G.2 Sandy Petersen

Doom’s levels were not designed by one single person. John Romero created all the levels
in episode 1, Knee Deep in the Dead, from scratch, except for level 1.8. All the remaining
levels were done by me, either alone or sometimes by converting someone else’s earlier
work into a more polished form. The following paragraphs give full credit for the remaining
levels.

Though a great deal of changes were made to Tom Hall and Shawn Green’s levels (one a
former id Software contributor, the other still with id Software), including placing monsters,
repairing wall textures, and altering number-less small details, the basic architecture re-
mains unchanged.

It is my belief that a perceptive player of Doom will sense a definite personality difference
between the levels created by each of the designers. This effect may be slightly dimmed
in the case of Tom Hall and Shawn Green, since their original distinctive style has been
somewhat merged with my own through the heavy editing their levels underwent.

John Romero’s particular lunacy appears to lie in flooding the player with seemingly un-
stoppable hordes of monsters, interspersed with long periods of tense quietude, as the
player ponders what horrors are to be unleashed next. He often places monsters on dis-
tant vantage points, whence they can snipe at the player in relative safety. John’s levels
are riddled with special vantage points, cunning secret areas, and multilevel action.

John almost always starts out a level with a nightmarish bloodbath to get the player’s
adrenaline flowing. Only after you have survived this onslaught can you take a break and
decide where to go next. Another tendency of John’s is to make the level linear. if you
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don’t count the many secret passages, you pretty much have to go through John’s levels
in the order he prescribes.

On my own levels, I tend to present the player with a constant trickle of monsters, unlike
John’s episodic bursts of terror. Also, instead of John’s diabolic secret tunnels and plat-
forms, I tend to assault the player with booby traps and snares. The classic example is the
false exit on E2M6. It looks like an exit, it smells like an exit, but it’s not really an exit.

My levels start out kind of quiet, with the player left on his or her own. There’s usually a
monster or two right around the comer, but not the slavering horde you may have learned
to expect from John. Some of my levels are quite linear (E3M1 or E3M4, for instance), but
others, such as E3M2, E2M5 and E3M6, leave the area wide open for players to explore
almost anywhere they want. I’ve found that some players really like this type of free-form
experience, while others feel lost and confused until they manage to figure out the right
way to go (which generally varies from player to player|.

Three things must be kept in mind at all times while designing levels for the players:

1. How does it look?

2. Is it fun?

3. Did you remember to clean up?

G.2.1 How Does It Look?

This was the hardest part of level design to learn, at least for me. It seemed to come
naturally to Romero, while I had to work and work. The basic problem is that in order to
design a good-looking room for Doom, you must think architecturally. That is, you must
see the room in terms of spaces rather than as a set of lines on a map. The exact wall
textures used to give animation and color to a room often are secondary to the room’s
actual structural components. Some rooms end up looking very good indeed, while others
are not as impressive, despite colors and structures. For instance, we’ve never been really
happy with the large entry hall on E1M4. It does the job and is fun to play in, but it just
doesn’t seem it have that zip. An open hole in the roof and numerous alterations in the
Chamber’s decor didn’t wholly fix it. In the end, we decided that it played just fine, so we’d
leave it and move on to other things.

In the early design of Doom, there was a tendency to have lots of twisty little mazes. As
playtest began, we discovered that these usually weren’t too much fun, and most of them
have been discarded (with a few exceptions, mostly in Tom Hall’s old levels). Even the
ones that remain have been altered and simplified in most cases, or serve a purpose by
being claustrophobic and frightening (for instance, check out the excellent final maze in
E1M4, the upstairs maze in E3M3, or the lava maze in E3M7).
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G.2.2 Is It Fun?

This is, of course, even more important than making the game look good – if it doesn’t
PLAY well, it just doesn’t matter how good it looks. Making a level fun, for me, was a com-
bination of an initial overall plan and continual playtest.

When I began a level, I thought long and hard about the overall theme of that level – what
the player was supposed to get from it. For example, on E3M5, I wanted to give the player
an illusion of a vast fane or temple, with a symmetric and understandable architecture.
At first, players on this level are puzzled, with the teleporters, released monsters, and so
forth, but soon they understand the level’s overall structure and are racing round it with
ease. Once players comprehend the layout, they are able to approach E3M5 scientifically
and rationally, which gives them an interesting contrast (I believe) between the emotionally
laden nature of that level (a huge cathedral) and their own behavior.

On the other hand, on E3M1, the goal was simply to overawe the player with the wonders
that await them in Hell. The level teems with ominous and frightening images from the
start, where you find yourself outside under a glowering red sky, chased by Imps. When
you open the promising door to escape, it releases a Cacodemon. The bridge leading to
the shotgun collapses, etc. You are kept running around, seeing ever more ominous and
weird sights and terrors that quickly teach you the different nature of Hell, as compared
with the more rationally constructed levels of episodes 1 and 2.

Once I’ve got my theme worked out, I’ll generally complete one small area of a level, then
quickly playtest it. If it seems to work and looks fine I’ll complete the next area, and test
both completed areas out together, continuing to do this until the entire level is finished.

G.2.3 Did You Remember to Clean Up?

Just because a level looks good and plays well, doesn’t mean it’s done. Now I’ve got to
make sure I’ve thought of everything. Is there enough ammunition and weapons for the
players? How about bonus items? Players expect them, and they’re easy to leave out. Did
you remember to mark secret areas? And are there enough traps and tricks to keep the
players amused?

After trying to cover these pathetic tiny details, I have to probe deeper. Is there some way
that a clever player can bypass all the action of the whole level? If so, is that okay? (Some-
times it is – if you are smart you can skip almost the whole of E3M6, and I dont mind a bit;
but you’ll miss out on a lot of weapons and interesting combat.) How does the level mesh
with the one preceding? The one following? If the start room of level B includes a single
lonely Cacodemon coming at you down a long hall, but you were given the opportunity to
pick up a rocket launcher in the exit room of level A, you aren’t presented with much of a
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problem. On the other hand, if that rocket launcher is at the very start of level A, so that
you only have it available in level B if you carefully held onto your rockets, this might be
okay – you should be rewarded for your stinginess.

When the final level is done, I play it a few more times, looking for flaws and mistakes (I
find plenty of these), then I turn it over to those rotten excuses for human beings, the other
id-iots at id Software. They quickly find all sorts of terrible things wrong with my poor baby
level, and I fix these as rapidly as possible to avoid the rancorous comments and snide
laughter that results when they expose flaws I’ve built into an area. If I sound like a bitter
man, there are reasons.

G.3 Kevin Cloud

In games, good computer art is commonly referred to as "beautifully rendered or detailed"
because most good game art looks meticulously hand drawn. Unfortunately, beautifully
rendered worlds often begin to look staged. For Doom, we wanted to create a realistic and
dark world that looked more dirty than pretty. There was nothing beautiful about Doom and
we wanted its world to convey that concept – scary and dark.

To achieve the intended effect we used a combination of scanned and hand-rendered im-
ages. John Carmack created the program, Fuzzy Pumper Palette Shop, that would capture
live video images and convert them into a PC graphic format. We then loaded the images
directly into our PC art applications where we could edit, resize, colorize, and combine
them – whatever it took to create an interesting graphic. The overall effect is somewhat
distorted, but that’s Doom.

The characters in Doom were created using a variety of methods – hand drawn, scanned
clay models, and finally, latex and metal models. After working on Wolfenstein, we knew
the frustration of creating the rotated views of every animation of a creature. Most charac-
ters are easy to draw from the front, but rotate them 45 degrees and things become a little
more complex. Using small wooden mannequins and a couple of pounds of clay, we set
out to make our own models. This technique wasn’t perfect, but it enabled us to pose the
creatures in stances we would normally not draw.

As the project neared its end, we wanted to create a monster that wasn’t a biped. We
came up with the idea of a large brainy creature with a chaingun embedded into its face,
and its body attached by several large metal hooks to a four-legged metal machine. We
couldn’t create this guy using clay, and thats when we contacted Gregor Punchatz.

Gregor has an extensive background in creating models. Working on the sets of such
movie classics as Nightmare on Elm Street and Robocop, Greg had the tools and the talent
necessary for creating models. Within a few weeks, Gregor had turned our sketches into a
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fully moveable monster. The process worked well. And although this version of Doom only
features one of his creations, the retail version of Doom will fully utilize Gregor’s talents.

G.3.1 HAPPY DOOMING

There is obviously a lot more to Doom than what you see on the screen, and there is much
more the Doom creators could have shared with us. I hope the above discussions have
at least given you an insight into the minds of the Doom creators and an appreciation for
the art and science of Doom. For more technical information about playing and enjoying
Doom, look for your specific topics in the appendices.
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Interview with Dave Taylor

Dave Taylor was kind enough to allow an interview in June of 2017.

H.1 Q & A

Q: How old were you in 1993 when you started working at id?

A: I started studying the Sega Genesis tech docs in order to do a Sega Wolf3D port at the
beginning of summer 1993, but by the end of summer when I started, I was assigned to
Doom instead. I was 24 when I started.

Q: How did you get a job at id Software? It wasn’t yet the powerhouse it became but
they were already successful with Dave and Wolf3D games so I assume there must
have been competition for the position?

A: I was studying electrical engineering at UT Austin and working as a journalist for an
early electronic game magazine that came on floppies called Game Bytes. Wolf3D had
come out, and I had interviewed the whole id team on a speakerphone call. There was a
really friendly voice who would turn out to be Jay and a really knowledgeable voice with
all the answers to my technical questions, who would turn out to be John Carmack. The
summer before I took my senior lab, I emailed John to see if I could come up and interview.

I had been organizing very ambitious programming contests for the IEEE called the IEEE
CS National Programming Contest, where we would develop a 3-on-3 multiplayer game
in secret for Unix workstations, and then teams of 3 programmers would show up from
16 fancy schools (Stanford, MIT, Berkeley, Caltech, etc), we would reveal the game, and
they’d have about 16 hours to write AI to play the game on their behalf.
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At the end, we would do an exhibition game where all 16 teams of 3 players (48 players
total) would do a deathmatch.

I had more Unix and network code experience than the rest of the id team, but I was a real
noob at game development. Doom was my first commercial game.

Q: How advanced was Doom development when you joined?

A: The core 3D gameplay window was there, most of the art was in, the single-player
gameplay was almost all there. I integrated the sound code/effects, the automap, status
bar, screen wipes, level transitions, and cheat codes.

Q: Who did you report to, how did you know what to work on?

A: I reported to John Carmack, but I wasn’t easy to manage and would often do my own
thing.

Q: I can see1 you had a NeXT workstation on your desk. What did you use it for?

A: We used them to make the whole game, and that’s what the level editor ran on. DOS
3.3 was our target OS, and DOS wasn’t really a complete operating system (no sound or
video drivers, for example, and no debugger to speak of), so it was pretty painful to debug
on. NeXTStep was much faster and easier to iterate on.

Q: You wrote ports for IRIX, AIX, Solaris and Linux. Was that for both Doom and
Quake ?

A: For Doom, ya. For Quake, Linux for sure, but the others, I can’t remember.

Q: What editor did you use, how did you compile?

A: I used vi for editing code. I made a Makefile and just typed make, as you’d think.

Q: Could you detail how it was to work with IRIX, AIX and Solaris ?

A: Once I got the basic code down for Linux (I had a system at home), it was pretty sim-
ilar for the other Unix platforms. AIX, Irix, and Solaris were all kinda foreign to me but of
course all still Unix variants, and I realized that by offering ports to Doom, I could get free
workstations, so... :)

1in "A Visit to id Software" 1994 video released by John Romero
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Q: Did you get the sound to work on all of them?

A: I separated the sound code into its own server. It would load the files itself, and then
the game would just tell it over a socket to fire off sounds and update volume/pitch/etc.
The Linux code would eventually get really optimized, as Linus hooked me up with the
XFree86 guys, who added an extension to give me direct access to the framebuffer, and
then on Quake, Linus gave me a much faster way to get directly to the sound card DMA
buffer and to get the current DMA transfer location down to a somewhat chunky granularity.

I know I got sound working on Irix and that Irix support was why Doom made the rounds
with so many CG/VFX type people in the film industry. I can’t remember whether I got it
working on AIX and Solaris. Sound wasn’t a priority for Sun/IBM at the time.

Q: You reportedly fell asleep on the floor and your coworkers taped the outline of
your body on the ground. Did that happen a lot?

A: I fell asleep on the floors a lot, which is why they got the sofa and had me test-drive it
for comfort, but I only remember them taping my outline once. I believe it stuck around for
a while though.

Q: When did you leave id software?

A: I believe I left in early 1996, just after qtest1 shipped.

Q: Leaving was a courageous decision. Among many things you could have made
more money. I assume you dreamed of making your own game. Do you regret leav-
ing so "early"?

A: Actually, not brave. I asked when I hired on to get some ownership in id, and after
the 6mo trial period, they decided against giving out more ownership, they said because
it hadn’t worked out with a couple of previous folks, and they had an expensive buy/sell
agreement for anyone who left. When they said ownership wasn’t going to happen, I
asked if I could invest in my own game company on the side, and they said yes, as long
as it wasn’t 3D and I wasn’t coding on it. So I invested in Crack dot Com, and produced
Abuse. After it shipped, I was starting to get royalty checks that were bigger than what I got
from id in bonus checks (and they were very generous). I was becoming more interested
in producing for Crack and less interested in coding on Quake, which was starting to feel
like a brown Doom with fewer monsters and a less relatable theme, so I was really slowing
down. Carmack noticed and said we should prolly part ways after Quake shipped, and I
countered that I’d prefer to leave after qtest1 shipped.

I don’t know if I could have made more money. I wasn’t very fulfilled when I left, and it was
affecting my work. I’ve also never been much of a fan of money. It tends not to correlate
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all that well to what I value.

Q: How do you feel looking back on this period of your life?

A: I don’t look back much. My mind is usually dwelling on the far-enough future that I’m
regarded as weird in the present. Back then was no different. I was trying to turn them
onto networked games like netrek, which had persistent accounts, and I remember that
being met with indifference. I started using the .plan files, sort of a blogging precursor, and
would spend a lot more time on irc than the others. My fascination with the Unix ports was
considered largely to be a waste of time, but they were very tolerant of me.

Q: Are you still in touch with anybody from the team of ’93?

A: Not much. I exchange emails with John Carmack every once in a while.

Dave gave an interview to "blankmaninc.com" in 2013. His answer to "Why did you
end up leaving id Software?" was so funny that I had to include it here.

“ Cocktail of reasons. It wasn’t common knowledge that John Carmack was
one of the best coders in the game industry. I just thought I had a very, very
small penis. I had an electrical engineering degree, and I was one of the
more capable coders in my class. So it was really demoralizing that no matter
how hard I worked, I could never pull off anything a fraction as impressive
as John, and of course he only seemed to be accelerating from his already
stunning clip. This led to a pattern of me pushing really hard, burning out, and
then limping along for a while until I made my next futile attempt to approach
a fraction of his awesomeness. There was this pattern of him saying, "Hey,
check this out," and I’d follow him to his office, and he’d be levitating in his chair
while demonstrating his elegant solution to an intractable problem of computer
science, and my version of "Hey, check this out" was usually motivated by
needing his help to track down an issue.

”
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Interview with Randy Linden

Q: Can you give a little bit of background about yourself, how old you were when
you developed DOOM for SNES, etc.?

A: DOOM/FX was published in 1995 and I was 25 y/o. I wrote it from San Diego, California
but I’m Canadian, born and raised in Toronto, Ontario. My first program was published
when I was 13. Here is a list of what I have worked on:

∙ Bubbles – A Centipede-style game for the Commodore 64.

∙ The 64 Emulator – An Amiga program that emulated the Commodore 64.

∙ Dragon’s Lair – Another Amiga program that was the first full-screen full-color ani-
mated game on any home computer – Dragon’s Lair was also the first game which
streamed data in real-time from six floppy discs during gameplay!

∙ DOOM – A version of the popular "2-1/2D" FPS for Super Nintendo running on an
original game engine designed for the SuperFX RISC processor (aka "GSU2A") de-
signed by Argonaut Software in the UK. DOOM for SNES was one of the very few ti-
tles which worked with most of the SNES hardware accessories including the mouse
and light gun. It also supported the XBAND hardware modem and two players could
complete head-to-head in one of the truly rare online games for SNES. I built a cus-
tom development system (Assembler, Linker, Debugger, etc.) which used a modified
(ie. hacked apart) StarFox game cartridge to provide the CPU and communication
to the Amiga-based toolchain by using a serial-based interface which plugged into
both joystick ports on the SNES. Support for Nintendo’s official hardware develop-
ment system for the GSU2A was added later in the development because no games
had been released at that point which could be "modified" for use (StarFox used the
original GSU which ran at half the clock rate of the GSU2A and had less memory
among other hardware changes and enhancements.)
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∙ "Bleem!" was a PC-based emulator for Playstation games – the program was entirely
in x86. I reverse-engineered Playstation software and hardware, wrote a run-time
optimizing recompiler for the game logic and added PC enhancements like higher
resolution and 3D graphics card support.

∙ "Bleem!" for Dreamcast was a Playstation emulator written entirely in SH4 for the
Sega Dreamcast. I was awarded four patents as a sole inventor for the technologies
and techniques I developed for bleem! and bleem! for Dreamcast.

∙ Cyboid is a high-speed 3D FPS (first-person shooter) which features single- and two-
player split-screen gaming and eight-player online multiplayer across a variety of play
modes – think "Quake" and that’s pretty much it. The game features VR support, In-
App purchasing, Achievements and Leaderboards, Advertising for multiple mediators
and Multiplayer Internet gaming for up to eight players online – all of which runs on
multiple platforms from Google and Amazon. The game is written in ARM assembly,
native C/C++ and Java and the entire package (code, data, graphics, sound and
music) is eight megabytes (... smaller than a single graphics texture in games/apps
these days!) The custom engines have all been highly optimized to support the
widest range of devices possible, including lower-powered hardware (such as the
Amazon Fire TV Stick) or older devices running Android API 17 "Jellybean".

Q: It seems the GSU-2 was not able to render fullscreen. I have read several theo-
ries online. Some mention a hardware limitation limiting the processor to 192 lines.
Some mention bandwidth issues related to DMA (to read from the GSU RAM). Do
you have more insight about this?

A: As you know, the Super NES ("SNES") was a character-based graphics architecture
which used a "font" that defined each character’s image and "map" which specified what
character to display in each position on the screen.

In effect, the the "Super/FX" (aka GSU "Graphics Support Unit") enabled bitmap emula-
tion on the SNES using a combination of fast, custom hardware and a carefully designed
instruction set that was optimized for graphics processing.

The GSU was a truly incredible RISC custom chip designed by Jez San and Argonaut
Software – It is one of my favorite hardware architectures of all time for many reasons, in
particular, the elegance and simplicity of the opcodes were both powerful and efficient and
the entire design is very similar to the architecture of the ARM processor (which is one of
my other favorite hardware systems!).

BTW, I agree 100000% with Jez’s comments about the GSU – absolutely true!!!

The original GSU, used in StarFox, ran at 10.74 Mhz, the GSU/2A used in DOOM/FX ran
at 21.48Mhz.
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All standard ALU operations were supported (add, subtract, eor, etc.), plus a variety of
fast multiplication operations, multiple memory load/store operations (based on whether
you were accessing ROM or RAM), a "LOOP" command and the "PLOT" command. Code
could run from ROM, RAM or an on-board 512 byte cache (which DOOM/FX used exten-
sively!)

What made the GSU really special was the large register set (16 general purpose registers
compared to the 65816) plus the opcode prefixes "FROM/TO/WITH" which allowed you to
specify a source register ("FROM") and destination register ("TO") or operate on the same
register using "WITH" – This type of operation is very standard these days, particularly on
the ARM architecture, but back then it was both unique and powerful!

Bandwidth was never an issue for me – here are two examples:

1. The "PLOT" command writes to the emulated bitmap using "X" and "Y" coordinates
and a "COLOUR" and can update single pixels at a time. I wrote code which timed
how fast the plot command executed, and discovered that since the underlying mem-
ory is still effectively a character-based array, each time you "plotted" to a new char-
acter "line" (8-pixels wide), the hardware fetched that character’s memory (basically
eight bytes that form the 256 color "plane") into an internal cache so that subsequent
plots to the same character "line" executed much faster.

I used this knowledge in DOOM/FX by "pre-writing" multiple pixels the first time a
"new line" was written – in effect, instead of plotting a single pixel at a time, I wrote
multiple pixels using the same color so the hardware quickly updated the internal
"character line" cache and then overwrote the same pixels with the correct individual
colors at high speed (typically 1 clock per pixel!)

2. The GSU ran SO much faster than the SNES 65816, the vast majority of the game
(close to 95%) is all GSU code – the 65816 is basically halted waiting for various
interrupts to update memory, swap screens, read the joysticks, etc. – but otherwise
the 65816 is pretty much idle!

The GSU had four different rendering heights (128, 160 and 192 pixels) plus an "OBJ"
mode for sprites as well as three options for pixel "depth" (4, 16 or 256 colors).

DOOM/FX used the 192 pixel / 256 color mode.

Here’s something most people don’t know: DOOM/FX was the second-most expensive car-
tridge to manufacture because it included the GSU/2A, had the largest ROM (2 Megabytes)
and RAM configuration available and a custom red plastic cartridge ... the only option miss-
ing was the battery backup!

Q: I speculated that you used the Unofficial Doom Specs to extract all the assets,
am I correct?
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A: I used a variety of online resources to reverse-engineer the DOOM data formats – with-
out the tremendous amount of work from all those other people, DOOM/FX wouldn’t have
been possible in the amount of time!

Q: Can you describe the Reality engine in its big lines. I assume you used the BSP
but did you also create the equivalent of visplanes?

A: The Reality Engine is basically a highly-custom 2-1/2D game engine that’s almost all
written in GSU code. All the code is designed to run in small blocks so they fit into the
GSU’s internal cache which runs at high-speed. The architecture is similar to DOOM in
that it uses a 2D BSP, sectors, segments, etc. – there are a number of optimizations that
minimize the processing required to figure out what to draw, etc.

Q: Did you get any help from id Software at all?

A: I demo’d the game to Sculptured Software when I had a fully operational prototype run-
ning – graphics, texturing, movement, enemies, etc. – it was obviously "DOOM" to anyone
looking at what I had running on the hardware.

Id Software was shown the game a few weeks later and even though it was an early ver-
sion, there wasn’t much left for them to help with since it was much further along than a
typical prototype or "proof of concept."

Of course, there was still a lot of work to do before the game could be published ... for
example: sound, music, the rest of the levels, testing, etc. – and it was with the help of
multiple people at Sculptured Software that the game was finally done.

Q: How long did it take you to build the toolchain, then how long to code the game?

A: IIRC, the game was developed in roughly eight months, give or take. There were multi-
ple toolchains used to create the game, graphics, sound and data...

The code was developed using a custom development system I wrote that included an
assembler, linker, source-level debugger, etc. – I had written multiple projects with the
development system (NES, SNES among others) and it was built over a number of years.
Adding support for the SuperFX only took a couple weeks, though. I also wrote a number
of tools and utilities to extract and convert the original assets from the PC game into the
optimized formats for the Reality Engine. Sound and Music used a toolchain from Sculp-
tured Software so all I had to do was convert the extracted assets into the appropriate
formats for processing.

Q: How did you get in touch with the publisher? Did you try several publishers be-
fore Sculptured Software accepted it?
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A: Sculptured Software was the only publisher I considered – I worked at Sculptured for a
few years and knew many people there – all of whom were awesome!

Q: Was it difficult to comply with Nintendo "no violence, no blood" policy at the
time?

A: Nintendo was incredibly easy to work with – they had very few requirements, minimal
changes and it was an easy submission process in general.

Q: Anything you want to mention, looking back at this game/part of your life? (Some
people lament that programming is more complex nowadays but I feel it was harder
back then, just to even get the programming manuals).

A: IMO, programming these days is very different than the "old days...

It was so much easier to write something for a single piece of hardware like the SNES –
you could spend time focusing on the game and improving performance, etc.

The same was true of the Commodore 64, Amiga and Sega Dreamcast – each of which
had unique technical aspects and advances which provided opportunities to make some-
thing stand out in ways that is much harder to do these days...

In comparison, writing an Android app is a huge amount of work for many reasons, many
of which are out of the developers’ control...

There’s a lot of hardware out there (with many differences in what is/isn’t supported as far
as graphics, sound, input, etc.), there are multiple versions of the OS (each of which have
their own "quirks", limitations, differences and changes) and although it’s truly wonderful
that Google provides comprehensive components like Firebase and Google Play, the fre-
quent updates, changes and differences require a huge amount of time and overhead just
to keep your app "current"
These days it’s fairly painless and even easy to create a simple "app" that works on a bunch
of Android devices ... but writing something which takes advantage of the unique aspects
of as many different devices as possible takes a lot of time, resources and effort – and I
think that’s why there are so many similar games, apps and titles out there – sure, there’s
uniqueness in many of them, but far less than there used to be – we don’t see things like
"Lode Runner", "Archon" or "Sword of Sodan" anymore.

A friend recently recommended a FPS that was over 1Gig to download! ... and then the
game required a constant internet connection for updates, resources and even to play the
game... we’ve sure come a long way from Dragon’s Lair on the Amiga which was an 8K
program and 5 Megs of data.
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More about how the GSU-2 worked:
A: Basically the GSU generates a bitmap into it’s own RAM that is then transferred to the
SNES PPU for display. I think there wasn’t sufficient clock cycles and RAM to generate
a full screen worth of data and transfer it to the PPU in time to avoid tearing/glitching,
etc. The GSU RAM can be accessed by only one device at a time (either the GSU or the
SNES), but not both ... so you have to generate data into the GSU RAM, then transfer it to
the SNES-side PPU ("Picture Processing Unit") so it can be displayed on screen. During
the transfer, the SNES-side has access to the RAM and the GSU does not, so you have
to wait until the transfer is complete before you can use the GSU to generate more data.
The GSU can still do many other things without accessing the internal RAM, though – and
DOOM/FX used that feature extensively. BTW, the same is true of the ROM – only one
device can access the ROM at a time – either the GSU or the SNES.

Anecdotes from DOOM SNES development:
A:

1. At one time a developer at Sculptured had modified a bunch of the basic levels –
added some really nice changes like object placement, etc. – and after showing
the new levels to id Software, they basically wanted the game to be as true to the
original as possible... so we ended up reverting all the changes and keeping the
original levels with as few modifications as possible.

One thing that id Software let me keep was the auto-rotating overhead map.

2. The engine had a number of configurable options – many of which weren’t used in
the final game ... some examples:

(a) The walls could be drawn single-pixel and not doubled, but there weren’t enough
clock cycles for a reasonable framerate

(b) Floors could also be drawn – as single or double pixels – but there wasn’t
enough ROM to store the textures and it was much faster to use colours/dither-
ing instead.

3. The timing and logic to generate the display was fairly complicated... as you’ll see:

I basically generate the display in "thirds" due to the limited amount of RAM available
in the GSU and PPU.

The "PPU" is the SNES-side "Pixel Processing Unit" – it’s basically the portion of the
hardware which fetches memory and displays it on screen.

Each "third" is basically generated in three "steps":

(a) Calculate all the necessary data/etc.

(b) Generate the graphic output into GSU RAM

(c) Transfer the GSU RAM to PPU.
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There isn’t enough PPU memory to store two complete game frames (one for the
current game frame and a second for the next game frame) ...

To solve this, I divided the SNES-side PPU memory into five "portions", three of
which are required to display a single frame (obviously) since the PPU has to be
able to access that data to show it on screen.

The remaining two "portions" are where I store the first and second "thirds" of the
next game frame... but what about the last third?

The final third of the next game frame is more complicated because it will be trans-
ferred overtop of one of the "active" thirds which the PPU is still using to show the
current game frame!

When the GSU has finished generating the last third, I wait for a raster interrupt that
ensures the PPU is NOT showing the area which is used by the "common" third and
transfer the last portion overtop before the raster hits that area of the screen.

After the final transfer is complete, I reconfigure which of the five portions is used by
the PPU to display the new game frame and start the whole process again, generat-
ing the next game frame into the two "portions" that are now available and updating
the final third in the same way as before.

Of course, if the game was running at 60fps, I could just generate everything on-the-
fly and wouldn’t need all the complicated code!

Sound was also a bit tricky, for similar reasons ... but not nearly as complex. There
wasn’t enough RAM for all the sound effects, so for example, the weapon sound is
transferred dynamically when you switch weapons – there’s enough time to transfer
the sound data for the weapon while the "weapon change" animation is running, but
there’s only one weapon sound in the SPU (sound processing unit) at a time.

4. Most of the graphics (textures, objects, etc.) are stored compressed internally and
decompressed while drawing.

I used a simple encoding which reduced the memory requirements and since the
GSU was fast enough, the tradeoff between processing cycles and storage was a
good one.
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Appendix J

OpenGL vs Direct3D .plan

John Carmack’s plan file was famous through the ’90s. If the update started as a list of
bugs and features he was working on, they morphed into blog posts. Of all the articles he
wrote, the most famous is undoubtedly his December 1996 comparison of the two com-
peting graphics programming APIs of the era named OpenGL and Direct3D.

{-}{-}{-}{-}{-}{-}{-}{-}{-}{-}{-}{-}{-}{-}{-}{-}{-}{-}{-}{-}{-}{-}{-}{-}
John Carmack’s .plan for Dec 23, 1996
{-}{-}{-}{-}{-}{-}{-}{-}{-}{-}{-}{-}{-}{-}{-}{-}{-}{-}{-}{-}{-}{-}{-}{-}

OpenGL vs Direct-3D

I am going to use this installment of my .plan file to get up on a
soapbox about an important issue to me: 3D API. I get asked for my
opinions about this often enough that it is time I just made a public
statement. So here it is, my current position as of december ’96...

While the rest of Id works on Quake 2, most of my effort is now focused
on developing the next generation of game technology. This new
generation of technology will be used by Id and other companies all the
way through the year 2000, so there are some very important long term
decisions to be made.

There are two viable contenders for low level 3D programming on win32:
Direct-3D Immediate Mode, the new, designed for games API, and OpenGL,
the workstation graphics API originally developed by SGI. They are both
supported by microsoft, but D3D has been evangelized as the one true
solution for games.
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I have been using OpenGL for about six months now, and I have been very
impressed by the design of the API, and especially it’s ease of use. A
month ago, I ported quake to OpenGL. It was an extremely pleasant
experience. It didn’t take long, the code was clean and simple, and it
gave me a great testbed to rapidly try out new research ideas.

I started porting glquake to Direct-3D IM with the intent of learning
the api and doing a fair comparison.

Well, I have learned enough about it. I’m not going to finish the port.
I have better things to do with my time.

I am hoping that the vendors shipping second generation cards in the
coming year can be convinced to support OpenGL. If this doesn’t happen
early on and there are capable cards that glquake does not run on, then
I apologize, but I am taking a little stand in my little corner of the
world with the hope of having some small influence on things that are
going to effect us for many years to come.

Direct-3D IM is a horribly broken API. It inflicts great pain and
suffering on the programmers using it, without returning any significant
advantages. I don’t think there is ANY market segment that D3D is
apropriate for, OpenGL seems to work just fine for everything from quake
to softimage. There is no good technical reason for the existance of D3D.

I’m sure D3D will suck less with each forthcoming version, but this is
an oportunity to just bypass dragging the entire development community
through the messy evolution of an ill-birthed API.

Best case: Microsoft integrates OpenGL with direct-x (probably calling it
Direct-GL or something), ports D3D retained mode on top of GL, and tells
everyone to forget they every heard of D3D immediate mode. Programmers
have one good api, vendors have one driver to write, and the world is a
better place.

To elaborate a bit:

"OpenGL" is either OpenGL 1.1 or OpenGL 1.0 with the common extensions.
Raw OpenGL 1.0 has several holes in functionality.

"D3D" is Direct-3D Immediate Mode. D3D retained mode is a seperate issue.
Retained mode has very valid reasons for existance. It is a good thing to
have an api that lets you just load in model files and fly around without
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sweating the polygon details. Retained mode is going to be used by at
least ten times as many programmers as immediate mode. On the other
hand, the world class applications that really step to new levels are
going to be done in an immediate mode graphics API. D3D-RM doesn’t even
really have to be tied to D3D-IM. It could be implemented to emit OpenGL
code instead.

I don’t particularly care about the software only implementations of
either D3D or OpenGL. I haven’t done serious research here, but I think
D3D has a real edge, because it was originally designed for software
rendering and much optimization effort has been focused there. COSMO GL
is attempting to compete there, but I feel the effort is misguided.
Software rasterizers will still exist to support the lowest common
denominator, but soon all game development will be targeted at hardware
rasterization, so that’s where effort should be focused.

The primary importance of a 3D API to game developers is as an interface
to the wide variety of 3D hardware that is emerging. If there was one
compatable line of hardware that did what we wanted and covered 90+
percent of the target market, I wouldn’t even want a 3D API for
production use, I would be writing straight to the metal, just like I
allways have with pure software schemes. I would still want a 3D API for
research and tool development, but it wouldn’t matter if it wasn’t a
mainstream solution.

Because I am expecting the 3D accelerator market to be fairly fragmented
for the forseeable future, I need an API to write to, with individual
drivers for each brand of hardware. OpenGL has been maturing in the
workstation market for many years now, allways with a hardware focus.
We have exisiting proof that it scales just great from a \$300 permedia
card all the way to a \$250,000 loaded infinite reality system.

All of the game oriented PC 3D hardware basically came into existance in
the last year. Because of the frantic nature of the PC world, we may be
getting stuck with a first guess API and driver model which isn’t all
that good.

The things that matter with an API are: functionality, performance,
driver coverage, and ease of use.

Both APIs cover the important functionality. There shouldn’t be any real
argument about that. GL supports some additional esoteric features that
I am unlikely to use (or are unlikely to be supported by hardware --
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same effect). D3D actually has a couple nice features that I would like
to see moved to GL (specular blend at each vertex, color key
transparancy, and no clipping hints), which brings up the extensions
issue. GL can be extended by the driver, but because D3D imposes a
layer between the driver and the API, microsoft is the only one that
can extend D3D.

My conclusion about performance is that there is not going to be any
significant performance difference (< 10\%) between properly written
OpenGL and D3D drivers for several years at least. There are some
arguments that gl will scale better to very high end hardware because
it doesn’t need to build any intermediate structures, but you could
use tiny sub cache sized execute buffers in d3d and acheive reasonably
similar results (or build complex hardware just to suit D3D -- ack!).
There are also arguments from the other side that the vertex pools in
d3d will save work on geometry bound applications, but you can do the
same thing with vertex arrays in GL.

Currently, there are more drivers avaialble for D3D than OpenGL on the
consumer level boards. I hope we can change this. A serious problem is
that there are no D3D conformance tests, and the documentation is very
poor, so the existing drivers aren’t exactly uniform in their
functionality. OpenGL has an established set of conformance tests, so
there is no argument about exactly how things are supposed to work.
OpenGL offers two levels of drivers that can be written: mini client
drivers and installable client drivers. A MCD is a simple, robust
exporting of hardware rasterization capabilities. An ICD is basically
a full replacement for the API that lets hardware accelerate or extend
any piece of GL without any overhead.

The overriding reason why GL is so much better than D3D has to do with
ease of use. GL is easy to use and fun to experiment with. D3D is not
(ahem). You can make sample GL programs with a single page of code. I
think D3D has managed to make the worst possible interface choice at
every oportunity. COM. Expandable structs passed to functions. Execute
buffers. Some of these choices were made so that the API would be able
to gracefully expand in the future, but who cares about having an API
that can grow if you have forced it to be painful to use now and
forever after? Many things that are a single line of GL code require
half a page of D3D code to allocate a structure, set a size, fill
something in, call a COM routine, then extract the result.

Ease of use is damn important. If you can program something in half the
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time, you can ship earlier or explore more aproaches. A clean, readable
coding interface also makes it easier to find / prevent bugs.

GL’s interface is procedural: You perform operations by calling gl
functions to pass vertex data and specify primitives.

glBegin (GL\_TRIANGLES);
glVertex (0,0,0);
glVertex (1,1,0);
glVertex (2,0,0);
glEnd ();

D3D’s interface is by execute buffers: You build a structure containing
vertex data and commands, and pass the entire thing with a single call.
On the surface, this apears to be an efficiency improvement for D3D,
because it gets rid of a lot of procedure call overhead. In reality, it
is a gigantic pain-in-the-ass.

v = \&buffer.vertexes[0];
v->x = 0; v->y = 0; v->z = 0;
v++;
v->x = 1; v->y = 1; v->z = 0;
v++;
v->x = 2; v->y = 0; v->z = 0;
c = \&buffer.commands;
c->operation = DRAW\_TRIANGLE;
c->vertexes[0] = 0;
c->vertexes[1] = 1;
c->vertexes[2] = 2;
IssueExecuteBuffer (buffer);

If I included the complete code to actually lock, build, and issue an
execute buffer here, you would think I was choosing some pathologically
slanted case to make D3D look bad.

You wouldn’t actually make an execute buffer with a single triangle in
it, or your performance would be dreadfull. The idea is to build up a
large batch of commands so that you pass lots of work to D3D with a
single procedure call.
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A problem with that is that the optimal definition of "large" and
"lots" varies depending on what hardware you are using, but instead of
leaving that up to the driver, the application programmer has to know
what is best for every hardware situation.

You can cover some of the messy work with macros, but that brings its
own set of problems. The only way I can see to make D3D generally
usable is to create your own procedural interface that buffers
commands up into one or more execute buffers and flushes when needed.
But why bother, when there is this other nifty procedural API allready
there...

With OpenGL, you can get something working with simple, straightforward
code, then if it is warranted, you can convert to display lists or
vertex arrays for max performance (although the difference usually isn’t
that large). This is the right way of doing things -- like converting
your crucial functions to assembly language after doing all your
development in C.

With D3D, you have to do everything the painful way from the beginning.
Like writing a complete program in assembly language, taking many times
longer, missing chances for algorithmic improvements, etc. And then
finding out it doesn’t even go faster.

I am going to be programming with a 3D API every day for many years to
come. I want something that helps me, rather than gets in my way.

John Carmack
Id Software
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Black Book Internals

It took ten months to write this book from October 2017 to July 2018. That was pleasant.
Then it took three months to proof-read it from October 2018 to November 2018. That was
very unpleasant.

I worked on it whenever I could find the time on evenings and weekends, but mostly fa-
voring the 7am to 9am slot. The text was written in LATEX with Sublime Text 3.0 editor and
compiled with pdflatex. The .pdf can be built with a single command.

pdflatex -o book.pdf book.tex

To improve compilation time, book.tex is a simple list of \subfile commands. Based on
which section of the book was being worked on, other lines were commented out. This
decreased the build time from several minutes to a few seconds and made LATEX bearable.

Drawings were made with Inkscape, saved to .svg and converted to .eps to incorporate
nicely with pdflatex compiler. Screenshots were cleaned up with Adobe Photoshop CC.
The font used is Computer Modern Sans Serif 10pts by Donald E. Knuth.

Description Value
Number of files 880
Number of .tex files 95
Number of .png files 561
Number of .svg files 102
Build time (300 dpi) 2 minutes 20 seconds
Final PDF size (300 dpi) 387,054,465 bytes
Build time (150 dpi) 47 seconds
Final PDF size (150 dpi) 89,060,075 byte
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