
www.pearson-books.com

Are you familiar with Java or another OO language? Do you now
want to develop programs using C#, or learn about the .Net
framework? Then this book is for you.

FEATURES

Comprehensive coverage of C# as a stand-alone language

The main features of .Net framework are explained,
showing how C# can make use of them

Advanced topics such as graphical interfaces and graphics,
databases and XML are discussed

Uses C# to produce and access interactive web pages

An adventure game case study shows how to build a
substantial program based around the topics covered

Glenn W. Rowe teaches at the University of Dundee and is the
author of several books in the areas of Java, computer graphics
and data structures.

From JAVA to C#

ROWE
From

JA
VA

toC
#

From Java to C#

We work with leading authors to develop the
strongest educational materials in computing,
bringing cutting-edge thinking and best learning
practice to a global market.

Under a range of well-known imprints, including
Addison Wesley, we craft high quality print and
electronic publications which help readers to
understand and apply their content, whether
studying or at work.

To find out more about the complete range of our
publishing, please visit us on the World Wide Web at:
www.pearsoneduc.co.uk

Glenn W. Rowe

From Java to C#

Pearson Education Limited
Edinburgh Gate
Harlow
Essex CM20 2JE
England

and Associated Companies around the world

Visit us on the World Wide Web at:
www.pearsoned.co.uk

First published 2004

© Pearson Education Limited 2004

The right of Glenn Rowe to be identified as author of this work has
been asserted by him in accordance with the Copyright, Designs, and
Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored
in a retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without either the prior
written permission of the publisher or a licence permitting restricted copying
in the United Kingdom issued by the Copyright Licensing Agency Ltd,
90 Tottenham Court Road, London W1T 4LP.

The programs in this book have been included for their instructional value.
They have been tested with care but are not guaranteed for any particular
purpose. The publisher does not offer any warranties or representations nor
does it accept any liabilities with respect to the programs.

All trademarks used herein are the property of their respective owners.
The use of any trademark in this text does not vest in the author or publisher
any trademark ownership rights in such trademarks, nor does the use of
such trademarks imply any affiliation with or endorsement of this book by
such owners.

ISBN 0 321 15572 6

British Library Cataloguing-in-Publication Data
A catalogue record for this book can be obtained from the British Library.

Library of Congress Cataloging-in-Publication Data
Rowe, Glenn (Glenn W.)

From Java to C# / by Glenn W. Rowe.
p. cm.

Includes index.
ISBN 0-321-15572-6
1. Java (Compuer program language) 2. C# (Computer program language) I. Title.

QA76.783.J38R69 2004
005.13'3--dc22

2004040997
10 9 8 7 6 5 4 3 2
08 07 06 05 04

Typeset in 10/12pt Caslon by 30
Printed and bound in Great Britain by Henry Ling Ltd., at the Dorset Press,
Dorchester, Dorset

The publisher’s policy is to use paper manufactured from sustainable forests.

Preface xiii
Acknowledgements xv

1 Introduction to C# and .NET 1

1.1 What are C# and .NET? 1
1.2 Writing your first C# program – using the command line 3
1.3 Writing your first C# program – using Visual Studio .NET 6
Summary 9
Exercises 10

2 Classes and objects 11

2.1 Object-oriented programming 11
2.2 Why ‘objects first’? 11
2.3 The object-oriented idea: encapsulation 13

2.3.1 Encapsulation 14
2.3.2 Example: an Employee class 15
2.3.3 Properties in C# 19

2.4 Case study: an adventure game 21
Summary 27
Exercises 27

3 Data, expressions and statements 29

3.1 Primitive data types 29
3.1.1 Integer types 29
3.1.2 Data type conversion 31

3.2 Data overflow and the checked keyword 32
3.3 Floating-point types 33
3.4 The decimal type 35
3.5 The bool (Boolean) type 36
3.6 The char (character) type 36
3.7 Strings 38
3.8 String formatting 40
3.9 Regular expressions 42

Contents

3.10 Implicit type conversions 44
3.11 Explicit type conversions – casting 45
3.12 Operators 47

3.12.1 Increment and decrement 50
3.12.2 Bitwise operators 52
3.12.3 Logical operators 54
3.12.4 Bit shift operators 54
3.12.5 Equality testing operators 55
3.12.6 Comparison operators 55
3.12.7 Assignment operator 56
3.12.8 Convenience assignment operators 56
3.12.9 The conditional operator ?: 57

3.13 Operator associativity 58
3.14 Operator precedence 59
3.15 Conditional statements 61

3.15.1 The if...else statement 61
3.15.2 The switch statement 63

3.16 Loops 66
3.16.1 The while loop 66
3.16.2 The do...while loop 67
3.16.3 The for loop 68

3.17 The break and continue statements 71
3.18 The goto statement 72
Summary 75
Exercises 75

4 Inside C# objects 81

4.1 Value and reference types 81
4.2 Passing by value and passing by reference 86
4.3 The ref keyword 88
4.4 The out keyword 91
4.5 Arrays 93

4.5.1 Arrays of reference types 94
4.5.2 Bounds checking 95
4.5.3 Array initialization 96

4.6 The foreach loop 97
4.7 Multidimensional arrays 98

4.7.1 Rectangular arrays 98
4.7.2 Jagged arrays 101
4.7.3 The foreach loop with jagged arrays 102
4.7.4 The null row problem 103
4.7.5 Passing arrays to methods 104
4.7.6 The params keyword 106

4.8 Enumerations 108

vi Contents

4.9 Variable scope 112
4.9.1 Local variables 112
4.9.2 Method parameters 115
4.9.3 Class data fields 115

4.10 Memory management in variable declarations 117
4.10.1 The program stack 120
4.10.2 The program heap 120

4.11 Garbage collection and the managed heap 126
4.12 Structs 127
Summary 130
Exercises 131

5 C# classes – advanced features 137

5.1 Constructors 137
5.2 Method overloading 142
5.3 The static keyword 144

5.3.1 Static data fields 144
5.3.2 Static methods 146
5.3.3 Static constructors 147

5.4 The const keyword 149
5.5 The readonly keyword 150
5.6 Method implementation 151
5.7 The this keyword 151
5.8 Operator overloading 153

5.8.1 Overloading comparison operators 157
5.8.2 Overloading ++ and -- 157
5.8.3 Overloading assignment operators 157
5.8.4 The true and false operators 158
5.8.5 Overloading && and || 159
5.8.6 General rules for operator overloading 161

5.9 Casting 162
5.10 Indexers 167
5.11 Namespaces 170

5.11.1 Defining a namespace 170
5.11.2 The using statement 172

5.12 Case study: the adventure game 174
Summary 191
Exercises 192

6 Inheritance 195

6.1 The concept of inheritance 195
6.2 Syntax for inheritance 196
6.3 Accessing base class data from a derived class 198

Contents vii

6.4 Inheriting methods 200
6.5 Constructors and inheritance 201
6.6 Name hiding 202
6.7 Polymorphism 203
6.8 Virtual methods 204
6.9 Polymorphism and method parameters 207
6.10 Versioning 207
6.11 Inheriting static methods 209
6.12 The Object class 211

6.12.1 The ToString() method 211
6.12.2 The Equals() and ReferenceEquals()

methods 212
6.13 Boxing and unboxing 216
6.14 Structs and inheritance 218
6.15 The is operator 220
6.16 The as operator 221
6.17 Sealed classes and methods 222
6.18 Abstract classes 224
6.19 Interfaces 227
6.20 Case study: the adventure game 231

6.20.1 Using inheritance 231
6.20.2 Adding new commands 236
6.20.3 Rules of combat 237
6.20.4 Item classes 238
6.20.5 Character classes 247
6.20.6 The Room class 256
6.20.7 The Adventure class – initialization and

command handling 260
Summary 278
Exercises 278

7 Exceptions 281

7.1 Encountering exceptions 281
7.2 Handling exceptions 283
7.3 Exceptions and inheritance 286
7.4 Throwing exceptions 288
7.5 Data carried by exceptions 289
7.6 User-defined exceptions 290
7.7 When to use exceptions 292
Summary 293
Exercises 293

viii Contents

8 Events and delegates 295

8.1 Events 295
8.2 Events in Java 295
8.3 Delegates 296
8.4 Multicast delegates 301
8.5 Handling events 303
8.6 Threads 307

8.6.1 Threads in Java 307
8.6.2 Threads in C# 308
8.6.3 Uses of threads 311

Summary 311
Exercises 311

9 GUI programming with Windows Forms 313

9.1 Using the .NET libraries 313
9.2 Writing GUI code in C# – the choice of environment 313
9.3 Windows code in Visual Studio .NET 315
9.4 Console versus Windows programs 317
9.5 The structure of a Windows program 318
9.6 Editing a Windows Form 318
9.7 Building a first GUI program from scratch 320
9.8 Adding an event handler 321
9.9 Layouts: anchors and docks 322
9.10 Using the MSDN documentation 324
9.11 A simple calculator in Windows Forms 326
9.12 Error handling and the ErrorProvider control 331
9.13 Checkboxes and radio buttons 335
9.14 Menus 342
9.15 Dialogs, status bars and toolbars 348

9.15.1 Dialogs 348
9.15.2 Status bars 350
9.15.3 Toolbars 351

9.16 Example: a Notepad clone 354
9.17 Other controls 367
Summary 368
Exercises 368

10 Graphics 371

10.1 Graphics: Java versus .NET 371
10.2 Vector graphics 373

10.2.1 Colo(u)rs 373
10.2.2 Drawing shapes – the Pen class 374

Contents ix

10.2.3 Filling shapes – the Brush classes 376
10.2.4 Brushes as pens 384

10.3 The GraphicsPath 385
10.4 Filling shapes 387
10.5 Transformations and the Matrix class 391

10.5.1 Translation 393
10.5.2 Rotations 396
10.5.3 Scaling 398
10.5.4 Shearing 398

10.6 Fonts and drawing strings 400
10.7 Raster graphics 404

10.7.1 Displaying an image from a disk file 404
10.7.2 Drawing on an image 405

10.8 Mouse events 407
10.8.1 Mouse events example: checkers game 410
10.8.2 Other mouse events 417

10.9 Keyboard events 418
10.10 Animation – threads revisited 421
10.11 Case study: the adventure game graphical interface 428

10.11.1 The interface to the game 429
10.11.2 Class design 430
10.11.3 The GUI code 431
10.11.4 AdventureForm – initialization 431
10.11.5 Non-rectangular buttons 441
10.11.6 Drawing the map 447
10.11.7 Displaying the player’s statistics 451
10.11.8 Event handlers 454

Summary 465
Exercises 466

11 Databases 469

11.1 The basics 469
11.2 SQL 473

11.2.1 Data types 474
11.2.2 Inserting a new record 475
11.2.3 Queries 476
11.2.4 Joins 478
11.2.5 Updates 482
11.2.6 Deleting records 482

11.3 Driving databases from C# 483
11.4 ODBC drivers 484
11.5 Connecting to a database from C# 484
11.6 Accessing other databases from C# – MySQL

example 487

x Contents

11.7 SQL Server and the SqlClient namespace 490
11.8 Running SQL commands 491

11.8.1 Querying 492
11.8.2 Non-queries 496
11.8.3 Prepared statements 497

11.9 DataSets 500
11.10 Databases and Windows Forms: DataGrids 504
11.11 More with DataGrids and DataSets 511
11.12 Case study: the adventure game 525

11.12.1 Building a database for the adventure game 525
11.12.2 Writing the C# code 527

Summary 535
Exercises 535

12 XML 537

12.1 Introduction 537
12.2 Simple XML 538
12.3 Using XML 541
12.4 Reading XML: XMLTextReader 543
12.5 Document Type Definitions – validating XML files 550

12.5.1 Writing DTDs 551
12.5.2 DOCTYPE statements 553
12.5.3 Using a validating parser 554

12.6 The Document Object Model 558
12.7 Searching an XML tree with XPath 562
12.8 Editing and writing XML 566

12.8.1 XmlTextWriter 567
12.8.2 Writing XML using XmlDocument 568

12.9 Transforming XML – XSLT 578
12.10 XML documentation in C# code 585
12.11 Case study: saving and loading the adventure game 589

12.11.1 DTD for the Adventure XML file 589
12.11.2 C# code for saving the game as XML 590
12.11.3 C# code for loading a saved game 594

Summary 599
Exercises 600

13 Web pages and the Internet 603

13.1 Generating web pages 603
13.2 ASP .NET and C# 604

13.2.1 How it works 607
13.3 Web controls 610

Contents xi

13.4 Web controls and databases 610
13.5 Case study: an on-line scores list for the adventure

game 611
13.5.1 The DataGrid web control 612
13.5.2 Customizing a DataGrid 614

13.6 Graphics on web pages 619
13.7 Interactive web pages 622
13.8 Case study: an item editor for the adventure game 623

13.8.1 The interface 624
13.8.2 The ASP .NET code 625
13.8.3 Validation of data 630
13.8.4 Interactive data display 631
13.8.5 Templates 632
13.8.6 C# code for item editor 634

13.9 Web services 647
13.9.1 Writing a web service in C# 648
13.9.2 Consuming a web service 651

13.10 Accessing the Internet 654
13.10.1 Downloading files 654

Summary 659
Exercises 659

Index 662

xii Contents

This book provides a comprehensive introduction to the C# programming
language introduced by Microsoft with the first official release in February
2002. C# is part of a much larger project called .NET, which provides a vast
library of classes allowing software developers to create applications to meet
almost any need in the industrial and research areas.

A prospective reader of this book will no doubt want to know what is
expected of him or her. As the title implies, this book is written primarily for
readers who have some (but not necessarily a lot of) programming exper-
ience using Java, such as might be gained from an introductory programming
course. At the moment, Java is a very popular language in such courses at
colleges and universities worldwide, due to its clean structure and relatively
shallow learning curve.

However, readers who have some experience with object-oriented pro-
gramming in other languages such as C++ should also be able to follow the
book, as although in the early chapters there are numerous comparisons
with Java, the material on C# itself does not actually depend on the reader
understanding Java code specifically.

Those of you who have glanced at the table of contents will notice that
the later chapters in the book deal with topics such as graphics, databases
and so on, and may wonder if they will be able to understand the material
in them. This book assumes no prior knowledge of any of these topics, so
you should be confident that the material here will be accessible. Most intro-
ductory courses are taught using only programs that produce textual output,
since dealing with graphical interfaces involves concepts that beginners find
rather daunting.

If you are looking at this book in a bookshop or library, you may well have
noticed a large number of other books on C#, .NET and their relationship
with the topics in the later chapters of this book. You may also notice that
many of these books are quite large, with many of them having in excess of
1000 pages. If you deduce from this that there is a lot more to .NET than
what is contained in the book you are holding, you are quite right.

This fact means that when writing the book, I had to decide what parts of
C# and .NET were the most suitable for a reader with a modest programming
background. The book’s early chapters (up to Chapter 8) provide a fairly
thorough and complete coverage of C# as a stand-alone language. All pro-
grams developed up to Chapter 8 are textual programs, meaning that all

Preface

interaction with them is done via the Windows console. C# is a considerably
bigger language than Java, even without considering the .NET libraries, so a
complete coverage does take some time to complete.

Beginning with Chapter 9, the book becomes more of a tour of the main
features of .NET and how C# can use these features. There is much more that
could be said about each of the topics in Chapters 9 through 13 (as indeed,
much has been said, since many of those 1000+ page books are devoted
entirely to an expansion of what is in one of the chapters in this book). There
are also several topics upon which this book does not touch at all.

In selecting the topics from .NET to cover, I have tried to heed the current
demands of industry and research to determine what is most popular and
commonly used. Graphical interfaces and graphics are common to almost
all programs these days, so they form the foundation chapters (9 and 10).
Almost as commonly used are databases, so Chapter 11 is devoted to them.
XML is now very widely used to transmit information between clients and
servers, and also forms the core of much of .NET’s way of doing things, so we
have a chapter on that. Finally, one can hardly consider a computing book
complete without some coverage of the Internet, so C#’s role in producing
and accessing web pages is described in the final chapter.

In these later chapters, the approach becomes less formal and more illus-
trative, since each topic covered in this part of the book is much too big for
a thorough treatment. I have tried to set the scene in each case by describ-
ing the basics and then provide some paths into the more advanced areas by
giving several progressively more detailed examples.

In order to show how many of the topics in the book can work together
in a substantial program, I have developed a major case study (an adventure
game) progressively over several chapters in the book. The adventure game
makes its first appearance in Chapter 2 as a collection of skeleton classes
and is progressively enhanced and developed until by the end of the book it
is a full program with a graphical interface, a database for storing the initial
data used in the game, a saved game file using XML, and a web interface for
editing the contents of the database.

The book is meant to be approached by reading the chapters in order,
since most chapters make references to preceding ones. Readers anxious to
learn about a particular feature of C# or .NET may, however, dive in at the
appropriate point and then refer back to earlier chapters as required.

Finally, a brief note on some of the aspects of C# and .NET that are not
included in the book.

The only feature of C# itself that is not covered is unsafe code. Unsafe
code allows programmers direct access to specific memory locations by
means of pointers, which will be a foreign concept to Java programmers
(although painfully familiar to C or C++ veterans). The idea of direct mem-
ory access is counter to the philosophy of programming which is encouraged
by both Java and C#, and is certainly not needed for any of the examples we
develop in the book.

xiv Preface

There are many areas of the .NET libraries that are not covered at all.
Although these are quite useful in many areas, they are not likely to be
encountered by programmers taking their first steps in the .NET landscape
and can safely be left to a more advanced book or course.

Although the accepted development environment for writing C# and .NET
applications is Visual Studio .NET, I made a conscious decision not to rely
on this package for the examples in this book. This is for two main reasons.
First, the book is aimed mainly at a student audience and students are notor-
iously short of funds. Visual Studio .NET, although very useful, is also quite
expensive. Most of the sample code in the book can therefore be entered in
an ordinary text editor such as Notepad, and compiled using a command
line, if required.

The second reason is that, although Visual Studio’s code generation facil-
ities can be quite useful, they also tend to generate far more code than is
needed to get a program up and running. This makes the code harder to
understand and maintain. It is better at least to see how to build code from
scratch when you are learning a new system and if you then decide you
want to use the automated project generation in Visual Studio, you will have
a solid understanding of the underlying code.

Just as this book was going to press, version 1.5 of Java was released in
beta. It contains many enhancements to the basic Java language which were
not present in version 1.4, so that some statements about Java’s capabilities
in the book are no longer valid for version 1.5. For example, Java 1.5 now
supports the enum keyword, variable-length argument lists in methods, for-
matted input and output, a rough equivalent to C#’s ‘foreach’ loop and sev-
eral other features.

In addition to several anonymous referees who provided many useful sug-
gestions and corrections, I would also like to acknowledge the comments and
suggestions of many past and present students at the University of Dundee,
especially Jonathan Bowyer, Allan McCulloch, Callum Urquhart, Simon
Barber, Iain Milne, Iain Wilkie and Graham Cannell. Since the book is intend-
ed primarily for students, their input has been particularly valuable.

Finally, a special vote of thanks to the staff at Pearson Education, partic-
ularly Kate Brewin and Owen Knight, who provided friendly advice and help
over the entire course of the writing and production of this book.

Glenn W. Rowe

Acknowledgements xv

Acknowledgements

Introduction to C# and .NET

1.1 ■ What are C# and .NET?

This introductory session is placed at the start of Chapter 1 rather than in the
book’s preface, since most readers (the author included) probably don’t read
book prefaces. As the book’s title suggests, this book is written for students
who have a working knowledge of Java and wish to use that knowledge to learn
something about Microsoft’s C# language and the associated .NET libraries.

First, we need to get straight exactly what C# and .NET are. C# is a new
computer language devised by Microsoft. The structure of the language is
strongly reminiscent of Java (even though no mention of Java is made in
C#’s language reference manual!) and is obviously inspired by Java. .NET is
a very large library of classes and methods that may be used in C# programs
(and indeed in programs written in several other languages as well). .NET
also provides an underlying framework which allows programs using the
.NET libraries to run. In a sense, .NET can be thought of as analogous to the
Java Virtual Machine, which must be running on a computer before any Java
programs can be run on that computer. But .NET combines this framework
with the vast collection of libraries that may be used within C# programs. In
this sense, .NET is analogous to the many Java packages (such as the Java
AWT, Swing, Java 3D and so on) that are available for use in Java programs.

One of Java’s main selling points is that it is platform independent, mean-
ing that a Java program can be written on one platform such as Windows
and then ported directly to any other platform running a Java Virtual
Machine, such as Linux, UNIX or the Macintosh. The amazing thing about
Java is that this platform independence really does work. The author has
written substantial applications in Java that have run without modification
on other operating systems without any significant problems.

At the time of writing, the full .NET framework is available only on later
versions of Windows (Windows 2000, XP and later), so it is not yet platform
independent. However, a third-party effort is being made to produce an
open-source (essentially, free) version of .NET and C# that is runnable on
Windows and Linux. The Mono project (see www.go-mono.com) is making
good progress towards its goal, although at the time of writing, not all the
libraries in the commercial version of .NET have been written in Mono.

One interesting feature of .NET is that although it is not officially platform-
independent, it is currently language-independent. This means that different
parts of a program may be written in different .NET-compliant languages and
linked together into the final executable file. This is achieved by .NET’s
Common Language Runtime, or CLR, which is a program similar in spirit to
Java’s Virtual Machine, in that it runs code compiled from any of the .NET
languages. Unlike the JVM, however, the CLR (at least Microsoft’s version of
it) only runs on Windows at present.

1

The main .NET languages in the first release of .NET are C#, Visual Basic
.NET and managed C++. Browsing through the documentation that is avail-
able for .NET (the Microsoft Developer’s Network or MSDN documentation)
reveals that almost all classes and methods have examples provided in C# and
Visual Basic .NET and sometimes C++ as well. C# and Visual Basic .NET have
equal power when it comes to using the .NET libraries. The main difference
between C# and Visual Basic .NET is that C# is a more versatile language with
more powerful innate language features, so it is better suited for writing pro-
grams that require implementation of more sophisticated algorithms.

The approach to learning C# and .NET we will take in this book is to begin
by concentrating on the C# language on its own first and only later adding
in some of the main .NET libraries to get some idea of what can be achieved
using the full .NET system. Readers with a year’s experience of Java will find
that C# as a language has a much richer repertoire of operators and data
structures than Java, which some programmers regard as a mixed blessing.
Probably the best approach to C# is to get an idea of what’s available and
then form your own personal programming style which will tend to use cer-
tain techniques for writing code rather than others that are equally valid,
and could be favoured by a different programmer’s style.

The book is reasonably complete in its description of the basic syntax and
operation of C# on its own. Such a comprehensive cover of the vast .NET
libraries, however, is simply not possible in a book of this size. We have
therefore tried to include chapters on the more important and commonly
used features of .NET such as Windows Forms for creating graphical inter-
faces, graphics libraries for drawing images, databases, XML and ASP .NET
for the creation of interactive web sites. Even within these broad areas how-
ever we cannot explore any of these topics fully. These later chapters of the
book should therefore be used as introductions to topics rather than com-
prehensive reference manuals.

In Java programming, once a student progresses beyond the basics of
writing textual programs and starts to use the Java libraries such as Swing,
the Java AWT and so on, it is essential to become conversant with the Java
documentation. Similarly, when using .NET it is vital to become familiar
with the MSDN documentation. MSDN is included as part of the Visual
Studio .NET package, but is also freely available (for consultation, not down-
load) on Microsoft’s MSDN web site, at msdn.microsoft.com. The MSDN doc-
umentation contains many sections, only some of which are directly con-
cerned with C# and .NET, but it is worth a browse through the top levels of
the full site to see what is available.

Finally before we begin, a word on what is expected of the reader and how
this expectation affects the structure of the book.

The book’s title states that it takes the reader ‘from Java to C#’. This
means that we will assume that readers have taken the equivalent of a sin-
gle-year introductory programming course using Java as the language. Since
most introductory Java courses restrict themselves to the basics of classes
and objects (hopefully done in an objects-first fashion!), and do not progress

2 From Java to C#

beyond textual programs, that is essentially what this book also assumes. In
particular, we will not be assuming that the reader has written graphical
user interface (GUI) programs in Java or made any significant use of most
of the Java packages beyond perhaps some usage of classes in the standard
java.lang package such as String for representing text strings.

In the early chapters of the book, where we will describe the fundamen-
tals of C#’s syntax and operators, we will be pointing out similarities and dif-
ferences between C#’s way of doing things and methods you may have
learned in Java. Readers will find that much of C# at this level is very simi-
lar to Java, which should hopefully ease the learning process.

In later chapters, where we consider some of the .NET libraries, compar-
isons with Java will be much scarcer. The reason for this is that we are not
assuming that readers have had much experience with using Java beyond
writing textual programs that make minimal use of the various Java pack-
ages, so drawing comparisons between .NET libraries and packages in Java
would serve no useful purpose.

Enough introductory remarks. It is time to dive in and see what C# code
looks like!

1.2 ■ Writing your first C# program – using the
command line

Although we haven’t yet introduced any of C#’s features officially, readers
with some experience of Java programming shouldn’t have any difficulty in
understanding how a simple C# program works.

We’ll begin with the traditional ‘Hello world’-type program since an essen-
tial first step in learning how to use any new programming language is to dis-
cover how to compile and run the simplest possible program.

The most popular development environment for C# and .NET programs is
Microsoft’s Visual Studio .NET, but although this package is very powerful and
useful, it is also quite expensive, so we cannot assume that all readers of this
book will have access to it. Fortunately, it is possible to write most C# and
.NET programs without using Visual Studio, since Microsoft provides the .NET
Framework Software Development Kit (SDK) as a free download from their
web site. At the time of writing, the SDK is at version 1.1 and is available from
http://www.microsoft.com/downloads/details.aspx?FamilyID=9b3a2ca6-
3647-4070-9f41-a333c6b9181d&DisplayLang=en. The file size is 108 MB, so
it’s a non-trivial download. (If you find that the web link above no longer
works, a search of Microsoft’s Download Center for .NET Framework Software
Development Kit should locate the new link.)

The SDK includes a command line C# compiler and all the .NET libraries
required to run all the examples in this book. All that is missing is the graph-
ical environment in which the code can be written, so you will need to use
a separate editor to write your code. A program as simple as Notepad can be

Introduction to C# and .NET 3

used for this, although there are many other free text editors available on
the web.

The simplest possible C# program that produces some output is:

public class FirstProgram

{

public static void Main(string[] args)

{

System.Console.WriteLine("This is a lot like Java!");

}

}

This code was written using Windows Notepad, but any text editor could
have been used. The program is stored in the file FirstProgram.cs. For
convenience, we have used the class name to create the filename, but unlike
Java, this is not essential in C#. We could have named the file FirstTry.cs
(or anything else, as long as it has a .cs extension) without changing the
class name.

To compile this program using the command-line C# compiler, we first
need to find the compiler program, which is harder than it sounds. If you
have installed Visual Studio .NET, one of the files that it installs is called
csc.exe, which is the C# compiler (the acronym ‘csc’ stands for C-Sharp
Compiler). It is actually buried deep in the Windows directory in a folder
that depends on the version of the .NET Framework SDK you have installed.

If Windows has been installed on your C drive, the location of csc.exe is
C:\Windows\Microsoft.NET\Framework\v1.0.3705\csc.exe. Note that the last
directory listed in this path (v1.0.3705) contains the version number of the
release of .NET that you have installed, and was correct for the first official
release of .NET in February 2002. If you are using a later version, the name
of this directory will be different. The current version at the time of writing
is version 1.1, and the last directory is called v1.1.4322. If all else fails, use
the Search facility in Windows Explorer to locate the compiler.

Once we’ve found the C# compiler, we can compile the above program
with the command (which should all be on one line):

C:\Windows\Microsoft.NET\Framework\v1.1.4322\csc

FirstProgram.cs

Alternatively, if you get tired of typing out the entire pathname of the
compiler each time, you can add the compiler’s directory to your PATH vari-
able. The exact procedure for doing this varies slightly with different ver-
sions of Windows. Under Windows XP, the procedure is as follows.

Find the ‘My Computer’ icon on the desktop and right-click it. Select
‘Properties’ from the popup menu – this should display the ‘System Properties’
box. In this box, select the ‘Advanced’ tab and then click the ‘Environment
Variables’ button. In the ‘System variables’ list, find the ‘Path’ variable, select
it and then click ‘Edit’. Add the directory containing the compiler:

4 From Java to C#

C:\Windows\Microsoft.NET\Framework\v1.0.3705

to the end of the Path, separating it from the preceding directory with a
semi-colon. Then click OK enough times to close all the dialog boxes. If you
now open a new Console Window and move to the directory containing
FirstProgram.cs, you should be able to compile it with the command:

csc FirstProgram.cs

After compilation, run the dir command to list the files in the directory.
You should see FirstProgram.exe listed. If you run this program, the out-
put should be:

This is a lot like Java!

As the output suggests, this simple C# program should remind you strong-
ly of the first Java program you ever wrote. Like Java, C# is a pure object-
oriented language, which means that all code must be contained within a
class. Like Java, one class must contain an entry point – a method which
tells the program where to start. In Java, this method must have the signa-
ture public static void main(String[] args). As we can see from the
above example, the only difference in C# is that ‘Main’ must be spelled with
an uppercase ‘M’, and ‘string’ with a lowercase ‘s’.

The output line is also reminiscent of Java’s System.out.println(). In
C#, however, System is a namespace, which is roughly analogous to a pack-
age in Java. Since most C# programs make use of one or more methods in
the System namespace, it can get tedious having to type out System in front
of each method call. C# defines the using keyword which allows name-
spaces that will be used frequently within a program to be declared at the
top of the file, thus avoiding the need to prefix each method call with the
namespace name. This is similar to the import statement in Java.

We could therefore rewrite the FirstProgram.cs file as follows:

using System;

public class FirstProgram

{

public static void Main(string[] args)

{

Console.WriteLine("This is a lot like Java!");

}

}

Introduction to C# and .NET 5

1.3 ■ Writing your first C# program – using Visual
Studio .NET

The command-line compiler has the advantage of being free, as it is avail-
able as part of the .NET Software Development Kit (SDK), so if you are on a
limited budget (or just don’t want to buy Visual Studio .NET), you can man-
age perfectly well with it. All the examples given in this book have been writ-
ten in such a way that they can be compiled and run without using Visual
Studio .NET (which is often an advantage in that in many cases, hand-writ-
ten code is significantly shorter and easier to understand). However, Visual
Studio .NET is an exceptionally powerful and useful development environ-
ment, so even if you don’t have it, it is worth knowing a bit about how it can
be used, since many other books rely heavily on it for their examples.

We’ll begin by showing how to type in, compile and run the FirstProgram
example from the previous section. Since it is possible to customize Visual
Studio .NET’s menus and toolbars in a number of ways, the instructions for
building and running a program may vary from one setup to another. The
instructions in this section will use the default menu settings.

The first step after starting Visual Studio .NET is the creation of a new
project. Visual Studio .NET has followed the corporate trend in redefining
the English language by inventing new (and in this author’s opinion, inac-
curate) meanings for existing words. A solution is a container that can hold
several projects, each of which can represent one portion or aspect of the
overall solution. To start out, we will need only a single project in a solution,
and if we tell Visual Studio .NET to create a new project, it will create the
encompassing solution automatically.

To create a new project, select the File menu, then submenu New, and sub-
menu Project. We are then confronted with the dialog shown in Figure 1.1.

Select ‘Visual C# Projects’ in the left panel, and ‘Console Application’ in
the right. We name our project ‘FirstProgram’ and assign it a location using
the boxes at the bottom of the dialog. Click OK and wait for Visual Studio
.NET to create the project and its associated solution. When this process is
complete, there should be a box in the main Visual Studio .NET window
labelled ‘Solution Explorer’. If this isn’t visible, open the View menu and
select ‘Solution Explorer’. Listed in the Solution Explorer are the files asso-
ciated with the project. Files with a .cs extension are C# source code files;
files with other extensions contain other information relevant to the main-
tenance of the project, but not immediately useful to us at the moment.

Before we proceed to enter some code into Visual Studio .NET, it’s worth
taking a look at the directory in which the project was created. We can do
this in Windows Explorer. We will find several files other than those listed in
Solution Explorer, such as FirstProgram.csproj, which contains information
about the structure of the project, and FirstProgram.sln, which contains
more information about the overall solution itself. These files are all man-
aged by Visual Studio .NET and it is usually a bad idea to modify them your-

6 From Java to C#

self. However, if you want to copy a project you are working on to a differ-
ent computer, make sure you include all the files and directories from the
project directory, since they are all required for Visual Studio .NET to open
the project on the other computer.

We can now return to Visual Studio .NET and have a look at the code in
the file Class1.cs, which is shown here.

1. using System;

2.
3. namespace FirstProgram

4. {

5. /// <summary>

6. /// Summary description for Class1.

7. /// </summary>

8. class Class1

9. {

10. /// <summary>

11. /// The main entry point for the application.

12. /// </summary>

13. [STAThread]

14. static void Main(string[] args)

15. {

16. //

Introduction to C# and .NET 7

Figure 1.1 New Project dialog in Visual Studio .NET

17. // TODO: Add code to start application here

18. //

19. }

20. }

21. }

This skeleton code bears a superficial resemblance to the command-line
version in the previous section. We see a class definition and a Main()
method, and the using System statement at the top of the file. The main
differences are that Visual Studio .NET has inserted a namespace block at
line 3, there are some odd-looking comments in a couple of places, and a
curious entry on line 13.

The namespace definition isn’t required for a simple program such as
this, but it doesn’t hurt to leave it there for now. You can think of a name-
space as equivalent to a Java package, although without the restriction that
the package name must match the directory structure in which it is stored.
The class Class1 is being defined within the FirstProgram namespace.

To get a better view of the structure of the project, go to the Solution
Explorer box and click the ‘Class View’ tab at the bottom of the box. This
view shows the hierarchical structure of the solution and its enclosed proj-
ect. Open all layers in the tree by clicking on the little squares with a + sign
inside them. The top level (root) of the tree is the solution itself. Underneath
this is the FirstProgram namespace, whose icon is a pair of empty braces:
{ }. Underneath the namespace is class Class1, and inside that is the Main()
method, and another entry labelled ‘Bases and Interfaces’ which we will
leave for now.

If you haven’t used this sort of interface for viewing the structure of your
code before, it is worth spending a while experimenting with it to see how it
works. The entries in the Solution Explorer and Class View are dynamic,
meaning that they automatically update whenever you change the code. To
see how this works, try changing the name of the class from Class1 to
FirstProgram directly in the code window. You will see the Class View
update to reflect the change.

After changing the name of the class, it is a good idea to change the name
of the file in which the code is stored to keep things consistent. To do this,
go back to Solution Explorer, right-click on the Class1.cs file, select
‘Rename’ and change the name of the file to FirstProgram.cs. You can
check that the filename has taken effect by looking in Windows Explorer.

Before we add any code to the FirstProgram class, try compiling and run-
ning the program as it stands. To compile the program, select the Build menu,
and then ‘Build solution’. After a brief pause, you should see some text print-
ed in the ‘Output’ box at the bottom of the Visual Studio .NET window. The
last line of this text, assuming there were no warnings or errors during com-
pilation, should say: ‘Build: 1 succeeded, 0 failed, 0 skipped’.

Since compiling and running the program will be frequent operations dur-
ing the development of the code, you will probably find it more convenient

8 From Java to C#

to use keyboard shortcuts to do them. In the Build menu, any commands
that have keyboard shortcuts have them displayed on the menu. For ‘Build
solution’ the default keyboard shortcut is Ctrl + Shift + B.

If you have used an earlier version of Visual Studio (or one of its sub-pro-
grams such as Visual Basic or Visual C++) and prefer the keyboard shortcuts
in that version, you can change the shortcuts by opening the Tools menu
and selecting the Options command. In the Options dialog, select the
Environment folder in the left panel, and then select Keyboard. From the
‘Keyboard mapping scheme’ drop-down list, select the keyboard map you
want. You can also customize the keyboard map by selecting individual
commands and specifying keystrokes for them.

To run the program, select the Debug menu, then ‘Start without debug-
ging’ (default keystroke: Ctrl + F5). A console window will appear and the
message ‘Press any key to continue’ is printed. This message is not produced
by your program, but rather indicates that the program has finished and
that the console window can be closed by hitting any key. Since we haven’t
added any code to the program, it hasn’t produced any output.

To complete the program, add the line:

Console.WriteLine("This is a lot like Java!");

to the Main() method (replace the comments on lines 16 to 18 with this
code), and compile and run the program to produce the output.

Finally, a note on the other features mentioned above. The unusual com-
ments on lines 5 to 7 and 10 to 12 are special comments that allow Visual
Studio .NET to produce XML documentation for your code. XML is used a
lot in .NET for the transmission and storage of hierarchical information, and
is rapidly becoming a standard method of information representation on the
web. Visual Studio .NET can also produce HTML web page documentation
from these special comments. We will consider them in more detail in
Chapter 12, but for now, remember that any comment beginning with
three slashes (///) rather than the usual two, is a comment that will produce
XML documentation.

■ Summary

This introductory chapter has introduced you to C# and .NET and described
how to write a simple C# program, both by using a simple text editor and
command-line compiler statement and by using Visual Studio .NET.

Introduction to C# and .NET 9

10 From Java to C#

Exercises

1.1 Search the web for articles that compare C# and Java. At this stage you may
not be able fully to appreciate the comparisons being made since you do not
yet know much about C# or .NET, but it is worth storing these articles for future
reference as you proceed through the book.

1.2 Visit Microsoft’s web site (www.microsoft.com) and search it for information on
.NET and C#. This is worth doing every so often to see if new releases have
come out or if service packs are available that correct bugs in earlier versions.

1.3 Search the web for sites that provide tutorials on C# and .NET. Sites such as
these are often invaluable when you are trying to understand how to do some
particular task, so it is worth building up a list of these sites in your Favourites
menu in your web browser.

1.4 Use the MSDN documentation (either from the MSDN web site or locally if it is
installed on your computer) to find out what methods (in addition to
WriteLine() that we used in the example in this chapter) are available in the
Console class. See if you can figure out how to read a line of text from the
console window and print it out. Thus modify the simple program given in this
chapter so that it asks the user for their name and then prints a message such
as (assuming the user’s name is Glenn):

Hello Glenn! Welcome to C#.

1.5 To get a feel for how similar C# and Java are, try writing, inside the Main()
method in the example program given in this chapter, some simple code using Java
syntax and run the result through the C# compiler. Take note of which language
features of Java are accepted in C# and which are not. Try things such as declar-
ations of primitive variable types such as int and float, loops (for and while),
if statements, simple arithmetic operations and so on. Use the string data type
to store text strings (instead of Java’s String) and Console.WriteLine() and
Console.Write() to produce output to the console window. Avoid using any
other method calls, since these are usually different in C#.

Classes and objects

2.1 ■ Object-oriented programming

Readers of this book should already have met classes and objects while learn-
ing Java – indeed, it is impossible to write a Java program without using the
keyword class at least once. Even so, various books and courses introduc-
ing object-oriented programming take different approaches to the subject.

At present, there are two main opinions as to how an object-oriented lan-
guage such as Java or C# should be taught. The ‘old school’ believes that
classes and objects are in some sense an ‘advanced’ or ‘difficult’ topic and
can only be tackled after an initial grounding in variable declarations, arith-
metic expressions, and control statements such as if, while and for. The
‘new’ or ‘objects-first’ school (to which this book belongs) believes that
classes are a more natural way of thinking about program design and that it
makes much more sense to build the learning of an object-oriented language
around the concept of the class from the outset.

Since this book specified only that readers should be familiar with Java,
and not necessarily be the product of a particular school of object-oriented
thought, we’ll begin this chapter with a quick review of the ideas behind
classes and objects. After that, we’ll see how C# represents classes and
objects by considering a specific example.

2.2 ■ Why ‘objects first’?

Until relatively recently, most introductory programming courses taught
programming using a procedural language. In the 1980s and early 1990s,
the most popular (amongst tutors, at any rate) teaching languages were
Pascal, Modula-2 and C. All of these procedural languages evolved from, or
were at least influenced by, earlier languages which ultimately can trace
their ancestry back to assembly language, which required programs to be
written at the level of moving bytes of data between memory locations and
performing primitive operations such as addition or multiplication.

Although a procedural language such as Pascal is a ‘high-level’ language,
in that the programmer need not understand anything about the set of
machine instructions used by any particular processor, the idea behind a
procedural language is that a program should be written as a sequence of
actions or instructions which should be executed in a particular order. This
is, after all, how a computer operates – it is provided with a sequence of
primitive instructions and executes each one in a linear fashion (on a sin-
gle-processor machine). Higher-level procedural languages simply defined
higher-level instructions which were transformed into lower-level instruc-
tions by the compiler.

2

Writing a program in a procedural language therefore requires the pro-
grammer to analyze the project as a sequence of instructions. The ‘proper’
way of designing a procedural program was usually taken to be top-down
design, in which the structure of the program is viewed hierarchically. At
the top, or root, of the design is an overall ‘instruction’ which corresponds
to the entire program. On the next level, this single master instruction is
analyzed to determine several sub-instructions, and each of these sub-
instructions is studied to find sub-sub-instructions within it, and so on until
we find a level at which the instructions are simple enough not to require
subdivision. Each of these simple instructions is then coded as a function or
procedure within the program. Higher-level instructions are built up by call-
ing lower-level functions to execute each sub-instruction required.

For example, suppose we are writing a car racing game. At the top level,
the instruction would be just that: run a car racing game from start to fin-
ish. On the next level, this overall goal could be broken into sub-instructions
such as ‘offer to load previous game’, ‘start new game’, ‘select model of car’,
‘select racing track’, ‘start race’, ‘handle joystick signals’ and so on. Each of
these instructions must again be analyzed to see if it can be broken down
further or is simple enough to be coded using a single function.

The procedural model has been used with a good deal of success for many
years, and many millions of lines of code have been written in procedural
languages. There are some widely recognized problems with procedural lan-
guages, however.

Experienced programmers often find that dealing with large procedural
programs is difficult because there is just one large structure describing the
whole program. Logical sub-units within a large program are difficult to iso-
late, which can hinder debugging and maintenance. Libraries of procedural
code consist of large collections of individual functions with little or no
internal structure, which makes it more difficult to reuse existing code in
new projects.

At the other end of the scale, there is some evidence that students find
procedural programming languages harder to learn than object-oriented
ones, although the results are far from conclusive. However, since this book
is primarily aimed at students rather than professional programmers, let us
examine why this might be so.

A procedural language emphasizes actions as the central feature of a pro-
gram. Looking back at the car racing example above, we see that all the
instructions listed are commands to do something, rather than descriptions
of static objects. However, if you think about how most people view the
world, you will probably come to the conclusion that objects are more cen-
tral to people’s ways of perceiving the general scene around them than what
those objects are doing. In terms of grammar, a noun is much easier to visu-
alize than a verb – in fact, it is almost impossible to visualize an action with-
out also visualizing an object that is carrying out that action. For example,
try visualizing the concept of ‘running’ without thinking of an object, such
as a person or dog, doing the running. However, it is simple to visualize a dog
or person without associating any particular action to them.

12 From Java to C#

It stands to reason, therefore, that a programming system that empha-
sizes actions above objects might be harder to learn than one that does the
opposite. This is, of course, where object-oriented languages make their
grand entrance.

Like most things in technology, the origins of object-oriented program-
ming extend back a lot further than you might think. The object-oriented
idea began in the early 1960s with the work of Ole-Johan Dahl and Kristen
Nygaard in Norway. In 1965, the first compiler for the Simula I language was
produced, and this is usually regarded as the first object-oriented language.
The Smalltalk language was developed in the 1970s, but object-orientation
(OO) had to wait until the 1980s with the creation of C++ by Bjarne
Stroustrup before it began to be widely used. Other OO languages such as
Eiffel were invented around the same time, but it wasn’t until the introduc-
tion of Java in the 1990s that C++ had any major competition. With the
entrance of .NET in 2002, two more major players in the OO game have
appeared: Visual Basic .NET is now fully object-oriented, and C# is a new
language that looks set to rival both C++ and Java in popularity.

2.3 ■ The object-oriented idea: encapsulation

If we trace the production of a computer program back to its origins, we
must ultimately come to a description, in a human language such as English,
of the problem the program is meant to solve, or the system which it is
meant to simulate or represent. This specification of a program can be as
simple (and vague) as ‘write a program which will predict the state of the
world economy over the next year’. It can also be a highly detailed, lengthy
document describing every nuance of the finished product.

Once we have a detailed description of what the finished program should
contain, the next stage is the production of an object-oriented design. Such
a design is a set of classes which encapsulate the features and actions list-
ed in the formal specification. Many formal design methods have been pro-
posed and used in the past, although currently UML (unified modelling lan-
guage) seems to be the dominant system used by professional designers.

The production of both specification and design documents is a major
field in its own right, and we will not dwell on it here. These formal meth-
ods are required for large-scale programming projects, particularly if they
involve teams of engineers. We won’t be using any of these formal methods
in this book, however, as it is certainly possible to produce good small-scale
designs with a bit of thought and some common sense.

The main idea behind any object-oriented design, as mentioned above, is
the creation of a set of classes that logically and consistently portrays the
problem specification. Candidates for classes can be found by reading
through the specification and identifying the key nouns used to describe the
central concepts. Once we have identified the classes, we need to determine
what properties each class will have and how the classes will interact with
each other in the running program.

Classes and objects 13

Each property of a class is represented by a data field within the class,
and each action by a method (sometimes called a function). If your English
grammar is up to the task, just as we can think of a class as a noun in the
specification document, so can we think of the properties or data fields as
adjectives that describe the noun, and the methods as verbs that describe
actions that the class can do or have done to it.

This book assumes that readers have come across these concepts before
in their initial study of Java, since it is not possible to write a Java program
without creating at least one class. As such, we won’t dwell on the process
of analyzing a specification and building an object-oriented design. We will
instead concentrate on how classes can be written in C#.

2.3.1 � Encapsulation

The idea of creating classes to represent the items within an object-orient-
ed design and protecting the data fields within each class from external code
is called encapsulation. Encapsulation is one of the three central concepts
of object-oriented programming, and is certainly the most important. The
other two concepts, inheritance and polymorphism, are not needed to write
simple OO programs, so we will deal with them later.

The principle of encapsulation states that once we have identified the
classes that are to be used in our design, each class should contain a num-
ber of properties (data fields) which should be private, or inaccessible to
any other class, except as specified by user-defined accessor methods. In
Java and C#, the keyword private is used to define private data fields.
There is no separate Java language construct for implementing accessor
methods (as opposed to any other kind of method), although it is conven-
tional to prefix a method name with ‘get’ if it is meant to retrieve a particu-
lar data field, or ‘set’ if it is meant to write a new value to a particular field.
We will see that in C# there is a specific language feature (the property) that
enforces accessor methods and thus allows encapsulation to be implement-
ed in a more natural way.

The terms class and object have precise meanings in the OO context. A
class is a definition of a data type, and an object is a particular instance of
that type. For example, if we have defined a class named Car to represent a
car, then Car becomes a new data type in our program. We can use the name
of the class to declare an object, or particular instance of a car, by giving an
ordinary variable declaration statement, such as:

14 From Java to C#

Key point

Encapsulation requires that the data fields within each class are private, and that
access to them is only allowed through accessor methods.

Car myCar;

Here, myCar is an object or variable which is an instance of the Car data
type. (Technically, as in Java, a declaration such as this creates a reference
to an object, so that the creation of the object itself requires using the new
operator, but more on this later.)

We can now see an example of a simple object-oriented program in C#.

2.3.2 � Example: an Employee class

We’ll consider a specific example to illustrate how to write a class in C#. We will
develop a class that represents an employee of some company or organization.

At this stage in the book, we will just dive in and present a complete C#
class. Readers should find most of the code is very similar to Java. Those fea-
tures that are specific to C# will be mentioned briefly following the code list-
ing, but we will explain all these features of C# in detail later in the book.
The goal at this stage is to get a feel for how C# represents classes and imple-
ments encapsulation.

Here’s the code for the Employee class:

1. using System;

2.
3. /// <summary>

4. /// A single employee in a company

5. /// </summary>

6. public class Employee

7. {

8. /// <summary>

9. /// Employee’s name

10. /// </summary>

11. private string name;

12. /// <summary>

13. /// Employee’s yearly salary (before deductions)

14. /// </summary>

15. private decimal salary;

16. /// <summary>

17. /// Employee’s position within the company

18. /// </summary>

19. private PositionTitle position;

20.

Classes and objects 15

Key point

A class is a data type and an object is an instance of a class.

21. public enum PositionTitle

22. {

23. ManagingDirector = 0,

24. Director = 1,

25. Accountant = 2,

26. Programmer = 3

27. }

28.
29. // Name property

30. public string Name

31. {

32. get

33. {

34. return name;

35. }

36. set

37. {

38. name = value;

39. }

40. }

41.
42. // Salary property

43. public decimal Salary

44. {

45. get

46. {

47. return salary;

48. }

49. set

50. {

51. if (value <= 0.0M)

52. {

53. Console.WriteLine("Error: salary must be positive");

54. }

55. else

56. {

57. salary = value;

58. }

59. }

60. }

61.
62. // Position property

63. public PositionTitle Position

64. {

65. get

66. {

16 From Java to C#

67. return position;

68. }

69. set

70. {

71. position = value;

72. }

73. }

74.
75.
76. public override string ToString()

77. {

78. return Name + " (" + Position + ")" + ": £" + Salary;

79. }

80. }

Before we describe the contents of this class, a few notes about the use of
comments in this book are in order. In the Employee class shown above, we
have added comments before the data field declarations and method defini-
tions. The judicious use of comments in code is, of course, good program-
ming practice and is to be encouraged in all code that you write. For this
reason, in this example we have included the comments so you can see how
they look in a C# program.

For most of the code in this book, however, we will not include the com-
ments as part of the listing, since all examples in the book are fully
explained by the text that follows them, and including comments within the
code as well would duplicate the explanation and increase the size of some
already rather lengthy code listings. The code that may be downloaded from
the book’s web site, however, does have a full set of comments embedded
within it, since that code does not have the accompanying text to explain it.
Remember that the purpose of comments is to explain in a concise manner
what a section of code is doing when there is no other source of information,
and as such, comments should always be included in ‘live’ code that is actu-
ally being used to develop a software project.

The three data fields of an Employee are declared on lines 11, 15 and 19.
The employee’s name is stored in a string, which is similar to the Java
String class. The word ‘string’ (all lowercase letters) is a keyword in C++,
however, and may not be used for variable or method names.

The salary is stored as a decimal, which is a special floating-point numer-
ical data type especially suited to storing currency values. Finally, the
employee’s position within the company is stored as a PositionTitle vari-
able. PositionTitle is not a built-in data type or a class – rather it is
defined on lines 21 to 27 as an enum (enumeration) type. Readers who have
done some C or C++ programming may have used an enum in those lan-
guages, but the C# enum is considerably more sophisticated. We shall study
the full syntax of enum in Chapter 4. All we need to know now is that an enum
provides a way of associating a set of labels with int values. This has the

Classes and objects 17

advantage of making code easier to read, since we can use the actual name
of the employee’s position as a value rather than some abstract quantity
such as 0 or 1. However, the enum also allows the compiler to do type-check-
ing in variable assignments, thus preventing us from assigning an illegal
value to a PositionTitle variable.

Before we consider the remainder of the Employee class, let us write a
preliminary version of the CompanyDemo class which we can use to create an
Employee object and test it. The code for CompanyDemo is:

1. using System;

2.
3. /// <summary>

4. /// Controlling class for the Companies program.

5. /// </summary>

6. class CompanyDemo

7. {

8. /// <summary>

9. /// The main entry point for the application.

10. /// </summary>

11. [STAThread]

12. static void Main(string[] args)

13. {

14. Employee employee1 = new Employee();

15. employee1.Name = "Glenn Rowe";

16. employee1.Position =

17. Employee.PositionTitle.ManagingDirector;

18. employee1.Salary = 1000000M;

19. Console.WriteLine(employee1.ToString());

20. }

21. }

In the early stages of code development, especially if we are learning a
new language, it is useful to have a class which can be used to test the other
classes as they are being written. It is important to test code by compiling
and running it as often as possible.

As with Java, every C# program must contain one class with an entry
point, that is, a method which can be used to start the program. In Java, that
method must be called main(), while in C# it is called Main() (with a cap-
ital ‘M’). The signature of the Main() method must always be as shown on
line 12 of the CompanyDemo listing above (although an int return type is also
allowed). The args parameter allows command-line arguments to be passed
to the program.

On line 14, we declare and create a new Employee object. As in Java, cre-
ating an object is a two-stage process. First, the reference to the object is
declared (the variable employee1 on line 14), then the object itself must be
created. The creation of a new object can only be done by using the new
operator, which reserves the memory required for that object and calls a

18 From Java to C#

constructor to initialize the data fields. The Employee class above does not
contain any user-defined constructors (yet), since we don’t want to cloud
the issue with too many concepts at once. Most readers will probably be
familiar with constructors from their study of Java – in most cases, C# con-
structors work the same way as those in Java.

Line 14 therefore calls a default constructor which is generated by the
compiler, and which does nothing more than initialize the data fields in the
new Employee object to default values (an empty string for name, and zero
values for the other two data fields).

Lines 15 through 18 initialize the three data fields in employee1. At first
glance, you might think everything is obvious, but if you look more closely,
you will notice that something appears to be wrong. The three data fields
defined in the Employee class were name, position and salary – all spelled
with lowercase letters. The corresponding terms in lines 15 to 18 are all cap-
italized (and besides, the original data fields were all declared as private,
and so shouldn’t be accessible from outside the Employee class anyway).

However, there is no error here. We are not accessing the data fields in
Employee directly – we are using properties to set these values. The C# prop-
erty has no direct counterpart in Java, but it is central to C#’s way of imple-
menting encapsulation, and thus of defining classes properly. We will there-
fore explain properties here, ahead of all the other language features in C#.

2.3.3 � Properties in C#

Recall that the idea behind encapsulation is to control access to the private
data fields within a class. The class should decide whether or not another
class can read or write a data field. In the case of writing a new value to a
data field, the class should be able to check that the new value is valid. C#
provides the property mechanism which allows this to be done in a formal,
controlled way.

Look at lines 30 to 40 in the Employee class above. Here, a property
called Name (with a capital ‘N’) is defined which controls access to the name
(with a small ‘n’) data field. A property must contain an accessibility modi-
fier (in this case, public), a data type (string) and a label (Name).

A property contains at least one and possibly two accessors: a get and/or
a set. The get accessor controls read access to the property, and the set
accessor controls write access. Each accessor acts like a method, one of which
(get) returns a value that must match the data type specified for the proper-
ty, and the other of which (set) is passed a value of that same data type.

With the Name property, the get accessor simply returns the current
value of name (which is a string, so the data type is correct). This is the
class’s way of allowing read access to the name data field. To obtain the name
of an Employee in external code, we use the property label Name instead of
the actual bare data field name. An example of this is given in the
ToString() method on lines 76 to 79 of Employee. This method returns a
string that contains the information stored in the three data fields. Note

Classes and objects 19

that Name is the first component of the string that is returned on line 78.
This reference to Name calls the get accessor in the Name property on line
32, which returns the name data field. (Since the ToString() method is
actually part of the Employee class, it is allowed direct access to name, but
it is safer to go via the property route even within the same class.)

Now return to the CompanyDemo class and look at line 15, where a value
is specified for the name of employee1. Notice that the Name property is used
on the left side of the assignment statement. In this case, since we are
attempting to set the value of a property, the set accessor of that property
is called. The code for the set accessor of the Name property is on lines 36
to 39 of the Employee class.

The set accessor is passed a value whose type must match the data type
of the property. The keyword value represents this value within the
set accessor’s scope. On line 38, we assign value to name to set the name
of the employee.

A property’s set accessor is called whenever a value is assigned to a prop-
erty. Line 15 in the CompanyDemo shows this happening to the Name proper-
ty. The string "Glenn Rowe" is assigned to the property Name. This calls
the set accessor on line 36 in Employee, with "Glenn Rowe" being passed
in as value. Line 38 then assigns "Glenn Rowe" to name.

The other two properties work in much the same way for the salary and
position variables. The set accessor for the salary illustrates how a check
can be made on value to ensure it is valid. On line 51, a check is made that
the salary is positive, and only if value passes this test is it assigned to
salary. (A better way of handling this would be to throw an exception if
valid fails the test. We cover exceptions in Chapter 7.) The ‘M’ after the
constant value being assigned to the salary specifies that the number should
be interpreted as a decimal.

Either of these accessors can be omitted from a property (but at least one
of them must be present). If we decided, for example, that the Name proper-
ty cannot be changed, we could simply omit the set accessor. Then any
statement such as

employee1.Name = "Susan Jones";

would not compile, since write access is denied to Name.
The final method, ToString(), on line 76 simply returns a string con-

taining the information about the employee. (The override keyword on
line 76 has to do with inheritance, which we consider in Chapter 6.)

20 From Java to C#

Key point

C# provides properties with get and set accessors to implement the principle of
encapsulation.

Although encapsulation in C# could be implemented the same way as in
Java, by providing separate methods for each ‘get’ and ‘set’ operation, the C#
property is a much neater way of doing it, and is recommended for all inter-
action with class data fields.

2.4 ■ Case study: an adventure game

Throughout this book we will be developing an extended case study con-
sisting of an adventure game written in C#. In certain chapters, we will be
expanding the game to illustrate the features of C# introduced since the pre-
vious version of the game.

For the uninitiated, an adventure game is one in which the player takes
the role of a hero who explores various locations in a fantasy world, usually
with the objective of completing some quest. The player may be required to
solve puzzles, fight monsters and evil-doers, and collect treasure at the var-
ious locations in the game.

The computer plays the role of a ‘gamesmaster’, in that all details of the
locations in the fantasy world are stored within the program. The computer
also determines what challenges the player must face at each location, and
provides appropriate responses to the player’s actions.

One of the first adventure games was a standard part of the UNIX operat-
ing system back in the 1960s, and was simply called ‘adventure’. It was a
text-only game, played by typing in commands at a text prompt. The com-
puter would respond with a textual statement giving the result of the user’s
command.

As the reader is no doubt aware, adventure games have progressed since
those early days. Current adventure games provide immersive three-dimen-
sional graphics, realistic animation and multi-channel sound. Although the
final result of the case study in this book won’t be quite as impressive as the
games available from the leading games companies, we hope to introduce a
reasonable amount of sophistication into the finished product.

We need to begin with something a bit less ambitious, however, since so
far all we have covered of the C# language is a description of how C# imple-
ments encapsulation using classes and properties. Even at this early stage,
we can sketch out the general form of an adventure game and build the
beginnings of some of the classes that will be needed.

In planning a more involved project, it is useful to sketch out a class dia-
gram to illustrate what classes are to be defined, what properties they con-
tain, and how they relate to each other. The creation of class diagrams is one
part of a more general field known as object-oriented design or OOD. We
won’t have space to go into OOD in any depth in this book, but we will occa-
sionally make use of the class diagrams that might come out of such an
analysis. A proper analysis of a software project involves a number of stages,
such as the production of a formal requirements document (a list of condi-
tions that the finished program should fulfil), use cases (a list of the various

Classes and objects 21

ways a user can interact with a program) and so on, but we will not go into
these except in an informal way, since our main goal is to produce a work-
ing program that illustrates the features of C#.

The simplest type of adventure game would consist of a single player, a
number of locations and a number of items that may be found at these loca-
tions. The player should be able to move between locations and pick up and
drop items at each location. We will add more features, such as other non-
player characters (NPCs – characters that are controlled by the computer and
may be friendly or hostile), specialized item types and so on, at a later stage.

To build a class diagram, we need to propose some class candidates –
objects which we need to represent as classes within the program. For each
class that we accept, we need to provide properties and methods.

From the brief description of the first stage of the game given above, a
number of class candidates should be fairly obvious. A Player class will rep-
resent the character controlled by the person playing the game. A Room class
can be used to represent the various locations, and an Item class can rep-
resent items that may be found at the locations or carried by the player.
Finally, we will need an overall class to control the running of the game. We
will call this class Adventure, and this is where the Main() method will go.

A class diagram illustrating the structure of the program is shown in
Figure 2.1.

At this stage in the development of the program, we will restrict the game
to a single location, and restrict that location and the player to holding a
single item. In Figure 2.1, this is indicated by the number 1 labelling the
ends of the lines connecting the various classes. For example, the line con-
necting the Adventure class with Player has a 1 on each end, indicating
that a single Adventure object contains one Player. Note that only those

22 From Java to C#

Player

Name

Room

Description

Item

Description
Weight

Adventure1 1

11

11

11

1

1

Figure 2.1 Class diagram for the first version of the adventure game case study

data fields that are of a primitive type (single numbers or strings) are con-
tained within the box representing a class. If one class (such as Adventure)
contains an instance of another class (such as Player), this is indicated by
a line connecting the two classes.

The restriction of Adventure to a single Room and of Room and Player to
a single Item is because we have not yet covered those data structures
required for storing arrays or lists of objects. When we study arrays in
Chapter 4, we will modify the game to allow it to cope with several locations,
each containing several items.

Let us now have a look at the code for the four classes. We begin with the
simplest class: Item.

public class Item

{

private string description;

private int weight;

public string Description

{

get

{ return description; }

set

{ description = value; }

}

public int Weight

{

get

{ return weight; }

set

{ weight = value; }

}

public override string ToString()

{

string itemInfo = description;

itemInfo += ": (" + weight + ")";

return itemInfo;

}

}

We have added a couple of data fields to Item, providing each item with a
description and a weight. (The weight will be useful if we wish to restrict the
total weight our player can carry.) There is a property provided for each of
these data fields, and we have added a ToString() method which con-
structs a string showing the values of these two fields.

Classes and objects 23

Next, we consider Room:

public class Room

{

private string description;

private Item locationItem;

public string Description

{

get

{ return description; }

set

{ description = value; }

}

public Item LocationItem

{

get

{ return locationItem; }

set

{ locationItem = value; }

}

public override string ToString()

{

string locationInfo = description;

if (LocationItem != null)

locationInfo += "\nContains: " +

LocationItem.ToString();

else

locationInfo += "\nThe room is empty.";

return locationInfo;

}

}

Room contains a string for its description, and a single Item field allows
one item to be stored within a Room. Properties are provided for accessing
these fields. The ToString() method first adds description to the output
string. It then tests LocationItem to see if it is null. If it is, this means that
the location does not contain an Item, so we add the message ‘The room is
empty.’ to the output and return. If LocationItem is not null, we call its
ToString() method to add the Item’s data to the output for the Room.

The Player class is much the same as Room:

24 From Java to C#

public class Player
{

private string name;
private Item playerItem;

public string Name
{

get
{ return name; }
set
{ name = value; }

}

public Item PlayerItem
{

get
{ return playerItem; }
set
{ playerItem = value; }

}

public override string ToString()
{

string playerInfo = "Name: " + name;
if (PlayerItem != null)

playerInfo += "\nCarrying: " + PlayerItem.ToString();
else

playerInfo += "\nNot carrying anything.";
return playerInfo;

}
}

Instead of Room’s description, Player has a name, but otherwise the code
is identical to that of Room.

Finally, the Adventure class ties everything together and provides a
Main() method to start the program:

using System;

public class Adventure
{

private Player gamePlayer;
private Room room;

public void Initialize()
{

gamePlayer = new Player();
gamePlayer.Name = "Wibble the Wizard";

Classes and objects 25

room = new Room();
room.Description = "A magic laboratory.";
Item crystalBall = new Item();
crystalBall.Description = "A crystal ball";
crystalBall.Weight = 10;
room.LocationItem = crystalBall;

}

public void PlayGame()
{

Console.WriteLine("Welcome to Adventure!");
Console.WriteLine("\nPlayer:\n" + gamePlayer.ToString());
Console.WriteLine("\nLocation:\n" + room.ToString());
Console.WriteLine();

}

public static void Main(string[] args)
{

Adventure adventure = new Adventure();
adventure.Initialize();
adventure.PlayGame();

}
}

The Main() method creates an Adventure object and then calls
Initialize(). This method creates the Player and gives it a name, but
does not assign anything to PlayerItem, since we are starting the Player
off with an empty backpack. Next, Initialize() creates the Room and gives
it a description, then it creates an Item and assigns it to room.

The PlayGame() method simply tests that the Player, Room and Item
were all constructed properly by calling ToString() for the Player and
room. The output is:

Welcome to Adventure!

Player:

Name: Wibble the Wizard

Not carrying anything.

Location:

A magic laboratory.
Contains: A crystal ball: (10)

Note that the PlayGame() method tests all the code we have written so
far, since it demonstrates that all the classes have been used, and calls all
the ToString() methods (recall that the ToString() method in Item is
called from ToString() in Room). It is important to continually test code as
you write it in order to avoid long lists of error messages when you compile

26 From Java to C#

a program and complex errors when you run it. In fact, during the develop-
ment of the program as shown here, the code should have been tested many
times even before reaching this point. The author’s personal preference is to
compile the program almost as often as after each line of code is added or
changed. With a proper development environment, all files can be saved and
compiled with a single keystroke, so it takes little effort to do this, and can
save hours of debugging time later on.

At this stage, although the program does not present us with a playable
game, the basic framework has been laid down. We have the core classes
that will be needed throughout the various versions of the game and
although the classes will undergo quite a few modifications, the underlying
structure of the object-oriented design will not change.

■ Summary

In this chapter, we have reviewed the main ideas behind object-oriented pro-
gramming. The central concept is that of encapsulation, in which the data fields
and methods describing an entity are grouped together in a class. Access to data
fields (either to get (read) or set (write) their values) is controlled by interface
methods. In Java, each interface method must be written as a separate method
within the class. In C#, a property may be defined for each data field where
external access is needed. The property has a get and a set section, where the
corresponding access may be provided.

We presented the first version of the extended case study that appears
over the course of the book: an adventure game. This first version defines
an initial set of classes and provides some skeleton code for them.

Classes and objects 27

Exercises

2.1 Think of some everyday objects such as a car, a clock, a television and so on and
list properties that are associated with each object. For example, a car’s proper-
ties could include the make, model, colour, price, registration number and so
on. When you have made a list of properties for an object, examine the lists to
see which properties could be grouped together into classes. For example, some
of the properties of a clock could include hour, minute and second, which could
be grouped together into a Time class. The Clock class could then include an
instance of Time as well as other data fields that are based on primitive data
types. Using your class definitions, draw a simple class diagram similar to that
in this chapter for the adventure game.

2.2 Using your class diagram for one of the everyday objects in Exercise 2.1, write
out some C# classes that implement the classes identified in the diagram. For
each property in each class, declare a variable within the class and provide a C#
property with get and set accessors to allow reading and writing of the vari-
able. Some of the variables will be primitive data types such as int or float,

28 From Java to C#

but others could be instances of other classes you have defined. For example, a
Clock class could have an instance of a Time class to represent the clock’s
current time.

2.3 Add a ToString() method to each class from Exercise 2.2 so that you can
display the values of the variables in that class. Use the ToString() methods
in the adventure game classes as models.

2.4 Using the Adventure class for the adventure game in this chapter as a model,
write a Main() method that creates an object from each of the classes you wrote
in Exercises 2.2 and 2.3 and then calls the ToString() method from each object
so that you can get a printout on screen of the values of each object’s properties.

2.5 Do some research on the web to discover some more information on the differences
between procedural and object-oriented programming methods. Include in your
research an investigation into the history of the two methods. Your research may try
to answer the following questions: When and where did they originate? What were
the first procedural and object-oriented languages? What are the most popular
methods and languages in research and industry at the moment? What sort of
developments in programming methods are predicted for the future?

Data, expressions and
statements

In Chapter 2, we introduced the concept of a class and showed how encap-
sulation can be implemented in C#. In the ‘objects-first’ approach taken by
this book, it is important to be comfortable with the idea that the first step
in writing an object-oriented program is the identification of the classes
which are to be used. It is not necessary to worry about how the code with-
in each method of a class will be written at this stage – what is important is
the creation of the overall structure of the program.

Once we have identified the classes and created their skeleton structures,
of course, we then do have to write the code within each method. This chap-
ter will guide you through the nuts and bolts of C#: what primitive data
types are provided, what sorts of arithmetic and logical expressions can be
constructed, and what sorts of statements, such as conditionals and loops,
the language provides.

Although at this level C# and Java are very similar, there are enough sub-
tle differences that it would pay you to read this chapter carefully even if
you are an experienced Java programmer. It is very easy to write code that
is correct in Java but will not work properly in C# because you have over-
looked one of these little variations.

3.1 ■ Primitive data types

C# provides 13 ‘primitive’ data types: eight integer types, two floating-point
types, a Boolean type, a character type and an odd beast called the decimal
type. At this stage, we will regard these primitive types as bare values, in the
same way as primitive types in Java. We will see, however, that C# primi-
tives actually have a more complex side, but we must delay an exploration
of this until we have studied inheritance in Chapter 6.

3.1.1 � Integer types

The integer types may be grouped according to the range of values that they
can store. The smallest integer types can store 8 bits (one byte), which
means that they can store 256 different values. There are two of these 8-bit
types: byte, which stores unsigned integer values between 0 and 255, and
sbyte, where the first bit is used to indicate a sign (the ‘s’ in sbyte stands
for ‘signed’). Since the sign bit leaves only 7 bits for storing the numerical
value, an sbyte can store values in the range –128 to +127.

3

The remaining integer data types all come in pairs of one signed and one
unsigned type. The 2-byte types are the short (for signed values) and the
ushort (for unsigned values). At the 4-byte level we have the ordinary int
(signed) and uint (unsigned). Finally, at the 8-byte level we have the long
(signed) and ulong (unsigned).

Notice the difference in the naming convention between the byte-sized
integers, where the unsigned version gets the common name (byte), and
the other three sizes where the signed version gets the common name
(short, int and long).

A summary of the integer types, their sizes and ranges is given in the table.

The C# compiler will attempt to match the type of a constant integer
value with its context. For example, consider the assignment:

int x = 2147483647;

This assigns the maximum value for an int to the int variable x. In this
case, the constant 2147483647 is interpreted as an int. However, suppose
we make x a long:

long x = 2147483647;

Now the constant value is interpreted as a long.

30 From Java to C#

Data type Size (bytes) Value range

byte 1 0 to 255
sbyte 1 –128 to 127
short 2 –32768 to 32767
ushort 2 0 to 65535
int 4 –2147483648 to 2147483647
uint 4 0 to 4294967295
long 8 –9223372036854775808 to

9223372036854775807
ulong 8 0 to 18446744073709551615

C# vs Java

The byte data type in C# is unsigned, while the byte in Java is signed. This
means that the range of a Java byte is –128 to 127, which is the same as the
sbyte in C#.

In C#, an integer constant can be forced into a particular type by append-
ing a ‘U’ to make it unsigned, an ‘L’ to make it long, or a combined ‘UL’ to
make it ulong. The actual value of the constant must, of course, match the
data type we are attempting to force on it. Thus,

ulong x = 42UL;

would be fine, but

ulong y = -42UL;

would not, since a negative number cannot be unsigned.

3.1.2 � Data type conversion

C# will convert any integer value to an int unless that value is outside the
range of the int data type. This can give rise to some perplexing compiler
errors. For example, the following code looks perfectly fine:

short x = 42;

short y = x + 1;

The compiler, however, complains that we ‘Cannot implicitly convert
type “int” to “short’’. The problem is that although x was declared as a
short, the ‘1’ in the expression x + 1 on the second line is taken as an int
constant, which forces the result of the addition to be an int, not a short.
Since an int has a greater range than a short, there is the possibility that
the int value won’t fit into a short variable, so the compiler complains that
we can’t implicitly assign an int to a short.

However, if we try making y a long instead, there is no problem:

short x = 42;

long y = x + 1;

We see that the C# compiler will automatically convert an int to a long.
Conversions from a type (such as int) with a greater range to a type (such
as short) with a smaller range are possible in C#, but require the use of
casts, which we will consider later.

Data, expressions and statements 31

C# vs Java

The Java compiler is not quite as adaptable. Any constant integer value is inter-
preted as an int, so that a statement such as

long x = 9223372036854775807; // Won't compile in Java

will result in a compiler error stating that the integer value is too large. In Java,
you must force a constant to be long by adding an ‘L’ after the value:

long x = 9223372036854775807L; // Will compile

The C# compiler will automatically convert any data type to another data
type if the second data type can absorb the first data type without any loss
of data. Thus, since an int can contain any short value, converting from
short to int is automatic, but the reverse conversion, from int to short,
is not, since not all int values will fit into a short.

Note that the compiler does not work out the actual values of the variables
involved – it simply applies the rules blindly according to the data types.

3.2 ■ Data overflow and the checked keyword

If we try to assign a value to an integer type outside the range of that type,
we can get some rather odd results. For example, consider the code:

int x = 2147483647;
int y = x + 1;
Console.WriteLine("x = " + x + "; x + 1 = " + y);

The first int is initialized to the maximum value for an int, and then y
is initialized to one more than this. The third line prints out the values:

x = 2147483647; x + 1 = -2147483648

Obviously the second value is not correct, because we have exceeded the
range of the int data type. (To understand why we get the actual value we
do, we would need to analyze the binary representation of an int, but we
won’t get into that now.) Clearly, no bounds checking is occurring here and,
since no errors were flagged up at either compilation or during the running
of the program, this sort of error could have serious consequences if the
overflow happened at some point deep within a complex calculation. We
may or may not spot the fact that the final answer is wrong, and if we did
spot it, it could take a lot of effort to find out where the bug lies.

Fortunately, C# offers a solution to this problem with the checked key-
word. Any code enclosed within a checked block is checked for overflow
when the program runs. We can therefore rewrite the above code as:

int x = 2147483647;
int y;
checked
{

y = x + 1;
}
Console.WriteLine("x = " + x + "; x + 1 = " + y);

32 From Java to C#

Key point

The C# compiler will automatically convert a numerical data type to a more
general type if required by an assignment operation.

This code will compile without errors, since checked only catches over-
flows at runtime. When we run the program, we get an error message stating:

Unhandled Exception: System.OverflowException:

Arithmetic operation resulted in an overflow.

The line number in the source code producing the error is also given.
Clearly, if we have a lot of areas in the code which are prone to overflow,

it can be tedious having to enclose all these areas in checked blocks, so the
C# compiler has a command switch that allows us to enable overflow check-
ing for the entire project. If we are using the command-line version of the
compiler (the csc command), global checking can be enabled by adding the
option /checked in the command line. If we are using Visual Studio .NET,
checking can be enabled by selecting the View menu, then ‘Solution
Explorer’. This should display the Solution Explorer within the Visual Studio
.NET window. Right-click on the project node within Solution Explorer and
select Properties from the popup menu. Within the Properties dialog box,
open the ‘Configuration Properties’ folder and then select the ‘Build’ item.
Finally, set ‘Check for Arithmetic Overflow/Underflow’ to ‘true’.

If we enable global overflow checking, we can remove the checked block
from the code above and run it again. We should still get the error message
since now the entire program acts as if it were enclosed with a checked
block. (If global checking is enabled and for some reason we want some por-
tion of the code not to be checked, there is an unchecked keyword which
can be used in the same way as the checked keyword above to define blocks
of code where overflow checking should not take place.)

3.3 ■ Floating-point types

C# provides two traditional floating-point data types: float and double.
These two types are the same as the corresponding types in Java, but it will
still be worth summarizing their properties (see table below).

Data, expressions and statements 33

Key point

Overflow checking can be enabled in C# by enclosing code within a checked
block. Checking can be enabled for an entire project by setting the /checked
option in the command line for the compiler. There is no analogous feature
in Java.

Data type Size (bytes) Value range Significant figures

float 4 ±1.5 × 10–45 to ±3.4 × 1038 7
double 8 ±5.0 × 10–324 to ±1.7 × 10308 15 or 16

Floating-point constants are always assumed to be doubles by the C#
compiler. This can cause unexpected compilation errors, with statements
such as:

float x;

x = 3.14; // Will not compile

producing an error that ‘Literal of type double cannot be implicitly convert-
ed to type “float”; use an “F” suffix to create a literal of this type.’ The error
message also provides the solution: use an ‘F’ suffix after the 3.14 to specify
that the constant is a float rather than a double:

float x;

x = 3.14F; // 3.14 is now a float

This problem and its solution are common to both C# and Java.
Another common problem with both the float and double types is

round-off error. These two data types store their values in binary form, not
decimal. This is achieved by separating the value into two parts: a mantis-
sa (fractional part) and an exponent. In decimal form a number such as
0.345 × 1045 has a mantissa of 0.345 and an exponent of 45. To store this
number as a float, it must be converted to binary, which involves calcu-
lating a mantissa (a fractional binary value) and an exponent that is a power
of 2 rather than 10. Not all decimal numbers can be converted to binary
exactly, given the limited number of bits available, so when the binary rep-
resentation is converted back to decimal, the result may not be exactly
equal to the original decimal value.

To see this effect, consider the simple loop shown:

float x;

for (x = 1.0F; x < 2.0F; x += 0.01F)

Console.WriteLine(x);

We declare x as a float, and use the loop to print out the values 1.0, 1.01,
1.02, … up to 1.99. At least those are the values that should be printed if all
the arithmetic is done exactly. In fact, what we see looks correct up to 1.52,
but the next line shows the value 1.529999 instead of 1.53. This is the result
of cumulative rounding errors introduced over the preceding 52 additions,
since the value of 0.01 is not represented precisely in binary.

The double type has greater accuracy, but does not eliminate this prob-
lem – in fact, in the above example it actually makes things worse. If we
declare x as a double instead of a float, the very first value after 1.0 that
is printed is 1.00999999977648 rather than 1.01. Why does the lower pre-
cision float give better results than the higher precision double?

The answer is that it actually doesn’t – it just appears to since the binary
value is rounded off to produce the decimal output. A float can hold only
7 significant (decimal) figures, so if we take the 1.00999999977648 pro-
duced by the double arithmetic and round it off to these 7 figures, we do
indeed get 1.01. The float gets the exact answer in this case, but for many
other calculations it will not.

34 From Java to C#

3.4 ■ The decimal type

C# introduces a new data type that provides a solution to the round-off error
problems inherent in the float and double data types. The decimal type
uses 16 bytes, twice that of a double, and provides up to 28 significant fig-
ures of accuracy. A decimal is, as its name implies, stored in decimal rather
than binary form, so that a number like 345.12389123 is stored as the inte-
ger 34512389123 and an extra value indicating where the decimal point
should be inserted (in this case, after the third digit). Since integers do not
suffer from round-off error (any integer value within the range of one of the
integer data types is always represented exactly), the decimal type always
represents its values precisely.

The main drawbacks of the decimal are that it uses up a lot of memory
(twice as much as a double) and due to the method by which it stores its
value, the range of values that it can store is much more limited than either
of the traditional floating-point data types (see table below).

A common use of the decimal is in currency calculations where absolute
accuracy is often required, and the range of values is more limited than in
many other scientific calculations. If we use only two decimal places (to rep-
resent pence or cents, for example), we still have 26 significant figures that
can be used for the pounds or dollars part of the amount. Such a value is
many orders of magnitude larger than the fortunes of even the wealthiest
software company executives.

A floating-point number can be specified as decimal by adding an ‘M’ (for
‘money’?) as a suffix. For example, we can rewrite the simple loop above
using a decimal as:

decimal d;

for (d = 1.0M; d < 2.0M; d += 0.01M)

Console.WriteLine(d);

In this case, all values are printed exactly, with no round-off error.

Data, expressions and statements 35

Data type Size (bytes) Value range Significant figures

decimal 16 ±1.0 × 10–28 to ±7.9 × 1028 28

Key point

A decimal allows a floating-point value to be represented exactly, without
round-off error. It is frequently used to represent currency amounts.

3.5 ■ The bool (Boolean) type

C# provides a dedicated Boolean data type bool for representing true and
false values. The bool type is the only data type which may be allowed to
represent a conditional value within statements such as if, and as a termi-
nation condition within loops such as for and while. A bool may not be
converted into any other data type.

Comparison operators such as ==, >, < and so on all return bool values
as results.

Readers who have used C or C++ where any numerical zero value is inter-
preted as false and any non-zero value as true should note that attempt-
ing to use an int or float in place of a bool in C# will not work – the com-
piler will generate an error (the same is true in Java, so Java programmers
should already be used to this behaviour).

3.6 ■ The char (character) type

The final primitive data type available in C# is the char, which is used for
storing single characters.

Older character data types in languages such as C and C++ only required
a single byte, since the only character sets that were widely recognized were
those that were restricted to the characters used in English text. The most
commonly used character set was the ASCII set, which consists of 128 stan-
dard single-byte codes representing the characters on a standard English-
language keyboard. The other 128 characters available in a one-byte char-
acter type were used for various symbols depending on the application.
Some systems used a set of simple graphics characters, while other systems
used mathematical symbols or non-English alphabets.

Now that computer use has spread to most areas of the world, an expand-
ed character set is needed, so that symbols from most human languages,
along with other specialist symbols, can be represented. The Unicode sys-
tem uses two-byte characters, which allows for 65,536 different characters.
The first 128 Unicode characters are identical to the 128 standard ASCII
characters. The other Unicode symbols are used for non-English alphabets
such as Greek, Arabic, Hebrew and Cyrillic (Russian). Several thousand
Chinese and Japanese characters are also represented, along with technical
symbols from areas such as mathematics, music and astronomy.

36 From Java to C#

C# vs Java

The C# bool type is equivalent to Java’s boolean type.

The official web site for the Unicode system is www.unicode.org, which
also contains tables listing all the symbols currently in use, and news about
the addition of further symbols to the standard.

Of course, in order for us to make use of all these Unicode characters, we
must have access to a font that contains them. Most of the standard Windows
textual fonts such as Times New Roman and Arial contain the more common
international alphabets, but special fonts are needed for many Asian lan-
guages such as Chinese. Under Windows, you can check to see which char-
acters a given font supports by using the charmap program, which can be run
from a command prompt (in a console window) or using the Run command
in the Start menu by typing the command ‘charmap’.

A char constant can be specified by enclosing a character within single
quotes, as in:

char capA = 'A';

There are several special characters that are represented by using the
backslash (\) as an escape character, indicating that the character following
the backslash should be interpreted in a special way. All whitespace char-
acters except the single blank are represented as escaped characters. (A
whitespace character is one that doesn’t produce a visible mark on the
screen, but which moves the cursor along a certain distance. Typical white-
space characters are the tab, backspace, newline and carriage return.)

The escaped characters are shown in the following table:

The escaped double quote is not really needed, since the double quote
character " may be used on its own as a character constant, as in:

char doubleQuote = '"';

The non-printing characters (from Null to Vertical tab in the table above)
will not produce the same effect in all situations, so some experimentation
may be needed to see what they do in your particular application. In par-
ticular, in some applications, it is necessary to combine a carriage return
with a newline to move the cursor to the beginning of the next line.

Data, expressions and statements 37

Character Escape sequence

Single quote \'
Double quote \"
Backslash \\
Null \0
Alert \a
Backspace \b
Form feed \f
Newline \n
Carriage return \r
Tab \t
Vertical tab \v

If the font supports it, any Unicode character may be used in a char con-
stant by using the four-digit escaped Unicode notation. The code for any
character can be obtained from the Unicode web site given above, or from
the charmap program under Windows. The code must be in hexadecimal.

For example, if we look up the code for ‘A’ in charmap, we find it has a
hex value of 41 (65 in decimal). We can then assign a char variable the value
‘A’ using Unicode notation:

char capA = '\u0041';

Note that if we use Unicode notation, the numerical code must always
contain 4 digits, even if the first couple of digits are 0. If we try:

char capA = '\u41'; // Won't compile

we will get a compiler error of ‘Unrecognized escape sequence’.
Alternatively, we can use a pure hex number without the leading zeros:

char hexA = '\x41';

or a decimal integer, if we use an explicit cast to convert it to a char (we’ll
consider casting later in this chapter):

char decA = (char)65;

Note that in the latter case, we don’t need quotes around the value.

3.7 ■ Strings

Although C#, like Java, contains a special class for handling strings, it makes
sense to consider strings at this point since they are treated almost like
primitive data types in C#.

The String class is part of the System namespace (just like Console), but
it is more usual to use the string (lowercase ‘s’) C# keyword to declare a
string variable, as it is just an alias for the String class and is easier to use,
since no reference to the System namespace (or using statement) is required.

A string can be initialized to a constant value by enclosing the text in
double quotes, as in:

string text = "This is a C# string.";

The Console.WriteLine() method takes a string as a parameter, so a
string can be written to the console as follows:

Console.WriteLine(text);

The String class contains a number of methods that allow strings to be
compared and combined, or which allow various other searches and extrac-
tion operations to be done. You should browse through the MSDN docu-
mentation for String to see what is available – most of the methods have
code examples provided so you can see what they do. We will use some of
these methods in sample programs throughout the book as well.

38 From Java to C#

It is also possible to join (concatenate) two or more strings using the +
operator. For example, we can write:

string start = "This is the start,";

string end = " and this is the end.";

string sentence = start + end;

Console.WriteLine(sentence);

This produces the output:

This is the start, and this is the end.

The += operator, which we will meet below for arithmetic operations, may
also be used to join a new string onto the end of an existing one. For exam-
ple, this code has the same effect as the previous example:

string start = "This is the start,";

string end = " and this is the end.";

string sentence = start;

sentence += end;

Console.WriteLine(sentence);

The + and += operators also allow numerical data types to be appended to
strings without any special method calls or casting. For example, we could say:

int meaning = 42;
string result = "The meaning of the universe is " + meaning;

This produces the text ‘The meaning of the universe is 42’ in result.
An important point about string variables is that they are immutable,

meaning that once a string object has been created and initialized, it can-
not be changed. This may seem silly, since in the last example it appears
that we have changed sentence by appending end onto it. In fact, any oper-
ator or method that seems to be changing an existing string object is cre-
ating a brand new string with the new value. Thus, the statement sentence
+= end actually produces a brand new string containing sentence joined
onto end and then sets sentence to refer to this new string.

Special characters such as newlines and tabs can be inserted into a
string by using the backslash character \ as an escape character. For
example, if we wanted to write two lines of text, we could say:

string twoLines = "The first line\nand the second line";

The \n is a newline character and separates the string into two lines. A
tab can be inserted using \t. To insert a backslash as a character in its own
right, write a double backslash, as is commonly used in specifying a full path
to a file name:

string fileName = "C:\\Windows\\System32\\AFile.exe";

Data, expressions and statements 39

Since specifying full file paths is fairly common in programs, C# provides
a shorthand way of writing a string which allows a backslash to be treated
as an ordinary character and not as an escape character. If the string is pre-
fixed with the @ character, all backslashes are treated as regular text. Thus
the file path above could be written as:

string fileName = @"C:\Windows\System32\AFile.exe";

3.8 ■ String formatting

The Console.WriteLine() method, as we have already seen, takes a single
string as its parameter. For most uses of this method, this is all we need to
know, since we can build up a string from other strings, the ToString()
methods of any objects, and numerical values can be appended to strings
with the + and += operators.

However, in some cases, more precise control over the format of a string
is needed, and C# provides a rich vocabulary of formatting syntax. A com-
plete description of string formatting can be found in the MSDN documen-
tation under ‘string formatting’, but a few examples will be useful here.

First, we can describe the placeholder syntax in the Console.WriteLine()
and Console.Write() methods (C programmers will find this reminiscent of
placeholders in C’s printf() function). Rather than creating a single string
for display in WriteLine(), we can use a series of numeric indexes embedded
within constant text and then list the variables whose values we wish inserted
at the indexed places. For example:

int x = 45;

double pi = 3.14159, absZero = -273.15;

Console.WriteLine("The value is {0} and pi is {1}", x, pi);

Here we have defined a few numerical values and then printed two of
them. The WriteLine() call contains three parameters: the first is a string
that contains a couple of placeholders, and the remaining two parameters
are the values that are to be inserted into the places indicated.

A placeholder in WriteLine() is an integer enclosed within braces, such
as {0} and {1}. As we will see in a minute, a placeholder can contain infor-
mation on the type and formatting of the output as well, but the bare place-
holders used here cause each value to be printed in its default format. The
output from this line is:

The value is 45 and pi is 3.14159

There are a large number of different formatting options, so we’ll consid-
er just a few of them here to give an idea of what’s possible. Here are a few
more WriteLine() calls using various formatting codes:

40 From Java to C#

Console.WriteLine(

"The value is {0:d7} and pi is {1:f3}", x, pi);

Console.WriteLine(

"You owe me {0:c} and absolute zero is {1:e3}",

x, absZero);

Console.WriteLine();

Console.WriteLine("It is now " + DateTime.Now);

Console.WriteLine("Today's date: " +

DateTime.Now.ToString("M"));

Console.WriteLine("The time now is " +

DateTime.Now.ToString("T"));

Using the variables defined above, the output from this code is:

The value is 0000045 and pi is 3.142

You owe me £45.00 and absolute zero is -2.732e+002

It is now 23/04/2003 17:40:49

Today's date: 23 April

The time now is 17:40:49

A formatting code has the form of a single letter followed by a one- or two-
digit integer. The letter determines the general format of the output and the
number determines the precision. For example, ‘d7’ indicates decimal format
with seven digits displayed. If the number being formatted is less than seven
digits, leading zeros are inserted to make up the space. The ‘f3’ code indicates
floating point with three decimal places displayed. If the number contains
more than three places, it is rounded to three.

The ‘c’ code indicates currency, so the output will depend on the curren-
cy settings on your computer. Since I live in Scotland, currency is displayed
using the pound sign (£), but in North America, for example, the dollar sign
would be used. The currency code does allow a precision value as well –
omitting it as we have done here means that just whole pounds are dis-
played, without any pence.

The ‘e3’ code uses exponential format with the precision value indicating
how many digits to use in the exponent.

After printing a blank line (produced by calling WriteLine() with no
parameters), we illustrate a few ways of printing the date and time.
DateTime is actually a struct (which we will consider later, but it is similar
to a class in some ways) which contains properties giving the day, month,
year, hour, minute and second of a given date and time. Its Now property
returns a DateTime containing the date and time when the property was
called (so its accuracy depends on the computer’s clock). The first
WriteLine() just displays DateTime.Now in its default form, which will
depend on the settings for date and time you have installed on your com-
puter. In Britain, we use the day/month/year notation while in the USA the
notation is month/day/year.

Data, expressions and statements 41

There are many ways of formatting dates and times – see the documen-
tation for the DateTime structure for details. A couple are shown in the sam-
ple code above.

Rather than using placeholders in the WriteLine() string, we have used
DateTime’s ToString() method, but with a parameter. The value of the
parameter determines the format used to display the date and time. An ‘M’
means that only the day and the month should be displayed, while ‘T’ displays
only the time (without the date). Explore the documentation for more details.

3.9 ■ Regular expressions

For completeness in our discussion of strings, we will include here a brief
description of C#’s facilities for handling regular expressions. A regular
expression is a definition of a set of possible string patterns that can match
part or all of another string, and is most commonly used in code that must
search through some text for a particular string pattern.

Regular expressions make use of many special characters to define the
string pattern to be matched. We will restrict this discussion to fairly basic
patterns, since a full treatment is a subject in its own right. The MSDN doc-
umentation has a more complete description of regular expressions, and
there are many other sources in textbooks and on the web.

A regular expression is just a string itself, but the string contains a ‘code’
that specifies the pattern that should be matched in the source text. In a reg-
ular expression, an alphanumeric character (a letter or a number) matches
itself, but most punctuation and other symbols have special meanings. The
most common of these symbols are the asterisk *, the plus sign + and the
question mark ?.

An asterisk means that any number (from zero upwards) of the immedi-
ately preceding character or regular expression may occur. For example, if
we wanted to search for all numbers that are powers of 10 in a list of num-
bers, we would like to match 1, 10, 100, 1000, and so on. The regular
expression that would match this is 10*, since the 1 will match a single
occurrence of the digit ‘1’ and the * after the 0 indicates that we accept zero
or more ‘0’ characters.

The + symbol is similar to * except that it matches one or more (rather
than zero or more) occurrences. The ? symbol matches exactly 0 or 1
occurrence of the preceding character. Thus, 10+ matches 10, 100, 1000, …
but not just 1 on its own. The expression 10? matches only 1 and 10.

Another useful expression is that for specifying a range or set of charac-
ters that can be matched. The range of characters is placed inside square
brackets. For example, the expression b[eaiu]d matches the words ‘bed’,
‘bad’, ‘bid’ and ‘bud’. The set of characters inside the brackets acts as a unit
for the purposes of the quantifier characters *, + and ?, so we can say
b[eaiu]*d, which matches any string that begins with a ‘b’, ends with a ‘d’
and contains any number of e, a, i or u in between, such as ‘bd’, ‘bed’, or
‘beauiauiueeed’.

42 From Java to C#

A range of characters can be specified by giving the first and last charac-
ter separated by a hyphen, as in [a-z], which matches any lowercase letter
or [a-zA-Z], which matches any upper- or lowercase letter. Thus a string of
length at least one character that contains nothing but letters can be speci-
fied by [a-zA-Z]+.

Finally, a useful pair of symbols is ^ which indicates that the string must
begin with the pattern, and $ which indicates that the string must end with
the pattern. For example, ^[0-9]+$ means that the string must begin with
a number and end with a number. (The pattern [0-9]+ on its own would
match a string that contained a sequence of numbers anywhere within it.)

There are many other symbols and rules that can be used in regular
expressions, but these should be enough to get you started.

A regular expression can be defined and used to match other strings by
using C#’s Regex class. In the simplest case, a Regex object can be created by
passing the regular expression string as the parameter in the constructor, and
then the IsMatch() method used to match against the target string. For exam-
ple, the following code reads in a string and then tests first to see if the string
consists only of numerical characters and, if so, whether it is a power of 10:

Console.Write("Enter a number: ");

string number = Console.ReadLine();

string regExp = "^[0-9]+$";

Regex numberExp = new Regex(regExp);

if (numberExp.IsMatch(number))

{

Console.WriteLine("That is a number");

string power10 = "^10*$";

Regex power10Exp = new Regex(power10);

if (power10Exp.IsMatch(number))

Console.WriteLine(" -- and it’s a power of 10");

}

else

Console.WriteLine("That is not a number");

After reading the string into number, we construct regExp to test if the
string contains only numbers. A Regex is created using this pattern, and
then IsMatch() is used to test number to see if it matches this pattern. If it
does, the string is tested again, this time against the expression ^10*$ which
identifies powers of 10.

Regex has many other methods which allow various types of matching
between regular expressions and strings, so consult the documentation for
details and some more examples.

Data, expressions and statements 43

C# vs Java

As of version 1.4, Java also provides support for regular expressions.

3.10 ■ Implicit type conversions

We mentioned above when discussing the integer data types that C# will per-
form several implicit data conversions (in assignment statements, for exam-
ple) automatically, provided that the conversion does not lose any data.

For example, we can write:

short smallInt = 234;
int largerInt = smallInt;

Since the int type can hold all values within the range of a short, this
implicit conversion cannot lose any data, so it is performed automatically by
the compiler.

This general rule applies to implicit type conversions between all pairs of C#
data types – if the range of the data type of the source variable (that is, the vari-
able that is to be converted) fits inside the range of the destination variable, the
conversion will be done, otherwise, the compiler will flag an error. This rule also
allows integer types to be converted to floating-point types implicitly.

The complete list of implicit data conversions performed by the C# com-
piler is shown in Table 3.1. We have included a ‘conversion’ from a data type
to itself in the table even though technically no conversion takes place so
that you may use the table to see which data types may be assigned auto-
matically to which other data types.

44 From Java to C#

Key point

Implicit type conversions can only be used to convert a less general data type
into a more general one.

Table 3.1 The C# compiler will implicitly convert a data type listed in the first col-
umn to any other data type marked with an ‘x’ on that row

byte x x x x x x x x x x
sbyte x x x x x x x
short x x x x x x
ushort x x x x x x x x
int x x x x x
uint x x x x x x
long x x x x
ulong x x x x
float x x
double x
decimal x
bool x
char x x x x x x x x x

b
yt

e

sb
yt

e

sh
o

rt

u
sh

o
rt

in
t

u
in

t

lo
n

g

u
lo

n
g

fl
o

at

d
o

u
b

le

d
ec

im
al

b
o

o
l

ch
ar

Most of these conversions are straightforward applications of the rule
given above. For example, a float will be converted to a double but not a
decimal, since the range of float values fits within the range of double val-
ues, but not within the range of decimal values.

However, if the rule for implicit conversion is that no data should be lost
in the conversion, some of these conversions may give cause for concern.
For example, the compiler will convert a long to a float, even though a
float can store only 7 significant figures while a long can store up to 19
digits, so for large long values, some precision will be lost, although the
value stored in the float will be a correctly rounded copy of the long.

Conversely, although the decimal type’s range is less than that of a
float, an implicit conversion from decimal to float is not allowed by the
compiler, presumably because the whole point of using a decimal is to elim-
inate round-off error.

3.11 ■ Explicit type conversions – casting

In some cases where the compiler will not implicitly convert data from one
type to another, we can still force it to do so by applying an explicit conver-
sion, commonly called a cast. To apply a cast to a variable, simply place the
data type (within parentheses) to which the variable is to be converted in
front of the variable name.

For example, to convert a long to an int (something that cannot be done
implicitly, since data could be lost if the value of the long is outside the
range of an int), we can write:

long x = 1234;

int y = (int)x;

Any numeric data type can be cast into any other numeric data type,
even if the conversion actually will cause data to be lost. This is always a
danger with an explicit cast, so you should use them sparingly and with
care, and only do so if there is no other way around the problem.

For example, we can modify the earlier example by setting the initial
long variable x to a value outside the range of an int:

long x = 12345678900;

int y = (int)x;

Data, expressions and statements 45

Key point

An explicit cast can be used to force one data type into another, but data could
be lost in the process.

This code will still compile without errors, but since the value stored in x
won’t fit into an int, what actually does get stored in y? The answer is
–539222988. The problem is that to convert a long to an int, the four high-
order bytes in the long are simply discarded. This is fine if they are all filled
with zeros, which will be true if the value stored in the long is within the
range of an int, as it was in the first example. But if the value is too large,
data will be lost and no warning of this will be given by the compiler.

Fortunately, the checked feature described earlier can be used to detect
overflow problems when an incorrect cast is used. We can put the offending
statement within a checked block as before:

long x;

int y;

checked

{

x = 12345678900;

y = (int)x;

}

This code will still compile, but a runtime error will be generated by the
cast statement.

The checked keyword can also be used locally by using parentheses rather
than braces to enclose the operation that is to be checked for overflow:

long x = 12345678900;

int y = checked((int)x);

Casts may be used to convert floating-point values to integers, but this
results in the fractional part of the float or double being lost. For example:

double x = 3.1415;

int y = (int)x;

Here, y will contain the value 3.
For the purposes of casting, a char is considered to be a numerical data

type with a value given by the Unicode value for the character. In this con-
text, a char is essentially the same as a ushort, since it contains 2 bytes and
is unsigned. For example, we can write:

float x = 65.723423F;

char c = (char)x;

46 From Java to C#

Key point

The checked keyword can be used to detect overflows when an explicit cast is used.

Here, the cast truncates x to produce a ushort integer (65), which is then
stored in the char. If printed out, c has the value ‘A’, since the Unicode (or
ASCII) for ‘A’ is 65.

Finally, remember that the bool type can never take part in a cast with a
numeric type, in either direction. The bool is not considered to be a numer-
ic type – its possible values are always just true and false, which have no
numeric value.

The last word on casting is to use common sense – if you attempt to cast
one variable into another, make sure that the destination variable can han-
dle the value you are forcing onto it. If in doubt, enclose the cast in a
checked block to catch any overflows.

3.12 ■ Operators

Programming novices often get confused by operators, since many introduct-
ory courses and textbooks tend to treat individual operators as distinct topics.

In fact, a more unified approach to operators should reduce the confusion.
An operator is a symbol or keyword which can be applied to one or more
operands to produce a result. For example, the + operator takes two numer-
ic operands, and produces a result which is the sum of these two numbers.

An operator can be classified according to the number of operands it
requires. In C# (and Java), all operators require at least one operand, and
none accepts more than three. An operator that takes a single operand is
called a unary operator. The minus sign can be used as a unary operator
whose purpose is to reverse the sign of a numeric quantity. For example:

int x = 34;

int y = -x;

The – operator here has x as its single operand, and returns the value -34
as its result.

Operators taking two operands are called binary, and an operator (there
is only one in C# and Java) taking three operands is called ternary.

Data, expressions and statements 47

Key point

bool can never be cast into another data type.

Key point

An operator takes one, two or three operands and always returns a result.

C#’s operator set is almost identical to that of Java, so readers should be
familiar with most of their functions. It will still be helpful to list the prop-
erties of the operators available in C#. Since C# is strict in its type-check-
ing, it is important to remember that certain operators accept only certain
types of operands. Table 3.2 lists the C# operators, giving the number of
operands each one takes, the types of valid operands and return values, and
a brief description of what the operator does. For the purposes of this table,
a ‘Numeric’ operand is any of the numeric primitive data types (including
char), and an ‘Integer’ operand is any of the integer primitive types (again
including char).

48 From Java to C#

Table 3.2 C# operators

Symbol No. of operands Operand type Return type Effect

+ 1 Numeric Numeric Returns value
– 1 Numeric Numeric Negation
+ 2 Numeric Numeric Addition
+ 2 string/any string String concatenation
– 2 Numeric Numeric Subtraction
* 2 Numeric Numeric Multiplication
/ 2 Numeric Numeric Division
% 2 Numeric Numeric Modulus
++ 1 Numeric Numeric Increment
–– 1 Numeric Numeric Decrement
& 2 Integer, bool Integer, bool Bitwise AND
| 2 Integer, bool Integer, bool Bitwise OR
^ 2 Integer, bool Integer, bool Bitwise XOR
~ 1 Integer, bool Integer, bool Bitwise NOT
&& 2 bool bool Logical AND
|| 2 bool bool Logical OR
! 1 bool bool Logical NOT
<< 2 Integer Integer Bit shift left
>> 2 Integer Integer Bit shift right
== 2 All bool Equality test
!= 2 All bool Inequality test
> 2 Numeric bool Greater than
< 2 Numeric bool Less than
>= 2 Numeric bool Greater or equal to
<= 2 Numeric bool Less or equal to
= 2 All Type assigned Assignment
+= –=
*= /=
%= &= 2 As first part of Type assigned Combination of first
|= ^= operator operation and
<<= assignment
>>=
?: 3 bool /all/all All Conditional operator

Table 3.2 lists all the operators that may be used with primitive data
types. There are several other operators that are used only with compound
data types such as classes or arrays. We will meet these when we study the
associated data types.

Although many of the operators have obvious effects, a few comments
about how some of them work may be helpful.

The effect of some of the operators depends on their context. For example,
the + operator can occur as a unary operator, in which case it has no effect
other than to return the value of its operand. That is, the following code will
give the same result whether or not we use the + operator in front of x:

int x = 34;

int y = +x;

Used as a binary operator where both its parameters are numeric, the +
operator adds together the two numbers and returns the sum as a result.
Although this seems straightforward enough, there are a few things to
beware of even here. If the two numeric parameters are of different types,
such as an int and a float, the operand whose data type has the smaller
range of values will be implicitly converted into the other operand type
before the addition is performed, and the result will also be an instance of
the data type with the larger range. Thus adding an int to a float will result
in a float sum, and so on.

There is, however, an exception to this rule: adding two integers will
always produce an int if both the operands have data types that are short-
er than int (that is, they are char, byte, sbyte, short or ushort). For
example, adding together two shorts will produce an int result. This can
produce some unexpected compiler errors, as in the following code:

short x = 34, y = 56;

short z = x + y;

The compiler will complain that we ‘Cannot implicitly convert type “int”
to “short”, because even though x and y are both shorts, the value returned
by the + operator as their sum is an int and we cannot assign an int direct-
ly to another short, z in this case. We can, of course, force the issue by cast-
ing the result of the sum:

short x = 34, y = 56;

short z = (short)(x + y);

Data, expressions and statements 49

Key point

Adding two short integers always returns an int result.

Finally, the + operator can be used as a string concatenation operator if
at least one of its operands is of type string. Any other primitive data type
can be inserted into a string by joining it to an existing string using the +
operator. This is handy for constructing strings for output in WriteLine()
calls. For example:

int x = 42;

string message = "The value of x is " + x;

Console.WriteLine(message);

Before leaving integer arithmetic, we must mention the ‘integer division pit-
fall’ which can still bite even experienced programmers. Remember that any
arithmetic operator will always return an integer result if both its operands are
integers. For addition, subtraction and multiplication this is not a problem,
since the results of these operations are always integers anyway, but for divi-
sion this can cause serious bugs. For example:

int x = 3, y = 4;

int z = x / y;

Console.WriteLine("z = " + z);

The output will be ‘z = 0’ since the division in the second line will trun-
cate the result to the integer portion, discarding any fractional part. There
is nothing in the C# language that can prevent us from making such an
error, since we are not exceeding any ranges of data types or dividing by
zero or doing any other illegal operation. In some cases, we just have to be
careful!

The modulus operator % applies to numeric data types, and returns the
remainder after its left operand is divided by its right. For example, the
expression 53 % 7 will return a value of 4 since 53 divided by 7 gives 7 with
a remainder of 4. Note that the modulus operator also works with float and
double operands, so that for example, 5.5 % 2.2 returns 1.1, since 5.5 is
2*2.2 + 1.1.

3.12.1 � Increment and decrement

The increment (++) and decrement (--) operators often give rise to confu-
sion because they can be used in two ways: as a prefix (coming before their
operand) or as a suffix (after the operand). In both cases, the effect each
operator has on its operand is the same; what differs is the return value of the
operator. The ++ operator always adds 1 to its operand, and the -- operator

50 From Java to C#

Key point

Division of two integers always returns an integer result. Any fractional part in
the quotient is discarded.

always subtracts 1. If the return value from the operator is ignored, then
there is no difference between the prefix and suffix versions. For example,
the following code results in both x and y storing the value 43:

int x = 42;

int y;

x++;

y = x;

This code does exactly the same thing:

int x = 42;

int y;

++x;

y = x;

However, the next two examples do not produce the same result. The first
example results in y being 42 and x being 43:

int x = 42;

int y = x++;

The second example results in both x and y being 43:

int x = 42;

int y = ++x;

Why the difference? Many books attempt to explain the ++ operator by
stating that in the suffix form, it doesn’t have any effect on its operand until
after the enclosing statement has finished. Besides being confusing (when,
exactly, does the value of x get changed in this case?), it is also untrue.

The ++ and -- operators are just like any other operator – they have an
effect on their operand and return a value, and both of these things happen
at the time the operator is applied, not after other operations within the
same statement.1 In the suffix form of the ++ operator, the return value is
the value of the operand before the 1 is added. In the prefix form, the return
value is the value of the operand after the 1 is added. Therefore, in the first
example above, where y = x++, x has the value 42 before the ++ operator
is applied, so the result of the operation is to increase x to 43 and return 42.
In the second example, where y = ++x, the ++ operator increases x to 43
and returns the value after the operation, so it returns 43.

Data, expressions and statements 51

1 In C and C++, it has to be admitted that this statement is not always true, since these
languages have a bizarre behaviour with respect to these operators, and the actual point
at which the value of x gets changed varies between compilers. It is actually unsafe to
attempt to modify a variable more than once within a single statement in C and C++.
C# (and Java) behaves somewhat more sensibly.

Both the increment and decrement operators may be applied to all numer-
ical types, including floating-point types.

3.12.2 � Bitwise operators

The three bitwise operators &, | and ^ apply the AND, OR and XOR (exclusive
OR) operations to each corresponding pair of bits in their two-integer or bool
operands. The unary bitwise NOT operator ~ inverts each bit in its operand.

In binary bitwise operators, because the two operands are compared on a
bit-by-bit basis, they must be the same size in memory. If we attempt to
apply a bitwise operator to integer operands of different sizes, the smaller
operand is implicitly converted into the larger data type before the operator
is applied. The extra bytes added in the conversion are all filled with zeros
if the number is zero or positive, and with ones if the number is negative.

Let us quickly review what each of these operators does. A bit, of course,
can have only two values: 0 or 1. The AND operator applied to two individ-
ual bits returns a value of 1 only if both its operand bits are 1, and 0 other-
wise. The OR operator returns 1 if either of its operands is 1, and 0 only if
both operands are zero. The XOR operator returns 1 only if exactly one of
its operands is 1 and the other is 0. XOR returns 0 if both operands have the
same value.

To predict the result of any of the bitwise operators, we need to convert
their operands into binary and then apply the operation to each pair of bits
separately. For example, consider the line:

byte x = 3 & 5;

To predict the value of x, we can write out 3 and 5 in the binary form, as
single bytes:

3 = 00000011

5 = 00000101

3 & 5 = 00000001

We can see that the result of the bitwise AND is 1.
Similarly, a bitwise OR gives a value of 00000111 or 7, and an XOR gives

00000110 or 6.
One common use of bitwise operators is to provide a way of storing infor-

mation in compact form. For example, if we have a number of binary prop-
erties (properties which have only two possible values, such as ‘yes’ and
‘no’) to set in a program, we can store the values of eight such properties
within a single byte, rather than declaring eight separate variables. We can

52 From Java to C#

Key point

The prefix form returns the value of its operand after the operation; the suffix
form returns the value of its operand before the operation.

then select the value of a single property by doing a bitwise AND with a con-
stant containing a 1 bit at the location occupied by that property. For exam-
ple, the following code snippet shows four properties that might be set in a
computer game:

1. const byte Light = 1;

2. const byte Sound = 2;

3. const byte Shadow = 4;

4. const byte Animation = 8;

5.
6. byte Properties = 0;

7. Properties = (byte)(Properties | Light);

8. Properties = (byte)(Properties | Shadow);

9.
10. if ((Properties & Light) == Light)

11. {

12. Console.WriteLine("Lights are on.");

13. }

The four properties are declared using the const keyword, which we shall
consider in more detail in Chapter 5. For now, it is enough to realize that
they define a ‘variable’ as a constant, which means that its value cannot be
changed after initialization.

Each of the four properties is assigned to a single bit within a byte vari-
able. The Light property gets the least significant bit, Sound the next bit,
and so on. The Properties variable will store the current settings of all four
of these properties (it could store up to eight properties since it has 8 bits
available). When it is declared on line 6, it is set to 0, which turns off all the
properties. On lines 7 and 8 we turn on the Light and Shadow properties by
using the bitwise OR to change the corresponding bits to 1.

We can use the bitwise AND operator to test if a property is set as shown
on line 10 (note that we need to cast the result into a byte since any binary
operator operating on small integers returns an int result). By doing a bit-
wise AND between Properties and one of the constant property bytes, in
this case Light, we mask out all the bits except the one we are interested in.

Properties = 00000101

Light = 00000001

Properties & Light = 00000001

We can see that the result of the Properties & Light operation will be
equal to Light only if the Light property has been switched on – it will be
zero otherwise.

Obviously this program is a bit of an overkill for only eight properties, but
in a larger application where there are a lot of binary properties to store it
could result in a significant space saving.

Data, expressions and statements 53

3.12.3 � Logical operators

The three logical operators are && (AND), | | (OR) and ! (NOT). They all take
only bool operands and return a bool result. The && operator returns true
only if both its operands are true, the | | operator returns true if either of its
operands is true, and the ! operator returns the opposite of its single operand.
Their most common use is within the if statement or as part of the Boolean
expression used to determine when to terminate a loop. For example:

int x = 42, y = 63;

if (x > 0 && y > 0)

{

// Perform some actions

}

If the operands of && or || are formed from comparison expressions as in
this example, note that each operand must be a complete expression. For
example, if we wanted to check that x was greater than 0 and less than 10,
we must say

if (x > 0 && x < 10) // Correct

rather than

if (x > 0 && < 10) // Wrong!

In other words, we cannot just translate an informal English expression into
computer code – each operand must be a well-defined bool value.

The && and || operators only evaluate enough of their operands to deter-
mine what the result will be. For example, since the && operator returns
false if either of its operands is false, if the left operand of && is false, the
right operand is not evaluated at all, since its value can have no effect on the
result of the && operation. Similarly, since the || operator returns true if
either of its operands is true, if the left operand is true, the right operand is
never evaluated.

Although this behaviour is more efficient, it can have an unexpected side
effect if the programmer is relying on the operator evaluating both its
operands. For example, in the expression

x > 0 || ++y < 12

if x actually is greater than zero, then the ++y operation never gets per-
formed, which could have consequences for later code.

3.12.4 � Bit shift operators

The bit shift operators << and >> are basically quick ways of multiplying or
dividing an integer by a power of 2. The left shift operator << shifts its left
operand to the left by the number of bits given in its right operand. The
empty bits opened up by the shift are filled in with zeros. For example:

54 From Java to C#

int x = 42;
int y = 42 << 3;

The value of y is 42 shifted to the left by 3 bits, which is 42 * 8 = 336. In
binary, 42 is 101010, so shifting to the left by 3 bits gives 101010000.

Similarly, shifting to the right divides by a power of 2. The empty spaces
on the left that are opened up by the shift are filled in with whatever bit was
originally in the leftmost place. For a positive integer, this value will always
be 0, but for negative numbers it will be 1.

Remember that integer division rules will be applied so that any fraction-
al part will be truncated:

int x = 42;
int y = 42 >> 3;

In this case, the value of y is 5. In binary, shifting 101010 to the right
by 3 bits gives 101, with the rightmost ‘010’ in the original binary number
being lost.

If the number to be shifted is negative, we cannot predict the result by
simply multiplying or dividing by a power of 2, since negative integers are
stored using two’s complement. We don’t want to get into the details of two’s
complement here, but if you know the notation you may wish to work out
what effect the shift operators will have on negative numbers.

3.12.5 � Equality testing operators

The tests for equality == and inequality != may be applied to all primitive
data types. They both return a bool result, and may therefore be used as
operands for the logical operators.

These operators hold no surprises for integer or decimal data types, but
should be used with care when comparing floats or doubles due to the fact
that these two data types are prone to round-off errors as we saw earlier.
Remember that two floats must be exactly equal in order for the == oper-
ator to return true. If one float has a value of 1.53 and another has a value
of 1.529999, they will not be seen as equal. When comparing floating-point
numbers it is safer to test if they both lie within a small interval, rather than
checking precise equality. For example, we might say:

if (x > y – 0.000001 && x < y + 0.000001)

rather than

if (x == y)

3.12.6 � Comparison operators

The four comparison operators <, >, <= and >= may be applied to any
numeric types. They are all binary operators and all return a bool result.
The numeric data types need not be the same for the two operands, but if
they differ, the less general data type is implicitly converted into the more
general one before the comparison is made.

Data, expressions and statements 55

3.12.7 � Assignment operator

The main assignment operator is the single equals sign =. Assignments of
primitive data types follow the rules for implicit conversion given above. If
the value on the right of the = operator is of a less general data type than the
variable on the left, an implicit conversion will take place before the assign-
ment is made. If the value on the right is more general than the variable on
the left (and no explicit cast is specified), a compiler error will occur. For
example, the following code is correct:

int x = 42;

long y;

y = x; // Implicit conversion from int to long

but reversing the roles of x and y produces an error:

long x = 42;

int y;

y = x; // Can’t convert long to int

The compiler will not accept this even though the value stored in x (42) will
fit into an int variable. In order for this code to compile, a cast is necessary:

long x = 42;

int y;

y = (int)x;

Apart from type conversion problems, the assignment operator produces
no surprises when applied to primitive data types, since it always copies the
value on the right into the variable on the left. After the assignment, the two
variables go their separate ways without interfering with each other. We will
see that when we consider objects, this is not the case, but more on that later.

Incidentally, we mentioned earlier that all operators in C# return a result,
and it may not be obvious what is returned from an assignment operation.

In fact, an assignment operator always returns the value that it assigns.
This fact means that assignment operations can be chained, as in:

int x, y, z;

z = y = x = 42;

We’ll explore this chained statement in more depth later when we con-
sider the associativity of operators.

3.12.8 � Convenience assignment operators

There are ten convenience assignment operators listed in the table above: +=,
-= and so on. Each of them is a combination of another operator with the reg-
ular assignment operator =. Taking the += operator as an example, the code:

int x = 42;

x += 12;

56 From Java to C#

is equivalent to:

int x = 42;

x = x + 12;

That is, the += operator is just a shorter way of writing something that
could be written with the other more basic operators. For simple expres-
sions such as those in the example here, it is a matter of personal taste
which way we write them. The convenience operators become most useful
when the variable involved has a long name, or is a complex chain of class
data fields or array indexes. In these cases, using a convenience operator
can save a lot of typing and make the code more readable.

All the convenience operators return the value of their left operand after
the operation. In the code above, for example, the expression x += 12

returns 54, since the value of x after 12 is added to 42 is 54.

3.12.9 � The conditional operator ?:

The final operator we shall consider at this point is the only ternary oper-
ator in C#. It is essentially a shorthand version of an if...else statement.
A conditional expression takes three operands. The first must be a bool
expression. If this expression evaluates to true, the second operand is eval-
uated and its value is returned by the conditional operator, completing the
operation. In this case, the third operand is not evaluated at all.

If the bool expression evaluates to false, the second operand is ignored
and the third operand is evaluated and returned.

The general form of the conditional operator is therefore:

(bool expression) ? (if true) : (if false)

For example:

int x = 42;

int y = (x > 0) ? (x + 3) : (x – 3);

The first operand is x > 0, which in this case returns true, so the second
operand x + 3 is evaluated and the result (45) is returned and assigned to y.
If the first operand had been x < 0, this would return false with x = 42, so
the conditional operator would evaluate its third operand x – 3, and return
a value of 39 which would then be assigned to y.

The second and third operands can return any data type, but of course
they must match the context in which the conditional operator is used. For
example, if y had been declared as a short in the example above, a compil-
er error would occur because we are attempting to assign an int to a short.

Data, expressions and statements 57

Key point

The ?: operator is equivalent to an if ... else statement.

Conditional expressions can be nested, so that either the second or third
operand (or both) could be another conditional expression. Although this
can be useful in some situations, it is not recommended as it makes the code
hard to understand.

The use of the conditional expression is really a matter of personal taste,
since the same effect can be obtained using an if...else statement. Some
programmers find the conditional expression hard to understand and never
use it, but you should be familiar with it so that you can recognize it in other
people’s code.

3.13 ■ Operator associativity

If a given binary operator occurs more than once within an expression, we
need to know the operator’s associativity to predict the final value of the
expression. For example, take the statement:

int x = 34 – 5 – 2;

To determine the value of x, we need to know which subtraction is done
first. If it is the first one, as in:

int x = (34 – 5) – 2;

the answer will be 27, but if it is the second, as in:

int x = 34 – (5 – 2);

the answer will be 31.
If a sequence of identical operators is evaluated left-to-right, the operator

is said to be left-associative, and if the evaluation proceeds from right-to-
left, the operator is right-associative.

The subtraction operator is left-associative, so that the value assigned to
x above is 27. All operators except assignment operators are in fact left-asso-
ciative, so the rules are quite easy to remember.

Assignment operators, including the ordinary = operator and all the con-
venience forms such as +=, are right-associative. It is often not realized that
the associativity of the assignment operators matters, but if we take a clos-
er look at what happens in an assignment, we will see that it is important.

Consider the simple assignment:

x = 42;

58 From Java to C#

Key point

All assignment operators are right-associative. All other binary operators are
left-associative.

We stated earlier that all operators do two things: use their operands to per-
form a calculation and return a result. The fact that the assignment oper-
ator returns a result is often forgotten, since in many programs this return
value is never used. In the simple assignment above, for example, the result
of the assignment is that the = operator returns the value that it assigns to
x, in this case 42, but this returned value is not used and is lost after the
statement finishes.

Now suppose we have two assignments in the same statement:

y = x = 42;

Since the assignment operator is right-associative, the rightmost operator
is evaluated first, resulting in 42 being assigned to x. That is, the statement
is equivalent to:

y = (x = 42);

The operation within the parentheses returns the value 42 after the
assignment to x is done, so when the second = operator gets its turn to run,
its right operand is 42, and y thus gets the value 42 assigned to it. Note that
the right operand of y is not x: it is the returned value of the first assign-
ment. If the = operator had been defined so that it did not return a value, it
could only be used once in any single expression, and expressions such as y
= x = 42 would not compile.

The convenience operators such as += work the same way. It is perfectly
legal to write code such as:

y = x = 42;

y -= x += 5;

In the second line, the += operator runs first, resulting in x becoming 47.
The += operator then returns 47 as its result, and this is used as the right
operand of the -= operator, so that the final value of y is –5.

3.14 ■ Operator precedence

As we have seen above, when several instances of the same operator occur
in the same expression, the associativity rules are used to find the order in
which they are evaluated. When several different operators occur together
in an expression, we need to use the rules of operator precedence to find the
order in which they are applied.

The simplest example of operator precedence is probably familiar to the
reader from high school algebra. In any expression containing a combina-
tion of addition, subtraction, multiplication and division, the multiplications
and divisions are done first, followed by the additions and subtractions.
For example:

x = 3 + 4 * 7 – 8 / 2;

Data, expressions and statements 59

The * and / operators have a higher precedence than + and –, so they are
done first. To find which of * and / is done first, we resort to the associativ-
ity rules, since these two operators have equal precedence. As they are left-
associative, the * is done first, then the /.

Similarly, + and – have equal precedence so we use the associativity rules
to find that the + is done first since it occurs to the left of the –. The final
order of the four operations can therefore be shown by inserting parentheses:

x = (3 + (4 * 7)) – (8 / 2);

The precedences of the operators we have met so far are shown in Table 3.3.

If you find the precedences hard to remember, it is best to enclose oper-
ations within parentheses if you want to ensure that they are done in the
correct order. Doing this also makes the code easier to read.

For example, in the expression (assuming all variables are ints):

if (x & y == w | z + 2) ...

it can be difficult to determine whether the expression will compile, and if
it does, what it will do. Referring to the precedence table above, we see that
the order in which the compiler will attempt to run the operations is:

60 From Java to C#

Table 3.3 Operator precedence

Type Operators

Unary () ++ -- + – ! ~ casts
Multiply/Divide * /

Add/Subtract + - (as binary operators)
Bit shift << >>

Comparison < > <= >=

Equality == !=

Bitwise AND &

Bitwise OR |

Bitwise XOR ^

Logical AND &&

Logical OR ||

Ternary ?:

Assignment = += –=, etc

Key point

Use parentheses to make the order of operations explicit if you cannot remember
the precedence rules.

1. z + 2

2. y == w

3. x & (y == w)

4. (x & (y == w)) | (z + 2)

If we study this list of operations, we find that the expression will not com-
pile, since in step 3, we are attempting to apply the & operator to a combi-
nation of a bool operand and an int (the y == w operation returns a bool).

What the programmer probably intended is that the == operator be run
last, which can be made explicit using parentheses:

if ((x & y) == (w | z + 2)) ...

3.15 ■ Conditional statements

C# provides the same two conditional statements as Java: if...else
and switch.

3.15.1 � The if...else statement

The if...else statement in C# is identical to its counterpart in Java. The
general structure of the statement is:

if (condition)

{

statements if value is true

}

[else

{

statements if value is false

}]

The text in italics in the structure is, of course, not actual C# code but a
description of what must be placed at that location. The square brackets
around the else clause indicate that it is optional – it is perfectly legal to
have an if statement without a following else clause. (It is, of course, not
legal to have an else without an if preceding it.)

The ‘condition’ can be any expression that returns a bool value. Typical
conditions are formed from expressions using the equality or comparison
operators such as == and >, but bool variables may also be used. Anyone
who has programmed in C or C++ should remember that numerical values
are not allowed as conditions in if statements in C# – the condition must
be a bool value.

Data, expressions and statements 61

If only a single statement is to be included within the body of an if state-
ment the enclosing braces are not required. That is, we can say:

if (x > 7)

y = x;

x += 3;

Here, the y = x statement would be run only if x > 7, but the x += 3 state-
ment will always be run.

Although this code is legal, the author prefers using braces for all if state-
ments because it avoids a common error. Frequently it is discovered while
debugging or modifying existing code that an extra line needs to be inserted
into the body of an if statement, and it is very easy to forget that braces must
also be inserted. For example, we might modify the code above as follows:

if (x > 7)

y = x;

z = x + 1;

x += 3;

The intention is that the extra z = x + 1 statement should only be run
if x > 7 (hence the reason for indenting this statement), but when the pro-
gram is run we find that it is always executed, regardless of the value of x.
The problem is that we forgot to insert the braces:

if (x > 7)

{

y = x;

z = x + 1;

}

x += 3;

Although indenting the original code makes it look to a human observer
that there are two statements within the if statement, we must remember
that indentation of code means nothing to a compiler – we could write the
entire program on a single line without even putting in any line breaks
between statements and it would still compile properly.

The else clause can be chained with further if statements to allow one
possibility to be selected from several choices. For example, we may say:

1. if (x > 7)

2. {

3. y = x;

4. z = x + 1;

5. }

6. else if (y < 0)

7. {

8. y = -x;

9. }

62 From Java to C#

10. else

11. {

12. x += 3;

13. }

14. z = 3 * x;

In this example, lines 3 and 4 are run if x > 7, after which the program
jumps to line 14. Line 8 is run only if x > 7 is false and y < 0 is true. Again,
control passes to line 14 after line 8.

Finally, if both x > 7 is false and y < 0 is false, line 12 will be run. An
else without an if immediately after it is a catchall clause which will
always be run if none of the preceding if statements was executed.

3.15.2 � The switch statement

The switch statement in C# is similar to Java’s switch statement, but there
are a couple of differences which need to be noted.

The general structure of the switch statement is:

switch (integer or string value)

{

case constant1:

statements

break;

case constant2:

statements

break;

...other cases

default:

statements

break;

}

The ‘integer or string value’ that serves as the parameter to a switch can
be any variable or expression that returns an integer value (of any of the C#
integer types, including char) or a string. The body of the switch acts like
a series of if...else statements. The first case statement tests if the value
of the switch’s parameter is equal to constant1. If so, the statements
immediately following this first case statement are executed. When the
break statement is reached, control passes out of the switch statement and
resumes with the first statement following the end of the switch.

If the first case does not produce a match between the value and
constant1, the next case statement is tested. This process continues until
either a match is found, or a default statement is encountered (if there is
one). The default acts like a catchall else clause – if control reaches a
default, then its statements will be run.

Data, expressions and statements 63

As an example, consider the following code:

int x = 42;

switch (x)

{

case 41:

Console.WriteLine("x = 41");

break;

case 42:

Console.WriteLine("x = 42");

break;

case 43:

Console.WriteLine("x = 43");

break;

default:

Console.WriteLine("x is something else");

break;

}

Since x is assigned the value 42 at the start, only the case 42 clause will
be activated. If x had been assigned 57, the default clause would be run.

Readers familiar with the Java switch statement may already have spotted
a difference between the Java and C# forms. In Java, the parameter of a switch
must be an integer – it cannot be a String. In C#, a string is allowed as a
parameter, something which experienced programmers will greatly appreciate.

The second difference between Java and C# is a bit more subtle. The Java
switch statement allows ‘fall-through’, which means that if the statements
following one of the cases don’t end with a break, all the statements in the
following case will also be run, regardless of whether the value passed into
the switch matches the constant value the second case statement is trying
to match. For example, if we take the previous C# example (which is also
valid in Java if we replace Console.WriteLine by System.out.println),
and left out the break in the case 42 clause, we would get:

int x = 42;

switch (x)

{

case 41:

Console.WriteLine("x = 41");

break;

64 From Java to C#

C# vs Java

In C#, a string may be used as the test variable; in Java, only an integer value
may be used.

case 42:
Console.WriteLine("x = 42");
// break omitted: valid in Java, but not in C#

case 43:
Console.WriteLine("x = 43");
break;

default:
Console.WriteLine("x is something else");
break;

}

In Java (if we use System.out.println to print things), the output from
this code would now be:

x = 42
x = 43

In C#, the above code would not compile, as C# requires that each non-
empty case clause must end with a break (or a goto – see section 3.18 on
goto below). The ‘non-empty’ qualification means that several case state-
ments can be grouped together so that they all execute the same code. For
example, we could alter the earlier example:

int x = 42;
switch (x)
{
case 41:
case 42:
case 43:
Console.WriteLine("41 <= x <= 43");
break;

default:
Console.WriteLine("x is something else");
break;

}

In this case, if x had any of the values 41, 42 or 43, the output would be:

41 <= x <= 43

The final point to remember about the switch statement is that the
parameters used in each case clause must be constants, not variables or
expressions containing variables. In the examples so far, we have used liter-
al values such as 42 as case parameters, but we may also define a symbol to
represent a constant using the const keyword:

Data, expressions and statements 65

Key point

Any non-empty case clause must end with a break.

const int FirstValue = 41;

int x = 42;

switch (x)

{

case FirstValue:

Console.WriteLine("x = " + FirstValue);

break;

case FirstValue + 1:

Console.WriteLine("x = " + (FirstValue + 1));

break;

case FirstValue + 2:

Console.WriteLine("x = " + (FirstValue + 2));

break;

default:

Console.WriteLine("x is something else");

break;

}

This example illustrates the use of a const as a case parameter, but it
also shows that expressions are allowed as case parameters provided that all
operands within the expression are constants.

3.16 ■ Loops

C# provides the same three loops as Java (while do...while, and for), but
adds an extra loop species: the foreach loop.

3.16.1 � The while loop

The simplest type of loop is the while loop, which has the general form:

while (condition)

{

statements

}

As with the if statement, the ‘condition’ must be either a bool value or
an expression that returns a bool result. Any other data type will not be
accepted as a condition.

The first time the loop is encountered during the running of a program,
the condition is evaluated and, if it is true, the statements within the loop
are executed. Then, the condition is evaluated again and if it is still true, the

66 From Java to C#

Key point

The parameter in a case clause must be a constant.

statements are executed again, and so on until the condition becomes false.
The following loop prints out the squares of the numbers from 1 to 10:

int x = 1;
while (x <= 10)
{
Console.WriteLine(x + " squared is " + (x*x));
x++;

}

Three things should always be remembered when using a while loop.
First, make sure that whatever variable is to be used in the termination con-
dition is properly initialized before the loop starts – in this case we’ve set x
to 1 just before the loop.

Second, make sure the termination condition will eventually be reached.
In the above example it is easy to forget the x++ statement at the end of the
loop’s statements. If we had omitted this statement, the value of x would
never change, meaning that the condition x <= 10 would always be true.
This would cause an infinite loop. In this situation, the presence of an infi-
nite loop would be obvious as soon as the program starts running, since an
endless stream of ‘1 squared is 1’ lines would appear in the console window.
However, in more complex programs, especially if the loop doesn’t produce
any visible output, an infinite loop can cause a program to lock up for no
apparent reason. Since the loop is also absorbing virtually 100 per cent of
the processor’s attention, it can be difficult to get the computer’s attention
long enough to kill the program. Despite C#’s many built-in features that
help prevent you from making obscure errors, there really is no safeguard
against infinite loops apart from careful programming.

Finally, remember that the condition will always be tested at least once,
even if the statements within the loop are never run. This can be important
if the expression used as the testing condition alters some of its variables
(which in general isn’t a good idea). Also remember that the last time the
loop is run, the condition must return false. Therefore, the values of any
variables changed within the loop will not necessarily be the same as they
were during the last iteration of the loop. In the example above, the value of
x after the loop finishes will be 11, not 10, since the condition x <= 10 must
be false in order for the loop to finish.

3.16.2 � The do...while loop

The do...while loop is basically an inverted while loop: whereas the while
loop tests its condition first and only enters the loop body if that condition is
true, the do...while loop always executes the statements within the loop
first, then tests the condition to see if another iteration is required. Its form is:

do
{
statements

} while (condition);

Data, expressions and statements 67

Apart from this difference, it is the same as the while loop. We could
rewrite the above table of squares example as follows:

int x = 1;

do

{

Console.WriteLine(x + " squared is " + (x*x));

x++;

} while (x <= 10);

3.16.3 � The for loop

As you might have noticed in the examples above for the while and
do...while loops, two common steps that are required in the use of a loop
are initializing the loop condition before the loop is run for the first time and
changing the value of some variable or expression after each iteration. Using
a while loop requires us to do this using separate statements outside or
within the loop. Since these operations are so common, a special type of
loop which incorporates them into the syntax of the loop itself would be use-
ful. Enter the for loop.

The general structure of a for loop is:

for (initialization; condition; update)

{

statements

}

The first line of a for loop contains three components. The first of these
is an expression that is always performed before the loop itself starts – the
initialization expression. This expression is performed only once, no mat-
ter how many times the statements within the loop are executed. Its main
purpose is to initialize the variable that is to be used as the loop counter,
although in practice, any expression can be placed here, provided that it
assigns or changes the value of a variable. We’ll explain this in a bit more
detail below after we’ve looked at an example of a for loop.

The second component is the termination condition for the loop. This
condition must satisfy the same restrictions as the condition in a while
loop: it must return a bool value. As with the while loop, this condition is
checked before the loop is run for the first time, so it will always be evalu-
ated at least once, even if it returns false and the statements of the loop
are never executed.

The final component is the update expression. This expression is evalu-
ated after each loop iteration, and so will only be run if the loop’s statements
are executed. After the update expression is run, the condition is checked
again, and if it is still true, the statements within the loop are executed again.

The order in which the four components of a for loop are run is then:

68 From Java to C#

1. Initialization

2. Test Condition. If false, exit loop

3. Statements

4. Update Expression

5. Test Condition. If false, exit loop

6. Statements

7. Update Expression

8. Test Condition. If false, exit loop

9. Etc…

The only natural exit point for a for loop is therefore if the condition is false.
The table of squares example above can be written using a for loop:

int x;

for (x = 1; x <= 10; x++)

{

Console.WriteLine(x + " squared is " + (x*x));

}

In fact, we can condense the code even further, as for loops allow vari-
ables to be declared as part of the initialization component:

for (int x = 1; x <= 10; x++)

{

Console.WriteLine(x + " squared is " + (x*x));

}

The scope of x is restricted to the for loop and the statements it contains,
that is, we cannot use x in any statements before or after the loop since it is
not defined at those points. This is fine if we just wish to use x as a kind of
dummy parameter for counting the iterations within the loop. (We will treat
the subject of variable scope in more depth once we have covered classes
and objects in more detail in Chapter 4.)

There is one other feature unique to for loops in both Java and C#,
although it is not often used. The update expression (the third component
in the loop’s first line) may contain a list of expressions separated by com-
mas rather than just a single expression as we’ve seen in the examples
above. For example, suppose we wanted to calculate the sum of squares of
the integers between 1 and 10 and print it out after the table of squares. We
could do it the traditional way, of course:

int sum = 0;

for (int x = 1; x <= 10; x++)

{

Data, expressions and statements 69

Console.WriteLine(x + " squared is " + (x*x));
sum += x*x;

}
Console.WriteLine("Sum of squares = " + sum);

However, we can also do it this way:

int sum = 0;
for (int x = 1; x <= 10; sum += x*x, x++)
{
Console.WriteLine(x + " squared is " + (x*x));

}
Console.WriteLine("Sum of squares = " + sum);

Notice that we’ve moved the sum += x*x from a statement of its own in the
body of the loop to one of the expressions in the update component of the
for statement itself.

The curious thing is that this is the only place where a comma-separated
list of expressions is allowed in C# (and in Java). If we tried placing the
statement

sum += x*x, x++; // Not allowed in Java or C#

as a line on its own, it will be rejected by the compiler.
As an aside to C and C++ programmers, this behaviour is quite different

from that of the comma operator in those languages. In C++, the statement
above would be acceptable on its own, and would simply evaluate the two
separate expressions from left to right. In fact, the comma operator returns
the value of the right-hand expression, so in C++ we can even use it in an
assignment statement:

int result = sum += x*x, x++; // Works only in C, C++

Beware that this is not allowed in either Java or C#.
Although it is not recommended in most cases, it is legal to omit any or

all of the three components in the definition of a for loop. The effect of
doing this varies, depending on how much code you have at other places in
and around the loop.

If we omit the initialization component, nothing disastrous will occur pro-
viding we have initialized things before the loop starts, just as we did for the
while loop.

Omitting the loop termination condition is much more entertaining, as
this causes an infinite loop – the compiler interprets no termination condi-
tion as a permanent ‘true’ condition. This is not something that should be
encouraged, unless you have other ways of stopping the loop, such as using
a break somewhere within the body of the loop (see below).

Finally, omitting the update expression could cause an infinite loop if no
other provision is made for changing the variables used in the termination
condition. However, if we update these variables within the body of the loop
in the same way as we did for the while loop earlier, everything should still
work correctly.

70 From Java to C#

3.17 ■ The break and continue statements

We have met the break statement when studying the switch statement, but
it may also be used for breaking out of loops before the termination condi-
tion is reached. For example, the following code asks the user to enter a
number and then prints out the square of that number. The loop will con-
tinue until the user enters a negative number:

1. do

2. {

3. Console.Write("Enter a number (< 0 to quit): ");

4. string number = Console.ReadLine();

5. int x = int.Parse(number);

6. if (x < 0)

7. {

8. break;

9. }

10. Console.WriteLine(x + " squared is " + x*x);

11. } while (true);

Line 4 reads in the number as a string and line 5 converts the string
to an int. (It should be noted that this program is very fragile, in that it has
no checks that the string entered by the user is actually an integer. We have
omitted the error checking to save space.)

The if statement on line 6 tests if the number is negative and, if so, a
break terminates the loop. Otherwise, the number and its square are print-
ed out on line 10.

Note that the loop itself is a potentially infinite one, since the termination
condition on line 11 is always true. However, since the program always pauses
on line 4 to wait for the user to enter a number, it won’t lock up the machine.

The break statement will only break out of the actual loop in which it is
found. If it occurs within the inner loop of a nested loop, it will return control
to the outer loop, rather than breaking out of all the loops entirely. The only
quick way of breaking out of a deeply nested loop right back to the surface is
to use the much maligned goto statement, which we will mention later.

The continue statement is a bit like break, except that instead of break-
ing out of the loop entirely, it skips the remainder of the statements in the
loop body for the current iteration only. For example, the following program
asks the user to enter two integers and then prints out their integer quo-
tient. If the user enters a negative number for the numerator, the break
statement stops the loop, but if the user enters a zero for the denominator,
an error message is printed and the continue on line 17 causes the remain-
der of that loop iteration to be skipped, but the loop itself starts again with
the next iteration.

Data, expressions and statements 71

1. do

2. {

3. Console.Write("Enter the numerator (< 0 to quit): ");

4. string numString = Console.ReadLine();

5. int numerator = int.Parse(numString);

6. if (numerator < 0)

7. {

8. break;

9. }

10. Console.Write("Enter the denominator: ");

11. string denomString = Console.ReadLine();

12. int denominator = int.Parse(denomString);

13. if (denominator == 0)

14. {

15. Console.WriteLine(

16. "Error: denominator cannot be zero.");

17. continue;

18. }

19. Console.WriteLine(numerator + " / "

20. + denominator + " = " + numerator / denominator);

21. } while (true);

The final loop type, foreach, can only be used with compound data types
such as arrays and other collections, so we must defer its description until
we have considered these data types.

3.18 ■ The goto statement

Despite the bad press that the goto statement tends to get, it actually can
be useful in some situations. Unlike Java, which does define goto as a
reserved word but doesn’t actually implement it, C# provides two types of
goto statement. One type may be used to redirect the program within a
switch statement, while the other may be used to transfer control to a
labelled statement anywhere within the same method.

The use of goto in a switch statement effectively provides a way of get-
ting around the prohibition of fall-through that we discussed earlier. The
syntax for a goto within a switch is:

goto case case-label;

Its effect is to redirect the program to the case clause with the given label.
For example:

int x;

Console.Write("Enter x: ");

x = int.Parse(Console.ReadLine());

switch (x)

72 From Java to C#

{

case 1:

Console.WriteLine("case 1");

break;

case 2:

Console.WriteLine("case 2, then case 1");

goto case 1;

case 3:

Console.WriteLine("case 3, then default");

goto default;

default:

Console.WriteLine("default");

break;

}

Here we read in a value for x from the console and use it as the parame-
ter in a switch. If x is 1, only the line in the case 1 clause is printed. If x
is 2, the line in the case 2 clause is printed, then control is directed to the
case 1 clause, so two lines are printed. Note that since goto is an uncon-
ditional jump in the code, there is no need for a break statement in a case
clause that ends with a goto.

The case 3 clause shows that it is also possible to use goto to redirect
control to the default clause.

The other use of goto is more conventional, in that it can be used to redi-
rect program flow anywhere within a method. The warnings that you may
have heard about misuse of the general goto statement are well-founded, in
that it should only be used in cases where it really is the best option. It is
very easy to rely on a goto to patch up some bad logic in the program. In
most cases, a goto can be avoided by using a conditional statement such as
if or switch.

Probably the most common (proper) use of a general goto is to break out
of a nested loop. As we saw earlier when we considered nested loops, the
break statement will break the program only out of the innermost loop, so
if we find ourselves deep within a nested loop and want to break out of all
layers of the loop, we would need a series of break statements at each level,
which can be difficult to program. In such a case, using a goto makes a lot
more sense.

Using a goto requires the definition of a label somewhere within the
scope of the goto. The scope of a goto is restricted to code within the same
method as the goto statement. Further, a goto cannot redirect the program
to the inside of a loop or conditional statement, unless the goto itself is also
within that statement. A couple of examples should clarify this.

The first example shows a legitimate use of goto:

void TestGeneral()

{

for (int i = 1; i < 10; i++)

Data, expressions and statements 73

{
for (int k = 1; k < 10; k++)
{

if (k * i % 5 == 0)
{

goto Breakout;
}
Console.WriteLine(i + " * " + k + " = " + i*k);

}
}
Breakout:

Console.WriteLine("Loops finished.");
}

The TestGeneral() method contains a nested loop which iterates over
two integer variables. In the inner loop, if the product k * i is evenly divis-
ible by 5, the program is redirected to the Breakout label, which is defined
after the loops. The output from this method is:

1 * 1 = 1
1 * 2 = 2
1 * 3 = 3
1 * 4 = 4
Loops finished.

An illegal use of goto would be an attempt to redirect the program from
the outer loop into the inner loop, bypassing the setup statements in the
inner loop:

for (int i = 1; i < 10; i++)
{
if (i % 5 == 0)
{
goto InnerLoop;

}
for (int k = 1; k < 10; k++)
{

InnerLoop:
Console.WriteLine(i + " * " + k + " = " + i*k);

}
}

This loop attempts to jump into the inner loop whenever i is divisible by 5.
The compiler will not allow this, since the InnerLoop label is not within the
scope of the goto statement. Allowing a jump such as this would skip the dec-
laration and initialization of k, so the WriteLine() statement would not have
a valid variable to use.

Similar restrictions apply to jumping from one loop to another loop that
does not contain the first loop, and to jumping into the interior of a condi-
tional statement.

74 From Java to C#

■ Summary

In this chapter, we have explored the basics of C#, including the built-in
data types and basic statements and expressions. Much of this material
should be familiar to Java programmers, but C# does have enough differ-
ences from Java that it is worth making sure you are familiar with these
basics before moving on.

Data, expressions and statements 75

Exercises

3.1 Which of the following code fragments will cause compilation errors, and why?
(Each fragment should be taken in isolation.) For any statements that do compile
without errors, can you see any runtime errors that might occur?
(a) sbyte number = 643;

(b) sbyte number = (sbyte)643;

(c) short x = 643;
sbyte number = (sbyte)x;

(d) sbyte number = 42;
short x = number;

(e) sbyte number = 42;
short x = number + 1;

(f) sbyte number = 42;
int x = number + 1;

(g) byte number = 255;
sbyte snumber = number;

(h) byte number = 255;
number = number + 1;

3.2 The following code causes an infinite loop when run. Why? (Note that the
compiler produces a warning about this code.)

for (byte i = 0; i < 1000; i++)
{

Console.WriteLine(i);
}

3.3 How could the infinite loop in the previous exercise be prevented without
changing the data type of i? The solution will cause the program to crash
(unless the exception is handled – see Chapter 7) at which value of i?

3.4 As stated in the text, the code fragment below will not compile:

float x;
x = 3.14;

However, the following code does compile:

float x;
x = 3;

Why?

76 From Java to C#

3.5 As an illustration of round-off error, write a program which calculates the area
of a square with a side length of 100 units by subdividing the square into a grid
of one million smaller squares, each of side length 0.1, calculating the area of
each of these smaller squares and adding them all up to produce the total area.
Use floats for all your calculations and compare the area obtained by just
squaring 100 to that obtained by adding up the million small squares. Repeat
the calculation using doubles instead of floats. Does this make things
better or worse?

3.6 Repeat the previous exercise using decimals instead of floats or doubles.
Does the decimal live up to its claim of eliminating round-off error?

3.7 Write a program using a decimal variable to keep track of the user’s bank bal-
ance. The program should simply use a loop to request the amount to be added
to the balance at each point, with a positive value being used for deposits and a
negative value for withdrawals. After each transaction, print out the new bal-
ance and then request the amount for the next transaction. The program should
quit when the user enters a zero amount for a transaction. (Obviously this pro-
gram has limited use without the ability to store the amount on disk between
runs of the program, but we can add this later when we learn about using files.)

3.8 Suppose the following code is run, and the user enters 1 on the first iteration
and 40 on the second. For each operator in the code, state whether it is a unary
or binary operator, find the value(s) of its operand(s) and the value that the
operator returns after the operation. Remember that not all return values are
used in the program.

int x, y, z;

z = y = x = 42;

while (x != 0)

{

Console.WriteLine("The current value of x is " + x);

Console.Write("Please enter the new value (0 to quit): ");

x = int.Parse(Console.ReadLine());

if (x > y)

{

z = -x;

y += 2 * z;

}

else

{

z = x + 2 * y – z;

y -= 3 * x;

}

Console.WriteLine("y = " + y + "; z = " + z);

}

Data, expressions and statements 77

3.9 Suppose we have declared three ints named x, y and z. The initial values are
x = 17 and y = 3. What value does z have after each of the statements below?

(a) z = x / y;

(b) z = y / x;

(c) z = x % y;

(d) z = y % x;

3.10 A common programming practice is to use the ++ or -- operator to change
the value of a loop variable within a while loop, but to do so as part of
another statement. What will be printed to the console in each of the follow-
ing code fragments?

(a) int x = 0;
while (x < 5)
{
int y = 2 * x++;
Console.WriteLine("x = " + x + "; y = " + y);

}

(b) int x = 0;
while (x < 5)
{
int y = 2 * ++x;
Console.WriteLine("x = " + x + "; y = " + y);

}

3.11 Consider again the byte parameters defined in the text to illustrate bitwise
operators:

const byte Light = 1;
const byte Sound = 2;
const byte Shadow = 4;
const byte Animation = 8;

byte Properties = 0;
Properties = (byte)(Properties | Light);
Properties = (byte)(Properties | Shadow);

(a) Write a method with the prototype:

byte OffBit(byte properties, byte parameter)

which will switch off the parameter in properties and return the result.
For example, if parameter is Light in the above code, OffBit() will set
the Light bit to zero no matter what its original value in properties is.

(b) Write a method with the prototype:

byte InvertBit(byte properties, byte parameter)

using bitwise operators that will invert the specific value given by parameter
in properties while leaving the others unchanged, and return the modified
value of properties. For example, the method could turn Light off (change
the bit corresponding to Light in Properties to a 0) if it is on, and vice
versa, but leave the values of the other three parameters as they were.

78 From Java to C#

(c) Why does the following code produce a compilation error?

byte x = 5;

byte y = !x;

3.12 In each of the following cases, is anything printed to the console?

(a) int x = 2, y = 2, z = 4;

if (x == y || z == x && z == y)

{

Console.WriteLine("Got here");

}

(b) int x = 2, y = 2, z = 4;

if ((x == y || z == x) && z == y)

{

Console.WriteLine("Got here");

}

(c) int x = 2, y = 2, z = 4;

if (x == y || (z == x && z == y))

{

Console.WriteLine("Got here");

}

3.13 Why would the following code give a compilation error?

int x = 2, y = 2, z = 4;

if (x == y || z = x && z == y)

{

Console.WriteLine("Got here");

}

3.14 Given the declarations:

int x = 16, y = -16;

what value is returned by each of the following operations?

(a) x << 2

(b) x >> 2

(c) x << 40 (try this one in a program to check it – can you explain the result?)

(d) y << 2

(e) y >> 2

(f) y >> 10 (try this one and the next in a program and try to explain the result)

(g) y >> 40

3.15 Given the declaration:

int x = 5;

what value does x have after each of the statements below? In each case,
assume that x has the value 5 before the statement is run, so that each state-
ment should be treated in isolation.

Data, expressions and statements 79

(a) x *= 10

(b) x /= 10

(c) x <<= 3

(d) x >>= 3

(e) x |= 3

(f) x &= 3

3.16 Given the declaration:

int x, y = 20;

the following code fragment is run:

x = int.Parse(Console.ReadLine());

int z = (2 * x == y) ? x + y : x – y;

What value is assigned to z if x is (a) 10 and (b) 60?

3.17 For each of the following, determine if the code will compile and, if so, what is
printed to the console. In each case, assume that the code is properly contained
within a method. Carefully consider the return types of the operators and the
associativity and precedence rules to work out your answers. Check your
answers by compiling and running the code in a test class.

(a) int x = 3 & 7 | 12;

Console.WriteLine(x);

(b) int a = 1, b = 2, c = 3;

bool x = a > b && c > a;

Console.WriteLine(x);

(c) int a = 1, b = 2, c = 3;

bool x = a > b & c > a;

Console.WriteLine(x);

(d) int a = 1, b = 2, c = 3;

bool x = a > (b & c) > a;

Console.WriteLine(x);

(e) int a = 1, b = 2, c = 3;

bool x = (a > b & c) > a;

Console.WriteLine(x);

3.18 The following code was intended to produce a table of squares of the integers
from 0 to 9, but what is actually printed?

int i;

for (i = 0; i < 10; i++);

{

Console.WriteLine(i + " * " + i + " = " + i*i);

}

(Hint: examine the code very carefully and note that although the code compiles
without errors, a warning of a ‘possible mistaken null statement’ is given.)

80 From Java to C#

3.19 Convert the following if statement into a switch statement, assuming that a
and b are ints that have been properly declared and given values elsewhere in
the program. Use a as the parameter in the switch statement.

if (a == 1)

{

Console.WriteLine("a is 1");

}

else if (a == 0 && b < 0)

{

Console.WriteLine("a is zero & b is negative");

}

else

{

Console.WriteLine("something else has happened");

}

3.20 Write a while loop, a do...while loop and a for loop, each of which prints
out a table of squares of the integers from 1 to 10.

3.21 What is printed by the following nested for loops?

for (int i = 0; i < 10; i++)

{

for (int j = 0; j < 10; j++)

{

if (i * j > 50) break;

Console.Write(i * j + " ");

}

Console.WriteLine();

}

3.22 If the break is replaced by continue in the code in the previous exercise, show
that the output remains the same. Which version of the program would take
longer to run?

3.23 Write a version of the program in either of the preceding two exercises that uses
goto in place of break or continue.

Inside C# objects

In Chapter 2, we saw how the basic idea of object-oriented programming,
the concept of encapsulation, is implemented in C#. In Chapter 3, we saw
how primitive data types and basic control statements are written. In this
chapter, we shall bridge the gap between the lower-level data types and
statements and the overall class structure of an object-oriented program. We
will examine how objects are stored in memory, how the individual meth-
ods within a class can be defined and used, and how the primitive data types
we met in the previous chapter are related to classes in the .NET library.

It is probably at this level that C# differs most strongly from Java. Java’s
handling of classes and objects is deliberately stripped-down, whereas C#
has reintroduced many of the alternative methods for doing things that may
be more familiar to C++ programmers than those brought up on Java.

4.1 ■ Value and reference types

In Chapter 3, we met the primitive data types provided by C#. These data
types may be used to declare variables without any prior preparation on our
part – they are predefined by the language.

In Chapter 2, we saw that we could also create objects by using a user-
defined class such as Employee to declare a variable.

The distinction between these two types of variable declarations should
be familiar to anyone with some experience in Java, but it is important to
understand the differences between these two types, both in Java and C#.

The primitive data types we met in Chapter 3 are known as value types,
while all other data types (with the exception of the struct and enum, which
we shall meet later in this chapter) are reference types. What’s the difference?

In order to answer this question, we need to understand something about
how variables are stored in memory. Computer memory may be thought of
as a one-dimensional line of individual locations, rather like a very long
street with individual houses on it. In computer memory, each ‘house’ is a
single byte (8 bits), and just like a house has a number on it to identify it
(for the postman to deliver letters, among other things), each byte in a com-
puter’s memory also has an address. The address of a byte is needed for
much the same reason as the address on a house: the operating system and
the programs it runs must have some way of finding individual bytes so that
data can be stored there and recalled later when it is needed.

The address of a byte is just an integer, with each byte receiving an address
one greater than the byte before it. The address is usually written in hexa-
decimal, simply because it is easier for computers to handle hexadecimal
numbers than ordinary decimal ones. However, it is probably easier for you

4

to think in decimal (if you do find it easier to think in hexadecimal, you
probably should get out more), so if you want to visualize memory locations
in the following discussion, just think of ordinary decimal integers.

Now that we’ve got a simplified view of computer memory fixed in our
minds, let’s get back to what happens when variables are declared. We will
start with a simple declaration such as:

int x;

When the compiler encounters this declaration, it must first determine
how much memory the variable x requires. It does this by looking up the data
type (int) and finding out from its definition that an int takes 4 bytes. Next,
it consults the operating system to find an available contiguous block of 4
bytes that can be used to store memory for a new program. The operating
system will find such a block (unless all the memory is being used for other
programs, in which case the compiler will stop with an error message) and
reserve it for the variable x. The compiler will link x with the memory that
has been allocated to it, so that each time some data is assigned to x as in:

x = 42;

the program will know exactly where to go in memory and store 42 at that
location.

All the primitive data types work the same way. Any variable declared
from a primitive type will have a memory location directly linked to it, and
any data that gets assigned to such a variable will be stored at that location.

This probably all seems rather obvious, but there is a subtlety in here
which must be appreciated. Suppose we write the following:

int x, y;

x = 42;

y = x;

x++;

What are the values of x and y after this code has run? You probably
answered that x is 43 and y is 42, and you would be right. The reason is that,
for value variables, the assignment operator = copies the data from its right
operand to its left operand. Thus the line y = x copies the data stored in x
(42) to the location where y is stored. After this assignment, there are two
distinct copies of the 42 data, one at location x, and one at location y. This
means that the expression x++ then operates only on the data stored at loca-
tion x, leaving the value of y unchanged. Obvious, right?

Well, maybe not.
Let’s now go back to the Employee class we introduced in Chapter 2. We

can try doing much the same thing with two Employee objects as we just
tried with two ints:

Employee x, y;

x.Salary = 42;

y = x;

x.Salary++;

82 From Java to C#

If we insert this code into the Main() method of the CompanyDemo class
that we defined in Chapter 2 and try to compile it (you are urged to try this
yourself), we find that the code will not even compile. The error reported is:
‘Use of unassigned local variable “x’’ and the line causing the problem is the
second one, where we attempt to assign 42 to x.Salary.

We can solve the problem by inserting a line after the declaration, so that
the code now looks like this:

Employee e1, e2;

e1 = new Employee();

e1.Salary = 42;

e2 = e1;

e1.Salary++;

Notice that we didn’t have to do this when we were declaring ints – we
could just declare an int and then assign a value to it in the very next step.
Why the difference with an Employee?

In principle, we might think that the compiler could treat an Employee
object in exactly the same way as an int. Since the definition of the
Employee class is provided, the compiler should be able to work out by look-
ing at the primitive data fields within the class how much memory is need-
ed to store all the data fields for an Employee, reserve that memory and then
simply associate x with that memory. (In fact, if you declare an object in
C++, that’s what happens, more or less.)

The point is that declaring an object from a class is treated in a funda-
mentally different way in C# (and Java) from declaring a variable from a
primitive data type. A declaration such as:

Employee e1;

creates a reference to an Employee object, but doesn’t actually create the
object itself. So what’s a reference?

A reference is essentially the address of the memory location at which the
object can be found. A declaration such as Employee e1 therefore states
that e1 will hold the address of an Employee object, but it does not do any-
thing more than that. In particular, it doesn’t actually allocate any memory
for the Employee object, or assign any values to the data fields within the
object. It is up to us (the programmers) to do that in the code.

Until we actually create the object, the reference itself is assigned the spe-
cial value null by the compiler. The keyword null is a symbol that indi-
cates an uninitialized reference. Any attempt to read data from a null ref-
erence while the program is running will cause an error, and it is a pretty
safe bet that before you do too much programming in C#, you will encounter
this error. In fact, from your Java experience, you may remember the
‘NullPointerException’ which is Java’s error message in the same situation.

The C# compiler attempts to help you avoid null reference errors by
insisting that any reference is initialized before it is used. This is the origin
of the ‘unassigned local variable’ error we got above when we tried to assign

Inside C# objects 83

a salary to e1 immediately after declaring it – we hadn’t actually created an
Employee object, so it didn’t make any sense trying to assign a value to its
Salary property.

To create the Employee object, we need the line

e1 = new Employee();

The new operator (for it is actually an operator) takes a single operand on
its right, which must be the name of a class. The class name in this case is
followed by a pair of empty parentheses, which indicates that a constructor
is being called, but we’ll get to that in Chapter 5 when we examine con-
structors in detail. We haven’t provided any explicit constructor in the
Employee class yet, so all that happens is a set of default actions provided
by the new operator.

So what does new do? Basically, it duplicates the steps that are done auto-
matically for value variables when they are declared. That is, it will first
determine how much space is needed for an Employee object to be created.
Then it will ask the operating system for that much memory. Since we
haven’t provided an explicit constructor, it will then initialize all the data
fields in the Employee object to default values. (The default value of any
numeric data field is 0, a bool is set to false, and a char to 0.)

Finally, since new is an operator, it will return a value, which is the ref-
erence to the location in memory that was allocated to the new object. Thus
the statement

e1 = new Employee();

results in e1 being assigned to the location in memory occupied by the new
Employee object.

The important point to remember about all this is that e1 itself contains
only the reference to another location in memory, while an int variable such
as x in the example above refers directly to the data stored in memory. Why
is this so important?

To answer this, let’s go back to the original bit of code, except this time
we’ll add a couple of output lines:

Employee e1, e2;

e1 = new Employee();

e1.Salary = 42;

e2 = e1;

e1.Salary++;

Console.WriteLine("e1 salary = " + e1.Salary);

Console.WriteLine("e2 salary = " + e2.Salary);

If we run this code, we get the output:

e1 salary = 43;

e2 salary = 43;

84 From Java to C#

In other words, the Salary of both employees has been changed by the
increment of e1’s salary. This result may or may not surprise you, depend-
ing on how closely you’ve been following the argument above. If it does sur-
prise you, it is probably because you think the expression e2 = e1 should
be doing the same thing as the y = x expression in the example with ints
earlier. Obviously, it isn’t, but why?

We declare two Employees, call the new operator to create a new object
for e1, and then set the salary for e1 to be 42. So far, so good. But what does
the next line, e2 = e1, do?

Remember that e1 and e2 are references to Employee objects. What is
happening in the expression e2 = e1 is that the reference stored in e1 is
copied into e2, not the object that e1 is referring to. The effect of this is that
both e1 and e2 now refer to the same location in memory. That is, they are
two different aliases for the same object. In other words, although we have
two references, we only have one object for them to refer to.

The effect of this is that after the assignment e2 = e1, we can use either
e1 or e2 to refer to the object that was created with the new operator on the
second line. When we increase the salary with the e1.Salary++ expression,
we are changing the salary of the single Employee object. Whether we use
e1 or e2 to refer to it doesn’t matter since they both refer to the same object
anyway. We could equally as well have said e2.Salary++ instead of
e1.Salary++; the effect would be the same. It is for this reason that the two
output lines produce the same result, since they are both accessing exactly
the same object.

This is a subtle point, but a very important one, since failing to recognize
the difference between value and reference data types can lead to some
serious bugs.

Inside C# objects 85

Key point

A value variable refers directly to the data it represents. A reference variable
contains the address of the location in memory where the object is stored.

Key point

An assignment of one value variable to another copies the actual data between
the variables. An assignment of one reference variable to another only copies
the reference (memory address) between the variables. The object to which that
reference refers is not copied.

4.2 ■ Passing by value and passing by reference

Now that we’ve seen the fundamental difference between value and reference
variables in C#, we need to examine what happens when these variables are
passed as parameters to methods.

We shall begin by trying a few experiments in code. Consider the follow-
ing method:

void IntValue(int arg)

{

arg++;

}

The method takes a single int parameter and increments its value. We now
call this method using the code:

int x = 42;

IntValue(x);

Console.WriteLine("x = " + x);

We find that the output is:

x = 42

That is, the value of x is not changed by the method call. The reason is that
x is being passed by value to the method, which means that the value of x,
in this case 42, is copied into the parameter arg within the function. The
parameter arg becomes a new variable which is independent of x, so that
any changes made to arg do not affect x.

Now let’s try something similar with a reference variable like an Employee
object:

void EmployeeValue(Employee e)

{

e.Salary += 1000;

}

We will call this method with the code:

Employee employee = new Employee();

employee.Salary = 5000;

EmployeeValue(employee);

Console.WriteLine("Salary is " + employee.Salary);

In this case, the output is:

Salary is 6000

Note that this time, a change that we made to the method’s parameter e
does make a difference to one of the data fields in the original employee
object. Does this mean that reference variables are passed to methods in a
different way than value variables? Not really.

86 From Java to C#

Remember that a declaration such as

Employee e;

actually declares only a reference to an Employee and does not create an
Employee object. When we call the EmployeeValue() method, we pass it
the employee reference variable as a parameter. This variable contains only
the reference to the actual Employee object that was created with the new
operator. When the EmployeeValue() method starts up, the parameter e is
created and receives a copy of the reference stored in the original employ-
ee variable. We therefore have two references (e and employee) that both
refer to the same Employee object. In other words, it is the same situation
as we had when we used the assignment operator to assign one Employee
reference to another.

Essentially what is happening when we pass a reference variable to a
method in this way is that we are passing the reference itself by value, since
the reference does get copied in the calling process. However, many books
and articles still call this sort of parameter passing as passing by reference,
since any changes made to the actual object within the method are perma-
nent, and do affect the original object in the code that called the method.
Others argue from the purist standpoint, claiming that since the reference
is getting copied when the method is called, we are really passing by value.

In Java, these arguments were largely pointless, since this is the only way
objects can be passed into methods. As long as we understand what is happen-
ing, it doesn’t really matter whether we think of the process as passing by value
or passing by reference. In C#, however, the situation becomes a bit more com-
plicated since C# offers other ways of passing parameters to methods.

Before we dive into these new methods, let us do one more experiment
that should drive home what is actually happening when we pass a reference
into a method. Suppose we modify the EmployeeValue() method above by
adding an extra line:

void EmployeeNewValue(Employee e)

{

e = new Employee();

e.Salary = 6000;

}

Inside C# objects 87

Key point

Passing a primitive variable by value creates a copy of the data held in the vari-
able, but passing an object by value copies only the reference to the object. Any
changes made to a reference variable within a method affect the original object.

We now call this method with the code:

Employee employee = new Employee();

employee.Salary = 5000;

EmployeeNewValue(employee);

Console.WriteLine("Salary is " + employee.Salary);

This time, the output is:

Salary is 5000

The reason for this is that after copying the reference stored in employee
into the method’s parameter e, we immediately overwrite this reference by
creating a new Employee object in the method and storing its reference in e
instead. That is, we now have two separate Employee objects, with the
employee reference referring to the first one and e referring to the second.
In this case, we set the salary of the second object to 6000, which of course
does not affect the salary of the original object.

Everything we have tried with parameter passing so far in C# would work
the same way in Java. Now, however, we are ready to introduce a couple of
features that are unique to C#.

4.3 ■ The ref keyword

One shortcoming of Java is that all primitive data types can only be passed
by value. This means that there is no way of sending an int, say, as a param-
eter to a method and allowing the method to alter the int in a way that will
be seen in the original code that called the method. (Java does provide
wrapper classes such as Integer which allow primitive data types to be
wrapped up within a class and then passed by reference, but there is no way
of passing a bare int by reference.)

Some programmers argue that is a good thing, since there is a school of
thought that states that methods should never have side effects. That is, the
only way a method should be able to change any data in the code that called
it is by returning a value which the calling code may or may not decide to
use. There is merit in this argument, since many bugs have been caused in
languages such as C++ (which does allow primitive data types to be passed
by reference) by methods that alter the values of parameters without letting
the programmer know this is happening.

However, Java’s policy of prohibiting passing by reference does seem
overly restrictive in many cases, so the ability to do it in C# is welcome.

To pass a parameter by reference in C#, we need to add the ref keyword
before the parameter in the method declaration and in the parameter list
when that method is called. For example, if we return to our IntValue()
method above, we can rewrite it to pass by reference:

88 From Java to C#

void IntRef(ref int arg)

{

arg++;

}

We can now call this new method with the code:

int x = 42;

IntRef(ref x);

Console.WriteLine("x = " + x);

The output this time is:

x = 43

so that now, the IntRef() method’s increment statement results in a
change to x.

The introduction of the ref keyword means that rather than creating a
copy of x when it is passed to IntRef() as a parameter, the arg variable
within the method becomes a reference to the same memory location as
that occupied by x, so that any changes to arg are also changes to x.

Note that we must put a ref before the x when we call IntRef(). This is
mainly a safety feature in C#, as it forces the programmer to realize that a
parameter is being passed by reference and therefore that the method could
change its value permanently. If this may cause a problem, the programmer
should check the documentation for the IntRef() method to ensure that
any side effects will not cause a bug to appear.

This safety feature is not optional – it is enforced by the compiler. If we
tried to call IntRef() without the ref keyword, as in:

IntRef(x); // Will not compile

the compiler will complain that it cannot convert ‘int’ to ‘ref int’. In other
words, a ‘ref int’ is treated as a data type distinct from just ‘int’.

Now let’s try passing an Employee by reference using ref. We rewrite
EmployeeValue() from before:

void EmployeeRef(ref Employee e)

{

e.Salary += 1000;

}

Inside C# objects 89

Key point

The ref keyword passes any data type by reference. The ref keyword must be
present both in the method definition and in a call to the method.

We can call this new method with the code:

Employee employee = new Employee();

employee.Salary = 5000;

EmployeeRef(ref employee);

Console.WriteLine("Salary is " + employee.Salary);

Running this code produces the output:

Salary is 6000

Nothing appears to have changed from the earlier version using
EmployeeValue(). Does this mean that the employee object is being passed
the same way in both cases? Not at all.

To see that there really is a difference, we will rewrite the second Employee
example above, to produce a new version of EmployeeNewValue():

void EmployeeNewRef(ref Employee e)

{

e = new Employee();

e.Salary = 6000;

}

We now call this method with the code:

Employee employee = new Employee();

employee.Salary = 5000;

EmployeeNewRef(ref employee);

Console.WriteLine("Salary is " + employee.Salary);

This time, the output is:

Salary is 6000

So here there is a difference. What’s going on?
In the old EmployeeNewValue() method, remember that the Employee

parameter e within the method was a separate reference to the original
Employee object, and that this came about because the reference (memory
address) stored in employee was copied into e when the method was called.
That is, the variable employee was actually being passed by value, since it
was being copied into a new variable when the method was called.

This time, we are passing the variable employee by reference into the
method, which means that it is not being copied into e. Rather, both e and
employee become references to the same data, and that data in this case is
the memory address of the actual Employee object. Therefore, when we
change that address within the method by creating a new Employee object
and setting e to refer to it, we are also changing what the original employee
reference refers to.

The net effect of calling EmployeeNewRef() is that both employee and e
refer to the new Employee object created within the method, and that there
are no longer any references to the original Employee object created before

90 From Java to C#

the method was called. The latter point is important, since it shows that
using ref can have serious consequences if you’re not certain what you’re
doing. It is very easy to lose a reference to an object completely if that ref-
erence is reassigned within a method.

4.4 ■ The out keyword

As we’ve seen earlier, the C# compiler requires that a variable be initialized
before its value is used in an expression. For example:

void TestInit()

{

int x, y;

y = x;

}

The compiler reports an error due to the ‘Use of unassigned local variable
“x’’ in the expression y = x. This is sensible, since in most cases, there is
no logical reason to use a variable before it has been assigned a value.

There is one situation, however, where the ability to use an uninitialized
variable would be quite useful. Consider the following method:

void TestUninitArg(ref int arg)

{

arg = 42;

}

The method expects an int parameter passed by reference, which it then
assigns a value. Clearly the whole point of passing the parameter by ref-
erence is to assign it a value that will remain in place after the method fin-
ishes. Since whatever value is passed into the method gets overwritten by
the arg = 42 expression, there wouldn’t seem to be any need to initialize
the parameter that is passed to the method.

However, if we attempt to call the method using the code:

int x;

TestUninitArg(ref x);

the compiler again reports the error ‘Use of unassigned local variable “x’’
when we attempt to call the method.

We could get around this error by just assigning any old value to x, as in:

int x = 0;

TestUninitArg(ref x);

but this is a clumsy way of doing things, since the value assigned to x is
never used for anything other than avoiding a compiler error message.

Inside C# objects 91

C# comes to the rescue with the out keyword. We can now write:

void TestUninitArg(out int arg)

{

arg = 42;

}

where we have replaced ref by out in the parameter list. We can call this
function using the code:

int x;

TestUninitArg(out x);

That is, the out keyword works in much the same way as ref, except that
it allows the variable that is passed as a parameter to be uninitialized. Any
variable passed using out is passed by reference, so any assigned value, such
as the arg = 42 in the TestUninitArg() method, will affect the original
variable, in this case x.

The only condition imposed on an out variable is that it must have a
value assigned to it within the method in which it is a parameter, and this
assignment must occur before the variable is used for anything else.

For example, if we tried the following:

void TestUninitArg(out int arg)

{

int number = arg + 3;

arg = 42;

}

we would get a compiler error, since we have attempted to use the value of arg
before it has been assigned one. Note that this error will occur even if we do
provide a value for the parameter before it is passed into the method, that is,
if we try to call this new version of TestUninitArg() using the following code:

int x = 99;

TestUninitArg(out x);

the compiler will still report an error inside the method from attempting to
use arg before it has been assigned a value. Whenever a variable is passed as
an out parameter, its value is not relevant, since the compiler requires that
the parameter be assigned a new value within the method. We cannot, there-
fore, pass a variable using out and expect to be able to use its value before
overwriting it with a new value. If we want to do that, we can just use ref.

92 From Java to C#

Key point

The out keyword allows an uninitialized variable to be passed by reference to
a method.

4.5 ■ Arrays

We have left the consideration of arrays until now since C# treats an array
as a reference object in much the same way as Java. We therefore needed a
better understanding of value and reference types before arrays could be
treated properly.

First, a quick refresher as to the definition and purpose of an array. An
array is a set of elements, all of the same data type, which are stored togeth-
er under a single variable name, such as IntArray. Individual elements
within the array can be accessed by using a subscript after the array name.
In C#, as in Java and C++, the array subscript begins at 0 for the first ele-
ment in the array. The first element in IntArray is therefore written as
IntArray[0]. If the array contains 10 elements, the last element is written
as IntArray[9].

Arrays are the natural choice for a data type when we wish to store a
block of related data types, such as the average temperatures for all the days
in August, or the marks scored by the students in a class. In the absence of
the array data structure, we would need to declare a separate variable for
each data element we wanted to store, which for larger data sets would rap-
idly get cumbersome to type and difficult to read.

As in Java, the declaration and creation of an array requires several steps.
First, we need to declare the array object and then we need to create array
elements. To create an array of 10 ints, for example, we can write:

int[] IntArray;

IntArray = new int[10];

The first line declares the array object IntArray, but at this stage we
have not specified how many elements are to be in the array, nor allocated
any memory for these elements. The second line states that an array of 10
ints is to be allocated using the new operator, and the location of these ele-
ments (actually, the location of the first element in the array) is to be stored
in the IntArray reference variable.

It is more usual to combine these two steps into a single statement:

int[] IntArray = new int[10];

but the effect of this statement is the same as the two given earlier.
We can see the reference nature of an array from this two-step process, as

it mirrors the declaration and creation steps for an object such as the decla-
ration of an Employee that we looked at earlier. As an aside to C++ program-
mers, we cannot declare an array and specify its size in a single expression,
such as:

int IntArray[10]; // Works in C++ but not in C#

Java programmers may remember that Java allows arrays to be declared
in two ways:

Inside C# objects 93

int[] IntArray; // Legal in Java and C#

int IntArray[]; // Legal in Java but NOT in C#

Java allows us to put the brackets either after the data type or after the
variable name, but C# allows only the first type of declaration.

The example with which we began this section, where we created an
array of 10 ints, is an array of value variables. As such, each int in the
array is initialized with the default value for an int, which is 0. We do not
need to provide initial values for each array element and can, if we wish, use
these elements in other expressions straightaway. To show this, we can
write out the contents of the array:

int[] IntArray;

IntArray = new int[10];

for (int i = 0; i < IntArray.Length; i++)

Console.Write(IntArray[i] + " ");

The output is:

0 0 0 0 0 0 0 0 0 0

We have specified the upper limit of the array indexes by using the quan-
tity IntArray.Length. As the array is a built-in data type in C#, there are a
number of properties that are available automatically for any array object. The
Length property returns an int stating how many elements are in the array.
Note that Length does not return the index of the last element in the
array – the last element will always have a value one less than Length, since
array indexes start at zero.

4.5.1 � Arrays of reference types

The syntax for declaring an array of objects is very similar to that for an
array of value types:

Employee[] EmployeeList = new Employee[10];

There is a subtle difference between an array of reference types and the earlier
array of value types, however. An array of value types such as int is ready for
use after its memory has been allocated with the new operator. However, when
we create an array of reference types, as in the array of Employees, the new
operator only creates an array of references – it does not create the objects they
refer to. Remember that when we created a single Employee we had to do it in
two stages. First declare the reference:

94 From Java to C#

Key point

The elements of an array of value types are created by the new operator, and
can be used immediately.

Employee employee;

Second, create the actual Employee object for the reference to refer to:

employee = new Employee();

When we create an array of 10 employees using the new Employee[10]
expression, we are only doing the first of these two steps: we are creating an
array of 10 references, each of which needs to have an Employee object cre-
ated for it to refer to. To complete the creation of the Employee array, there-
fore, we need a loop which handles this creation process:

Employee[] EmployeeList = new Employee[10];
for (int i = 0; i < EmployeeList.Length; i++)
{
EmployeeList[i] = new Employee();

}

Notice the difference in the two uses of the new operator here. If new is
used with square brackets [] after the class name, it is creating an array of
references, but is not creating any actual objects. In this case, the new oper-
ator returns a reference to the first element in the array. If it is used with
parentheses (), it is creating a single object and returning a reference
(memory address) to that one object.

4.5.2 � Bounds checking

Like Java, C# provides bounds checking on array indexes, meaning that a
runtime error will be generated if an array index is outside the bounds of the
array. For example, suppose we made a mistake in specifying the upper
bound of the for loop in the last example:

Employee[] EmployeeList = new Employee[10];
for (int i = 0; i <= EmployeeList.Length; i++)
{
EmployeeList[i] = new Employee();

}

This code would still compile, but when we run it, we get the following
error: ‘Unhandled Exception: System.IndexOutOfRangeException: Index was
outside the bounds of the array’. The line number on which the error
occurred is also generated. We will see in Chapter 7 how to handle exceptions
more gracefully than simply letting the program crash, but the point is that
over- or understepping the bounds of an array does not slip through a C# pro-
gram unnoticed, as it could in C++.

Inside C# objects 95

Key point

Each element within an array of reference types must be created separately
using the new operator.

4.5.3 � Array initialization

In the examples above, we have seen that the elements in an array of value
types are all initialized to their default values when they are created with
the new operator, but that arrays of reference types must be initialized sep-
arately after the creation of the references themselves.

C# provides another way of initializing both types of array through the
use of initialization lists. For example, if we wish to initialize an array of
ints to the integers from 1 to 10, we can write:

int[] numbers = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

The initialization list is a comma-separated list of constants whose data
type must be the same as that of the array elements. The list is enclosed in
braces and terminated with a semi-colon.

Notice that the length of the array is never explicitly stated – the com-
piler will infer it from the number of elements in the list, and the size of the
array then becomes accessible through the Length parameter of the array.
For the numbers array, numbers.Length would return the value 10.

We can initialize arrays of references in the same way, providing we have a
way of specifying a value for each reference to refer to. The simplest example
of this is probably an array of strings, since the string data type is a built-
in C# reference type. We can therefore create an array of strings as follows:

string[] sentence =

{ "We", "will", "consider", "the", "string" };

This produces an array of strings with five elements, each of which is
already initialized to a string value.

We can generate arrays of any reference type using an initialization list if
we use the new operator to generate each element in the list. For example,
we could create an array of Employees this way:

Employee[] empArray =

{ new Employee(), new Employee(), new Employee() };

This generates an array of three Employee references and initializes each
reference by giving it an Employee object to refer to. Obviously this is not
as efficient a way of initializing a large array as simply using a for loop, but
once we learn how to use constructors in Chapter 5, we can combine the
use of new with a user-defined constructor to produce Employee objects with
different initial values for each of their data fields. In that case, the initial-
ization list is often a more compact method of creating a reference array.

The examples of initialization above refer only to the declaration of an
array. If we want to reassign a predeclared array later in the program, the
required code is slightly different.

For example, if we take the numbers array above, it may be declared as
we have already stated:

int[] numbers = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

96 From Java to C#

However, if we want to reassign numbers to a completely new array with dif-
ferent values and a different length, we have to use the new operator to do this:

numbers = new int[] { 12, 13, 14, 15 };

Just saying

numbers = { 12, 13, 14, 15 }; // Won’t compile

won’t work, since this way of assigning values to an array only applies when
the array is being declared.

4.6 ■ The foreach loop

We mentioned in Chapter 3 when considering the various types of loop
available in C# that there was a fourth type of loop in addition to those avail-
able in Java. This is the foreach loop, which is only usable with certain
compound data types (technically, a foreach loop can be used with any
class that implements the IEnumerable interface, which will make more
sense after we have studied interfaces in Chapter 6) of which the array is
the simplest example.

The foreach loop can be used to iterate through each element in an
array, provided that the array elements are treated as ‘read-only’ objects.
Any attempt to assign a value to an array element within a foreach loop
will generate a compiler error. For example, we may print out all the values
in an array:

int[] numbers = { 1, 2, 3, 4, 5 };

foreach (int element in numbers)

{

Console.Write(element + " ");

}

The syntax of the foreach loop should be fairly obvious from this exam-
ple. We must specify a loop index whose data type matches the type of the
elements in the array. In this case we have specified the loop index to be
an int named element. Following the declaration of the loop index is the
keyword in, and after that is the name of the array. The definition of a
foreach loop can almost be read in ordinary English if the variable names
are chosen sensibly: ‘For each element in the array numbers…’.

The body of the loop will then be executed once for each element in the
array. The output of the loop above is therefore:

1 2 3 4 5

The restriction on element that it is used as a read-only variable means
that we cannot use a foreach loop to change the data in the array. For
example, if we wanted to add 1 to each array element, we might try:

Inside C# objects 97

int[] numbers = { 1, 2, 3, 4, 5 };

foreach (int element in numbers)

{

element++; // Won’t compile: element is read-only

}

The element++ expression attempts to change the value of element how-
ever, and is not allowed by the compiler. The reason for this restriction is that
the value of element is used by the loop to determine how far through the
iteration cycle it has gone. If we changed the value of the loop index, the loop
itself will get confused. If we do want to change the values of the array ele-
ments, we will need to use a standard for loop to iterate over the elements.

4.7 ■ Multidimensional arrays

The arrays we’ve seen above are all one-dimensional arrays, in that they
only have a single subscript or index. In many situations it would be con-
venient to define arrays with two or more indexes. C# supports two types of
multidimensional arrays: the rectangular array and the jagged array. In
what follows, we will discuss mainly two-dimensional arrays, although the
principles apply to arrays with any number of dimensions.

4.7.1 � Rectangular arrays

A rectangular two-dimensional array can be used to represent any data that
can be laid out in a grid pattern, such as the cells in a spreadsheet, the
squares in a crossword puzzle, and so on. The distinguishing feature of a rec-
tangular array is that all rows have the same length.

A simple example is a two-dimensional array in which we can keep track
of the positions of chess pieces on a chessboard. A chessboard consists of 64
squares arranged in an 8-by-8 pattern. In chess jargon, the horizontal rows
on the board are known as ranks and the vertical columns as files. At the
start of a game, the bottom two ranks are occupied by white pieces and the
top two ranks by black pieces, with the middle four ranks being empty.

To store the locations of the pieces on the board, we could define a two-
dimensional rectangular array of strings with eight rows and eight columns.
The syntax for doing this is:

string[,] Chessboard = new string[8,8];

98 From Java to C#

Key point

A foreach loop cannot be used to change the values of the object over which
it is iterating.

We can then populate the array by providing a description of what piece
sits on each square. One way of doing this which allows us to see how to
refer to individual elements within a two-dimensional array is as follows:

Chessboard[0,0] = "White rook";

Chessboard[0,1] = "White knight";

Chessboard[0,2] = "White bishop";

// and so on

Rectangular arrays can also be declared using initialization lists, just as
we did for one-dimensional arrays. Since this method does not explicitly
state the dimensions of the array, we must write the initialization list in a
way that allows the compiler to figure out these dimensions. This is done by
enclosing the set of values that initialize each row within braces, and then
to enclose the whole set of rows within an outer set of braces. For example,
a complete initialization for the starting position on a chessboard could
be written as:

string[,] Chessboard =

{

{

"White rook", "White knight", "White bishop",

"White queen", "White king", "White bishop",

"White knight", "White rook"

},

{

"White pawn", "White pawn", "White pawn",

"White pawn", "White pawn", "White pawn",

"White pawn", "White pawn"

},

{

"Empty", "Empty", "Empty",

"Empty", "Empty", "Empty",

"Empty", "Empty"

},

// Remaining rows in similar fashion

};

Remember that merely declaring an array of reference types does not cre-
ate the objects to which each array element refers. We still need to create a
separate object for each element in the array. In the chessboard example,
we did this by setting each element to a constant string value. For most ref-
erence data types, however, we will need to use the new operator to create
the objects.

For example, suppose we have a company that had a number of divisions,
and each division could hire up to five employees. We could then represent
the employees within the company as a two-dimensional rectangular array
of Employee references:

Inside C# objects 99

const int NumberOfDivisions = 4;
const int MaxEmployeesPerDivision = 5;
Employee[,] EmployeeList =
new Employee[NumberOfDivisions, MaxEmployeesPerDivision];

This code merely allocates 20 (5*4) Employee references, but does not create
any Employee objects. To do that, the easiest way is to use a nested for loop:

for (int d = 0; d < NumberOfDivisions; d++)
{
for (int e = 0; e < MaxEmployeesPerDivision; e++)
{
EmployeeList[d, e] = new Employee();

}
}

Multidimensional arrays may be iterated using a foreach loop in much
the same way as one-dimensional arrays. For two or more dimensions, the
foreach loop acts as a set of for loops nested to the same level as the num-
ber of dimensions in the array.

With two or more dimensions, there could be some uncertainty as to the
order in which the elements will be visited within the loop. The rule is that
the rightmost index is iterated first, with the other indexes from right to left
iterated in that order. For example, we could use a foreach loop to list the
pieces on a chessboard by saying:

foreach (string square in Chessboard)
{
Console.WriteLine(square);

}

This loop is equivalent to writing a nested for loop where the second
array index is iterated by the inner loop and the first index by the outer:

for (int row = 0; row < 8; row++)
{
for (int col = 0; col < 8; col++)
{
Console.WriteLine(Chessboard[row, col]);

}
}

The output from either of these loops begins:

White rook
White knight
White bishop
White queen
…

Clearly the foreach loop is much easier to write, although it imposes the usual
restriction that the array elements are read-only objects within the loop.

100 From Java to C#

4.7.2 � Jagged arrays

In many cases, a rectangular array wastes space since the rows of data that we
wish to store are not all the same length. To deal with such cases, C# provides
the second type of multidimensional array, the jagged or orthogonal array.

As a simple example, suppose we wish to store the list of final marks for sev-
eral classes taught in a computing department at a university. The numbers of
students enrolled in each course will vary, so if we were to store the data in a
rectangular array, we would need to declare the array so that the length of
each row was at least as large as the largest class. Since many universities have
first-year classes with several hundred students and higher-year classes with
only 15 or 20 students, this would obviously waste a lot of memory.

A better solution is to declare a jagged array to store the data:

const uint NumberOfCourses = 10;

uint[][] Marks = new uint[NumberOfCourses][];

We use two separate pairs of brackets after the data type to indicate that
we are declaring a jagged array rather than a rectangular array. The allo-
cation of the array using the new operator specifies only the number of rows
that the array is to contain – the empty pair of brackets at the end is there
to tell the new operator that it is creating a set of rows in a jagged array and
not a one-dimensional array of uints. (To create higher-dimensional arrays,
just add extra pairs of brackets.)

It is not only unnecessary to specify the lengths of the rows in the decla-
ration of a jagged array, it is also prohibited by the compiler. That is, if we
tried to say:

const uint NumberOfCourses = 5;

uint[][] Marks = new uint[NumberOfCourses][50];

we would get a compiler error of ‘Incorrectly structured array initializer’.
The point is, of course, that if we could specify both the number of rows and
the length of each row when we declare the array, we should be using a rec-
tangular array and not a jagged array.

Having declared the array, we now need to construct each row in the
array and fill it with data. There are two ways we can do this: we can use the
new operator again to allocate the elements within each row, or we can use
an initialization list for each row to specify implicitly the size of the row and
the data that should be stored there.

Using the first method, we can write:

Marks[0] = new uint[250]; // First year course

Marks[1] = new uint[175]; // A second year course

Marks[2] = new uint[100]; // Another second year course

Marks[3] = new uint[25]; // A third year course

Marks[4] = new uint[10]; // A harder third year course

Inside C# objects 101

We have allocated space for each row in the array according to how many
students are enrolled in each course. In this way, the compiler reserves exact-
ly the right amount of memory for each row of data with no wasted space.

The second method allows us to set up an initialization list for each row.
This is usually sensible only if the amount of data is small enough to type in
without too much effort. For the classes in the Marks array, it is feasible for
courses 3 and 4 but probably too much work for the other courses. If we
used an initialization list to create row 4 in the array, we could replace the
code above with:

Marks[0] = new uint[250]; // First year course

Marks[1] = new uint[175]; // A second year course

Marks[2] = new uint[100]; // Another second year course

Marks[3] = new uint[25]; // A third year course

Marks[4] =

new uint[] { 57, 63, 21, 45, 90, 23, 77, 28, 95, 0 };

The syntax for the initialization list may look a bit odd, but the easiest
way to remember it is to realize that it is dynamically creating a one-dimen-
sional array of uints which is to be attached as row 4 within the Marks two-
dimensional array. Thus the ‘new uint[]’ part states that we are creating a
one-dimensional array of units, and the elements in braces provide the raw
data that is placed in that array.

4.7.3 � The foreach loop with jagged arrays

The foreach loop cannot be used directly on a jagged array to iterate over
all elements in all rows of the array. The reason is that a foreach loop can
only look one layer deep into the structure over which the iteration is tak-
ing place, so if we try to use foreach on the Marks array, for example, it will
see each row of that array as the elements, and not the individual uints
within each row. We can use a nested foreach to access the elements of
each row. For example:

uint[][] numbers = new uint[3][];

numbers[0] = new uint[] { 1, 2, 3 };

numbers[1] = new uint[] { 4 };

numbers[2] = new uint[] { 5, 6, 7, 8, 9 };

foreach (uint[] x in numbers)

{

foreach (uint y in x)

{

Console.Write(y + " ");

}

}

102 From Java to C#

The outer foreach loop treats each of the three rows in the numbers
jagged array, and the inner loop iterates over each element within each row.
The output is therefore:

1 2 3 4 5 6 7 8 9

Had we attempted to iterate over the entire jagged array with a single
foreach we would get a compiler error:

foreach (uint x in numbers) // Won’t compile

{

Console.Write(x + " ");

}

The first line produces the error: ‘Cannot convert type “uint[]” to “uint”
since the elements within numbers are the individual rows, each of which is
a one-dimensional array of uint.

4.7.4 � The null row problem

We have seen that the C# compiler checks that variables have been assigned
values before they are used for the first time, but these checks do not extend
to jagged arrays. This means that it is possible for one or more rows in a
jagged array to remain uninitialized when the program is run. In the previ-
ous example we could change the number of rows in the array but neglect
to provide the additional initialization lists to create the extra rows:

uint[][] numbers = new uint[5][]; // 5 rows

numbers[0] = new uint[] { 1, 2, 3 };

numbers[1] = new uint[] { 4 };

numbers[2] = new uint[] { 5, 6, 7, 8, 9 };

// Rows 3 and 4 are null

Because we have not provided any initialization for rows 3 and 4 they will
remain null. This will not be a problem unless we try to access these rows
before creating them, as could happen if we tried to list all the elements in
the array using the nested foreach loops above. In this case, the outer loop
would still include rows 3 and 4 as values of x, but when the inner loop
attempted to access the elements of these rows, a runtime error will occur
due to an attempt to read from a null reference.

Inside C# objects 103

Key point

A foreach loop cannot be used to iterate over a jagged array.

Higher dimensions

It is worth giving one more example of a jagged array with more than two
dimensions to see how the syntax generalizes to higher dimensions. We can
declare a three-dimensional jagged array as follows:

uint[][][] threeDims = new uint[3][][];

We need three pairs of brackets after the data type on the left. For the new
operator on the right, we must specify the size of the first dimension only.
Jagged arrays must be created gradually from the top down, so we cannot
try to specify the first two dimensions in the declaration:

uint[][][] threeDims = new uint[3][5][]; // Not allowed!

We can now create the next layer, remembering that the size of each
dimension can be different at the next level:

numbers[0] = new uint[3][];

numbers[1] = new uint[5][];

numbers[2] = new uint[27][];

Finally, for each of these elements, we can create the bottom level:

numbers[0][0] = new uint[55];

numbers[0][1] = new uint[3];

// etc.

Remember also that if the array’s elements are reference variables, we must
also create an object for each reference to refer to, just as we did earlier.

4.7.5 � Passing arrays to methods

An array acts in much the same way as any other reference variable when
passed to a method as a parameter. The array name acts as the reference to
the main body of the array, and the individual elements of the array act like
data fields within a class. This means that if we pass an array by value to a
method, changes we make to the elements of that array will affect the orig-
inal array elements, but we cannot redefine the original array to refer to a
new block of memory. That is, we can define a method which accepts an
array by value:

void PassArrayValue(int[] IntArray)

{

for(int i = 0; i < IntArray.Length; i++)

{

IntArray[i]++;

}

}

104 From Java to C#

We can call this method with the following code:

int[] TestArray = { 1, 2, 3, 4, 5 };

PassArrayValue(TestArray);

foreach (int element in TestArray)

{

Console.Write(element + " ");

}

The PassArrayValue() method will add 1 to each of the array elements, so
the output will be:

2 3 4 5 6

However, if the method tried to reassign the array itself to a new object,
with a different number of elements, we will find that the change will not be
reflected in the code that called it:

void PassArrayValue(int[] IntArray)

{

for(int i = 0; i < IntArray.Length; i++)

{

IntArray = new int[] { 11, 12, 13 };

}

}

If we call this method with the same code as above, the output will now be:

1 2 3 4 5

The reason here is the same as it was in our original example of passing
objects by value: passing TestArray to the method creates a copy of the
TestArray reference and that copy is stored in IntArray. At this point, just
after the method is called, both TestArray and IntArray contain ref-
erences to the same array, so anything we do to the array elements via
IntArray (inside the method) will be reflected in the array referred to by
TestArray back in the calling code.

However, if we reassign IntArray within the method to refer to a brand
new array, we break the link with the original TestArray, and anything fur-
ther we do using IntArray has no effect on TestArray.

If we want to allow the method to assign a new array to TestArray, we
need to pass TestArray by reference to the method:

void PassArrayRef(ref int[] IntArray)

{

for(int i = 0; i < IntArray.Length; i++)

{

IntArray = new int[] { 11, 12, 13 };

}

}

Inside C# objects 105

We can now call this with the test code:

int[] TestArray = { 1, 2, 3, 4, 5 };

Console.Write("Before method call: ");

foreach (int element in TestArray)

{

Console.Write(element + " ");

}

Console.WriteLine();

PassArrayRef(ref TestArray);

Console.Write("After method call: ");

foreach (int element in TestArray)

{

Console.Write(element + " ");

}

Now that we are passing the array reference TestArray itself by ref-
erence, we can reassign it to a new array within the method. The output
from the test code is now:

Before method call: 1 2 3 4 5

After method call: 11 12 13

4.7.6 � The params keyword

C# provides one other way of passing an array to a method that has no coun-
terpart in Java. Using the keyword params we may pass a variable number
of individual (non-array) parameters to a method when calling that method.
In the method definition, this list of individual parameters is grouped
together into a single array. For example:

void PassParams(params int[] ParamsArray)

{

Console.WriteLine("PassParams was passed " +

ParamsArray.Length + " parameters.");

foreach (int element in ParamsArray)

{

Console.Write(element + " ");

}

}

We can call this method with the test code:

PassParams(1, 2, 3);

or with the code:

PassParams(2, 3, 4, 5, 6, 7, 8, 9);

106 From Java to C#

or even with no parameters at all:

PassParams();

Using the first call, the output from PassParams() is:

PassParams was passed 3 parameters.

1 2 3

From the second, we get:

PassParams was passed 8 parameters.

2 3 4 5 6 7 8 9

and from the last:

PassParams was passed 0 parameters.

The params keyword allows a method to be called with any number of
parameters which are merged into a single array within the method. There
are a couple of restrictions on its use however.

The first condition is a purely practical one. Only one params array is
permitted within any single method’s parameter list, and that params array
must be the last parameter in the list. That is, we can add extra parameters
to the PassParams() method above provided they are inserted before the
params array:

void PassParams(Employee e, int f,

params int[] ParamsArray)

{

// other code

}

Changing the placement of the params array will cause a compiler error:

// Won’t compile: params not last parameter

void PassParams(Employee e, params int[] ParamsArray,

int f)

{

// other code

}

This restriction is because the compiler could not tell where the ParamsArray
parameter list ended and the ordinary variables began. If the params list is at the
end, then all other parameters can be matched first and everything that is left
over must belong to the params array.

The restriction to a single params array is for a similar reason. If we had
two or more params arrays we couldn’t tell where one stopped and the next
one started.

The final restriction is that any parameters passed as part of a params
array must be passed by value: we cannot use the ref or out keywords with
params. However, this means that any group of reference variables that are

Inside C# objects 107

passed together as a params list can still have their internal data fields mod-
ified within the method. For example:

void PassArrayParams(params int[][] ParamsArray)

{

Console.WriteLine("PassArrayParams was passed " +

ParamsArray.Length + " parameters.");

ParamsArray[0][0] = 5555;

}

Here we define a params list that contains int[] arrays as its elements.
Although each individual array must be passed by value as it is part of a
params list, the elements within each array may still be altered, which is
what we do within the method. We can now call this method with the code:

int[] array1 = { 1, 2, 3 };

int[] array2 = { 4, 5, 6, 7 };

PassArrayParams(array1, array2);

foreach (int element in array1)

Console.Write(element + " ");

We pass two arrays as parameters to PassArrayParams(), so that within
the method, array1 gets mapped to ParamsArray[0] and array2 to
ParamsArray[1]. When we set ParamsArray[0][0] to 5555 within the
method, this should change the contents of array1 to { 5555, 2, 3 }. This is
verified by the output from the test code:

PassArrayParams was passed 2 parameters.

5555 2 3

The method says it has been passed two parameters rather than seven
since it counts the arrays array1 and array2 as the individual parameters
and doesn’t look inside them.

4.8 ■ Enumerations

One principle of good programming is that programs should use meaningful
names for all variables and constants. In particular, we should not use ‘bare’
numbers such as 12 or 127 in statements, since it is very difficult to figure
out what these numbers represent when reading over a code listing.

C# provides the const for defining names for single constants, which is
described in more detail in Chapter 5. However, frequently we have a num-
ber of related constants so it would be more convenient if we could group
them together under a common heading.

The enumeration allows us to do just that. C and C++ programmers may
be familiar with the enum in those languages, but Java has no equivalent. As
in C, C# defines enum as a keyword that allows us to create a list of related
constants. As an example, we can return to the Employee class that was

108 From Java to C#

introduced in Chapter 2. The code (minus the comments) is reproduced
here for convenience, with a Main() method added at the end so the class
can be run as a complete program for illustration.

1. using System;

2.
3. public class Employee

4. {

5. private string name;

6. private decimal salary;

7. private PositionTitle position;

8.
9. public enum PositionTitle

10. {

11. ManagingDirector = 0,

12. Director = 1,

13. Accountant = 2,

14. Programmer = 3

15. }

16.
17. public string Name

18. {

19. get

20. {

21. return name;

22. }

23. set

24. {

25. name = value;

26. }

27. }

28.
29. public decimal Salary

30. {

31. get

32. {

33. return salary;

34. }

35. set

36. {

37. if (value <= 0.0M)

38. {

39. Console.WriteLine("Error: salary must be positive");

40. }

41. else

42. {

Inside C# objects 109

43. salary = value;

44. }

45. }

46. }

47.
48. public PositionTitle Position

49. {

50. get

51. {

52. return position;

53. }

54. set

55. {

56. position = value;

57. }

58. }

59.
60.
61. public override string ToString()

62. {

63. return Name + " (" + Position + ")" + ": £" + Salary;

64. }

65.
66. public static void Main(string[] args)

67. {

68. Employee employee = new Employee();

69. employee.Name = "Tess Trueheart";

70. employee.Position = PositionTitle.Director;

71. employee.Salary = 40000;

72. Console.WriteLine(employee.ToString());

73. }

74. }

An enum is defined on lines 9 to 15, where we have defined several job
titles. The enum provides a way of associating meaningful names with inte-
ger values so that the names can be used within the program.

An enum effectively defines a new data type which can be used to declare
variables and define method parameters. We’ve used the PositionTitle
type to declare a data field on line 7 and a property referring to this data
field on line 48.

The value of using an enum instead of a bare (and usually meaningless)
number can be seen on line 70, where we assign a position to a new employ-
ee. The employee’s Position property is assigned a value by using the
Director field from PositionTitle. Note that we must always prefix a spe-
cific field from an enum with the name of the enum type (PositionTitle in
this case). If we wished to refer to the PositionTitle enumeration from

110 From Java to C#

outside the Employee class (assuming the enum itself is declared as public),
the class name would also need to form part of the prefix. For example, if
employee had been declared in a different class, we would need to say:

employee.Position = Employee.PositionTitle.Director;

to assign a Position.
In the code above, we have assigned specific values to each field in

PositionTitle (lines 11 to 14), but in fact this is not always required. If we
had omitted the numerical assignments, as in:

public enum PositionTitle

{

ManagingDirector,

Director,

Accountant,

Programmer

}

then the compiler will provide numerical values for the fields, starting at zero
by default. If we want the enum’s fields to have consecutive values that start
at a different value, we need to give the value only for the first field. So if we
wanted PositionTitle’s fields to begin at 10 instead of zero, we could say:

public enum PositionTitle

{

ManagingDirector = 10,

Director,

Accountant,

Programmer

}

The values assigned to individual fields in an enum need not be consecu-
tive or even unique. For example, we could define an enum where the fields
have the names of the months and the value attached to each field is the
number of days in that month:

public enum MonthDays

{

Jan = 31, Feb = 28, Mar = 31, Apr = 30,

May = 31, Jun = 30, Jul = 31, Aug = 31,

Sep = 30, Oct = 31, Nov = 30, Dec = 31

}

As can be seen in Employee’s ToString() method (line 61), an enum field
can be included as part of a string. The value that is included in the string
is the name of the field and not the numerical value. The output from the
above program is thus:

Tess Trueheart (Director): £40000

Inside C# objects 111

If we do need the numerical value of an enum variable, we can put an
(int) cast in front of it. Changing line 63 to:

return Name + " (" + (int)Position + ")" +

": £" + Salary;

results in the following output:

Tess Trueheart (1): £40000

Although an enum can provide names that are easier to read, we must
remember to include this (int) cast whenever an enum field is used in a sit-
uation (such as an array index) where a numerical value is required.

An enum variable is a value type, so it behaves like a C# primitive type
when passed to and from methods.

4.9 ■ Variable scope

Readers with some programming experience in Java should be familiar with
the concept of the scope of a variable – the fact that a given variable only
exists in certain sections of a program. Any attempt to use a variable out-
side its scope will be flagged as an error by the compiler.

In order to avoid these compiler errors and make proper use of variable
declarations, it is important to understand the rules for scoping imposed by
C#. First, we need to distinguish between two main types of variables: local
variables and class data fields.

4.9.1 � Local variables

Any variable in a C# program that is not a class data field must be some sort
of local variable. Such variables include things like method parameters,
variables declared within methods, and return values from methods. These
variables all have a limited life-span. Some of them endure for the duration
of a method call; others exist only within an internal statement or loop. We’ll
explore the rules for declaring and using these local variables here.

The simplest type of local variable is one that is declared on its own with-
in a method, such as locVar in the method LocalTest1():

void LocalTest1()

{

// preceding code

int locVar;

locVar = 42;

// following code

}

112 From Java to C#

The scope of locVar begins at its point of declaration and extends to the
end of the method. In this example, it would be an error to refer to locVar
in any of the ‘preceding code’, but legal to refer to it in the ‘following code’.

In fact, this sort of local variable is just a special case of a more general rule.
Any compound statement in C# can contain its own set of local variables,
where the scope of a variable within a compound statement extends from the
point of declaration of the variable to the end of the compound statement.

A compound statement is any set of statements enclosed between braces.
The body of a method is just one example of a compound statement. The
bodies of loops and if statements are also compound statements, and can
therefore contain their own local variables. For example:

1. void LocalTest2()

2. {

3. int locVar = 42;

4. if (locVar == 42)

5. {

6. int tempVar = 1;

7. locVar += tempVar;

8. }

9. else

10. {

11. int elseVar = 3;

12. locVar += elseVar;

13. }

14. }

This time, LocalTest2() contains three separate scopes. The first scope
covers the entire body of the method. The variable locVar is in this scope
and since it is declared right at the start of the scope, it is in scope for the
entire method.

The second scope consists of the body of the if statement and covers
only lines 6 and 7. The variable tempVar exists only within this scope so that
it is an error to attempt to use it in the else block or anywhere else within
LocalTest2() that is outside the braces enclosing the body of the if state-
ment. Similarly, the third scope covers lines 11 and 12 and is restricted to
the body of the else clause.

The if and else scopes are nested inside the overall method scope, so
that any variables declared in the method scope are also valid within the two
inner scopes. Any variables declared inside a nested scope must have dif-
ferent names from all variables declared in the enclosing scope. For exam-
ple, we might try this:

void LocalTest3()

{

int locVar = 42;

if (locVar == 42)

Inside C# objects 113

{

int tempVar = 1;

int locVar = 12; // Cannot duplicate variable name

locVar += tempVar;

}

}

This generates a compiler error because we have attempted to declare a
variable locVar inside the if statement that has the same name as a vari-
able in the enclosing scope. However, it is legal to have two variables with
the same name provided that they exist in non-overlapping scopes. For
example, we could rewrite LocalTest2() and use the same name for the
two inner variables, one within the if statement and the other within the
else clause:

void LocalTest4()

{

int locVar = 42;

if (locVar == 42)

{

int tempVar = 1;

locVar += tempVar;

}

else

{

int tempVar = 3;

locVar += tempVar;

}

}

Here there is no confusion for the compiler since by the time we have
reached the else clause, the tempVar declared in the if statement has fall-
en out of scope and no longer exists.

The for loop also allows a variable to be declared within its first line:

for (int i = 0; i < 10; i++)

{

Console.WriteLine("Array element " + i +

" has value " + array[i]);

}

The variable i is declared within the opening line of the for statement,
and its scope extends through the rest of that line (so that we can refer to it
in the termination condition i < 10 and the update expression i++) and
also throughout the body of the loop (so we can use i to refer to an array
index within the loop). However, any attempt to use i outside the loop will
cause a compiler error:

114 From Java to C#

for (int i = 0; i < 10; i++)

{

Console.WriteLine("Array element " + i +

" has value " + array[i]);

}

Console.WriteLine("Final value of i = " + i); //Error

The final WriteLine() statement attempts to access i after it has fallen
out of scope.

4.9.2 � Method parameters

Method parameters act in much the same way as other local variables. Their
scope begins when the method is called and lasts until the method finishes.
The only real difference between method parameters and other types of
local variables is that parameters must be initialized by values passed into
the method.

Reference parameters (those prefixed by either the ref or out keyword)
work in a special way, however, and we will consider these in more detail
below when we discuss the stack and heap in memory management.

4.9.3 � Class data fields

A class data field is a variable that is declared as a member field of a class. In
the Employee class, for example, we have declared data fields such as name (a
string) and salary (a decimal). Whenever a new Employee object is cre-
ated, it gets its own copies of all data fields declared within the Employee class.
The scope of a class data field covers all methods within that class. We could
add a method to the Employee class that prints out the employee’s name:

public void PrintName()

{

Console.WriteLine("Employee’s name: " + name);

}

Since PrintName() is a member of the Employee class, we can access the
name data field directly, without having to go through a property or other
method, even if name itself is declared as private.

Class data fields do not follow the same scoping rules as local variables,
primarily because it is legal to declare a local variable that has the same
name as a class data field (although it is usually not good programming prac-
tice to do so, since although the compiler can figure out which variable we
are referring to, humans often can’t). Within the Employee class, for exam-
ple, we could modify the PrintName() method to use a local string called
name, which has the same name as the class data field:

Inside C# objects 115

public void PrintName()

{

string name = "Employee’s name: ";

Console.WriteLine(name + this.name);

}

The local variable name is said to override the class data field name
because it essentially eclipses it within the method. As this example shows,
though, it is still possible to access the class data field by using the this key-
word, which we will describe in more detail in Chapter 5. For now, all we
need to know about it is that it refers to the Employee object that called the
method. So we might call PrintName() in the following context:

Employee director = new Employee();

director.Name = "Otis P. Filigree";

director.PrintName();

Within PrintName(), this refers to the director object that called the
method, so this.name would have the value "Otis P. Filigree", while
the unadorned name variable would contain the string Employee’s name:.
The output from the PrintName() method would therefore be as expected:

Employee’s name: Otis P. Filigree

The reason why this facility of C# can be so confusing to human readers
of code is that if no local variable with the same name as a class data field
exists within a method, then it is legal to refer to the class data field with-
out putting a ‘this.’ in front of it. That is, in the original version of
PrintName():

public void PrintName()

{

Console.WriteLine("Employee’s name: " + name);

}

the name variable is actually the same as this.name since no local variable
called name has been declared.

If we know that a programmer is in the habit of overriding class data fields
with local variables having the same name, then in a long method it can be
difficult to tell whether a variable without a this in front of it refers to a
local variable or class data field. To make things even more confusing, the
local variable that overrides a class data field need not even be the same
data type. We could, for example, have declared the local name variable in
PrintName() to be an int, while the class data field name is a string.
Hopefully it should be obvious from these examples that overriding a class
data field with a local variable of the same name is not good programming
practice and should be avoided if at all possible.

116 From Java to C#

4.10 ■ Memory management in variable declarations

We have already seen that variables can be divided into two main types:
value variables and reference variables. The memory space required for a
value variable is allocated at the same time as the variable itself is declared,
as in:

int x;

This declaration allocates the 4 bytes required for an int and sets up the
variable x ready for use.

The declaration of a reference variable, on the other hand, only allocates
memory for the address of the actual object to which the variable refers. A
declaration such as:

Employee director;

allocates enough memory (typically 4 bytes since most memory addresses
fit into an int) to store a memory address, but does not allocate any mem-
ory for the Employee object to which the director variable can ultimately
refer. The creation of the object requires the new operator:

director = new Employee();

For a complete understanding of how these two types of variables work,
we need to investigate how the CLR (Common Language Runtime, intro-
duced in Chapter 1) manages the computer’s memory as a program is run.

The lifetimes of both types of variables, value and reference, are governed
by the scope rules we have just described. Since all variables must be
declared either in the Main() method with which all C# programs must
start, or in one of the methods called by Main(), all variables have a limit-
ed scope. Those variables whose scope lasts until the end of the Main()
method will exist as long as the program is running, while others will have
a more transient lifetime.

To try to uncover some pattern in the existence of variables, we need to
make a crucial observation. Suppose we have a simple class called StackDemo
(the significance of the name will become apparent shortly), defined as follows:

1. class StackDemo

2. {

3. int x, y;

4.
5. public void Init()

6. {

7. string input;

8. Console.Write("Enter x: ");

9. input = Console.ReadLine();

10. char firstChar = input[0];

11. if (Char.IsNumber(firstChar))

Inside C# objects 117

12. {

13. int tempX = int.Parse(input);

14. x = tempX;

15. }

16. Console.Write("Enter y: ");

17. input = Console.ReadLine();

18. firstChar = input[0];

19. if (Char.IsNumber(firstChar))

20. {

21. int tempY = int.Parse(input);

22. y = tempY;

23. }

24. }

25.
26. public void SwapXY()

27. {

28. int temp = x;

29. x = y;

30. y = temp;

31. }

32.
33. public override string ToString()

34. {

35. return "x = " + x + "; y = " + y;

36. }

37.
38. static void Main(string[] args)

39. {

40. StackDemo demo = new StackDemo();

41. demo.Init();

42. demo.SwapXY();

43. Console.WriteLine(demo.ToString());

44. }

45. }

Starting in Main(), let’s follow through the program as it runs and see
which variables are defined at each point. As Main() starts on line 40, the
first variable to be declared is demo, which will remain in existence until the
end of Main() and hence the end of the program. The variable list after line
40 is therefore:

demo

Leaving aside the call to new StackDemo() for now (this is an important
step, but we’ll get to it in a minute), the next thing that happens is a call to
Init() on line 41. Looking at the code for Init() on lines 5 to 24, we see that
a local variable input is declared on line 7, so we now have the variable list:

118 From Java to C#

demo input

The job of Init() is to read in two values for the ints x and y. We have
introduced a crude check that the user has actually typed in a number (this
could be done better by handling exceptions – see Chapter 7). After we read
in and store the value entered by the user on lines 8 and 9, we extract the
first character in the string on line 10. For this, we introduce a new local
variable, firstChar, so our variable list now looks like:

demo input firstChar

On line 11, the if statement uses the library method IsNumber() to test
if firstChar is one of the digits from 0 to 9. If it is, IsNumber() returns
true, and the statements inside the if will be executed.

The body of the if introduces a new scope, and within that scope, we
declare the variable tempX. After line 13, the variable list is now:

demo input firstChar tempX

After the if finishes on line 15, its scope expires, and therefore tempX dis-
appears as well, so the list contracts to:

demo input firstChar

When the value for y is read in, the process repeats itself, with the vari-
able list first expanding to:

demo input firstChar tempY

and then contracting back after the second if statement’s scope ends:

demo input firstChar

When the Init() method finishes on line 24, its scope ends as well, which
means that all variables created within that scope disappear. This means that
we lose firstChar and input, so the variable list is now back to:

demo

We are now back in Main() about to call the SwapXY() method which
swaps the values of x and y. Going into this method (lines 26 to 31), we cre-
ate a local variable temp, so the variable list is now:

demo temp

When the method finishes, its scope ends and temp disappears, so we are
back to:

demo

The final call to ToString() on line 43 doesn’t create any more variables,
so the program itself gracefully ends and demo expires at the end.

Inside C# objects 119

4.10.1 � The program stack

The key point to notice about all of this is that each time a variable is added
to the list it always gets added at the right-hand end of the list, never in the
middle. Similarly, whenever a variable goes out of scope and gets deleted
from the list, it is always the rightmost variable that gets deleted first.
Another way of saying this is that it is a last in, first out system. If you have
learned some elementary data structures in your programming career, you
will recognize this as the definition of a stack.

We don’t need to go into any detail about the nature of a stack other than to
note that it is a linear data structure (its elements can be stored in a one-dimen-
sional array, for example). To add, or push, data onto a stack we always add it to
one end, and to remove, or pop, data from the stack, we always remove the data
from the same end to which it was added. Only that one end of the stack is ever
accessible – other data buried in the middle cannot be reached until enough ele-
ments have been removed from the end for them to become exposed.

This is in fact just how local variables are stored in memory. A block of
memory is reserved as a program stack when the program starts, and vari-
ables are added to or removed from the stack as the program runs, in exact-
ly the way outlined in the example above. This makes memory management
particularly easy and efficient for the CLR, since all it has to keep track of is
the memory location where the last variable was added to the stack. Items are
always added or removed at that point. The only thing that can ever go wrong
with the stack (in principle) is that the amount of memory allocated to it can
fill up, resulting in a stack overflow error. This sort of error is quite common
in incorrectly written recursive programs, where an infinite chain of method
calls results in an infinite number (or at least as many as can be created
before the machine runs out of memory) of local variables being created.

4.10.2 � The program heap

Memory management would be particularly simple if all variables were local,
value variables, since the stack is all we would need to look after them. The
picture is complicated by the arrival of reference variables, however. To see
why this is the case, we need to examine exactly what happens when a ref-
erence variable is declared and used.

Let us consider a new class called HeapDemo, which we will build up grad-
ually. We will include this class in the same project as the Employee class so
that we can create Employee objects within it:

class HeapDemo
{
static void Main(string[] args)
{

Employee director;
director = new Employee();

}
}

120 From Java to C#

All that Main() does so far is to declare an Employee reference variable
called director and then create an Employee object for it to refer to. The
declaration of director, as we’ve seen above, will take place on the stack,
but director is only a reference. The actual Employee object itself is cre-
ated with the new operator on the next line. This requires that more mem-
ory is allocated somewhere, and that the address of this memory is loaded
into director. Where is the object itself actually created? Can it be placed
on the stack too?

To see why this might be a problem, let’s change the HeapDemo class a bit:

class HeapDemo

{

Employee director;

public void Init()

{

director = new Employee();

director.Name = "Neumann K. Glottis";

director.Salary = 60000;

director.Position = Employee.PositionTitle.Director;

}

static void Main(string[] args)

{

HeapDemo demo = new HeapDemo();

demo.Init();

Console.WriteLine(demo.director.ToString());

}

}

We’ve now made director a class data field rather than a local variable
within Main(). We create a new HeapDemo object in Main() and then call
Init() to create director. Since demo is declared within Main() its scope
runs for the duration of the program, and since director is now a class data
field, it will exist as long as the object that contains it (demo) exists, which
in this case is also the entire program.

But now look at what happens inside the Init() method. We create the
Employee object inside the method and assign its data fields. If this new
object were placed on the stack in the same way as a local variable, its scope
would be limited to the scope of the Init() method, which means that the
object would be deleted when the Init() method finished. If that happened,
the attempt to call the ToString() method for director in the last line of
Main() would fail, since the object to which director refers would no
longer exist. However, if we run this program, it works perfectly and pro-
duces the output:

Neumann K. Glottis (Director): £60000

Inside C# objects 121

Obviously objects created with the new operator are not placed on the
stack. In fact, there is a separate area of memory called the heap which is
used for all objects created using new. Anything created on the heap is exempt
from the scoping rules we saw earlier – once created, it will remain in exis-
tence until it is no longer needed. (In fact, in C++, objects created with new
remained in existence even after they were needed, which is a serious prob-
lem in that language. Java and C# both have automatic garbage collection
which cleans up unwanted objects, but more on that later in this chapter.)

The heap, as its name implies, is a rather less orderly arrangement of
memory than the stack. The reason for this is that there is no way to pre-
dict the order in which objects are added to or deleted from the heap. Each
time the new operator is used, a block of memory is allocated on the heap
for the object that is being created. The object must be retained until all ref-
erences to it from within the program are removed. As we have seen in
examples earlier in this chapter, it is possible for a single object to have sev-
eral references pointing at it, so the object itself cannot be deleted until all
these references to it are removed. The order in which references to objects
are broken is not an orderly process like it is for variables created on the
stack, so the CLR has to do a lot more work to keep the heap in order.

To get a better feel for how the stack and heap work together, we’ll return
to a couple of examples we did earlier in this chapter when discussing pass-
ing by value and reference. Recall the sample method which takes an
Employee as a parameter and increases the salary:

void EmployeeValue(Employee e)

{

e.Salary += 1000;

}

We called this method with the code:

Employee employee;

employee = new Employee();

employee.Salary = 5000;

EmployeeValue(employee);

Console.WriteLine("Salary is " + employee.Salary);

Let us trace the stack and heap with the aid of some diagrams as this code
runs. First, we declare a reference to an Employee object, which gets placed
on the stack (Figure 4.1).

122 From Java to C#

Next, we use new to allocate some memory on the heap for a new
Employee object, and load the address of this object into the employee vari-
able (Figure 4.2).

After setting the salary to 5000, we call EmployeeValue() and pass the
employee reference as a parameter to this method. Within EmployeeValue(),
the employee reference gets copied into the local method parameter e, which is
placed on the stack. Since the value of e is a copy of the value of employee, both
e and employee refer to the same Employee object on the heap (Figure 4.3).

Inside C# objects 123

Stack

employee

Heap

Figure 4.1 State of the stack and heap after the declaration of a reference to an
Employee object. The reference at this point is still null

new Employee()

Stack

employee

Heap

Figure 4.2 State of the stack and heap after the creation of the Employee object

new Employee()
salary = 5000

Stack

employee

Heap

e

Figure 4.3 State of the stack and heap after copying the employee reference into the
e reference

Using the e reference, the salary of the Employee object is increased by
1000 within EmployeeValue(). After the method ends, the scope contain-
ing e also ends, so this variable gets removed from the stack (Figure 4.4).

We can see that the net result is that the object referred to by employee has
had its salary changed to 6000, which is what is printed out in the last line.

Now let us see what happens when the employee reference variable is
itself passed by reference to a method. The example we did earlier to illus-
trate this situation used the method EmployeeNewRef():

void EmployeeNewRef(ref Employee e)
{
e = new Employee();
e.Salary = 6000;

}

This method was called with the code:

Employee employee = new Employee();
employee.Salary = 5000;
EmployeeNewRef(ref employee);
Console.WriteLine("Salary is " + employee.Salary);

The situation after the employee reference has been declared and allo-
cated to a new Employee object (and its salary set to 5000) is the same as
in the previous example (Figure 4.5).

124 From Java to C#

new Employee()
salary = 6000

Stack

employee

Heap

Figure 4.4 State of the stack and heap after the method EmployeeValue() has finished

new Employee()
salary = 5000

Stack

employee

Heap

Figure 4.5 State of the stack and heap after the declaration of the reference and creation
of the Employee object

This time, the employee reference is passed to EmployeeNewRef() by ref-
erence using the ref keyword. This means that the parameter e within the
method refers to employee itself, and not to the actual new Employee()
object on the heap. The situation after the method call starts to look as
shown in Figure 4.6.

When we run the code inside EmployeeNewRef(), the first line assigns a
new Employee object to e, but since e is a reference to employee, this results
in employee being assigned to the new object on the heap (Figure 4.7).

After the EmployeeNewRef() method ends, the e variable falls out of
scope and is deleted from the stack, but the heap remains unaltered, so we
end up with the situation shown in Figure 4.8.

Inside C# objects 125

new Employee()
salary = 5000

Stack

employee

Heap

e

Figure 4.6 State of the stack and heap after employee is passed by reference to
EmployeeNewRef()

new Employee()
salary = 5000

Stack

employee

Heap

e

new Employee()
salary = 6000

Figure 4.7 State of the stack and heap after employee is assigned to a new object
inside EmployeeNewRef()

The employee reference has been reassigned to a new area on the heap,
and the original Employee object is still there, but has no references point-
ing to it. Memory on the heap that cannot be reached by any references cur-
rently active within the program are marked as ‘garbage’ by the CLR, and
the next time the garbage collector runs, it will free up this memory by
deleting the Employee object. (In C++, which has no garbage collector, this
situation would be a memory leak, since in C++ it is the programmer’s
responsibility to delete any unused memory ‘by hand’. Java and C# both
have automatic garbage collection, however, so this problem should not
occur in those languages.)

4.11 ■ Garbage collection and the managed heap

As we mentioned in the previous section, C# provides automatic garbage
collection. We won’t go into complete details of how garbage collection
works here since there are some quite subtle points involved, but it’s impor-
tant to understand the basics.

The first point to keep clear is that the garbage collector only deletes
objects from the heap, never the stack. Because of the way the stack works,
any variable that is stored on it must still be in scope, so the only way a vari-
able should ever be deleted from the stack is when the scope to which it
belongs ends.

As we implied earlier, the garbage collector keeps track of which objects
on the heap still have one or more active references pointing at them. The
bottom line is that any object on the heap which cannot be reached by a ref-
erence variable that is currently in scope will be marked for deletion. In the
last example above, the first Employee object is such an object.

You might be worried that such a mechanism would delete data that you
will need later in the program, but if you think about it, that cannot happen.
The only way we can access an object on the heap is if we know its mem-
ory address, and the only place we can store that address is in a reference
variable. Once all the references to a given object have been deleted or re-

126 From Java to C#

new Employee()
salary = 5000

Stack

employee

Heap

new Employee()
salary = 6000

Figure 4.8 State of the stack and heap after the method EmployeeNewRef() has
finished

assigned, there is no record anywhere in the program to the memory
address of that object, so there is no way we could ever retrieve it again even
if we wanted to. There is therefore no risk in deleting it from the heap.

Besides deleting unreferenced objects, the C# garbage collector also
manages the heap. As we noted earlier, there is no requirement that mem-
ory be allocated in an organized fashion on the heap – all that is needed is
that a block of memory of the right size is found somewhere on the heap and
allocated for a new object. Heaps that work by simply keeping a list of which
blocks of memory are available and allocating the first block they find to
new objects are called unmanaged heaps. After a program has been running
for a while, such heaps usually become fragmented, with allocated and un-
allocated blocks of memory scattered all over the heap area. Searching such
heaps in an attempt to find a suitable location to allocate a new object can
be time-consuming, thus slowing down a program.

The managed heap used by the CLR not only contains a garbage collec-
tor but a ‘trash compactor’. Each time the garbage collector runs, it also
compresses the remaining objects to one end of the heap’s memory area, so
that there are no gaps between objects. Although this compacting procedure
takes time, experiments with running programs show that there is a signifi-
cant performance gain over an unmanaged heap, since the search time for
allocating new memory is reduced by more than the extra time required to
run the compactor.

Since the compactor actually moves objects in memory, it also has to
update all the references that point at these objects. All of this happens
invisibly from the programmer’s point of view – a reference variable may
actually change the physical memory location that it stores, but as far as we
are concerned, we can still be confident that it will always refer to the same
object in the heap, no matter where that object may be.

4.12 ■ Structs

We’ve seen that C# provides a selection of primitive data types such as int,
float and so on, all of which are value variables, and the class data struc-
ture which allows the programmer to create reference data types. From the
sections in this chapter, we’ve also seen that value and reference data types
each have their own pros and cons when it comes to program efficiency.

A value variable is handled more efficiently in memory, since it is cre-
ated on the stack when it is declared and simply popped off the stack when
its scope expires. No complicated memory management or garbage collec-
tion is required. This very simplicity, however, restricts the areas in a pro-
gram where value variables can be used.

A reference variable requires a separate object to be allocated on the
heap, which is more costly in time since it takes processing power to man-
age the heap and perform garbage collection. Reference variables, however,
can be created at any time and are not constrained by the scope in which

Inside C# objects 127

they are allocated. They remain in existence as long as at least one ref-
erence points to them.

So far, all the value variables we’ve seen are primitive data types capable of
representing a single numerical quantity or Boolean value. In Java, this is the
end of the story – we can have either primitive value data types similar to
those we have studied in C#, or we can have reference data types (objects)
created from classes. C#, however, provides an extra data type: the struct.

A struct is a compound data type similar in many ways to a class, but
it is intrinsically a value data type. The main reason structs exist is to pro-
vide a simple alternative to the class, efficient in their use of memory,
when we merely wish to group several primitive data types together. Since
a struct is a value type, it behaves in the same way as the primitive value
types we’ve studied before. In particular, a struct variable can be declared
without the use of the new operator, is allocated on the stack, and exists only
for the duration of the scope in which it is defined.

A struct is declared in much the same way as a class, simply by replac-
ing the class keyword with struct. Although a struct is allowed to be as
complex as we like, with many data fields and methods, building a struct
with that level of complexity really defeats its purpose. If we want such a
complex data type, we should be using a class instead.

As a simple example of a struct, suppose we want a relatively simple
data type for storing the dimensions and location of a simple geometric fig-
ure, such as a rectangle. To specify the location and size of a rectangle
(assuming it is oriented with its sides parallel to the horizontal and vertical
axes), all we need are its length (vertical size), width (horizontal size), and
coordinates of its upper left corner. If we are thinking of displaying the rec-
tangle on a computer display, all these values will be non-negative integers,
so we can use the uint data type to represent them. A suitable struct dec-
laration for a rectangle would be:

struct Rectangle

{

public uint Length;

public uint Width;

public uint CornerX, CornerY;

}

We have declared all the data fields as public since the purpose of a struct
is just to group together a few related variables for convenience in handling,
rather than to form a class as part of a grand object-oriented design.

128 From Java to C#

Key point

A struct is a value data type which is allocated on the stack, not the heap.

We could, of course, equally well declare a class for rectangles by just
replacing struct by class, so what is the point of introducing the struct
just because it is a value variable? The main differences between a class and
a struct come in how it is declared and passed as a parameter to a method.

First, let’s consider a simple declaration:

Rectangle box;

box.Length = 20;

box.Width = 10;

box.CornerX = 100;

box.CornerY = 240;

Notice the absence of the new operation. The first line declares a Rectangle
object and allocates the memory for all of its data fields. However, a simple
declaration such as this does not initialize the data fields with the box object.
This means that we cannot use any of the data fields in box until we assign
values to them, as we have done here. For example, if we tried:

Rectangle box;

uint boxWidth = box.Width;

we would get a compilation error, since the declaration has not initialized
the Width field in the box object.

We can initialize all the data fields in a struct by using the new operator,
just as with a class. The following will compile without errors:

Rectangle box = new Rectangle();

uint boxWidth = box.Width;

Despite the similarity in appearance to the allocation of a class object, the
use of new for initializing a struct object does not use the heap at all. The
sequence of events is as follows.

The declaration Rectangle box creates the box object and allocates
memory for all its data fields, but does not initialize these fields. Calling new
Rectangle() does not allocate any further memory since box has already
been allocated on the stack. All it does is initialize all the data fields to their
default values (zero for all numerical data types).

When we assign one struct to another, or pass a struct to a method, a full
copy of the struct’s data fields is made. This is in contrast to an object
declared from a class, where an assignment only copies the reference from
one variable to the other. For example, suppose we expand the code above
by introducing a second Rectangle and do an assignment, as in:

Inside C# objects 129

Key point

An object can be created from a struct without using the new operator, but
its data fields must be initialized before they can be used.

Rectangle box;

box.Length = 20;

box.Width = 10;

box.CornerX = 100;

box.CornerY = 240;

Rectangle otherBox;

otherBox = box;

box.Length = 500;

Console.WriteLine(otherBox.Length);

As we’ve seen in our earlier examples using classes, if Rectangle had
been defined as a class instead of a struct, the final line would write out the
value 500, since the assignment of box to otherBox would make the two
variables refer to the same object on the heap. Since Rectangle is a struct,
however, the assignment statement copies all the data fields from box into
the corresponding data fields in otherBox, making the two objects com-
pletely separate entities, independent of each other. When we change box’s
Length to 500, this doesn’t affect the Length of otherBox, so the final line
prints out the value 20.

The same logic applies if we pass a struct to a method – the parameter
within the method receives a complete copy of the struct that was passed in,
and any changes made to this copy within the method are lost when the
method ends.

The main advantage of structs is that they are faster to allocate and de-
allocate, since they avoid the managed heap. However, the fact that structs
are copied in full when passed to methods can cause quite a performance hit
if a struct contains a lot of data fields, or if many method calls are made. If
the struct is not changed within the method, we can avoid the copying by
passing the struct as a ref parameter.

Before we leave structs, it is worth pointing out that all the ‘primitive’ data
types in C# are actually structs themselves. The simple names such as int,
float and so on for such primitive types are actually aliases for the full struct
name. For example, an int is an alias for System.Int32, a float is an alias
for System.Single and so on. In practice, you should never need to know the
actual struct name for the primitive data types, but looking up the primitive
name in the C# documentation will tell you its System struct equivalent.

■ Summary

In this chapter, we have taken a deeper look at how C# stores and handles
variables and objects. We have also introduced a few more language features
such as arrays, enumerations and structs.

It is important to understand the methods by which C# handles data in
order to avoid obscure bugs and runtime errors. However, Java program-
mers should find that C#’s methods for many of these things are essentially
the same as those of Java.

130 From Java to C#

Inside C# objects 131

Exercises

4.1 Trace in detail what happens in memory when each of the following code frag-
ments is run. You should consider each operation separately, and display the
final values of all variables. You may find it helpful to draw a diagram to display
each variable and its current value as a specific location in memory.
(a) int a, b;

a = b = 55;
a += 33;

(b) void AddNumber(int x)
{
x += 33;

}

int a = 55;
AddNumber(a);

(c) void AddRefNumber(ref int x)
{
x += 33;

}

int a = 55;
AddNumber(ref a);

(d) int ReturnNumber(int x)
{
return x += 33;

}

int a = 55;
a = ReturnNumber(a);

(e) void OutNumber(out int x)
{
x = 55;

}

int a;
OutNumber(a);

4.2 Repeat the previous exercise for the following code fragments, involving reference
variables. Use the same Employee class that was used in the chapter for exam-
ples. In this exercise, make sure you distinguish between memory allocated on the
stack and on the heap.
(a) Employee a, b;

a = new Employee();
b = a;

(b) Employee a, b;
a = new Employee();
b = new Employee();

132 From Java to C#

b = a;
a.Salary = 6000;

(c) Employee a, b;
b = a = new Employee();
a.Salary = 6000;

(d) void NewSalary(Employee x)
{
x.Salary = 6000;

}

Employee a = new Employee();
NewSalary(a);

(e) void NewSalary(Employee x)
{
x = new Employee();
x.Salary = 6000;

}

Employee a = new Employee();
NewSalary(a);

(f) void NewRefSalary(ref Employee x)
{
x.Salary = 6000;

}

Employee a = new Employee();
NewRefSalary(ref a);

(g) void NewRefSalary(ref Employee x)
{
x = new Employee();
x.Salary = 6000;

}

Employee a = new Employee();
NewSalary(ref a);

4.3 Why does the following method produce a compilation error?

void OutNumber(out int x)
{
x += 55;

}

4.4 Write a C# program that calculates the squares of the integers from 1 to 20
and stores the results in an array. Use a foreach loop to print out the results
to the console.

4.5 Extend the previous exercise to use a multidimensional rectangular array to
store the squares and cubes of the numbers from 1 to 20. Use both a nested
for loop and a foreach loop to print out the results.

Inside C# objects 133

4.6 Read the documentation on the Split() method in the String class and write
a program which reads a string typed in by the user at a console prompt, then
splits up the string into separate words (adjacent words are assumed to be sepa-
rated by a blank) to create an array of strings, each element of which is one word
from the original string. Use a foreach loop to print out these words, one per line.

4.7 Extend the previous exercise so that the program reads in any number of lines
from the console, splits up each line into separate words, and then stores the
resulting array as a distinct row in a single jagged array of strings. The pro-
gram should stop reading text when the user types in the word ‘quit’ on a line
by itself. Have a look at the documentation for the methods available in the
String class to see how to detect when ‘quit’ is entered.

Print out all the text entered as a single paragraph. At the end of the printout,
display the total number of words that have been entered.

4.8 Write a class called Planet which is to represent a planet in the solar system.
The class should contain a few properties that store some data on the planet,
such as its mass, distance from the Sun and so on.

Write another class called SolarSystem which contains an array of nine
Planets. Define an enum within this class to list the names of the planets in
our solar system, and use this enum to define the array elements of the planet
array, and thus store some data on the planets. Print out the data in a neat for-
mat to the console.

(If you’re not into astronomy, just invent some numbers to store. If you want some
real data, try http://www.jpl.nasa.gov/solar_system/planets/planets_index.html.)

4.9 For this exercise, assume that we have a class called ScopeTest with data fields
defined as follows.

public class ScopeTest
{
private int a, b, c;

void Init()
{
a = 1;
b = 2;
c = 3;

}

// Scopes() method inserted here

public static void Main(string[] args)
{
ScopeTest test = new ScopeTest();
test.Init();
int x = 12;
test.Scopes(x);

}
}

134 From Java to C#

For each question, determine if the Scopes() method will compile. If so, state
what is printed by the output statement. If not, state what the problem is. You
should try each of these methods in a real program to verify your answers.

(a) void Scopes(int x)
{

a = x;

Console.WriteLine(a);

}

(b) void Scopes(int a)
{

this.a = a;

Console.WriteLine(a + ", " + this.a);

}

(c) void Scopes(int b)
{

a = b;

Console.WriteLine(a + ", " + b);

}

(d) void Scopes(int x)
{

int x;

a = x;

Console.WriteLine(a + ", " + x);

}

(e) void Scopes(int x)
{

if (x < b)

{

int a = 2 * b;

}

else

{

a = 3 * b;

}

Console.WriteLine(a);

}

(f) void Scopes(int x)

{

if (x < b)

{

int a = 2 * b;

}

else

Inside C# objects 135

{

int a = 3 * b;

}

Console.WriteLine(a);

}

(g) void Scopes(int x)
{

if (x < b)

{

int a = 2 * b;

}

else

{

int a = 3 * b;

}

Console.WriteLine(this.a);

}

C# classes – advanced
features

So far, we have seen how to create classes and objects in C# and how to pop-
ulate these classes with data fields and methods. In principle, we now know
enough to be able to write pretty well any console (text-only) application in
C#. However, the language contains many more specialized features which
allow the programmer to write more sophisticated and usable code. We’ll
examine these features in this chapter.

5.1 ■ Constructors

Constructors will no doubt be familiar to Java programmers as specialized
methods which allow the initialization of data fields when an object is cre-
ated using the new operator. Although C#, like Java, provides default initial-
izations for all class data fields even if we don’t write any constructors our-
selves, these default values are not usually the ones we want.

To illustrate the use of a constructor, let’s return to the Employee class
that we first introduced in Chapter 2. We reproduce that portion of the class
that defined the data fields here:

public class Employee

{

private string name;

private decimal salary;

private PositionTitle position;

public enum PositionTitle

{

ManagingDirector = 0,

Director = 1,

Accountant = 2,

Programmer = 3

}

// Properties and methods defined here

}

When we used this class to declare an Employee object in the HeapDemo
example in the last chapter, we had to write a method called Init() to ini-
tialize the data fields of an Employee after we created it. As a reminder, here
is the HeapDemo class in full again:

5

1. class HeapDemo

2. {

3. Employee director;

4.
5. public void Init()

6. {

7. director = new Employee();

8. director.Name = "Neumann K. Glottis";

9. director.Salary = 60000;

10. director.Position = Employee.PositionTitle.Director;

11. }

12.
13. static void Main(string[] args)

14. {

15. HeapDemo demo = new HeapDemo();

16. demo.Init();

17. Console.WriteLine(demo.director.ToString());

18. }

19. }

The Employee is created and initialized in the Init() method. In fact, if
we don’t write a constructor explicitly, the compiler will create one for us,
and it is this constructor which is actually being called in the new
Employee() statement in the Init() function. This constructor simply ini-
tializes all data fields to be either null (if they are reference data fields) or
zero (if they are numeric data fields). Thus if we delete lines 8 through 10
in the HeapDemo class so that we rely on the initializations of the default
constructor, we find that the name is set to the empty string, salary is set
to zero and position is set to zero, which from the enum listing the various
possible values of position, means ManagingDirector.

To add a constructor to Employee, we need to know the syntax rules.
First, a constructor always has the same name as the class in which it is
found. Second, a constructor never has a return type (not even void). Apart
from these two rules, a constructor is built in just the same way as an ordi-
nary method.

Now let us add a constructor to Employee that initializes all three data
fields to constant values. The code may be inserted anywhere within the
Employee class, but it is conventional to keep the constructor near the
beginning of the class so it is easy to find. The code looks like this:

138 From Java to C#

Key point

A constructor’s name is always the same as the class in which it is found, and it
never has a return type.

public Employee()

{

Name = "A. N. Employee";

Salary = 10000;

Position = PositionTitle.Programmer;

}

We provide default values for the three data fields (using the properties
that we defined back in Chapter 2). If we now modify the HeapDemo class by
omitting the assignment statements from the Init() method, we get:

class HeapDemo

{

Employee director;

public void Init()

{

director = new Employee();

}

static void Main(string[] args)

{

HeapDemo demo = new HeapDemo();

demo.Init();

Console.WriteLine(demo.director.ToString());

}

}

The call to new Employee() in Init() calls the constructor automat-
ically, and results in the newly created Employee object having its data fields
initialized according to the code within the constructor. The output from
the WriteLine at the end is:

A. N. Employee (Programmer): £10000

demonstrating that the constructor is doing its job by initializing the data
fields of director.

Although the ability to specify the default values for an object’s data fields
is handy, it’s not as flexible as it could be. Ideally, we would like to be able
to specify the initial values separately for each object we create. This is eas-
ily done if we add some parameters to the constructor. For example, we can
change the constructor above so that it has three parameters, as follows:

public Employee(string e, decimal s, PositionTitle p)

{

Name = e;

Salary = s;

Position = p;

}

C# classes – advanced features 139

We can now change the Init() method in HeapDemo above to use this
new constructor:

public void Init()

{

director = new Employee("William Wibble", 40000,

Employee.PositionTitle.Accountant);

}

We call the three-parameter constructor by adding the parameters as part
of the new operation. We need to specify the PositionTitle parameter by
prefixing it with Employee, since PositionTitle is an enum contained with-
in the Employee class and is not known to the HeapDemo class.

Although we introduced the three-parameter constructor by replacing the
zero-parameter constructor we defined originally, we did not need to do
this. C#, like Java, allows more than one constructor to be present within a
single class, provided that the parameter lists are different in each con-
structor. We could therefore write the Employee class with both construc-
tors present:

public class Employee

{

private string name;

private decimal salary;

private PositionTitle position;

public enum PositionTitle

{

ManagingDirector = 0,

Director = 1,

Accountant = 2,

Programmer = 3

}

// Zero-parameter constructor

public Employee()

{

Name = "A. N. Employee";

Salary = 10000;

Position = PositionTitle.Programmer;

}

// Three-parameter constructor

public Employee(string e, decimal s, PositionTitle p)

{

Name = e;

Salary = s;

140 From Java to C#

Position = p;

}

// Other properties and methods

}

The compiler can always tell which constructor should be called by
matching up the parameters in a new expression with the list of constructors
available in the class. This is a special case of method overloading which we
will consider later in this chapter.

One final point should be made. If we don’t write any explicit construc-
tors for a class, the compiler will provide a single, default constructor which
takes no parameters and initializes all data fields to null or zero, as we men-
tioned above. However, if we provide any constructors ourselves, this
default constructor is no longer provided by the compiler. This means that
if we deleted the zero-parameter constructor in Employee but retained the
three-parameter constructor, then an object declaration of the form

Employee drone = new Employee();

would no longer compile, since the only constructor available is one requir-
ing three parameters. However, if we deleted both constructors from
Employee then the declaration would compile, since the compiler would
supply a default constructor with no parameters. This is a common error,
since it is easy to write a class without any explicit constructors and test it
with declarations such as this, and then add an explicit constructor later,
which causes the earlier object declarations to break. This behaviour is the
same as in Java.

We will return to constructors after we have studied inheritance.

C# classes – advanced features 141

Key point

A class may have any number of constructors provided that they all have different
parameter lists.

Key point

Adding any explicit constructors to a class removes the default constructor provided
by the compiler.

5.2 ■ Method overloading

We pointed out in the section on constructors that it is legal in C# to have
more than one constructor provided that the parameter lists are different in
all constructors. This is a special case of method overloading.

Java programmers will be familiar with the idea that it is possible to
define several methods with the same name, all within the same class. The
only condition that is imposed is that the signatures of all versions of an
overloaded method must be different.

The signature of a method is defined as the method’s name combined
with its parameter list. The return type of a method is specifically excluded
from the signature, since values returned from methods are not always used
in code.

Since by definition, an overloaded version of a method has the same
name as the original version of that method, this condition amounts to the
requirement that the parameter lists in all overloaded versions of a method
must be different. This provides the clue that allows the compiler to tell
which version of an overloaded method is to be called.

Although it is possible to create overloaded methods that do completely
different things, this isn’t good programming practice. Typically, we would
define overloaded versions of a method if there were a single action that could
be done in different ways depending on the types of parameters being used.

As an example, suppose we were writing a class to represent a bank
account. Such a class would have a data field for the account’s balance, and
methods for depositing and withdrawing money. Some banks provide
accounts where withdrawal is free if done in one way (such as visiting the
bank in person) but incurs a charge if done another way (such as using a
teller machine from a rival bank). In this case, the action in both cases is
the same (withdrawing cash), but the parameters required differ in the two
cases. In the first case (no fee), only the withdrawal amount is needed, while
in the second case, we must provide both the withdrawal amount and the
fee to be charged.

142 From Java to C#

Key point

A method’s signature is its name plus its parameter list.

Key point

Two overloaded methods must have different parameter lists. Two methods that
differ only in their return types are not allowed.

We might design the class as follows:

1. public class Account

2. {

3. public decimal balance;

4.
5. // Constructors and properties omitted…

6.
7. public bool Withdraw(decimal amount)

8. {

9. if(Balance >= amount)

10. {

11. Balance -= amount;

12. }

13. else

14. {

15. Console.WriteLine("Not enough funds.");

16. return false;

17. }

18. return true;

19. }

20.
21. public bool Withdraw(decimal amount, decimal fee)

22. {

23. if(Balance >= amount + fee)

24. {

25. Balance -= amount + fee;

26. }

27. else

28. {

29. Console.WriteLine("Not enough funds.");

30. return false;

31. }

32. return true;

33. }

34. }

Only those parts of the Account class involving the overloaded methods
are shown. There would also be a property called Balance allowing access
to the balance data field.

The first version of Withdraw() (line 7) contains a single parameter and
would be called to withdraw funds when no fee is involved. The overloaded
version (line 21) would be called when a fee is to be charged.

These two methods could be called using code such as this:

Account myAccount = new Account(1000);

myAccount.Withdraw(50);

myAccount.Withdraw(50, 1.50);

C# classes – advanced features 143

The first line assumes that there is a constructor that takes a single
parameter and initializes the balance to that value. The second line calls
the single-parameter version of Withdraw() and the last line calls the two-
parameter version. The compiler sorts out which method to call by examin-
ing the number and types of the parameters being passed to the method.

Because C# implicitly converts some numeric data types into other types
if required, we need to be careful in using overloaded methods if the only
difference between two methods is in the type of numeric data being passed
as parameters. For example, suppose we added another overloaded method
to the Account class above which took a single int as a parameter:

public bool Withdraw(int amount)
{
// code goes here

}

If we now make the method call:

myAccount.Withdraw(50);

which Withdraw() method will be called – the one with a decimal param-
eter or the one with an int parameter?

It turns out that the int version will be used, since the value 50 is actu-
ally an int constant, so it most closely matches the overloaded method with
an int parameter.

In the original example, where we had only the two overloaded versions
of Withdraw(), the call to myAccount.Withdraw(50) called the version with
a decimal parameter because C#’s implicit conversion rules (see Chapter 3)
will convert an int to a decimal if required.

However, if we tried things the other way round, that is, we deleted the
version of Withdraw() that takes a decimal parameter and kept the version
that takes an int, and then tried the method call:

myAccount.Withdraw(50M);

we get the compiler error ‘The best overloaded method match for Withdraw(int)
has some invalid arguments’. The compiler is trying to tell us there is a version
of Withdraw() that takes an int parameter, but the method call we are trying
to make doesn’t match this version, and all the other versions of Withdraw()
produce a worse match. This is because C# will not implicitly convert a
decimal to an int because of possible loss of precision.

5.3 ■ The static keyword

5.3.1 � Static data fields

Like Java, C# supports static data fields and methods within classes. To under-
stand the difference between static and ordinary (non-static) class members
(sometimes called instance members, for a reason we shall spell out below),
we need to consider again what happens when a new object is created.

144 From Java to C#

As we’ve seen, the creation of an object in C# requires two steps. First,
we declare the reference variable and then we use the new operator to allo-
cate memory for this reference to refer to. The memory allocation step
reserves space for a copy of all ordinary (non-static) data fields which can
then be used by the new object.

Ordinary data fields are thus associated with specific instances of a class
– each object gets its own copy of each data field, and the values assigned to
one object’s data fields are independent of those assigned to any other
object’s data fields. This is the reason these data fields are called instance
fields – they are associated with particular instances of the class.

A static data field, however, does not get copied to each object – there is
only a single copy that is associated with the class itself and not with any
one object created from that class. A static field may be declared by insert-
ing the keyword static immediately after the accessibility keyword (public,
private, etc) in the data field declaration. For example, if we wished to define
an interest rate for all accounts that were created using the Account class
above, we could add a static decimal field to the class:

public static decimal interestRate = 4.2M;

The most common use of static fields is in the definition of constant param-
eters such as the interest rate which are the same for all objects created from
a given class. For example, the Math class (available in the default System
namespace, which also contains the Console class we have been using for out-
put to the screen) contains two static fields: a double called PI which contains
the ratio of a circle’s circumference to its diameter (3.14159…) and another
double called E which contains the base of natural logarithms (2.718…).
Many other classes in the various .NET libraries make use of static fields to
store parameters and constants.

Since a static field is not associated with any specific object, how do we
refer to it from outside the class (assuming that it is a public variable)? We
simply prefix the name of the static variable with the name of the class
(rather than a specific object) that contains it. For example, if we wished to
calculate the area of a circle with a radius given by the double quantity
radius, we could write:

double area = Math.PI * radius * radius;

Similarly, if we wanted to calculate how much interest would be paid on
a certain amount of money using the interest rate defined in the Account
class above, we could write:

double interest = money * Account.interestRate / 100M;

C# classes – advanced features 145

Key point

Static fields require the class name in front of the variable name, while instance
fields require the object (instance) name in front of the variable.

We could write this statement inside any method within any class, since
interestRate was declared as a public data field. Of course, if we had
declared interestRate as private and static, we could only use it with-
in the Account class, just like any other private data field. If we use a stat-
ic field within the same class, we do not need to add the class name before
the variable name. For example, if we added a method to the Account class
to calculate the interest payable on the balance of an account, we could
write (within the Account class):

public decimal Interest()

{

return balance * interestRate / 100M;

}

5.3.2 � Static methods

It is also possible to define methods which are static. Like static data fields,
a static method is called without any reference to a specific instance of the
class. As such, a static method can only refer to static data fields, since any
other data field in a class must be associated with a particular instance of
that class.

For example, we could add a method which calculates the simple interest
on a given amount of money (the principal) over a given period of time.
Assuming simple interest (that is, the interest is paid only on the original
amount of money, so that there is no ‘interest on the interest’), the formula
for calculating the interest is:

interest = (principal) * (number of years) * (interest rate / 100)

The method for calculating this is then:

public static decimal TotalInterest(decimal years,

decimal principal)

{

return years * principal * (interestRate / 100M);

}

In this method, interestRate is the static data field we introduced
above. There is no reference to any of the instance data fields in this
method, since a static method has no connection to any particular instance
of the class.

Since this static method is public, we can call it from any other class in
our program. The syntax for calling a public static method is to prefix the
method call with the class name:

Console.WriteLine("Interest over 5 years on £50 is: £" +

Account.TotalInterest(5, 50));

146 From Java to C#

Now suppose we tried to write a version of TotalInterest() that calcu-
lated the interest on the present balance within a particular account:

public static decimal BalanceInterest(decimal years)
{

return years * balance * (interestRate / 100M);
}

We get the compiler error: ‘An object reference is required for the non-
static field, method, or property Account.balance’. The compiler is saying
that we cannot refer directly to an instance variable (balance) within a stat-
ic method. Since this calculation refers to an instance variable, it would
make more sense just to remove the static keyword from its definition,
and make it an ordinary instance method instead.

A C# property can also be declared as static. In this case, the property
is used as an accessor for a static data field. Other than that, it is identi-
cal to the properties we met in Chapter 2. A property for interestRate
could be defined as follows:

public static decimal InterestRate
{

get
{

return interestRate;
}
set
{

interestRate = value;
}

}

5.3.3 � Static constructors

We have seen that static variables can be initialized when they are
declared within the class, but there are situations in which the initial value
of a static variable cannot be hard-coded with a constant value. In the
Account class, for example, the interest rate on a bank account changes
periodically so rather than having to edit the code and recompile the pro-
gram each time the rate changes, it would make more sense to allow the
user to enter the rate (or to read the current value from some external
source such as the Internet or a database) each time the program runs.
Since we have not yet covered methods whereby data can be obtained from
external sources other than the keyboard, we will add a facility that requests
the interest rate from the user each time the program starts.

C# classes – advanced features 147

Key point

A static constructor may initialize static variables only.

We could, of course, simply add another method to the Account class
which does this, and then call the method from Main(). However a neater
way of doing it is to use a static constructor for the Account class. A static
constructor is just like an ordinary constructor except that it is declared as
static and must obey the main rule of static methods, namely that it can
only refer to static variables.

A static constructor, however, is always called each time a program con-
taining the class in which the constructor is written starts, whether or not
the program declares any instances of that class. Since no object declara-
tions are required to call a static constructor, it cannot accept any parame-
ters, since there is no way they could be passed to the constructor.
Consequently, only one static constructor can be defined for each class.

We can declare a static constructor for the Account class which requests
the current interest rate from the user:

static Account()

{

Console.Write("Enter interest rate: ");

interestRate = Decimal.Parse(Console.ReadLine());

Console.WriteLine("Interest rate set to " + interestRate);

}

This constructor will always be run whenever any program containing the
Account class is run, even if there is no code in the Main() method at all.

What happens if several classes in the same program have static con-
structors? In which order are they called? In fact, we can’t rely on any par-
ticular ordering for static constructor calls, and we can’t specify this in the
code. All we can be sure of is that static constructors are called after any
default values have been allocated to static variables, but before any
instances of the class have been created and before any other static meth-
ods are accessed. This means that all static constructors should be inde-
pendent of each other, in that no static constructor should rely on a variable
initialization that is done in a different static constructor in another class.

In the Account class example, this means that the value read into
interestRate within the static constructor will override the default value
of 4.2% that was assigned when interestRate was declared. It also means
that we can rely on the user being asked for the current interest rate before
any Account objects have been created.

148 From Java to C#

C# vs Java

The static constructor in C# performs much the same role as the stand-alone
static block in Java.

5.4 ■ The const keyword

C# provides two keywords that allow us to create objects that cannot be
changed after initialization: const and readonly.

The const keyword is the most restrictive. An object declared as const
must be initialized at the same time that it is declared. It is not even per-
mitted to defer the initialization to a constructor. Thus, we can create a
const integer as in the following class:

class Test

{

public const int number = 345;

static void Main(string[] args)

{

Console.WriteLine("const number = " + number);

}

}

Leaving a const declaration uninitialized is a compiler error. We cannot
say, for example:

const int number;

All const data fields are also implicitly static, so that there is only a sin-
gle instance of them in any given class. This is sensible, since if a value is
really constant, there is no point in creating a separate copy for each object.
Bizarrely, however, it is illegal to explictly state that a const parameter is
static. The following declaration produces the compiler error ‘The con-
stant “Test.number ” cannot be marked static’.

static const int number = 345;

Since a const object is also static, if we wish to refer to it outside the
class, we need to prefix the const parameter’s name with the name of its
enclosing class, not the name of an instance of that class. For example,
since number in the class Test above is declared as public, we can refer to
it from any other class using the notation Test.number.

C# classes – advanced features 149

Key point

A const value may be initialized only when it is declared, and is implicitly static.

C# vs Java

The const keyword is roughly equivalent to Java’s final keyword, although in
Java it is permissible to declare a final parameter as static as well.

5.5 ■ The readonly keyword

C# allows a less restrictive type of constant data field using the readonly
keyword, which has no equivalent in Java. A readonly data field can be
either a static field or an instance field, but it may be initialized either where
it is declared or in one or more of the class constructors. Once it is assigned
a value in one of these locations, the ‘read-only’ nature of the parameter
comes into effect, since it cannot be changed in any other class method.

A static readonly field is useful if we wish to do some calculations to
determine its value, which is not possible with a const field, since it must
be initialized where it is declared. For example, we could have declared the
interestRate in the Account class above as static and readonly:

public static readonly int interestRate;

The static constructor given above could then be used to read in an ini-
tial value for interestRate, and this value then becomes constant through-
out the rest of the program.

Apart from the ability to assign an initial value to a static readonly quan-
tity within a constructor, such a quantity is the same as a const parameter.

Since the account number of a bank account should remain constant
once it is assigned, but is different for each account, an accountNumber field
is a good candidate for an instance field that is readonly. We could declare
it thus:

public readonly int accountNumber;

Notice that making an instance readonly parameter public does not real-
ly violate the principle of encapsulation, since it is impossible to change the
value of accountNumber after it has been initialized, so there is no possibil-
ity of an external class modifying accountNumber in any way.

We could then initialize accountNumber in the usual way within a
constructor:

public Account(int number, int bal)

{

accountNumber = number;

Balance = bal;

}

After this constructor is run, no further changes to accountNumber are allowed.

150 From Java to C#

Key point

A readonly parameter may be initialized at its declaration or in a constructor,
and cannot be changed thereafter.

5.6 ■ Method implementation

It is worth taking a closer look at how instance and static methods are
implemented in running code. A static method is the easier of the two to
understand, since it has no dependence on any instance of a class. When a
static method is called, its parameters are passed to it (either by value or ref-
erence, depending on how the parameters are declared) and the method just
carries on and does its job.

An instance method is a bit more devious, however, so let’s consider a
specific example. Suppose we declare an Account object and then call its
Withdraw() method:

Account myMoney = new Account(1000);

myMoney.Withdraw(50);

We create an Account called myMoney and initialize it by depositing
£1000 in it. Next, we wish to withdraw £50, so we call the Withdraw()
method. But the only parameter passed to Withdraw() is the amount we
wish to withdraw, so how does the Withdraw() method know which
Account object to withdraw the money from? If you glance back at the code
for the Withdraw() method given earlier, you will see that it makes use of
the Balance property defined in the Account class, but how does it know
which Account object this Balance property is associated with?

The answer is that the object that calls an instance method also gets
passed to that method as an extra, hidden parameter. It is almost as if we
were making a method call of the form:

Withdraw(myMoney, 50);

where the Withdraw() method accepts an Account as its first parameter
and a decimal as its second parameter. Within the Withdraw() method, any
reference to a property or data field of the Account class is implicitly pre-
fixed with this hidden object. Thus the reference to Balance is effectively
rewritten to myMoney.Balance within the method.

5.7 ■ The this keyword

Although we know we can access the instance data fields of this hidden
parameter directly, since these data fields are part of the same class that
contains the method, we might wonder if there is any way of referring
directly to this hidden object itself. In other words, if we call Withdraw() in
a statement such as

myMoney.Withdraw(50);

is there any way of obtaining a reference to myMoney within the code of the
Withdraw() method?

C# classes – advanced features 151

In fact, there is, and it makes use of a new keyword in C#: the this key-
word. The meaning of this in C# is the same as in Java: it is a reference to
the object which called the instance method.

Recall the original code we wrote for Withdraw():

public bool Withdraw(decimal amount)

{

if(Balance >= amount)

{

Balance -= amount;

}

else

{

Console.WriteLine("Not enough funds.");

return false;

}

return true;

}

We have used the property Balance to access the private instance data
field balance. We could also have bypassed the property by just writing
balance instead of Balance in both places where it occurs, since by default,
a class method has direct access to all class data fields. We can make this
fact absolutely explicit in the code by prefixing each occurrence of balance
with this, as in:

public bool Withdraw(decimal amount)

{

if(this.balance >= amount)

{

this.balance -= amount;

}

else

{

Console.WriteLine("Not enough funds.");

return false;

}

return true;

}

152 From Java to C#

Key point

The this keyword refers to the object that calls a method.

This particular use of this is not that common since it is redundant,
although at times it can help to make code more readable since it labels a
variable as an instance data field, as opposed to just a local variable within the
method. The this keyword is more often used as a parameter in a method
call where we need to pass a reference to the current object to a method in
another class. We will see some examples of this usage later in the book.

5.8 ■ Operator overloading

We’ve seen earlier in this chapter that we may overload a method by def-
ining several methods with the same name, provided that each method with
that name has a different parameter list. It is also possible to overload many
of C#’s operators in a similar way.

We saw in Chapter 3 that operators in C# are defined so that they take a
specific number of operands (1, 2 or 3) and that in most cases, there are
restrictions on the data types that these operands can have. For example,
the * operator is always a binary operator that requires two numeric data
types as its operands, and always produces the product of these two num-
bers as its result. Similarly, the && operator requires two bool operands and
returns a bool result.

None of these operators has any built-in definition when used with a
class, so that if we tried, for example, to add together two instances of a user-
defined class, we would get a compiler error:

Test obj1, obj2;

obj1 = new Test();

obj2 = new Test();

Test obj3 = obj1 + obj2; // Error: + not defined for Test

Here, Test can be any user-defined class, such as the one used when dis-
cussing the const keyword earlier in this chapter.

Before we dive into the rules for operator overloading in C#, it is worth
considering where such a feature would be used. Although C# allows you to
overload operators so that the last line in the example above would work in
some user-defined way, it should be obvious that we could achieve the same
goal by simply defining a method called add() that takes two Test parame-
ters and returns a Test result:

public static Test add(Test obj1, Test obj2)

{ … }

We could then replace the last line above with:

Test obj3 = add(obj1, obj2);

Apart from the definition of the add() method (which as we will see, we
need to write anyway if we want to overload the + operator), there is scarce-
ly more typing using the second method.

C# classes – advanced features 153

In fact, all operator overloads could be implemented equally well by using
ordinary methods. It is for this reason, in fact, that operator overloading is not
allowed in Java – the designers of the language saw it as an unnecessary extra,
so in line with Java’s philosophy of keeping things simple, they left it out.
Except in a few cases, it is probably better to use an ordinary method instead
of an overloaded operator in C# as well, because it usually makes the code
clearer for human readers. It is possible, for example, to choose a method name
that tells the reader more about what the method does than can be implied
through the use of an operator. You may well find that after the novelty of being
able to overload operators wears off, you hardly ever use the feature.

Having said that, there are some cases where operator overloading is
quite convenient. Many mathematical quantities such as vectors and matri-
ces have definitions of things such as addition and multiplication, and it is
handy to be able to use simple operators for these actions in computer code
as well as on paper.

Let us now have a look at the rules for operator overloading in C#. If your
only prior programming experience is with Java, these techniques will be
new to you, but if you have studied C++, you should be aware that C# places
many more restrictions on operator overloading than does C++, so you
should take note of the rules below with particular care. For the benefit of
C++ users, we will point out the differences as they arise.

To avoid requiring the reader to learn about mathematical quantities such
as vectors, we will use an artificially simple class for demonstrating oper-
ator overloading, but once the fundamentals are understood, applying them
to ‘real’ mathematical objects should be straightforward. We will use a class
called OverloadTest, defined as follows:

class OverloadTest
{

private int x, y;

public OverloadTest(int nX, int nY)
{

x = nX;
y = nY;

}

public OverloadTest(OverloadTest original)
{

x = original.x;
y = original.y;

}

public string ToString()
{

return "x = " + x + "; y = " + y;
}

}

154 From Java to C#

The class contains two int data fields and a constructor for initializing them.
We have added a second constructor which creates a new OverloadTest object
by copying an existing object called original. (We’ll see why we need this sec-
ond constructor in a minute.) We’ve also added a ToString() method which
allows the values of x and y to be printed to the screen.

We can now add an overloaded + operator to this class:

public static OverloadTest operator+(

OverloadTest left, OverloadTest right)

{

OverloadTest result = new OverloadTest(left);

result.x += right.x;

result.y += right.y;

return result;

}

Before we consider the details of what our new + operator does, we should
examine the structure of this method since it contains the essentials of most
overloaded operators in C#.

First, all overloaded operators in C# must be declared as static, mean-
ing that the operator is associated with the class as a whole and not with a
particular instance of that class. This is different from the way overloaded
operators are implemented in C++, where an overloaded + operator, for
example, is an instance method and takes only a single parameter, which
represents the right-hand operand of the + operator. The left-hand operand
is provided by the object that calls the operator method.

Second, the name of an overloaded operator method always starts with
the C# keyword operator and ends with the actual operator symbol that we
wish to overload. (This syntax is the same in C++.) This is the only case
where operator symbols may be used within method names.

Third, the overloaded form of an operator must contain the correct num-
ber of parameters. For a binary operator such as +, the operator+() method
must specify two parameters, the first of which is the left-hand operand
(called left in the example above) and the second of which is the right-hand
operand (called right). If we attempt to define operator+() with either
fewer or greater than two parameters, we will get a compiler error.

C# classes – advanced features 155

Key point

Overloaded operators are always static.

Key point

The number of operands cannot be changed by overloading an operator.

Fourth, operator+() must return something (i.e. it cannot be void). This
enforces the rule mentioned in Chapter 3 that all operators must return
something after they perform their operation. (This is different from C++,
where we are allowed to define an overloaded operator that returns nothing.)
There is no restriction on the data type that an operator can return, howev-
er, so we could, if we wanted, define operator+() so that it returned an int
or bool, although in this case it wouldn’t make sense to do so.

Now we can consider what our overloaded + operator actually does. We
have defined it so that if we add two OverloadTest objects together, the
result is a third OverloadTest object whose x field is the sum of the x fields
of the two operands, and similarly for its y field. That is, if we have declared
two OverloadTest objects called obj1 and obj2, then obj1 + obj2 should
give a third object, obj3, where obj3.x = obj1.x + obj2.x and obj3.y =
obj1.y + obj2.y.

Referring back to the definition of operator+() above, we can now see
how this is done. We first create the third OverloadTest object called
result which will store the result of the operation. We do this by using the
second constructor defined above, which creates a copy of an existing
OverloadTest object. In this case, we initialize result so that it is a copy
of the left-hand operand of the + operator.

The next two lines add the x and y fields of the right-hand operand to the
corresponding fields in result. Finally, we return the completed result.

Having done the work of creating the new operator, using it is very simple.
We can add a Main() method to the OverloadTest class to demonstrate:

static void Main(string[] args)
{

OverloadTest obj1 = new OverloadTest(1, 2);
OverloadTest obj2 = new OverloadTest(3, 4);
OverloadTest sum = obj1 + obj2;
Console.WriteLine(sum.toString());

}

We create two OverloadTest objects using the first constructor and then
call the overloaded + operator to add them together and produce the third
OverloadTest object called sum, which is then printed to the console using
the toString() method defined in the class above. The result is:

x = 4; y = 6

as expected.
Most C# operators can be overloaded in a similar way (see Table 5.1 on

page 163), but there are a few operators that require special consideration.

156 From Java to C#

Key point

An overloaded operator must return a value.

5.8.1 � Overloading comparison operators

C# supports six comparison operators: ==, !=, <, >, <=, >=. For the purpos-
es of operator overloading, these operators must be considered in pairs, as
the C# compiler will only permit one operator from a pair to be overloaded
if the other operator in the same pair is also overloaded. For example, if we
overload the == (equality test) operator, we must also overload the != oper-
ator. In a similar way, we must consider < and > together, and also <= and
>=. All six of these operators must also return a bool value.

5.8.2 � Overloading ++ and ––

When applied to primitive numerical data types, the ++ and –– operators may
be used as either prefix, as in ++x, or postfix, as in x++, operators. Although
the effect of the operator on its operand is the same in both cases, the return
values differ depending on the relative position of operator and operand.

Both these operators can be overloaded in the usual way, but it is not pos-
sible to distinguish between the prefix and postfix forms when overloading
them. Thus, if we provided an overloaded ++ operator for OverloadTest and
applied it to an instance of this class called obj1, the two expressions
++obj1 and obj1++ would produce identical results, both in terms of the
effect they had on obj1 itself and of the value they returned. (This is in con-
trast to C++, where it is possible to define distinct prefix and postfix over-
loads of both operators.)

5.8.3 � Overloading assignment operators

One of the banes of C++ students is the overloaded = (assignment) operator,
as in C++ this operator is required in order to produce a proper, or deep
copy of any object containing dynamically allocated memory. Since C#, like
Java, treats all objects as references, this problem does not arise, so C# does
not allow the = operator to be overloaded at all.

The numerous ‘convenience’ assignment operators such as +=, however,
can be overloaded, but only indirectly, by overloading their corresponding
binary arithmetic operators. For example, if we provide an overloaded +
operator (as in the OverloadTest class above), then an overload for the +=
operator is also provided automatically (without us needing to write a sepa-
rate method for it). Writing the statement

C# classes – advanced features 157

Key point

Comparison operators must be overloaded in pairs.

Key point

Overloads of ++ and –– do not distinguish between prefix and postfix forms.

obj1 += obj2;

is equivalent to saying:

obj1 = obj1 + obj2;

where the sum is performed using the overloaded + operator. It is not possi-
ble to provide a separate overload for the += operator by writing a specific
method for it – only an implicit overload is available as provided by the
explicit overload of the + operator. The same rule applies to all the other
combination assignment operators such as -=, *=, and so on.

5.8.4 � The true and false operators

We have met true and false as C# keywords earlier, where they were
defined as the two possible values of a bool variable. Somewhat bizarrely, it
may seem, C# also allows us to treat true and false as unary operators, but
only if we define our own overloaded versions of them.

Like the comparison operators above, the true and false operators must
always be overloaded as a pair. As a simple example, let us add overloaded
versions of these operators to the OverloadTest class above.

public static bool operator true(OverloadTest operand)

{

return operand.x > operand.y;

}

public static bool operator false(OverloadTest operand)

{

return !(operand.x > operand.y);

}

We have chosen arbitrarily to define an OverloadTest object to be ‘true’
if its x value is greater than its y value, and ‘false’ otherwise. Notice that
true as an operator can actually return either the true or false Boolean
value, as can the false operator. Here we have just taken the return value
of the false operator to be the opposite of that of the true operator.

How do we actually use these overloaded operators? The true operator is
the most useful, as it allows us to use an unadorned OverloadTest object as
a test value in any statement requiring a bool value, such as if, while, for
and so on. For example, we could say:

OverloadTest obj2 = new OverloadTest(30, 4);

if (obj2)

{

Console.WriteLine("obj2 is true");

} else {

Console.WriteLine("obj2 is false");

}

158 From Java to C#

The call to the true operator is deduced by the compiler from the con-
text in which obj2 is found. Since it is the condition within an if statement,
a bool value is required, so the OverloadTest class is searched to see if an
overload of true has been defined.

Using an unadorned object as a loop or conditional statement parameter
always calls the true operator, however, so why do we need an overloaded
false as well? The answer is rather subtle and arises when we attempt to
overload the && and || operators.

5.8.5 � Overloading && and ||

C# does not allow us to overload the logical comparison operators && and ||
directly, but it is possible to overload them indirectly. To understand the
rationale behind this, we must first examine how these two operators are
evaluated when both their operands are bools.

Considering the && operator first, if we are given an expression such as:

x && y

where x and y are both bool variables, how is the expression evaluated?
First, we evaluate x. If x is false, then we can return immediately, without
even examining y. The return value of the operator in this case is just x,
since x is false.

If x is true, however, we then must examine y. If y is also true, then we
return true, but if y is false, we return false. In other words, if x is true,
we return y. We can write the operation as an if statement:

if (x == false)

{

return x;

} else {

return y;

}

C# generalizes this to allow the && operator to be applied to any user-
defined data type as follows. The operation obj1 && obj2 (where both obj1
and obj2 are of the same class, say OverloadTest) returns a result that is
of the same data type as the operands, and whose value is determined by the
following:

if (OverloadTest.false(obj1))

{

return obj1;

} else {

return OverloadTest.&(obj1, obj2);

}

C# classes – advanced features 159

Here OverloadTest.false() is the overloaded false operator within
the OverloadTest class, and OverloadTest.&() is the overloaded & (bit-
wise AND) operator. Clearly this definition reduces to the previous one if
both obj1 and obj2 are bool, since x & y will always return y if x is true.

A similar line of reasoning shows that the expression x || y is equiva-
lent to the following if statement:

if (x == true)

{

return x;

} else {

return y;

}

When the || operator is applied to user-defined types, as in obj1 || obj2,
the result is defined to be:

if (OverloadTest.true(obj1))

{

return obj1;

} else {

return OverloadTest.|(obj1, obj2);

}

where OverloadTest.|() is the overloaded bitwise OR operator. Again, we
can see that this reduces to the built-in definition for bool operands, since
x | y always returns y if x is false.

In order to define overloaded versions of && and ||, therefore, we need a
total of four overloaded operators: true, false, & and |. We can add over-
loaded versions of & and | to OverloadTest as follows:

public static OverloadTest operator&(

OverloadTest left, OverloadTest right)

{

OverloadTest result = new OverloadTest(left);

result.x &= right.x;

result.y &= right.y;

return result;

}

public static OverloadTest operator|(

OverloadTest left, OverloadTest right)

{

OverloadTest result = new OverloadTest(left);

result.x |= right.x;

result.y |= right.y;

return result;

}

160 From Java to C#

These definitions simply apply the corresponding bitwise operators to the
two int data fields of an OverloadTest object. Combining these definitions
with the overloaded versions of true and false given earlier, we can now
use both the && and || with OverloadTest objects:

OverloadTest obj1 = new OverloadTest(3, 1);

OverloadTest obj2 = new OverloadTest(3, 4);

if (obj1 && obj2)

{

Console.WriteLine("obj1 && obj2 is true");

}

It is worth tracing the steps followed when the if (obj1 && obj2) expres-
sion is evaluated. First, we apply the algorithm given above to work out obj1
&& obj2. The algorithm tells us first to evaluate OverloadTest.false(obj1).
Looking up the definition of the overloaded false operator in the
OverloadTest class, we find that it returns the bool value false, since
obj1.x > obj1.y. We must then calculate OverloadTest.&(obj1, obj2), so
we examine the overloaded & operator. This operator produces a new
OverloadTest object whose x and y fields are calculated by applying the bit-
wise AND operation to the corresponding fields in obj1 and obj2. The result
can be calculated by comparing a few bits, and we find that the result object
contains fields result.x = 3 and result.y = 0.

This means that the if (obj1 && obj2) expression has now reduced to
if (result), so we now must use the overloaded true operator to deter-
mine if result is true or false. We find that result is true, since
result.x > result.y, so the message ‘obj1 && obj2 is true’ is printed.

Clearly there is a lot going on here, so the moral of the story is that if we
really do wish to overload && or ||, we need to think through the algorithms
quite carefully.

5.8.6 � General rules for operator overloading

We conclude our discussion of operator overloading by summarizing the
rules under which it may be done.

First, all overloaded operators require that at least one of the operands be
of the class or struct in which the operator is defined. This means, for exam-
ple, that we cannot overload an operator such as + where both its operands
are built-in data types such as ints. In other words, we can only overload
operators within user-defined classes or structs.

Second, we cannot change the syntax, precedence or associativity of an
operator when overloading it. This means, for example, that a binary oper-
ator must always be binary, that the relative precedence (see Table 3.3 in
Chapter 3 for operator precedences) of the operators cannot be altered, and
that the left-to-right or right-to-left order of evaluation of a sequence of oper-
ators cannot be changed.

C# classes – advanced features 161

These rules are absolute, and are enforced by the compiler. There are
other rules which, although not enforced by the compiler, are still good ones
to follow in order to make code easier to understand. Wherever possible, an
overloaded operator should have a meaning that is clear from the type of
operator being overloaded. For example, the > operator should always com-
pare its two operands and return true if the left operand is in some sense
greater than the right operand. Exactly how the comparison is done will
depend on the data type being compared. For example, for objects contain-
ing string data, it could be an alphabetical comparison, while for a class
representing points in three-dimensional space, the comparison could be
done by calculating the distance of a point from the origin. However, the >
operator should always produce some sort of comparison of a quantity cal-
culated from the data fields of the class in which it is defined.

To summarize, Table 5.1 shows all operators that may be overloaded in
C#. Note that some operators are overloadable directly by defining a stat-
ic method as we have done above, but others are only overloadable indi-
rectly, such as the && and || operators, the generalized assignment opera-
tors such as += and so on. An entry of ‘yes’ in the ‘Overloadable?’ column
means that the operator can be overloaded directly by means of defining a
method, while ‘indirectly’ means that no such function may be defined, but
that an indirect method exists of overloading that operator.

Table 3.2, Chapter 3, gives the meanings of the operators.

5.9 ■ Casting

We have seen in Chapter 3 that C# will implicitly convert from one primi-
tive data type to another if no data will be lost in the process. For example,
in the following code, an int is implicitly converted to a long since all ints
can be represented as longs without loss of information.

int x = 1234;
long y = x;

We also saw in Chapter 3 that if we wish to reverse the process by assign-
ing a long quantity to an int variable, the compiler will not do this implic-
itly, since a long variable could contain data that will not fit into an int. We
can force the compiler to do the conversion by explicitly casting the long
into an int:

long y = 1234;
int x = (long)y;

162 From Java to C#

Key point

Use overloaded operators sparingly and make sure they have a sensible meaning.

If the value of y lies within the range that can be represented as an int,
all is well, but if y lies outside this range, the value of x will not be valid. We
have also seen that these errors can be caught by enclosing the code within
a checked block.

These two examples illustrate implicit and explicit casting respectively.
An implicit cast is performed without any visible indication that a data con-
version is taking place, while an explicit cast requires the data type to be
stated within parentheses.

C# classes – advanced features 163

Table 5.1 Rules for overloading operators

Symbol No. of operands Overloadable? Notes

+ 1 Yes
– 1 Yes
+ 2 Yes
– 2 Yes
* 2 Yes
/ 2 Yes
% 2 Yes
++ 1 Yes Only one overload allowed for
–– 1 Yes both prefix and postfix forms
& 2 Yes
| 2 Yes
^ 2 Yes
~ 1 Yes
&& 2 Indirectly Requires overloads of true,
|| 2 Indirectly false, & and |
! 1 Yes
<< 2 Yes
>> 2 Yes
== 2 Yes Must be overloaded as
!= 2 Yes a pair
> 2 Yes Must be overloaded as
< 2 Yes a pair
>= 2 Yes Must be overloaded as
<= 2 Yes a pair
= 2 No

+= –=
*= /= Uses overload of
%= &= 2 Indirectly corresponding binary
|= ^= operator
<<=
>>=
true 1 Yes Must be overloaded
false 1 Yes as a pair

In addition to these built-in casts, C# allows programmers to define their
own casts. These user-defined casts are another form of operator overload-
ing, since they are defined as static methods using the operator keyword.
A cast may be defined which converts any data type into any other data
type, provided at least one of the two types is a user-defined class or struct.
Although there is complete freedom in how the cast may be defined, it is of
course good practice to provide a sensible conversion wherever possible.

The ability to create user-defined casts will be new to Java programmers,
as no such feature exists in that language. It is possible, of course, simply to
define a Java method within class A that returns an object that is an
instance of class B, but this sort of conversion requires an explicit method
call (and could of course be done in C# as well).

C++ programmers may be aware that C++ does provide the ability to
define a cast from a user-defined data type to any other data type (user-
defined or built-in), although this is an obscure feature of C++ and is not
widely used. It is important not to confuse this sort of user-defined cast with
casts implemented using one of C++’s four built-in casting operators
(static _cast, const_cast, dynamic_cast and reinterpret_cast).

In C#, casts may be defined as either implicit or explicit (both of which
are C# keywords). A cast declared as implicit may be used in a similar way
to the first example above (without specifying the name of the destination data
type). An explicit cast must provide the destination data type, as we did in
the second example above. An implicit cast may also be used in explicit form.

As a simple example of a cast definition, consider the following class:

using System;

class CastTest
{

private int number;

public CastTest(int n)
{

number = n;
}

public static implicit operator int (CastTest obj)
{

return obj.number;
}

static void Main(string[] args)
{

CastTest castTest = new CastTest(42);
int castNumber = castTest;
Console.WriteLine("CastTest cast to int: " + castNumber);

}
}

164 From Java to C#

We have defined an implicit cast within the CastTest class that casts a
CastTest object to an int by returning the object’s number field. The form
of a cast definition is similar to that of an ordinary overloaded operator,
except that instead of the operator symbol following the keyword operator,
we insert the name of the destination data type. The source data type
makes up the single parameter of the method.

The keyword implicit has been placed before the operator keyword.
This keyword (or explicit) is required in a user-defined cast – leaving it
out causes a compiler error.

We can see how this cast is used by examining Main(). We create a
CastTest object by calling the constructor in the usual way. In the next
line, we declare an int and initialize it by assigning the castTest object to
it directly, without any visible method call. This sort of assignment is only
possible if a cast has been defined in the source class.

If we had declared the cast to be explicit instead of implicit, the sec-
ond line in Main() would need to be written:

int castNumber = (int)castTest;

Leaving the (int) off causes a compiler error.

For straightforward casting such as this, the main difference between
implicit and explicit is in the level of security afforded. Declaring a cast
to be explicit forces the programmer to remember that a cast is actually
taking place, and can help prevent runtime errors caused by unexpected
data transformations. For example, suppose we added a cast from CastTest
to byte to the CastTest class:

public static implicit operator byte (CastTest obj)
{

return (byte)obj.number;
}

We have made the cast implicit despite the fact that we need an explic-
it cast (from int to byte) in the return statement, since a conversion from
int to byte can lose data. If we now change the code in Main() to:

static void Main(string[] args)
{

CastTest castTest = new CastTest(999);
byte castNumber = castTest;
Console.WriteLine("CastTest cast to byte: " + castNumber);

}

C# classes – advanced features 165

Key point

An implicit cast is not visible in code; an explicit cast requires the data type to be
explicitly stated.

we find that the output becomes:

CastTest cast to byte: 231

The problem, of course, is that 999 is too big to represent in a byte so the
explicit cast from int to byte within the user-defined cast lost some of the bits
from the int and gave an incorrect value for the byte. Since the cast is implic-
it, this problem is not obvious if we only had access to the code within Main().

If we remember from Chapter 3 that C# provides the checked keyword to
catch data overflows, we might think we can catch the error by enclosing
the code in Main() within a checked block, as follows:

static void Main(string[] args)
{

checked
{

CastTest castTest = new CastTest(999);
byte castNumber = castTest;
Console.WriteLine("CastTest cast to byte: " + castNumber);

}
}

If we try this, we find that we get the same output as before (231) and no
error message. The problem is that the overflow does not happen within
Main(), but actually within the user-defined cast itself, where we attempt to
convert an int into a byte. Thus to fix the problem, we need to enclose the
code in the cast within a checked block:

public static implicit operator byte (CastTest obj)
{

byte returnByte = 0;
checked
{

returnByte = (byte)obj.number;
}
return returnByte;

}

Attempting to run the code in Main() (with or without the checked block
in Main()) now produces a runtime error.

In fact, the implicit cast from CastTest to byte is an example of bad pro-
gram design. All the built-in implicit casts in C# will never give rise to loss
of data or result in data overflow, and any user-defined implicit cast should
obey the same rule. Since the number field in CastTest was declared as an
int, we should not attempt to define an implicit cast which converts this
value to any data type, such as byte, where any data could be lost. The fact
that an explicit cast within the byte cast method was required to convert
number from an int to a byte should have been a warning that we weren’t
doing things properly. Any cast that could result in data loss should always
be made explicit.

166 From Java to C#

Another common misuse of casts occurs when we use them to extract
only a part of the data from a given object. For example, if the CastTest
class contained several data fields instead of the single number field above,
we could still define the cast to int that we have shown above. However, this
is not a sensible cast, since we are ignoring all the other data in a given
CastTest object. If we really want to extract just the value of number, we
should define a property with a get clause to do this, as this makes it explic-
it that we are extracting a single data field from a larger object.

One final note about casting: the compiler can be quite clever in working
out pathways in an attempt to cast one data type into another. For example,
if we had only the cast to int in CastTest above, we could still write:

CastTest castObj = new CastTest(42);
long longValue = castObj;

Although we have not defined a cast from CastTest to long, this code
would still compile, since the compiler has figured out that there is an
implicit cast from CastTest to int, and C# itself provides an implicit cast
from int to long, so an implicit cast from CastTest to long is allowed.

Provided we have followed the guideline above that no implicit cast can
ever give rise to an error, these implied paths discovered by the compiler
should never cause any problems. If we are at all uncertain that an implicit
cast should be allowed under any specific situation, we should make the cast
explicit, since this will prevent the compiler from applying it unless we give
our express permission in the code.

5.10 ■ Indexers

Those whose only prior programming experience is Java will know the square
bracket notation [] only in the context of specifying an array index. C++
programmers may be aware that in C++, the [] notation is actually regarded
as an operator that can be overloaded, usually to provide a check that the
value being specified as an array index is within the bounds of the array.

It can be seen by examining the table of overloadable operators in C#,
earlier in this chapter, that [] is not one of the operators listed. The reason
for this is that C# provides a different method by which this symbol can be
effectively overloaded: the indexer.

C# classes – advanced features 167

Key point

An implicit cast should never cause data to be lost.

Key point

An indexer effectively overloads the [] notation.

Syntactically, an indexer looks very similar to a property, which we met
first back in Chapter 2 as a way of ensuring encapsulation of data within a
C# class. We will illustrate with a class containing a simple indexer. A full
explanation follows the class listing.

1. using System;

2.
3. public class IndexerTest

4. {

5. private int[] square;

6.
7. public IndexerTest(int size)

8. {

9. square = new int[size];

10. for (int i = 0; i < square.Length; i++)

11. {

12. square[i] = i * i;

13. }

14. }

15.
16. public int this [int index]

17. {

18. get

19. {

20. if (index >= 0 && index < square.Length)

21. {

22. return square[index];

23. }

24. throw new IndexOutOfRangeException(

25. "Array index " + index + " out of bounds.");

26. }

27. set

28. {

29. if (index >= 0 && index < square.Length)

30. {

31. square[index] = value;

32. return;

33. }

34. throw new IndexOutOfRangeException(

35. "Array index " + index + " out of bounds.");

36. }

37. }

38.
39. public static void Main(string[] argv)

40. {

41. IndexerTest test = new IndexerTest(10);

42. for (int i = 0; i < 10; i++)

168 From Java to C#

43. {

44. Console.WriteLine("Square of " + i + " = " + test[i]);

45. }

46. }

47. }

The IndexerTest class contains an int array called square (line 5). The
size of the array is specified in the constructor (lines 7 through 14), and the
array is initialized with a value that is the square of its index.

Lines 16 through 37 define the indexer for this class. The declaration of
the indexer on line 16 is similar to a property declaration, except that the
name of the indexer is always this, and an additional parameter (enclosed
in square brackets, not parentheses) must be provided. We have used an int
here, but this parameter can be of any data type, as we will see below.

An indexer contains get and/or set accessors, just like a property. Let us
consider the get accessor.

We have written the indexer so that it accesses the individual array ele-
ments of the square array. On line 20 we test to see if index is within the
bounds of the array and, if so, return the corresponding element from
square. Otherwise we throw an exception. (We will consider exceptions in
Chapter 7.) This is a way of allowing a program that encounters an error
condition to handle it gracefully rather than simply crashing.

The set accessor on lines 27 to 36 works in a similar way. We again check
the value of index and if it is valid, we assign a value to the corresponding
element of square, otherwise we throw an exception.

The code in Main() shows how the indexer is used in practice. Within the
for loop, we use the get section of the indexer to retrieve the elements of
square and print them out.

To illustrate that indexers can take any data type as a parameter, we will
add a second indexer to IndexerTest that allows us to refer to elements in
square by using a string to spell out the index number, rather than an int
as we did above. We add a static string array after line 5:

public static string[] number =

{

"zero", "one", "two", "three", "four",

"five", "six", "seven", "eight", "nine"

};

We can now add the second indexer to the class (it can go anywhere, but
we will insert it following the constructor on line 15):

C# classes – advanced features 169

Key point

An indexer can use any data type as an index.

public int this [string index]
{

get
{

for (int i = 0;
(i < number.Length) && (i < square.Length);
i++)

{
if (index.Equals(number[i]))
{

return square[i];
}

}
throw new IndexOutOfRangeException(

"Array index " + index + " too large.");
}

}

We have provided only a get accessor, since the set accessor is very sim-
ilar. We use a loop to run through the number array, comparing each entry
with the index string that was passed in as the parameter to the indexer. We
need to stop the loop after reaching the end of either number or square,
whichever is shorter. If we find a match, we return the corresponding ele-
ment from square, otherwise we throw an exception.

We can produce the same output as in the previous version of the pro-
gram by replacing line 44 in the listing above with:

Console.WriteLine("Square of " + i + " = " + test[number[i]]);

That is, we use a string as an indexer parameter instead of an int.
Obviously this is a cumbersome way of specifying an array index, but the exam-
ple should illustrate the power of the indexer. Arrays in C# have effectively
been generalized so that any data type may be used as the index into the array.

Although the examples above used an indexer to provide an interface
with an actual array data field within the class, there is no need for this to
be the case. We could equally well have declared 10 separate data fields in
IndexerTest and then used a switch or if…else statement to return the
field corresponding to the indexer parameter.

5.11 ■ Namespaces

5.11.1 � Defining a namespace

A namespace in C# is roughly analogous to a package in Java, in that it pro-
vides a kind of higher-level organization inside which new classes and
structs can be defined. Unlike the Java package however, a C# namespace
does not impose any restrictions on the directory structure in which files
within certain namespaces must reside.

170 From Java to C#

A namespace simply defines a new scope level within a C# program. Only
user-defined data structures such as classes and structs may be created
inside a namespace. We are not allowed to create stand-alone data fields or
methods, so it is not correct to regard a namespace as a kind of ‘super-class’.

The motivation for the namespace concept comes from larger program-
ming projects, since it provides a way for several classes with the same name
to co-exist. Suppose that you are working on your own part of a large soft-
ware project. You need a way of defining your class names so that you can
be sure they won’t clash with class names chosen by others working on dif-
ferent areas of the same project. If you have been assigned a unique name-
space inside which all your classes are placed, you can work securely in the
knowledge that your class names cannot conflict with the names of any
other classes being written by others working on the same project.

A namespace is easily defined – we simply use the namespace keyword
followed by the name of the namespace:

namespace NamespaceTest

{

public class Class1

{

public Class1()

{

}

}

}

The class Class1 now resides within NamespaceTest, so it is safe to
define another class, also named Class1, that lives in a different namespace:

namespace OtherNamespace

{

public class Class1

{

public Class1()

{

}

}

}

We can even define a third version of Class1 that doesn’t belong to any name-
space and have it co-exist happily with the other two versions of Class1 above:

public class Class1

{

public Class1()

{

}

}

C# classes – advanced features 171

To refer to any of these versions of Class1, we need to specify the name-
space (if any) to which the particular version of the class belongs. For exam-
ple, if we wanted to define an instance of each of the three versions of
Class1 in a Main() method in some other class, we could say:

public static void Main(string[] args)

{

NamespaceTest.Class1 testClass =

new NamespaceTest.Class1();

OtherNamespace.Class1 otherClass =

new OtherNamespace.Class1();

Class1 lonelyClass =

new Class1();

}

A class that resides within a namespace must be preceded by the name-
space, while a class that is not associated with a namespace appears on its
own in the usual way.

To add more classes or structs to a given namespace we can simply
include them in the same file within the single namespace scope, or we can
write each class in a separate file, but just enclose the class definition with-
in its own namespace wrapper.

5.11.2 � The using statement

Having to add the namespace qualifier in front of all occurrences of every
class that resides within that namespace can become very tedious when typ-
ing out code, and also makes the code harder to read. For this reason, C#
provides the using statement. For example, if we had a namespace called
Transport that contained three classes named Car, Boat and Airplane, we
could refer to these classes by inserting a using Transport statement at
the start of a file:

using Transport;

public class TestTransport

{

public static void Main(string[] args)

{

Car astonMartin = new Car();

Boat qe2 = new Boat();

Airplane concorde = new Airplane();

}

}

172 From Java to C#

Key point

The using statement allows a class to be referenced without its namespace prefix.

Note that the using statement occurs outside the class. If we did not have
this using statement, we would need to write Main() as:

public class TestTransport
{
public static void Main(string[] args)
{
Transport.Car astonMartin = new Transport.Car();
Transport.Boat qe2 = new Transport.Boat();
Transport.Airplane concorde = new Transport.Airplane();

}
}

We can have more than one using statement within a file, but we need to
be a bit careful if two namespaces contain classes with the same name.
Attempting to ‘use’ both namespaces at the same time will cause a compil-
er error if we refer to a class name that is common to both namespaces. In
that case, we need to prefix the class name with the namespace name, even
if the using statement is present for that namespace.

Namespaces can be nested, although this is rarely done except in large
projects. We might, for example, define namespaces inside the Transport
namespace above, called LandTransport and WaterTransport:

namespace Transport
{
namespace LandTransport
{
public class Bicycle
{
// class definition

}

public class Tricycle
{
// class definition

}
}

namespace WaterTransport
{
// classes such as Sailboat, Rowboat, etc

}
}

C# classes – advanced features 173

Key point

Beware of classes with the same name in two different namespaces when
including several using statements.

To refer to Bicycle, we would need to write:

Transport.LandTransport.Bicycle

or else include the statement

using Transport.LandTransport;

at the top of the file.
A variant of the using statement allows us to define an alias for a namespace

name. For example, instead of having to write out Transport.LandTransport
every time we wanted to refer to classes within the nested namespace, we could
define an alias and then use that alias to refer to the nested namespace:

using Land = Transport.LandTransport;

Now we can use the alias to declare objects:

Land.Bicycle bike = new Land.Bicycle();

One final note: if you have used Visual Studio .NET to add a C# class to a
project, you will find that the ‘Add class’ dialog insists that any new class
must belong to a namespace, which might lead you to believe that all class-
es have to be defined inside a namespace. This is not true, as we’ve seen
with most of the examples in the book so far – it is perfectly legal for class-
es to exist on their own, outside of any namespace.

5.12 ■ Case study: the adventure game

We have now covered enough of C# to return to our adventure game that we
started back in Chapter 2. The first version of the game sketched out the main
classes that would be used in the game, but provided no real functionality. In
this second version, we won’t add to the number of classes, but we will expand
the game in several ways.

First, we will write the code in such a way that the game can contain any
number of locations, that each location can contain an arbitrary number of
items, and that the player can carry an arbitrary number of items, up to a
weight limit.

We will also add a command-line interface that recognizes several commands:

■ look: prints a description of the current location and lists the items it
contains;

■ status: prints the player’s name and lists the items in the player’s back-
pack;

174 From Java to C#

Key point

Classes need not be embedded within a namespace.

■ move <direction>: attempts to move in the direction specified. The
direction can be one of north, east, south, west, up or down, but not all
directions will work for every room, since only certain exits will be spec-
ified for each location;

■ take <list of items>: for each word in the <list of items>, a
search is made of the items in the current location’s contents. If an item
whose description contains that word is found, it is added to the player’s
inventory, provided there is space in the player’s backpack;

■ drop <list of items>: essentially the take command in reverse – for
each item in the list it will search the player’s inventory and, if a match-
ing item is found, it will move it to the contents of the current location,
if there is enough space in the room;

■ quit: quits the game;
■ help: prints a list of available commands.

Although implementing all these features does require a fair bit of coding,
it should be noted that the underlying object-oriented structure of the game
has not changed much at all. The only difference is that instead of the game
containing only a single location, and each location being allowed only a sin-
gle item, we have introduced arrays of locations and items to allow several
of each type to be present.

The main purpose of this second version of the game is to illustrate some
of the features of the C# language that have been introduced in the last three
chapters. The code will not, of course, contain all the features we have dis-
cussed, since many of them are not needed.

Let us examine each of the four classes (Item, Room, Player and
Adventure) that we introduced in the first version to see how they have
been modified. (To save space, we have removed the comments in the ver-
sions of the classes printed in the book, but the original code, downloadable
from the book’s web site, contains comments for each method.) First, let us
look at Item:

1. public class Item
2. {
3. private string description;
4. private int weight;
5.
6. public Item(string description, int weight)
7. {
8. Description = description;
9. Weight = weight;

10. }
11.
12. public string Description
13. {
14. get
15. { return description; }

C# classes – advanced features 175

16. set
17. { description = value; }
18. }
19.
20. public int Weight
21. {
22. get
23. { return weight; }
24. set
25. { weight = value; }
26. }
27.
28. public override string ToString()
29. {
30. string itemInfo = description;
31. itemInfo += ": (" + weight + ")";
32. return itemInfo;
33. }
34.
35. public bool MatchesDescription(string itemDesc)
36. {
37. string thisLower = this.Description.ToLower();
38. string otherLower = itemDesc.ToLower();
39. if (thisLower.IndexOf(otherLower) != -1)
40. return true;
41. return false;
42. }
43. }

Item contains the same two data fields as before, but we have now added a
constructor (line 6). The properties and ToString() method are the same
as before. We have added a new method called MatchesDescription() (line
35) which allows an Item to compare its description with a search string.
This method is used in the take and drop commands.

This method makes use of a couple of methods that are defined in the
System.String class (for which the string data type is an alias). Although
we haven’t yet considered any of the .NET library classes in detail, it is a
good habit to have a look at the documentation from time to time to see if
some methods exist that will serve our purposes, rather than assuming we
have to write everything from scratch.

Before we consider the method in more detail, let us consider its main
purpose. Suppose a particular location has Items in it that have descriptions
such as ‘crystal ball’, ‘dusty tome’ and ‘magic wand’. We would like to be able
to match these items by typing only enough text to make the identification
unique. Thus we would like to be able to type just ‘ball’ to match ‘crystal
ball’. The match should also not depend on the case, so typing ‘BALL’ or
‘Ball’ should also produce a match.

176 From Java to C#

Now let us return to MatchesDescription(). The parameter itemDesc is
the word typed in as part of the take command (‘ball’ in our example above).
We want to compare this with the description field for the current Item. To
ensure a case-independent comparison, we convert both description and
itemDesc to lower-case using the ToLower() method in the String class.
This produces the two strings thisLower and otherLower, respectively.
(Full details of what this method does can be found in the documentation for
the .NET classes.)

Once we have eliminated any of the case differences between the two
strings, we need to see if otherLower forms a substring within thisLower.
Another of the library methods in the String class can do this. IndexOf()
returns the index of its parameter string within the string that calls the
method. If the parameter is not found within the main string, the method
returns -1, otherwise it returns the location within the main string of the
first character of the search string. In this case, once we know whether or
not the search string is within the main string, we don’t care where it is, so
we only need to check whether IndexOf() returns -1 (line 39).

Now let us consider Room:

1. using System.Collections;
2.
3. public class Room
4. {
5. private string description;

6. private ArrayList itemList;

7. private Room[] exits;

8. public enum Direction

9. {

10. North, East, South, West, Up, Down

11. }

12. public string[] directionNames =

13. { "north", "east", "south", "west", "up", "down" };

14.
15. public Room()

16. {

17. description = "";

18. itemList = null;

19. exits = null;

20. }

21.
22. public Room(string description)

23. {

24. description = description;

25. itemList = new ArrayList();

26. exits = new Room[6];

27. }

28.

C# classes – advanced features 177

29. public void SetExit(Direction dir, Room loc)

30. {

31. exits[(int)dir] = loc;

32. }

33.
34. public Room HasExit(Direction dir)

35. {

36. return exits[(int)dir];

37. }

38.
39. public Room FindExit(string dirString)

40. {

41. for (int i = 0; i < directionNames.Length; i++)

42. {

43. if (dirString.Equals(directionNames[i]))

44. return HasExit((Direction)i);

45. }

46. return null;

47. }

48.
49. public void AddItem(Item newItem)

50. {

51. itemList.Add(newItem);

52. }

53.
54. public Item RemoveItem(string itemDesc)

55. {

56. Item removedItem = FindItem(itemDesc);

57. if (removedItem != null)

58. {

59. itemList.Remove(removedItem);

60. }

61. return removedItem;

62. }

63.
64. public Item FindItem(string itemDesc)

65. {

66. foreach (Item item in itemList)

67. {

68. if (item.MatchesDescription(itemDesc))

69. {

70. return item;

71. }

72. }

73. return null;

74. }

178 From Java to C#

75.
76. public string Description

77. {

78. get

79. { return description; }

80. set

81. { description = value; }

82. }

83.
84. public ArrayList ItemList

85. {

86. get

87. { return itemList; }

88. set

89. { itemList = value; }

90. }

91.
92. private ArrayList ExitsToString()

93. {

94. ArrayList exitStrings = new ArrayList();

95. for (int i = 0; i < exits.Length; i++)

96. {

97. if (exits[i] != null)

98. {

99. exitStrings.Add(directionNames[i]);

100. }

101. }

102. return exitStrings;

103. }

104.
105. public override string ToString()

106. {

107. string locationInfo = "\n========================";

108. locationInfo += "\nYou are in the " + description + "\n";

109.
110. // Print exits

111. ArrayList exitStrings = ExitsToString();

112. if (exitStrings.Count == 0)

113. {

114. locationInfo += "\nThere are no exits from this room.";

115. }

116. else if (exitStrings.Count == 1)

117. {

118. locationInfo += "\nThere is one exit " + exitStrings[0];

119. }

120. else

C# classes – advanced features 179

121. {

122. locationInfo += "\nThere are " + exitStrings.Count +

123. " exits: ";

124. foreach (string exit in exitStrings)

125. {

126. locationInfo += exit + " ";

127. }

128. }

129.
130. // Print contents

131. if (itemList.Count != 0)

132. {

133. locationInfo += "\nContains:\n";

134. foreach (Item item in itemList)

135. {

136. locationInfo += item.ToString() + "\n";

137. }

138. }

139. else

140. locationInfo += "\nThere are no items here.";

141.
142. locationInfo += "\n========================";

143. return locationInfo;

144. }

145. }

Since we want the location to be able to hold an arbitrary number of
Items, an array of Items isn’t the best solution, since the size of the array
has to be specified in advance. This means that we need to anticipate the
largest number of items we think the location will ever hold and then
declare the array to be at least that large. This will waste space for most
locations since most of the array elements will remain unused.

To solve this problem, we have made use of a library class called ArrayList,
which is essentially a linked list data structure, but which allows array nota-
tion (that is, the square brackets) to access its elements. It also has several
built-in methods for adding, searching and deleting elements in the list.

As we will see when we get into the .NET libraries in later chapters, when-
ever we use a library class, we need to inform the compiler that we are using
the namespace in which that class is contained. ArrayList is in the
System.Collections namespace, which explains the using statement on
line 1. The ArrayList itself is declared on line 6.

Apart from storing items, the other main feature of a Room is that it has
one or more exits to other locations. There are various ways this can be
implemented, but the method we have used here is to provide an enum for
the six possible directions (line 8) and a parallel array of strings to contain
the names of these directions (line 12). Each Room has an array called exits

180 From Java to C#

(line 7) which will be of size 6. If the current location has an exit in a given
direction, we store the reference to the other Room that can be reached
through that exit in the corresponding place in the array. If no exit exists in
a given direction, the corresponding array element will be null.

We have provided two constructors: one without parameters (line 15) and
one that allows description to be specified (line 22).

SetExit() (line 29) allows one of the exits for a Room to be set. The first
parameter is one of the Direction enum values and the second parameter
is the Room to which the exit leads. We use a Direction to specify the direc-
tion of the exit since it is clearer than using a bare integer, as we’ll see later
when we come to set up the floor plan of the rooms. Note that we do need
to cast a Direction to an int to use it as an array index, however.

HasExit() (line 34) returns the current value of the exits array for the spec-
ified direction. If no exit exists in that direction, HasExit() will return null.

FindExit() (line 39) is used to locate an exit when the direction is spec-
ified as a string rather than a Direction, and is used in response to a
‘move’ command. It just compares the input parameter with the strings in
the directionNames array and then calls HasExit() to see if an exit exists
in that direction.

AddItem() (line 49) allows an Item to be added to the ArrayList, using
the library method Add() from the ArrayList class. It is always a good idea
to check the MSDN documentation to see what methods are available for a
class, since in most cases, the method you want will already be there.

RemoveItem() (line 54) takes a string as a parameter, and uses this to
search for an Item in itemArray whose description contains this string.
This is done in FindItem() (line 64), which loops through all the Items in
the array and calls MatchesDescription() for each one until it either finds
a match or hits the end of the array. If a match is found, the Item is
returned, otherwise null is returned.

The result of calling FindItem() is used back in RemoveItem(). On line
57 we test whether an Item matching itemDesc was found. If it was, we
remove it from itemList using the library method Remove() (line 59). We
return removedItem (line 61) which will either be the Item that was
removed, or null if no item was found.

Following this, we have defined a few properties. The ToString() method
(line 105) produces a string containing the Room’s description, a list of
available exits and a list of its Items. The string listing the exits is con-
structed by ExitsToString() (line 92) which returns an ArrayList con-
taining the string representations of the exit directions. The number of ele-
ments and contents of this ArrayList is used back in ToString() (lines 112
to 128) to produce an appropriate message stating what exits are available.

The Player class is very similar to Room:

1. using System.Collections;

2.
3. public class Player

4. {

C# classes – advanced features 181

5. private string name;

6. private ArrayList itemList;

7. private Room currentLocation;

8. private int maxCarryWeight, carryWeight;

9.
10. public Player()

11. {

12. Name = "";

13. MaxCarryWeight = 0;

14. CarryWeight = 0;

15. itemList = null;

16. }

17.
18. public Player(string name, int carry)

19. {

20. Name = name;

21. MaxCarryWeight = carry;

22. CarryWeight = 0;

23. itemList = new ArrayList();

24. }

25.
26. public string Name

27. {

28. get

29. { return name; }

30. set

31. { name = value; }

32. }

33.
34. public int MaxCarryWeight

35. {

36. get

37. { return maxCarryWeight; }

38. set

39. { maxCarryWeight = value; }

40. }

41.
42. public int CarryWeight

43. {

44. get

45. { return carryWeight; }

46. set

47. {

48. if (carryWeight <= maxCarryWeight)

49. {

50. carryWeight = value;

182 From Java to C#

51. }

52. }

53. }

54.
55. public ArrayList ItemArray

56. {

57. get

58. { return itemList; }

59. set

60. { itemList = value; }

61. }

62.
63. public Room CurrentLocation

64. {

65. get

66. { return currentLocation; }

67. set

68. { currentLocation = value; }

69. }

70.
71. public bool AddItem(Item newItem)

72. {

73. if (newItem.Weight <= MaxCarryWeight - CarryWeight)

74. {

75. itemList.Add(newItem);

76. CarryWeight += newItem.Weight;

77. return true;

78. }

79. return false;

80. }

81.
82. public Item RemoveItem(string itemDesc)

83. {

84. Item removedItem = FindItem(itemDesc);

85. if (removedItem != null)

86. {

87. itemList.Remove(removedItem);

88. CarryWeight -= removedItem.Weight;

89. }

90. return removedItem;

91. }

92.
93. public Item FindItem(string itemDesc)

94. {

95. foreach (Item item in itemList)

96. {

C# classes – advanced features 183

97. if (item.MatchesDescription(itemDesc))

98. {

99. return item;

100. }

101. }

102. return null;

103. }

104.
105. public override string ToString()

106. {

107. string playerInfo = "Name: " + name;

108. if (itemList.Count != 0)

109. {

110. playerInfo += "\nCarrying:\n";

111. foreach (Item item in itemList)

112. {

113. playerInfo += item.ToString() + "\n";

114. }

115. playerInfo += "Total weight: " + CarryWeight + "\n";

116. }

117. else

118. playerInfo += "\nNot carrying anything.";

119. return playerInfo;

120. }

121. }

Most of the new features in Player mirror those in Room. The Player now
stores an ArrayList of Items (line 6) representing what is carried in the
backpack. A Player is given a weight limit in maxCarryWeight and the cur-
rently carried weight is stored in carryWeight (line 8). AddItem() and
RemoveItem() do much the same things as their counterparts in Room,
except that the total weight carried by the player is updated and the Player
is not allowed to pick up an item if it will exceed their weight allowance (line
73). FindItem() and ToString() also do essentially the same things that
their counterparts in Room do. Since a Player can move around, we have
added a Room field (line 7) which stores the current location.

Finally, we consider the Adventure class, which has undergone the most
changes and additions:

1. using System;

2.
3. public class Adventure

4. {

5. private Player gamePlayer;

6. private Room[] rooms;

7. private const int numRooms = 3;

8. public enum Locn

184 From Java to C#

9. {

10. Laboratory = 0,

11. Dungeon = 1,

12. Kitchen = 2

13. }

14.
15. public Adventure()

16. {

17. rooms = new Room[numRooms];

18.
19. rooms[(int)Locn.Laboratory] =

20. new Room("magic laboratory.");

21. Item roomItem = new Item("crystal ball", 10);

22. rooms[(int)Locn.Laboratory].AddItem(roomItem);

23. roomItem = new Item("magic wand", 2);

24. rooms[(int)Locn.Laboratory].AddItem(roomItem);

25. roomItem = new Item("homunculus", 23);

26. rooms[(int)Locn.Laboratory].AddItem(roomItem);

27. roomItem = new Item("dusty tome", 7);

28. rooms[(int)Locn.Laboratory].AddItem(roomItem);

29.
30. rooms[(int)Locn.Dungeon] = new Room("dungeon.");

31. roomItem = new Item("knife", 10);

32. rooms[(int)Locn.Dungeon].AddItem(roomItem);

33.
34. rooms[(int)Locn.Kitchen] = new Room("kitchen.");

35. roomItem = new Item("carrot", 1);

36. rooms[(int)Locn.Kitchen].AddItem(roomItem);

37. roomItem = new Item("chicken", 3);

38. rooms[(int)Locn.Kitchen].AddItem(roomItem);

39.
40. rooms[(int)Locn.Laboratory].SetExit(

41 Room.Direction.East, rooms[(int)Locn.Kitchen]);

42. rooms[(int)Locn.Laboratory].SetExit(

43. Room.Direction.Down,rooms[(int)Locn.Dungeon]);

44. rooms[(int)Locn.Kitchen].SetExit(

45. Room.Direction.West, rooms[(int)Locn.Laboratory]);

46. rooms[(int)Locn.Dungeon].SetExit(

47. Room.Direction.Up, rooms[(int)Locn.Laboratory]);

48.
49. gamePlayer = new Player("Wibble the Wizard", 100);

50. gamePlayer.CurrentLocation = rooms[(int)Locn.Laboratory];

51. }

52.
53. public void PlayGame()

54. {

C# classes – advanced features 185

55. Console.WriteLine("Welcome to Adventure!");

56. string command;

57. do

58. {

59. Console.Write("\n\nYour command -> ");

60. command = Console.ReadLine().ToLower();

61.
62. if (command.Equals("quit"))

63. Console.WriteLine("Thanks for playing.");

64. else if (command.Equals("help"))

65. PrintHelp();

66. else if (command.Equals("status"))

67. Console.WriteLine(gamePlayer.ToString());

68. else if (command.Equals("look"))

69. Console.WriteLine(

70. gamePlayer.CurrentLocation.ToString());

71. else if (command.IndexOf("move") == 0 ||

72. command.IndexOf("take") == 0 ||

73. command.IndexOf("drop") == 0)

74. {

75. string[] words = command.Split();

76. if (words[(int)Locn.Laboratory].Equals("move"))

77. DoMove(words);

78. else if (words[(int)Locn.Laboratory].Equals("take"))

79. DoTake(words);

80. else if (words[(int)Locn.Laboratory].Equals("drop"))

81. DoDrop(words);

82. else

83. Console.WriteLine(

84. "Sorry, don’t understand that - try

again.");

85. }

86. else

87. Console.WriteLine(

88. "Sorry, don’t understand that - try again.");

89. } while (!command.Equals("quit"));

90. }

91.
92. private void DoMove(string[] words)

93. {

94. if (words.Length < 2)

95. {

96. Console.WriteLine("You must specify a direction.\n " +

97. "Try one of north, east, south, west, up or down.");

98. return;

99. }

100. Room destination =

186 From Java to C#

101. gamePlayer.CurrentLocation.FindExit(words[1]);

102. if (destination == null)

103. {

104. Console.WriteLine(

105. "Sorry, you can’t move in that direction.");

106. return;

107. }

108. gamePlayer.CurrentLocation = destination;

109. Console.WriteLine("You move to the " +

110. destination.Description);

111. }

112.
113. private void DoTake(string[] words)

114. {

115. int taken = 0;

116. for (int i = 1; i < words.Length; i++)

117. {

118. Item takenItem =

119. gamePlayer.CurrentLocation.RemoveItem(words[i]);

120. if (takenItem != null)

121. {

122. if (!gamePlayer.AddItem(takenItem))

123. {

124. Console.WriteLine("You can't carry any more.");

125. gamePlayer.CurrentLocation.AddItem(takenItem);

126. break;

127. }

128. else

129. {

130. taken++;

131. }

132. }

133. }

134. Console.WriteLine("You have taken " + taken +

135. (taken == 1 ? " item" : " items") + ".");

136. }

137.
138. private void DoDrop(string[] words)

139. {

140. int dropped = 0;

141. for (int i = 1; i < words.Length; i++)

142. {

143. Item takenItem = gamePlayer.RemoveItem(words[i]);

144. if (takenItem != null)

145. {
146. gamePlayer.CurrentLocation.AddItem(takenItem);

C# classes – advanced features 187

147. dropped++;
148. }
149. }
150. Console.WriteLine("You have dropped " + dropped +
151. (dropped == 1 ? " item" : " items") + ".");
152. }
153.
154. private void PrintHelp()
155. {
156. Console.WriteLine("Valid commands:\n" +
157. "===\n" +
158. "look - shows current location & contents;\n" +
159. "status - shows player’s name and inventory;\n" +
160. "take <list> - take one or more items;\n" +
161. "drop <list> - drop one or more items;\n" +
162. "move <direction> - move in the given direction;\n" +
163. "quit - quit the program.\n");
164. }
165.
166. public static void Main(string[] args)
167. {
168. Adventure adventure = new Adventure();
169. adventure.PlayGame();
170. }
171. }

Adventure now contains an array of Rooms (line 6). We use an array
rather than an ArrayList since the locations in a game would usually be
defined in the game’s design and wouldn’t change. To make the rooms easi-
er to refer to, we define a Locn enum (line 8).

In the constructor (line 15), we create the array and populate each Room
with a few Items. We then define the map of the adventure by assigning exits
to each Room (lines 40 to 47) and then create the Player (line 49) and assign
its current location. Note that by using the Locn enumeration, the array
elements are much easier to understand – we always know which location
each array element refers to.

This simple adventure contains only three rooms, with the game starting
off in the laboratory. The kitchen can be reached by moving east from the
laboratory and dungeon by moving down.

The user interaction is handled in PlayGame() and the methods that it
calls. The main loop (lines 57 to 89) prints a command prompt (line 59) and
then calls ReadLine() from the Console class (line 60) to read in the com-
mand typed by the user.

Commands can be of two main types: single-word commands such as quit or
look, and commands such as move or take that require one or more words after
them. We deal with all the single-word commands first (lines 62 to 70), since
they just involve calling ready-made methods or printing simple messages.

188 From Java to C#

The multi-word commands all take much the same form, so we will con-
sider only take in detail. A typical take command would have the form:

take ball tome bat

Some of the objects in the list may be found in the player’s current loca-
tion and others may not. The take command should be able to sort out
those that are found and add them to the player’s backpack, and ignore the
others. It must also check that the player does not exceed the maximum
weight that they can carry.

We first check for all possible types of multi-word command on line 71 by
using IndexOf() to see if the command begins with move, take or drop. If
so, we use the Split() method (again from the string class) to split the
input command into an array of separate words. (The Split() method is
C#’s answer to Java’s StringTokenizer – there is no exact equivalent of
StringTokenizer in C#, but one of the Split() methods – it has several
overloaded forms – usually is a good substitute.) We then call the corre-
sponding method to process that command. The take command is handled
on line 78, where we test that the first word is precisely ‘take’.

DoTake() (line 113) aims to transfer as many items as can be recognized
from the player’s current location to the player’s inventory list. The taken
variable (line 115) is used to count the number of successful transfers.

The loop (line 116) begins at words[1] since words[0] is the command
word take. For each word in the array, it calls RemoveItem() for the play-
er’s CurrentLocation. If this returns null, no match could be found so we
go on to the next word.

If a match is found, we attempt to add this Item to the player’s inventory (line
122). If this fails, the player cannot carry anything more, so we print a message
and replace the Item back in the player’s CurrentLocation. At the end of
DoTake() we print a message saying how many Items were taken successfully.

One advantage to designing the take command this way is that it is able
to cope with surprisingly complex input without complaints or errors. For
example, the commands:

take ball

take crystal ball

take the crystal ball

take crystal

take crys

all have the same (and presumably desired) effect of taking the crystal ball,
because the DoTake() method matches the first Item it can find with each
word in turn and just ignores words that it can’t match. The method can run
into problems if two objects have similar descriptions. For example, if a
room contained both a crystal ball and a basketball, the command ‘take ball’
would just take whichever of the two objects was first in the itemArray for
that Room. In that case, we would need to provide some string that was
unique to the item we want to take.

C# classes – advanced features 189

DoMove() and DoDrop() work in a similar way, so their code should be
fairly easy to follow.

A typical session with the game may look like this:

Welcome to Adventure!

Your command -> look

magic laboratory.

Contains:

crystal ball: (10)

magic wand: (2)

homunculus: (23)

dusty tome: (7)

Your command -> take ball tome bat

You have taken 2 items.

Your command -> status

Name: Wibble the Wizard

Carrying:

crystal ball: (10)

dusty tome: (7)

Your command -> move dungeon

You move to the dungeon.

Your command -> look

dungeon.

Contains:

knife: (10)

Your command -> drop ball

You have dropped 1 item.

Your command -> look

dungeon.

190 From Java to C#

Contains:

knife: (10)

crystal ball: (10)

Your command -> quit

Thanks for playing.

Although this version of the adventure game is playable, in the sense that
the player can move from one room to another and can pick up and drop
objects, we have not yet added anything to make the game particularly
interesting. This will follow in later versions.

Another problem with the current version is that of checking for input
errors from the user. This can be extremely difficult to do effectively, since
it is often far from easy to predict all of the ‘wrong’ input that users can pro-
duce. In the interest of brevity, this program does not contain many such
checks, so if you download and play the game yourself you will probably
find that it is fairly easy to break it.

For example, typing just the command ‘take’ on its own produces the
message ‘You have taken 0 items.’ which isn’t terribly helpful. In games,
as in any software, careful thought should be given to the usability aspects
of a program.

■ Summary

In this chapter we have considered some of the more advanced features in
C#, such as constructors, static fields and methods, const and readonly
parameters, operator overloading, namespaces and indexers. Again, many of
these features reflect similar features in Java, but some (such as operator
overloading) are new and others are implemented in subtly different ways.

As you proceed in your study and use of C#, you will no doubt form your
own programming style in which you will take a liking to some of these fea-
tures and scarcely use others. However, it is a good idea to have an acquain-
tance with all of them so that you can recognize them in other people’s code.

C# classes – advanced features 191

192 From Java to C#

Exercises

5.1 Consider the class Circle which represents a circle:

public class Circle

{

private float radius;

private float centreX, centreY;

public override string ToString()

{

return "Centre at (" + centreX + ", " +

centreY + "); radius = " + radius;

}

}

(a) Consider also a class TestCircle which contains a Main() method
designed to test the Circle class. What is printed when this method is run?

public class TestCircle

{

public static void Main(string[] args)

{

Circle circle = new Circle();

Console.WriteLine(circle.ToString());

}

}

(b) Write a constructor for Circle that provides a default value of 1 for
radius and default values of 0 for both centreX and centreY. What is
printed now when the Main() method in part (a) is run?

(c) Write another constructor for Circle that allows all three data fields to be
specified when a Circle instance is created with the new operator. Modify
the code in the Main() method in part (a) so that circle is created with a
radius of 10.7 and a centre at the point (12.5, 24.3). Compile your answer
to check it.

(d) Look up the Random class in the MSDN documentation to discover how to
generate random numbers. Add some code to Main() to produce an array
of 10 Circles, each of which has a randomly chosen radius with a value
between 1 and 100 (as a float) and a random centre point with centreX
and centreY chosen from the range –100 to +100 (also as floats).

(e) Look up the Point class in the documentation and use it to replace
centreX and centreY in the Circle class. Redo parts (a) to (c) of this
exercise, rewriting the constructor in each case to initialize a Point as part
of the initialization of a Circle.

C# classes – advanced features 193

5.2 (a) Write a method called GetRadius() in TestCircle (defined in the previ-
ous exercise) that accepts a single Circle parameter and returns the radius
of the circle.

(b) Write an overloaded version of GetRadius() which takes an array of
Circles as a parameter and returns the average radius of all circles in
the array.

(c) Review the params keyword in Chapter 4 and write an overloaded version of
GetRadius() which takes several Circles as parameters and converts them
into a single array, then returns the average radius. Will the compiler allow the
methods in (b) and (c) to be present in the same class at the same time?

5.3 A vector can be used to represent a point in two dimensions by grouping the
x and y coordinates together into a single object, as in r = [12, 3], which repre-
sents a point at x = 12 and y = 3. Two vectors can be added together by just
adding their respective components together. For example, if we have two vec-
tors r = [12, 3] and s = [5, 9], we can create a new vector t = r + s = [17, 12].

(a) Write a class Vector which can be used to represent a vector, and provide
it with a constructor which allows the values of x and y to be specified.
Then write an overloaded + operator which returns another Vector which
is the sum of its two operands.

(b) Vectors may also be multiplied together in several ways. The simplest vec-
tor multiplication is called a dot product and produces a single number (not
a vector) as its result, and is calculated by multiplying together the respec-
tive components of the two vectors and adding up the result. For example,
with r and s as defined above, the dot product can be calculated as
p = r·s = 12*5 + 3*9 = 87. Write an overloaded * operator which calcu-
lates the dot product of two Vectors and returns the result as a double.

5.4 Write a simple class or struct called PhoneRecord which contains a string field
for storing a friend’s name and an int field for storing their phone number.
Write another class called PhoneBook which stores an array of PhoneRecords.
Write two indexers for PhoneBook. The first should use a string as an index
and return the phone number corresponding to a friend’s name, while the sec-
ond should do the reverse by accepting a phone number and return the name
of the corresponding friend.

Write a test program that reads in a number of names and numbers from the
command line and then asks the user to type in a name or a number and return
the corresponding data.

5.5 Can you see why the program in the previous exercise might not work very well
for storing mobile (or long-distance) phone numbers? How might you modify
the program to fix this problem?

5.6 Another problem with the indexers in the phone number program is how to
handle erroneous input. Try to think of a sensible response when the user enters
a name or number that isn’t in the stored data.

194 From Java to C#

5.7 Write a cast for the PhoneRecord class in the previous exercise that returns the
friend’s name as a string. Is this really the best way of extracting the friend’s
name from a PhoneRecord?

Inheritance

6.1 ■ The concept of inheritance

Inheritance is one of the foundations of object-oriented programming, and
grew out of the observation that many objects in real life can be grouped
together according to the properties they have in common. For example,
think of the people you know personally. Although these people will all dif-
fer from each other in many ways, they will also share many features. Each
of them has a name, a birthday, an age, a gender, and so on. However, if you
are a student at a college or university, it is very likely that many of your
friends are also students. A student is, of course, a person, and therefore has
all the properties that we just mentioned, but in addition to these proper-
ties, a student will be taking certain courses, will have a student ID number,
an expected graduation date, and so on. Other people we know could be
doctors, engineers, barbers, and so on, and each of these groups of people
will have a set of properties that describe some aspect of their professions
in addition to the properties they have by virtue of being ordinary people.

If we want to represent these various types of people by classes in a com-
puter language, perhaps for the purpose of including them in a database, we
could create a separate class for each type of person and include all the prop-
erties for that type within the class. However, this would mean that we would
need to duplicate all the common properties (name, birthday, age, etc) with-
in each class. This leads to (at least) two problems for the software developer.

First, of course, it is a lot of extra typing. The second problem, however,
is much more serious – if we duplicate all the common properties in all the
classes we write, then if we wish to add another property (such as a person’s
address) as a common property for all types of people, we need to insert this
data field in all the classes we have written. It is very easy to miss out one
of the classes by accident. This situation leads to code that is difficult to
maintain, which is a recipe for introducing bugs.

The principle of inheritance solves this problem by allowing us to define
a base class which contains all the fields that are common to a number of
classes, and then to define a number of derived classes, each of which
inherits the base class. Each derived class inherits all the (non-private) data
fields and methods of its base class. This allows us to write a single class
which contains all data fields and methods that are to be common to a num-
ber of classes, and then to include all these fields in the derived classes with-
out rewriting them in each case. We can also update the set of common
properties by changing only the base class, since any changes made to the
base class are automatically inherited by all the derived classes.

6

It is important to note that in proper object-oriented design, inheritance
should only be used in this way – it should not be used to patch up a bad
class design. Any derived class should represent an object that is a special-
ized type of the object represented by the base class. This relationship is
often called an ‘is-a-type-of’ relationship: a derived class ‘is a type of’ the
base class. When you are designing the classes in an object-oriented project,
always ask yourself whether one class is-a-type-of another class – if it is,
there is a good case for one class to inherit the other.

6.2 ■ Syntax for inheritance

Let us consider an implementation of the person and student classes men-
tioned above to get an idea of how inheritance is handled in C#. We’ll begin
with a Person class:

public class Person

{

private string name;

private int age;

public Person()

{

name = "";

age = 0;

}

public Person(string name, int initAge)

{

this.name = name;

age = initAge;

}

public string PrintDescription()

{

return "Name: " + name + "; Age = " + age;

}

}

196 From Java to C#

Key point

Inheritance should only be used to represent specialized data types where one
class ‘is-a-type-of’ another.

We have only included a name and an age for the person to keep things
simple. The class contains a pair of constructors (we will see why we need
the zero-parameter constructor later) and a PrintDescription() method
which allows the data to be retrieved as a string.

Now let us make our first attempt at a Student class which inherits
Person:

public class Student : Person

{

private string studentID;

public Student(string initName, int initAge,

string initStudentID)

{

name = initName;

age = initAge;

studentID = initStudentID;

}

}

The first line of this class shows the syntax for denoting inheritance – a
single colon (:) followed by the name of the base class (Person).

We then declare the studentID field. In fact, Student has three data fields,
since it inherits name and age from Person. The Student constructor allows
all three of these data fields to be initialized, and the PrintDescription()
method prints them out.

When we try to compile this new derived class, however, we get three
compiler errors:

'Person.name' is inaccessible due to its protection level

'Person.age' is inaccessible due to its protection level

'Person.name' is inaccessible due to its protection level

The problem is that the name and age fields in the base class, being
private, are not accessible to any class outside of Person itself, not even a
class which inherits Person. When we try to refer to these fields in the con-
structor and the PrintDescription() method in Student, we are not
allowed to due to the protection level.

Inheritance 197

C# vs Java

In Java, the colon would be replaced by the Java keyword extends.

6.3 ■ Accessing base class data from a derived class

Java or C++ programmers will probably know that the solution to this prob-
lem is to declare name and age to be protected rather than private in the
base class (although protected means different things in Java and C++, in
both languages it will allow a derived class access to base class fields). As we
will see, C# offers this solution as well, but there is another way around the
problem that is worth considering first.

If we wish to be a purist about the principle of encapsulation, we might
observe that we should have provided properties for name and age in Person
in order to control the setting and getting of these fields. If such properties
were provided, there shouldn’t be any need to redefine them in a derived
class. In other words, we should just be able to inherit the properties from
the base class. In fact, we can do just that.

Suppose we add a property to Person to control access to each of name
and age:

public string Name
{

get
{

return name;
}
set
{

name = value;
}

}

public int Age
{

get
{

return age;
}
set
{

age = value;
}

}

These properties are both public and are therefore accessible from any
class, including a derived class. With this addition to Person, we can now
rewrite Student to use the properties rather than the original variables:

public class Student : Person
{

private string studentID;

198 From Java to C#

public Student(string name, int initAge,

string initStudentID)

{

Name = name;

Age = initAge;

studentID = initStudentID;

}

}

With this change, everything compiles without errors. This solution to the
problem of accessing data fields in the base class does not require any relax-
ation of the private restriction on these fields, and might therefore be seen
as more in keeping with the principles of good object-oriented design.

C# does provide the protected keyword as well, however, so those con-
verts from Java and C++ that feel more comfortable using it may do so. A
protected field may be accessed directly either by its own class or by any
class derived from that class.

To do things this way, we merely need to change the declarations of name
and age in Person to:

protected string name;

protected int age;

We can now use the original form of Student, which refers directly to
name and age without going through any properties. (If properties for name
and age had been provided for the protected fields, we could of course use
the second version of Student as well.)

Inheritance 199

C# vs Java

In C#, if a data field or method is not given an explicit accessibility (e.g. with the
private or public keyword) the accessibility defaults to private. In Java,
the default is protected.

C# vs Java

In C#, the protected keyword allows access to the class itself and also to any
other class derived from that class. In Java, protected allows access to any
class in the same package, whether or not that class is related to the original
class by inheritance. Java does not provide a method whereby the accessibility of
a field can be restricted to classes derived from the current class.

6.4 ■ Inheriting methods

We’ve seen above that data fields can be inherited in a natural way, but
what about methods? In the Person class we defined a method called
PrintDescription(), which produced a string containing the information
stored in the class. Suppose we test our Person and Student classes with
the following code:

public static void Main(string[] argv)

{

Person me = new Person("Glenn", 25);

Console.WriteLine(me.PrintDescription());

Student kevin = new Student("Kevin", 19, "00121212");

Console.WriteLine(kevin.PrintDescription());

}

We find the following output:

Name: Glenn; Age = 25

Name: Kevin; Age = 19

Since we did not write a PrintDescription() method in Student, the
version that we wrote in Person is being used to print out Kevin’s details.
Thus methods are inherited in much the same way as data fields.

However, we can spot a problem here. The information printed out for a
Student contains only those data fields that were inherited from Person. If
we use the PrintDescription() method from Person, this is all the infor-
mation that can be printed, since a base class never has any knowledge of the
extra data fields that might be added to a class that inherits it. Information
transfer in inheritance works in only one direction: from base to derived.

It would be much neater if we could write a PrintDescription() method
for Student as well, and have it print out the studentID in addition to name
and age. So let us try just adding PrintDescription() to Student:

public string PrintDescription()

{

return "Name: " + Name + "; Age = " + Age +

"; ID: " + studentID;

}

We find that this will give the desired output:

Name: Glenn; Age = 25

Name: Kevin; Age = 19; ID: 00121212

However, the compiler issues a warning about the new PrintDescription()
method:

The keyword new is required on 'Student.PrintDescription()'

because it hides inherited member 'Person.PrintDescription()'.

200 From Java to C#

To fully understand what this warning means, we need to explore a cou-
ple of other topics: name hiding and polymorphism. First, we need to clar-
ify how constructors are used when an inherited object is created.

6.5 ■ Constructors and inheritance

When an object is created from a derived class, the constructors of both the
base and derived classes are called during the construction of that object.
For example, if we declare a Student using a declaration such as:

Student kevin = new Student("Kevin", 19, "00121212");

the base class constructor (that from Person) is called first, then the
derived class constructor (from Student). This is easily verified by placing
WriteLine() calls in the various constructors (or by using the debugger to
trace the code if you are using Visual Studio).

Since there was no explicit code in the Student constructor to call the
base class constructor, the zero-parameter constructor from Person is
called by default. This can give rise to a curious compiler error if we are
unaware of what is going on.

If you glance back at the definition of the Person class earlier in this
chapter, you will see that we defined two constructors for Person, even
though we only ever used the two-parameter version in any object declar-
ations. The reason for this is that if Person had only the two-parameter con-
structor, then the declaration of Student kevin above would produce the
compiler error:

No overload for method 'Person' takes '0' arguments.

The offending line is flagged as the three-parameter Student constructor in
the Student class above, which may be a bit puzzling until we realize that this
constructor is attempting to call a zero-parameter Person constructor to ini-
tialize the base component of the object, and that no such constructor exists.

There are two solutions to this problem. First, we can make sure that
every class we write always has a zero-parameter constructor explicitly
defined, which is usually a good idea.

The other solution involves making an explicit call to a base class con-
structor from the derived class constructor. Java provides the super key-
word for doing this: in C# the keyword is base.

Rather than use the Student constructor that is in the class definition
above, we could say instead:

public Student(string initName, int initAge,

string initStudentID) : base(initName, initAge)

{

studentID = initStudentID;

}

Inheritance 201

After the parameter list, we have added a single colon and then the key-
word base followed by a parameter list that passes the name and age values
to the base class constructor. In this case, the effect is to call the two-param-
eter Person constructor, which initializes the name and age fields. After
this, any code in the body of the Student constructor is run.

Using the base keyword can avoid a lot of duplication of code if a lot of work
is involved in initializing the base class data. Also, since an explicit call is made
to a base class constructor, no implicit call to the zero-parameter base class
constructor is attempted, so no such constructor need be provided.

6.6 ■ Name hiding

Name hiding occurs when one entity (variable or method) has the same
name (and, in the case of methods, the same parameter list) as an existing
name. Although C# allows name hiding in many cases, it is almost always
bad programming practice to use it, since the confusion between two objects
with the same name can cause errors.

One way name hiding can occur is if a method contains a local variable
with the same name as a class data field. For example:

class HidingDemo

{

private int number;

public void HidingMethod()

{

int number = 6;

if (number > 0)

{

// Do something

}

}

}

Here we have a class data field called number, which has the same name
as the local variable inside HidingMethod(). The local variable hides the
class data field for the duration of HidingMethod(), so that the number
referred to within the if statement is the local variable within the method,
not the class data field.

Although we have declared the local variable number to have the same
data type as the class field, this is not required – the local number variable
could be any data type. The same rules of name hiding apply. In any case,
no error or warning is issued by the compiler.

It should be obvious that this sort of coding is error-prone, since it is easy
to get confused about which number is being used at any given point.

202 From Java to C#

This type of name hiding occurs within a single class. A second type of
name hiding occurs when one variable or method in a base class is hidden
by another variable or method with the same name in a derived class. This
is the sort of name hiding that occurred in our attempt earlier to add a
PrintDescription() method to Student. This type of name hiding does
generate a compiler warning, as we’ve seen above. To see why a warning
might be sensible, we need to understand the idea of polymorphism.

6.7 ■ Polymorphism

To understand the motivation for polymorphism, let us return to the exam-
ple above with the Person and Student classes. We’ve seen that even
though there is a good reason for defining two separate classes to represent
‘ordinary’ people and students, there are some cases where it would be more
convenient if we could treat instances of both classes equivalently. For
example, if we just want to see a description of a given friend, we would
expect to just call the PrintDescription() method, no matter whether our
friend is a Person or a Student.

A better example of why it is sometimes more convenient to be able to
treat related objects in a uniform way would be if instead of just two friends
we had, say, 50 friends, some of whom are students and others are not. We
might think that we need to sort our friends into two groups and create an
array of Persons for one group and an array of Students for the other. This
sort of thing could get very inconvenient if we started to classify our acquain-
tances into more groups, such as doctors, lawyers, plumbers, and so on.

Since the main premise on which inheritance is based is the idea that all
members of classes that share a common base class must have in common
the properties defined in that base class, it would make sense if there were
some way of treating objects from all derived classes in a uniform way when
we are dealing with properties or methods that are defined in that base
class. This is the main motivation for polymorphism.

Stated simply, if we declare a reference to a base class, we are allowed to
attach that reference either to a base object or an object created from any
class that inherits the base class. For example, using Person and Student,
we can declare a reference to a Person:

Person friend;

Inheritance 203

Key point

Polymorphism allows a reference to a base class to refer to an instance of any
class derived from the base class as well.

and then set friend to refer either to a Person:

friend = new Person("Glenn", 25);

or to a Student:

friend = new Student("Kevin", 19, " 00121212");

This sort of initialization might look distinctly suspect, since it seems that
we are attempting to assign an object of one type to a reference that was
declared for a different type. Under normal circumstances, this sort of thing
is prohibited by the compiler.

However, the key point is that Student inherits Person, so a Person ref-
erence is allowed to refer to a Student object. In fact, we can return to the
test code we wrote above to try out the new PrintDescription() method,
and rewrite it using polymorphism:

Person me = new Person("Glenn", 25);
Console.WriteLine(me.PrintDescription());
Person kevin = new Student("Kevin", 19, "00121212");
Console.WriteLine(kevin.PrintDescription());

We find that this compiles, but if we still have the same PrintDescription()
method in Student, we still get the same warning about it hiding the
PrintDescription() method in Person.

If we now run this code, we get the output:

Name: Glenn; Age = 25
Name: Kevin; Age = 19

which doesn’t look terribly promising, since we have lost Kevin’s ID from the
output, even though the new PrintDescription() method is still there in
Student. What has gone wrong? Clearly, the base class PrintDescription()
method from Person is being called for both objects, so our use of polymor-
phism appears to have broken the code. The answer to the problem lies in
the method by which C# works out which method to call when an object has
been created using polymorphism.

6.8 ■ Virtual methods

Java programmers may have been feeling quite confident up to this point,
since everything we have described in the last section about polymorphism
is also true in Java, except for the very last point. If we had used polymor-
phism in Java to create the kevin object from Student and then called
PrintDescription(), we would have called the method in Student and
not the one in Person. So what is C# doing differently?

Languages such as C# or Java that support polymorphism may use a
technique called dynamic binding to decide which method to call whenev-
er a statement refers to a method that exists in both the base and derived
classes. In code such as:

204 From Java to C#

Person kevin = new Student("Kevin", 19, "00121212");

Console.WriteLine(kevin.PrintDescription());

kevin is declared as a reference to a Person, but is initialized to a Student.
When the call to PrintDescription() is made in the second line, that call
could refer to either the method declared in Person or the one with the
same signature (recall that a method’s signature is its name plus its param-
eter list) in the derived class Student. How does the program decide which
one to call?

The rule that is always followed in C# (but not in Java) is that the base
class method will be called unless it is declared as virtual. If the base class
method is virtual, the derived class method will be called instead.

What this means is that if we want kevin.PrintDescription() to call
the method from Student, we need to go back to the Person class and
declare its PrintDescription() method as virtual. That is, we rewrite
Person’s PrintDescription() method as:

// In Person class

public virtual string PrintDescription()

{

return "Name: " + name + "; Age = " + age;

}

If we try this and run the program again, however, we still find the output
to be:

Name: Glenn; Age = 25

Name: Kevin; Age = 19

so obviously this hasn’t solved the problem. We should notice that the com-
piler is still issuing a warning, but the message has changed:

'Student.PrintDescription()' hides inherited member

'Person.PrintDescription()'. To make the current member

override that implementation, add the override keyword.

Otherwise add the new keyword.

The final alteration we need to make is to tell the compiler that we want
PrintDescription() in Student (the derived class) to override the corre-
sponding method in Person (the base class). To do this, we need to add the
override keyword to PrintDescription() in the derived class Student:

// In Student class

public override string PrintDescription()

{

return "Name: " + Name + "; Age = " + Age +

"; ID: " + studentID;

}

Inheritance 205

Now, finally, we get a compilation without any errors or warnings, and the
output is correct:

Name: Glenn; Age = 25
Name: Kevin; Age = 19; ID: 00121212

What actually happens in this process is that the compiler builds a virtu-
al method table for each class that it compiles. This table contains a list of
all methods that have been declared as virtual in that class. If polymorphism
is then used in the program, that is, if a reference to a base class (such as
Person) has been declared and that reference has subsequently been
assigned to an instance of a derived class (such as Student), the runtime
environment will check the virtual method table for the base class each time
a method call is made. If the method (such as PrintDescription()) is list-
ed as virtual, a check is made to see if an overridden version of that method
has been defined in the derived class and, if so, that method is called instead.

The process is called dynamic binding because the actual version of the
method that is called is only determined when the program is run, not when
it is compiled.

The difference between C# and Java (and the reason why Java always
calls the ‘right’ method even though it doesn’t have either a virtual or
override keyword) is that Java simply assumes that all methods in all
classes are virtual. So wouldn’t it be easier if C# did the same thing?

Well, it probably would be, but the reason that C# programmers are given
the choice of which methods to make virtual is that making all methods virtu-
al can slow down a program considerably. Suppose you had a large base class
with several hundred methods in it, but that only two or three of these meth-
ods are overridden in a derived class. In Java, a reference to the base class
would need to carry around (and constantly refer to) a virtual method table
with several hundred entries in it. In C# the table would contain only those
methods that are overridden, resulting in a significant performance gain.

A final note to C++ programmers. Polymorphism in C++ works in a simi-
lar way to C#, in that base class methods must be declared virtual if they are
to be overridden. C++ does not have an override keyword, however, so all
that need be done in C++ is the insertion of virtual into base class methods.

206 From Java to C#

Key point

Only virtual methods can be overridden.

C# vs Java

In Java, all methods in all classes are implicitly virtual. In C#, only those methods
declared as virtual appear in the virtual method table.

6.9 ■ Polymorphism and method parameters

Polymorphism is also commonly used in passing parameters to methods. If
a method’s parameter is declared to be of a base class type, it is legal to pass
a derived class object to that method as well as a base class object.

For example, if we defined a method in some class that took a Person
parameter, we could pass a Person object or a Student object to that method:

// Method within a class
public void ExaminePerson(Person person)
{

string description = person.PrintDescription();
Console.WriteLine(description);

}

We can call this method with an ordinary Person object:

Person person = new Person("Glenn", 25);
ExaminePerson(person);

We can call it with an object that has been defined using polymorphism:

Person person = new Student("Kevin", 19, "00121212");
ExaminePerson(person);

Finally, we can call it with a Student object that has been defined with-
out using polymorphism:

Student kevin = new Student("Kevin", 19, "00121212");
ExaminePerson(kevin);

In the last example, even though polymorphism wasn’t used in the creation
of kevin, it is used in passing kevin as a paremeter to ExaminePerson(), since
passing a parameter to a method involves an assignment from the object
passed to the object declared as the method’s parameter.

In all these cases, the same rules of polymorphism apply as in the ordi-
nary assignment expressions treated earlier.

6.10 ■ Versioning

We saw above that in order to define a method in a derived class that over-
rides a method in the base class, we need to do two things. First, we need to
specify the base class method as virtual and second, we need to specify the
derived class method as override. We have seen the justification for using
virtual, since it makes a program run faster by cutting down the size of the
virtual method table, but if we have specified in the base class which meth-
ods are allowed to be overridden, why do we need this extra override key-
word in the derived class? Surely the fact that a method in the derived class
has the same name as a virtual method in the base class is enough for the
compiler to realize that an override is intended (as it is in C++).

Inheritance 207

To see why C# demands an override to be explicitly stated, we need to con-
sider what could happen during a long period of software development.
Suppose that we (or some external software developer) write a class such as
Person at some point in time. Initially the Person class is fairly primitive, con-
taining no more than the version we have given above. Then we write anoth-
er class, such as Friend, that inherits Person. In Friend, we add a method
called FormattedName(), which might format the friend’s name in some fancy
way using some character graphics, for example. Since FormattedName()
doesn’t exist in the base class Person, we would write it within Friend with-
out using any extraneous qualifiers:

public string FormattedName()

{

// code to produce a fancy name

}

Some time (possibly months or years) later, the author of Person decides to
release a new version of that class with a few upgrades, including a method
called FormattedName(). Quite possibly, this new FormattedName() method
in Person does something different from the one we added to Friend, but the
problem is that if we attempt to use our existing Friend class with the new
version of Person, there will be a name clash between the two methods.

In this case, since the inheritance relationship between Person and Friend
was designed long before the new version of Person was released, this name
clash couldn’t have been planned, so an override of FormattedName() wasn’t
in the original design. If we attempt to recompile our old version of Friend
with the new version of Person, we get a compiler warning stating that
FormattedName() in Friend is hiding (not overriding) FormattedName()
in Person.

The difference between hiding and overriding will only be noticed if we
try to use polymorphism. For example, consider the following code:

Person me = new Person("Glenn", 25);

Person simon = new Friend("Simon", 27);

Friend john = new Friend("John", 28);

Console.WriteLine(me.FormattedName());

Console.WriteLine(simon.FormattedName());

Console.WriteLine(john.FormattedName());

If FormattedName() in Friend hides FormattedName() in Person, then the
first two calls to FormattedName() will call the version from Person, and only
the last will call the version from Friend, even though simon is a Friend
object. If FormattedName() in Friend had been declared as an override, then
the ‘right’ version would be called for simon.

The compiler warning mentioned above arises because FormattedName()
in Friend was just declared as an ordinary method, without an override
qualifier. We should take note of this warning since it indicates that some-
thing is wrong with our class design.

208 From Java to C#

To fix the problem, we have essentially three options. To decide which is
the correct choice, we need to think carefully about what relationship
should exist between the two methods. Does FormattedName() in Friend
do essentially the same job as the same method in Person, but customized
slightly for the Friend class? If so, then it would make sense to declare it as
an override (assuming that FormattedName() in the base class was
declared as virtual – if not, this first option is not available):

public override string FormattedName()

{

// code

}

If the two methods do totally different things, the best option (if possible) is
to rename one of them to avoid the name hiding. However, in the scenario out-
lined above, this is not likely to be an option. If we wrote our Friend class
years ago and have used it extensively in other code, some of which has been
published or used in other projects, then renaming FormattedName() in
Friend is not possible. Similarly, if the new version of the Person class is in
an official release of code from some other developer, then we cannot expect
them to rewrite their code just because one of the methods has the same name
as one of ours.

In that case, the only option open to us is to make FormattedName() in
Friend hide, rather than override, its sibling in Person. Although this is the
default action of the compiler, we can get rid of the warning message by
inserting the new keyword in the derived class’s method definition:

public new string FormattedName()

{

// code

}

Doing this doesn’t break any existing code since it doesn’t change the name
of either the derived class method or the base class method. It merely confirms
to the compiler that we wish the derived class version of FormattedName() to
hide the corresponding version in the base class.

Thus the ‘extra’ override and new keywords required by C# are actually
there for a good reason – to prevent problems with different versions of software.

6.11 ■ Inheriting static methods

A static method is inherited in the same way as an instance method, but it
is not possible to override a static method. The reason for this is quite sen-
sible. When a base class reference that has been assigned a derived class
object calls an instance method, the virtual method table for the reference
variable is consulted to see what class the reference currently refers to. If
the method being called is declared as virtual in the base class and an

Inheritance 209

overridden version exists, then the overridden version gets called. The point
is that the program needs an instance of the class to be able to tell which
method to call: base or derived.

A static method is not associated with any particular instance of the class
in which it is defined, so it makes no sense to provide an overridden version
of such a method. If we do want a new version of a static method in a derived
class, we must use name hiding to create this new version. For example,
suppose we had a base class static method such as this:

class baseClass

{

// Data fields and other methods

public static void staticMethod()

{

// Statements

}

}

We could define a new version of staticMethod() in a derived class that
hides the version in the base class by saying:

class derivedClass

{

// Data fields and other methods

public new static void staticMethod()

{

// Statements

}

}

Note that we have added the new keyword to the method definition. If we
don’t do this, we get a compiler warning. Although it is not technically an
error to omit new, it is good practice to include it since it confirms that the
programmer understands that this new method is hiding an existing method
in a base class.

210 From Java to C#

Key point

Static methods cannot be overridden.

6.12 ■ The Object class

We’ve seen so far that we can build up our own hierarchies of classes by
using inheritance. However, Java programmers may remember that in Java,
every class inherits the class Object whether or not this is explicitly stated
in the class declaration. In C#, a fundamental Object class is also provided,
and is inherited by all classes by default.

The full name of the C# Object class is System.Object, since it resides
in the System namespace. (In Java, the Object class is a member of the
java.lang package.) However, since System.Object is commonly used in
C# code, a shorthand name is provided for this class: object (with a lower-
case ‘o’). The C# version of Object provides most of the same methods as
in the Java version. All these methods are declared as virtual in Object,
and may therefore be overridden in any user-defined class. Two of the most
commonly used methods are ToString() and Equals().

6.12.1 � The ToString() method

The ToString() method returns a string which (unless overridden) con-
tains the data type of the object calling it. For example, if we called
ToString() on the me and kevin objects in the example earlier in this chap-
ter, as in the code:

Person me = new Person("Glenn", 25);

Person kevin = new Student("Kevin", 19, "00121212");

Console.WriteLine(me.ToString());

Console.WriteLine(kevin.ToString());

we would get the output:

Person

Student

Although this information is occasionally useful, we usually want to dis-
play the data stored in an object rather than just its data type. It is there-
fore standard practice to override ToString() in most user-defined classes.
In fact, the PrintDescription() methods that we defined for Person and
Student earlier would usually be written as overrides of ToString():

Inheritance 211

Key point

All C# classes implicitly inherit System.Object. The object keyword is a
shorthand for System.Object.

// In Person

public override string ToString()

{

return "Name: " + Name + "; Age = " + Age;

}

and:

// In Student

public override string ToString()

{

return "Name: " + Name + "; Age = " + Age +

"; ID: " + studentID;

}

Note that the declaration of the method is the same in both classes: the
method is declared as an override and returns a string. There is no need to
declare the version of this method that is in Person to be virtual since Person
itself inherits Object and is therefore providing an override of Object’s
ToString(). In fact, we get a compiler warning if we omit the override key-
word from Person’s (or Student’s) version of ToString(), since we would be
hiding the ToString() method in Object rather than overriding it.

6.12.2 � The Equals() and ReferenceEquals() methods

There are three methods in Object designed to compare two objects for equal-
ity. To use these methods properly, it is important to understand that there are
two fundamentally different ways in which two objects can be ‘equal’.

The most common interpretation of equality is that the data stored in the
two objects is equal. For example, if we declared two Persons:

Person me = new Person("Glenn", 25);

Person otherMe = new Person("Glenn", 25);

we would probably regard me and otherMe to be ‘equal’ because the name
and age fields in the two objects contain the same data.

However, there is another way in which two objects can be compared for
equality: by comparing the memory addresses at which they are stored.
Since me and otherMe are two distinct objects that just happen to contain
the same data, they are stored in two different memory locations, and are
therefore not equal in this second sense. If, instead of the above two object
declarations, we had said:

Person me = new Person("Glenn", 25);

Person otherMe = me;

then me and otherMe would refer to the same object and they would then be
equal in both senses of the word.

212 From Java to C#

The three Object methods for testing equality are Equals(object x),
Equals(object x, object y) and ReferenceEquals(object x, object y).
The Equals(object x) method is a virtual instance method, and compares the
object that calls it with the object x passed in as a parameter. The other two
methods are static methods, so they don’t require an Object instance to be
called. They compare the two objects passed in as parameters. All three meth-
ods return a bool.

The default versions of all three of these methods in the Object class all
do the same type of equality testing: they compare the memory addresses of
the two objects being compared. However, all user-defined classes should
provide overridden versions of the two Equals() methods, since they are
supposed to compare objects by comparing the data they contain. The
default versions in Object cannot do this, of course, because Object does-
n’t contain any data fields and it cannot predict what data fields will be in
classes that are derived from Object.

As an example, we provide an overridden Equals() method for Person:

1. public override bool Equals(object x)

2. {

3. if (x == null || GetType() != x.GetType())

4. return false;

5.
6. Person otherPerson = (Person)x;

7. if (otherPerson.Age != Age)

8. return false;

9. if (!otherPerson.Name.Equals(Name))

10. return false;

11. return true;

12. }

13.
14. public override int GetHashCode()

15. {

16. return Age.GetHashCode();

17. }

For technical reasons, we have also provided an override of GetHashCode(),
which is another of the methods in Object. We have only included the over-
ride of GetHashCode() here since we get a compiler warning if we override
Equals() without it. (If you have not encountered the concept of hashing,
most introductory books on data structures should describe it.)

There are a couple of important points to note about the Equals()
method. First, since the parameter x passed into Equals() is declared as an
object, by using polymorphism, any object can be passed in as this param-
eter, since all classes in C# inherit Object either directly or indirectly. The
first thing we need to do, then, is to make sure that the object passed into
Equals() is a Person.

Inheritance 213

The initial if statement (line 3) first tests if x is null. If not, it then calls
the GetType() method (another method from the Object class, and there-
fore available to all objects). This method returns a Type object, where Type
is a predefined class in the System namespace which contains information
on an object’s data type. The only property of a Type that we are interested
in here is that two objects will have the same Type if and only if they are
objects created from the same class. We can therefore compare the Type of
the object calling Equals() with the Type of the parameter x and if they are
not equal, we know that x is not a Person.

If we get past this if statement, we know x is a Person, so we can see
about comparing it with this (the object that called Equals()). In order to
access the data fields within x, however, we need formally to cast it to a
Person (line 6). Once we’ve done this, we can compare the data fields of the
two objects to determine if they are in fact equal.

We can customize the static Equals(object x, object y) method in
much the same way, except we need to determine the types of both x and y,
and if they are both Persons, we then need to cast both of them to Person
objects and then compare their data fields:

public new static bool Equals(object x, object y)
{

// Check for null values and compare runtime types.
Person testPerson = new Person();
if (x == null || y == null ||

testPerson.GetType() != x.GetType() ||
testPerson.GetType() != y.GetType())
return false;

// Cast x & y to a Person type
Person person1 = (Person)x;
Person person2 = (Person)y;
if (person1.Age != person2.Age)

return false;
if (!person1.Name.Equals(person2.Name))

return false;
return true;

}

Since this version of Equals() is a static method, we need to use new
rather than override in its definition in a derived class as described above.
Also, since an instance of Person is not required to call this method, we
can’t be sure that either of its parameters x or y is actually a Person. To
ensure that both x and y are Persons, we create a testPerson object and
use it to compare with the Type of x and y. Once we are certain that both x
and y are Persons, we can proceed to compare their data fields as before.

There is no need to override ReferenceEquals() since it merely com-
pares the memory addresses of the two objects without examining their con-
tents, and therefore works the same for all objects. It will therefore return
true only if both its parameters refer to the same location in memory.

214 From Java to C#

The following code tests the overridden Equals() methods above, and
also the ReferenceEquals() method:

Person me = new Person("Glenn", 25);

Person otherMe = new Person("Glenn", 25);

Person kevin = new Student("Kevin", 19, "00121212");

Console.WriteLine("me.Equals(me): " + me.Equals(me));

Console.WriteLine("me.Equals(otherMe): " +

me.Equals(otherMe));

Console.WriteLine("me.Equals(kevin): " + me.Equals(kevin));

Console.WriteLine("ReferenceEquals(me, me): " +

ReferenceEquals(me, me));

Console.WriteLine("ReferenceEquals(me, otherMe): " +

ReferenceEquals(me, otherMe));

Console.WriteLine("Equals(me, me): " + Equals(me, me));

Console.WriteLine("Equals(me, otherMe): " +

Equals(me, otherMe));

Console.WriteLine("Equals(me, kevin): " +

Equals(me, kevin));

me = otherMe;

Console.WriteLine("Assigned otherMe to me");

Console.WriteLine("ReferenceEquals(me, otherMe): " +

ReferenceEquals(me, otherMe));

The output from this code is:

me.Equals(me): True

me.Equals(otherMe): True

me.Equals(kevin): False

ReferenceEquals(me, me): True

ReferenceEquals(me, otherMe): False

Equals(me, me): True

Equals(me, otherMe): True

Equals(me, kevin): False

Assigned otherMe to me

ReferenceEquals(me, otherMe): True

Our overridden Equals() correctly determines that me and otherMe are
equal, since although they are different objects (and therefore reside at different
memory locations) they do contain the same data. The ReferenceEquals()
method, however, finds that me and otherMe are not equal, since it is compar-
ing the memory addresses rather than the contents of the objects.

The static Equals() method is also showing the correct results.
After the assignment me = otherMe, both references are pointing at the

same object, so ReferenceEquals() now finds that they are equal.

Inheritance 215

6.13 ■ Boxing and unboxing

How does inheritance relate to value types such as the primitive data types and
structs? Since these data types are not classes, it is not possible to derive any
other data types from them. That is, we cannot say something like:

class myInt : int
{
}

There is one important exception to the no-inheritance rule for value types,
however, and that is that all value types do still implicitly inherit object. This
means that methods such as ToString() and Equals() can be used (and even
overridden) with structs in the same way as with ordinary classes.

Since the primitive data types such as int and float are aliases for
structs (see Chapter 4), they implicitly inherit object as well, which
means that it is possible to call ToString() directly on an int:

int x = 42;
Console.WriteLine("x = " + x.ToString());

In fact, we can even call object’s methods directly on a constant:

Console.WriteLine("x = " + 42.ToString());

Of course, there is no particular reason to do this, since we could just as
well have written:

int x = 42;
Console.WriteLine("x = " + x);

or

Console.WriteLine("x = " + 42);

and obtained the same output. However, the fact that this sort of thing is pos-
sible reveals some important points about how C# handles value variables.

A value variable such as an int is actually stored as a simple four-byte
quantity in the same way as in Java or C++. If a value variable is used in a
context where it needs to behave like an object rather than just a primitive
quantity, C# performs an operation known as boxing, which is essentially
building a box around the primitive type to convert it into an object.

Java programmers may be familiar with Java’s so-called wrapper classes
such as Integer and Float. Since an int in Java is always a value variable,
it is not possible to use it in expressions such as x.toString() as we did
above in the C# example. In Java, we first need to wrap the value variable
within an object and then call the desired methods:

// Wrapping an int within an object (Java code)
int x = 42;
Integer xInt = new Integer(x);
System.out.println("x = " + xInt.toString());

216 From Java to C#

The boxing process in C# is essentially the same as explicitly creating a
wrapper object in Java, except than in C#, no explicit intermediate class
such as Integer is required. The conversion from value type to object hap-
pens invisibly.

C# also allows us to create a ‘wrapped’ object out of a value type,
although again, no special class is needed to do this – we just use the object
class directly. For example, we can define an object to represent an int:

int x = 96;

object xBox = x;

Console.WriteLine("Boxed x = " + xBox);

The output from this code is:

Boxed x = 96

This process resembles the definition of an intermediate class such as
IntBox:

class IntBox

{

int number;

public IntBox(int init)

{

number = init;

}

}

The line

object xBox = x;

amounts to saying:

IntBox xBox = new IntBox(x);

Notice that this operation actually copies the value of x into number,
rather than making both xBox and x refer to the same object in memory.
This means that if we modified the example above by changing x after box-
ing it, the value printed by the WriteLine() statement would not change.
That is, if we said:

int x = 96;

object xBox = x;

x = 42;

Console.WriteLine("Boxed x = " + xBox);

the output would still be:

Boxed x = 96

Inheritance 217

A boxed object can be unboxed to reclaim the original value variable.
Doing this always requires an explicit cast, since the compiler will have ‘for-
gotten’ what the original data type was. For example, if we want to unbox
xBox back into an int, we could say:

int y = (int)xBox;

When unboxing objects, we need to be careful that the data type into
which we do the unboxing is the correct type. Using an incorrect type will
not generate any warnings or errors from the compiler, but will usually
throw a runtime exception. For example, if we tried:

byte z = (byte)xBox; // Runtime error

the code would compile, but the program would crash since the original data
stored in xBox was an int.

The problem here is not that we might lose data when converting from an
int to a byte, but rather that the data types in the object and value vari-
able to which we are trying to unbox it do not match. The problem resides
in the data type we have specified in the cast, not in the data type on the
left side of the assignment. For example, even if we tried unboxing an int
to a long, where no data loss can occur, as in:

long w = (long)xBox; // Runtime error

we will still get a runtime error. It is acceptable to unbox xBox to an int and
then assign the result to a long, since this just uses C#’s built-in implicit
casting rules to convert one data type to a more general one:

long w = (int)xBox; // No error

6.14 ■ Structs and inheritance

A C# struct, as we saw in Chapter 4, is a value data type. Although a
struct implicitly inherits object in the same way that primitive data types
do, no other inheritance is permitted with structs. We cannot derive a
struct from another struct or from a class, so we cannot use polymor-
phism with a struct as a base class.

The fact that a struct implicitly inherits object does allow us to over-
ride any virtual method in object. The two most useful methods to over-
ride are probably ToString() and Equals() as we did for classes above.
The syntax for overriding methods in a struct is the same as with a class.

A struct can be boxed and unboxed in the same way as a primitive value
type (since primitive data types are just structs anyway), and the same
cautions apply – be sure to unbox a boxed struct back into the same data
type it came from originally.

As a simple example of a boxed struct consider the following code:

218 From Java to C#

public struct BoxStruct

{

public int a, b;

public BoxStruct(int initA, int initB)

{

a = initA;

b = initB;

}

public override string ToString()

{

return "a = " + a + "; b = " + b;

}

}

public class BoxingDemo

{

public static void Main(string[] args)

{

BoxStruct box = new BoxStruct(4, 5);

object boxObj = box;

Console.WriteLine(boxObj.ToString());

}

}

The BoxStruct shows an example of an overridden ToString() method.
A BoxStruct is declared in Main(), then converted to an object. The last
line of Main() calls the ToString() by using the boxed object rather than
the original struct. This produces the output:

a = 4; b = 5

because ToString() in object is a virtual method, so the overridden ver-
sion is called.

However, if we attempted to refer to boxObj.a or boxObj.b, this would
produce a compiler error even though these fields are public, since the com-
piler sees boxObj as an object, not a BoxStruct, and object does not have
data fields named a or b. To access these data fields starting from boxObj,
we need to unbox it back to a BoxStruct:

BoxStruct unboxed = (BoxStruct)boxObj;

Console.WriteLine("unboxed.a = " + unboxed.a);

Finally, note that the boxing operation when applied to a struct also pro-
duces a copy of the original struct and not just a new reference to the orig-
inal struct. This means that any changes to the original struct after box-
ing it will not affect the boxed copy. Consider the code:

Inheritance 219

BoxStruct box = new BoxStruct(4, 5);
object boxObj = box;
box.a = 45;
box.b = 97;
Console.WriteLine("boxObj: " + boxObj.ToString());
Console.WriteLine("box: " + box.ToString());

The output is:

boxObj: a = 4; b = 5
box: a = 45; b = 97

Changing the values of a and b in box did not affect the the data fields in
boxObj.

6.15 ■ The is operator

One problem with polymorphism is that it is sometimes not obvious what data
type a reference variable refers to. For example, if we declare the variable

Person me;

then by the rules of polymorphism, me can refer to a Person or to any class,
such as Student, that inherits Person, and we can change what me refers to
dynamically as a program runs. We cannot, therefore, tell what type of
object is referred to by me just by looking at its declaration.

It is sometimes important to know the type of object to which a reference
refers. For example, suppose we add a method to Student that is not present
in the Person base class, such as getID() to retrieve the studentID field:

public string getID()
{

return studentID;
}

Since this method exists only in the derived class, we can call it only if
we are sure that the object is a Student and not a Person. When we use
polymorphism to create the Student, we can say something like this:

Person kevin = new Student("Kevin", 19, "00121212");
string kevinID = ((Student)kevin).getID();

Note that we need to be sure that kevin refers to a Student before we can
be sure that the second line will run without errors.

The is operator provides an easy way of determining whether a given
variable is compatible with a particular data type. To avoid any possibility
of error in the previous example, we can say:

Person kevin = new Student("Kevin", 19, "00121212");
if (kevin is Student)

220 From Java to C#

{
string kevinID = ((Student)kevin).getID();

}

The is operator tests to see if its left operand is an instance of the data
type given as its right operand, and returns a boolean value with the result.
It will also return true if the data type of the object on the left is derived
from the data type on the right, so that in the above example, the expres-
sion kevin is Person would also return true. The is operator is therefore
equivalent to Java’s instanceof operator.

In other words, is may be used to determine if the variable on the left is
compatible with the data type on the right. The is operator will also work
with value types. For example:

int x = 42;
Console.WriteLine("int is int: " + (x is int));
Console.WriteLine("int is byte: " + (x is byte));
Console.WriteLine("int is long: " + (x is long));

produces the output:

int is int: True
int is byte: False
int is long: False

This shows that is will not implement any implicit casts between value
types. Even though an int can be implicitly converted to a long, the expres-
sion x is long will always return false if x is an int. Similarly, is reports
false for a comparison of an int with a byte.

The is operator will apply boxing and unboxing if required to convert one
type into another. For example:

int x = 42;
object xObj = x;
Console.WriteLine("boxed int is int: " + (xObj is int));

produces the output:

boxed int is int: True

The is operator detects that if the object xObj is unboxed, it will pro-
duce an int, and therefore returns true.

6.16 ■ The as operator

The keyword as can cast an object or value into a reference data type under
certain conditions. These conditions are fairly restrictive, so as is not all
that useful. We will not go into the details of the operator here, since the full
set of rules under which as can be used are fairly complex. However, we will
give a simple example to show how it might be used.

Inheritance 221

object [] asTest = new object[6];
asTest[0] = "a string";
asTest[1] = "number: " + 34;
asTest[2] = "hello";
asTest[3] = 123;
asTest[4] = 123.4;
asTest[5] = null;

for (int i=0; i < asTest.Length; i++)
{

string s = asTest[i] as string;
if (s != null)

Console.WriteLine ("Element " + i + ": '" + s + "’");
else

Console.WriteLine ("Element " + i +
": is not a string");

}

We declare an array of objects and initialize the elements of the array to
various data types. Elements 0 through 2 are initialized to strings, ele-
ments 3 and 4 are initialized with numbers that are converted to objects
via boxing, and element 5 is set to null.

Inside the for loop, we use as to attempt to convert each element of the
array to a string. If such a conversion is possible, as will perform the oper-
ation just like an explicit cast. If the conversion is not possible, as returns
null. We can therefore test the string s to see if it is null. If not, we have
a valid string which can then be printed out. Otherwise, we print a mes-
sage that that element is not a string.

The output from this code is:

Element 0: 'a string'
Element 1: 'number: 34'
Element 2: 'hello'
Element 3: is not a string
Element 4: is not a string
Element 5: is not a string

The as operator can cope with conversions to and from object but the
number of other applications is fairly limited, and most of its features can
be duplicated by ordinary implicit or explicit casts and boxing.

6.17 ■ Sealed classes and methods

C# provides the sealed keyword which may be used in two main ways. First,
an entire class can be declared as sealed in order to prevent that class from
being inherited. This is equivalent to declaring a class in Java as final. For
example, if we decided that the Student class that we have used for several
examples in this chapter should not be inherited, we can declare it as sealed:

222 From Java to C#

public sealed class Student : Person

{

// data and methods

}

Why would we want to prevent a class from being inherited? The main
reason is security. Many classes that are part of the System namespace are
vital to the proper running of .NET. If a programmer could inherit these
classes, they may be able to override some of the methods in them to break
into secure areas of a computer system.

A classic example is the String class (both in C# and Java) which is
used in many critical areas of the virtual machine that runs programs.
String in C# is a sealed class to prevent programmers from inheriting it
and overriding some of its methods. If it were possible, for example, to
create a derived class MyString, we could use polymorphism to pass a
MyString object to any method in any class that expected a String. If we
had enough knowledge of a program and the data it accessed, some of
these overrides could be written to access ‘secure’ data.

If we still wish to allow users to inherit a class we have written, but wish
to prevent particular methods in that class from being overridden, we have
the option of sealing only those methods rather than the entire class. Java
also allows particular methods within a class to be declared as final even if
the class as a whole is not final.

Only an override of a method that is declared as virtual in the base
class can be sealed, as opposed to Java, where any method can be declared
as final. The restriction of sealed to overridden methods in C# makes
sense, since if we wish to prevent a method in the base class from being
overridden, we simply do not declare it to be virtual in the first place. In
Java, all methods are implicitly virtual, and therefore could be overridden if
we did not declare them as final.

As an example, suppose we wished to allow the Student class to be inher-
ited, but wished to prevent the ToString() method in Student from being
overridden in any class derived from Student. We add the sealed keyword
to the definition of ToString() in the Student class:

public sealed override string ToString()

{

return "Name: " + Name + "; Age = " + Age +

"; ID: " + studentID;

}

When applied to a method, sealed must always appear in conjunction
with override.

Suppose we now define a new class called FirstYearStudent which
inherits Student. Attempting to define an override of ToString() pro-
duces a compiler error, but it is still possible to add a new version of
ToString() to FirstYearStudent, since this version hides, rather than
overrides, ToString() in Student:

Inheritance 223

public class FirstYearStudent : Student

{

public new string ToString()

{

// code goes here

}

}

This will not cause security problems, since even if we use polymorphism
to create a FirstYearStudent from a Student reference variable, calling
ToString() will still call the version from Student, not FirstYearStudent.
There is thus no way for a disreputable programmer to introduce an over-
ridden ToString() method into existing code.

6.18 ■ Abstract classes

We have seen that the main idea behind inheritance is that common prop-
erties and methods can be extracted from a number of similar classes and
stored in a common base class. In the case of Person and Student, both
classes could represent real objects in the program. A Person is just some-
one who has no special properties (at least in the context of the program),
and is someone about whom we wish to store only some basic information.
A Student includes all the properties of a Person, but adds some more that
are particular to being a student, such as an ID code.

In some cases, however, the properties stored in a base class may not be
enough to specify a ‘real’ object. A somewhat overused, but still appropriate,
example is that of geometric shapes. If we think of two-dimensional shapes
in particular, they all have an area and a perimeter. However, specifying just
the area and perimeter of a shape is not enough to say what kind of shape it
is. It could be a rectangle, triangle, circle, and so on. It still makes sense to
have a base class in this case, but it does not make sense to allow objects to
be created from it.

C#, like Java, provides the abstract class for such a case. The rules for
creating and using abstract classes are much the same in the two languages,
but we shall review them here for completeness.

An abstract class cannot be used to create objects – that is, it is not pos-
sible to use the new operator with an abstract class. As such, the only possi-
ble role for an abstract class is as a base class in an inheritance relationship.

Methods within an abstract class may be normal methods, as found in an
ordinary class, or they too may be abstract. If a method is declared abstract,
it has no body – it consists of only a method declaration (the return type,
name and parameter list, together with any other modifiers such as public
or override) followed by a semi-colon. An abstract method must be over-
ridden in any class that inherits the abstract class. Thus an abstract method
is essentially the opposite of a sealed method – it forces the inheriting class
to provide an implementation of it.

224 From Java to C#

Abstract classes may themselves inherit other classes (either abstract or
normal), and may override methods in these inherited classes.

Let us illustrate these ideas by defining TwoDimShape as an abstract base
class for a number of two-dimensional shapes:

1. public abstract class TwoDimShape

2. {

3. protected double area;

4. protected double perimeter;

5.
6. public abstract void CalcArea();

7. public abstract void CalcPerimeter();

8.
9. public override string ToString()

10. {

11. string info = "Area: " + area +

12. "; Perimeter: " + perimeter + "\n";

13. return info;

14. }

15. }

An abstract class must include the abstract keyword in its definition
(line 1). The class declares a couple of data fields (lines 3 and 4) to repre-
sent the area and perimeter of a general geometric shape.

Lines 6 and 7 define two abstract methods which will calculate the area
and perimeter, respectively. Since these methods are declared abstract,
they must be overridden in any class that inherits TwoDimShape.

The ToString() method shows that an abstract class can define non-
abstract methods, and also that it can override methods from its base class.
Abstract classes, like all classes in C#, also inherit the global object class,
so they may override methods such as ToString(), just like any other class.

An abstract method, such as CalcArea() or CalcPerimeter(), is implic-
itly virtual, since it must be overridden in any derived class. Somewhat
bizarrely, however, it is a syntax error to include the virtual keyword in an
abstract method’s declaration.

We can define a Rectangle class that inherits TwoDimShape:

1. public class Rectangle : TwoDimShape

2. {

3. protected double length, width;

4.
5. public Rectangle(double len, double wid)

6. {

7. length = len;

8. width = wid;

9. CalcArea();

10. CalcPerimeter();

Inheritance 225

11. }

12.
13. public override void CalcArea()

14. {

15. area = length * width;

16. }

17.
18. public override void CalcPerimeter()

19. {

20. perimeter = 2 * (length + width);

21. }

22.
23. public override string ToString()

24. {

25. string info = "Length: " + length +

26. "; Width: " + width + "\n";

27. info += base.ToString();

28. return info;

29. }

30. }

This class inherits area and perimeter, and adds length and width (line 3).
The constructor (lines 5 to 11) requires initial values for length and width and
then calls CalcArea() and CalcPerimeter() to calculate area and perimeter.
These methods are defined on lines 13 to 21, and are required in Rectangle
since they were declared as abstract in the base class TwoDimShape. Not only
must these methods be present, but they must be declared as override meth-
ods – we cannot attempt to hide the abstract methods in the base class.

Finally, we provide an override of ToString() (lines 23 to 29). On line
27, we use the ToString() method defined in TwoDimShape, illustrating
that non-abstract methods defined within abstract classes are still accessi-
ble in the normal way.

To use Rectangle, we can create a third class which declares a Rectangle
object and calls its ToString() method:

public class MainClass

{

public static void Main(string[] args)

{

Rectangle shape = new Rectangle(3, 4);

Console.WriteLine(shape.ToString());

}

}

The output from this code is:

Length: 3; Width: 4

Area: 12; Perimeter: 14

226 From Java to C#

One final note about abstract classes. Although we cannot create an
object directly from an abstract class using the new operator, as in:

TwoDimShape shape = new TwoDimShape(); // Not allowed

we can declare a reference to an abstract class and then use polymorphism
to assign this reference to an object from a derived class. In other words, we
could have written the Main() method above as:

public class MainClass

{

public static void Main(string[] args)

{

TwoDimShape shape = new Rectangle(3, 4);

Console.WriteLine(shape.ToString());

}

}

This means that all the advantages of using polymorphism that were dis-
cussed earlier in this chapter can be gained by using references to abstract
classes as well as to ordinary base classes. In particular, we can define meth-
ods that take references to abstract classes as parameters.

6.19 ■ Interfaces

Interfaces are similar to, but more restrictive than abstract classes. Like an
abstract class, an interface must be implemented (inherited) by a regular
class in order to be used. However, unlike an abstract class, an interface may
not contain any data fields or ‘regular’ methods. Any method declared in an
interface is essentially abstract, in that we are not allowed to add any code
body to it, although the abstract keyword is not attached to the method
declaration.

Java programmers who have done any programming involving event han-
dlers will be familiar with interfaces in Java. All events in Java are handled
by means of implementing listener interfaces. Each listener defines one or
more methods which must be implemented by the class that implements
the interface. The ActionListener that is used to respond to
ActionEvents, such as those generated by pressing a JButton, contains a
single method called actionPerformed() which is called when the event is
received. Code for handling the ActionEvent is placed within this method.

Although events are handled differently in C#, the interface concept is
much the same in C# as in Java, so any experience in dealing with Java
interfaces should serve the programmer well in C#.

Interfaces are treated somewhat differently than classes in object-orient-
ed design. Whereas class inheritance should always be based on the ‘is a type
of’ relationship between derived and base classes, an interface is usually
used to define one or more methods that are used by a number of different

Inheritance 227

classes. As such, an interface does not normally represent an ‘object’ within
the design in the same way that a class does.

As an example, let us add an interface to the geometry example we used
in the section on abstract classes. This interface will provide two methods
which allow different types of information on the geometric shapes to be
generated as strings.

public interface IShapeInfo

{

string DimensionInfo();

string ShapeInfo();

}

The DimensionInfo() method will generate as a string the dimensions of
the particular shape – in the case of the Rectangle, it will display length
and width. Similary, ShapeInfo() will display area and perimeter.

Note that we have given the interface a name beginning with an upper-
case ‘I’. Although an interface can be given any alphanumeric string (that
does not begin with a number) just like a class, it is conventional to begin
interface names with ‘I’ to distinguish them from classes.

We will demonstrate the use of IShapeInfo first by having the Rectangle
class implement it directly:

public class Rectangle : TwoDimShape, IShapeInfo

{

// Other fields and methods as in previous example

public string DimensionInfo()

{

return "Length: " + length + "; Width: " + width + "\n";

}

public string ShapeInfo()

{

return base.ToString();

}

}

The Rectangle class now inherits the abstract class TwoDimShape defined
in the last section, and it also implements the IShapeInfo interface. Note
that, unlike Java, C# makes no distinction between inheriting a class and
implementing an interface – both the class and the interface are listed
together within the same list. In Java, we would need to use extends to indi-
cate class inheritance and implements to indicate interface implementation.

Like Java, however, once we state that we are implementing an interface,
we must provide implementations for all methods declared in the interface. We
have therefore added definitions for DimensionInfo() and ShapeInfo() to
the Rectangle class, as shown. Although no access modifier was specified for

228 From Java to C#

these methods in the interface definition, whenever an interface method is
implemented in a class, the method must be declared public. Note, however,
that the methods in Rectangle are not declared as override, even though it
may appear that we are overriding their declarations in IShapeInfo. In fact,
implementing a method that is declared in an interface is not considered to be
an override, and the use of override in the method definition is an error.

To illustrate how the interface can be used in practice, we will modify
MainClass from our earlier example:

public class MainClass

{

public static void PrintInfo(IShapeInfo shape)

{

Console.WriteLine(shape.DimensionInfo());

Console.WriteLine(shape.ShapeInfo());

}

public static void Main(string[] args)

{

Rectangle shape = new Rectangle(3, 4);

PrintInfo(shape);

}

}

We have added a PrintInfo() method that takes an IShapeInfo param-
eter, illustrating that interfaces, like abstract classes, may be used to define
reference variables even though they cannot be used to create objects on
their own. This means that PrintInfo() can accept any object that is an
instance of a class that implements the IShapeInfo interface. The output of
this code is:

Length: 3; Width: 4

Area: 12; Perimeter: 14

Note that the shape parameter within PrintInfo() can refer only to
those methods declared within IShapeInfo. In particular, attempting to call
methods that are defined only in Rectangle or in TwoDimShape but not in
IShapeInfo will not work. For example:

public static void PrintInfo(IShapeInfo shape)

{

Console.WriteLine(shape.DimensionInfo());

shape.CalcPerimeter(); // Error: can’t call this

Console.WriteLine(shape.ShapeInfo());

}

Inheritance 229

The call to CalcPerimeter() will generate a compiler error since this
method is not declared in IShapeInfo, even though it is declared in
Rectangle’s other base class, TwoDimShape. To access CalcPerimeter()
from within PrintInfo() we would need to change the offending line to:

((TwoDimShape)shape).CalcPerimeter();

or

((Rectangle)shape).CalcPerimeter();

That is, we need to provide an explicit cast to either TwoDimShape or
Rectangle.

As a second example of interface implementation, we can shift the
implementation of IShapeInfo from Rectangle to its abstract base class
TwoDimShape. We change the definition of TwoDimShape from its form in the
last section to this new version:

public abstract class TwoDimShape : IShapeInfo

{

protected double area;

protected double perimeter;

public abstract void CalcArea();

public abstract void CalcPerimeter();

public abstract string DimensionInfo();

public abstract string ShapeInfo();

public override string ToString()

{

string info = "Area: " + area +

"; Perimeter: " + perimeter + "\n";

return info;

}

}

Since we don’t have enough information in TwoDimShape to write a body
for DimensionInfo() (since it depends on the dimensions defined for a par-
ticular shape), it is legal for an abstract class to ‘implement’ an interface
method by declaring that method as an abstract method. In effect, we are
passing the buck from the abstract class along to whatever normal class
inherits the abstract class.

Making this change requires a couple of modifications to Rectangle.
Instead of the version given earlier in this section, we now use the following:

public class Rectangle : TwoDimShape

{

// Other fields and methods as in previous example

230 From Java to C#

public override string DimensionInfo()
{
return "Length: " + length + "; Width: " + width + "\n";

}

public override string ShapeInfo()
{

return base.ToString();
}

}

We have dropped IShapeInfo from the list of inherited classes and inter-
faces in the first line. The other change is that we have now declared
DimensionInfo() and ShapeInfo() as override, since these two methods
are now overriding the declarations in the abstract base class, rather than
the original versions in the interface.

In case you are feeling somewhat confused by these rules (when to use
override, when methods should be declared public, and so on), you should
feel reassured that the C# compiler is very helpful with its error messages if
you do get something wrong, so it is usually very easy to correct the mistake.

The code given earlier in MainClass will work for this new version with-
out any changes.

6.20 ■ Case study: the adventure game

Now that we have an understanding of inheritance, we are in a position to
expand our adventure game case study considerably. In this section, we will
introduce a number of derived classes to represent specialized objects that
may appear in the game.

We will also take this opportunity to add a number of new commands to
the game and in the process produce a game with enough interest to be
playable. The amount of code that has been added at this stage is consider-
able, so it is best to begin with an overview of the structure of the game in
this new version.

6.20.1 � Using inheritance

The last version of the game (section 5.12) contained only four classes. The
Item class allowed objects to be placed in rooms or in the player’s backpack,
the Room class allowed rooms to be created, the Player class represented
the user’s character in the game and the Adventure class started things off
by creating all the objects and then kept things going by parsing the input
commands.

‘Real’ adventure games (that is, those you can buy from computer soft-
ware shops) have considerably more variety than this. In particular, these
games usually contain several types of items, different types of rooms, and

Inheritance 231

many varieties of creatures, some of which are friendly and others that will
attack you.

These commercial games are the products of many people working over
many months or years, so we obviously can’t expect to approach the rich-
ness and variety of these games in a relatively simple case study in this
book. However, we can get some inspiration from these commercial games
and try to capture their spirit in our modest offering here.

We’ll begin with a summary of the new features that are to be added to
the game. First, we’ll introduce a number of new item types that allow spe-
cialized items to be included. We’ve taken these types from the traditional
‘sword and sorcery’ type of adventure game.

The specialized types are:

■ food: eating food boosts the player’s energy;
■ weapon: the player may wield a weapon to boost combat performance;
■ armour: wearing armour protects the player from enemy attack;
■ potion: quaffing a potion bestows extra abilities on the player for a

limited time;
■ ring: wearing a ring also bestows special abilities for as long as the ring

is worn;
■ wand: magic wands can be zapped at enemies.

Each of these item types represents a distinct concept in the game, and
therefore each type is a good candidate for a separate class. However, it
should be clear that all these item types have properties such as weight and
a description in common, so they can all be viewed as specialized types of
the Item class. It makes sense, therefore, to use Item as a base class for all
these classes.

However, if we think about these items in a bit more depth, we might also
recognize that potions, rings and wands are magical, while food, weapons
and armour are not. (In many adventure games, of course, weapons and
armour can have magical properties, but to keep things simple, we are not
going to use magic weapons or armour here.) We might therefore create a
class called MagicItem as a base class for the three magic item types.
MagicItem would itself inherit Item, but since there are no direct instances
of a MagicItem in the game, we can declare it as an abstract class.

The decision to make MagicItem abstract implies that all magic items will
have classes of their own that derive from MagicItem. In the current design
of the program, this is true, since we are considering only potions, rings and
wands, but in a future expansion of the game, we might introduce unique
types of magic item. By making MagicItem abstract, we are imposing the
condition on all extensions of the game that any future types of magic item
we add must have new classes created for them. This probably wouldn’t be
a major consideration, but it is worth noting that design decisions always
have knock-on effects for future versions of the software.

232 From Java to C#

The inheritance diagram in Figure 6.1 illustrates how these item classes
relate to each other. We’ll consider the details of these specialized classes
below – for now, the main point is that they do fit together nicely using an
inheritance relationship.

Having weapons and armour isn’t much use unless there are things to
fight, so we need to introduce some opponents for the player’s character. In
line with most fantasy adventures, we will call these opponents monsters.
The system of combat involves the player fighting a monster with both com-
batants trying to reduce the energy points of their opponent to zero. Clearly,
players and monsters share a number of properties, so it is natural to ask if
some sort of inheritance would be appropriate here as well.

In a richer version of an adventure game, there would be a number of dif-
ferent types of monsters, so we could build up an inheritance hierarchy for
characters in the game similar to that for items. To keep the game manage-
able, however, we will consider all monsters to be of the same general type
(that is, although monsters can have different names, they all have the same
types of abilities). The player will have all the abilities of the monsters (though
probably not to the same degree), but will also have some extra properties,
such as the ability to wear armour, wield a weapon and use magic items.

It therefore makes sense to define a base class called Character which
will be used on its own to create instances of monsters, and a derived class
called Player which inherits Character and adds the special properties and
abilities of the player.

We could also extend the game’s class model by defining special types of
locations and create an inheritance hierarchy here too, but hopefully by
now you are getting the idea of how inheritance is being used, so we will sim-
ply define all the locations in the game to be of the same type. However, if
you want to extend the game yourself by defining your own location class-
es, it is a good exercise in using inheritance.

Inheritance 233

Magic Item

RingPotion Wand

WeaponFood Armour

Item

Figure 6.1 Inheritance diagram for the adventure game

The final list of classes is therefore:

■ Adventure: class containing Main() and containing the initialization
and command-handling code;

■ Room: used for creating all locations in the game;
■ Character: used for creating all types of monsters, and also as a base

class for Player;
■ Player: inherits Character and is used to create the main player

character;
■ Item: base class for all item types;
■ Food: inherits Item, used for food objects;
■ Weapon: inherits Item, used for non-magical weapons;
■ Armour: inherits Item, used for non-magical armour;
■ MagicItem: abstract class that inherits Item; base class for all magic

item types;
■ Potion: inherits MagicItem; represents potions that can be quaffed;
■ Ring: inherits MagicItem; represents rings that can be worn;
■ Wand: inherits MagicItem; represents wands that can be zapped in combat.

The contents of these classes are most easily shown on a diagram (Figure 6.2).
Professional object-oriented designs are drawn using UML (Universal Modelling
Language). Although we are not assuming a knowledge of UML on the part of the
reader, we can use a simplified version of UML to display the class relationships,
since the diagram is quite easy to understand.

In Figure 6.2, each class is represented as a box with two compartments.
The top compartment shows the name of the class and the lower compart-
ment shows the properties of the class that can be represented by primitive
data types such as int or string. Thus the Player class contains three
primitive properties called MaxCarry, CarryWeight and PotionTime (which
will be explained below).

The lines connecting a pair of classes indicate that one class contains one
or more instances of the other class as properties. The numbers at the ends
of each line indicate how many instances of that class are involved. For
example, the line joining Adventure with Player indicates that one
instance of Adventure contains one Player (since there is a 1 at each end
of the line). The line joining Adventure and Room shows that one Adventure
contains ‘1 to n’ Locations, that is, that it contains at least one and possi-
bly many Locations. The line with the arrowhead connecting Player with
Character indicates the inheritance relationship as described earlier.

The relations shown in the diagram can be summarized by saying that an
instance of Adventure contains one Player and a number of Locations. The
Player is associated with a single Room (that is, the player can only be in one
place at a time) and may carry a number of Items (and by extension, other
item types derived from Item). The ‘0..n’ on the link between Player and Item
indicates that a player may be carrying any number (including zero) of items.

Similarly, a Room is associated with one Player, and may also contain a
number of Items.

234 From Java to C#

The specialized item types derived from Item have not been shown
on the diagram to avoid clutter. However, we can summarize these relations
as follows.

The specialized item types apply only to a Player, and a Player is allowed
the following:

■ A single Weapon may be wielded. Wielding another Weapon replaces
the existing Weapon with the new one. The currently wielded Weapon
becomes the WieldedWeapon field in Player.

■ A single Armour may be worn. Wearing another Armour replaces the current
one. The currently worn Armour becomes the WornArmour field in Player.

■ A single Potion may be quaffed, with this Potion then becoming the
QuaffedPotion for the Player. No further Potion may be quaffed until
the QuaffedPotion wears off. The PotionTime field in Player keeps
track of how many turns remain in the current QuaffedPotion.

■ A single Ring may be worn (using the ‘adorn’ command), and becomes the
WornRing field of Player. The ‘unadorn’ command removes the Ring.

There are no ‘unwield’ or ‘unwear’ commands for weapons or armour,
since it is assumed that the player will always want to wield a weapon and
wear armour. An ‘unadorn’ command is provided for rings, since it can be
useful to remove the effects of all rings at times.

Other specialized types such as Food and Wand may be eaten or zapped,
respectively, but otherwise have no special relation with a Player.

Inheritance 235

Location

Description

Item

Description
Weight

Adventure1

1..n

1

1

1

0..n

1

1

Character

BlockProb
Damage
Energy
HitProb
Name

Player

MaxCarry
CarryWeight
PotionTime

1

0..n

1

1

Figure 6.2 Relationships between classes in the adventure game

6.20.2 � Adding new commands

In addition to the look, status, take, drop and move commands that were
in the previous version, we’ll now add in several more commands that will
give the game a good set of actions. Most of these commands have been men-
tioned in passing while discussing the new classes above, but we’ll summa-
rize them here for reference:

■ wield <weapon>: requires a Weapon as a parameter, and either wields a
weapon for the first time when the command is first used, or replaces
the existing weapon with a new one. The old weapon is put into the play-
er’s backpack.

■ wear <armour>: requires an Armour as a parameter and, as with wield,
either puts on armour the first time it is used, or replaces existing
armour. In the latter case, the old armour is put into the backpack.

■ quaff <potion>: requires a Potion parameter. The player can only
quaff a potion if no other potion is currently in effect. A potion has a
duration parameter that specifies how many turns its effects last. Once
an existing potion has worn off, a new one can be quaffed.

■ eat <food>: requires a Food parameter. Eating food increases the play-
er’s energy by an amount that depends on the food. The player can eat
as much food as desired – there is no upper limit to the amount of ener-
gy a player can have.

■ adorn <ring>: requires a Ring parameter. The player can wear only one
ring at a time. The previous ring must be removed with unadorn before
a new ring can be put on. A ring can affect several of the player’s prop-
erties – the details depend on the ring.

■ unadorn: no parameters. Removes a ring, if one is being worn. The
effects of the ring cease once it is removed.

■ zap <wand>: requires a Wand parameter. The player need only have the
wand in the backpack in order to zap it – it does not need to be wielded
or held. The effect of a wand is usually to inflict damage on an opponent.
A wand has a limited number of charges. Each time the wand is zapped,
it loses one charge. When the number of charges reaches zero, the wand
crumbles into dust. A wand may be zapped in a room without a monster,
but this still uses up a charge.

■ attack: no parameters. If the player is in a room with a monster, the
player attacks the monster. The results of an attack depend on the sta-
tistics of the player and monster (see the rules of combat below).

The commands are all handled, as before, in Adventure, although numer-
ous method calls to the other classes are made. We will consider the details
when we present the code below.

236 From Java to C#

6.20.3 � Rules of combat

Adventure games have many different rules for running combat sequences.
Most of the later games use real-time combat, in which the player and the
opponents attack each other at the same time. Many older (and some mod-
ern) games use a turn-based system in which each opponent in combat
takes turns, similar to a game of chess. The turn-based system is consider-
ably easier to program, so we’ll use it for our case study.

The combat turns are based on commands given by the player. Passive
commands such as ‘look’ or ‘status’ are not considered to use up any time
and do not count as combat turns, so the monster does not get an extra
chance to attack the player after a ‘look’. Similarly, if the user enters an
invalid command, either by typing in something that is not recognized or by
attempting an illegal operation such as ‘eat sword’, this does not count as a
combat turn.

A monster is given an attack on the player at the end of each turn in
which the player remains in the same location as the monster, and where
the player does something that counts as a time-consuming turn. This
means that entering the room containing the monster gives the monster the
first attack on the player. After this, if the player remains in the same room
and gives commands like ‘take’, ‘drop’, ‘wield’ and so on, the monster will get
an attack after each of these commands. The best option for the player, of
course, is to ‘attack’ and try to defeat the monster.

If the player’s energy is getting low (remember a free check can always be
made by using ‘status’), the best option is simply to move to a different loca-
tion, since the monster will not get a free attack on the player if the player
leaves the room.

When an attack is made by either side, we need to determine if the
attacker hits the opponent and, if so, how much damage is done. Again,
every adventure game seems to have its own rules for working this out, so
we will use a fairly simple system.

The Character class contains properties related to combat as follows:

■ HitProb: the probability that the attacker scores a ‘hit’ on the opponent.
This is determined partly by the type of attacker (different monsters can
have different HitProbs) and, for the player, partly by the weapon being
wielded and by any magic items that may be in effect. For example,
using a sword instead of your bare fists will increase your HitProb by an
amount given in the Weapon object that represents the sword. Some
potions and rings can change HitProb as well.

■ BlockProb: the probability that the defender successfully blocks an
attack. The blocking probability depends on such things as the armour
being worn and also on the innate ability of the character to dodge or
deflect an attack. Some magic items can also change BlockProb. For
example, wearing a ring of invisibility increases your BlockProb since
an invisible target is much harder to hit.

Inheritance 237

Both HitProb and BlockProb are expressed as percentages. They are
combined to determine if an attack succeeds by using the formula:

ProbSuccess = HitProb(A) * (100 – BlockProb(D)) / 100

where HitProb(A) is the HitProb for the attacker and BlockProb(D) is
BlockProb for the defender.

The logic behind this formula is that in order for an attack to succeed, the
attacker must make a successful hit (given by HitProb) and the hit must get
through the defender’s defence. Since BlockProb is the probability that the
defender is able to block the attack, 100 – BlockProb is the probability that
a hit is not blocked.

For example, if the attacker has a HitProb of 50 and the defender has a
BlockProb of 70, then ProbSuccess is 50 * 30 / 100 = 15, meaning that
for this particular attacker and defender, only 15 per cent of the attacks will
be successful.

This technique may seem a little involved, but we need a way of taking
into account both the weapon and combat skills of the attacker and defen-
sive skills of the opponent.

The Character class also contains a Damage property, which is the
maximum damage that can be inflicted in a successful attack. The actual
amount of damage done is chosen randomly from one energy point up to
Damage points.

We have now covered the basics of the design of the adventure game, so
we can have a look at the code. This program is by far the largest we have
considered so far in this book, so we will need to take it in stages.

6.20.4 � Item classes

First, we’ll consider the inheritance hierarchy for the various item types.
The Item class remains virtually unchanged from the previous version in
Chapter 5, but we reproduce it here for convenience.

1. public class Item

2. {

3. protected string description;

4. protected int weight;

5.
6. public Item()

7. {

8. description = "";

9. weight = 0;

10. }

11.
12. public Item(string description, int weight)

13. {

14. Description = description;

238 From Java to C#

15. Weight = weight;

16. }

17.
18. public string Description

19. {

20. get

21. { return description; }

22. set

23. { description = value; }

24. }

25.
26. public int Weight

27. {

28. get

29. { return weight; }

30. set

31. { weight = value; }

32. }

33.
34. public override string ToString()

35. {

36. string itemInfo = description;

37. itemInfo += ": (" + weight + ")";

38. return itemInfo;

39. }

40.
41. public bool MatchesDescription(string itemDesc)

42. {

43. string thisLower = this.Description.ToLower();

44. string otherLower = itemDesc.ToLower();

45. if (thisLower.IndexOf(otherLower) != -1)

46. return true;

47. return false;

48. }

49. }

The Item class represents the main style that is used for all the classes
that inherit it. The data fields are now declared as protected instead of
private, since this class will serve as a base class and we want these data
fields to be inherited. A zero-parameter constructor is provided (line 6),
which allows derived classes to define their own constructors that do not
explicitly call the base class constructor using the base() keyword. If this
constructor were not defined, we would need to include an explicit call to
the other constructor on line 12 in all derived-class constructors.

In this and the other item-derived classes, we provide C# properties for all
the data fields (lines 18 to 32). In most cases, these properties simply return
the data field for the get operation and set the field to value for set. In a few

Inheritance 239

cases, we will perform some checks on the value before assigning it to the
data field. All basic properties in which the field value is simply returned or
assigned without any other checks being made have essentially the same
simple form, so in later classes we will omit these properties to save space.
The complete code is, as usual, available from the book’s web site.

Most classes in the adventure game also have an override version of
ToString() (line 34). Since we are still dealing with a text-only program,
these methods are used to construct the string that is to be printed when-
ever a description of the object is required.

The final method in Item is MatchesDescription() (line 41), which per-
forms a case-insensitive search for the input string itemDesc within the
Description property. This method is used in commands such as ‘take’ and
‘drop’, as we described in Chapter 5.

Referring back to the inheritance diagram for the item classes above, we
see that there are three non-abstract classes that inherit Item directly:
Armour, Food and Weapon. These three classes are all fairly similar in style
to Item.

The Armour class is:

public class Armour : Item

{

protected int blockProb;

public Armour()

{

blockProb = 0;

}

public Armour(string description, int weight) :

base(description, weight)

{

blockProb = 0;

}

public int BlockProb

{

get

{ return blockProb; }

set

{ blockProb = value; }

}

}

The first line indicates that Armour inherits Item and therefore inherits
Item’s Description and Weight properties (and their underlying data
fields). Actually, it is worth pointing out that even if we had declared Item’s
two fields as private instead of protected, Armour could still effectively

240 From Java to C#

inherit them provided that Item contained the two public properties
Description and Weight that provide a link to the private data fields. This
is not a particularly good design practice, however, since if we really do want
Armour to inherit Item’s data fields, we should specify that directly by mak-
ing these fields protected in Item as we have done here.

Armour adds a new field called blockProb which is the probability of that
armour blocking an opponent’s attack. We are interpreting blockProb as the
difference to the player’s overall blocking probability that wearing the
armour will make. That is, if the player has an innate blocking probability of,
say, 25 per cent and some armour has a blockProb of 30, then wearing the
armour will give the player an overall blocking probability of 55 per cent

The accessibility of blockProb is set to protected which allows any
classes that inherit Armour to access it. Although we do not derive any class-
es from Armour in this version of the adventure game, it is easy to envision
a more advanced version with specialized armour types (such as shields,
suits of mail, helmets, gloves, boots and so on) which could be implement-
ed as descendents of Armour.

Armour provides two constructors, the second of which makes an explicit
call to Item’s two-parameter constructor using base(). Note that we have
opted to allow only the description and weight of the armour to be set through
the constructor. Setting blockProb requires using the BlockProb property.
This is not an essential feature of the class – we could certainly have added an
extra parameter to the Armour constructor to allow blockProb to be initial-
ized there. However, it is sometimes better to require the programmer to set
field values explicitly using properties since this requires the actual name of
the property to appear in the code, rather than a string of bare numbers in a
constructor call. Many of the .NET library classes take this approach and pro-
vide only a zero-parameter constructor (although many others do provide sev-
eral overloaded versions of the constructor). It is largely a matter of personal
programming style.

The Food class is similar to Armour:

public class Food : Item
{

protected int energy;

public Food()
{

Energy = 0;
}

public Food(string description, int weight) :
base(description, weight)

{
Energy = 0;

}

Inheritance 241

public int Energy
{

get
{ return energy; }
set
{ energy = value; }

}
}

The energy represents the gain to a player’s energy when the food is
eaten using the ‘eat’ command. Otherwise, the structure of the class is the
same as that of Armour.

The last direct descendant of Item is Weapon:

public class Weapon : Item
{

protected int damage;
protected int hitProb;

public Weapon()
{

Damage = 0;
HitProb = 0;

}

public Weapon(string description, int weight) :
base(description, weight)

{
Damage = 0;
HitProb = 0;

}

public int Damage
{

get
{ return damage; }
set
{ damage = value; }

}

public int HitProb
{

get
{ return hitProb; }
set
{ hitProb = value; }

}
}

242 From Java to C#

The damage field specifies the additional maximum damage that can be
done with a successful hit using this weapon. The damage field from Weapon
is added to the current damage value in the player’s statistics to determine
the overall maximum damage that can be inflicted from a single hit. In prac-
tice, if the player is wielding the weapon and makes a hit, the damage is
determined by choosing a random number between 1 and the damage value
in the player object, not the weapon object.

The hitProb field is the difference to the player’s hit probability that is
made by wielding this weapon. As with blockProb in Armour, the hitProb
of a Weapon is added to that of the player when the weapon is wielded.

The fourth class that inherits Item directly is the abstract MagicItem
class, which serves as the base class for magic item types such as potions,
rings and wands. Its definition is:

public abstract class MagicItem : Item
{

protected int hitProb, blockProb, energy, damage;

public MagicItem()
{

HitProb = 0;
BlockProb = 0;
Energy = 0;
Damage = 0;

}

public MagicItem(string description, int weight) :
base(description, weight)

{
HitProb = 0;
BlockProb = 0;
Energy = 0;
Damage = 0;

}

public int HitProb
{

get
{ return hitProb; }
set
{ hitProb = value; }

}

public int BlockProb
{

get
{ return blockProb; }

Inheritance 243

set
{ blockProb = value; }

}

public int Energy
{

get
{ return energy; }
set
{ energy = value; }

}

public int Damage
{

get
{ return damage; }
set
{ damage = value; }

}
}

MagicItem declares four data fields: hitProb, blockProb, energy and
damage. The method used for implementing a magic item of any type is to
define its effect on each of these four parameters, even though the item itself
might seem quite exotic. For example, a ring of invisibility will display a
message such as ‘You shimmer and disappear’ when it is put on, but inter-
nally, its effect must be defined by giving values for each of these four
parameters. In practice, its effect is implemented by giving a bonus to
blockProb, since being invisible makes the player harder to hit. The other
three parameters would be set to zero for this ring. Other magic item types
have their effects defined in the same way.

The keyword abstract has been added to the declaration of this class,
indicating that it does not represent any actual objects that will exist in the
program. Rather, it serves as a base class that collects together a number of
common properties from the classes that inherit it.

Making MagicItem abstract means that we cannot create any objects
from it directly. However, we may still use polymorphism to declare a refer-
ence to a MagicItem and then set this reference to an object of any class
that inherits MagicItem. We will see below that the Potion, Ring and Wand
classes inherit MagicItem so it is legal to say, for example:

MagicItem magItem1 = new Potion();

The Potion class describes the effects of a potion:

public class Potion : MagicItem
{

protected int duration;
protected string quaffString;

244 From Java to C#

protected string wearOffString;

public Potion()
{

Duration = 0;
QuaffString = "";
WearOffString = "";

}

public Potion(string description, int weight) :
base(description, weight)

{
Duration = 0;
QuaffString = "";
WearOffString = "";

}

public int Duration
{

get
{ return duration; }
set
{ duration = value; }

}

public string QuaffString
{

get
{ return quaffString; }
set
{ quaffString = value; }

}

public string WearOffString
{

get
{ return wearOffString; }
set
{ wearOffString = value; }

}
}

A potion is a magic drink which is contained in a small bottle or vial. To
use it, the player issues the ‘quaff’ command which causes the potion to be
drunk. The quaffString is printed on screen just after the quaff command
is given, and will give some information on the effect of the potion. A potion
will have an effect for a given number of turns, given by duration. When the

Inheritance 245

potion wears off, the wearOffString is printed to let the player know that
something has changed in their statistics (although it may not indicate that
the change is due to the potion wearing off, but that’s part of the mystery of
playing the game).

The Ring class is similar:

public class Ring : MagicItem

{

protected string adornString;

protected string unadornString;

public Ring()

{

AdornString = "";

UnadornString = "";

}

public Ring(string description, int weight) :

base(description, weight)

{

AdornString = "";

UnadornString = "";

}

public string UnadornString

{

get

{ return unadornString; }

set

{ unadornString = value; }

}

public string AdornString

{

get

{ return adornString; }

set

{ adornString = value; }

}

}

A Ring is put on using the ‘adorn’ command (to distinguish it from ‘wear’
which is used for armour). The adornString message is printed when the
ring is put on, and unadornString when it is removed, using the ‘unadorn’
command. All the effects of a Ring are contained in the properties defined
in the MagicItem class, so no new properties are needed.

246 From Java to C#

Finally, the Wand class is:

public class Wand : MagicItem
{

int charges;
string zapString;

public Wand()
{

Charges = 0;
ZapString = "";

}

public Wand(string description, int weight) :
base(description, weight)

{
Charges = 0;
ZapString = "";

}

public int Charges
{

get
{ return charges; }
set
{ charges = value; }

}

public string ZapString
{

get
{ return zapString; }
set
{ zapString = value; }

}
}

The wand can be zapped a limited number of times given by the charges
field, after which it crumbles to dust and disappears from the player’s inven-
tory. Each time the wand is zapped, zapString is printed to the screen.

6.20.5 � Character classes

The other use of inheritance in the adventure game is with the Character
and Player classes. As described above, Character will serve as the class
from which monsters are created, and also as a base class for Player. The
Character class is formed from the earlier version of Player (that we used
in Chapter 5) by separating out those features that are common to monsters
and players.

Inheritance 247

1. using System.Collections;

2.
3. public class Character

4. {

5. protected string name;

6. protected ArrayList itemList;

7. protected int hitProb;

8. protected int blockProb;

9. protected int energy;

10. protected int damage;

11.
12. public Character()

13. {

14. Name = "";

15. itemList = null;

16. InitializeFields();

17. }

18.
19. public Character(string name)

20. {

21. Name = name;

22. itemList = new ArrayList();

23. InitializeFields();

24. }

25.
26. private void InitializeFields()

27. {

28. Energy = 0;

29. HitProb = 0;

30. BlockProb = 0;

31. Damage = 0;

32. }

33.
34. public string Name

35. {

36. get

37. { return name; }

38. set

39. { name = value; }

40. }

41.
42. public int Energy

43. {

44. get

45. { return energy; }

46. set

248 From Java to C#

47. { energy = value; }

48. }

49.
50. public int HitProb

51. {

52. get

53. { return hitProb; }

54. set

55. { hitProb = value; }

56. }

57.
58. public int Damage

59. {

60. get

61. { return damage; }

62. set

63. { damage = value; }

64. }

65.
66. public int BlockProb

67. {

68. get

69. { return blockProb; }

70. set

71. { blockProb = value; }

72. }

73.
74. public ArrayList ItemList

75. {

76. get

77. { return itemList; }

78. set

79. { itemList = value; }

80. }

81.
82. public virtual bool AddItem(Item newItem)

83. {

84. ItemList.Add(newItem);

85. return true;

86. }

87.
88. public virtual Item RemoveItem(string itemDesc)

89. {

90. Item removedItem = FindItem(itemDesc);

91. if (removedItem != null)

92. {

Inheritance 249

93. ItemList.Remove(removedItem);

94. }

95. return removedItem;

96. }

97.
98. public Item FindItem(string itemDesc)

99. {

100. foreach (Item item in ItemList)

101. {

102. if (item.MatchesDescription(itemDesc))

103. {

104. return item;

105. }

106. }

107. return null;

108. }

109.
110. public override string ToString()

111. {

112. string playerInfo = "Name: " + name;

113. playerInfo += "\nEnergy: " + energy;

114. playerInfo += "\nHit probability: " + HitProb;

115. playerInfo += "\nDamage on hit: " + Damage;

116. playerInfo += "\nBlocking probability: " + BlockProb;

117. if (itemList.Count != 0)

118. {

119. playerInfo += "\nCarrying:\n";

120. foreach (Item item in ItemList)

121. {

122. playerInfo += item.ToString() + "\n";

123. }

124. }

125. else

126. playerInfo += "\nNot carrying anything.";

127. playerInfo += "\n";

128. return playerInfo;

129. }

130. }

A Character has a name and itemList as before (lines 5 and 6). We have
added hitProb for the probability that the character can hit an opponent in
combat, blockProb for the probability that a hit from an opponent can be
blocked, energy for storing the total life energy and damage for the maxi-
mum damage that can be done if a successful hit is made. As mentioned ear-
lier when we discussed the various item classes, each of these four fields can
be altered by using weapons, food, armour or magic items.

250 From Java to C#

Character defines public properties for all these parameters on lines 34
to 80. The methods for adding and removing items from the character’s
inventory (lines 82 to 108) are the same as those used in the Player class
from Chapter 5, and have been moved into the Character class since they
are common to all characters in the game. Notice, though, that we have
declared a couple of these methods to be virtual, since we will find they
need to be overridden in the Player class, since a player has a weight limit
on the amount that can be carried, so we can’t just keep adding items indef-
initely without checking this limit. Finally, ToString() (line 110) prints out
all the information for a Character.

The Player class inherits Character and adds a few more properties and
methods that cater for the player’s needs:

1. using System.Collections;
2.
3. public class Player : Character
4. {
5. protected Room currentLocation;
6. protected int maxCarryWeight, carryWeight;
7. protected Ring wornRing;
8. protected Potion quaffedPotion;
9. protected int potionTime;

10. protected Weapon wieldedWeapon;
11. protected Armour wornArmour;
12.
13. public Player()
14. {
15. MaxCarryWeight = 0;
16. CarryWeight = 0;
17. WornRing = null;
18. QuaffedPotion = null;
19. PotionTime = 0;
20. }
21.
22. public Player(string name) : base(name)
23. {
24. MaxCarryWeight = 0;
25. CarryWeight = 0;
26. WornRing = null;
27. QuaffedPotion = null;
28. PotionTime = 0;
29. }
30.
31. public int MaxCarryWeight
32. {
33. get
34. { return maxCarryWeight; }
35. set

Inheritance 251

36. { maxCarryWeight = value; }
37. }
38.
39. public int CarryWeight
40. {
41. get
42. { return carryWeight; }
43. set
44. {
45. if (carryWeight <= maxCarryWeight)
46. {
47. carryWeight = value;
48. }
49. }
50. }
51.
52. public Ring WornRing
53. {
54. get
55. { return wornRing; }
56. set
57. { wornRing = value; }
58. }
59.
60. public Potion QuaffedPotion
61. {
62. get
63. { return quaffedPotion; }
64. set
65. { quaffedPotion = value; }
66. }
67.
68. public int PotionTime
69. {
70. get
71. { return potionTime; }
72. set
73. {
74. potionTime = value;
75. if (potionTime <= 0)
76. {
77. potionTime = 0;
78. }
79. }
80. }
81.
82. public Weapon WieldedWeapon

252 From Java to C#

83. {
84. get
85. { return wieldedWeapon; }
86. set
87. { wieldedWeapon = value; }
88. }
89.
90. public Armour WornArmour
91. {
92. get
93. { return wornArmour; }
94. set
95. { wornArmour = value; }
96. }
97.
98. public Room CurrentLocation
99. {

100. get
101. { return currentLocation; }
102. set
103. { currentLocation = value; }
104. }
105.
106. public override bool AddItem(Item newItem)
107. {
108. if (newItem.Weight <= MaxCarryWeight - CarryWeight)
109. {
110. itemList.Add(newItem);
111. CarryWeight += newItem.Weight;
112. return true;
113. }
114. return false;
115. }
116.
117. public override Item RemoveItem(string itemDesc)
118. {
119. Item removedItem = FindItem(itemDesc);
120. if (removedItem != null)
121. {
122. itemList.Remove(removedItem);
123. CarryWeight -= removedItem.Weight;
124. }
125. return removedItem;
126. }
127.
128. public void SetEffects(Item usedItem)
129. {

Inheritance 253

130. if (usedItem is MagicItem)
131. {
132. MagicItem magicItem = (MagicItem)usedItem;
133. blockProb += magicItem.BlockProb;
134. damage += magicItem.Damage;
135. energy += magicItem.Energy;
136. hitProb += magicItem.HitProb;
137. }
138. }
139.
140. public void RemoveEffects(Item usedItem)
141. {
142. if (usedItem is MagicItem)
143. {
144. MagicItem magicItem = (MagicItem)usedItem;
145. blockProb -= magicItem.BlockProb;
146. damage -= magicItem.Damage;
147. energy -= magicItem.Energy;
148. hitProb -= magicItem.HitProb;
149. }
150. }
151.
152. public override string ToString()
153. {
154. string playerInfo = "Name: " + name;
155. playerInfo += "\n------> Stats:";
156. playerInfo += "\nEnergy: " + energy;
157. playerInfo += "\nHit probability: " + HitProb;
158. playerInfo += "\nDamage on hit: " + Damage;
159. playerInfo += "\nBlocking probability: " + BlockProb;
160. playerInfo += "\n<-------";
161. if (itemList.Count != 0)
162. {
163. playerInfo += "\n******> Contents of pack:\n";
164. foreach (Item item in itemList)
165. {
166. playerInfo += item.ToString() + "\n";
167. }
168. playerInfo += "Total weight: " + CarryWeight + "\n";
169. playerInfo += "\n<******";
170. }

171. else
172. playerInfo += "\nNot carrying anything.";
173. if (WieldedWeapon == null)
174. {
175. playerInfo += "\nYou are not wielding a weapon.";

254 From Java to C#

176. }
177. else
178. {
179. playerInfo +=
180. "\nYou are wielding " + WieldedWeapon.

Description;
181. }
182.
183. if (WornArmour == null)
184. {
185. playerInfo += "\nYou are not wearing any armour.";
186. }
187. else
188. {
189. playerInfo += "\nYou are wearing " +
190. WornArmour.Description;
191. }
192.
193. playerInfo += "\n";
194. if (WornRing != null)
195. playerInfo += "\nWearing " + WornRing.Description;
196. if (QuaffedPotion != null)
197. playerInfo += "\nQuaffed " + QuaffedPotion.

Description +
198. " with " + PotionTime +
199. (PotionTime == 1 ? " turn" : " turns") + "

remaining.";
200. return playerInfo;
201. }
202. }

The fields added to Player show which room the player is in (line 5), the
maximum weight that can be carried and the current weight of the items in
the backpack (line 6), which ring is being worn (line 7 – null if no ring is
being worn), which potion is currently in effect, if any (line 8), which
weapon is currently being wielded (line 10) and which armour is currently
being worn (line 11). The properties defined on lines 31 to 104 allow exter-
nal access to these fields. Note that some of these properties contain some
extra code to check the validity of the value that is being assigned to the
data field. For example, a check is made (lines 45 to 48) that
maxCarryWeight is not exceeded by carryWeight.

As mentioned when we discussed Character, AddItem() and RemoveItem()
need to be overridden in Player to take account of the weight limit on items
being carried. Player’s version of AddItem() is on line 106, and does a check
that the item being added to the player’s inventory does not cause the total
weight to exceed MaxCarryWeight. If it does, nothing is added to itemList and
the method just returns false to indicate that the addition did not work.

Inheritance 255

RemoveItem() (line 117) must be overridden since when an item is removed
from the inventory, its weight must be subtracted from CarryWeight.

The SetEffects() method (line 128) takes an Item as a parameter. The
present version of SetEffects() only does anything if Item is in fact a
MagicItem (line 130), but in principle could be extended to handle any type
of Item. The method applies the various modifications caused by the
MagicItem to the player’s statistics. Similary, RemoveEffects() (line 140)
subtracts the effects of a MagicItem when it is removed or wears off.

Finally, ToString() prints out all the information on the player, includ-
ing such information as what weapon is being wielded, what armour and
ring are being worn, what potion has been quaffed and so on.

6.20.6 � The Room class

Room has changed very little from its form in Chapter 5 and is included here
for reference:

using System.Collections;

public class Room

{

private string description;

private ArrayList itemList;

private Room[] exits;

public enum Direction

{

North, East, South, West, Up, Down

}

public string[] directionNames =

{ "north", "east", "south", "west", "up", "down" };

private Character monster;

public Room()

{

description = "";

itemList = null;

exits = null;

monster = null;

}

public Room(string description)

{

Description = description;

itemList = new ArrayList();

exits = new Room[6];

monster = null;

256 From Java to C#

}

public void SetExit(Direction dir, Room loc)

{

exits[(int)dir] = loc;

}

public Room HasExit(Direction dir)

{

return exits[(int)dir];

}

public Room FindExit(string dirString)

{

for (int i = 0; i < directionNames.Length; i++)

{

if (dirString.Equals(directionNames[i]))

return HasExit((Direction)i);

}

return null;

}

public void AddItem(Item newItem)

{

itemList.Add(newItem);

}

public Item RemoveItem(string itemDesc)

{

Item removedItem = FindItem(itemDesc);

if (removedItem != null)

{

itemList.Remove(removedItem);

}

return removedItem;

}

public Item FindItem(string itemDesc)

{

foreach (Item item in itemList)

{

if (item.MatchesDescription(itemDesc))

{

return item;

}

}

Inheritance 257

return null;

}

public string Description

{

get

{ return description; }

set

{ description = value; }

}

public ArrayList ItemList

{

get

{ return itemList; }

set

{ itemList = value; }

}

public Character Monster

{

get

{ return monster; }

set

{ monster = value; }

}

private ArrayList ExitsToString()

{

ArrayList exitStrings = new ArrayList();

for (int i = 0; i < exits.Length; i++)

{

if (exits[i] != null)

{

exitStrings.Add(directionNames[i]);

}

}

return exitStrings;

}

public override string ToString()

{

string locationInfo = "\n========================";

locationInfo += "\nYou are in the " + description + "\n";

// Print exits

258 From Java to C#

ArrayList exitStrings = ExitsToString();

if (exitStrings.Count == 0)

{

locationInfo += "\nThere are no exits from this room.";

}

else if (exitStrings.Count == 1)

{

locationInfo += "\nThere is one exit " + exitStrings[0];

}

else

{

locationInfo += "\nThere are " + exitStrings.Count +

" exits: ";

foreach (string exit in exitStrings)

{

locationInfo += exit + " ";

}

}

// Print contents

if (itemList.Count != 0)

{

locationInfo += "\nContains:\n";

foreach (Item item in itemList)

{

locationInfo += item.ToString() + "\n";

}

}

else

locationInfo += "\nThere are no items here.";

if (Monster != null)

{

locationInfo += "\nThere is a " + Monster.Name +

" here.";

}

locationInfo += "\n========================";

return locationInfo;

}

}

We are still using the same method for storing valid exits from each loca-
tion, so the reader is directed to Chapter 5 for a description of the fields and
methods in this class.

Inheritance 259

6.20.7 � The Adventure class – initialization and command handling

Finally, we come to the Adventure class, which brings all the other classes
together and manages the actual game play. This class has expanded consid-
erably from its earlier version, so it is best if we break it up and consider the
parts separately. We begin by looking at the data fields and initialization code:

1. using System;

2. using System.Collections;

3.
4. public class Adventure

5. {

6. private Player gamePlayer;

7. private Room[] rooms;

8. private Random random = new Random();

9. private const int numRooms = 3;

10.
11. public enum Locn

12. {

13. Laboratory = 0,

14. Dungeon = 1,

15. Kitchen = 2

16. }

17.
18. public Adventure()

19. {

20. SetupRooms();

21. AddItems();

22. SetupMap();

23. AddMonsters();

24. SetupPlayer();

25. }

26.
27. private void SetupRooms()

28. {

29. rooms = new Room[numRooms];

30.
31. rooms[(int)Locn.Laboratory] = new

32. Room("magic laboratory.");

33. rooms[(int)Locn.Dungeon] = new Room("dungeon.");

34. rooms[(int)Locn.Kitchen] = new Room("kitchen.");

35. }

36.
37. private void AddItems()

38. {

39. Food food;

40. Weapon weapon;

260 From Java to C#

41. Armour armour;

42. Ring ring;

43. Potion potion;

44. Wand wand;

45.
46. // Laboratory

47. ring = new Ring("an invisibility ring", 1);

48. ring.AdornString = "You shimmer and then disappear";

49. ring.UnadornString = "You become visible again";

50. ring.BlockProb = 30;

51. rooms[(int)Locn.Laboratory].AddItem(ring);

52.
53. ring = new Ring("a power ring", 1);

54. ring.AdornString = "You feel more powerful";

55. ring.UnadornString = "The feeling of power fades";

56. ring.HitProb = 25;

57. rooms[(int)Locn.Laboratory].AddItem(ring);

58.
59. potion = new Potion("an energy potion", 2);

60. potion.Duration = 5;

61. potion.QuaffString = "You feel healthier";

62. potion.WearOffString = "The healthy feeling wears off";

63. rooms[(int)Locn.Laboratory].AddItem(potion);

64.
65. wand = new Wand("a fire wand", 3);

66. wand.Charges = 7;

67. wand.ZapString = "A bolt of fire bursts from the wand";

68. wand.Damage = 6;

69. rooms[(int)Locn.Laboratory].AddItem(wand);

70.
71. // Kitchen

72. food = new Food("a carrot", 1);

73. food.Energy = 5;

74. rooms[(int)Locn.Kitchen].AddItem(food);

75. food = new Food("some chicken", 3);

76. food.Energy = 8;

77. rooms[(int)Locn.Kitchen].AddItem(food);

78.
79. weapon = new Weapon("a knife", 10);

80. weapon.Damage = 4;

81. weapon.HitProb = 20;

82. rooms[(int)Locn.Kitchen].AddItem(weapon);

83. }

84.
85. private void SetupMap()

86. {

Inheritance 261

87. rooms[(int)Locn.Laboratory].SetExit(Room.Direction.
East,

88. rooms[(int)Locn.Kitchen]);
89. rooms[(int)Locn.Laboratory].SetExit(Room.Direction.

Down,
90. rooms[(int)Locn.Dungeon]);
91. rooms[(int)Locn.Kitchen].SetExit(Room.Direction.West,
92. rooms[(int)Locn.Laboratory]);
93. rooms[(int)Locn.Dungeon].SetExit(Room.Direction.Up,
94. rooms[(int)Locn.Laboratory]);
95. }
96.
97. private void AddMonsters()
98. {
99. Character monster = new Character("zombie");

100. monster.BlockProb = 30;
101. monster.Damage = 4;
102. monster.Energy = 8;
103. monster.HitProb = 60;
104. Armour armour = new Armour("leather armour", 15);
105. armour.BlockProb = 20;
106. monster.ItemList.Add(armour);
107. rooms[(int)Locn.Dungeon].Monster = monster;
108. }
109.
110. private void SetupPlayer()
111. {
112. gamePlayer = new Player("Wibble the Wizard");
113. gamePlayer.Energy = 12;
114. gamePlayer.HitProb = 60;
115. gamePlayer.Damage = 2;
116. gamePlayer.BlockProb = 20;
117. gamePlayer.MaxCarryWeight = 100;
118. gamePlayer.CurrentLocation = rooms[(int)Locn.

Laboratory];
119. }
120.
121. // Other code to follow…
122. }

The game contains a Player (line 6) and an array of Locations (line 7). We
also create a Random object (line 8) which is used to generate pseudo-ran-
dom numbers. (We’ll consider this class a bit more when it is used below.)

The constructor (line 18) calls several methods to set up the game. First,
we call SetupRooms() (line 27) which just creates the bare Room objects. We
are still using the same three locations we used in the previous version, but
it should be obvious how to extend the game by adding more rooms.

262 From Java to C#

Then we call AddItems() (line 37), which adds the items to the various
locations at the start of the game. The code in AddItems() is fairly straight-
forward as it just creates a series of items of various types, assigns proper-
ties to them and then assigns each item to one of the Locations created in
SetupRooms().

Next, we call SetupMap() (line 85) which defines the exits from each
location – these are the same as in the earlier version. Then AddMonsters()
(line 97) is called to add creatures to the locations. In this case, we add only
a single monster (a zombie) to the dungeon. The monster is declared as a
Character (line 99), its properties are assigned and it is given something to
carry (in this case, some leather armour). All items carried by a monster are
dropped when the monster is killed and thus become available to the play-
er as ‘rewards’ for killing the monster.

The final stage in the initialization is SetupPlayer() (line 110) which
defines the initial statistics of the player.

After the initialization, the game itself begins when PlayGame() is called.
Its code is:

1. public void PlayGame()
2. {
3. string command;
4. Console.WriteLine("Welcome to Adventure!");
5. bool validTurn;
6. do
7. {
8. validTurn = false;
9. Console.Write("\n\nYour command -> ");

10. command = Console.ReadLine().ToLower();
11. string[] words = command.Split();
12.
13. if (words[0].Equals("quit"))
14. Console.WriteLine("Thanks for playing.");
15. else if (words[0].Equals("help"))
16. PrintHelp();
17. else if (words[0].Equals("status"))
18. Console.WriteLine(gamePlayer.ToString());
19. else if (words[0].Equals("look"))
20. Console.WriteLine(gamePlayer.
21. CurrentLocation.ToString());
22. else if (words[0].Equals("move"))
23. validTurn = DoMove(words);
24. else if (words[0].Equals("take"))
25. validTurn = DoTake(words);
26. else if (words[0].Equals("drop"))
27. validTurn = DoDrop(words);
28. else if (words[0].Equals("eat"))
29. validTurn = DoEat(words);
30. else if (words[0].Equals("adorn"))

Inheritance 263

31. validTurn = DoAdorn(words);
32. else if (words[0].Equals("unadorn"))
33. validTurn = DoUnadorn();
34. else if (words[0].Equals("quaff"))
35. validTurn = DoQuaff(words);
36. else if (words[0].Equals("wield"))
37. validTurn = DoWield(words);
38. else if (words[0].Equals("wear"))
39. validTurn = DoWear(words);
40. else if (words[0].Equals("zap"))
41. validTurn = DoZap(words);
42. else if (words[0].Equals("attack"))
43. validTurn = DoPlayerAttack();
44. else
45. Console.WriteLine(
46. "Sorry, don’t understand that - try again.");
47.
48. if (validTurn)
49. {
50. if (gamePlayer.CurrentLocation.Monster != null)
51. {
52. DoMonsterAttack();
53. }
54. if (gamePlayer.PotionTime > 0)
55. {
56. gamePlayer.PotionTime--;
57. if (gamePlayer.PotionTime == 0)
58. {
59. CancelPotion();
60. }
61. }
62. }
63. } while (gamePlayer.Energy > 0 && !command.Equals("quit"));

64. }

PlayGame()’s role is to accept commands from the user and deal with
each command by calling the appropriate methods in this and other class-
es. It also must manage some bookkeeping to keep track of things like mon-
ster attacks and potion durations.

The validTurn variable (line 5) is used to determine if the user’s most recent
command resulted in a game action that caused some time to pass. This is used
in deciding whether or not a monster should get an attack. As we mentioned ear-
lier when describing the game design, a monster is only allowed an attack if the
player does something (such as ‘take’ or ‘drop’) that requires some time.

The main game loop begins on line 6. The command is read in and split
into a words array as in earlier versions (lines 9 to 11). We then enter a long
if statement (lines 13 to 46) to determine which command was issued.
We’ll consider each command on its own below.

264 From Java to C#

At the end of each command, PlayGame() determines if any extra actions
need to occur (lines 48 to 62). First, if there is a monster in the same loca-
tion as the player (line 50) DoMonsterAttack() is called to give the mon-
ster an attack on the player. We also check (line 54) if a potion is currently
in effect and, if so, decrement its time. If this causes the potion to expire,
CancelPotion() is called (line 59) to remove the effects of the potion.

We’ll now have a look at the methods that implement the various com-
mands. The ‘quit’, ‘status’ and ‘look’ commands just call methods in other
classes that we have already examined. Of the other commands, the easiest is
PrintHelp() which just prints out a description of the available commands:

private void PrintHelp()
{

Console.WriteLine("Valid commands:\n" +
"===\n" +
"look - shows current location & contents;\n" +
"status - shows player’s name and inventory;\n" +
"take <list> - " +

"take one or more items from current location;\n" +
"drop <list> - drop one or more items from
inventory;\n" +
"move <direction> - move in the given direction;\n" +
"wield <weapon> - " +

"wield a weapon (weapon must be carried);\n" +
"wear <armour> - " +

"wear some armour (armour must be carried);\n" +
"quaff <potion> - quaff a potion;\n" +
"eat <food> - eat some food;\n" +
"adorn <ring> - put on a ring;\n" +
"unadorn - take off your ring;\n" +
"zap <wand> - zap a wand (wand must be carried);\n" +
"attack - attack a monster in the room;\n" +
"\n" + --------------------------------/
"quit - quit the program.\n");

}

The ‘move’ command is similar to its form in the previous version:

private bool DoMove(string[] words)
{

if (words.Length < 2)
{

Console.WriteLine("You must specify a direction.\n " +
"Try one of north, east, south, west, up or down.");

return false;
}
Room destination =

gamePlayer.CurrentLocation.FindExit(words[1]);

Inheritance 265

if (destination == null)
{

Console.WriteLine(
"Sorry, you can’t move in that direction.");

return false;
}
gamePlayer.CurrentLocation = destination;
Console.WriteLine("You move to the " +

destination.Description);
if (destination.Monster != null)
{

Console.WriteLine("\nThere is a " +
destination.Monster.Name + " here.");

}
return true;

}

We have added a check at the end to see if there is a monster in the room
and print a message if so. The player will be attacked by this monster at the
end of the turn, but the code for this is in PlayGame() at the end of the main
loop (see above).

The DoTake() and DoDrop() methods are also quite similar to earlier
versions:

private bool DoTake(string[] words)
{

int taken = 0;
if (words.Length < 2)
{

Console.WriteLine("You must specify something
to take.");return false;

}
for (int i = 1; i < words.Length; i++)
{

Item takenItem =
gamePlayer.CurrentLocation.RemoveItem(words[i]);

if (takenItem != null)
{

if (!gamePlayer.AddItem(takenItem))
{

Console.WriteLine("You can’t carry any more.");
gamePlayer.CurrentLocation.AddItem(takenItem);
break;

}
else
{

taken++;

}

266 From Java to C#

}
}
Console.WriteLine("You have taken " + taken +

(taken == 1 ? " item" : " items") + ".");
return taken > 0;

}

private bool DoDrop(string[] words)
{

int dropped = 0;
if (words.Length < 2)
{

Console.WriteLine("You must specify something to drop.");
return false;

}
for (int i = 1; i < words.Length; i++)
{

Item takenItem = gamePlayer.RemoveItem(words[i]);
if (takenItem != null)
{

gamePlayer.CurrentLocation.AddItem(takenItem);
dropped++;

}
}
Console.WriteLine("You have dropped " + dropped +

(dropped == 1 ? " item" : " items") + ".");
return dropped > 0;

}

DoTake() attempts to locate the items in the Room’s item list by calling
RemoveItem(). For each item, we test to see if the player can carry it with-
out exceeding the weight limit. If not, the item is placed back in the Room’s
list. The method returns a bool which indicates whether anything was actu-
ally taken. This value is assigned to the validTurn flag, which in turn is
used to determine whether monsters get an attack and potion durations get
decremented back in PlayGame()’s main loop.

DoDrop() attempts to find each item in the player’s inventory and, if
found, the item is transferred to the current location’s item list. Again, a
bool is returned indicating whether any items were actually dropped.

The remaining commands are new to this version. DoEat() lets the play-
er eat one or more items of food that are being carried:

private bool DoEat(string[] words)
{

int eaten = 0;
if (words.Length < 2)
{

Console.WriteLine("You must specify some food to eat.");

Inheritance 267

return false;
}
for (int i = 1; i < words.Length; i++)
{

Item takenItem = gamePlayer.RemoveItem(words[i]);
if (takenItem != null)
{

if (takenItem is Food)
{

gamePlayer.Energy += ((Food)takenItem).Energy;
Console.WriteLine("You eat " + takenItem.
Description); eaten++;

}
else
{

Console.WriteLine("You cannot eat " +
takenItem.Description);

gamePlayer.AddItem(takenItem);
}

}
}
Console.WriteLine("You have eaten " + eaten +

(eaten == 1 ? " item" : " items") + ".");
return eaten > 0;

}

DoEat() works in much the same way as DoDrop(). After removing each
item to be eaten from the player’s inventory, we test that the item is in fact
a Food object. If so, the player’s Energy is increased by the Energy value of
the food. If the item was found in the player’s backpack but is not a Food, a
message saying that ‘you cannot eat’ the item is printed. DoEat() returns a
bool indicating if anything was actually eaten.

The player can wear a ring by giving the ‘adorn’ command, which calls
DoAdorn():

private bool DoAdorn(string[] words)
{

if (gamePlayer.WornRing != null)
{

Console.WriteLine("You are already wearing a ring.");
return false;

}
if (words.Length < 2)
{

Console.WriteLine("You must specify a ring to put on.");
return false;

268 From Java to C#

}
Item takenItem = gamePlayer.RemoveItem(words[1]);
if (takenItem != null)
{

if (takenItem is Ring)
{

gamePlayer.WornRing = (Ring)takenItem;
gamePlayer.SetEffects(takenItem);
gamePlayer.CarryWeight += gamePlayer.WornRing.Weight;
Console.WriteLine(((Ring)takenItem).AdornString);
return true;

}
else
{

Console.WriteLine("You cannot put on " +
takenItem.Description);

gamePlayer.AddItem(takenItem);
return false;

}
}
return false;

}

This method works in almost the same way as DoEat(). The main differ-
ences are that the method must first check if a ring is already being worn,
since only one ring is allowed to be worn at a time. If no ring is being worn,
the ring to be put on is located in the player’s backpack. If the item is found,
it is checked to see if it is a Ring object. If so, the player’s WornRing is set
to the ring and SetEffects() is called to apply whatever magic effects the
ring bestows. We need to add the ring’s weight back onto the player’s
CarryWeight property since RemoveItem() deducts the weight of the item
removed. Finally, we write out the ring’s AdornString to let the user know
what effects the player experiences when the ring is put on.

The ‘unadorn’ command calls DoUnadorn():

private bool DoUnadorn()
{

if (gamePlayer.WornRing == null)
{

Console.WriteLine(
"You are not wearing a ring at the moment.");

return false;
}
gamePlayer.RemoveEffects(gamePlayer.WornRing);
Console.WriteLine(gamePlayer.WornRing.UnadornString);
gamePlayer.ItemList.Add(gamePlayer.WornRing);
gamePlayer.WornRing = null;
return true;

}

Inheritance 269

If a ring is being worn, RemoveEffects() is called to cancel its effects and
then UnadornString is printed to describe how the player feels when the
ring is removed. We add the ring back to the player’s ItemList which
restores it in the backpack, and WornRing is set to null to indicate that the
player is no longer wearing a ring.

Quaffing a potion calls DoQuaff():

private bool DoQuaff(string[] words)
{

if (gamePlayer.QuaffedPotion != null)
{

Console.WriteLine("You have already quaffed a
potion.\n" +
"You must wait until it wears off.");

return false;
}
if (words.Length < 2)
{

Console.WriteLine("You must specify a potion to quaff.");
return false;

}
Item takenItem = gamePlayer.RemoveItem(words[1]);
if (takenItem != null)
{

if (takenItem is Potion)
{

Potion quaffed = (Potion)takenItem;
gamePlayer.QuaffedPotion = quaffed;
gamePlayer.PotionTime = quaffed.Duration;
gamePlayer.SetEffects(takenItem);
Console.WriteLine(quaffed.QuaffString);
return true;

}
else
{

Console.WriteLine("You cannot quaff " +
takenItem.Description);

gamePlayer.AddItem(takenItem);
return false;

}
}
return false;

}

Since only one potion can be in effect at a time, we first check the play-
er’s QuaffedPotion to see if it is null. If no potion is currently in effect, the
potion to be quaffed is removed from the player’s inventory and checked to
be sure it is a Potion object. If so, the player’s QuaffedPotion is set to this

270 From Java to C#

potion, and the PotionTime is set to the potion’s Duration. This sets the
time remaining for the potion to remain in effect. As with a ring,
SetEffects() is called to apply the potion’s effects, and QuaffString is
printed to display the potion’s effects to the user.

There is no command to end the effects of a potion, but when PotionTime
drops to zero, we call CancelPotion() from the end of the main loop
in PlayGame():

private void CancelPotion()

{

if (gamePlayer.QuaffedPotion != null)

{

Console.WriteLine(gamePlayer.QuaffedPotion.WearOffString);

gamePlayer.RemoveEffects(gamePlayer.QuaffedPotion);

gamePlayer.QuaffedPotion = null;

gamePlayer.PotionTime = 0;

}

}

CancelPotion() carries out the bookkeeping tasks to remove the effects
of the current potion.

Wielding a weapon calls DoWield():

private bool DoWield(string[] words)

{

if (words.Length < 2)

{

Console.WriteLine("You must specify a weapon to wield.");

return false;

}

Item takenItem = gamePlayer.RemoveItem(words[1]);

if (takenItem != null)

{

if (takenItem is Weapon)

{

if (gamePlayer.WieldedWeapon != null)

{

gamePlayer.HitProb -=

gamePlayer.WieldedWeapon.HitProb;

gamePlayer.Damage -= gamePlayer.WieldedWeapon.Damage;

gamePlayer.ItemList.Add(gamePlayer.WieldedWeapon);

}

Weapon weapon = (Weapon)takenItem;

gamePlayer.WieldedWeapon = weapon;

gamePlayer.HitProb += gamePlayer.WieldedWeapon.HitProb;

gamePlayer.Damage += gamePlayer.WieldedWeapon.Damage;

gamePlayer.CarryWeight += weapon.Weight;

Inheritance 271

Console.WriteLine("You are now wielding " +

weapon.Description);

return true;

}

else

{

Console.WriteLine("You cannot wield " +

takenItem.Description);

gamePlayer.AddItem(takenItem);

return false;

}

}

return false;

}

Although only one weapon can be wielded at a time, there is no ‘unwield’
command. It is assumed that if the player is already wielding a weapon when
a new ‘wield’ command is given, the new weapon will simply replace the
existing one. Therefore, there is no check at the start of DoWield() to see if
the player is already wielding a weapon.

After the usual checks that the right type of item has been chosen, we
then check if the player is currently wielding a weapon. If so, we stow it in
the backpack and remove its effect on the player’s HitProb and Damage.
Then we wield the new weapon by applying its effects.

Wearing armour works in a similar fashion by calling DoWear():

private bool DoWear(string[] words)

{

if (words.Length < 2)

{

Console.WriteLine(

"You must specify some armour to wear.");

return false;

}

Item takenItem = gamePlayer.RemoveItem(words[1]);

if (takenItem != null)

{

if (takenItem is Armour)

{

if (gamePlayer.WornArmour != null)

{

gamePlayer.BlockProb -=

gamePlayer.WornArmour.BlockProb;

gamePlayer.ItemList.Add(gamePlayer.WornArmour);

}

Armour armour = (Armour)takenItem;

gamePlayer.WornArmour = armour;

272 From Java to C#

gamePlayer.BlockProb += armour.BlockProb;

gamePlayer.CarryWeight += armour.Weight;

Console.WriteLine("You are now wearing " +

armour.Description);

return true;

}

else

{

Console.WriteLine("You cannot wear " +

takenItem.Description);

gamePlayer.AddItem(takenItem);

return false;

}

}

return false;

}

Armour, like weapons, cannot be removed without wearing another bit of
armour in its place. The logic in this method is therefore essentially the
same as in DoWield().

Zapping a wand calls DoZap():

private bool DoZap(string[] words)

{

if (words.Length < 2)

{

Console.WriteLine("You must specify a wand to zap.");

return false;

}

Item takenItem = gamePlayer.FindItem(words[1]);

if (takenItem != null)

{

if (takenItem is Wand)

{

Wand wand = (Wand)takenItem;

Console.WriteLine(wand.ZapString);

if (gamePlayer.CurrentLocation.Monster != null)

{

Character monster =

gamePlayer.CurrentLocation.Monster;

int probSuccess = 100 - monster.BlockProb;

if (random.Next(100) < probSuccess)

{

int damage = random.Next(wand.Damage) + 1;

monster.Energy -= damage;

Console.WriteLine("The wand does " + damage +

(damage == 1 ? " point" : " points") +

Inheritance 273

" of damage to the " + monster.Name);
if (monster.Energy <= 0)
{

MonsterDead();
}

}
}
wand.Charges--;
if (wand.Charges <= 0)
{

Console.WriteLine("The wand crumbles to dust.");
gamePlayer.RemoveItem(wand.Description);

}
return true;

}
else
{

Console.WriteLine("You cannot zap " +
takenItem.Description);

return false;
}

}
Console.WriteLine("No such item.");
return false;

}

A wand need only be in the inventory to be zapped, so no checks are
required that the wand is held or worn. Since zapping the wand does not
remove it from the inventory, we use FindItem() rather than RemoveItem()
to locate it.

When the wand is zapped, ZapString is printed to describe the effects. A
wand can be zapped anywhere, but if a monster is present in the same room,
the damage caused by the wand is applied to the monster. A wand is
assumed to have a 100 per cent hit probability, so to work out the probabil-
ity of a successful hit on the monster we need consider only the monster’s
BlockProb, so we define probSuccess as 100 – monster.BlockProb. We
then need to produce a random number to determine if the monster is in
fact damaged by the wand.

C#’s Random class allows the production of so-called pseudo-random
numbers. They are called ‘pseudo’ (false) since the random number
sequence is actually produced by a definite algorithm rather than by a truly
random process. The pattern of numbers produced by the algorithm does
satisfy numerous statistical tests for randomness, so the method is com-
monly used even though the numbers are not really random.

Recall that we initialized the random object in its declaration at the start
of the Adventure class. There are several methods for producing random
numbers from this object, but probably the most common is Next() which

274 From Java to C#

generates the next number in the sequence. Next() has three overloaded
versions which allow random numbers to be produced in various ranges.
The form used here provides one parameter: Next(100). This generates a
random integer between 0 and 99.

We can use this value to determine whether zapping the wand causes a
hit by comparing the random value with probSuccess. To see why this
works, suppose probSuccess is 75, meaning that 75 per cent of the time the
wand should hit the monster.

If the number produced by Next(100) is truly random in the range from
0 to 99, then it should produce a number less than 75 (that is, between
0 and 74), 75 per cent of the time. Therefore, the comparison if (random.
Next(100) < probSuccess) should be true probSuccess per cent of the
time, which is what we want.

If the hit is successful, we find how much damage the wand does by using
Next() again. This time we want a value between 1 and the wand’s Damage
property. Since Next() with a single parameter always produces a number
between 0 and its parameter value, we add 1 to the value returned. (There
is a two-parameter version of Next() which allows a lower and upper limit
to be specified, so we could have used that as well.)

After doing damage to the monster, we check to see if the monster is dead
yet. If so, we call MonsterDead():

private void MonsterDead()

{

Character monster = gamePlayer.CurrentLocation.Monster;

if (monster == null) return;

Console.WriteLine("\nYou have killed the " + monster.Name);

ArrayList items = monster.ItemList;

if (items != null && items.Count > 0)

{

foreach (Item item in items)

{

gamePlayer.CurrentLocation.ItemList.Add(item);

}

}

gamePlayer.CurrentLocation.Monster = null;

}

This method drops all the items carried by the monster, making them
available in the Room’s item list so the player can ‘take’ them if desired. The
monster is also removed from the Room by setting the Room’s Monster prop-
erty to null.

Back in DoZap(), the final check we need to do is to see if all the wand’s
charges have been used up. If so, we print a message that the wand crum-
bles to dust and remove the wand from the player’s inventory.

Inheritance 275

The last command is ‘attack’ which calls DoPlayerAttack():

private bool DoPlayerAttack()

{

Character monster = gamePlayer.CurrentLocation.Monster;

if (monster == null)

{

Console.WriteLine("There is nothing here to attack.");

return false;

}

int probSuccess = gamePlayer.HitProb *

(100 - monster.BlockProb) / 100;

if (random.Next(100) < probSuccess)

{

int hitDamage = random.Next(gamePlayer.Damage) + 1;

monster.Energy -= hitDamage;

Console.WriteLine("\nYou hit the " + monster.Name +

" and do " +

hitDamage + (hitDamage == 1 ? " point" : " points") +

" of damage.");

if (monster.Energy <= 0)

{

MonsterDead();

}

}

else

{

Console.WriteLine("\nYou miss the " + monster.Name + ".");

}

return true;

}

We first check that there is a monster in the room. If so, we work out the
probability of a successful hit by the player on the monster by using the for-
mula described earlier. The Next() method from Random is used again to
determine if the player hits the monster, and if so, the amount of damage
done is also determined randomly, this time using the current damage rat-
ing of the player.

At the end of each turn in which the player is in the same room as a mon-
ster, the monster gets its turn to attack, using DoMonsterAttack():

private bool DoMonsterAttack()

{

Character monster = gamePlayer.CurrentLocation.Monster;

if (monster == null)

return false;

int probSuccess = monster.HitProb *

276 From Java to C#

(100 - gamePlayer.BlockProb) / 100;
if (random.Next(100) < probSuccess)
{

int hitDamage = random.Next(monster.Damage) + 1;
gamePlayer.Energy -= hitDamage;
Console.WriteLine("\nThe " + monster.Name +

" hits you and does " +
hitDamage + (hitDamage == 1 ? " point" : " points") +
" of damage.");

if (gamePlayer.Energy <= 0)
{

PlayerDead();
}

}
else
{

Console.WriteLine("\nThe " + monster.Name +
" attacks you but misses.");

}
return true;

}

DoMonsterAttack() works essentially like DoPlayerAttack() in
reverse. After a successful hit, a check is made to see if the player has been
killed and, if so, we call PlayerDead():

private void PlayerDead()
{

Console.WriteLine("\nUnfortunately, you are dead.");
Console.WriteLine("\nWe hope you enjoyed the game.");

}

At present, PlayerDead() just prints out a farewell message. The game
ends back in the main loop in PlayGame() if the player’s Energy drops to 0.
It would be fairly easy to add some code to offer the user a chance to play
again. We would need to reset everything to its original configuration by
redoing the initialization methods.

Finally, the Main() method just creates an Adventure object and calls
PlayGame() to get the game going:

public static void Main(string[] args)
{

Adventure adventure = new Adventure();
adventure.PlayGame();

}

This has been a long example, but hopefully if you have persevered with it
you have seen a substantial sample of how inheritance can be used in a more
sizeable project. In projects of this size, it is important to give considerable

Inheritance 277

thought to the structure of the program before jumping in and writing code.
We laid out the class design and described the methods required at the start
of this section, and only then got into the details of the code. If you don’t take
this bit of extra planning time, you will usually find that you need to keep
chopping and changing the code as you write it, especially if you are fairly
inexperienced at programming in C#. The resulting code will be the worse for
it as well.

■ Summary

In this chapter we have introduced the concepts of inheritance and poly-
morphism, both of which are fundamental ideas in object-oriented pro-
gramming. We have seen that C#’s implementation of these ideas provides
somewhat more flexibility than that of Java. In particular, C# allows us to
define which methods are virtual, which can result in considerably more
efficient code.

We have also examined a number of other C# keywords and language fea-
tures related to inheritance, such as boxing, the is operator, abstract class-
es and interfaces.

The extended case study in which the adventure game was expanded into
a fully fledged textual game provides a substantial example of how inheri-
tance can be used in a larger project.

278 From Java to C#

Exercises

6.1 Write down a list of properties that could be associated with various forms of land
transport, such as cars, buses, trucks, bicycles, motorcycles, tricycles and so on.
Examine the list of properties to see which properties are common to all the forms
of transport that you have considered. Group these properties into a base class, and
then define a number of derived classes, one for each specific type of transport.

6.2 Broaden the scope of the previous exercise by considering other forms of trans-
portation such as water and air transport. Consider a few specific types of trans-
port within each of these overall categories, such as canoe, rowboat and oil
tanker for water transport, and helicopter, 747 and hang glider for air transport.
Create an inheritance structure for each of these other types of transport.

6.3 Examine your overall list of classes after completing the previous two exercises
to see if there are any properties common to all types of transportation.
Separate out these properties and define a new class which could be the base
class of the three main classes (land, water and air transport) that you defined
earlier. Note how inheritance can be a hierarchical structure with many layers.
As the scope of the system that is to be modelled using inheritance grows,
new levels or generality emerge, which allow new layers to be created in the
inheritance tree.

Inheritance 279

6.4 Define a class Tutor which inherits the Person class used in the text. Tutor
should represent a tutor or professor who teaches one or more courses at a col-
lege or university. A Tutor should have a few extra properties in addition to
those inherited from Person such as an office location (as a string), a list of
courses taught (use an array of strings to list the course titles) and any others
you think would be relevant. Write out some skeleton C# code for this class,
showing the inheritance relationship, the new data fields and a set of C# prop-
erties for getting and setting their values.

6.5 Modify the previous exercise by defining a Course class which contains details
of an individual course taught at a college or university. The Course class
should contain data fields such as the course code (e.g. Computing 101), the
course title (‘Introduction to Programming using C#’, for example) and other
information as required. Replace the array of strings in the Tutor class with
an array of Courses.

6.6 A possible design for a program that represents students and tutors at a college
would be to make Student and Tutor inherit Course so that each student
and tutor is associated with the course they either take or teach. Why would
this not be an appropriate use of inheritance?

6.7 Write an override of the ToString() method that returns a string contain-
ing the data in a Tutor object in some neatly formatted form.

6.8 Write overrides of the two Equals() methods that may be used in Tutor. The
methods should return true if all the data in the corresponding fields of the
two Tutor objects contain the same data.

6.9 Write a method in the Person class called HasName(). The method should
contain a single string parameter, and should return a bool value indicating
whether the Person’s name matches that passed in as a parameter. The match
should be case-insensitive (see the documentation on the String class to find
a way of doing this). Make sure this method is available to all classes derived
from Person.

6.10 Write a program which defines an array of Person references. After initial-
ization, the program should print a top-level menu which offers the user the
choice of adding a new person’s data to the array, or of searching for a person
with a given name.

If the person elects to add a new person, the next menu should ask whether
that person is to be an ordinary Person, a Student or a Tutor. When the user
makes their selection, print the appropriate prompts to get the required infor-
mation for that type of person, create a new object of the appropriate class and
add it to the first available element in the array. Note that you can use poly-
morphism to add an object of any of the three classes to the array.

If the person elects to search for a person by name, use the HasName() method
from the previous exercise to do the search. If the person is found, use the is
operator to determine what type of object it is, and then call the correct
ToString() method to print out the data for that person.

Exceptions

7.1 ■ Encountering exceptions

Java programmers will be no strangers to exceptions, even if they have
never written code to generate or handle them. The most common cause of
a Java program crash is some form of unhandled exception, and probably
the most common of these is the NullPointerException. If you have run a
Java program from a console window you will probably have seen the print-
out of the current stack trace (list of methods that were being called) when
the program died. The first line of the error printout describes the particu-
lar exception that occurred.

If you have delved a bit deeper into Java’s exception handling, you may
have written some code that uses the try…catch block, which can be used
to handle built-in exceptions in Java. If you have delved even more deeply,
you may have written your own exception classes. We will see in this chap-
ter that C#’s exception handling features are very similar to those of Java,
so the transition between the two languages is quite painless.

First, let us consider a C# program that generates, or throws, an exception
so we can see what happens if we make no effort to handle it when it occurs.

1. using System;

2.
3. public class ExceptionDemo1

4. {

5. public static void Main(string[] args)

6. {

7. int x, y;

8. Console.Write("Enter two ints: ");

9. string intString = Console.ReadLine();

10. string[] splitInts = intString.Split();

11. x = int.Parse(splitInts[0]);

12. y = int.Parse(splitInts[1]);

13. Console.WriteLine(x + "/" + y + " = " + x / y);

14. }

15. }

This simple program prompts the user to enter two integers on the same line.
These ints are then stored in a string, which is then split into two separate
strings within the array splitInts. The two elements of this array are con-
verted to ints, and the final line prints out the quotient of these two numbers.

There is no explicit error handling in this code, but clearly there are sev-
eral things that could go wrong with the user input. The user might type in
no or only one integer, or possibly some text that is not a number at all.

7

They might type in two integers, but the second one could be zero, causing
an attempt to divide by zero in the last line.

Suppose we make the latter mistake. Running the program may cause a
‘Just-in-time debugging’ dialog to appear if the code was compiled in Debug
mode under Visual Studio, but if the offer to run the debugger is refused, the
following output appears in the console window:

Enter two ints: 3 0

Unhandled Exception: System.DivideByZeroException:

Attempted to divide by zero.

at ExceptionDemo1.Main(String[] args)

in c:\csharpbook\programs

\chap07\exceptiondemo1\exceptiondemo1.cs:line 13

Clearly the attempt to divide by zero has been detected and caused a
System.DivideByZeroException to be thrown. Since there is no handler
for this exception in the program code, .NET itself catches the exception
and generates the error message. The process is very similar to that in Java
– if there is no explicit code to catch an exception in Java, the Java virtual
machine catches the exception and generates the stack trace error message.

If we try a couple of other errors, we can see a couple of other exceptions
that are in the .NET repertoire. For example, we can try entering only a sin-
gle integer, which results in the message:

Enter two ints: 3

Unhandled Exception: System.IndexOutOfRangeException:

Index was outside the bounds of the array.

at ExceptionDemo1.Main(String[] args)

in c:\csharpbook\programs

\chap07\exceptiondemo1\exceptiondemo1.cs:line 12

The error is on line 12 and results from our attempt to access
splitInts[1], since we only entered a single number.

We can also try entering some non-numerical text instead of ints, and we get:

Enter two ints: x y

Unhandled Exception: System.FormatException:

Input string was not in a correct format.

at ExceptionDemo1.Main(String[] args)

in c:\csharpbook\programs

\chap07\exceptiondemo1\exceptiondemo1.cs:line 11

In this case, the error is on line 11 and results from our attempt to use
int.Parse() to convert the string ‘x’ to an int.

282 From Java to C#

We can see that the .NET system contains a number of built-in exceptions
(in fact there are close to 100) that respond to different types of errors. In the
current program, however, encountering any of these exceptions still causes
the program to crash, so we need to see how to handle them more gracefully.

7.2 ■ Handling exceptions

The techniques in C# for handling exceptions are essentially the same as in
Java. We must enclose the code that can throw an exception within a try
block and add one or more catch blocks after the try. The general format
is as follows:

try
{
// Code that can throw exceptions

}
catch (<Exception type 1>)
{
// Code to handle exceptions of type 1

}
catch (<Exception type 2>)
{
// Code to handle exceptions of type 2

}
// Other catch blocks may be added here
catch
{
// Code to handle all exceptions not already caught

}
finally
{
// Code that is run whether or not an exception is
// caught.

}

Code that can throw one or more types of exception is placed within the
try block at the start. Following the try block, we must add at least one
catch block, although we can have as many more as we need. Each catch
block can specify, much like a method parameter, a particular exception
type that it will catch. The third catch block shown here has no parameter,
and will catch any type of exception.

Exceptions 283

Key point

Runtime errors can generate one of .NET’s built-in exceptions. If the exception is
not caught, the program will crash.

Catch blocks are checked in the order they are written and once one of
them is activated (by having the thrown exception match the type in that
catch’s parameter), the exception is deemed to have been handled and all
later catch blocks are ignored.

The finally block at the end is always run, whether or not any excep-
tion was thrown. This is useful in cases where there is some clean-up code
(such as closing open files or database connections) that should be done in
all cases, whether or not anything goes wrong with the program.

Before we delve more deeply into the rules that try…catch blocks must
satisfy, let us see how this structure works with the program example above.
We will add exception-handling code to the program to catch all three types
of exception that we have seen above. When we do this, we must remember
that the body of a try or a catch is a compound statement and, as such,
defines its own local scope for variable declarations. We therefore have to be
careful not to confine existing declarations (such as x and y above) to local
scopes where they are not accessible to other areas of the code where they
are needed.

1. using System;

2.
3. public class ExceptionDemo1

4. {

5. public static void Main(string[] args)

6. {

7. int x, y;

8. bool correct = true;

9. do

10. {

11. try

12. {

13. Console.Write("Enter two ints: ");

14. string intString = Console.ReadLine();

15. string[] splitInts = intString.Split();

16. x = int.Parse(splitInts[0]);

17. y = int.Parse(splitInts[1]);

18. Console.WriteLine(x + "/" + y + " = " + x / y);

19. correct = true;

20. }

21. catch (DivideByZeroException exception)

22. {

23. Console.WriteLine("Error: denominator is zero. " +

24. "Please try again.");

25. correct = false;

26. }

27. catch (IndexOutOfRangeException exception)

28. {

284 From Java to C#

29. Console.WriteLine("Error: must enter 2 ints. " +

30. "Please try again.");

31. correct = false;

32. }

33. catch (FormatException exception)

34. {

35. Console.WriteLine("Error: numbers not in correct " +

36. "int format. Please try again.");

37. correct = false;

38. }

39. catch

40. {

41. Console.WriteLine("Error: incorrect input. " +

42. "Please try again.");

43. correct = false;

44. }

45. } while (!correct);

46. }

47. }

In order to make use of the catch blocks, we have added a do…while loop
which continues asking for input until none of the three exceptions is
thrown. The bool flag correct is set to false if any of the exceptions
occurs, which causes the loop to continue.

In this example, the three types of exception can occur more or less inde-
pendently of each other, so it doesn’t really matter in which order we place
the catch blocks. In each case, we simply print an error message and ask
the user to try again. However, the final catch block which is designed to
catch any exception that is not one of the three specified earlier, must come
at the end, since if it were placed earlier, it would be activated by one of the
three specific exceptions we are attempting to catch on their own. A typical
session with this program might be as follows.

Enter two ints: 3 0

Error: denominator is zero. Please try again.

Enter two ints: 3

Error: must enter 2 ints. Please try again.

Enter two ints: x y

Error: numbers not in correct int format. Please try again.

Enter two ints: 11111111111111111111 3

Error: incorrect input. Please try again.

Enter two ints: 99 3

99/3 = 33

The first three attempts to input the data each generate one of the three
specific exceptions for which we are checking, so the resulting error mes-
sages make sense and the user has some guidance on what to do to correct

Exceptions 285

their mistake. However, the fourth attempt, where the user has typed in
11111111111111111111, does not generate one of the three specific excep-
tions, and therefore gets caught by the general catch block at the end. This
produces the not terribly helpful message ‘Error: incorrect input.’ This, as
the reader will no doubt be aware, is a common problem with a lot of soft-
ware – the user does something wrong and the program complains but tells
them nothing about how to fix it.

In almost all cases, this is the result of lazy programming and inadequate
testing on the part of the software developer. In this case, for example, the
actual exception that was thrown in the fourth attempt was an
OverflowException, which results from the input number being too large
for an int. A properly coded version of this example should have a specific
catch block for this exception and a clear error message when it occurs.

7.3 ■ Exceptions and inheritance

C++ programmers may know that in C++, any data type may be thrown as
an exception, so that a catch block may even use primitive data types such
as int as their parameter. In C#, as in Java, a parameter passed to a catch
block must be an instance of a specific base class, or of a class derived from
it. In C#, the base class of all exception classes is System.Exception.
Consulting the C# documentation will reveal that all the exceptions consid-
ered above are derived ultimately from this class.

This fact means that the rules of polymorphism come into effect when-
ever we pass an exception object to a catch block. That is, the class speci-
fied as the data type of the parameter in a catch will match an exception of
that class or of any class derived from it.

Most of the pre-defined exceptions that arise in practice are in fact
derived from System.SystemException, which is in turn derived from
System.Exception. For example, FormatException and IndexOutOfRange
Exception that we used above are both directly derived from System.
SystemException. Some exceptions are even further down the inheritance
hierarchy. DivideByZeroException is derived from ArithmeticException
which is in turn derived from System.SystemException. Arithmetic
Exception is also the base class for OverflowException.

We can use the inheritance relationships of exceptions to provide inter-
mediate catch blocks that catch all exceptions of a particular type, without
having to make reference to the blanket catch block without any parame-
ters. For example, we could catch all ArithmeticExceptions in the previ-
ous example with code such as this:

try

{

// Code

}

286 From Java to C#

catch (ArithmeticException exception)

{

Console.WriteLine(exception.Message +

" Please try again.");

correct = false;

}

catch (IndexOutOfRangeException exception)

{

}

catch (FormatException exception)

{

}

catch

{

}

In this case, the first catch block would catch both DivideByZero
Exceptions and OverflowExceptions. The problem with doing this, of
course, is that we won’t know which precise type of exception was thrown,
so the error message can’t be as specific as we may like.

This problem can be solved in most cases by making use of the actual
exception object that is passed to the catch block as a parameter. All of the
.NET built-in exception classes have a string message field that contains a
fairly clear description of what the problem is. In the example above, we
have printed out this message as part of the error message so that the user
knows more specifically what is wrong.

With this new way of handling ArithmeticExceptions, a typical session
could look like this:

Enter two ints: 3 0

Attempted to divide by zero. Please try again.

Enter two ints: 11111111111111111 3

Value was either too large or too small for an int. Please

try again.

We can see that the message attached to the exception itself generated
enough information to identify the problem with the input. Of course, even
this might not be a clear enough message, depending on the audience for
which the program is intended. If the expected users are not avid computer
users, it is unlikely they would know what an ‘int’ is, so in that case, we
would need to split up the catch block into two separate blocks and write
error messages for each case.

Another possibility for fine-tuning exception handling is to make use of
the is operator, discussed in Chapter 6. We could retain the single catch
block for handling the ArithmeticException and its derived classes, but
replace it with the following:

Exceptions 287

catch (ArithmeticException exception)

{

if (exception is DivideByZeroException)

Console.WriteLine("Dividing by zero." +

" Please try again.");

else if (exception is OverflowException)

Console.WriteLine("The number is too big." +

" Please try again.");

else

Console.WriteLine(exception.Message +

" Please try again.");

correct = false;

}

We can use is to detect the actual class of which exception is an
instance, and tailor our error messages accordingly.

7.4 ■ Throwing exceptions

The examples in the previous section relied on the underlying program to
produce, or throw an exception which was then caught by a catch state-
ment. Some exceptions in C# are thrown by built-in operators, while others
are thrown by library methods.

For example, the division operator / will throw a DivideByZero
Exception if its right operand is 0. The array index operator [] will throw
an IndexOutOfBoundsException if its parameter is not an int that lies
within the bounds of the array. The Parse() method of the int class will
throw a FormatException if its parameter is not a string that represents an
int. In all these cases, the code that throws the exception is hidden away in
the definition of the operator or method, so we cannot see how it is done.

In fact, it is quite easy to throw our own exceptions using the throw key-
word. For example, we can perform a test on the value y in the previous
code to see if it is zero before we do the division and, if it is, throw our own
DivideByZeroException before we attempt to do the division. The modi-
fied code looks like this:

try

{

Console.Write("Enter two positive ints: ");

string intString = Console.ReadLine();

string[] splitInts = intString.Split();

x = int.Parse(splitInts[0]);

y = int.Parse(splitInts[1]);

if (y == 0)

{

throw new DivideByZeroException();

288 From Java to C#

}

Console.WriteLine(x + "/" + y + " = " + x / y);

correct = true;

}

catch (DivideByZeroException exception)

{

Console.WriteLine("Error: denominator is zero. " +

"Please try again.");

correct = false;

}

The throw keyword must be followed by an Exception object. When a
throw is executed, it acts like a break within the try block. All code follow-
ing the throw within the try block is skipped and control is passed to the
catch statements that follow the try block. If a catch with a parameter that
matches the type of exception produced by the throw is found, control pass-
es into that catch block.

In this example, of course, we have no need to write an explicit throw
since the division operator would do it for us, but we will see later that it is
possible to define customized exception classes, and instances of these must
be thrown in user-defined code.

7.5 ■ Data carried by exceptions

So far, we have used the various exception types only as labels to distinguish
which type of error has occurred. Exceptions can also carry information on
the error which can help us find the problem that produced it. Java veter-
ans will no doubt be familiar with the stack trace that appears in the con-
sole window if we don’t put a section of code in a try…catch block. C# will
produce much the same sort of thing for an uncaught exception, but as with
Java, C# also provides a way of printing the stack trace out explicitly, using
the StackTrace property in the Exception class.

When we create a new exception to throw, we can also specify a string
in the constructor which serves as an error message that can be printed out
in a catch block. We can modify the example above to add a message and a
stack trace to the output when a DivideByZeroException is thrown:

try

{

Console.Write("Enter two positive ints: ");

string intString = Console.ReadLine();

string[] splitInts = intString.Split();

x = int.Parse(splitInts[0]);

y = int.Parse(splitInts[1]);

if(y == 0)

{

Exceptions 289

throw new DivideByZeroException(
"Error: your second number must not be 0.");

}
Console.WriteLine(x + "/" + y + " = " + x / y);
correct = true;

}
catch (DivideByZeroException exception)
{

Console.WriteLine(exception.Message);
Console.WriteLine(exception.StackTrace);
correct = false;

}

In declaring and throwing the DivideByZeroException, we have added
the message ‘Error: your second number must not be 0.’ to the constructor.
In the catch for this exception we print out this message, followed by the
StackTrace. A typical session with this code would produce the output:

Enter two positive ints: 3 0
Error: your second number must not be 0.

at ExceptionDemo.Main(String[] args) in c:\books\mybooks\
csharpbook\programs\chap07\exceptiondemo\exceptiondemo.cs:
line 31

In this case, the code that threw the exception was written directly in
Main() so we only get a single method in the stack trace. In practice, we will
usually be using methods in other classes which themselves may be derived
from classes in the .NET libraries, so the stack trace will be considerably
longer in those cases.

7.6 ■ User-defined exceptions

Although the .NET library comes with a good collection of exception class-
es, there are cases where it would be convenient to be able to write our own
to cope with errors that are specific to a particular program. As in Java, writ-
ing customized exception classes is quite simple.

As with all the system exceptions, a custom exception must inherit the
System.Exception class either directly or indirectly. Although it is perfectly
legal to declare a new exception as a direct descendent of System.Exception,
it is better practice to derive it from System.ApplicationException. This
class is a direct descendent of System.Exception and actually adds no new
fields or methods. Its only purpose is to provide a unique base class for all user-
defined exceptions so that they may easily be distinguished from system-
defined exceptions.

An exception need not have any functionality to be useful – simply hav-
ing a distinct exception class that is tailored to a particular type of error
allows us to test for that type of error and produce a customized error mes-

290 From Java to C#

sage to improve the user interface. As a simple example, we can modify the
program above so that it will only accept positive integers. Since there is no
system-defined exception class that tests for negative numbers, we can
define our own exception class called NegativeValueException:

public class NegativeValueException : ApplicationException

{}

The class inherits all its functionality from ApplicationException,
which in turn inherits everything from Exception. We can use this class to
add a check that both numbers are positive:

try

{

Console.Write("Enter two positive ints: ");

string intString = Console.ReadLine();

string[] splitInts = intString.Split();

x = int.Parse(splitInts[0]);

y = int.Parse(splitInts[1]);

if(x < 0 || y < 0)

{

throw new NegativeValueException();

}

Console.WriteLine(x + "/" + y + " = " + x / y);

correct = true;

}

catch (NegativeValueException exception)

{

Console.WriteLine(

"Error: both numbers must be positive.");

correct = false;

}

// other catch blocks

In this case, there is no alternative to using a throw statement, since no
system-defined operator or method knows anything about a Negative
ValueException and therefore will not throw it.

A typical session using this exception would be:

Enter two positive ints: -20 2

Error: both numbers must be positive.

Since user-defined exceptions inherit all the functionality of the Exception
class, we can assign messages to them as well. We can add a couple of con-
structors to our NegativeValueException to make it a bit more useful:

public class NegativeValueException : ApplicationException

{

public NegativeValueException() :

Exceptions 291

base()

{ }

public NegativeValueException(string message) :

base(message)

{ }

}

Again, there is no functionality here that is not present in the base class,
but we can now create a NegativeValueException by passing a string to
its constructor to set up an explicit error message. We can replace the throw
statement above with:

if(x < 0 || y < 0)

{

throw new NegativeValueException(

"Error: both values must be positive.");

}

and the corresponding catch block with:

catch (NegativeValueException exception)

{

Console.WriteLine(exception.Message);

correct = false;

}

A typical session using this new code would be:

Enter two positive ints: -20 5

Error: both values must be positive.

7.7 ■ When to use exceptions

Exceptions are designed to handle errors that are largely outwith the pro-
gram’s control, in the sense that they arise from unpredictable sources such
as user input, network errors, inaccessible or missing files and so on. In gen-
eral it is not a good idea to use exceptions as a replacement for an if…else
or switch statement.

For example, it would be possible to add another exception class to our
previous example which deals with the case where the user’s input is cor-
rect (that is, both numbers are positive). If we called this new exception
class CorrectInputException, we could then add a check such as:

if (x > 0 && y > 0)

{

throw new CorrectInputException();

}

292 From Java to C#

and then add another catch block that produces the desired output from
the program:

catch(CorrectInputException exception)

{

Console.WriteLine(x + "/" + y + " = " + x / y);

correct = true;

}

Although this would work in principle, it is bad programming practice
because an exception is being produced when the program is actually work-
ing properly.

A throw is an unconditional break in the program flow and for it to work
correctly, a catch must be provided in the code. If there is no catch for a
thrown exception, the program will crash.

The general rule for using exceptions is therefore that they should only
appear in cases where an error from an external source might occur –
all other conditions should be handled using ‘ordinary’ code (usually an
if statement).

■ Summary

Exceptions are provided in C# to allow a way of catching runtime errors in
a program and handling them smoothly without causing a program crash.
Exceptions should be caught and appropriate action taken, such as produc-
ing a clear error message to let the user know what has gone wrong.

Exceptions in C# work in much the same way as they do in Java.

Exceptions 293

Key point

Exceptions should only be used to catch errors in a program.

Exercises

7.1 Extend the example given in the chapter (where two numbers are read in and
one divided by the other) so that the program runs in a loop. Each iteration of
the loop should ask the user for two numbers, then print a menu offering the
numbered options 1. Add, 2. Subtract, 3. Multiply, 4. Divide. Handle the excep-
tions described in the example in this chapter, but arrange the exception han-
dling code so that entering invalid input gives the user a second chance to enter
the data for the chosen operation, before going back to the beginning of the
loop to request another pair of numbers for a new operation.

Add another user-defined exception to handle the case of a menu choice being
outside the bounds 1 to 4.

294 From Java to C#

7.2 The static method Math.Sqrt() (part of the Math class) returns the square
root of a non-negative number. Write a test program that runs a loop that asks
the user for a number and then prints out the square root of that number. The
program should stop when the user enters zero.

What is printed out when the user enters a negative number? Look up
this ‘value’ in the documentation to discover what it means if you haven’t seen
it before.

Use the NegativeValueException defined in the chapter to catch negative
input and print an error message instead of the value that is produced by default.

7.3 Write a program which asks the user for an email address and checks that the
address has a ‘valid’ form (that is, that it has the form xxxx@yyyy.zzz, so there
should be some text, then an @ symbol, then some more text, then a dot, and
finally some more text at the end). Investigate the String class to find meth-
ods for doing this, or alternatively, investigate the Regex class and build a reg-
ular expression to match a valid email address. Write an EmailException class
and throw an instance of it if the entered string is not a valid email address.

Events and delegates

8.1 ■ Events

As a prelude to the next chapter where we begin our discussion of Windows
programming using C# and .NET, we need to investigate how events are gen-
erated and handled in C#. Event handling should be familiar to any Java
programmer who has produced graphical user interface (GUI) programs,
since components such as buttons and menu items generate events which
must be handled in order for them to do anything.

We will first review what events are and how they are handled in Java,
then proceed to describe how they are generated and handled in C#.

Although events are encountered mainly in GUI programs, they can be
used in any program, even console ones. An event is really just a signal that
is sent to a running program indicating that something has occurred which
may require the program to respond in some way. Events are generated from
user interaction, as when the user presses or moves the mouse, presses a
key on the keyboard, selects a menu item in the program, and so on. Other
events not specifically associated with a user action can be generated by the
operating system, such as various events that are sent when a program
starts up or shuts down.

Although there are a large number (typically several hundred) of types of
event, most programs only wish to respond to a handful of these, at least in
the sense of producing a visible reaction. Typically, a method for handling a
particular type of event is added to one of the classes in the program and
arrangements must be made for that method to be called whenever the spe-
cific type of event occurs.

We have seen that events are generated outside the program by user
interaction or the operating system, and that we can provide methods with-
in the program that respond to these events. The problem is how to connect
the two ends of the process. Let us see briefly how this is done in Java.

8.2 ■ Events in Java

In all versions of Java since 1.1, event handling is done using listener inter-
faces. To see how this works, suppose we have a graphical component such
as a button (an instance of the JButton class in Java’s Swing package, say)
and we wish to add some code that is run whenever the button is pushed.
Pressing a JButton generates an ActionEvent which, besides stating that an
event has happened, contains other information about the event such as the
object that generated it (the JButton) and so on.

8

In order for this ActionEvent to have any effect, it must be trapped by the
program and caused to run some code. In Java, this is done by attaching an
ActionListener to the JButton. An ActionListener (actually a class that
implements the ActionListener interface) contains a method called
actionPerformed(ActionEvent e) which is designed to receive an
ActionEvent as its parameter. When the button is pressed, an ActionEvent is
generated and sent to the JButton object, which then checks to see if it has
an ActionListener attached to it. If it does, it calls the actionPerformed()
method from that ActionListener. (In fact, we can attach several
ActionListeners to a single JButton and the actionPerformed() methods
of all these listeners will be called whenever an ActionEvent is received. Most
buttons only have a single ActionListener, however.)

In Java, therefore, each component is sent a notification of any events
that are associated with it, and it is up to the programmer to add listeners
for those types of events that should produce a response. As each Java com-
ponent typically can respond to several types of event, a given component
can have several different types of listeners attached to it. Interacting with
the component in different ways will generate different types of events, each
of which will call methods from different listeners.

The connection between an event and the method it calls is therefore
determined entirely by the listener interface. As in C#, implementing an
interface in Java means that any methods declared by that interface must
be implemented. Therefore, any class that implements a listener interface
must provide the event handling method(s) required by that interface. In
this way, Java provides a connection between a component and the method
that is called when that component receives an event without having to pass
the actual name of the method to the component – the method is part of the
interface that has been implemented.

As we will see, event handling in C# uses a somewhat different technique.
To understand how events are handled in C# we first need to understand
delegates.

8.3 ■ Delegates

Ultimately, event handling must come down to connecting an event with the
method that is supposed to run when the event is received. We’ve seen that
Java uses listener interfaces to achieve this.

Some GUI systems written in C and C++ use callback functions to con-
nect events with their handlers. In this system, a separate handler function
(method) is written for each type of event, and the correct handler function
is passed as a parameter to another function which uses the handler func-
tion to process the event. In this way we need to write only a single func-
tion to sort out the various events that impinge on a program. We merely
pass this function the correct tool (in the form of another function passed
in as a parameter) to handle a particular event correctly. If the idea of

296 From Java to C#

passing a method as a parameter to another method seems odd to you as a
Java programmer, it is probably because Java does not support it.

C# does not support directly the passing of one method to another, at
least not by simply putting a method’s name as a parameter in another
method’s parameter list. However, C# does introduce a new type of class
called a delegate which does essentially the same thing.

Although the main use of delegates in C# is as part of the event handling
process, they can also be used on their own, and it is perhaps easier to under-
stand how they work by examining a simple delegate without any events to
confuse us. It may not become clear exactly how delegates are used until we
reach the end of the example below, but be patient – all will be revealed.

When a delegate is declared, it must specify the exact type of method
which it represents. This type includes not only the name and parameter
list, but also the return type. Some books say that a delegate specifies the
signature of a method, but as we saw in Chapter 5, our definition of the sig-
nature of a method includes its name and parameter list but excludes its
return type, so it is not quite the same thing. To avoid confusion with the
term signature as used in this book, we will just refer to the ‘type’ of a
method when discussing delegates.

A delegate declaration looks a lot like a method declaration, without the
method code following it. A typical declaration looks like this:

public delegate int ArithOperation(int num1, int num2);

This declaration declares a delegate class named ArithOperation
which can represent methods that return an int and take two ints as
parameters. It is important to note that this declaration specifies only the
type of the method which can be represented by the delegate. In particular,
the name ArithOperation is not the name of any particular method – it is
the name of the delegate class.

This declaration is actually a class declaration in disguise. The keyword
delegate tells the compiler that a class that inherits System.Delegate is
being declared, and it will then take care of the details. It will name this
class ArithOperation and store the details of the method’s type as data
fields in the class. All the other functionality of the new ArithOperation
class is inherited from System.Delegate.

Since ArithOperation is a class, we can use it to declare objects, much
like any other class. The only difference is that a delegate class has a spe-
cific type of constructor which must be used when making a declaration.
This constructor takes a single parameter which must be the name of a
method whose type matches that of the delegate.

For example, if we had a method Plus() defined as follows:

public int Plus(int num1, int num2)

{

return num1 + num2;

}

Events and delegates 297

then we could declare a delegate representing Plus() by writing:

ArithOperation arithOp = new ArithOperation(Plus);

If we had another method with a different type, as in:

public void OtherMethod(float x)

{

// ……

}

then the declaration:

ArithOperation arithOp = new ArithOperation(OtherMethod);

would not compile, since the constructor parameter is a method with the
wrong type.

Now all this may be fine, but it is probably still far from obvious how a
delegate can be used for anything useful. Unfortunately, most examples that
could be presented at this stage are not terribly realistic in that they could
be done more easily without using delegates, but we will give a simple exam-
ple so you can see how they work in practice. When we study event handling
later, delegates will become truly useful.

As an example of delegates in action, the following program asks the user
to enter two ints and then calculates four arithmetic operations using these
two numbers. Each operation uses a separate method, and a delegate is used
to pass each method in turn into another method that prints out the results.

1. using System;

2.
3. class DelegateDemo

4. {

5. public delegate int ArithOperation(int num1, int num2);

6.
7. public int Arithmetic(ArithOperation operation,

8. int num1, int num2)

9. {

10. return operation(num1, num2);

11. }

12.
13. public int Plus(int num1, int num2)

14. {

15. return num1 + num2;

16. }

17.
18. public int Minus(int num1, int num2)

19. {

20. return num1 - num2;

21. }

298 From Java to C#

22.
23. public int Times(int num1, int num2)

24. {

25. return num1 * num2;

26. }

27.
28. public int Divide(int num1, int num2)

29. {

30. return num1 / num2;

31. }

32.
33. public void Calculator()

34. {

35. int num1, num2;

36. ArithOperation[] arithOp =

37. {

38. new ArithOperation(Plus),

39. new ArithOperation(Minus),

40. new ArithOperation(Times),

41. new ArithOperation(Divide)

42. };

43. string[] operatorSymbol = { "+", "-", "*", "/" };

44.
45. do

46. {

47. Console.Write("Enter two ints (0 0 to end): ");

48. string intString = Console.ReadLine();

49. string[] splitInts = intString.Split();

50. num1 = int.Parse(splitInts[0]);

51. num2 = int.Parse(splitInts[1]);

52. if(num1 == 0 && num2 == 0) break;

53. for(int i = 0; i < arithOp.Length; i++)

54. {

55. Console.WriteLine(num1 + operatorSymbol[i] + num2 +

56. " = " + Arithmetic(arithOp[i], num1, num2));

57. }

58. } while (num1 != 0 && num2 != 0);

59. }

60.
61. static void Main(string[] args)

62. {

63. DelegateDemo demo = new DelegateDemo();

64. demo.Calculator();

65. }

66. }

Events and delegates 299

We’ve made use (line 5) of the same delegate that we declared earlier.
Line 7 declares a method that takes an ArithOperation delegate and two
ints as parameters. On line 10, this method uses the delegate to call the
method that it represents and returns the result.

Lines 13 to 31 provide the four arithmetic methods, each of which has the
correct type to be used with ArithOperation. The Calculator() method
(line 33) is the control centre of the program and brings everything togeth-
er. Lines 36 to 42 create an array of delegate objects, with each initialized
to one of the four arithmetic operations. Line 43 declares a string array
which is used in printing out the results.

The loop on line 45 includes much of the code from the example in the last
chapter on exceptions (although the exception code has been omitted to keep
things simple here). The user is prompted to enter two integers, which are
extracted from the input string and converted to ints. The loop on line 53 calls
Arithmetic and passes it each element of the arithOp array in turn. For
example arithOp[0] is a delegate for the Plus() method, so we are essential-
ly passing the Plus() method as a parameter into the Arithmetic() method.
Back in Arithmetic() on line 10, the delegate operation, which is now a del-
egate representing Plus(), is called, which in turn calls Plus(), passing it
num1 and num2. The value returned from Plus() is also returned from the
operation delegate. The other three methods Minus(), Times() and
Divide() are all passed into Arithmetic() in a similar way.

A typical session with this program is:

Enter two ints (0 0 to end): 5 9

5+9 = 14

5-9 = -4

5*9 = 45

5/9 = 0

Enter two ints (0 0 to end): 123 -9034

123+-9034 = -8911

123--9034 = 9157

123*-9034 = -1111182

123/-9034 = 0

Enter two ints (0 0 to end): 0 0

Press any key to continue

Obviously, this program could have been written more simply without del-
egates by just calling the four methods directly. However, it does illustrate
how a delegate can be used to pass one method as a parameter into another.

300 From Java to C#

8.4 ■ Multicast delegates

C# delegates can be multicast delegates, which means that a delegate class
can represent more than one method at a time. In the preceding example,
we defined an array of four delegates and attached a single method to each
one. We can rewrite this example to use only a single delegate which refers
to all four arithmetic methods.

If we add more than one method to a delegate, there is an extra restric-
tion on the method type: the method must be void – that is, it cannot return
anything. The reason for this is fairly obvious, since if a delegate contains
several methods that each return their own values, which value would the
delegate itself return? To solve this problem, multicast delegates are restrict-
ed to void methods.

To convert our earlier example into one using a multicast delegate, we
need to convert the four arithmetic operation methods to void methods, so
we have put the output code inside these methods rather than in the
Calculator() method. The result is as follows:

1. using System;

2.
3. class MulticastDemo

4. {

5. public delegate void ArithOperation(int num1, int num2);

6.
7. public void Arithmetic(ArithOperation operation,

8. int num1, int num2)

9. {

10. operation(num1, num2);

11. }

12.
13. public void Plus(int num1, int num2)

14. {

15. Console.WriteLine(num1 + " + " + num2 + " = " +

16. (num1 + num2));

17. }

18.
19. public void Minus(int num1, int num2)

20. {

21. Console.WriteLine(num1 + " - " + num2 + " = " +

22. (num1 - num2));

23. }

24.
25. public void Times(int num1, int num2)

26. {

27. Console.WriteLine(num1 + " * " + num2 + " = " +

28. (num1 * num2));

Events and delegates 301

29. }

30.
31. public void Divide(int num1, int num2)

32. {

33. Console.WriteLine(num1 + " / " + num2 + " = " +

34. (num1 / num2));

35. }

36.
37. public void Calculator()

38. {

39. int num1, num2;

40. ArithOperation arithOps = new ArithOperation(Plus);

41. arithOps += new ArithOperation(Minus);

42. arithOps += new ArithOperation(Times);

43. arithOps += new ArithOperation(Divide);

44.
45. do

46. {

47. Console.Write("Enter two ints (0 0 to end): ");

48. string intString = Console.ReadLine();

49. string[] splitInts = intString.Split();

50. num1 = int.Parse(splitInts[0]);

51. num2 = int.Parse(splitInts[1]);

52. if(num1 == 0 && num2 == 0) break;

53. Arithmetic(arithOps, num1, num2);

54. } while (num1 != 0 && num2 != 0);

55. }

56.
57. static void Main(string[] args)

58. {

59. MulticastDemo demo = new MulticastDemo();

60. demo.Calculator();

61. }

62. }

The delegate declaration on line 5 is changed to specify a void return
type. The Arithmetic() method on line 7 is also now void as are the four
arithmetic operations that follow it.

In the Calculator() method on line 37, we declare a single delegate (line
40) and initialize it by adding the Plus() method to it. On lines 41 to 43, we
add the other three methods to the same delegate. Note that the += operator
is implicitly overloaded for delegates to allow them to add new methods.

Within the loop on line 45, the same code as before is used to request
input from the user, but now we need make only a single call to the
Arithmetic() method on line 53 in order to invoke all four arithmetic oper-
ations. Arithmetic() is passed the parameter arithOps which is the

302 From Java to C#

delegate containing all the arithmetic operation methods. When this dele-
gate is run (line 10) it will call each of the methods that has been added to
it, in the order in which they were added. The output from this program is
therefore the same as in the previous example.

Although multicast delegates are not really necessary for this simple pro-
gram, their application to event handling allows a single event to call multi-
ple event handlers. In this way, C# is able to duplicate Java’s event handling
technique where a number of listeners for a particular event type can be
added to a single component.

8.5 ■ Handling events

Now that we have seen how delegates work, we can return to how C# gener-
ates and handles events. In fact, a C# event is nothing more than a delegate
with a particular method type. Each method that is added to the event dele-
gate becomes an event handler that is called whenever that event occurs.

The only condition that an event delegate must satisfy is that its type is
of the form:

public delegate void EventName(object source,

EventArgs eventInfo);

The delegate must have a void return type (since it must allow multicas-
ting so that more than one handler method can be attached to a given
event). The event’s name (shown as EventName here) can be anything you
like. The parameter list must have the form shown – two parameters, where
the first parameter represents the source of the event and the second
parameter contains any extra information that is to accompany the event.

In a GUI program, for example, source could be a button component that
is pressed to generate the event, and eventInfo could be null if no extra
information about the button is needed. On the other hand, if the source of
the event is a mouse click in a graphics window, source could be the win-
dow object containing the graphics and eventInfo could contain the pixel
coordinates of the mouse cursor when the mouse was clicked.

Since source’s data type is given as object, the source of an event can
be any data type, since all data types inherit object. The EventArgs class
is defined in the System namespace and is an empty class. Its only purpose
is to define a base class for the second parameter in an event delegate, so
that any extra information accompanying an event must be contained with-
in a class that inherits EventArgs.

The easiest way to understand how an event delegate is used to generate
events is to look at a simple example. The following program presents yet
another form of the arithmetic calculator given above. This time, the user is
presented with a list of options at each point. First, the user must enter two
integers, after which the menu will expand to allow these integers to be
added or subtracted, or else the user can choose to enter another pair of
integers, replacing the first two. A ‘quit’ option is also included at each stage.

Events and delegates 303

After a pair of numbers is entered, the ‘add’ and ‘subtract’ options are
handled by generating an event which is then handled by a separate
method. Since we are dealing with a text-based program rather than a GUI
program, the ‘source’ of the event is taken to be a string containing either
"Add" or "Subtract". In the next chapter, when we study simple Windows
programs, we will rewrite this program in a GUI version where ‘add’ and
‘subtract’ become buttons that are pressed. In that case, the buttons will
become the sources of the events.

We will present the code at this point and discuss it further afterwards.

1. using System;

2.
3. class EventDemo

4. {

5. public delegate void ArithDelegate(string source,

6. EventArgs eventInfo);

7. public event ArithDelegate ArithEvent;

8. int num1, num2;

9.
10. public void ReadInts()

11. {

12. Console.Write("Enter two integers: ");

13. string intString = Console.ReadLine();

14. string[] splitInts = intString.Split();

15. num1 = int.Parse(splitInts[0]);

16. num2 = int.Parse(splitInts[1]);

17. }

18.
19. public void EventHandler(string source, EventArgs eventInfo)

20. {

21. if(source.Equals("Add"))

22. {

23. Console.WriteLine(num1 + " + " + num2 + " = " +

24. (num1 + num2));

25. }

26. else if(source.Equals("Subtract"))

27. {

28. Console.WriteLine(num1 + " - " + num2 + " = " +

29. (num1 - num2));

30. }

31. }

32.
33. public void Calculator()

34. {

35. ArithEvent += new ArithDelegate(EventHandler);

304 From Java to C#

36. int choice;

37. bool firstIntsEntered = false;

38. do

39. {

40. Console.WriteLine("\nSelect an option: ");

41. Console.WriteLine("1. Enter new numbers");

42. if(firstIntsEntered)

43. {

44. Console.WriteLine("2. Add");

45. Console.WriteLine("3. Subtract");

46. }

47. Console.WriteLine("4. Quit\n");

48. Console.Write("Enter your choice: ");

49. string intString = Console.ReadLine();

50. choice = int.Parse(intString);

51. switch (choice)

52. {

53. case 1:

54. ReadInts();

55. firstIntsEntered = true;

56. break;

57. case 2:

58. ArithEvent("Add", null);

59. break;

60. case 3:

61. ArithEvent("Subtract", null);

62. break;

63. }

64. } while (choice != 4);

65. }

66.
67. static void Main(string[] args)

68. {

69. EventDemo demo = new EventDemo();

70. demo.Calculator();

71. }

72. }

The event delegate is declared on line 5. The first parameter is given as a
string, but since string inherits object, the principle of polymorphism
allows the declaration to match the required form.

In this program, we will not make use of the EventArgs parameter at all,
since all the information that we need about the event is contained in
source. In fact, this is the only case where the second parameter of an event
delegate should be given as the EventArgs base class. Since EventArgs is an
empty class, it cannot store any information, so if the second parameter of

Events and delegates 305

the event delegate is EventArgs, this is a way of stating that this parameter
will not be used. We will see an example below where this parameter is used,
and in that case we need to create a new class that inherits EventArgs and
add some data fields to this class in order to carry the information.

Line 7 creates an instance of ArithDelegate called ArithEvent. Note
that the keyword event forms part of the declaration. In fact, this is not nec-
essary – the program will work perfectly well even if event is omitted from
line 7. The event keyword is an indication to the compiler that this decla-
ration should be compatible with the data type required to represent an
event. That is, if event is present, the compiler will check that
ArithDelegate’s type conforms to that required for an event delegate, with
the first parameter an object and the second an EventArgs. It is always a
good idea to use this keyword as a safeguard against coding errors.

To see how this event delegate is used, we follow the program as it starts.
In Main() (line 67), we call Calculator() to get things started. The first
thing Calculator() does (line 35) is add the method EventHandler() (line
19) to the event delegate. This means that every time an ArithEvent
occurs, EventHandler() should be called.

How do we make an ArithEvent occur? If we follow the code in
Calculator(), the lines up to line 50 print out the menu and read the user’s
choice from the menu. When the program starts, the user is given only
option 1 (enter two integers) and option 4 (quit). Once the user has entered
two numbers, the menu expands to include option 2 (add) and 3 (subtract).
Let us suppose the user has entered the numbers 24 and 4, and then select-
ed option 2 to add them. In the switch statement (line 51), choice is 2, so
line 58 will be run. This line is:

ArithEvent("Add", null);

Since ArithEvent is an instance of the delegate ArithDelegate, the two
parameters must match those given in the delegate’s type. The first param-
eter is the string "Add", which is fine, and the second parameter is given
as null, indicating that we are not passing in an EventArgs object. This is
also fine provided we don’t try to make use of the EventsArgs parameter
anywhere within the event handler.

Since the EventHandler() method was added to the ArithEvent dele-
gate (line 35), ArithEvent will call EventHandler() and pass its two
parameters along to it. Thus within EventHandler() (line 19), source is
"Add" and eventInfo is null. Therefore, the if condition on line 21 will be
true, and the output will be

24 + 4 = 28

We can see from this example that events don’t use any features of C#
apart from those inherent in delegates. The event keyword is purely a bit
of insurance to make sure that the delegate’s type is of the required form,
but in this example, the program would actually work equally well even if
the delegate were of some other form. The requirement that all events are

306 From Java to C#

delegates with a particular type is needed when a programmer must write
event handlers for system-defined events. By using a consistent type for all
events, it is easier to write event handlers since they must always have the
same parameter list.

When we study GUI programming in the next chapter, the only part of the
event processing process we will need to worry about is writing the handler
method (EventHandler() in this example). The declaration of the event del-
egate and the generation of the events will be done by .NET and is hidden from
the application coder. Once we write the event handler we then just need to
add it to the event delegate, as we did in this example on line 35.

8.6 ■ Threads

Most operating systems are multi-tasking systems, in that even though they
are running on a single processor they can give the illusion of running sev-
eral processes at the same time. It is only an illusion, since a single proces-
sor can only handle one process at a time. The operating system manages
multi-tasking by allocating a small time slice to each process in turn, so that
one process gets a bit of time, is then swapped out into memory and the
next process is given its share of time and so on.

Within a single process, some programs provide the ability to run sepa-
rate sub-processes in a similar way. Each sub-process is run in a separate
thread. The various threads within a single process are managed by that
process rather than directly by the operating system, so the programmer
has the ability to control what happens in the thread.

Both Java and C# provide relatively simple methods for defining and man-
aging threads within a program, although the two languages implement
threads in somewhat different ways. We’ll begin with a quick reminder of
how Java manages threads and then proceed to describe C#’s facilities for
threading. We have included the initial discussion of threads in this chapter
on delegates, since as we will see, C# uses a delegate to provide the method
that is to be run by a thread.

8.6.1 � Threads in Java

Java contains a Thread class which can be used to create an instance of a
thread in a program. When a Thread is created, it must be registered with
an object that implements the Runnable interface. Runnable declares only
a single method called run(), so writing a class that implements Runnable
requires writing an implementation of run() within that class.

When a Java Thread has been created and registered, it can then be start-
ed in its own sub-process by calling the start() method. This method in
turn consults the Runnable object with which the Thread was registered
and calls the run() method from that object. The run() method contains
whatever code is to be run in the new thread.

Events and delegates 307

Earlier versions of Java provided methods for stopping, pausing and
resuming a Thread, but these were removed in later versions of the language
since they caused scheduling problems. As a result, stopping or pausing a
thread in Java is a somewhat cumbersome procedure. We will see that the
process is easier in C#.

8.6.2 � Threads in C#

The main difference between threads in Java and C# is that in C#, rather
than registering an object with a thread, a particular method within an
object is registered when a thread is created. This is done by associating a
new Thread with a ThreadStart delegate, with the delegate representing
the method which should be run in the thread.

This will be easier to understand with a simple example, so consider the
SimpleThread class below:

1. using System;
2. using System.Threading;
3.
4. public class SimpleThread
5. {
6. Thread testThread;
7.
8. public void RunThread()
9. {

10. for (int i = 0; i < 5; i++)
11. {
12. Console.WriteLine("Thread time: " + (i * 100)

+ " ms.");
13. Thread.Sleep(100);
14. }
15. }
16.
17. public static void Main(string[] args)
18. {
19. SimpleThread simpleThread = new SimpleThread();
20. ThreadStart threadDelegate =
21. new ThreadStart(simpleThread.RunThread);
22. simpleThread.testThread = new Thread(threadDelegate);
23. simpleThread.testThread.Start();
24. for (int i = 0; i < 5; i++)
25. {
26. Console.WriteLine("Main time: " + (i * 100) + "

ms.");
27. Thread.Sleep(100);
28. }
29. }

30. }

308 From Java to C#

In this program, the idea is to run the code in RunThread() (line 8) in a
separate thread, while at the same time running the code in Main() itself.
We therefore need to create a Thread and tell this thread that when it starts
it should call RunThread().

This is done by first creating a ThreadStart delegate which represents
RunThread() (line 20). ThreadStart is a predefined delegate class which
can only represent a method with the following type:

void ThreadStartMethod();

That is, any method represented by ThreadStart must have no parameters
and be void.

Having created the ThreadStart delegate, we can now create the Thread
itself (line 22) and pass the delegate as the parameter to the Thread construc-
tor. At this point, the Thread is fully defined and connected to the method that
it must run, but it has not yet been started. This is done by calling Start() on
the Thread object (line 23). Start() consults the delegate to find out what
method should be run, and that method is started in its own thread.

This means that the program above splits into two separate threads start-
ing at line 23. The code in RunThread() should run in parallel with and
independently of any other code that follows line 23 in Main(). The code in
RunThread() prints a message every 100 milliseconds, as does the code in
the loop on line 24 in Main(). The time delay between successive messages
was inserted so that the output can reveal that the two blocks of code are in
fact running in parallel.

A typical output from the program is as follows:

Main time: 0 ms.

Thread time: 0 ms.

Main time: 100 ms.

Thread time: 100 ms.

Thread time: 200 ms.

Main time: 200 ms.

Thread time: 300 ms.

Main time: 300 ms.

Thread time: 400 ms.

Main time: 400 ms.

It can be seen that the output from the two blocks of code does indeed get
mixed together, so that it is obvious that there are two threads running in
parallel. A couple of things are worthy of note, however.

First, notice that the output from line 26 appears before that from
RunThread(), even though the thread was started before the loop in Main() is
run. The reason for this is that although Start() on line 23 does indeed start
the thread running before the loop in Main() is entered, setting up a thread
involves a fair bit of preliminary work before the code itself starts running in
the thread. This setup work delays the output from the loop in RunThread()
long enough for the loop in Main() to go through its first iteration.

Events and delegates 309

Second, notice that the output from the two threads is not strictly syn-
chronized, in that the 100 and 200 millisecond lines from RunThread() are
printed together, while most of the other lines alternate with those from
Main(). This is because the two threads are managed independently of each
other, and the time allocated to each thread depends on other things such
as the other processes running on the same machine and so on. In fact, run-
ning the same program several times usually produces slight differences in
the relative ordering of the output from the two threads.

This illustrates an important point about threading: for unsynchronized
threads such as these, it is not possible to predict the order in which the
instructions in the two threads will be run relative to each other, or which
thread will finish first.

You might also wonder what happens if the thread running Main()
finishes before the thread running RunThread(). Does the program just quit
and kill off the secondary thread before it is finished? In fact, the overall
process that manages all the threads in a program will continue running
until all the threads in that process have finished, so we don’t need to worry
about parts of the program not being given enough time to complete.

Another interesting feature of using a delegate to define the entry point
for a thread is that, since the type of the method represented by the dele-
gate has a void return type, the ThreadStart delegate can be used as a mul-
ticast delegate, as described earlier in this chapter. This feature is not often
used, but we could, for example, add a second method called RunThread2()
to the SimpleThread class, and then add this method to the ThreadStart
delegate in Main(). That is, we could add the following method to the class:

public void RunThread2()

{

for (int i = 0; i < 50; i++)

{

Console.WriteLine("Thread2 time: " + (i * 100) +

" ms.");

Thread.Sleep(100);

}

}

and then add the following line after line 21 above:

threadDelegate += new ThreadStart(simpleThread.RunThread2);

The ThreadStart delegate now has two methods (RunThread and
RunThread2) attached to it, so it will run both these methods when the
thread starts. Note, however, that these two methods are being run by
the same thread, so they will be run serially rather than in parallel.

310 From Java to C#

8.6.3 � Uses of threads

Like Java, a C# program has several threads running by default when it
starts. One of these threads runs the code in Main() and another runs the
garbage collector.

In text-only programs such as this, the main use of secondary threads is
in running long calculations in the background while the main thread allows
the user to interact with the program in other ways. This sort of design
means that the user does not have to wait for a long calculation to finish if
there are other things that can be done that require less time.

We will see in Chapter 10 that threads are also very useful in graphical
programs when we wish to run an animation without locking up a program
and disabling user input.

■ Summary

This chapter has introduced the idea of a delegate and illustrated how it can
be used to represent other methods within a program. The main use of del-
egates in C# is as event handlers, since they allow us to attach methods to
particular events generated from user interaction and other sources. We will
see how this works in a GUI program in the next chapter.

We also introduced threads, since a thread uses a delegate to determine
which method should be run when it is started.

Events and delegates 311

Exercises

8.1 Write a class called Greetings which contains several methods that construct a
string which provides a greeting for a particular occasion, such as a birthday,
Christmas, wedding anniversary, etc. Each method should accept a single string
as a parameter. For example, a method called Birthday() would accept a
string that could contain a person’s name and return a string that combined
this name with a greeting to produce a message such as ‘Happy Birthday, Philip!’.

Within the Greetings class, define a delegate that represents methods with
the same type as those of the greetings methods. Then provide a method which
asks the user for a name, then displays a menu listing the available greetings
and asks the user to select a greeting. The program should then use the dele-
gate to call the correct greeting method and print out the resulting message.

8.2 Modify the program in the previous exercise so that each greetings method
prints the message directly rather than returning a string, and thus make each
method void so that it can be used with a multicast delegate. Modify the menu
system so that the user can specify more than one greeting for each name
entered, then add the corresponding methods to the delegate so that a single
delegate call prints all the desired methods.

GUI programming with
Windows Forms

9.1 ■ Using the .NET libraries

Although everything we have seen so far has relied on a console window for
its output, C# and .NET are, of course, designed mainly for graphical user
interface (GUI) programs, since the vast majority of software packages avail-
able today are of this form.

Besides moving from textual to GUI programs, there is another funda-
mental change in this chapter. Up to now, we have concentrated on describ-
ing the C# language – its keywords, data types and statements. We did make
use of a few external classes for such things as reading and writing output to
the console, dealing with exceptions and so on. However, most of the code
used only elements of the C# language.

However, as we mentioned in Chapter 1, C# is part of the much larger
.NET programming environment. One of the main ideas behind .NET is that
classes can be written in any .NET-compliant language and linked in with
classes written in any other .NET-compliant language. We can write one class
in C#, another in Visual Basic .NET and yet another in Visual C++ .NET, then
link them all together to produce a single executable program.

In order to make this sort of multi-language programming possible, the
.NET class libraries have been written so that they are accessible to any
.NET-compliant language. This means that classes such as Console and
Exception that we have used in earlier chapters are also available to Visual
Basic .NET and Visual C++ .NET programs in the same form as we have used
them in C# programs. The only difference is that the appropriate syntax for
each language must be used to call the class methods.

This concept of language-independent classes will probably be new to Java
programmers, but in practice it shouldn’t cause any problems. If we restrict
ourselves to using only C# in writing a program, the fact that the class libraries
are also available to other languages will not affect the coding at all.

9.2 ■ Writing GUI code in C# – the choice of
environment

Depending on your Java background, you may be used to writing Java code
in a simple text editor such as Notepad and then using a console window to
run the javac Java compiler, followed by a java command to run the pro-
gram, or you may have used some sort of development environment in
which various tools are available to help you structure your code, find com-
pilation errors, trace the code using a debugger and so on.

9

Most environments beyond a simple text editor will have some sort of
code generation feature in which a skeleton class or method definitions will
be produced for you. More advanced environments provide graphical editors
that help you place components such as buttons and menus onto the back-
ground window or panel, and then generate the code that makes these com-
ponents appear when the program is run.

Although these facilities can be helpful, they suffer from two major prob-
lems. First, most code generation systems produce much more code than is
really needed to display the interface you’ve drawn in the editor. This exces-
sive code not only slows down the compilation and running of the program,
but makes the code harder to read and maintain.

Second, this automated code usually hinders the understanding of what
the program is actually doing. Since this book’s primary concern is to help
you, the reader, understand how C# works, we want to keep the amount of
extraneous code to a minimum. (There is, of course, another reason why
some readers may not wish to use a development environment – cost. Most
of the professional development packages are not cheap.)

For these reasons, we will take what may seem to some readers a more
primitive approach to writing Windows code in C#. Although this may
involve a bit more typing (but not all that much), the gain in understanding
should more than offset the wear and tear on your fingers. Once you under-
stand how C# works in a GUI programming situation, you are, of course, free
to use all the graphical features of your favourite code-writing environment.

At the time of writing, the most common development environment for
C# is Microsoft’s Visual Studio .NET, 2003 edition. Since this system is so
commonly used, we will describe how to write ‘minimal’ code using it, but
the techniques we use should work equally well if your only environment is
a simple text editor and console window.

If you have written any GUI code in Java, you will be familiar with Java’s
import statement, which imports external packages into your program and
thus allows access to the classes within these packages. For example, if we
want to use the JFrame class (which produces a top-level window) from
within Java’s Swing package, we would need the statement:

import javax.swing.JFrame;

at the start of any file that refers to JFrames. Alternatively, if we want to use
a number of classes from within the Swing package, we can import them all
at once with the statement:

import javax.swing.*;

How do we link in the external libraries in C# that we need to write
Windows programs? In previous chapters where we dealt with text-only
programs, we used the statement

using System;

314 From Java to C#

at the start of most of our files. This allowed us to write text to the console
window with a statement such as

Console.WriteLine("Some text.");

Since Console is a class within the System namespace, we can see that
using works in a similar way to import. In Java, an import statement will
not compile unless the compiler can find the file containing the package to
which the import refers. This is specified in Java’s ‘classpath’, which can be
given as part of the Java compiler command line as in

javac –classpath <list of directories>

In C#, in order to allow a using System statement to be accepted by the
compiler, a reference to a thing called an assembly containing the System
namespace must be made. If we are using a command line to compile the
code, a reference can be made using the /r option in the compiler com-
mand. To refer to System, we can say:

csc /r:System.dll CodeFile.cs

Veteran Windows users will recognize the System assembly as a DLL (dynam-
ic linked library), that is, a collection of classes that is linked into the program
when it runs and is not stored in the .exe file produced by the compiler.

Depending on how the system paths are set up on your computer, you
may need to give the full pathname to the assembly file, so the above line
may need to look something like:

csc
/r:C:\Windows\Microsoft.NET\Framework\v1.0.3705\System.dll
CodeFile.cs

where the whole command would be typed on a single line in the console.
The actual path may vary on your machine depending on where you
installed Windows and what version of Visual Studio you have installed. The
version number may be different from 1.0.3705.

In fact, you probably won’t need to add a reference to System.dll from
the command line since the basic System namespace is referenced by
default anyway. However, to use other assemblies you may need to add
explicit references in the compiler command. Multiple assemblies can be
referenced by giving a comma-separated list of files:

csc /r:System.dll,System.Windows.Forms.dll CodeFile.cs

9.3 ■ Windows code in Visual Studio .NET

Even for code purists, writing C# Windows code entirely in a text editor can
be a bit tedious, so we can use Visual Studio .NET to manage the code we
write, but we will try to avoid its excesses by preventing it from generating
its own code. This is not that difficult, but we do need to set up a project in
a special way to get it to work.

GUI programming with Windows Forms 315

To demonstrate, we will write a simple program which does nothing more
than display an empty window on the screen. First, create a new project by
selecting the File menu, then New → Project. In the New Project dialog,
select ‘Visual C# Projects’ in the ‘Project Types’ list, and ‘Empty Project’ in
the ‘Templates’ list. Give the project a name (we will use SimpleForm in
what follows) and a location, and click OK.

An ‘empty project’, as its name implies, has no code files in it, so our first
task is to add one. In the ‘Solution Explorer’ (if Solution Explorer isn’t visi-
ble, select the View menu and choose ‘Solution Explorer’), right-click on the
name of the project, and select ‘Add new item’. Choose ‘Code file’ from the
‘Templates’ list, give the new file a name such as SimpleForm.cs (with a .cs
extension) and click OK.

Insert the following code into this code file (we’ll explain what it
does below):

using System;

using System.Windows.Forms;

class SimpleForm : Form

{

public static void Main()

{

SimpleForm simpleForm = new SimpleForm();

Application.Run(simpleForm);

}

}

If you try to compile this code, you will get two errors. The first error
says: ‘SimpleForm.cs(2): The type or namespace name “Windows” does not
exist in the class or namespace “System” (are you missing an assembly ref-
erence?)’. The error is on line 2, so is a problem with the using statement,
and the clue to fixing it is that we are, in fact, missing an assembly reference
as it suggests.

This program could be compiled from the command line using the command

csc /r:System.dll,System.Windows.Forms.dll SimpleForm.cs

In Visual Studio .NET, however, we need to add a reference to System.dll
and System.Windows.Forms.dll in the Solution Explorer. To do this, expand
the branch labelled with the project name (SimpleForm, if you’ve been fol-
lowing along) and you should see a node labelled ‘References’. Right-click on
this and select ‘Add reference’. In the dialog that appears, select the .NET tab,
and then scroll down until you get to System.dll. Select it, then press
the ‘Select’ button on the right, then repeat the process to select
System.Windows.Forms.dll, then press OK. Expanding the References node
in Solution Explorer should now show System and System.Windows.Forms
listed. The program should now compile and run without errors.

316 From Java to C#

Running this program first displays a console window, and then a small,
empty square window appears. The window has a normal title bar (except
there is no text in it), with an icon in the upper-left corner that contains a
system menu, and the usual three buttons in the upper-right corner allow-
ing us to minimize, maximize and close the window.

9.4 ■ Console versus Windows programs

If we close this empty window by clicking the ‘X’ button in the upper-right
corner, the console window shows ‘Press any key to continue’, as happens
with a text-only application such as those we have shown in earlier chap-
ters. This isn’t normal behaviour for a ‘true’ Windows program, so what’s
going on?

In fact, if we use Visual Studio .NET to generate a ‘true’ Windows appli-
cation (this can be done by selecting ‘Windows application’ from the
‘Templates’ list in the New Project dialog at the start), we get a ready-made
program that will show the same empty window when it compiles and runs,
except there is no console window in the background.

The key to the difference is that true Windows programs make no refer-
ence to a console – in fact, the very concept of a console is absent from such
programs. When generating the executable file using the C# compiler, there
is an option that can specify whether a console or Windows application is to
be generated. When we chose an ‘Empty Project’ instead of a ‘Windows
Application’, this option was set to ‘console’. To change it to a proper
Windows application, right-click on the project name (SimpleForm) in
Solution Explorer and select ‘Properties’. Select Common Properties �
General from the list and find ‘Output Type’ in the ‘Application’ list, then
select ‘Windows Application’ from the combo box and click OK. Now run the
program again and you will see the empty window appear but without a con-
sole window in the background.

Since a true Windows program doesn’t have a console to start it up, why
don’t we leave our program set to ‘Windows Application’? For one very good
reason: since a Windows Application has no access to a console, we cannot
print any output using Console.WriteLine(). In your Java programming
career, you probably made good use of Java’s System.out.println() to
print out the state of variables or control paths in your program as you were
debugging it. The only way we can access equivalent functionality in C# is
to leave the program output type set to ‘Console’. Once we have finished
debugging the program and want to release it to our clients, we would
recompile it with the output type set to ‘Windows’ to get rid of the console.

But what if we have dozens of Console.WriteLine() statements scat-
tered throughout the code? Do we have to go through and remove them all
when we recompile the program as a Windows application? No, since a
Windows program will simply ignore all calls to the console, so the output
will not appear anywhere.

GUI programming with Windows Forms 317

9.5 ■ The structure of a Windows program

Now let us consider what the code given in the simple example above actu-
ally does. We repeat the code for convenience:

using System;

using System.Windows.Forms;

class SimpleForm : Form

{

public static void Main()

{

SimpleForm simpleForm = new SimpleForm();

Application.Run(simpleForm);

}

}

The class SimpleForm inherits Form, which is the main window class in
the System.Windows.Forms namespace (so its full name is System.
Windows.Forms.Form). A Form in C# acts much like a JFrame in Java Swing
– it is a top-level container into which other components can be placed. By
creating a custom class that inherits Form, we are creating the main window
for our application, and we can add other components to produce the lay-
out we wish.

In Main(), we create an instance of SimpleForm and then call
Application.Run() on this instance. The Application class is also in the
System.Windows.Forms namespace, and contains several methods (all stat-
ic) and properties that manage the running of a Windows application.
Application.Run() is the standard way of starting a Windows program,
and its parameter should be the main window that is the basis of the GUI
display. In other words, the Form that is passed to Application.Run() is
the one that, when closed, shuts down the entire program.

9.6 ■ Editing a Windows Form

One final note about the SimpleForm program before we progress to some-
thing a bit more interesting. In Visual Studio .NET, a class that inherits Form
is interpreted by the editor as one for which the Form Editor can be
invoked. If you look in Solution Explorer at the node corresponding to the
SimpleForm class file (with the label SimpleForm.cs), you will see the
accompanying icon looks like a little dialog box. If you right-click on this
node and select ‘View Designer’, the main editor window switches to a
graphical display of the form and allows you to edit it by placing components
such as buttons on the form.

318 From Java to C#

This Form Editor can be useful for laying out components, but you should
beware that every time you do anything using this editor, changes are made
automatically to the code file. If you want to keep your code ‘clean’, you may
want to avoid using the Form Editor.

To see the effects of using the Form Editor, try adding a single button to
the form. Display the Toolbox (by using the View menu and selecting
Toolbox), then open the list of Windows Forms components. Select the
Button from this list and then click the mouse anywhere on the form. A but-
ton with the label ‘button1’ should appear.

Now look in the code file for SimpleForm to see what changes have been
made to the code. We find the following lines have been added:

private System.Windows.Forms.Button button1;

private void InitializeComponent()

{

this.button1 = new System.Windows.Forms.Button();

this.SuspendLayout();

//

// button1

//

this.button1.Location = new System.Drawing.Point(112, 72);

this.button1.Name = "button1";

this.button1.TabIndex = 0;

this.button1.Text = "button1";

//

// SimpleForm

//

this.AutoScaleBaseSize = new System.Drawing.Size(5, 13);

this.ClientSize = new System.Drawing.Size(292, 273);

this.Controls.AddRange(new System.Windows.Forms.Control[]

{this.button1});

this.Name = "SimpleForm";

this.ResumeLayout(false);

}

As we will see later, we do not actually need all this code to display the but-
ton, so it is one example of how code-generating environments can quickly
bloat your source code files. What’s worse is that going back to the design edi-
tor and deleting the button doesn’t delete all the code that was inserted.

Because we have been developing our program starting from an Empty
Project, we will also find that this added code will not compile until we add
another assembly reference for the System.Drawing namespace that is used
at several points.

GUI programming with Windows Forms 319

9.7 ■ Building a first GUI program from scratch

As a first example of a Windows Forms program built without the aid of any
code-generation tools, let us write a program which displays the small form
with a single button in it that we produced at the end of the previous sec-
tion. The complete program is:

using System;

using System.Windows.Forms;

using System.Drawing;

class SimpleForm : Form

{

Button button;

public SimpleForm()

{

button = new Button();

button.Text = "Press me!";

button.Location = new Point(100, 100);

button.Size = new Size(80, 25);

this.Controls.Add(button);

}

public static void Main()

{

SimpleForm simpleForm = new SimpleForm();

Application.Run(simpleForm);

}

}

The code should be fairly obvious since the Windows Forms components
are logically structured, and it is easy to understand their various properties
by using the documentation for the classes. We add a Button as a data field
in the class. We then add a constructor for the class and inside here, we cre-
ate the Button, set its text to ‘Press me!’, its location to pixel coordinates
(100, 100) and its size to a width of 80 pixels and a height of 25 pixels. The
Point and Size classes are from the System.Drawing namespace, which is
why we have a using System.Drawing statement on line 3.

The last line in the constructor accesses a property of a Form called
Controls, which contains a list of the controls attached to the Form. The
Add() method just adds the Button to the list of controls managed by this
Form. Whenever a Form is displayed, it automatically displays all controls
that it contains, so we don’t need any special code to display the Button.

When this program is run, we see the result shown in Figure 9.1.

320 From Java to C#

The button is displayed properly and can be pressed with the mouse, but
of course nothing happens when it is pressed. To make something happen,
we need to add an event handler to the program that responds to the event
generated by a button press.

9.8 ■ Adding an event handler

From Chapter 8, we know that events in C# are really delegates, and that to
handle an event we must write a method with a particular parameter list and
add this method to the list of methods contacted by the delegate.

As we mentioned in Chapter 8, adding an event handler for a GUI com-
ponent is much easier than the event example we presented in that chapter,
since the process of generating the event is all done within the code for the
component, so all we have to do is write a method that responds to the
event, and add this method to the event delegate.

We will write a very simple event handler to begin with:

public void ButtonPressed(object source, EventArgs info)

{

Console.WriteLine("Button pressed.");

}

Recall from Chapter 8 that all event handler methods must have the same
type: they must all be void and must all take two parameters. The first
parameter must be an object (or class derived from object) and the sec-
ond must be an EventArgs (or class derived from it).

GUI programming with Windows Forms 321

Figure 9.1 Interface displayed by the SimpleForm class

The ButtonPressed() method is added to the SimpleForm class above.
To connect this method with the Button, we need to add it to the Button’s
event delegate. A Button, like most components in Windows Forms, can
generate a number of different types of events, so we need to specify the
event to which we wish to respond. As usual, a complete list of the available
events is found in the documentation for the Button class.

In our case, we want to respond to the button being pressed, and the cor-
rect event delegate is called Click. To connect the event delegate for the
Click event to the ButtonPressed() event handler method, we add the fol-
lowing line as the last line in the SimpleForm constructor:

button.Click += new EventHandler(ButtonPressed);

Running the program now will produce the same display as before, but if
we press the button, the text ‘Button pressed.’ appears in the console win-
dow. Note that this will only work if the program is being run as a console
application – if you run it as a Windows application, pressing the button will
have no effect.

Incidentally, the entire code for this program is 29 lines. Producing the
equivalent program using Visual Studio’s ‘Windows Application’ option in
the New Project dialog requires 94 lines. Admittedly it is faster to write since
most of the code is generated for you, but the resulting code is a lot harder
to understand.

9.9 ■ Layouts: anchors and docks

If you have done any GUI programming in Java, you may well be wondering
about the last example. We specified the button’s location and size using
precise pixel coordinates, while in Java all positioning and sizing of compo-
nents is usually handled by Java’s layout managers such as FlowLayout,
GridLayout and so on. Are there C# equivalents of these layout managers?

The short answer is ‘no, there aren’t’. C# does provide some simple for-
matting tools with anchors and docks which we will discuss in a minute, but
nothing approaching the versatility of Java’s layout managers. Some Java
programmers may think of this as a blessing, since layout managers in Java
are notoriously difficult to master. However, once they are understood, they
do provide elegant solutions to laying out containers, and they provide com-
ponent systems that resize perfectly with their containers.

One of the main reasons that Java uses the layout manager system is that
it is platform independent, and cannot rely on the same graphical layouts
being available on all platforms. Using a relative positioning method pro-
vides much greater portability. Since .NET and C# are (for the moment)
designed for Windows only, platform independence wasn’t a consideration
in their design. However, it does seem rather short-sighted to restrict .NET
to a hard-coded pixel coordinate system rather than using the layout man-
ager method.

322 From Java to C#

The only facilities for defining layouts in C#, apart from hard-coding the
bounds of a control, are anchors and docks. The Anchor property of a con-
trol allows the distance of each edge of the control from the corresponding
edge of the client area to be fixed, meaning that the control retains its posi-
tion relative to the enclosing container if the container is resized. A control
may also be docked so that it nestles up against one of the edges of its con-
tainer, as is common with toolbars and status bars.

An anchor is specified by setting a control’s Anchor property to one or
more of the options in the AnchorStyles enumeration. The choices are
None, Top, Bottom, Left or Right. It is possible to combine several of these
options by using the bitwise OR operator |. The default for a control is actu-
ally AnchorStyles.Left | AnchorStyles.Top, which means that a control
retains its distance from the left and top edges of its container if the form is
resized. This is easily demonstrated by resizing the window produced by
SimpleForm above – the ‘Press me’ button remains the same distance from
the top-left corner.

We can reset the Anchor so that the button remains the same distance
from the bottom right by inserting the following line in the SimpleForm
constructor:

button.Anchor = AnchorStyles.Bottom | AnchorStyles.Right;

Setting Anchor to AnchorStyles.None causes a control to retain its posi-
tion relative to all four sides, which means that if the button starts off cen-
tred, it will remain centred as the form is resized.

So far, all the Anchor options just cause the control to adjust its position
when the form is resized, leaving its size unchanged. Including opposite
edges in an Anchor, however, will cause the control to stretch or shrink
when the container is resized. For example, if we say:

button.Anchor = AnchorStyles.Left | AnchorStyles.Right;

then the left and right sides of the button are anchored to the corresponding
edges of the container. Changing the width of the container causes the but-
ton’s width to increase or decrease so that the sides of the button remain the
same distance from sides of the form. This can cause the button to disap-
pear completely if the container’s width is reduced too much.

Although the Anchor property may seem easy to use and fairly powerful,
it falls far short of Java’s layout managers. The main problem is that there is
no way of anchoring one control to another control rather than just to the
edge of the container. This makes mimicking such things as Java’s
GridLayout and BorderLayout very difficult, which means that it is not
easy to build sensible resizing behaviour into a C# GUI.

One way of adding sensible resizing behaviour into a Windows Forms pro-
gram is to write a customized handler for the Layout event, which is gener-
ated whenever a form is resized. By recalculating the sizes and positions of
the controls whenever the form is resized, we can ensure that the layout still
looks correct for various sizes and shapes of the form. We include an exam-
ple of this in the pizza-ordering program later in this chapter.

GUI programming with Windows Forms 323

The Dock property allows a control to be docked along one of the edges of
its container. Docking a control causes it to expand to fill the entire edge of
the container, no matter what size it was given originally. Setting the Dock
property requires choosing one of the options in the DockStyle enumer-
ation, which have the same names as those in AnchorStyles. The main dif-
ference between anchoring and docking is that only one DockStyle may be
selected at a time, since it doesn’t make sense to try to dock a control along
two edges at once.

To dock a button along the bottom edge, we can say:

Button.Dock = DockStyle.Bottom;

9.10 ■ Using the MSDN documentation

Glancing back at the SimpleForm program above, we can see that we set
several properties of the Button by writing the statements:

button.Text = "Press me!";

button.Location = new Point(100, 100);

button.Size = new Size(80, 25);

The fields Text, Location and Size are all C# properties of the Button
class (or of its base class), and allow many of the visible features of the
Button to be specified.

This is the most common method by which features of GUI components
are specified in Windows Forms. All components have a large number of
properties that can be set, and the main ‘secret’ of efficient programming
using .NET is to know how to discover what properties are available for the
various components.

One of the most important skills to be learned when using large libraries
such as those in .NET is how to use the documentation for the various class-
es in the library. The main source for .NET documentation is the MSDN
(Microsoft Developer Network) library. If you have a full installation of
Visual Studio .NET, you will have a version of the MSDN library that was
current when the CDs were released. For an up-to-date version, you can use
the on-line MSDN documentation available at http://msdn.microsoft.
com/library/. If you have Internet access, the on-line version is recom-
mended as it is always up to date.

It is worth taking a few minutes to understand how to use the MSDN
library, since you will (or should) refer to it frequently as you develop C#
code. First, we need to know how to find the page we want. Let us find the
documentation for the Button class in the on-line MSDN library.

Unfortunately, the structure of the MSDN web site seems to change fre-
quently (in fact, it changed several times during the writing of this book), so
there is no guarantee that the instructions that follow will still apply when
you are reading the book.

324 From Java to C#

If we are searching for documentation on a C# class, the best place to start is
to expand the .NET Development node in the tree on the left of the
http://msdn.microsoft.com/library/ page. Then select, in turn, .NET Framework
SDK, .NET Framework, Reference and finally Class Library. The main panel on
the right should now display a list of all the namespaces in the .NET class library.
You may want to bookmark this page in your web browser – that way, if the link
changes again you should be redirected to the new location.

Starting from the Class Library page, select the namespace containing the
class you want – in this case System.Windows.Forms for the Button class.
This can be done either by expanding the Class Library node in the tree on
the left, or by scrolling down the main panel until a link to System.Windows.
Forms is found.

Within the System.Windows.Forms node, find ‘Button class’. This will
give an overview of the Button class. At the top of each overview page for a
class is the inheritance hierarchy – we can see that Button actually has a
hierarchy of five base classes extending back to System.Object.

Beneath the inheritance hierarchy is a grey box showing the declaration of
the class in the various .NET languages. Remember that .NET is a language-
independent library, so that all its classes are available in all languages that
.NET supports. In the documentation, we see the Button class declared in
Visual Basic, C#, C++ and JScript. From the C# declaration (or any of the oth-
ers, if you are comfortable with the syntax in these other languages) we see
that Button inherits ButtonBase as its immediate base class, and also imple-
ments the IButtonControl interface. (We can tell that IButtonControl is an
interface and not a class, since .NET naming conventions specify that inter-
face names begin with ‘I’.)

Beneath the grey box are several sections giving general information on
the class. Next, for most classes, some example code is given as to how they
might be used. The usefulness of the example code varies, depending on
what we want to do with the class. Keep in mind that most classes have a
large number of properties and methods, so one or two examples can’t cover
all possible uses of the class.

At the bottom of the documentation page is a ‘See also’ section which
often contains useful links to other related classes. For Button, there are
links to RadioButton and CheckBox which are two other common controls
that are related to the push button.

The most useful link from an overview page, however, is usually the
‘members’ page. Clicking on ‘Button members’ brings up a page giving a
complete list of all properties, constructors, methods and events available in
the Button class. In this list we will find the three properties used in the
SimpleForm program earlier, along with many other properties.

Many of the properties and methods are inherited from one of Button’s
base classes, and this is noted in the documentation. Also, many of the
entries contain examples of how to use that property or method, or links to
other pages containing examples.

GUI programming with Windows Forms 325

It should be obvious from the number of entries on the ‘Button members’
page that no book can give a comprehensive coverage of everything that can
be done, even with this single class, let alone with all the .NET library class-
es. This is why it is so important to master the skill of using the MSDN doc-
umentation to discover the capabilities of the various classes. In most cases,
a property or method already exists to do whatever you want to do in a pro-
gram, so it is well worth scanning the documentation to see what’s available
before embarking on writing your own code.

Although the MSDN library is the main source of information on the .NET
libraries, there are many other sites on the Internet that contain articles,
information and examples of .NET code, and the volume of information is
growing rapidly as .NET and C# gain in popularity. Using one of the many
Internet search facilities will usually bring up a list of sites containing infor-
mation on almost any .NET class, so it is well worth trying a web search if
you get stuck with a coding problem.

9.11 ■ A simple calculator in Windows Forms

As a slightly more involved example of a GUI program using Windows Forms
which illustrates some of the properties of the controls, we will convert the
text version of the arithmetic calculator program that we introduced in
Chapter 8 into a full GUI program. The general layout of the program will
provide two text boxes into which users can type the two numbers, and a
button control for each of the arithmetic operations. The answer will be dis-
played in another text box, but editing in this last text box will not be
allowed. The interface should look like Figure 9.2.

We’ll present the complete code for this program, although it can be a bit
tedious to read, since most of the code just sets the various properties of the
controls. However, it is a good example for getting an idea of just how easy
it is to set up most of the properties of controls. The code follows:

326 From Java to C#

Figure 9.2 Interface for the simple calculator program

1. using System;

2. using System.Drawing;

3. using System.Windows.Forms;

4.
5. public class ArithmeticForm : Form

6. {

7. private Label enterIntsLabel;

8. private TextBox num1TextBox;

9. private TextBox num2TextBox;

10. private Label answerLabel;

11. private TextBox answerTextBox;

12. private Button addButton;

13. private Button subtractButton;

14.
15. public ArithmeticForm()

16. {

17. InitializeComponents();

18. }

19.
20. private void InitializeComponents()

21. {

22. enterIntsLabel = new Label();

23. num1TextBox = new TextBox();

24. num2TextBox = new TextBox();

25. addButton = new Button();

26. subtractButton = new Button();

27. answerLabel = new Label();

28. answerTextBox = new TextBox();

29.
30. Font labelFont = new Font("Arial", 10.5f,

FontStyle.Bold);

31. Font buttonFont = new Font("Arial", 10,

32. FontStyle.Bold | FontStyle.Italic);

33. Font textBoxFont = new Font("Arial", 10,

FontStyle.Bold);

34.
35. enterIntsLabel.Location = new Point(16, 30);

36. enterIntsLabel.Size = new Size(160, 20);

37. enterIntsLabel.Text = "Enter 2 integers:";

38. enterIntsLabel.Font = labelFont;

39.
40. num1TextBox.Location = new Point(16, 56);

41. num1TextBox.Size = new Size(80, 20);

42. num1TextBox.Font = textBoxFont;

43. num1TextBox.TabIndex = 0;

44.

GUI programming with Windows Forms 327

45. num2TextBox.Location = new Point(128, 56);

46. num2TextBox.Size = new Size(80, 20);

47. num2TextBox.Font = textBoxFont;

48. num2TextBox.TabIndex = 1;

49.
50. addButton.Location = new Point(16, 112);

51. addButton.Size = new Size(80, 25);

52. addButton.Text = "&Add";

53. addButton.Font = buttonFont;

54. addButton.BackColor = Color.Honeydew;

55. addButton.ForeColor = Color.DarkGreen;

56. addButton.TabIndex = 2;

57. addButton.Click += new EventHandler(addButton_Click);

58.
59. subtractButton.Location = new Point(128, 112);

60. subtractButton.Size = new Size(80, 25);

61. subtractButton.Text = "&Subtract";

62. subtractButton.Font = buttonFont;

63. subtractButton.BackColor = Color.PeachPuff;

64. subtractButton.ForeColor = Color.DarkRed;

65. subtractButton.TabIndex = 3;

66. subtractButton.Click +=

67. new EventHandler(subtractButton_Click);

68.
69. answerLabel.Location = new Point(16, 155);

70. answerLabel.Size = new Size(65, 16);

71. answerLabel.Text = "Answer:";

72. answerLabel.Font = labelFont;

73.
74. answerTextBox.Location = new Point(80, 152);

75. answerTextBox.ReadOnly = true;

76. answerTextBox.Size = new Size(120, 20);

77. answerTextBox.Font = textBoxFont;

78. answerTextBox.BackColor = Color.White;

79. answerTextBox.TabStop = false;

80.
81. ClientSize = new Size(225, 205);

82. this.BackColor = Color.FromArgb(255, 200, 150);

83. Controls.AddRange(

84. new Control[] {

85. answerTextBox,

86. answerLabel,

87. subtractButton,

88. addButton,

89. num2TextBox,

90. num1TextBox,

328 From Java to C#

91. enterIntsLabel

92. }
93.);
94. Text = "Arithmetic Demo";
95. }
96. private void addButton_Click(object sender, EventArgs e)

97. {
98. int num1 = int.Parse(num1TextBox.Text);
99. int num2 = int.Parse(num2TextBox.Text);

100. answerTextBox.Text = "" + (num1 + num2);
101. }
102.
103. private void subtractButton_Click(object sender,
104. EventArgs e)
105. {
106. int num1 = int.Parse(num1TextBox.Text);
107. int num2 = int.Parse(num2TextBox.Text);
108. answerTextBox.Text = "" + (num1 - num2);
109. }
110.
111. public static void Main()
112. {
113. Application.Run(new ArithmeticForm());
114. }
115. }

Lines 7 through 13 declare the controls that appear on the form. We’ve
seen the Button earlier, and we’ve added some Labels and TextBoxes. The
constructor (line 15) calls InitializeComponents() to set up the controls
and add the event handlers.

We create the controls by calling their default constructors on lines 22 to 28.
Next, we create some Fonts which define text styles that will be used in the var-
ious controls. The Font class is similar to Java’s Font class, in that it allows us
to specify font names, sizes and styles (bold, italic, etc). The Font constructor
comes in several overloaded versions, but here we have used a three-parameter
form to specify the font name as ‘Arial’, the size and the style. The labelFont
and textBoxFont are bold, while the buttonFont is bold and italic. Note that we
use a bitwise OR operator | to combine the two FontStyle values (line 32).

Starting on line 35, we define the properties of the various controls. Most of
this code should be fairly obvious, so we will just mention a few of the highlights.

As in the earlier example, we specify a Location and Size for all the con-
trols. All three types of control that we are using in this example have a Text
property, but since we want the TextBoxes to be empty when the program
starts, we do not set Text for them.

The two TextBoxes for entering the two numbers and the two Buttons for
doing the calculations have a TabIndex property assigned to them. Most
Windows programs that contain controls allow the user to press the Tab key

GUI programming with Windows Forms 329

to move from one control to the next. The order in which the controls
receive focus (that is, become the active control that can receive input from
the keyboard) is specified by the TabIndex property. The first control in the
tab series should have its TabIndex set to 0, with other controls set to 1, 2,
3, and so on in the desired order.

By default, controls that accept user input (such as Buttons and
TextBoxes) are included in the tab sequence, while those that are passive
controls (such as Labels) are not. In this example, the answerTextBox con-
trol is meant to be a passive control, since its purpose is to display the
answer, and should not accept input. We exclude it from the tab sequence
by setting its TabStop property to false (line 79). The user is also prohib-
ited from interacting with answerTextBox by setting its ReadOnly property
to true (line 75).

The Buttons have mnemonic keys defined for them. A mnemonic key
allows the Button to be ‘clicked’ (that is, it sends a ‘click’ event for that
Button) by using the keyboard rather than the mouse. To use a Button’s
mnemonic, the Alt key is held down and one of the alphanumeric keys is
pressed. The key that is to be used for a given Button should be one of the
letters in the Button’s Text, and is specified by placing a & (ampersand)
before that letter in the Text string (line 52 for the Add button and 61 for
Subtract). The mnemonic letter is shown underlined when the Button is
displayed, as can be seen from Figure 9.2

The Buttons also show how the ForeColor and BackColor can be set.
For the Add button, this is done on lines 54 and 55. The .NET Color class
comes with a large number of pre-defined colours (note that the American
spelling of ‘color’ must be used when referring to the Color class), some with
quite exotic names. For example, we set the BackColor of the Add button
to ‘Honeydew’ which is a light yellowish green. For controls with text, the
ForeColor defines the colour of the text. The Add button therefore has dark
green text on a honeydew background, and the Subtract button has dark red
text on a peach puff background. (These colours will, of course, not be visi-
ble in the book, but running the program will reveal them in all their glory.)

Colours may also be specified using standard RGB notation, as we have
done on line 82 where we set the BackColor for the form itself. The Color
class contains a static method FromArgb() which has a number of over-
loaded forms. The one we have used here takes three parameters, giving the
red, green and blue components of the colour. Each of these three parame-
ters can have a value between 0 and 255. Pure red, for example, is (255, 0,
0), yellow is (255, 255, 0) and so on. The colour we have given on line 82 is
a shade of orange. We will consider colours in more detail when we study
graphics in Chapter 10.

After all the components have been defined, we set up the properties of
the form itself, beginning on line 81, where we set the size of the form’s
client area. The client area of a form is the area of the main display panel,
excluding the title bar, menu (if there is one, which there isn’t here), border
frame, and so on. Since the positioning of the controls usually takes place

330 From Java to C#

entirely within the client area, this size is the best one to specify when
deciding on the dimensions of the form.

In the earlier example, containing only a single Button, we used
Controls.Add() to add the Button to the form. Here we demonstrate a
method for adding a range of controls to the form in a single statement. The
AddRange() method takes as its parameter an array of Control. On line 83,
we call AddRange() and define an array as its parameter, filling the array
with all the controls we just created. The order in which the controls are
listed doesn’t matter, since they have all had their positions defined earlier,
so they should all appear in the correct locations.

On line 94, we set the Text for the form itself, which defines the text that
appears in the title bar at the top of the frame.

Lines 97 through 109 define the event handlers for the two Buttons, and
these handlers are added to the event delegates for the ‘click’ event for the
Buttons on lines 57 and 66.

Finally, the whole program is started in Main() on line 111.

9.12 ■ Error handling and the ErrorProvider control

The GUI version of the simple calculator in the last section lacks one impor-
tant feature: the ability to detect input errors in the two text boxes. As we
saw in Chapter 7, the standard way of handling errors is by means of excep-
tions. We can use exceptions to detect errors in GUI programs as well, but
.NET provides a convenient control for reporting to users that they have
made errors in input. In this section, we’ll introduce the ErrorProvider con-
trol to report invalid input into the two text boxes in the simple calculator.

An ErrorProvider can display a flashing red icon containing an excla-
mation mark next to the control into which the user has made incorrect
input. When the mouse pointer hovers over the icon, a tooltip message
explaining the problem can be displayed (see Figure 9.3).

GUI programming with Windows Forms 331

Figure 9.3 An ErrorProvider displays an icon with an exclamation mark and a popup
message if incorrect or no input is provided

We will also coordinate the contents of the two text boxes with the state
of the two buttons. The buttons will be disabled (unable to be pushed) until
both text boxes contain valid integers.

Since most of the code is the same as in the original ArithmeticForm
class, we’ll refer back to the code in the previous section and indicate where
the new code is inserted.

First, we’ll need to use some classes from a new namespace, so we insert
the following statement after line 3:

using System.ComponentModel;

We need to add the ErrorProvider as a class field. After line 13, we
insert the declaration:

private ErrorProvider errorProvider;

The single ErrorProvider can be used to report errors in any number of
controls, as we will see below. To initialize it, we insert a call to its con-
structor after line 28:

errorProvider = new ErrorProvider();

All the controls are created and initialized in the same way as before, but
we do need a way of testing the contents of the text boxes to see if they con-
tain valid integers. As we mentioned earlier, each control in .NET is capable
of generating a variety of event types. We’ve seen only the Click event in
the Button class so far, but over the course of the book, we will see many
other examples of events and their handlers.

In this case, we are interested in checking the contents of a TextBox for valid-
ity as an int. The process of a control acquiring focus, having data entered into
it, and then losing focus actually generates several events, any or all of which
can be handled in our code. Let us consider the process for a TextBox.

First, when the TextBox is entered (by having the mouse clicked over it,
for example) an Enter event is generated. The process of entering a control
also gives it focus, but a separate GotFocus event is also generated after
Enter, although for controls, handling Enter is usually all that is necessary.

After the TextBox receives focus, the user can interact with it by typing
characters on the keyboard. The default response of a TextBox to keyboard
events is, of course, to echo the keys as characters in the box. However, each
keystroke also generates several events which can be handled in the code.

When focus passes from the TextBox to another control on the form, a
Leave event is generated. After leaving a control, a Validating event is
generated. The handler for Validating should contain some code that tests
the user’s input to see if it is valid for the intended purpose. For example, a
text box that is meant to contain an email address could be tested to ensure
that the string contains ‘@’ and at least one ‘.’.

A Validating event delegate contains a bool Cancel property, which
should be set to true if the input is not valid. If this is done, the remaining
events in the focus series are skipped. If Cancel is false, the next event
generated is Validated, indicating that the Validating event succeeded.

332 From Java to C#

The handler for this event could be used to remove any error messages
displayed with previous, invalid input, for example. Finally, there is a
LostFocus event to finish the sequence.

We can use Validating and Validated events to perform the tests on the
data entered into the TextBoxes. By consulting the documentation for these
two events, we find that Validating is a delegate for a CancelEvent Handler
(a descendant of EventHandler) while Validated is a delegate for the stan-
dard EventHandler. We therefore add the following methods to provide the
event handlers for these two events:

private void OnValidating(object sender, CancelEventArgs e)
{

if(sender is TextBox)
{

if (!ValidateNumber((TextBox)sender))
{

e.Cancel = true;
}

}
}

private void OnValidated(object sender, EventArgs e)
{

if(sender is TextBox)
{

errorProvider.SetError((TextBox)sender, "");
}

}

private bool ValidateNumber(TextBox textBox)
{

string numText = textBox.Text;
if(numText.Equals(""))
{

errorProvider.SetError(textBox, "Please enter a number");
return false;

}
try
{

int.Parse(numText);
}
catch (Exception ex)
{

errorProvider.SetError(textBox,
"Number must be an integer");

return false;
}
return true;

}

GUI programming with Windows Forms 333

Before we explain this code, we will finish off the modifications to the pro-
gram by adding event handlers for Validating and Validated to the two
TextBoxes. After line 43, we insert the two lines:

num1TextBox.Validating +=

new CancelEventHandler(OnValidating);

num1TextBox.Validated +=

new EventHandler(OnValidated);

These lines add the handlers to the first TextBox. We add a similar pair of
lines after line 48 to provide handlers for the other TextBox:

num2TextBox.Validating +=

new CancelEventHandler(OnValidating);

num2TextBox.Validated +=

new EventHandler(OnValidated);

Now let us consider what the event handling code does. Referring to
OnValidating() above, we test that sender is a TextBox, and if so, call
ValidateNumber() to test the text that the user has entered in the box.

ValidateNumber() extracts the text from the TextBox and first tests
to see if the user has entered anything in the box at all. If not, the
errorProvider has its error message set to ‘Please enter a number’, and the
control to which it refers is set to textBox which is the object that generat-
ed the Validating event. Note that the single errorProvider can serve
multiple controls, since the control to which it is to refer is passed to
errorProvider as the first parameter.

If the user has typed something in the box, the next bit of code in
ValidateNumber() checks that this text is a valid integer. This time, we use
a try block to catch any exceptions thrown by the int.Parse() method.
We don’t need to save the int returned by this method, since all we are
doing is checking that numText contains a string that can be parsed to a
valid int. If an exception is thrown, the errorProvider has its message set
to ‘Number must be an integer’.

If either of these tests is failed, the errorProvider will flash the error
icon next to the control that was passed to it in its parameter list. If the con-
tents of the text box pass both tests, ValidateNumber() returns true.

Back in OnValidating(), we see that if the value returned from
ValidateNumber() is false, the Cancel property of the CancelEventArgs
parameter is set to true. This has two effects in the program.

First, it prevents the Validated event from being generated. Second, it
retains the focus in the TextBox which generated the original Validating
event, thus forcing the user to enter correct data before proceeding.
Attempting to press either button when invalid data has been entered in a
text box will cause the text box with the current focus to validate its con-
tents and, if the validation fails, the user will be forced to go back and cor-
rect the data in that text box.

334 From Java to C#

There is still a flaw in this program in that if the user enters a correct inte-
ger in the first text box and then presses a button without shifting the focus
to the second text box, the second text box doesn’t get a chance to validate
itself and an unhandled exception gets thrown. This can be solved by insert-
ing a check at the start of the two Button event handlers. We insert the fol-
lowing code after line 97 and again after line 105:

if (num1TextBox.Text.Equals("") ||

num2TextBox.Text.Equals(""))

return;

At the time of writing, there is a nasty bug in the use of the Validating
event. The problem is that once a control that has validation checking
attached to it gets the focus, the user cannot do anything else in the program
until valid data is entered in the control. It is not even possible to shut down
the program by pressing the ‘X’ in the title bar. Hopefully this will be sorted
out in future versions of .NET.

9.13 ■ Checkboxes and radio buttons

We’ve now seen the essentials of setting up a Windows Form and adding con-
trols to it. Although .NET, like most GUI environments, has a large number
of controls that can be placed on forms, they all work in much the same
way. The control has its position and location defined, is added to the form,
and has one or more event handlers attached to it.

Although the various controls all work in similar ways, many controls
have their own peculiarities, so it is worth considering the more commonly
used ones in some detail. We’ll begin in this section with checkboxes and
radio buttons.

A checkbox is a control allowing the user to select or unselect a little
square by clicking on the control. It is used to indicate a yes/no choice for
an option that is independent of any other option.

Radio buttons usually occur in groups of two or more, since they allow the
user to select one option out of several mutually exclusive choices. The
name ‘radio button’ comes from the panel of buttons typically found on car
radios, allowing one station to be selected quickly. Pushing any of the radio’s
buttons selects that station and deselects all the others.

As a simple demonstration program using the CheckBox and
RadioButton controls, we’ll write an application that allows the user to
order a pizza by specifying the type of crust (deep pan or thin and crispy)
and choose several toppings. The interface looks like Figure 9.4.

We use radio buttons to offer the choice of crust, since a pizza can only
have one type of crust at a time. Checkboxes are used to select the toppings,
since we can have several toppings on each pizza. A selected item has its
text displayed in bold. Note that each of the two groups of buttons is
enclosed in a border with a title. This uses the GroupBox control.

GUI programming with Windows Forms 335

The button at the bottom displays a small message box summarizing the
order (Figure 9.5).

The complete code for the program follows:

1. using System;
2. using System.Drawing;
3. using System.Windows.Forms;
4.
5. public class PizzaForm : Form
6. {
7. private GroupBox crustBox, toppingBox;
8. private RadioButton deepPanRadio, thinCrispyRadio;
9. private CheckBox[] toppings;

10. private const int NumberOfToppings = 4;
11. private Button orderButton;
12. private Font checkedFont =
13. new Font("Arial", 8, FontStyle.Bold);
14. private Font uncheckedFont =
15. new Font("Arial", 8, FontStyle.Regular);
16.

336 From Java to C#

Figure 9.4 Interface for the pizza ordering program

Figure 9.5 Message box displaying a summary of the order

17. public PizzaForm()
18. {
19. InitializeComponents();
20. }
21.
22. private void InitializeComponents()
23. {
24. crustBox = new GroupBox();
25. crustBox.Bounds = new Rectangle(20, 20, 130, 75);
26. crustBox.Text = "Select crust:";
27.
28. deepPanRadio = new RadioButton();
29. deepPanRadio.Bounds = new Rectangle(10, 15, 100, 20);
30. deepPanRadio.Text = "Deep pan";
31. deepPanRadio.CheckedChanged += new EventHandler

(OnClick);
32.
33. thinCrispyRadio = new RadioButton();
34. thinCrispyRadio.Bounds = new Rectangle(10, 45, 110,

20);
35. thinCrispyRadio.Text = "Thin and crispy";
36. thinCrispyRadio.Checked = true;
37. thinCrispyRadio.Font = checkedFont;
38. thinCrispyRadio.CheckedChanged +=
39. new EventHandler(OnClick);
40. crustBox.Controls.AddRange(new Control[]
41. { deepPanRadio, thinCrispyRadio }
42.);
43.
44. toppingBox = new GroupBox();
45. toppingBox.Size = new Size(200, 80);
46. toppingBox.Text = "Select toppings:";
47.
48. toppings = new CheckBox[NumberOfToppings];
49. for (int i = 0; i < NumberOfToppings; i++)
50. {
51. toppings[i] = new CheckBox();
52. toppings[i].Click += new EventHandler(OnClick);
53. toppingBox.Controls.Add(toppings[i]);
54. }
55.
56. toppings[0].Bounds = new Rectangle(10, 15, 90, 20);
57. toppings[0].Text = "Olives";
58.
59. toppings[1].Bounds = new Rectangle(10, 45, 90, 20);
60. toppings[1].Text = "Anchovies";
61.

GUI programming with Windows Forms 337

62. toppings[2].Bounds = new Rectangle(100, 15, 90, 20);
63. toppings[2].Text = "Pepperoni";
64.
65. toppings[3].Bounds = new Rectangle(100, 45, 90, 20);
66. toppings[3].Text = "Mushrooms";
67.
68. orderButton = new Button();
69. orderButton.Size = new Size(90, 30);
70. orderButton.Text = "&Place order";
71. orderButton.Click += new EventHandler(OnClick);
72.
73. ClientSize = new Size(225, 250);
74. this.BackColor = Color.FromArgb(255, 200, 150);
75. this.Controls.AddRange(
76. new Control[] { crustBox, toppingBox, orderButton }
77.);
78.
79. Text = "Greasy Pizzas R Us";
80. this.Layout += new LayoutEventHandler(OnLayoutForm);
81.
82. Rectangle screenSize = Screen.GetWorkingArea(this);
83. this.Location =
84. new Point(screenSize.Width/2 - this.Size.Width/2,
85. screenSize.Height/2 - this.Size.Height/2);
86. }
87.
88. private void OnLayoutForm(object sender,

LayoutEventArgs args)
89. {
90. if (sender == this)
91. {
92. crustBox.Location = new Point(
93. this.ClientSize.Width/2 - crustBox.Size.

Width/2, 20);
94. toppingBox.Location = new Point(
95. this.ClientSize.Width/2 - toppingBox.Size.Width/2,
96. crustBox.Location.Y + crustBox.Size.Height + 20);
97. orderButton.Location = new Point(
98. this.ClientSize.Width/2 - orderButton.Size.

Width/2,
99. toppingBox.Location.Y + toppingBox.Size.

Height + 20);
100. }
101. }
102.
103. private void OnClick(object sender, EventArgs args)
104. {

338 From Java to C#

105. if (sender is CheckBox)
106. {
107. CheckBox checkBox = (CheckBox)sender;
108. if (checkBox.Checked)
109. checkBox.Font = checkedFont;
110. else
111. checkBox.Font = uncheckedFont;
112. }
113. else if (sender is RadioButton)
114. {
115. RadioButton radioButton = (RadioButton)sender;
116. if (radioButton.Checked)
117. radioButton.Font = checkedFont;
118. else
119. radioButton.Font = uncheckedFont;
120. }
121. else if (sender == orderButton)
122. {
123. string orderDescription = "You have ordered a\n";
124. if (deepPanRadio.Checked)
125. {
126. orderDescription += "deep pan pizza with\n";
127. }
128. else if (thinCrispyRadio.Checked)
129. {
130. orderDescription += "thin and crispy pizza

with\n";
131. }
132. for (int i = 0; i < NumberOfToppings; i++)
133. {
134. if (toppings[i].Checked)
135. {
136. orderDescription += toppings[i].Text + " ";
137. }
138. }
139. MessageBox.Show(orderDescription, "Your order");
140. }
141. }
142.
143. public static void Main()
144. {
145. Application.Run(new PizzaForm());
146. }
147. }

The controls are set up in InitializeComponents() (line 22), so we’ll
examine what happens here. We first set up the box where the type of crust is
selected. Since the idea behind a group of radio buttons is that only one out of
the group can be selected at any one time, we need a way of assigning a radio

GUI programming with Windows Forms 339

button to a particular group. This is done by creating a container control and
putting the radio buttons inside it. There are two containers in common use: the
GroupBox (used here) and the Panel. The GroupBox allows a border with a title
to be drawn around a set of controls, while the Panel can be invisible if all we
want is a way of grouping controls together without changing their appearance.

These container controls act like mini-forms, in that controls can be
added to them in the same way as to a top-level Form. The locations of the
controls that are added to containers are relative to the upper-left corner of
the container, and not to the overall Form.

Let us see how this works in the case of the GroupBox that holds the radio
buttons for selecting the type of crust. The properties of the GroupBox are set
on lines 24 to 26. We have used the Bounds property to set the location and
size of the box in a single command – this is equivalent to separate statements
setting Location and Size properties as we did in the calculator example. A
Rectangle constructor takes four parameters: the first two are the coordinates
of the upper-left corner and the next two are the width and height.

Next we create the two RadioButtons (lines 28 to 38). When we set the
Bounds (lines 29 and 34) we must remember that the location coordinates
are relative to the GroupBox into which we are placing the buttons. We add
the two RadioButtons to the GroupBox on line 40.

We have added event handlers to the RadioButtons on lines 31 and 38.
These handlers respond to the CheckedChanged event which occurs when the
state of the button changes from checked to unchecked or vice versa. If all we
were interested in was the state of the radio buttons when the main ‘Place
order’ button is pushed, we wouldn’t need to add event handlers to the radio
buttons or the checkboxes, since we can just read their states when the but-
ton is pushed. However, to demonstrate that RadioButtons and CheckBoxes
can generate events themselves, we’ve added event handlers that change the
font of the buttons’ text when they are selected. The event handler is the
OnClick() method (line 103), which we will consider below.

We have set up the RadioButton group so that thinCrispyRadio is
checked when the program starts (line 36). Since we are using a special bold
font for checked buttons, we set the font on line 37.

The GroupBox that holds the CheckBoxes that allow the pizza toppings to
be selected is set up on lines 44 to 46. Note that we specify only a size and
not a location for toppingBox. The reason for this is that locations of the
GroupBoxes are set dynamically whenever the main Form is displayed or
resized, in order to keep them centred horizontally in the main frame. We’ll
see how this is done a little later.

Lines 48 to 54 create the array of CheckBoxes and assign event handlers
to them so that their font can be changed when they are clicked.
Incidentally, the reason we didn’t use the Click event for the RadioButtons
is that when one RadioButton is clicked, the others also change state at the
same time, but only the button that was clicked actually generates a Click
event. As a result, we would need a more circuitous route to update the fonts
of all the radio buttons if we only listened for Click events from them. By
listening instead for a CheckChanged event, we receive events from all
RadioButtons whenever any one of them is clicked.

340 From Java to C#

Lines 56 to 66 set up the CheckBoxes, again relative to the toppingBox
that contains them. Lines 68 to 71 set up the ‘Place order’ button, including
its event handler. Lines 73 to 77 set up the properties of the main form and
add the two GroupBoxes and the Button to it.

Line 80 adds a handler for the Layout event, which is sent whenever any-
thing happens to the main form that requires a recalculation of the layout
of its components. This happens when the form is displayed when the pro-
gram starts, and whenever the main frame is resized. The handler for this
event is OnLayoutForm() (line 88). Here we position the two GroupBoxes
and the Button so that they are always centred horizontally in the frame.
This is done by using the ClientSize property of the Form to obtain the
width of the client area. The crustBox is positioned 20 pixels below the title
bar, and the other components are placed relative to the components above
them, with a gap of 20 pixels between each pair of components.

The main form is also centred relative to the overall monitor screen on
lines 82 to 85. The Screen class is a member of Windows.Forms that con-
tains a number of properties and methods that allow information on the dis-
play device to be retrieved. The GetWorkingArea() method returns a
Rectangle that contains the width and height of the visible area on the
monitor (effectively it returns the current display resolution).

In fact, if we just want to display the form centred on the screen, there is
a shorthand way of doing this. We could just insert the following line in the
constructor:

StartPosition = FormStartPosition.CenterScreen;

FormStartPosition contains several properties that can be used to define
the starting position of a form. However, the longer method used in the code
above is useful to know if you want to customize the form’s location.

Finally, we consider the event handler for the various buttons and check-
boxes. The OnClick() method (line 103) handles events from all the
RadioButtons, CheckBoxes and the Button. If the event is received from a
CheckBox we set the font according to whether the box is checked or not
(lines 105 to 112). If the sender is a RadioButton we do the same thing
(lines 113 to 120). Notice that we can use the same OnClick method to
respond to Click events from CheckBoxes and CheckChanged events from
RadioButtons, since they both use the same type of delegate (that is, a del-
egate that expects a method that takes an ordinary EventArgs parameter).

If the sender is orderButton, we construct a message stating what the
user has ordered by scanning the states of the RadioButtons and the
CheckBoxes. We then use a popup MessageBox to display the order. The
MessageBox class contains a number of methods for creating pre-configured
message and information dialogs (similar to Java Swing’s JOptionPane), and
is very useful for quick display of a program’s state.

GUI programming with Windows Forms 341

9.14 ■ Menus

.NET provides two main types of menus, according to where they appear:
standard menus which are attached to the menu bar which appears just
below the title bar in a top-level frame, and context menus which may be
attached to any control and which popup in response to a right mouse click.

Both types of menu are quite easy to add to a GUI program, so we present
another example program illustrating both of them. Along the way we will also
introduce a few other features that are useful in Windows programming.

The sample program displays a digital clock which updates its time every
second. The interface is customizable in that the main window can be
resized, and the text within the window will also resize to fit the new win-
dow size as best it can. The background and text colours may also be set
using a standard Windows ColorDialog. Finally, a couple of radio buttons
at the bottom allow either the local time or ‘coordinated universal time’
(what used to be called Greenwich Mean Time or GMT).

The main frame contains a menu which allows the colours to be set, and
also allows the program to be shut down without using the ‘X’ button in the
title bar. The radio buttons are each provided with a context menu which
allows some information on what they do to be displayed. The main inter-
face of the program is shown in Figure 9.6

The code for the program follows:

1. using System;

2. using System.Drawing;

3. using System.Windows.Forms;

4.
5. public class ClockForm : Form

6. {

7. private enum TimeType { Local, UTC };

8.
9. private Panel timePanel;

10. private RadioButton utcRadio, localRadio;

11. private Label timeLabel;

342 From Java to C#

Figure 9.6 Interface for the digital clock program

12. private MenuItem formMenu, colorMenu,

13. backgroundMenu, foregroundMenu, exitMenu;

14. private MenuItem utcHelpMenu, localHelpMenu;

15. private Timer secondsTimer;

16. private TimeType timeType;

17.
18. public ClockForm()

19. {

20. InitializeComponents();

21. }

22.
23. private void InitializeComponents()

24. {

25. backgroundMenu = new MenuItem("&Background",

26. new EventHandler(OnClick), Shortcut.CtrlB);

27. foregroundMenu = new MenuItem("&Foreground",

28. new EventHandler(OnClick), Shortcut.CtrlF);

29. colorMenu = new MenuItem("&Colour",

30. new MenuItem[] {backgroundMenu, foregroundMenu});

31. MenuItem separator = new MenuItem("-");

32. exitMenu = new MenuItem("E&xit",

33. new EventHandler(OnClick));

34. formMenu = new MenuItem("&Form",

35. new MenuItem[] {colorMenu, separator, exitMenu});

36. Menu = new MainMenu(new MenuItem[] { formMenu });

37.
38. ClientSize = new Size(200, 100);

39. timeLabel = new Label();

40. DateTime now = DateTime.Now;

41. timeLabel.Text = now.ToString("T");

42. Controls.Add(timeLabel);

43.
44. timePanel = new Panel();

45. Controls.Add(timePanel);

46. utcRadio = new RadioButton();

47. utcRadio.Text = "UTC";

48. utcRadio.Click += new EventHandler(OnClick);

49. utcHelpMenu = new MenuItem("What’s this?",

50. new EventHandler(OnClick));

51. utcRadio.ContextMenu = new ContextMenu(

52. new MenuItem[] { utcHelpMenu }

53.);

54.
55. localRadio = new RadioButton();

56. localRadio.Text = "Local";

57. localRadio.Click += new EventHandler(OnClick);

GUI programming with Windows Forms 343

58. localRadio.Checked = true;
59. timeType = TimeType.Local;
60. localHelpMenu = new MenuItem("What’s this?",
61. new EventHandler(OnClick));
62. localRadio.ContextMenu = new ContextMenu(
63. new MenuItem[] { localHelpMenu }
64.);
65.
66. timePanel.Controls.AddRange(new Control[]
67. { localRadio, utcRadio }
68.);
69.
70. secondsTimer = new Timer();
71. secondsTimer.Interval = 1000;
72. secondsTimer.Enabled = true;
73. secondsTimer.Tick += new EventHandler(OnTick);
74.
75. Text = "ColourClock";
76. Layout += new LayoutEventHandler(OnLayoutForm);
77. Rectangle screenSize = Screen.GetWorkingArea(this);
78. Location = new Point(screenSize.Width/2 - Size.

Width/2,
79. screenSize.Height/2 - Size.Height/2);
80. }
81.
82. private void OnLayoutForm(object sender,
83. LayoutEventArgs args)
84. {
85. if (sender == this)
86. {
87. Rectangle clientRect = ClientRectangle;
88. timeLabel.Bounds =
89. new Rectangle(clientRect.X, clientRect.Y,
90. clientRect.Width, clientRect.Height - 20);
91. timeLabel.TextAlign = ContentAlignment.MiddleCenter;
92. timeLabel.Font =
93. new Font("Arial", ClientSize.Height/4);
94.
95. timePanel.Bounds = new Rectangle(clientRect.X,
96. clientRect.Height - 20, clientRect.Width, 20);
97. localRadio.Bounds = new Rectangle(
98. timePanel.Width/8, 0, timePanel.Width/2, 20);
99. utcRadio.Bounds = new Rectangle(

100. 5*timePanel.Width/8, 0, timePanel.Width/2, 20);
101. }
102. }
103.

344 From Java to C#

104. private void OnClick(object sender, EventArgs args)
105. {
106. if (sender == backgroundMenu || sender ==

foregroundMenu)
107. {
108. ColorDialog colorDialog = new ColorDialog();
109. if (colorDialog.ShowDialog() == DialogResult.OK)
110. {
111. if (sender == backgroundMenu)
112. timeLabel.BackColor = colorDialog.Color;
113. else if (sender == foregroundMenu)
114. timeLabel.ForeColor = colorDialog.Color;
115. }
116. }
117. else if (sender == utcRadio)
118. {
119. timeType = TimeType.UTC;
120. OnTick(null, null);
121. }
122. else if (sender == localRadio)
123. {
124. timeType = TimeType.Local;
125. OnTick(null, null);
126. }
127. else if (sender == utcHelpMenu)
128. {
129. MessageBox.Show("Coordinated Universal Time (GMT)",
130. "UTC");
131. }
132. else if (sender == localHelpMenu)
133. {
134. MessageBox.Show("Your local time", "Local");
135. }
136. else if (sender == exitMenu)
137. {
138. Application.Exit();
139. }
140. }
141.
142. private void OnTick(object sender, EventArgs args)
143. {
144. DateTime now = new DateTime();
145. if (timeType == TimeType.Local)
146. now = DateTime.Now;
147. else if (timeType == TimeType.UTC)
148. now = DateTime.UtcNow;
149. timeLabel.Text = now.ToString("T");

GUI programming with Windows Forms 345

150. }

151.
152. public static void Main()

153. {

154. Application.Run(new ClockForm());

155. }

156. }

The client area of the main frame consists of a Label that displays the
time, and takes up most of the space, and a Panel at the bottom that con-
tains the two radio buttons. Recall from the previous section that in order
for a set of RadioButtons to form a mutually exclusive group, they must be
enclosed in either a GroupBox or Panel.

Let us consider the structure of the menu first. When expanded, the
menu looks like Figure 9.7.

The main menu contains two items, ‘Colour’ and ‘Exit’, separated by a
horizontal dividing line. The ‘Colour’ menu contains two submenu items for
setting the background and foreground colours.

In .NET, the menu bar itself is represented by the Menu property of a Form.
This property is assigned to a MainMenu object, which contains an array of
MenuItems. Each MenuItem defines one of the menu headers that appears in
the menu bar. In this program, we have only one such header for the ‘Form’
menu, so the MainMenu contains an array of only a single MenuItem.

Submenus, such as the ‘Colour’ menu here, are formed by attaching anoth-
er array of MenuItems to the top-level MenuItem. In the code, we create the
MenuItems for setting the colours on lines 25 to 30. Note that the MenuItem
constructor has a number of overloads, depending on what sort of MenuItem
is being defined – that is, whether the MenuItem is one that generates an
event on which the program should act, or whether it is a header for other
MenuItems. The backgroundMenu and foregroundMenu objects are ones that
generate Click events, so we construct them by giving them a name, an event
handler, and in this case, a shortcut key. Shortcut keys are defined by choos-
ing constants from the Shortcut class. In this case we attach Ctrl+B to the
‘Background’ menu and Ctrl+F to the ‘Foreground’ menu.

346 From Java to C#

Figure 9.7 Menus in the digital clock program

The colorMenu (line 29) is created with a name and an array of
MenuItems which define the items that are attached to it as a submenu. No
event handler is attached to this item since it is not itself a selection in the
menu – it is only a header for other selections.

Line 31 adds the horizontal line between ‘Colour’ and ‘Exit’. This is done
by creating a MenuItem with a single dash as its parameter.

The formMenu is the top-level menu (the one whose header appears in the
menu bar), and is built (line 34) by adding an array consisting of colorMenu, the
separator, and exitMenu. Finally, the menu bar itself is assigned on line 36.

Event handlers for MenuItems work the same way as those for Buttons, so
we use the single OnClick method (line 104) to handle all Click events in this
program. We’ll consider the various things it does when we come to them.

After creating the menus, we set up the Label that displays the time (line
39). To get the current system time, we use DateTime.Now, which returns a
DateTime that contains the date and time, accurate to roughly 10 ms. To
convert this to a displayable string, we use the ToString() method, but
make use of one of its features that we have not yet encountered. Looking
up the documentation for ToString() we find that it takes a string param-
eter which tells it how to format its output. If ToString() is printing a
DateTime we can format the output in several ways. The ‘T’ parameter used
on line 41 displays a ‘short time’, which is the hour, minute and nearest sec-
ond (without any fractional part).

Starting on line 44, we create the Panel and add the radio buttons to it.
This is done in much the same way as in the previous section. Selecting one
of the radio buttons sets a parameter that specifies which time we wish to
display (local or UTC). The extra bit here is the addition of a ContextMenu
to the radio buttons. A ContextMenu is just like an ordinary menu except
that it can appear anywhere on a form. Rather than being attached to a
menu bar, a ContextMenu is attached to a specific control via that control’s
ContextMenu property. We create a MenuItem on line 49 and attach it to
utcRadio’s ContextMenu property on line 51. This means that right-clicking
on utcRadio with the mouse will display the menu at the position of the
mouse pointer. If the ‘What’s this?’ menu item is selected, a Click event is
generated in the usual way. A ContextMenu is also attached to localRadio
on lines 60 to 64 (see Figure 9.8).

GUI programming with Windows Forms 347

Figure 9.8 Context menu in the digital clock program

The next new feature is the use of a Timer on line 70. We want the Label’s
display to update once per second to show the new time. A Timer control
generates an event at a fixed interval, which is specified in milliseconds (line
71). We start the Timer by setting its Enabled property to true (or by call-
ing its Start() method). At each interval, the Timer generates a Tick event,
so in order to update the display we add an event handler on line 73. This
calls OnTick() (line 142) which refreshes the Label’s display, according to
which type of time we wish to see, as specified by clicking one of the radio
buttons as described earlier.

As with the pizza selection example, we leave the specification of the
bounds of the Label and Panel to the OnLayoutForm() method (line 82),
which allows these controls to be resized with the frame. As well as resizing
the controls, we also scale the font used to display the time (line 92),
although this is not perfect since it still requires the Label to be wide
enough for the time to be displayed on one line. The positions of the radio
buttons within the panel are also scaled with the frame.

Selecting one of the ‘Colour’ menu items brings up a ColorDialog which
allows the user to select a colour, which is then assigned to either the fore-
ground or background of the Label (lines 108 to 115).

9.15 ■ Dialogs, status bars and toolbars

Most GUI applications of any size contain one or more dialog boxes, which
are separate windows that are displayed to allow the user to enter data or
interact with the program in other ways. Status bars and toolbars are also
fairly standard features in GUI programs, and we shall see that .NET pro-
vides support for both these features.

We will describe some of the properties of these three features first, and
then present a substantial example that includes all of them along with a few
other features that are useful in building GUI programs. This example is a
version of the Windows Notepad program, which allows text files to be
viewed, edited and saved to disk.

9.15.1 � Dialogs

Unlike Java, which provides a separate JDialog class for implementing
dialogs, .NET treats popup dialogs in exactly the same way as the Form that
is used to display the main window of a program. Since the process of cre-
ating a dialog by adding controls to it is identical to that for creating the
main window, we need not dwell on the process of actually building a dia-
log. The main skills to be mastered in using dialogs involve the interaction
between the dialog and its owner – that is, the class that contains the code
that displays the dialog in the first place.

348 From Java to C#

Dialogs come in two varieties: modal and non-modal. A modal dialog,
once displayed, must be dismissed (usually by clicking an ‘OK’ or a ‘Cancel’
button) before any other part of the interface can be accessed. The name
‘modal’ implies that the mode of interaction with the program has been
changed from the main window to the dialog, and the dialog therefore locks
the focus of the program upon itself until it is dismissed. Most dialogs in
common applications are modal since, in most cases, it would be dangerous
to allow the user to alter things in the main display and in the controls with-
in the dialog at the same time.

Non-modal dialogs, as you might expect, allow the user to interact with the
underlying window while they are still displayed. Since a non-modal dialog
allows the user to switch back and forth between the main application and the
dialog box, it should be used with care. A common example of a non-modal
dialog is the find and replace dialog in word processors and code editors.

The standard procedure for building a dialog is to create a new class that
inherits Form, create and add the various controls to the dialog to build its
interface, and then provide a means by which the dialog can interact with
its parent window, if required. The method of interaction is different for
modal and non-modal dialogs, so we’ll consider each separately.

For a modal dialog, typically the user enters data into various controls
such as text boxes, list boxes and so on and, when they are satisfied with
their entries, press ‘OK’ to transfer the information to the main window or,
if they decide to quit without making any changes, press ‘Cancel’ to close
the dialog and leave everything as it was.

Therefore, in addition to any controls for data entry, virtually all modal
dialogs will have an ‘OK’ and a ‘Cancel’ button. .NET recognizes that these
features are very common and provides special properties in a Form that
allow them to be added without requiring separate event handlers to be writ-
ten for them. These properties are called AcceptButton and CancelButton,
and should be set to Buttons that have been created as controls displayed
on the dialog. Clicking either of these buttons causes the dialog to close and
return a value specified in the DialogResult enumeration. This value can
be used in the parent class to determine which button the user pressed to
close the dialog, and thus what action should be taken. For example, if the
returned value is DialogResult.OK, the user wishes the data entered in the
dialog to be applied to the program, so the calling method should provide
code to do this. A returned value of DialogResult.Cancel indicates that
the user wishes all entries in the dialog to be discarded. We will see exam-
ples of these two buttons in the Notepad example below.

A non-modal dialog is a bit more complicated, since it is possible for infor-
mation entered into the dialog to be applied to the underlying window while
the dialog is still visible. This means that we cannot just wait for the user to
press an ‘OK’ or ‘Cancel’ button before taking any action. The dialog needs
some way of communicating with its parent window on a continuing basis.

There are two ways this communication can be provided, but only one of
them is recommended. The first (and faulty) method is to provide a public
method in the main window which can be called by code from within the

GUI programming with Windows Forms 349

dialog class. This isn’t a very good way of doing things, however, since it ties
the dialog to the specific class that calls it. For example, suppose a non-
modal dialog that allowed the user to search for a string within some text
displayed on the main window required the main window class to contain a
method called FindText() which did the actual searching. This FindText()
method would be called whenever the user pressed a ‘Find’ button on the
dialog. Doing things this way would require all classes that wanted to display
this dialog to provide a method called FindText(), which could cause prob-
lems if that name has already been used for a different, unrelated method.

A much better way is to put the onus on the dialog to provide the machin-
ery for the communication with its parent. This can be done quite easily by
defining a customized event that is generated by the dialog whenever the
user pressed the ‘Find’ button. The parent class can then add a handler for
this event (and it can also call this event handler anything it likes). We have
already seen in Chapter 8 how to define our own events, so this won’t be too
difficult. Basically, we add an event handler for the Click event of the ‘Find’
button in the dialog. This event handler in turn generates an instance of the
customized event we have defined within the dialog.

Back in the main window class, we add a handler for this customized
event. Thus, whenever the user clicks ‘Find’, the Click event from that but-
ton generates a custom event which is picked up by the handler in the main
window, and that handler does whatever is required in the main class.
Again, we will see an example of this in the program below.

Many modal dialogs now require some interaction with their parent win-
dow before they are closed. The most common example of this is the ‘Apply’
button which is now found on many dialogs in Windows programs, and
which allows the user to apply the options specified in the dialog without
having to close the dialog first. The same technique as that used to handle
buttons in non-modal dialogs can be applied to such buttons in modal
dialogs as well.

9.15.2 � Status bars

A status bar is a control that typically extends across the bottom of a Form
and is used to display information about the state of the program, or some-
times helpful messages explaining how controls work. A word processor’s
status bar, for example, typically contains the page, line and column num-
bers of the current location of the cursor and various other information.

.NET provides a dedicated StatusBar class with a lot of helpful properties
that make using status bars quite easy. A StatusBar may be added to a Form
simply by setting its parent to be that Form. By default, a StatusBar is docked
to the bottom of the Form (docking was covered in section 9.9).

Rather than display information directly in the status bar, it is more usual
to define one or more StatusBarPanels which are inserted inside the
StatusBar. Each StatusBarPanel can contain text or an icon.

The Notepad example in section 9.16 shows several StatusBar features.

350 From Java to C#

9.15.3 � Toolbars

A toolbar is a strip of icons each of which acts as a button which, when
pressed, generates an event that causes some change to the program.
Common actions contained in toolbars are saving and loading files, copying,
pasting, printing and so on. Often, toolbars provide shortcuts for menu
items, and as a result many toolbar buttons will duplicate events generated
by menus.

Although there is a ToolBar class in .NET, .NET’s treatment of toolbars is
actually quite clumsy and awkward to use, especially when it comes to asso-
ciating events with individual toolbar buttons. There are two main hurdles
to overcome in using a ToolBar. First, we need to create the toolbar and
associate it with the images used for its buttons. Second, we need to connect
these buttons with the events that they should generate when pushed.

Let us consider the connection between a toolbar and its button images
first. The images can be provided either as separate bitmaps, each in its own
file, or as a single strip image containing all the individual button icons past-
ed together. Since it is more common to find the images in separate files,
we’ll consider that case here. If you have Visual Studio .NET installed, you
will find many of the more common toolbar images in a sub-directory of
Visual Studio .NET. A typical path is Program Files\Microsoft Visual Studio
.NET\Common7\Graphics\bitmaps. You can also use Visual Studio’s (or
many other programs’) bitmap editor to create your own bitmaps.

Once we have the images prepared, we need to connect them to a
ToolBar. The first step is loading the images into a C# program. Although
this can be done directly from the bitmap file, it is a cleaner solution to
embed the images directly into the .exe file that contains the application
itself. If you are using Visual Studio .NET to develop your code, this can be
done by starting in Solution Explorer (use the View menu to display
Solution Explorer if it’s not visible), right-clicking on the project and select-
ing Add � ‘Add existing item’. In the dialog that appears, select ‘Image files’
in the ‘Files of type’ box and then find the bitmap files you want to add to
the project. The bitmap files should now appear within your list of project
files in Solution Explorer.

To embed each bitmap file in the .exe file, select the bitmap file in
Solution Explorer and display its properties window. Set the ‘Build Action’
property to ‘Embedded Resource’ and you’re done.

If you want to embed the bitmap files by using a command-line option for
the compiler, use the /res (or /resource) option. For example, to embed a
bitmap file called Open.bmp, use the command line:

csc /res:Open.bmp,DialogDemo.Open.bmp DialogDemo.cs

Here we have specified the filename (Open.bmp) and after it, the name by
which it will be referred to within the code (DialogDemo.Open.bmp). The
DialogDemo class is the class that will load the bitmap image into the pro-
gram, so the name of the resource inside the code prepends the class name

GUI programming with Windows Forms 351

onto the file’s name. The DialogDemo.cs file is, of course, the C# source
code file. If we wish to embed several bitmap files, we need a separate /res
entry for each file.

With these preparations made, we can see a typical ToolBar creation
sequence in C# code:

Bitmap[] iconImage = new Bitmap[numberToolBarButtons];
iconImage[0] = new Bitmap(GetType(), "DialogDemo.Open.bmp");
// Add other images here
ImageList imageList = new ImageList();
for (int i = 0; i < numberToolBarButtons; i++)

imageList.Images.Add(iconImage[i]);
toolBar = new ToolBar();
toolBar.Parent = this;
toolBar.ImageList = imageList;
ToolBarButton[] toolBarButton =

new ToolBarButton[numberToolBarButtons];
for (int i = 0; i < numberToolBarButtons; i++)

toolBarButton[i] = new ToolBarButton();
toolBarButton[0].ImageIndex = 0;
// Set the image indexes of remaining buttons

We create an array of Bitmaps (here numberToolBarButtons is a const
defined earlier in the class that specifies the number of toolbar buttons).
The Bitmap constructor we use here is designed for loading images that
have been embedded in the .exe file – there are other versions of the con-
structor that allow us to load bitmaps directly from disk files.

This constructor’s first parameter must specify the data type of the class
that is loading the image, so we call GetType() to get this. The second
parameter is the name by which the resource is referenced. This is the same
name as that specified in the command-line entry above. If you used Visual
Studio .NET to embed the resource, then make sure the correct class name
is prepended to the file name.

After loading the button images, we create an ImageList and add each
bitmap to it. Then we create the ToolBar itself, set its parent to the Form in
which it is to appear, and then attach the ImageList to it.

Finally, we need to create an array of ToolBarButtons, and then set the
ImageIndex of each button so that it corresponds to the correct entry in
the ImageList.

If all this seems like a lot more work than Java’s much simpler way of han-
dling toolbars, we are not done yet. We must still attach event handlers to
the toolbar. We might think that the easiest way of doing this is to attach an
event handler to each ToolBarButton, but in fact, this is not possible, since
a ToolBarButton does not, in fact, generate any events (or at least any that
are useful). Only the toolbar itself can generate any events, and there is only
a single event (ButtonClick) which is generated no matter which button on
the toolbar is clicked. We must sort out, within the event handler, which
button was actually pushed and then call the correct action.

352 From Java to C#

The event handler is a special type, so a typical event handler definition is:

toolBar.ButtonClick +=

new ToolBarButtonClickEventHandler(OnToolBarButton);

The handler method must sort out which button was actually pushed and
act accordingly. The information on which button was pushed is contained
within the ToolBarButtonClickEventArgs parameter passed to the event
handler. This parameter has a Button property that contains the actual
ToolBarButton reference for the button that was pushed.

However, typically a toolbar button duplicates a menu item, so it would
be nice if we could associate a ToolBarButton with a MenuItem. We can do
this by defining the Tag property for each ToolBarButton. A Tag can be
anything (it is defined as an object), so we can simply attach the actual
MenuItem as the Tag. Thus the final bit of code we need to initialize a
ToolBar is a set of Tags:

toolBarButton[0].Tag = openMenu;

Here, we have attached openMenu (which is a MenuItem) as the Tag for
the first ToolBarButton.

Finally, we can look at the event handler for the ButtonClick event:

private void OnToolBarButton(object sender,

ToolBarButtonClickEventArgs args)

{

if (args.Button.Tag == openMenu)

OnOpen(null, null);

else if (args.Button.Tag == saveMenu)

OnSave(null, null);

else if (args.Button.Tag == fontMenu)

OnFont(null, null);

else if (args.Button.Tag == findMenu)

OnFind(null, null);

}

We examine the Tag to see to which menu command the pushed toolbar
button corresponds, and then call the event handler for that menu com-
mand to process the toolbar’s event. The two null parameters passed to the
event handlers assume that these handlers do not need the source or the
EventArgs parameters to carry out their commands – if they did, we would
need to take more care in passing the correct values to these handlers.

As you can see, this is an excessively cumbersome and clumsy way of
handling toolbars, but once we have written the code for one toolbar, we can
always use it as a template for producing others. If you are using Visual
Studio .NET, there is a toolbar editor that can be used to accomplish most
of the preceding tasks, although the code within the event handler must, of
course, still be written by hand.

GUI programming with Windows Forms 353

9.16 ■ Example: a Notepad clone

We will now present a complete program that implements some of the fea-
tures of the standard Notepad program that has come with Windows since
ancient times. The program consists of three classes: one for the main win-
dow, one for a modal dialog that allows the text in the title bar of the main
window to be set (not particlarly useful, but it illustrates a simple modal dia-
log), and a more useful non-modal dialog which allows the user to search for
a given string in the text that is displayed on the main window.

The main window contains a menu, toolbar, main display area and a sta-
tus bar, as shown in Figure 9.9.

The status bar displays various messages, including help text for the
menu items, the name of saved and opened files, and so on. It also displays
the current time on the right, which is updated each second. This time
panel also displays a tooltip (not shown) that shows the current date.

The toolbar contains buttons for opening and saving files, a button which
displays a font selection dialog, and another button which opens the text
search dialog.

The title section dialog is modal, and contains only a Label and TextBox
in addition to the standard buttons (Figure 9.10).

The non-modal ‘Find text’ dialog allows the user to find the first occur-
rence of the entered string (Figure 9.11).

354 From Java to C#

Figure 9.9 Main window from the Notepad program

Extending its functionality to allow more general searches would not be diffi-
cult, but we’ve omitted this to keep an already long example from getting longer.

In order that the reader can see how everything fits together, we will pres-
ent the complete code for the three classes. First, we present the main Form:

1. using System;
2. using System.Drawing;
3. using System.Windows.Forms;
4. using System.IO;
5. using System.Text;
6.
7. public class DialogDemoForm : Form
8. {
9. private TextBox editBox;

10. private MenuItem fileMenu, openMenu, saveMenu, exitMenu;
11. private MenuItem editMenu, fontMenu, titleMenu, findMenu;
12. private StringBuilder buffer;
13. private StatusBar statusBar;
14. private StatusBarPanel statusInfoPanel, timePanel;
15. private ToolBar toolBar;
16. private const int numberToolBarButtons = 4;
17.
18. public DialogDemoForm()
19. {
20. InitializeComponents();
21. }
22.
23. private void InitializeComponents()
24. {
25. openMenu = new MenuItem("&Open", new

EventHandler (OnOpen),
26. Shortcut.CtrlO);

GUI programming with Windows Forms 355

Figure 9.10 Modal dialog for setting the title

Figure 9.11 Non-modal dialog for text searching

27. saveMenu = new MenuItem("&Save", new
EventHandler(OnSave),

28. Shortcut.CtrlS);
29. MenuItem separator = new MenuItem("-");
30. exitMenu = new MenuItem("E&xit", new

EventHandler(OnClick));
31. fileMenu = new MenuItem("&File", new MenuItem[]
32. {openMenu, saveMenu, separator, exitMenu});
33. openMenu.Select += new EventHandler(OnMenuSelect);
34. saveMenu.Select += new EventHandler(OnMenuSelect);
35. exitMenu.Select += new EventHandler(OnMenuSelect);
36.
37. fontMenu = new MenuItem("Fo&nt", new

EventHandler(OnFont),
38. Shortcut.CtrlN);
39. titleMenu =
40. new MenuItem("&Title", new EventHandler(OnTitle),
41. Shortcut.CtrlT);
42. findMenu = new MenuItem("&Find", new

EventHandler(OnFind),
43. Shortcut.CtrlF);
44. editMenu = new MenuItem("&Edit", new MenuItem[]
45. {fontMenu, titleMenu, findMenu});
46. fontMenu.Select += new EventHandler(OnMenuSelect);
47. titleMenu.Select += new EventHandler(OnMenuSelect);
48. findMenu.Select += new EventHandler(OnMenuSelect);
49.
50. Menu = new MainMenu(new MenuItem[] { fileMenu,

editMenu });
51.
52. editBox = new TextBox();
53. editBox.Multiline = true;
54. editBox.ScrollBars = ScrollBars.Vertical;
55. editBox.HideSelection = false;
56. editBox.TextAlign = HorizontalAlignment.Left;
57. editBox.Font = new Font("Arial", 12);
58. Controls.Add(editBox);
59.
60. statusBar = new StatusBar();
61. statusBar.Parent = this;
62. statusBar.ShowPanels = true;
63. statusInfoPanel = new StatusBarPanel();
64. statusInfoPanel.AutoSize = StatusBarPanelAutoSize.

Spring;
65. timePanel = new StatusBarPanel();
66. timePanel.Text = DateTime.Now.ToLongTimeString();
67. timePanel.AutoSize = StatusBarPanelAutoSize.Contents;

68. timePanel.ToolTipText = DateTime.Now.
ToShortDateString();

69. Timer panelTimer = new Timer();
70. panelTimer.Tick += new EventHandler(OnTimer);
71. panelTimer.Interval = 1000;
72. panelTimer.Start();
73. statusBar.Panels.AddRange(
74. new StatusBarPanel[] { statusInfoPanel,

timePanel });
75.
76. Bitmap[] iconImage = new Bitmap[numberToolBarButtons];
77. iconImage[0] = new Bitmap(GetType(), "DialogDemo.

Open.bmp");
78. iconImage[1] = new Bitmap(GetType(), "DialogDemo.

Save.bmp");
79. iconImage[2] = new Bitmap(GetType(), "DialogDemo.

Font.bmp");
80. iconImage[3] = new Bitmap(GetType(), "DialogDemo.

Find.bmp");
81. ImageList imageList = new ImageList();
82. for (int i = 0; i < numberToolBarButtons; i++)
83. imageList.Images.Add(iconImage[i]);
84. toolBar = new ToolBar();
85. toolBar.Parent = this;
86. toolBar.ImageList = imageList;
87. ToolBarButton[] toolBarButton =
88. new ToolBarButton[numberToolBarButtons];
89. for (int i = 0; i < numberToolBarButtons; i++)
90. toolBarButton[i] = new ToolBarButton();
91. toolBarButton[0].ImageIndex = 0;
92. toolBarButton[0].Tag = openMenu;
93. toolBarButton[0].ToolTipText = "Open file";
94. toolBarButton[1].ImageIndex = 1;
95. toolBarButton[1].Tag = saveMenu;
96. toolBarButton[1].ToolTipText = "Save file";
97. toolBarButton[2].ImageIndex = 2;
98. toolBarButton[2].Tag = fontMenu;
99. toolBarButton[2].ToolTipText = "Change font";

100. toolBarButton[3].ImageIndex = 3;
101. toolBarButton[3].Tag = findMenu;
102. toolBarButton[3].ToolTipText = "Search for text";
103. toolBar.Buttons.AddRange(toolBarButton);
104. toolBar.ButtonClick +=
105. new ToolBarButtonClickEventHandler

(OnToolBarButton);
106.
107. ClientSize = new Size(500, 300);
108.

GUI programming with Windows Forms 357

109. Text = "Dialog Demo";
110. Layout += new LayoutEventHandler(OnLayoutForm);
111. StartPosition = FormStartPosition.CenterScreen;
112. MenuComplete += new EventHandler(OnMenuComplete);
113. }
114.
115. private void OnLayoutForm(object sender, LayoutEvent

Args args)
116. {
117. if (sender == this)
118. {
119. Rectangle clientRect = ClientRectangle;
120. editBox.Bounds = new Rectangle(clientRect.X,
121. clientRect.Y + toolBar.Height + 3,
122. clientRect.Width, clientRect.Height –
123. toolBar.Height - statusBar.Height - 3);
124. }
125. }
126.
127. private void OnTimer(object sender, EventArgs args)
128. {
129. timePanel.Text = DateTime.Now.ToLongTimeString();
130. timePanel.ToolTipText = DateTime.Now.ToString("D");
131. }
132.
133. private void OnToolBarButton(object sender,
134. ToolBarButtonClickEventArgs args)
135. {
136. if (args.Button.Tag == openMenu)
137. OnOpen(null, null);
138. else if (args.Button.Tag == saveMenu)
139. OnSave(null, null);
140. else if (args.Button.Tag == fontMenu)
141. OnFont(null, null);
142. else if (args.Button.Tag == findMenu)
143. OnFind(null, null);
144. }
145.
146. private void OnOpen(object sender, EventArgs args)
147. {
148. OpenFileDialog openDialog = new OpenFileDialog();
149. openDialog.Filter =
150. "Text files (*.txt)|*.txt|All files (*.*)|*.*";
151. openDialog.FilterIndex = 2;
152. if (openDialog.ShowDialog() == DialogResult.OK)
153. {
154. StreamReader streamReader =
155. new StreamReader(openDialog.FileName);

358 From Java to C#

156. string line;
157. buffer = new StringBuilder();
158. while ((line = streamReader.ReadLine()) != null)
159. {
160. buffer.Append(line + "\r\n");
161. }
162. streamReader.Close();
163. editBox.Text = buffer.ToString();
164. statusInfoPanel.Text = "Opened " + openDialog.

FileName;
165. }
166. }
167.
168. private void OnSave(object sender, EventArgs args)
169. {
170. SaveFileDialog saveDialog = new SaveFileDialog();
171. saveDialog.Filter =
172. "Text files (*.txt)|*.txt|All files (*.*)|*.*";
173. saveDialog.FilterIndex = 2;
174. if (saveDialog.ShowDialog() == DialogResult.OK)
175. {
176. StreamWriter streamWriter =
177. new StreamWriter(saveDialog.FileName);
178. streamWriter.Write(editBox.Text);
179. streamWriter.Close();
180. statusInfoPanel.Text = "Saved " + saveDialog.

FileName;
181. }
182. }
183.
184. private void OnFont(object sender, EventArgs args)
185. {
186. FontDialog fontDialog = new FontDialog();
187. fontDialog.Font = editBox.Font;
188. if (fontDialog.ShowDialog() == DialogResult.OK)
189. {
190. editBox.Font = fontDialog.Font;
191. }
192. }
193.
194. private void OnTitle(object sender, EventArgs args)
195. {
196. TitleDialog titleDialog = new TitleDialog();
197. titleDialog.StartPosition = FormStartPosition.

CenterScreen;
198. if (titleDialog.ShowDialog() == DialogResult.OK)
199. {

GUI programming with Windows Forms 359

200. Text = titleDialog.TitleText;
201. }
202. }
203.
204. private void OnFind(object sender, EventArgs args)
205. {
206. FindDialog findDialog = new FindDialog();
207. findDialog.Owner = this;
208. findDialog.StartPosition = FormStartPosition.

CenterScreen;
209. findDialog.Find += new EventHandler(FindText);
210. findDialog.Show();
211. }
212.
213. private void FindText(object sender, EventArgs args)
214. {
215. FindDialog findDialog = (FindDialog)sender;
216. string findText = findDialog.FindText;
217. if (findText.Length > 0)
218. {
219. int findLocation = editBox.Text.IndexOf(findText);
220. if (findLocation > -1)
221. {
222. editBox.SelectionStart = findLocation;
223. editBox.SelectionLength = findText.Length;
224. editBox.ScrollToCaret();
225. }
226. else
227. {
228. statusInfoPanel.Text = "Text not found.";
229. }
230. }
231. }
232.
233. private void OnMenuSelect(object sender, EventArgs

args)
234. {
235. if (sender == openMenu)
236. statusInfoPanel.Text = "Opens a file from disk.";
237. else if (sender == saveMenu)
238. statusInfoPanel.Text = "Saves a file to disk.";
239. else if (sender == exitMenu)
240. statusInfoPanel.Text = "Quits the program.";
241. else if (sender == fontMenu)
242. statusInfoPanel.Text = "Sets the font in

the text box.";
243. else if (sender == titleMenu)

360 From Java to C#

244. statusInfoPanel.Text = "Sets the text in the
title bar.";

245. else if (sender == findMenu)
246. statusInfoPanel.Text = "Search for text

in main display.";
247. }
248.
249. private void OnMenuComplete(object sender,

EventArgs args)
250. {
251. statusInfoPanel.Text = "";
252. }
253.
254. private void OnClick(object sender, EventArgs args)
255. {
256. if (sender == exitMenu)
257. {
258. Application.Exit();
259. }
260. }
261.
262. public static void Main()
263. {
264. Application.Run(new DialogDemoForm());
265. }
266. }

The components of the main window are created in Initialize
Components() (line 23). The menu is created in the usual way, although we
have added handlers for the Select event (lines 33 to 35 and 46 to 48). This
event is generated when a menu item is selected by moving the mouse over
it or by using the keyboard. The handler method OnMenuSelect (line 233)
provides some help text in the status bar for each menu item. (We will
explain statusInfoPanel below when we consider the status bar.)

The main display area for the text file is a TextBox (lines 52 to 55). The
TextBox is a multiline box with a vertical scrollbar. Note that, unlike Java,
the scrollbar is an integral part of the control rather than a separate control
(like the JScrollPane in Java) into which the control must be placed.

The HideSelection property (line 55) specifies whether any selected
text in the TextBox should be deselected when the control loses focus. We
must set this to false since otherwise any text found when using the Find
dialog below will not be highlighted in the main display.

The status bar is created on lines 60 to 74. Rather than using Controls.
Add() to add the status bar to the main form, we set its Parent to be the
enclosing frame (line 61). We use two StatusBarPanels to display the infor-
mation in the status bar, so we turn on ShowPanels (line 62). The first panel
(statusInfoPanel) is to be used to display the information messages such
as help for menu items and which files have been opened or saved. We set its
AutoSize to StatusBarPanelAutoSize.Spring which causes it to stretch

GUI programming with Windows Forms 361

(like a spring) to fill in all space not taken up by other panels in the status
bar. It is this panel which is used in the OnMenuSelect() method (line 233)
for displaying menu help.

The other panel (timePanel) is used for displaying the current time,
updated each second. Its AutoSize is set to Contents, meaning that the
panel is sized to fit the string that is displayed within it. The time is initial-
ized on line 68, and a Timer is created to update this time (lines 69 to 72)
in the same way as in the Clock example presented earlier. The Timer’s
event handler (line 127) updates the status bar display (line 129) and also
sets this panel’s tooltip to display the current date (line 130).

The code for creating the toolbar is on lines 76 to 105 and has been dis-
cussed above in the introduction on toolbars. The code here provides a com-
plete example of a toolbar displaying four buttons. The event handler for the
toolbar buttons is on line 133 and illustrates the correspondence between
the toolbar buttons and the menu items they duplicate.

A few properties of the overall form are set up on lines 109 to 112. We have
added a handler for the MenuComplete event, which is generated whenever a
menu loses focus. The handler (line 249) clears the text in the status bar.

The layout of the form is defined in OnLayoutForm() (line 115). Note that
we don’t need to layout the toolbar or status bar, since they are managed by
the parent form. We do, however, need to allow for the sizes of the toolbar
and status bar when positioning the TextBox, which is meant to fit between
them with a three-pixel gap at the top and bottom.

The event handler for the ‘Open’ menu item and toolbar button (line 146)
illustrates the use of the built-in OpenFileDialog which displays the stan-
dard Windows file selection dialog. (The code within OnOpen() really should
be enclosed in a try-catch block to handle file I/O exceptions, but we have
omitted this to save space.)

A filename filter is defined on line 149 – this allows the file selector to dis-
play only files with certain extensions. We have provided two file types in the
filter. Each type is specified as two strings separated by a vertical bar. The first
string is the description that appears in the file selector dialog, and the sec-
ond string is the pattern to match when selecting files from the current direc-
tory. Thus, the first file type on line 150 is specified as ‘Text files (*.txt)|*.txt’
which means that ‘Text files (*.txt)’ will appear in the ‘Files of type’ combo list
in the dialog, and the directory will be searched to display all files that match
the ‘*.txt’ pattern specified in the second part of the description.

We can specify which filter is used when the dialog first appears by specify-
ing the FilterIndex (line 151). Perversely, the FilterIndex value for the first
filter in the list is 1, not 0, so the FilterIndex must be about the only indexed
list in the language that does not start from zero by default. The code on line
151 therefore initializes the dialog to display ‘All files’ when it first appears.

The remaining code in OnOpen() illustrates the reading of text from a text
file. The easiest way of doing this is to use a StreamReader (line 154) which
can be created by using the FileName obtained from the file selector dialog.
The StreamReader contains a number of methods that make reading text
easy to do, such as the ReadLine() method (line 158) which reads a single
line of text from the file.

362 From Java to C#

We could use a string together with its += operator to append each line to
a string and build up a copy of the file in the program. However, this technique
is not very efficient since each time some text is ‘appended’ to a string a new
string must be created which causes a lot of processing overhead. A better
way is to use a StringBuilder (line 157), whose Append() method does not
require the creation of a new object with each line added to the
StringBuilder. (A StringBuilder is similar to Java’s StringBuffer.)

When all the text in the file has been read, we close the StreamReader
(line 162) and then display the text in the TextBox (line 163) and display a
message in the status bar.

The handler for the ‘Save’ menu item (line 168) works much like the
OnOpen() method in reverse. We use a StreamWriter to write text to a disk
file. This time, we can simply copy the entire contents of the TextBox and
use the Write() method (line 178) to write the whole lot at once, rather
than having to split up the text into separate lines.

The handler for the ‘Font’ menu item (line 184) displays the Windows font
selection dialog and just sets the TextBox’s Font to the selection of the user.

The handler for the ‘Title’ menu item (line 194) retrieves the text entered
by the user in the TitleDialog (considered below) and sets the main form’s
Text to this value. Note that we use ShowDialog() (line 198) to display the
dialog in the same way as in the built-in dialogs for saving and loading files.
ShowDialog() displays a modal dialog, and prevents access to the underly-
ing window until the dialog is dismissed.

Finally, the ‘Find’ menu command is handled by OnFind() (line 204). The
code that defines the Find dialog as a non-modal dialog occurs here rather than
in the FindDialog class which we consider later. By setting the dialog’s Owner
as the main form (line 207) we ensure that the dialog always appears on top of
the parent, and that if the main window is minimized, the dialog also disappears.

The key line that makes the dialog non-modal is line 210, where we use
Show() rather than ShowDialog() to display the dialog. Show() displays a
Form but allows access to the underlying, parent form at the same time.

We will consider the communication between the main form and the
FindDialog below, but we will examine here how the search of the text is
done once the search string has been retrieved from FindDialog.

As we will see below, when the user clicks the ‘Find’ button in
FindDialog, the FindText() method in the main class (line 213) is called
to handle the event. We can then retrieve the search string from
FindDialog (lines 215 and 216). We first check that the user has actually
entered a search string by checking that the string’s length is greater than
zero (line 217). If so, we use the IndexOf() method in the string class to
search for the text (line 219). IndexOf() returns -1 if it cannot find the
string, so we check this condition (line 220). If the string was found, we can
set the SelectionStart and SelectionLength properties of the TextBox to
highlight the string in the main display. To ensure that the selection is visi-
ble, we call ScrollToCaret() (line 224), which scrolls the text until the
current selection is visible. If the string is not found, we display a message
in the status bar (line 228).

GUI programming with Windows Forms 363

As mentioned above, this simple searching procedure will only find the
first occurrence of the search string. There are several overloads of
IndexOf() that could be used to provide a better search by allowing search-
es for other occurrences. Other methods in string could be used to provide
a case-insensitive search, or we could make use of the Regex class to search
for regular expressions, which allow pattern matching.

We now consider the code for the modal dialog that allows the user to set
the text in the title bar:

1. using System;
2. using System.Drawing;
3. using System.Windows.Forms;
4.
5. public class TitleDialog : Form
6. {
7. TextBox titleBox;
8.
9. public TitleDialog()

10. {
11. Text = "Select title";
12. FormBorderStyle = FormBorderStyle.FixedDialog;
13. ControlBox = false;
14. MinimizeBox = false;
15. MaximizeBox = false;
16.
17. Label label = new Label();
18. label.Text = "Enter title bar caption:";
19. label.Bounds = new Rectangle(8, 5, 150, 20);
20. titleBox = new TextBox();
21. titleBox.Bounds = new Rectangle(8, 25, 150, 20);
22.
23. this.Controls.AddRange(
24. new Control[] { label, titleBox }
25.);
26.
27. Button button = new Button();
28. button.Parent = this;
29. button.Text = "OK";
30. button.Bounds =
31. new Rectangle(8, titleBox.Bottom + 5, 60, 20);
32. button.DialogResult = DialogResult.OK;
33. AcceptButton = button;
34.
35. button = new Button();
36. button.Parent = this;
37. button.Text = "Cancel";
38. button.Bounds =
39. new Rectangle(98, titleBox.Bottom + 5, 60, 20);

364 From Java to C#

40. button.DialogResult = DialogResult.Cancel;
41. CancelButton = button;
42.
43. ClientSize = new Size(180, 80);
44. }
45.
46. public string TitleText
47. {
48. get
49. {
50. return titleBox.Text;
51. }
52. }
53. }

The dialog has a few settings made in the constructor (lines 11 to 15) which
are fairly standard for a dialog. The FixedDialog border style provides a non-
resizable, heavy border, and turning off ControlBox, MinimizeBox and
MaximizeBox eliminates all the controls from the title bar. Several other prop-
erties may be worth defining here as well, such as setting ShowInTaskbar to
false if you don’t want a separate icon for the dialog to appear in the Windows
task bar. Explore the documentation for Form to see what else is available.

Then we create and add the label and TextBox (lines 17 to 25). The OK
and Cancel buttons are then created (lines 27 to 41). By setting the dialog’s
AcceptButton property to the OK button (line 33) we associate the OK but-
ton with the Enter key on the keyboard, so that pressing this key will close
the dialog and return DialogResult.OK to the main form. Similarly, by set-
ting the CancelButton property to the Cancel button, hitting the Esc key
will close the dialog and return DialogResult.Cancel. Notice that we don’t
define event handlers for either of these buttons – setting the DialogResult
property for a button (lines 32 and 40) provides the intended behaviour.

Once again, a reminder that there is nothing in the TitleText class that
specifies whether the dialog is modal or non-modal – that is done by choosing
whether to use ShowDialog() or Show() to display it as we mentioned earlier.

Finally, we consider the code for the non-modal, text search dialog:

1. using System;
2. using System.Drawing;
3. using System.Windows.Forms;
4.
5. public class FindDialog : Form
6. {
7. TextBox findBox;
8. public event EventHandler Find;
9.

10. public FindDialog()
11. {
12. Text = "Find text";

GUI programming with Windows Forms 365

13. FormBorderStyle = FormBorderStyle.FixedDialog;
14. ControlBox = false;
15. MinimizeBox = false;
16. MaximizeBox = false;
17.
18. Label label = new Label();
19. label.Text = "Enter search text:";
20. label.Bounds = new Rectangle(8, 5, 150, 20);
21. findBox = new TextBox();
22. findBox.Bounds = new Rectangle(8, 25, 150, 20);
23.
24. this.Controls.AddRange(
25. new Control[] { label, findBox }
26.);
27.
28. Button button = new Button();
29. button.Parent = this;
30. button.Text = "Find";
31. button.Bounds =
32. new Rectangle(8, findBox.Bottom + 5, 60, 20);
33. AcceptButton = button;
34. button.Click += new EventHandler(OnFind);
35.
36. button = new Button();
37. button.Parent = this;
38. button.Text = "Close";
39. button.Bounds =
40. new Rectangle(98, findBox.Bottom + 5, 60, 20);
41. CancelButton = button;
42. button.Click += new EventHandler(OnClose);
43.
44. ClientSize = new Size(180, 80);
45. }
46.
47. private void OnClose(object sender, EventArgs args)
48. {
49. Close();
50. }
51.
52. private void OnFind(object sender, EventArgs args)
53. {
54. if (Find != null)
55. {
56. Find(this, args);
57. }
58. }
59.

366 From Java to C#

60. public string FindText
61. {
62. get
63. {
64. return findBox.Text;
65. }
66. }
67. }

The design of this dialog is similar to TitleDialog. The only real differ-
ence in the constructor is that we have not defined a DialogResult for
either of the buttons, since the dialog is intended to be non-modal, so the
dialog won’t be called using ShowDialog(). The DialogResult serves as the
return value from ShowDialog() and thus won’t be needed here.

Since there is no default event handler provided for these buttons, we
must add our own (lines 34 and 42). We also specify the ‘Find’ button as the
AcceptButton so that the user can enter some search text and then hit
‘Enter’ to do the search back in the main form. Similarly, the ‘Close’ button
is specified as the CancelButton (line 41).

The key point in this dialog is the way the ‘Find’ button communicates its
event back to the parent form. This is done by creating a custom event del-
egate called Find (line 8). The parent form then adds its own event handler
to this delegate when the FindDialog object is created (see line 209 in the
main DialogDemo class, where DialogDemo’s FindText method is added to
the Find delegate).

Back in FindDialog, the Click event for the ‘Find’ button has OnFind()
(line 52) defined as its handler. This method checks if Find is null (as it
would be if no methods had been added to it in the parent form). If not, it
then calls the delegate (line 56) to run any event handlers that have been
added to it.

The sequence of events that occurs when the ‘Find’ button is pressed is
then: first OnFind() within FindDialog is called, then the Find delegate
runs FindText() back in DialogDemo.

9.17 ■ Other controls

.NET contains many other GUI controls that can be used in programs writ-
ten with Windows Forms, but we do not have the space to go into all of them
in this book. We will meet some of the other controls in examples in the
remaining chapters in this book, however, to give you a flavour for how they
can enhance the interface of a program.

There are several controls that allow lists of items to be displayed. These
include the ComboBox (a list that contracts to a single entry with a small but-
ton on one side that allows the user to expand the list and select an item
from it), the ListBox, which is similar to a ComboBox except that the list is

GUI programming with Windows Forms 367

displayed in a rectangular frame with scrollbars, if needed, the TreeView,
which displays a tree-like view of hierarchical data such as folders and files
on a disk and so on. We will see an example of the ListBox in the GUI ver-
sion of the adventure game case study at the end of Chapter 10.

As mentioned earlier, most controls work in much the same way at their
lowest level. The control is created, given a size and position within a con-
tainer, and added to the container. If the control is to be used for more than
just the display of information, one or more event handlers needs to be
attached to respond to user interaction.

Despite the common base shared by controls, each individual control has
its own peculiarities, so it is a good idea to get an example of a specific con-
trol before trying to use it within your own programs. The first place to look
should be the MSDN documentation, as most of the entries there for GUI
controls contain at least one sample program illustrating how it can be used.
Although MSDN provides a good introduction to the use of controls, often
you will want to do something a bit more involved and will find that the doc-
umentation doesn’t have quite the examples you need. In that case, a search
of the web is the best way to continue.

■ Summary

This chapter has introduced GUI programming using Windows Forms. This
is a large topic so only some of the most commonly used controls are
described here, but the guidelines given in this chapter should be applicable
to most of the other controls.

The basic procedure for adding a control to a form is to create the con-
trol, define its size and position within its container, add it to the container,
and, if necessary, attach the appropriate event handlers to allow the user to
interact with the control.

Documentation and examples of other controls may be found in the
MSDN library, in more detailed books on GUI programming using .NET and
C#, and on the web.

368 From Java to C#

Exercises

9.1 Write a simple GUI program that consists of only a blank form. Refer to the doc-
umentation for the Form class and see how many properties you can set in the
C# code that will affect the way the form appears when the program runs. Try
such things as changing the background colour, changing its size and so on.

9.2 Again by referring to the documentation for Form, investigate the events that can
be generated by a Form and add some event handlers to the blank form from the
previous exercise. Some events you could try handling are Click (when the
mouse is clicked over the form), DoubleClick, BackColorChanged and so on.
The simplest response to an event is just to print a message in the console

GUI programming with Windows Forms 369

window, but you could try a few other simple responses such as displaying a
MessageBox or changing the colour of the form.

9.3 Either by adding controls to your blank form program from the previous exercise,
or by starting from scratch, write a Windows Forms program that displays a sin-
gle TextBox and a Button. When the user types some text into the TextBox
and then presses the Button, display a MessageBox that contains the text from
the TextBox. As always, if you are unsure how to proceed, use the simple event-
handling example from the text and examine the MSDN documentation to see
what properties of the TextBox and Button might help you.

9.4 Suppose you wanted to restrict the text that was typed into the TextBox in the
previous exercise so that only numbers are allowed. Add an ErrorProvider
to the program in the previous exercise so that a flashing icon is displayed if the
user attempts to push the Button with either no text or non-numerical text in
the TextBox. Use a helpful error message in the tooltip message that appears
when the mouse hovers over the icon.

9.5 Write a Windows Forms application which displays a simple multiple choice test.
The test should contain at least three questions, each of which should have
three possible answers. For example, you might ask ‘What is the largest planet
in our solar system?’ and provide the answers A. Earth, B. Saturn, C. Jupiter. Use
a Label to display the question and radio buttons to display the possible
answers to each question.

At the bottom of the client area, provide a Button which can be pressed when
the user has selected all the answers. The event handler for the Button should
check the user’s answers and display a MessageBox stating the score (and pos-
sibly the correct answers).

9.6 Add a dialog box to the quiz program in the previous exercise. The dialog
should replace the MessageBox that is displayed when the user presses the
button to check the answers, and should request the player’s name in addition
to displaying their score. The program should store a list of player’s names and
associated scores. (The list can be stored as an array, so that only the last 10
scores are stored, for example.)

Add a menu to the program which contains a menu item that displays a
MessageBox showing a list of all the players who have done the quiz and their
scores. (This assumes that the list is fairly short so it will fit comfortably on screen.)

9.7 Replace the MessageBox in the preceding exercise with a dialog that contains
a ListBox that displays the players and scores.

A ListBox displays a list of items within a scrollable panel. The ListBox con-
trol can be created and added to a container in the same way as any other con-
trol, so add a ListBox (along with a Label to state what is displayed in the
ListBox) to the dialog’s Form, making its size large enough to view three or
four scores at once.

370 From Java to C#

To add items to a ListBox, you need to deal with the Items property of the
ListBox. Starting with the MSDN documentation for the ListBox (make sure
you read the documentation for the Windows.Forms version of the ListBox,
as there is another version that is used in designing web pages), find the
description of the Items property. You will discover that Items is a
ListBox.ObjectCollection object, so look at the members of this class to
discover the Add() method for adding an item to the Items of a ListBox.
You should find some sample code illustrating how to add items to the
ListBox, so use this as a model to construct the list of players and scores in
your dialog.

9.8 Add another menu item that allows the user to save the scores list in a text file
on disk. Use the ‘Save’ option in the Notepad example in the text as a model.
This command should display a SaveFileDialog as in the text, and save the
scores in a file with a .scr extension.

9.9 Add a toolbar to the quiz program from the preceding exercises. The toolbar
should contain two buttons: one that duplicates the menu command for dis-
playing the MessageBox or dialog (depending on whether you implemented
the dialog) that shows the scores, and the other which duplicates the menu
command for saving the scores to disk.

Graphics

10.1 ■ Graphics: Java versus .NET

Java graphics programmers will find much that is familiar in .NET’s graph-
ics capabilities, but there are a few key differences as well. To set the scene,
we’ll briefly review some of the main points in Java graphics programming.

Depending on the version of Java you are using, the main class used for
producing graphics is either Graphics or Graphics2D. The Graphics class
has been around since the earliest versions of Java and provides only fairly
limited capabilities, such as the drawing of lines, text and basic shapes. With
Java 1.2 (sometimes known, confusingly, as Java 2), the Java 2D packages
introduced the Graphics2D class, which inherits Graphics and provides a
much larger library of drawing methods. The Java 2D package also redefined
the methods by which graphics are produced, introducing the Shape inter-
face for representing an arbitrary curve and the Stroke and Paint inter-
faces for line styles, fill colours and patterns.

In order to produce any graphics in a Java component, its graphics con-
text, represented by either a Graphics or Graphics2D object, must be
obtained. All Java components contain a paint() method which is called to
draw and update the control’s graphics throughout its lifetime. The graphics
context provides the interface between the code and the various device dri-
vers that drive the display devices such as monitors and printers. The
paint() method is called automatically by the Java Virtual Machine when-
ever the component needs to be redrawn, and in general is never called
directly by the programmer. The JVM will obtain the graphics context and
send it to the paint() method automatically, so the programmer need not
worry about where to find a Graphics object. If the programmer wishes to
force a redraw at some point, a call to repaint() can be made, which in
turn calls paint() after obtaining the graphics context behind the scenes.

One of the key features of the Java graphics context is that Graphics and
Graphics2D contain a number of states into which they can be set. These
states are then used in all drawing operations until they are changed in the
code. The states include such things as the stroke (essentially a type of pen)
that is used to draw lines and the paint that is used to fill shapes. A stroke
and paint can be set in Graphics2D and these drawing attributes are used to
draw all shapes until they are replaced. In a sense, the graphics context may
be thought of as the artist that does all the drawing and painting, and the
graphics state is similar to putting a particular pen and brush in the artist’s
hands which are then used to draw everything until the artist is given a dif-
ferent pen or brush. In other words, the qualities of the line and fill patterns
are properties of the artist and not of the shapes being drawn.

10

The .NET graphics model is known as GDI+ (for Graphics Device Interface),
and is similar to the Java model in many ways, in that a graphics context is
required to do any drawing, and all graphics are drawn in an OnPaint()
method which is called by the underlying program manager in response to a
message requesting a control to be drawn or redrawn. Much of the functional-
ity in Java 2D is also available in .NET’s graphics libraries.

Probably the biggest difference between Java 2D and .NET’s GDI+ is that
GDI+ is an (almost) stateless graphics model. This means that the qualities
of a line or shape are associated directly with the shape rather than with the
graphics context. We say that GDI+ is ‘almost’ stateless, since there are a
few properties that can be set within the graphics context, but most of the
more common properties must be attached to each line or shape.

In one sense, this probably seems more logical from an object-oriented
standpoint, since most of us would think of things like a line’s colour and
thickness as being properties of the line rather than of the artist doing the
drawing. However, it does seem to make a less efficient graphical coding sys-
tem, since we must remember to pass a pen and a brush to every shape that
we want to draw, rather than just setting these things up once in the graph-
ics context and using them to draw a number of shapes.

The stateless graphics context is a rather curious choice for the .NET
engineers to make since the older Microsoft Foundation Classes (MFC) sys-
tem that will (hopefully) ultimately be replaced by .NET uses the graphics
context (or, as it is called in MFC, the device context) to store the drawing
objects such as pens and brushes. At any rate, it is something of which Java
graphics programmers should beware, since it is easy to forget to provide the
drawing tools for every object we wish to draw.

In this chapter we will give an overview of the main types of graphics that
can be coded in .NET and C#. The general field of computer graphics is usu-
ally divided into two main areas: vector graphics and raster graphics.

Vector graphics are drawn using mathematical formulas to determine
which pixels to light up, and as such, the built-in methods for producing this
type of graphics are restricted to those that produce fairly simple shapes
such as lines, rectangles and ellipses. Because they involve a fair bit of cal-
culation, vector graphics can be expensive (in processor time) to produce,
but their main advantage is that, because they use equations to define a
shape, they are easily scaled to produce an accurate representation of the
image at any size.

Raster graphics are constructed by displaying an array of predefined pixel
values, usually stored as an image file such as a bitmap or JPEG. Raster
graphics are thus used to display images such as icons, photographs and so
on. Because a raster image is defined using a fixed array of pixel values, it
often does not scale very well, since some form of interpolation between
pixel values (in the case of a larger image) or omission of some information
(in the case of a smaller image) is needed.

Although it is often not treated as a separate type of graphics, the pro-
duction of text has become specialized enough that it is worth considering
on its own. Text can be produced using vector graphics if mathematical for-

372 From Java to C#

mulas defining the outlines of the letters are specified, or as raster graphics
if a letter’s shape is just defined by a bitmap.

We will begin with some examples of how to produce some basic, static
shapes such as lines, rectangles and more general two-dimensional shapes.
We will illustrate how these shapes can be varied by changing their colours,
fill patterns and so on.

We will then move on to consider how .NET handles simple raster graph-
ics by seeing how image files can be displayed within controls on a form.

An important feature of any reasonable graphics library is the ability to
transform an existing image by actions such as translation (moving the
object to a new location without changing its shape or orientation), rotation,
scaling (making the object larger or smaller without changing its relative
proportions) and shearing (stretching the object along a given direction).
.NET provides built-in methods for these basic transforms which duplicate
those provided in Java 2D’s AffineTransform class.

Finally in this chapter, we will consider some simple animations by com-
bining repeated graphical drawing with a timer to provide the connection
between successive frames.

10.2 ■ Vector graphics

10.2.1 � Colo(u)rs

In order to do any drawing, we need to know something about how colours
are represented in .NET. First, of course, is the usual transatlantic difference
in spelling. Since Microsoft is an American company, we have to use the
American spelling of Color whenever we want to refer to the Color class.

Java programmers will probably be familiar with Java’s Color class, which
has several predefined colours such as Color.Red, Color.Green and so on.
In .NET, there are 140 predefined named colours, making something of an
artist’s paradise. Old favourites such as Red are there, but we now have more
exotic names such as Honeydew (a pale green), Thistle (well, I do live in
Scotland), PapayaWhip and PeachPuff. Have a look at the documentation
for the Color class for a complete list.

If you can’t find just the right shade amongst the 140 predefined colours,
it is easy enough to create your own colour by specifying the precise values
of red, green and blue using one of the static FromArgb() methods in the
Color class. Each of these methods returns a Color object constructed from
the values passed in as parameters.

The RGB colour model creates all colours that can be represented on a
standard display device by specifying each of red, green and blue with a value
between 0 and 255. When all three colours are 255, we get white, and when
all are 0 we get black. All other shades can be produced by other mixtures.

The ‘A’ in FromArgb() corresponds to the so-called alpha value of a
colour, which denotes its transparency, and is also represented by a value
between 0 and 255. An alpha of 255 is the default value and gives a totally

Graphics 373

opaque colour. An alpha of 0 is totally transparent (and therefore invisible).
Intermediate values of alpha allow some of the background image to ‘show
through’ the colour. The effect is achieved by combining the background
colours with the foreground colours to produce the transparency.

For example, since yellow is a combination of red and green, we can pro-
duce a half-transparent yellow with the call:

Color transYellow = Color.FromArgb(128, 255, 255, 0);

where the parameters are alpha, red, green and blue, in that order.

10.2.2 � Drawing shapes – the Pen class

The easiest way to illustrate how .NET handles some simple vector graphics
is to give a sort of ‘Hello line’ example:

1. using System;

2. using System.Drawing;

3. using System.Windows.Forms;

4.
5. public class DrawLine : Form

6. {

7. public DrawLine()

8. {

9. ClientSize = new Size(100, 100);

10. }

11.
12. protected override void OnPaint(PaintEventArgs args)

13. {

14. Graphics g = args.Graphics;

15. Pen pen = new Pen(Color.Red);

16. g.DrawLine(pen, 10, 20, 80, 90);

17. }

18.
19. public static void Main()

20. {

21. Application.Run(new DrawLine());

22. }

23. }

Simple vector graphics requires the System.Drawing namespace (line 2).
This program produces a form with a client area of 100 by 100 pixels, but
no controls – we are drawing directly on the form’s client area.

The OnPaint() method (line 12) shows the basics of producing a draw-
ing. Notice that this method is declared as protected override. This is
essential, since OnPaint() is actually an event handler that is declared in
the Control class (which is a base class of all forms and controls). If the
OnPaint() method in the derived class is not declared as an override, it

374 From Java to C#

hides the method in the base class, which means that it will not be inter-
preted as the event handler for the Paint event, which is sent whenever a
redraw of the form is required. As a result, no graphics will appear.

The PaintEventArgs parameter contains the Graphics object which
is required for all drawing operations so, unlike the paint() method in
Java, we must extract Graphics first (line 14) before we can apply it to
drawing operations.

Since all drawing operations must have a pen provided for them, we can-
not just call a drawing method without creating a pen first (line 15). The Pen
class contains several properties which define the properties of the line,
such as its colour, width, dash pattern and so on, although we’ve only spec-
ified the colour here.

The line itself is drawn by the DrawLine() method from the Graphics
class (line 16). The parameters passed to DrawLine() consist of the pen fol-
lowed by the x and y coordinates of the start point, then the x and y coor-
dinates of the end point.

Coordinates for all drawing operations are specified using pixel coordi-
nates, where the x (horizontal) coordinate is measured from the left border
increasing to the right, and the y (vertical) coordinate is measured from the
top border increasing downwards. Note that this coordinate system is dif-
ferent from that commonly used to plot graphs and charts in mathematics,
in that the y axis in computer graphics is inverted. The reason for this is his-
torical, since in raster display devices such as a monitor, the electron beam
scans the screen in horizontal rows from top to bottom.

The (not very impressive) result of this program is as shown in Figure 10.1.

The Graphics class contains a number of methods that allow basic vec-
tor shapes to be drawn. All these methods require a Pen as their first param-
eter, followed by values that are appropriate to the type of shape being
drawn. For DrawLine() we just specify two sets of coordinates for the start
and end points of the line.

Some of the other methods include DrawRectangle(), DrawPolygon()
and DrawEllipse() which are all fairly obvious and easy to use. The
DrawString() method is used to draw text, which we will consider later in
this chapter.

Graphics 375

Figure 10.1 Output of the DrawLine program

Some drawing methods have a related version that allows arrays of shapes to
be displayed. For example, the DrawLines() method takes as its parameters a
Pen and an array of Points. The Point class consists simply of X and Y prop-
erties which contain the pixel coordinates. For example, the following code
draws three connected line segments using a solid black line 3 pixels wide:

Pen pen = new Pen(Color.Black, 3);

Point[] points =

{

new Point(10, 10),

new Point(10, 100),

new Point(200, 50),

new Point(250, 300)

};

g.DrawLines(pen, points);

The first segment connects the first two points (10, 10) and (10, 100).
The next segment connects the second and third points (10, 100) and (200,
50) and so on.

There is also a DrawRectangles() method for drawing an array of rectangles.
Using these basic drawing methods is quite easy, so the best way to get

used to them is just to experiment by drawing a few shapes with different
pen types and drawing shapes. Use the documentation to see what vari-
ations are available.

10.2.3 � Filling shapes – the Brush classes

Any of the shapes in the Graphics library that contain an interior can also
be filled. Although it may seem obvious what an ‘interior’ of a shape is, we
will see that it actually does require a precise definition.

Simple shapes such as rectangles and ellipses have obvious interiors, and
a filled rectangle, for example, can be drawn using FillRectangle(). Just
as drawing a shape requires a Pen, so filling a shape requires a Brush. A
Brush specifies the colour or other pattern that is used to fill an enclosed
area. The simplest fill pattern is just a solid colour, but a Brush can also con-
tain simple geometric patterns such as hatching, colour gradients and even
full images.

It is important to note that filling and drawing are two separate operations
– a rectangle produced with FillRectangle() will contain only the interior of
the rectangle displayed using a particular Brush. There will not be any outline
of the edges of the rectangle. If we want both a filled interior and a drawn out-
line, we need to call FillRectangle() and then DrawRectangle(). It is a
good idea to call these two methods in that order, since calling them the other
way round can sometimes overwrite part of the border with the fill pattern.

The Brush class itself is actually abstract, and thus cannot be used to cre-
ate a brush directly. We must use one of the brush classes that inherits
Brush and provides a concrete implementation.

376 From Java to C#

There are five such classes from which to choose. Two of these are in the
System.Drawing namespace and the other three are in System.Drawing.
Drawing2D.

The first two classes are SolidBrush, used to fill shapes with a solid
colour, and TextureBrush, used to fill shapes with raster images. Let’s con-
sider a simple SolidBrush fill first. The following code draws a rectangle
filled with light blue and bordered by a solid blue-violet line:

Pen pen = new Pen(Color.BlueViolet, 2);
Brush brush = new SolidBrush(Color.LightBlue);
g.FillRectangle(brush, 10, 10, 200, 150);
g.DrawRectangle(pen, 10, 10, 200, 150);

The SolidBrush constructor comes in only one form, which requires a
Color parameter that specifies the solid fill colour. The result of this code is
as shown in Figure 10.2.

The TextureBrush is almost as simple to use – all we need to do is load
an image into the TextureBrush and then use it to fill a shape. As a sample
image, we will use a JPEG file containing a digital photo of the author’s wall-
paper (Figure 10.3).

Graphics 377

Figure 10.2 A filled rectangle created using SolidBrush

Figure 10.3 The original JPEG image used as a texture

The following code loads this JPEG file into an Image and then creates a
TextureBrush using this Image as its paint:

Image wallpaper = Image.FromFile("wallpaper.jpg");

brush = new TextureBrush(wallpaper);

g.FillEllipse(brush, 10, 10, 200, 150);

g.DrawEllipse(pen, 10, 10, 200, 150);

The FromFile() method takes the filename as its parameter. We’ve just
used the bare filename since the ‘wallpaper.jpg’ file is in the same directory
as the executable file – if it is somewhere else, we can insert the full path-
name. We then use the texture to fill an ellipse (just for variety), with the
result as shown in Figure 10.4.

The HatchBrush provides a number of predefined hatching patterns. The
constructor allows us to specify the hatching style, which must be selected
from the HatchStyle enumeration. The colour used for the hatching pat-
tern must also be specified. The background colour may also be specified in
the constructor as a third parameter, but if this is omitted, the background
colour defaults to black.

Although there is a large selection of hatching patterns available, you
might not find quite the one you want. If you need to make up your own
hatching pattern, save it as an image file and use TextureBrush instead.

A simple example of a HatchBrush is as follows:

using System.Drawing.Drawing2D;

brush = new HatchBrush(HatchStyle.DiagonalCross,

Color.BlueViolet, Color.White);

g.FillEllipse(brush, 10, 10, 200, 150);

g.DrawEllipse(pen, 10, 10, 200, 150);

378 From Java to C#

Figure 10.4 A filled ellipse created using TextureBrush

The extra using statement is needed to access this and the next two
brush classes, since they are in the separate Drawing2D namespace. This
produces the image in Figure 10.5.

The LinearGradientBrush allows a fill pattern that gradually fades from
one colour into another. It comes in several varieties, but we’ll just examine
one here to give you an idea of its capabilities.

The two-point LinearGradientBrush requires that we specify two points
on the drawing surface. We then specify two solid colours. The gradient fill
begins with the first colour at the first point and then gradually fades the fill
into the other colour at the second point. The banding pattern is repeated
over the entire fill area, although the precise banding pattern can be varied
by setting the WrapMode.

Here’s a little example of a gradient fill using blue and yellow as the
anchor colours:

Brush brush = new LinearGradientBrush(new Point(10, 10),

new Point(50, 50), Color.Blue, Color.Yellow);

((LinearGradientBrush)brush).WrapMode =

WrapMode.TileFlipXY;

g.FillEllipse(brush, 10, 10, 200, 150);

g.DrawEllipse(pen, 10, 10, 200, 150);

To set WrapMode, we need to cast brush to LinearGradientBrush, since
WrapMode isn’t a property in the abstract Brush class. The default WrapMode
is Tile, which draws a band from the first colour to the second, then starts
over again with another band from first colour to second. The TileFlipXY
mode flips the colour scheme at each repetition, so that the first band is
drawn from blue to yellow, then the second from yellow to blue and so on.
This usually produces a more pleasing result. The result looks as shown in
Figure 10.6.

Graphics 379

Figure 10.5 A hatched ellipse created using HatchBrush

Various other effects can be obtained with the different types of linear gradi-
ents – explore the documentation and try a few examples to see what’s available.

The final, and fanciest, brush is the PathGradientBrush, which is essen-
tially a generalization of the LinearGradientBrush, in that it allows colour
gradients to be defined within curves of arbitrary shape, and with more than
two colours.

A path gradient is defined by specifying a boundary shape as a polygon
defined by an array of Points, and an additional point called the centre
point. An array of Colors can then be associated with the array of Points,
and an additional Color associated with the centre point.

For example, we can define a triangular brush as shown in Figure 10.7.

The border is defined by an array of three Points, each of which has an
associated Color as shown. The centre point has the Color red associated
with it. The path gradient works out the colour of a point such as X within
the boundary of the triangle by considering the three colours at the corners
of the smallest internal triangle that contains the centre point and encloses
X, which in this case consists of the red, green and blue points. The actual
colour assigned to X is worked out by weighting the three colours according
to X’s distance from each of the three points: the closer to a point the more
that point’s colour contributes to the overall colour assigned to X.

380 From Java to C#

Figure 10.6 A repeating gradient fill created using LinearGradientBrush

Red

X

Yellow Blue

Green

Red

Figure 10.7 Definition of a triangular path gradient brush

The code for producing a triangular brush like this one is as follows:

Point[] fillPoint =

{ new Point(110, 10),

new Point(210, 160),

new Point(10, 160) };

PathGradientBrush pathBrush =

new PathGradientBrush(fillPoint);

pathBrush.CenterColor = Color.Red;

Color[] surround =

{ Color.Green, Color.Blue, Color.Yellow };

pathBrush.SurroundColors = surround;

g.FillRectangle(pathBrush, 10, 10, 200, 150);

Pen pen = new Pen(Color.BlueViolet, 2);

g.DrawRectangle(pen, 10, 10, 200, 150);

We define the array of Points to create the triangle, then create a
PathGradientBrush and provide the array to its constructor to define the
triangular brush. The CenterColor is set to red (it is black by default). We
then define an array of Colors to be associated with the original fillPoint
array – each Color is associated with each Point in turn automatically
when we assign the Color array as pathBrush’s SurroundColors.

We then call FillRectangle() to apply the brush. The result looks like
Figure 10.8 (although admittedly it loses much of its impact if it can’t be
viewed in colour).

Note that even though we applied the brush to the entire rectangle, only
the triangle gets painted – the portion of the rectangle that is not painted by
the triangle is not painted, and in fact the brush allows any other graphics
previously drawn in this area to show through.

We didn’t specify the location of CenterPoint explicitly in this example
since by default it is located at the point found by averaging all the bound-
ary points. We can define CenterPoint to be anywhere we like, however –

Graphics 381

Figure 10.8 Result of filling a rectangle with the triangular brush defined in Figure 10.7

even outside the boundary. The result can be a bit unexpected at times. For
example, if we modify the example above by adding the line:

pathBrush.CenterPoint = new Point(0, 0);

we set the centre point to be the upper-left corner of the rectangle. The
resulting image is as Figure 10.9.

Since the brush was applied to the entire rectangle, the algorithm above
for determining the colour of each point is applied, which causes the trian-
gular section in the upper left to be coloured in since the centre point is now
outside the central triangular region.

We do have to be a bit careful when specifying the boundary, and make
sure that the array of Points actually defines a two-dimensional area, rather
than just a line segment. For example, if we had tried the array (by mistake,
of course!):

Point[] fillPoint =

{ new Point(110, 10),

new Point(210, 10),

new Point(10, 10) };

then all three points have the same y coordinate, so the ‘boundary’ is just a
horizontal line segment. Attempting to run the program with this border
causes an ‘out of memory’ error, presumably because the underlying algo-
rithm uses recursion to attempt to fill the rectangle using the path provid-
ed. Since the path does not define a two-dimensional region, it is impossible
to fill the rectangle. (Probably the underlying code should be tightened up a
bit to detect this situation and throw a more sensible exception.)

A PathGradientBrush will also accept a GraphicsPath as its boundary
instead of an array of Points. A GraphicsPath is a general class that allows
pretty well any shape to be defined – we will consider it in more detail later
in this chapter.

382 From Java to C#

Figure 10.9 Result of moving the centre point of the brush outside its boundary

Finally, PathGradientBrushes can be tiled in various ways to produce an
overall texture for an area. Tiling is always done using the Rectangle prop-
erty of the brush – that is, even though we may have defined a triangular
outline as in the above example, the shape that is tiled is the rectangle that
encloses the triangle.

By default, the WrapMode of the brush is set to WrapMode.Clamp, which
means that only one instance of the shape is drawn. There are several other
WrapModes which produce various tiling effects. The simplest is
WrapMode.Tile which just copies the base figure horizontally and vertical-
ly to fill the shape.

For example, we can reduce the size of the triangular brush used in the
previous example and turn on tiling:

Point[] fillPoint =

{ new Point(10, 10),

new Point(110, 10),

new Point(10, 85) };

PathGradientBrush pathBrush =

new PathGradientBrush(fillPoint);

pathBrush.CenterColor = Color.Red;

Color[] surround =

{ Color.Green, Color.Blue, Color.Yellow };

pathBrush.SurroundColors = surround;

pathBrush.WrapMode = WrapMode.Tile;

g.FillRectangle(pathBrush, 10, 10, 200, 150);

Pen pen = new Pen(Color.BlueViolet, 2);

g.DrawRectangle(pen, 10, 10, 200, 150);

The result looks like that shown in Figure 10.10.

Graphics 383

Figure 10.10 A tiled path gradient brush

It is also possible to flip the brush horizontally and/or vertically at each
repetition by using the other wrapping modes: TileFlipX, TileFlipY
and TileFlipXY. For example, TileFlipXY produces the result shown in
Figure 10.11.

It is possible to set the enclosing Rectangle of the brush to a custom
value, which can produce some interesting effects. Finally, by combining two
or more brushes, where one brush neatly fills in the gaps left by the other
one, we can produce an almost endless variety of effects, even tiling patterns
that appear non-rectangular. Just experiment to see what you can create.

10.2.4 � Brushes as pens

If you’ve glanced through the list of constructors for a Pen, you may have
noticed that some of them accept a Brush as a parameter. In fact, a Pen can
use a Brush as its ‘ink’ when drawing curves. Any brush can be used in a
Pen, so we’ll just give a simple example in which we’ll draw the border in the
last path gradient example using the wallpaper TextureBrush from earlier.
We replace the Pen used to draw the border with the following:

Image wallpaper = Image.FromFile("wallpaper.jpg");

Brush imageBrush = new TextureBrush(wallpaper);

Pen pen = new Pen(imageBrush, 10);

g.DrawRectangle(pen, 10, 10, 200, 150);

This draws a 10-pixel wide frame using the wallpaper pen around the tiled
triangles. The result is as shown in Figure 10.12.

384 From Java to C#

Figure 10.11 A tiled path gradient brush with the brush flipped after each repetition

10.3 ■ The GraphicsPath

If you have explored the Shape interface and its implementations in Java
2D, you will know that it supports a wide variety of shapes which can be
constructed from primitive vector graphics such as lines, rectangles and
ellipses. A Shape can be constructed in other ways in Java, for example, by
obtaining the outline of some text. A Java Shape can also be transformed
using the AffineTransform class to produce translated, rotated, scaled or
sheared versions of the original shape.

The .NET equivalent of Shape is the GraphicsPath, and it (and other
associated classes) allows much the same sort of operations as its Java coun-
terpart. A complete exploration of GraphicsPath would take up too much
of this book, but we’ll give an overview of some of its more useful features.

In its simplest form, a GraphicsPath can be treated almost as an off-
screen Graphics object, since it contains many methods analogous to those
of Graphics for defining shapes.

For example, here is a version of the first vector graphics example
presented earlier in this chapter in which a GraphicsPath is used to draw a
line segment:

using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

public class DrawLine : Form
{

public DrawLine()
{

ClientSize = new Size(300, 300);
StartPosition = FormStartPosition.CenterScreen;

}

protected override void OnPaint(PaintEventArgs args)
{

Graphics 385

Figure 10.12 A texture brush used as a pen to draw a border

Graphics g = args.Graphics;
GraphicsPath path = new GraphicsPath();
Pen pen = new Pen(Color.Red);
path.AddLine(10, 20, 80, 90);
g.DrawPath(pen, path);

}

public static void Main()
{

Application.Run(new DrawLine());
}

}

GraphicsPath is part of the System.Drawing.Drawing2D namespace, so
remember to add a using statement to include this.

In OnPaint() we create a new GraphicsPath and add a line segment to
it. Note that unlike the corresponding AddLine() method in Graphics, we
do not specify the Pen that is used to draw the shape when adding it to the
GraphicsPath. A GraphicsPath defines only the shape of the figure and not
its actual appearance on screen. This must still be done when we use
Graphics itself to draw the path using the DrawPath() method, which takes
a Pen and a GraphicsPath as its parameters.

This program illustrates the division of labour that occurs when using a
GraphicsPath. The geometric path itself is defined within GraphicsPath,
and is then drawn to the screen, or rendered, as a separate operation. Only
Graphics can do rendering, since Graphics contains the code that inter-
faces with the device drivers for the display devices such as monitors and
printers. GraphicsPath is a purely internal class that can do the mathe-
matics required to calculate and transform shapes, but it can’t display them.

Clearly, there isn’t much point in using GraphicsPath if all we want to do
is duplicate the capabilities of Graphics itself. To understand the power of
a GraphicsPath, we first need to understand exactly what a path is.

A GraphicsPath is really just a generalization of the simpler vector
curves we’ve already met. When we use one of the built-in Graphics class-
es such as DrawLine() to draw a vector shape, what actually happens inside
the method? Since all the shapes are drawn on a digital display such as a
monitor, we need to convert the abstract mathematical shape into a collec-
tion of pixels that are to be lit up. Although there are some specialized algo-
rithms that determine which pixels to illuminate for some common curved
shapes such as circles, most shapes are displayed by breaking them down
into a series of line segments, and then applying an underlying algorithm to
draw each line segment. We can therefore define any shape as a collection
of line segments, and this is essentially all that a GraphicsPath is.

The line segments within a GraphicsPath are collected together into one
or more subpaths. Within each subpath, the line segments are all connected
together to form a continuous curve, and the line segments within one sub-
path are disconnected (not joined) to the line segments in any other subpath.

386 From Java to C#

A simple example of a path containing two subpaths is a rectangle and a
circle placed side by side. The rectangle contains four line segments that are
connected to form the rectangular shape; the circle contains enough line
segments to approximate a circular shape within the constraints imposed by
the digital display.

A subpath may consist of either a closed or open curve. A closed curve is
one where the end of each line segment joins up with the beginning of the
next one, and the last line segment joins up to the first one so that there are
no ‘loose ends’ on any of the line segments. An open curve, as you might
expect, is a curve that does have loose ends. A rectangle and circle are both
closed curves.

10.4 ■ Filling shapes

As we’ve seen above, a GraphicsPath only defines the shape but must leave
the rendering to Graphics. However, it is important to realize when build-
ing a GraphicsPath that it can be rendered in two fundamental ways: by
being drawn or by being filled. The drawing operation applies a Pen to trace
the outline of the shape as defined by the series of line segments. A filling
operation can only be applied to a closed shape, and consists of filling the
interior using a Brush, in much the same way as we did with our earlier
examples using Graphics. If a filling operation is applied to an open curve,
Graphics will close the curve first, by adding an extra line segment to con-
nect the last line segment in the path to the first one.

Filling a simple closed shape such as a rectangle is a fairly obvious oper-
ation, but how is a more complex shape such as a polygon with overlapping
edges filled? Graphics offers two filling modes in its FillPolygon() and
FillPath() methods, so a quick explanation of what they are is in order.

The easiest fill mode to understand is Alternate. To see how this works,
consider Figure 10.13.

Graphics 387

DA B C

Figure 10.13 Diagram used to define the Alternate fill mode

The five-pointed star is defined by five points and drawn by drawing the
five line segments that connect these points. If we use FillPolygon() to fill
this star and set the FillMode to Alternate, the algorithm that is applied
works by using a horizontal scan line (shown as dashed in the figure) to fill
each row of pixels in the figure. For a particular row such as the one shown
in the figure, we start at the left end of the scan line, and assume that this
is outside the figure and therefore is not part of the filled region. Moving to
the right along the scan line, we reach the first point (A) where the scan line
intersects one of the line segments that defines the figure. As soon as we
cross one of the line segments, we alternate the fill state from ‘off’ to ‘on’.
The portion of the scan line between points A and B is therefore drawn in.
When we reach point B, we alternate the fill state back to ‘off’, so the sec-
tion from B to C is not filled. Similarly, the section from C to D is filled, and
then when we leave the figure at point D, filling is off again, so the remain-
der of the scan line (out to the right margin of the window) is not drawn.

The algorithm has to have some special cases defined to deal with things
like horizontal edges and vertices in the figure to be filled, but these are all
worked out to give sensible results (see an introductory textbook on com-
puter graphics for details).

We can see the results of applying the alternating fill algorithm to a five-
pointed star by writing a little program that draws it. We replace the
OnPaint() method in the previous example with the following:

protected override void OnPaint(PaintEventArgs args)

{

Graphics g = args.Graphics;

Point[] points =

{

new Point(5, 88), new Point(195, 88),

new Point(41, 200), new Point(100, 19),

new Point(159, 200)

};

GraphicsPath path = new GraphicsPath(FillMode.Alternate);

Brush brush = new SolidBrush(Color.Red);

path.AddLines(points);

g.FillPath(brush, path);

}

The points of the star are defined as an array of Points (the coordinates
are worked out using a little geometry – a good exercise for the reader). We
create a GraphicsPath and set its FillMode to Alternate in the construc-
tor. We can add an array of Points to a GraphicsPath using AddLines(),
and then use FillPath() to fill the result. Note that the points array actu-
ally defines an open curve, since the last point is not equal to the first one.
FillPath() will therefore provide this extra line segment before applying
the filling algorithm. The result is as shown in Figure 10.14.

388 From Java to C#

The Winding filling mode is a little trickier to understand, and we don’t
want to get bogged down with a complicated definition that accounts for all
the special cases. Basically, we need to calculate an integer called the wind-
ing number for each point in the figure. The winding number is a measure
of how many times the figure ‘winds around’ the given point. If the winding
number is zero, the point is assumed to lie outside the figure and is not
filled, otherwise the point is inside and therefore filled.

To calculate the winding number in most cases, we can use the following
method. Referring back to the figure used to demonstrate the horizontal
scan line above, suppose we want to determine if a point in the middle
region of the star (between points B and C) is to be filled. We can draw a line
(called a ray) from that point to infinity (or at least beyond the bounds of
the figure) and observe the points where this line crosses the line segments
that make up the figure. For our example, we can use the line extending to
the right, so it will intersect the figure at points C and D (although we could
equally well have used the line going to the left through points B and A, or
any other line, not necessarily a horizontal one).

Next, we need to assign a direction to each line segment that makes up
the figure. We can do this by starting at the first point (the upper-left point
of the star, as defined in the example C# code above) and then trace out the
figure in the order given by the list of points. This results in the situation
shown in Figure 10.15.

To calculate the winding number of point P, we observe which direction
each line segment in the figure crosses the ray heading away from point P.
If the direction is left to right (as viewed by a traveller moving along the ray
away from P) we add 1 to the winding number; if the direction is right to left,
we subtract 1. In the example shown here, we can see that both line seg-
ments crossed by the ray are left to right relative to the ray, so the winding
number of P is 2.

Graphics 389

Figure 10.14 Result of filling a five-point star in Alternate mode

You should try a few other examples to convince yourself that any point
that lies inside (in the informal sense of lying within the bounds of the line
segments) the star has a non-zero winding number, and any point outside
the star has a zero winding number. Therefore, if we use the winding num-
ber rule, all points inside the star will be filled. It is worth experimenting
with other polygons, either on paper or in C# code, to see what sort of
effects you can generate using the two fill modes.

We can see this by running the above code after changing the parameter
passed to the GraphicsPath constructor to FillMode.Winding. The result
is as shown in Figure 10.16.

In general, the winding fill mode will usually result in complex polygons
(ones where some of the edges intersect each other) that are completely
filled, while the alternating fill mode will give more of a patchwork effect.
There are some pathological cases where a winding fill mode will leave some
gaps in the interior and if we really do want a solid fill in these cases,
we’ll need to patch up the figure with some extra graphics, but these are
fairly uncommon.

390 From Java to C#

DP C

Start

Figure 10.15 Diagram used to define the winding number

Figure 10.16 Result of filling a five-point star in Winding mode

10.5 ■ Transformations and the Matrix class

As we’ve mentioned several times, .NET provides ways by which shapes can be
transformed in various ways. Readers who have used Java’s Affine Transform
class will be familiar with the basics of affine transformations, but we will pro-
vide a summary of the ideas here.

A general transformation of a two-dimensional shape can distort the
shape in any fashion we like – we can move, rotate, stretch, or even break
the shape up if we want to.

An affine transformation is a particular type of transformation that must
satisfy certain conditions, and can be defined precisely using mathematical
terminology, but for our purposes a less rigorous definition will be more use-
ful. Basically, an affine transformation must preserve all parallel lines in a
shape. That is, if two lines are parallel before an affine transformation, they
must also be parallel afterwards. Note that is not the same as saying that the
angle between any pair of lines must remain unchanged during the trans-
formation. All we are stating is that lines that are parallel must remain so.

Both Java and .NET provide four basic types of affine transformation in
two-dimensional graphics: translation, rotation, scaling and shearing.

Translation simply moves the shape from one location to another without
changing its shape, orientation or size. Rotation again does not change the
curve’s shape or size, but merely rotates the figure relative to some fixed
centre point. Scaling changes the figure’s size without moving or rotating it,
and without distorting the figure in any way. Shearing distorts the figure
along a direction parallel to a fixed line, such as the x or y axis.

We will present some simple examples of all four of these transformations
to give a better idea of what they involve. To do this, we must introduce the
Matrix class which is used to specify the transformations, and is roughly
equivalent to Java’s AffineTransform class.

First, a brief word about why the affine transformation class is called
Matrix. As you can discover by consulting an introductory textbook on com-
puter graphics, it is possible to represent any affine transformation in terms
of a mathematical object called a matrix. Since we are not expecting readers
to have a mathematical background, we do not want to get into the details
here, but if you happen to know a bit of elementary matrix theory, the idea is
to represent each point in the figure to be transformed as a vector with three
components. Two of these components represent the x and y coordinates of
the point and the third component, introduced to make the equations easier
to deal with, is always 1. An affine transformation such as a rotation can then
be calculated by defining a 3-by-3 matrix containing numbers which depend
on the angle of rotation. Multiplying the vector representing the point by this
matrix produces another 3-component vector which contains the trans-
formed coordinates of the point. If we multiply all the points that define a
shape by the same matrix, the net effect is to transform the entire shape. For
simple shapes, this requires relatively few calculations, since we only need to

Graphics 391

transform the end points of each line segment in the shape, and then just con-
nect up the new end points to produce the transformed figure. This simplified
procedure only works for affine transformations, since more general transfor-
mations could turn a straight line into an arbitrary curve. For these more gen-
eral transformations, we would therefore need to apply a mathematical for-
mula to all points that made up the original shape, which drastically increas-
es the amount of computation required.

If we develop the theory of affine transformations, we would find that all
such transformations (in two dimensions, anyway) can be represented by 3-
by-3 matrices. The .NET Matrix class uses these matrices to implement
transformations, hence its name.

One feature of the matrix representation of a transformation does have to
be understood, even if we are not delving into the details of the numbers
within a given matrix. We can combine two or more separate transforma-
tions by multiplying together the individual matrices for each transforma-
tion. For example, if we want to translate an object from one point to anoth-
er and then rotate it after it arrives at its new position, we can create one
matrix called T for the translation and another matrix called R for the rota-
tion. Due to the peculiarities of matrix arithmetic, however, the order in
which the multiplication is done does matter, and is in fact opposite to what
you are probably used to. The order in which a series of transformations is
applied to a shape is read from right to left in a matrix product. Thus the
composite transformation consisting of a translation first followed by a rota-
tion would be given by the matrix product R * T. Even if you don’t under-
stand how to multiply matrices on paper, you need to understand this point
since the methods in the Matrix class offer a choice as to the order in which
two matrices are multiplied together.

We have seen above that the distinction between GraphicsPath and
Graphics classes is that GraphicsPath can only be used to define a shape,
while Graphics must be used to render the shape onto an output device
such as a monitor or printer. However, if we consult the documentation, we
will discover that Graphics has a Transform property while GraphicsPath
has a Transform() method. Both of these Transforms use a Matrix to spec-
ify their value, so why the difference in the implementation?

If you cast your mind back to the section where we introduced Graphics,
we said then that Graphics is an ‘almost stateless’ graphics system, by
which we meant that the Pen or Brush required to draw each figure had to
be specified with each drawing or filling command. The ‘almost’ means that
there are some properties or states that can be set in Graphics, and the
transformation is one of these states.

We can therefore set the Transform property of Graphics to a particular
Matrix, and then use the various drawing and filling methods of Graphics
to render some shapes. The Transform will be applied to all these shapes
until it is changed.

392 From Java to C#

In contrast, in GraphicsPath, transformations are implemented by means
of a method rather than a property. This means that we are not setting a state
in GraphicsPath that is applied to future points that are added to the path;
rather, we are applying a transformation to whatever path exists in the
GraphicsPath at the time the Transform() method is called.

The differences between the two transformations methods will become
easier to see once we have considered a few examples.

10.5.1 � Translation

The simplest type of transformation is the translation, which involves just
moving the shape parallel to itself (that is, without rotation or deformation
of any kind).

Although a Matrix can be defined by giving the individual numerical ele-
ments within the transformation matrix, the most common way of defining
a Matrix is using one of the convenience methods from the Matrix class.
For translation, there is a Translate() method which takes the x and y val-
ues by which the object should be translated.

The following version of OnPaint() can be used in place of the OnPaint()
method in the sample programs earlier in this chapter. It tiles the client area
of the main Form with small ellipses.

protected override void OnPaint(PaintEventArgs args)

{

Graphics g = args.Graphics;

Pen pen = new Pen(Color.Black);

for (int x = 0; x < ClientRectangle.Width; x += 40)

{

for (int y = 0; y < ClientRectangle.Height; y += 20)

{

Matrix trans = new Matrix();

trans.Translate(x, y);

g.Transform = trans;

g.DrawEllipse(pen, 0, 0, 40, 20);

}

}

}

The method uses a nested for loop to tile the background, and a new
translation is defined for each iteration through the loop. This example
applies the transform as a property of Graphics before DrawEllipse() is
called each time. The output of the program looks like Figure 10.17.

Graphics 393

We could produce the same result using a GraphicsPath and its Transform()
method as follows:

protected override void OnPaint(PaintEventArgs args)

{

Graphics g = args.Graphics;

Pen pen = new Pen(Color.Black);

for (int x = 0; x < ClientRectangle.Width; x += 40)

{

for (int y = 0; y < ClientRectangle.Height; y += 20)

{

GraphicsPath path = new GraphicsPath();

path.AddEllipse(0, 0, 40, 20);

Matrix trans = new Matrix();

trans.Translate(x, y);

path.Transform(trans);

g.DrawPath(pen, path);

}

}

}

Here, we create a new GraphicsPath and translate it (rather than setting
the Transform property in Graphics) at each iteration in the loop. This is,
of course, much less efficient than the previous method, since now we are
creating a new object for each ellipse, while in the previous example we just
used Graphics to draw the ellipse at a translated location.

You might wonder if these two examples are as efficient as they could be
in any case. In particular, is it really necessary to create a new Matrix with
each iteration of the loop? That is, could we just omit the line:

Matrix trans = new Matrix();

394 From Java to C#

Figure 10.17 Pattern created by repeatedly translating an ellipse

from the inner for loop, since surely we are just setting the Matrix’s trans-
lation by using the Translate() method and we could do that with an exist-
ing Matrix without having to create a new one.

If we try this, however, it doesn’t work, and the reason is that
Translate() (along with the other convenience methods in the Matrix
class for defining the other types of transformation) doesn’t just set the
Matrix to be a single translation. Rather, it multiplies the existing Matrix
by another matrix that implements the required translation. That is, the
Translate() method actually applies the translation after any other trans-
formations that may already be in the Matrix. So instead of applying the
desired translation each time, it is compounding it with all the translations
that have happened in previous loop iterations.

We can avoid this and still avoid creating a new Matrix each time if we
use the Reset() method to restore the Matrix to an identity transformation
(that is, a transformation that doesn’t change the shape at all). So we could
rewrite our first example in a slightly more efficient form as:

protected override void OnPaint(PaintEventArgs args)

{

Graphics g = args.Graphics;

Pen pen = new Pen(Color.Black);

Matrix trans = new Matrix();

for (int x = 0; x < ClientRectangle.Width; x += 40)

{

for (int y = 0; y < ClientRectangle.Height; y += 20)

{

trans.Reset();

trans.Translate(x, y);

g.Transform = trans;

g.DrawEllipse(pen, 0, 0, 40, 20);

}

}

}

We could do a similar thing with the second example using GraphicsPath,
but there is one crucial difference. The Transform() method from
GraphicsPath actually changes the coordinates of the path stored within the
GraphicsPath and it does not save the original values of these points, so we
can’t ‘undo’ a transformation applied to a GraphicsPath unless we save the
transformation values and then reverse the transformation. There is a Reset()
method in GraphicsPath, but this erases all the points stored, rather than
restoring them to some earlier state.

To save the previous transformation and then reverse it before applying
the new transformation, we can alter the GraphicsPath example above to:

protected override void OnPaint(PaintEventArgs args)

{

Graphics g = args.Graphics;

Graphics 395

Pen pen = new Pen(Color.Black);

Matrix trans = new Matrix();

Matrix oldMatrix = new Matrix();

GraphicsPath path = new GraphicsPath();

path.AddEllipse(0, 0, 40, 20);

for (int x = 0; x < ClientRectangle.Width; x += 40)

{

for (int y = 0; y < ClientRectangle.Height; y += 20)

{

path.Transform(oldMatrix);

trans.Reset();

trans.Translate(x, y);

oldMatrix = trans.Clone();

oldMatrix.Invert();

path.Transform(trans);

g.DrawPath(pen, path);

}

}

}

Within each iteration, we begin by reversing the transformation of path
that we applied on the previous iteration (on the first iteration, oldMatrix
is the identity transformation and so does not change path). We then reset
the Matrix and create the new translation, as before. Next, we take a clone
of the Matrix, and then apply Invert() to this clone. The inverse of a
Matrix provides a transformation that undoes the original transformation.
We can then apply the transformation to path and draw it.

It is debatable how much more efficient this method is, however, since
the Clone() still requires creating a new Matrix, and transformations and
matrix inversions all require a fair bit of calculation.

10.5.2 � Rotations

From now on, we will use only the Transform() method on a GraphicsPath
for illustrating transformations, since apart from the differences between
the Graphics Transform property and the Transform() method in
GraphicsPath outlined above, the actual use of the various transformations
in building up a Matrix is the same in both cases.

The Rotate() method in Matrix may look incomplete on first inspection,
since the only parameter it accepts is the angle of rotation. There is no way
of specifying the point about which the rotation is to occur – the Rotate()
method always rotates about the origin.

The trick here is to translate the shape first so that the desired rotation
point is at the origin, then do the rotation, then translate it back to its orig-
inal position. Thus we need to do a compound transform consisting of three
separate operations.

396 From Java to C#

The following code uses the five-pointed star from earlier examples, and
rotates it by 45 degrees about its centre:

1. protected override void OnPaint(PaintEventArgs args)

2. {

3. Graphics g = args.Graphics;

4. Point[] points =

5. {

6. new Point(5, 88), new Point(195, 88),

7. new Point(41, 200), new Point(100, 19),

8. new Point(159, 200)

9. };

10. GraphicsPath path = new GraphicsPath(FillMode.Winding);

11. Brush brush = new SolidBrush(Color.Red);

12. path.AddLines(points);

13.
14. Point centre = new Point();

15. for (int i = 0; i < points.Length; i++)

16. {

17. centre.X += points[i].X;

18. centre.Y += points[i].Y;

19. }

20. centre.X /= points.Length;

21. centre.Y /= points.Length;

22.
23. Matrix transform = new Matrix();

24. transform.Translate(-centre.X, -centre.Y);

25. transform.Rotate(45f, MatrixOrder.Append);

26. transform.Translate(centre.X, centre.Y,

27. MatrixOrder.Append);

28. path.Transform(transform);

29. g.FillPath(brush, path);

30. }

After setting up the star in the same way as before, we must calculate its
centre point by averaging the locations of the five points (lines 14 to 21). We
then create the compound transformation on lines 23 to 27. We first translate
the star so that its centre is at the origin (line 24), then apply the rotation (line
25), and then translate it back to its original position (lines 26 and 27).

Note a couple of things about this code. First, somewhat unusually for
methods taking angles as parameters, the Rotate() expects its angle in
degrees rather than the more usual (and less useful) radians. Second, in
order to ensure the transformations are done in the right order, we add a
MatrixOrder.Append parameter to each of the transformations. The default
for these methods is MatrixOrder.Prepend, which causes each operation to
occur before the last one added. This seemingly perverse behaviour is due
to the matrix multiplication rules described above.

Graphics 397

The output of this program is as shown in Figure 10.18.

10.5.3 � Scaling

Scaling works by multiplying all the x coordinates of a path by a horizontal
scaling factor and all the y coordinates by a vertical scaling factor. As with
rotation, this method of scaling effectively scales all distances relative to the
origin, so if we simply apply a Scale() method to a figure that is not at the
origin and expect it to appear in the same place but larger or smaller, we will
find instead that the figure has also moved from its original location.

The solution to this problem is the same as for rotation: if we want to scale
an object in place, we must first translate it so that its centre is at the origin,
then apply Scale(), and then translate it back to its original location.

We can illustrate this by adding in a call to Scale() in the rotation exam-
ple above. If we insert the line:

transform.Scale(0.5f, 0.75f, MatrixOrder.Append);

after line 25 (that is, if we do the scaling when the star’s centre is at the ori-
gin), we will multiply the star by a factor of 0.5 horizontally and 0.75 verti-
cally. The result is as shown in Figure 10.19.

10.5.4 � Shearing

Shearing is most easily thought of in terms of a pack of playing cards. Begin
by placing the pack of cards on the table in front of you, squared up so that
the cards form a vertical pile. Now push the pack over in such a way that
the bottom card remains where it was, and each card above the bottom card
gets pushed over slightly more than the one below it. The result is that the
pack of cards now has a sloping profile rather than the vertical profile with
which it began.

398 From Java to C#

Figure 10.18 A star rotated about its centre

Mathematically, we can express a shear using a simple equation for the x
and y coordinates of each point in the figure:

x(after) = x(before) + shearX * y(before)

y(after) = y(before) + shearY * x(before)

where x(after) is the x coordinate of the point after the shear operation,
x(before) is the x coordinate before the shear, and shearX and shearY are
constants called the horizontal and vertical shear constants respectively.

The first equation means simply that each point’s x coordinate gets shift-
ed over by an amount that is proportional to the y coordinate of that point.
In other words, the further along the y axis a point lies, the more its x coor-
dinate gets shifted, resulting in the effect we saw with the pack of cards.

The Shear() method requires us to specify values for shearX and shearY.
From the above equations, using shearX = shearY = 0 results in no changes
at all, so to produce a mild shear we should use values fairly close to 0.

It is easiest to see the effects of a shear if we isolate it from other trans-
formations, but as usual, if we apply a shear to an object that is not centred
at the origin, the effect will probably not be what we imagine. We’ll there-
fore illustrate a shear by replacing line 25 (the rotation line) in the previous
example illustrating rotation with the following line:

transform.Shear(0.3f, 0f, MatrixOrder.Append);

This shears the star horizontally but not vertically. The result is as shown
in Figure 10.20.

When viewing this figure, it is important to remember that the star has
not been rotated, only sheared. We can see that those parts of the star with
larger y coordinates (towards the bottom of the figure) have been sheared
more than those at the top.

Graphics 399

Figure 10.19 The star from Figure 10.18 with an additional scaling transformation

10.6 ■ Fonts and drawing strings

.NET provides a great many features that allow text to be drawn and for-
matted, but we do not have the space to cover them all in detail. In this sec-
tion, we will cover the basics of creating a string from a particular font and
drawing it on the screen. Like other graphics such as lines and ellipses, a
string may also be added to a GraphicsPath, which allows some quite
impressive text effects to be created.

The simplest way to add text to a graphical display is to call
DrawString() from Graphics. This method comes in six overloaded forms,
but even the simplest of these requires a fair bit of information. First, of
course, we need to supply the string itself, but we also need to provide a
Font, a Brush and the Point at which the string should be displayed. We
have seen all of these classes before, with the exception of Font, so we’ll take
a quick look at fonts here.

The Font class comes with 13 (yes, 13) constructors to choose from. The
simplest of these requests a ‘family name’ and a ‘size’ for the font. The fam-
ily name of a font is the usual name you have probably seen when selecting
fonts in a word processor, such as ‘Times New Roman’, ‘Arial’ or ‘Courier
New’. The size is specified, by default, in units called points. A point is a his-
torical unit dating from the days of typesetting, and is officially 1/72 inch.
How big a 12-point font actually appears on your monitor, of course,
depends on the current screen resolution, but typically the font that appears
in dialog boxes and ordinary text in documents in a word processor is some-
where in the 8 to 10 point range, so you can use that as a guide to the small-
est size of text that is easily readable in most situations. The best thing is to
experiment and see what gives the desired effect.

Armed with this information, we can produce some text with the follow-
ing code:

400 From Java to C#

Figure 10.20 A star sheared horizontally

protected override void OnPaint(PaintEventArgs args)

{

Graphics g = args.Graphics;

string someText = "Some text";

Font font = new Font("Arial", 20);

Brush brush = new SolidBrush(Color.Red);

Point point = new Point(10, 20);

g.DrawString(someText, font, brush, point);

}

This will draw ‘Some text’ in 20-point (largish) Arial font using a solid red
brush, with the upper-left corner of the text located at the point (10, 20).

Since text is drawn using Graphics, all the enhancements that we have
illustrated in our earlier examples with vector graphics can be applied to
text as well. We can use various types of Brush to produce text with colour
gradients or bitmap patterns, we can apply a Matrix to produce text that is
transformed in various ways, and so on.

The one thing we can’t do if we stick to using just Graphics to display
text is produce text that is drawn with one Brush for a fill pattern and a Pen
for the outline. However, since GraphicsPath allows text to be added to a
general path, we can solve that problem by using GraphicsPath to store the
text before drawing it.

The following OnPaint() method illustrates how this might be done by
producing the string ‘Some text’ drawn with a honeydew brush and then
outlined with a black pen. The text is also rotated about its centre to illus-
trate how the centre of a line of text may be found.

1. protected override void OnPaint(PaintEventArgs args)

2. {

3. Graphics g = args.Graphics;

4. string someText = "Some text";

5. int leftText = 10, topText = 100;

6.
7. FontFamily fontFamily = new FontFamily("Arial");

8. Font font = new Font(fontFamily, 40, FontStyle.Bold);

9. GraphicsPath path = new GraphicsPath(FillMode.Winding);

10. path.AddString(someText, fontFamily,

11. (int)FontStyle.Bold, 40,

12. new Point (leftText, topText),

13. StringFormat.GenericDefault);

14.
15. SizeF textSize = g.MeasureString(someText, font);

16. Point centre = new Point();

17. centre.X = (int)(leftText + textSize.Width) / 2;

18. centre.Y = (int)(topText + textSize.Height) / 2;

19.

Graphics 401

20. Matrix transform = new Matrix();

21. transform.Translate(-centre.X, -centre.Y);

22. transform.Rotate(45f, MatrixOrder.Append);

23. transform.Translate(centre.X, centre.Y,

MatrixOrder.Append);

24. path.Transform(transform);

25.
26. Brush brush = new SolidBrush(Color.Honeydew);

27. g.FillPath(brush, path);

28. Pen pen = new Pen(Color.Black, 2);

29. g.DrawPath(pen, path);

30. g.DrawString(someText, font, brush, new Point(10, 200));

31. }

Let us consider the code in sections. First, we create the text and specify its
position (lines 4 and 5). Next, we define the Font that is to be used to display
the text. However, when adding a string to a GraphicsPath, we cannot just
specify the Font in which the string is to be drawn. Rather, we must define a
FontFamily and derive the Font from it. A FontFamily is a class that defines
the main properties of a particular font design, from which specific instances
of the font can be created. For example, here (line 7) we create the ‘Arial’
FontFamily, which defines all fonts that are based on the Arial specifications.

We can derive a particular Font from a FontFamily by using another of
Font’s 13 constructors (line 8), where we specify the FontFamily, the size
of the font (40 points here) and the style of the font (bold, italic and so on).
The choices for style are contained in the FontStyle enumeration.

Then we create the GraphicsPath (line 9), and then (line 10) we add a
string to the path. The AddString() method from GraphicsPath allows a
string to be added, but only if we specify the font information in terms of the
FontFamily, and not the actual Font itself, even though we need to repeat
all the information required in the Font constructor back on line 8. The
parameters in AddString() are, first, the string to be added to the path and
then the FontFamily object.

Next, we provide the font style, but AddString() will not accept one of
the FontStyle enumeration values directly – instead it must be cast to an
int. After that comes the font size, then the location of the text, and final-
ly a StringFormat parameter. StringFormat is used mainly in formatting
text that is to be displayed on multiple lines, as in a word processor, and we
will not consider it further here. If you only need basic text display, just use
StringFormat.GenericDefault as we have here.

If all we want is to display the text within a GraphicsPath, we don’t actu-
ally need the Font object we created on line 8. However, in many cases we
need some specific information about the font to position the text correctly
in relation to other objects in the scene or, as here, to calculate the centre
of the string so that we may rotate the text relative to the centre point.

To this end, we use MeasureString() from Graphics to find the dimen-
sions (in pixels, not points) of a string displayed using a particular font. This

402 From Java to C#

is shown on line 15, where the result is returned as a SizeF, which stores
the width and height of the text in float values. We use this information
together with the starting point of the text on lines 17 and 18 to calculate
the mid-point of the displayed string.

Once we have this information, we use a Matrix to rotate the string through
45 degrees as we did with the star in the earlier example (lines 20 to 24).

Finally, we illustrate how to draw text using a Brush for the interior and
a Pen for the outline (lines 26 to 29). On line 30 we just draw another string
using DrawString() from Graphics for comparison. The result is as shown
in Figure 10.21.

We close this section on text with a cautionary word on fonts. Most
Windows installations include a large number of fonts that are installed by
default. Many users will add other fonts found on cover disks of computer
magazines, on the web or even ones they have designed themselves. While
some of these fonts may look attractive, if you are writing a program that is
intended for widespread use in locations with which you have no direct con-
nection it is a bit risky to assume that everyone will have all the exotic fonts
you have used in writing the program.

Therefore, although it will probably crimp your artistic style, it is best to
stick to those fonts that are almost certainly on everyone’s computer, such
as Arial, Times New Roman, Courier and so on. If your program requests a
font that is not installed, it is usually not a complete disaster, since Windows
will attempt to substitute an existing font. This means that text will usually
appear in some form on a graphics display – it just might not look quite as
you intended.

Graphics 403

Figure 10.21 Text outline drawn with a Pen for the outline and a Brush for the interior

10.7 ■ Raster graphics

As we mentioned at the beginning of this chapter, general images such as
digital or scanned photographs are displayed using raster graphics, in
which the information required to display the image is stored simply as an
array of colour values rather than as a set of mathematical formulas for
drawing and filling the curves.

Veterans of Java’s image-handling features will know that it is fairly easy
to load an image from a disk file and manipulate it in various ways within
the program. Java is somewhat limited in the image formats that it can sup-
port (at least without obtaining some third-party packages to supplement
the basic Java Development Kit), but it does support the display of the pop-
ular GIF and JPEG formats.

More battle-hardened veterans who have used the Microsoft Foundation
Classes (MFC) for writing Visual C++ programs will have unpleasant memo-
ries of image handling, since MFC provided no built-in support for any image
types apart from the Windows bitmap (BMP) format.

.NET’s image handling features will be good news for both groups, since
in general, loading, editing and saving images is easy in C#. As usual, there
are a great many features available, so in this section we will tour the high-
lights and direct you to the documentation to see what else is available.

10.7.1 � Displaying an image from a disk file

We’ve already seen how to use an image file as a Brush earlier in this chap-
ter, so it should come as no surprise that it is quite simple to display an
unadulterated image in the client area of a Form. The following code does
just that:

using System;

using System.Drawing;

using System.Windows.Forms;

using System.Drawing.Imaging;

public class ImageShow : Form

{

public ImageShow()

{

}

protected override void OnPaint(PaintEventArgs args)

{

Graphics g = args.Graphics;

Image dundee = Image.FromFile("Dundee.jpg");

Size dundeeSize = dundee.Size;

ClientSize = dundeeSize;

404 From Java to C#

g.DrawImage(dundee, new Rectangle(0, 0,

dundeeSize.Width, dundeeSize.Height));

dundee.Save("Dundee.gif", ImageFormat.Gif);

}

public static void Main()

{

Application.Run(new ImageShow());

}

}

As usual, the code for displaying the image is in the OnPaint() method,
since Graphics is in charge of drawing raster images as well as vector shapes.

The image (a JPEG file in this case) is loaded from disk using the
FromFile() method in the Image class. Image is actually an abstract class
and cannot be used on its own to instantiate objects, but it contains a num-
ber of static methods that allow images to be created in various ways.

In order to fit the main frame to the image, we obtain its size and use it
to set the ClientSize. The DrawImage() method in Graphics allows the
image to be drawn in various ways (the method actually has 30 overloads!).
Here, we specify the Rectangle which is to be occupied by the image. The
dimensions of the rectangle are taken from the size of the image, but this is
not necessary. If we specify different dimensions, the image is scaled to fit
the rectangle.

The last line in OnPaint() shows how to save an Image to a disk file, pos-
sibly in a different image format. Here we save the original JPEG image as a
GIF. The second parameter to Save() specifies the image format, and uses
the specification of the format given in an ImageFormat object.
ImageFormat is a class in System.Drawing.Imaging, so remember to add a
using statement for that namespace.

10.7.2 � Drawing on an image

An Image has its own Graphics object which can be used to add customized
graphics to a raster image. For example, the following OnPaint() method
adds a caption to the picture of Dundee in the upper-left corner:

protected override void OnPaint(PaintEventArgs args)

{

Graphics g = args.Graphics;

Image dundee = Image.FromFile("Dundee.jpg");

Size dundeeSize = dundee.Size;

ClientSize = dundeeSize;

Graphics dundeeG = Graphics.FromImage(dundee);

dundeeG.DrawString("View of Dundee from the Law",

new Font("Arial", 14), new SolidBrush(Color.Black),

0, 0);

Graphics 405

g.DrawImage(dundee, new Rectangle(0, 0,

dundeeSize.Width, dundeeSize.Height));

dundee.Save("DundeeLabel.jpg", ImageFormat.Jpeg);

}

We use the static FromImage() method from Graphics to obtain a graph-
ics context called dundeeG for the Image containing the photo of Dundee.
We can then use dundeeG to draw on the photo in exactly the same way as
we use g to draw on the client area of the main Form. Here we use
DrawString() to add the caption ‘View of Dundee from the Law’. (The Law
is a large hill in the centre of Dundee – ‘law’ is actually Gaelic for ‘hill’.) The
last line saves the titled image to a new JPEG file.

It is important to remember that in order for any drawing done on an
Image to be visible, it must be done before the image is drawn to a visible
component. The Image itself is really an offscreen buffer and does not
appear until it is drawn using DrawImage() to display it on a component
that is part of the visible interface. Therefore, if we had placed the
g.DrawImage(…) line before the dundeeG.DrawString(…) line in the above
code, the caption would not appear on screen, although it would still appear
in the saved file, since the file stores the contents of the Image, and is not
just a copy of what appears on the screen.

The output of the program is as shown in Figure 10.22 (the image here is
a smaller size than that which would appear on screen, so the text in the
upper-left corner may be hard to read). It is a photograph I took of Dundee,
Scotland (where I work) on an admittedly rare sunny day in August 2002.

406 From Java to C#

Figure 10.22 A JPEG image of Dundee with a caption added at the upper left

The view looks south over the River Tay, and shows the locally famous Tay
Railway Bridge (more than 3 km or 2 miles long) in the centre of the picture.

Clearly, all the techniques illustrated earlier in this chapter can be
applied to producing graphics overlaid on raster images, so the possibilities
are literally limitless. In addition to adding vector graphics to a raster image,
it is also possible to combine several raster images, since the Graphics
object of one image can be used to draw another image on top of it, using
DrawImage().

Although the methods given above for transforming vector shapes will
also work on raster images, some of the versions of DrawImage() provide
easier ways of implementing transforms such as rotations and shearing.
Have a look through the documentation to see the possibilities.

10.8 ■ Mouse events

Adding handlers for mouse events is fairly straightforward. Handlers are pro-
vided for all the usual mouse events such as pressing and releasing a button,
moving the mouse, and entering, leaving and hovering over a form. The gen-
eral procedure for adding a handler for a mouse event is the same for all
events, so we’ll give a few examples here and then summarize by listing the
handlers that are available.

As a first example, we will write a little program that detects the ‘mouse
down’ event when a mouse is clicked over a blank form. Depending on
which button is pressed, a red, green or blue square is drawn at the location
of the mouse pointer. The code is as follows.

1. using System;

2. using System.Drawing;

3. using System.Windows.Forms;

4.
5. public class MouseDemo1 : Form

6. {

7. const int squareSide = 10;

8.
9. public MouseDemo1()

10. {

11. ClientSize = new Size(300, 300);

12. BackColor = Color.WhiteSmoke;

13. StartPosition = FormStartPosition.CenterScreen;

14. }

15.
16. protected override void OnMouseDown(MouseEventArgs args)

17. {

18. Graphics g = CreateGraphics();

19. Pen pen = new Pen(Color.Black);

Graphics 407

20. if (args.Button == MouseButtons.Left)

21. pen = new Pen(Color.Red);

22. else if (args.Button == MouseButtons.Middle)

23. pen = new Pen(Color.Green);

24. else if (args.Button == MouseButtons.Right)

25. pen = new Pen(Color.Blue);

26. g.DrawRectangle(pen,

27. args.X - squareSide/2,

28. args.Y - squareSide/2,

29. squareSide, squareSide);

30. }

31.
32. public static void Main()

33. {

34. Application.Run(new MouseDemo1());

35. }

36. }

Notice that this program has no override of OnPaint()– all the graphics
are drawn in OnMouseDown() (line 16), which is the override of the mouse
down handler in the Form class. This handler is called whenever any of the
mouse buttons is pressed down (there is a separate OnMouseUp() handler
that is called when a button is released). A Graphics object for drawing is
created (line 18) and a default pen is created (line 19).

The MouseEventsArgs parameter that is passed to OnMouseDown() (and
to all other mouse event handlers) contains all the information about which
button was pressed, what the coordinates of the mouse cursor are and so on.
We illustrate here how to detect which button was pressed by using the
Button property. This value has a value that is defined as a MouseButtons
property. On a standard PC mouse, Left and Right refer to the left and
right buttons. Middle refers to the middle button if there is one, and also to
the mouse wheel if it is used as a button.

Running this program displays a blank form, and clicking one of the
mouse buttons over the client area draws a little square of the correct colour
at each point. Everything appears to work well, but if you cover up the win-
dow and then redisplay it, all the squares disappear.

The reason for this is that when a window is displayed or restored
after being hidden or minimized, any graphics that are to appear must
be defined in OnPaint(). Since this program has no OnPaint() override, no
graphics appear.

The solution is to save the squares in an internal data structure as they
are entered with the mouse, and then put graphics commands in OnPaint()
that display the squares. There are various ways this can be done, but one
solution is as follows.

408 From Java to C#

1. using System;

2. using System.Drawing;

3. using System.Drawing.Drawing2D;

4. using System.Windows.Forms;

5. using System.Collections;

6.
7. public class MouseDemo2 : Form

8. {

9. const int squareSide = 10;

10. private ArrayList squareList = new ArrayList();

11.
12. public MouseDemo2()

13. {

14. ClientSize = new Size(300, 300);

15. BackColor = Color.WhiteSmoke;

16. StartPosition = FormStartPosition.CenterScreen;

17. }

18.
19. protected override void OnMouseDown(MouseEventArgs args)

20. {

21. Pen pen = new Pen(Color.Black);

22. if (args.Button == MouseButtons.Left)

23. pen = new Pen(Color.Red);

24. else if (args.Button == MouseButtons.Middle)

25. pen = new Pen(Color.Green);

26. else if (args.Button == MouseButtons.Right)

27. pen = new Pen(Color.Blue);

28. squareList.Add(new SquareSymbol(pen, args.X, args.Y));

29. Invalidate();

30. }

31.
32. protected override void OnPaint(PaintEventArgs args)

33. {

34. Graphics g = args.Graphics;

35. foreach (SquareSymbol square in squareList)

36. {

37. g.DrawRectangle(square.pen,

38. square.x - squareSide/2,

39. square.y - squareSide/2,

40. squareSide, squareSide);

41. }

42. }

43.
44. public static void Main()

45. {

46. Application.Run(new MouseDemo2());

Graphics 409

47. }

48. }

49.
50. public struct SquareSymbol

51. {

52. public int x, y;

53. public Pen pen;

54.
55. public SquareSymbol(Pen p, int xx, int yy)

56. {

57. x = xx;

58. y = yy;

59. pen = p;

60. }

61. }

We have added a little utility class called SquareSymbol (line 50) which
stores the coordinates of the centre of each square that is to be drawn, along
with a Pen that defines the drawing colour.

The OnMouseDown() handler (line 19) is similar to the previous version,
except that it now uses an ArrayList to store a SquareSymbol (line 28)
each time the mouse is clicked. A call to Invalidate() (line 29) then calls
OnPaint() (line 32) to actually draw the squares. This version of the pro-
gram behaves in the same way as the previous one when the mouse is
clicked over the form’s client area, but now the squares are saved and
redrawn whenever the window is hidden and redisplayed.

This example illustrates an important point about graphics – all graphics
are recreated whenever a window must be redisplayed, and this must be
done by drawing the graphics in OnPaint().

10.8.1 � Mouse events example: checkers game

As a final example of mouse event handling, we will present a simple check-
ers (draughts) game. The program allows two humans to play checkers by
dragging checkermen over a checkerboard. It does not check that moves are
legal, nor does it actually provide a computer-based opponent.

Figure 10.23 shows the display of the program, and illustrates a black
piece being dragged by the mouse over a red piece.

The program draws the board as a grid of grey and pink squares and then
draws the current setup of the pieces on top. A piece can be moved by click-
ing on the square containing it with the left mouse button and then dragging
(moving the mouse while holding down the left button) the mouse to the
square to which the piece is to move. The piece will follow the mouse as it
is dragged, and when the mouse button is released over the destination
square, the piece is drawn centred in that square.

410 From Java to C#

The only check the program makes during a move is that the destination
square is not already occupied by another piece. If it is, the piece being
moved just snaps back to its starting square. A piece can be removed from
the board by right-clicking on it.

The code for the game is as follows. We will describe the details following
the code listing.

1. using System;

2. using System.Drawing;

3. using System.Drawing.Drawing2D;

4. using System.Windows.Forms;

5. using System.Collections;

6.
7. public class Checkers : Form

8. {

9. readonly int squareSide = 50;

10. readonly int pieceDiameter = 30;

11. readonly Color blackSquare = Color.DarkGray;

12. readonly Color redSquare = Color.Pink;

13. readonly Color blackPiece = Color.Black;

14. readonly Color redPiece = Color.Red;

15. private ArrayList pieces = new ArrayList();

16. private Piece selected = null;

17. private int selectedX, selectedY;

18. private Rectangle oldSquare;

19.

Graphics 411

Figure 10.23 A checkers board showing a piece being dragged by the mouse

20. public Checkers()

21. {

22. ClientSize = new Size(8*squareSide, 8*squareSide);

23. Text = "Checkers";

24. StartPosition = FormStartPosition.CenterScreen;

25. CreatePieces();

26. }

27.
28. protected override void OnMouseDown(MouseEventArgs args)

29. {

30. selected = GetSelectedPiece(args.X, args.Y);

31. if (selected == null) return;

32. if (args.Button == MouseButtons.Left)

33. {

34. selectedX = selected.x;

35. selectedY = selected.y;

36. oldSquare = new Rectangle(selected.x, selected.y,

37. squareSide, squareSide);

38. }

39. else if (args.Button == MouseButtons.Right)

40. {

41. pieces.Remove(selected);

42. selected = null;

43. Invalidate();

44. }

45. }

46.
47. protected override void OnMouseMove(MouseEventArgs args)

48. {

49. if (selected == null) return;

50. selected.x = args.X - squareSide/2;

51. selected.y = args.Y - squareSide/2;

52. Rectangle newSquare = new Rectangle

(selected.x, selected.y,

53. squareSide, squareSide);

54. Rectangle clipRect = Rectangle.Union

(oldSquare, newSquare);

55. Invalidate(clipRect);

56. oldSquare = newSquare;

57. }

58.
59. protected override void OnMouseUp(MouseEventArgs args)

60. {

61. if (selected == null) return;

62. Square square = SquareOccupied(args.X, args.Y);

63. if (square.piece != null)

412 From Java to C#

64. {

65. selected.x = selectedX;

66. selected.y = selectedY;

67. }

68. else

69. {

70. selected.x = square.x;

71. selected.y = square.y;

72. }

73. selected = null;

74. Invalidate();

75. }

76.
77. private Square SquareOccupied(int mouseX, int mouseY)

78. {

79. for (int x = 0; x < 8; x++)

80. {

81. for (int y = 0; y < 8; y++)

82. {

83. Rectangle square = new Rectangle(x*squareSide,

84. y*squareSide, squareSide, squareSide);

85. if (square.Contains(mouseX, mouseY))

86. {

87. foreach (Piece piece in pieces)

88. {

89. if (piece != selected &&

90. square.Contains

(piece.x,

piece.y))

91. return new Square(x * squareSide,

92. y * squareSide, piece);

93. }

94. return new Square(x * squareSide,

95. y * squareSide, null);

96. }

97. }

98. }

99. // Should never get here

100. return null;

101. }

102.
103. private Piece GetSelectedPiece(int x, int y)

104. {

105. foreach(Piece piece in pieces)

106. {

107. Rectangle square = new Rectangle(piece.x, piece.y,

Graphics 413

108. squareSide, squareSide);

109. if (square.Contains(x, y))

110. {

111. return piece;

112. }

113. }

114. return null;

115. }

116.
117. private void CreatePieces()

118. {

119. // Red pieces at top of board

120. Brush redBrush = new SolidBrush(redPiece);

121. Brush blackBrush = new SolidBrush(blackPiece);

122. for (int x = 0; x < 8; x++)

123. {

124. for (int y = 0; y < 3; y++)

125. {

126. if ((x + y) % 2 == 1)

127. {

128. pieces.Add(new Piece(redBrush, squareSide*x,

129. squareSide*y));

130. }

131. }

132. for (int y = 5; y < 8; y++)

133. {

134. if ((x + y) % 2 == 1)

135. {

136. pieces.Add(new Piece(blackBrush, squareSide*x,

137. squareSide*y));

138. }

139. }

140. }

141. }

142.
143. private void DrawBoard(Graphics g)

144. {

145. for (int x = 0; x < 8; x++)

146. {

147. for (int y = 0; y < 8; y++)

148. {

149. Color brushColor = (x + y) % 2 == 0 ?

150. redSquare : blackSquare;

151. Brush brush = new SolidBrush(brushColor);

152. g.FillRectangle(brush, x*squareSide,

y*squareSide,

414 From Java to C#

153. squareSide, squareSide);

154. }

155. }

156. }

157.
158. private void DrawPieces(Graphics g)

159. {

160. int pieceOffset = (squareSide - pieceDiameter) / 2;

161. foreach (Piece piece in pieces)

162. {

163. g.FillEllipse(piece.brush,

164. piece.x + pieceOffset,

165. piece.y + pieceOffset,

166. pieceDiameter, pieceDiameter);

167. }

168. }

169.
170. protected override void OnPaint(PaintEventArgs args)

171. {

172. Graphics g = args.Graphics;

173. DrawBoard(g);

174. DrawPieces(g);

175. }

176.
177. public static void Main()

178. {

179. Application.Run(new Checkers());

180. }

181. }

182.
183. public class Piece

184. {

185. public int x, y;

186. public Brush brush;

187.
188. public Piece(Brush b, int xx, int yy)

189. {

190. x = xx;

191. y = yy;

192. brush = b;

193. }

194. }

195.
196. public class Square

197. {

198. public int x, y;

Graphics 415

199. public Piece piece;

200.
201. public Square(int xx, int yy, Piece p)

202. {

203. x = xx;

204. y = yy;

205. piece = p;

206. }

207. }

The program defines a couple of utility classes for storing components in
the game. Piece (line 183) stores the coordinates of the piece on the board
and the Brush that is used to draw it, while Square (line 196) stores the coor-
dinates of a square on the board and the piece (if any) that is on that square.

The constructor (line 20) initializes the form and then calls CreatePieces()
to define the initial setup of the pieces on the board. CreatePieces()
(line 117) creates a number of Piece objects and stores them in the pieces
ArrayList. Note that CreatePieces() does not actually draw any graphics,
since this is done by an automatic call to OnPaint() when the window is
first displayed.

OnPaint() (line 170) calls DrawBoard() (line 143) to draw the squares on
the board and then DrawPieces() (line 158) to draw the pieces on top of the
squares. Each piece is drawn as a circle that is sized to fit inside the square
with space between it at the square’s edges. The sizes of the squares and
pieces are defined by a couple of readonly parameters on lines 9 and 10.

The pieces are stored in an ArrayList called pieces, so we just need to
loop through this list using a foreach loop (line 161) and extract the coor-
dinates of each piece to draw it onto the board.

At this point, the initial setup of the board is complete, and the program
will wait for user interaction. This is done by the user clicking on a square
containing a piece. (In a proper checkers game, black must move first by
dragging one of the black pieces diagonally forward by one square, but the
program does not check this. Any piece can be moved to any empty square.)

The sequence of mouse events required to move a piece is therefore a
mouse down, followed by a number of mouse move events and ending with
a mouse up. Let us look at the handlers for each of these events.

OnMouseDown() (line 28) calls GetSelectedPiece() to try to select the
piece that is in the square selected by the user. GetSelectedPiece() loops
through all the pieces in the pieces list trying to find a piece in the select-
ed square. This is most easily done by using the Contains() method in the
Rectangle class to see if a particular point lies within a rectangle. On line
107 we create a Rectangle representing the chosen square and then test
it to see if it contains the point clicked by the mouse (line 109). If no
piece is in the square selected by the user, null is returned (line 114).
OnMouseDown() therefore has no effect on the graphics – it simply selects
the piece to be moved, if any.

416 From Java to C#

OnMouseDown() also handles removal of a piece from the board (line 39) when
the right button is clicked. In this case, all we need to do is call the Remove()
method from ArrayList to remove selected and then redraw the board.

If the mouse is now dragged, OnMouseMove() (line 47) is called. We first
check that a piece has actually been selected (line 49), since if the user
clicked on an empty square, dragging the mouse should have no effect.

For a selected piece, the idea is to have the image of the piece follow the
mouse pointer smoothly as it is dragged across the board. We therefore set
the selected piece’s coordinates to those of the mouse pointer (offset by half
a square’s width so that the piece is centred on the mouse pointer – lines 50
and 51). We could simply call Invalidate() to redraw the board at this
point, but in most cases this will cause the entire board to flicker noticeably
as the piece is dragged.

The flickering is caused by a rapid succession of calls to OnPaint() each
time a mouse move event is generated, which is typically every few mil-
liseconds. For all but the most powerful graphics cards, it is difficult to
redraw a large area such as the entire window entirely smoothly, so some
flickering is unavoidable.

We can reduce (although not usually eliminate entirely) the flickering by
clipping the region that is redrawn. When a single piece is moved, the only
area on the board that requires redrawing is the union of the square sur-
rounding the old position of the piece with the square surrounding the new
position. We define a Rectangle called oldSquare (line 18) for storing the
previous position of the piece and then calculate the new position on line
52. Using the Union() method from Rectangle (line 54) produces a larger
rectangle that contains both squares, and we can use that to define a clip-
ping region for the call to Invalidate() (line 55).

When the piece reaches its destination square, we can release the mouse
button to drop the piece in place. This calls OnMouseUp() (line 59), which
in turn calls SquareOccupied() (line 77) to locate the square over which
the mouse button was released. SquareOccupied() locates this square
and then checks to see if there is a piece on that square already (loop on
line 87). SquareOccupied() returns a Square object which either contains
the piece on that square (line 91) or null if the square is empty (line 94).

Back in OnMouseUp() we send the piece being moved back to its starting
point if the destination square is occupied (line 63), or else move it to the
new square if it is empty (line 68). In this case, we can redraw the entire
board (line 74) since only a single mouse up event is generated by releasing
the mouse button, so continuous flickering won’t be a problem.

10.8.2 � Other mouse events

The other mouse events work in much the same way as those illustrated
above. In addition to mouse down and mouse up, there is also a mouse click
event, which is generated immediately before mouse up, and can be handled
with an OnClick() method. There is also an OnDoubleClick() handler for
double-clicks of the mouse.

Graphics 417

Rotating (as opposed to clicking) the mouse wheel can be handled with
OnMouseWheel(). The MouseEventArgs parameter has a Delta property
which contains the number of notches or detents the wheel has been moved.
Delta actually returns a value of 120 for each detent moved on the wheel, so
you will need to divide the Delta value by 120 to get the actual number of
notches moved. Forward detents (away from the user) are assigned positive
values and backward detents (toward the user) negative ones. Thus rolling
the wheel 3 notches towards you will generate a Delta of -360.

There are three other mouse events that do not return precise information
about the mouse’s location, but only general information about the mouse
leaving, entering or hovering over a control or form. OnMouseLeave() and
OnMouseEnter() are generated whenever the mouse pointer leaves or enters
the form or control’s boundary. They are passed an ordinary EventArgs
parameter rather than a MouseEventArgs. OnMouseHover() is called whenev-
er the mouse hovers over a control. The most common response to a hover is
the display of a tooltip.

Finally, it should be mentioned that event handlers can be added to a
form or control in the usual way, rather than by an explicit override of the
base class handlers. For example, we could add an event handler for the
mouse down event to a form by adding the following line to a constructor:

this.MouseDown += new EventHandler(MouseDownHandler);

We could then write the MouseDownHandler() method as usual:

public void MouseDownHandler(MouseEventArgs args)

{

// handler code

}

10.9 ■ Keyboard events

The main keyboard event handlers respond to key down and key up events.
The corresponding handlers, OnKeyDown() and OnKeyUp() can be added to
a form or control in the same way as a mouse handler. Keyboard event han-
dlers are passed KeyEventArgs as a parameter, which contains information
such as which key was pressed, which modifier keys (shift, control and alt)
were pressed at the same time and so on.

We will present a simple modification of the MouseDemo2 program above
in which pressing the R, G or B key draws a red, green or blue square at a
random position on the client area. Holding down the shift key will fill the
square in red, holding down control will fill it in green, and holding down
shift and control together will fill the square in yellow. The complete pro-
gram follows:

418 From Java to C#

1. using System;

2. using System.Drawing;

3. using System.Windows.Forms;

4. using System.Collections;

5.
6. public class KeyboardDemo : Form

7. {

8. const int squareSide = 10;

9. private ArrayList squareList = new ArrayList();

10. private Random random = new Random();

11.
12. public KeyboardDemo()

13. {

14. ClientSize = new Size(300, 300);

15. BackColor = Color.WhiteSmoke;

16. StartPosition = FormStartPosition.CenterScreen;

17. }

18.
19. protected override void OnKeyDown(KeyEventArgs args)

20. {

21. Pen pen = new Pen(Color.Black);

22. if (args.KeyCode == Keys.R)

23. pen = new Pen(Color.Red);

24. else if (args.KeyCode == Keys.G)

25. pen = new Pen(Color.Green);

26. else if (args.KeyCode == Keys.B)

27. pen = new Pen(Color.Blue);

28. else

29. return;

30.
31. Brush brush = new SolidBrush(Color.White);

32. if (args.Modifiers == Keys.Shift)

33. brush = new SolidBrush(Color.Red);

34. else if (args.Modifiers == Keys.Control)

35. brush = new SolidBrush(Color.Green);

36. else if (args.Modifiers == (Keys.Control | Keys.Shift))

37. brush = new SolidBrush(Color.Yellow);

38.
39. squareList.Add(new SquareSymbol(pen, brush,

40. random.Next(ClientSize.Width),

41. random.Next(ClientSize.Height)));

42. Invalidate();

43. }

44.
45. protected override void OnPaint(PaintEventArgs args)

46. {

Graphics 419

47. Graphics g = args.Graphics;

48. foreach (SquareSymbol square in squareList)

49. {

50. g.FillRectangle(square.brush,

51. square.x - squareSide/2,

52. square.y - squareSide/2,

53. squareSide, squareSide);

54. g.DrawRectangle(square.pen,

55. square.x - squareSide/2,

56. square.y - squareSide/2,

57. squareSide, squareSide);

58. }

59. }

60.
61. public static void Main()

62. {

63. Application.Run(new KeyboardDemo());

64. }

65. }

66.
67. public struct SquareSymbol

68. {

69. public int x, y;

70. public Pen pen;

71. public Brush brush;

72.
73. public SquareSymbol(Pen p, Brush b, int xx, int yy)

74. {

75. x = xx;

76. y = yy;

77. pen = p;

78. brush = b;

79. }

80. }

We have modified the SquareSymbol utility class (line 67) so that it holds
a Brush as well as a Pen, allowing the square to be filled and outlined in dif-
ferent colours.

When a key is pressed, OnKeyDown() (line 19) is called. The identity of
the pressed key can be extracted from the KeyEventsArgs parameter, as on
line 22. The easiest way to do this is to examine the KeyCode property and
compare it with a list of properties in the Keys enumeration, which contains
an entry for each key on the keyboard (and a few that probably aren’t on
your keyboard as well). Letter keys have an obvious entry, which is just the
letter that was pressed, such as Keys.R on line 22. Other keys usually have
a fairly obvious name, such as F1 to F24 for the function keys (although it is

420 From Java to C#

unlikely your keyboard goes beyond F12), Left, Right, Up and Down for the
arrow keys and so on. Number keys have a D before the number, so that
Keys.D1 is the 1 key and so on. Explore the documentation for the Keys
enumeration to see a complete list.

It should be pointed out that only one KeyCode is ever returned for a given
key on the keyboard, even if some of the modifier keys such as Shift or
Control are pressed at the same time. For example, pressing the ‘T’ key
always returns a KeyCode of Keys.T, even if the Shift key is also pressed.
Information about the modifier keys is contained in KeyData, which com-
bines the KeyCode with the modifier keys that have been pressed, and in the
Modifiers property, which we’ve used on lines 32 to 37 to extract inform-
ation about the extra keys. Generally, if you want a control that reproduces
characters from the keyboard in the same way as a text editor, you should use
one of the ready-made text controls such as those discussed in Chapter 9.

The KeyValue property returns the numerical value (that is, the ASCII or
Unicode value) of the key that was pressed. For example, pressing ‘A’ gen-
erates a KeyValue of 65.

The Modifiers property may be compared to the Keys entries for the
modifier keys to see which ones were pressed. We can check for single mod-
ifier keys, as on line 32 where we check for the Shift key and on line 34 for
Control, or for combinations of keys, such as Shift and Control together on
line 36. To combine modifiers, use a bitwise OR operator to combine the rel-
evant Keys values.

Note that modifier keys such as Shift or Control do produce key events
even if they are held down on their own. This fact is used by some programs
to build things like volume controls into the shift keys, since just holding
them down generates events that can be handled and translated into com-
mands within the program. It is also important to remember that holding
down a key causes it to repeat, and each repeat generates a separate key
down event for that key. In the program above, for example, if you hold
down the R key, a succession of red squares will be drawn.

Once we’ve set the pen and brush for the square, we generate a random
position for it using a Random object called random on lines 39 to 41, and add
it to the list.

The OnPaint() method (line 45) draws the filled interior and then the
outline of each square in the usual way.

10.10 ■ Animation – threads revisited

All the graphics we have seen so far are either static, in the sense that a single
image is drawn on the screen, or dynamic only when the user interacts with
the scene, as when using the mouse to drag a checker piece across the board.

In many cases, adding animation to a graphical scene can greatly enhance
the display. The concept behind computer animation is the same as that
used in creating animated cartoons: an animated image is produced by

Graphics 421

drawing a number of still images and showing them at a rate that gives the
illusion of continuous movement.

We have already seen a simple example of animation in the digital clock
program presented in Chapter 9. There, the Timer class was used to gener-
ate an event every second to update the clock. We could also use Timer to
produce the animation example in this section, but we will present the
example using ‘proper’ threads in order to illustrate how they can be used.

We have seen in Chapter 8 that a program can be paused for a given num-
ber of milliseconds by calling Thread.Sleep(), so this is a natural way to
produce animation. We can prepare a number of images or frames that are
to be displayed at regular intervals and use Thread.Sleep() to pause slight-
ly in between each pair of frames.

As cinema fans will know, the usual rate at which films are shown is
around 24 frames per second, so the delay between successive frames is
about 42 milliseconds. A longer delay tends to produce a jerky image. If you
plan on producing animation, it would be worth experimenting with various
delay times to see what gives the best results.

Although the theory of animation is simple enough – just produce a num-
ber of images and display them with a time delay – there are a few problems
that can arise in practice. One problem we have already met in the check-
ers example above: rapid repainting of a large graphical area usually causes
flickering of the image, unless a very powerful graphics card and associated
hardware are being used. We have already seen how clipping can be used to
reduce this problem to some extent, but if you want to produce animation
where the entire image changes from one frame to the next, clipping is not
possible, and some flickering will usually have to be endured.

The other problem is rather different, and fortunately easier to solve.
When an animation is running, it is usually done by using a loop in the C#
code to iterate over the frames to be displayed. In a GUI program, an ani-
mated image often occupies only part of the display, with various controls
such as buttons and menus occupying other areas. A common interface pro-
vides buttons to allow the animation to be paused and resumed, or to allow
the display to be altered. This is done in the usual way, by attaching event
handlers to the controls which change parameters in the code that are in
turn used to determine how the display should look.

The problem is that as long as the animation runs, it locks out all other
processing in the same program, meaning that all controls essentially
become disabled (although they do still seem to respond to user input, in
that buttons can still be pressed and so on) until the animation finishes. If
the animation is infinite, we obviously have a problem.

The solution, as you may already have guessed, is to run the animation in
a separate thread, thus freeing up the main thread in the program so that it
can respond to events. This is a common technique whenever some time-
consuming sub-process is to be run without locking out the user interaction
to the main GUI.

422 From Java to C#

A simple example will illustrate the problem and how it can be solved. The
Animation program produces an interface with some buttons in a panel on
the left, and a main display area on the right that runs an animation. The ani-
mation consists of a sequence of lines or ellipses drawn at random locations
and using random colours. Pressing the ‘Start’ button starts the animation
going, after which the ‘Start’ caption is to be changed to ‘Pause’, so that press-
ing this button again should pause the animation. When paused, the button’s
caption is changed to ‘Resume’, and pressing it yet again lets the animation
continue from where it left off. The ‘Clear’ button clears the display without
stopping the animation if it is running, and ‘Quit’ exits the program.

The two radio buttons allow the user to select whether to draw lines or
ellipses, and should make the change as soon as one of them is selected,
even if the animation is running at the time.

If we write this program without defining a separate thread in which the
animation can be run, we find that after starting the animation, the controls
have no further effect and the only way to stop the program is by typing
Control-C in the console window (if it was started from a console) or by
using more drastic measures such as using Windows Task Manager if it is
running on its own.

The solution is clearly to create a separate thread which is used to do all
the drawing, and retain the original thread for handling the various events
from the controls. The code for the Animation class is as follows:

1. using System;

2. using System.Threading;

3. using System.Drawing;

4. using System.Drawing.Drawing2D;

5. using System.Windows.Forms;

6.
7. public class Animation : Form

8. {

9. private Panel controlPanel, drawingPanel;

10. private Button pauseButton, clearButton, quitButton;

11. private RadioButton linesRadio, ellipsesRadio;

12. private Thread drawThread;

13. private ShapeType shapeType;

14. private Color backColor = Color.WhiteSmoke;

15.
16. public enum ShapeType

17. { Lines, Ellipses }

18.
19. public Animation()

20. {

21. ClientSize = new Size(500, 400);

22. SetupControlPanel();

23. drawingPanel = new Panel();

Graphics 423

24. drawingPanel.Bounds = new Rectangle

(controlPanel.Width, 0,

25. ClientSize.Width - controlPanel.Width,

ClientSize.Height);

26. drawingPanel.BackColor = backColor;

27. Controls.Add(drawingPanel);

28. StartPosition = FormStartPosition.CenterScreen;

29.
30. ThreadStart drawStart = new ThreadStart(DrawShapes);

31. drawThread = new Thread(drawStart);

32. }

33.
34. private void SetupControlPanel()

35. {

36. controlPanel = new Panel();

37. controlPanel.Bounds = new Rectangle(0, 0,

38. ClientSize.Width/5, ClientSize.Height);

39. controlPanel.BackColor = Color.Beige;

40. this.Controls.Add(controlPanel);

41.
42. // Radio buttons

43. GroupBox radioGroup = new GroupBox();

44. radioGroup.Text = "Select shape";

45. linesRadio = new RadioButton();

46. linesRadio.Text = "Lines";

47. linesRadio.Bounds = new Rectangle(8, 15, 70, 25);

48. linesRadio.Checked = true;

49. shapeType = ShapeType.Lines;

50. linesRadio.Click += new EventHandler(radio_Click);

51. radioGroup.Controls.Add(linesRadio);

52.
53. ellipsesRadio = new RadioButton();

54. ellipsesRadio.Text = "Ellipses";

55. ellipsesRadio.Bounds = new Rectangle(8,

56. linesRadio.Bounds.Y + linesRadio.Height + 5, 70, 25);

57. ellipsesRadio.Click += new EventHandler(radio_Click);

58. radioGroup.Controls.Add(ellipsesRadio);

59. radioGroup.Bounds = new Rectangle(5, 5, 90, 75);

60. controlPanel.Controls.Add(radioGroup);

61.
62. // Buttons

63. pauseButton = new Button();

64. pauseButton.Text = "Start";

65. pauseButton.Bounds = new Rectangle(8,

radioGroup.Bounds.Y +

66. radioGroup.Height + 5, 85, 25);

424 From Java to C#

67. pauseButton.Click += new EventHandler

(pauseButton_Click);

68. controlPanel.Controls.Add(pauseButton);

69.
70. clearButton = new Button();

71. clearButton.Text = "Clear";

72. clearButton.Bounds = new Rectangle(8,

pauseButton.Bounds.Y +

73. pauseButton.Height + 5, 85, 25);

74. clearButton.Click += new EventHandler

(clearButton_Click);

75. controlPanel.Controls.Add(clearButton);

76.
77. quitButton = new Button();

78. quitButton.Text = "Quit";

79. quitButton.Bounds = new Rectangle(8,

clearButton.Bounds.Y +

80. clearButton.Height + 5, 85, 25);

81. quitButton.Click += new EventHandler

(quitButton_Click);

82. controlPanel.Controls.Add(quitButton);

83. }

84.
85. private void radio_Click(object sender, EventArgs args)

86. {

87. if (sender == linesRadio)

88. shapeType = ShapeType.Lines;

89. else if (sender == ellipsesRadio)

90. shapeType = ShapeType.Ellipses;

91. }

92.
93. private void clearButton_Click(object sender,

EventArgs args)

94. {

95. Graphics g = drawingPanel.CreateGraphics();

96. Brush brush = new SolidBrush(backColor);

97. g.FillRectangle(brush, 0, 0,

98. drawingPanel.Width, drawingPanel.Height);

99. }

100.
101. private void quitButton_Click(object sender,

EventArgs args)

102. {

103. drawThread.Abort();

104. Application.Exit();

105. }

Graphics 425

106.
107. private void pauseButton_Click(object sender,

EventArgs args)

108. {

109. if (sender == pauseButton)

110. {

111. if ((drawThread.ThreadState & ThreadState.

Suspended) != 0)

112. {

113. drawThread.Resume();

114. pauseButton.Text = "Pause";

115. }

116. else if ((drawThread.ThreadState &

117. (ThreadState.Running | ThreadState.WaitSleepJoin))

118. != 0)

119. {

120. drawThread.Suspend();

121. pauseButton.Text = "Resume";

122. }

123. else if (drawThread.ThreadState == ThreadState.

Unstarted)

124. {

125. drawThread.Start();

126. pauseButton.Text = "Pause";

127. }

128. }

129. }

130.
131. private void DrawShapes()

132. {

133. Graphics g = drawingPanel.CreateGraphics();

134. Random random = new Random();

135. int x1, y1, x2, y2;

136. Pen pen = new Pen(Color.Black);

137. while (true)

138. {

139. pen = new Pen(Color.FromArgb(

140. random.Next(255), random.Next(255),

random.Next (255)));

141. x1 = random.Next(drawingPanel.Width);

142. y1 = random.Next(drawingPanel.Height);

143. x2 = random.Next(drawingPanel.Width);

144. y2 = random.Next(drawingPanel.Height);

145. switch (shapeType)

146. {

147. case ShapeType.Lines:

426 From Java to C#

148. g.DrawLine(pen, x1, y1, x2, y2);

149. break;

150. case ShapeType.Ellipses:

151. g.DrawEllipse(pen, x1, y1, x2, y2);

152. break;

153. }

154. Thread.Sleep(100);

155. }

156. }

157.
158. public static void Main()

159. {

160. Application.Run(new Animation());

161. }

162. }

The constructor (line 19) calls SetupControlPanel() to create the panel
and the controls, then (lines 23 to 27) creates the panel which will display
the animation. On lines 30 and 31 we define the Thread (see Chapter 8 for
a discussion of how threads are created) and register DrawShapes() as the
method that should be run when the thread is started.

SetupControlPanel() (line 34) sets up the radio buttons and ordinary
buttons in the usual way, and adds event handlers to all the controls.

When the program is run, the user should first press the ‘Start’ button,
which calls the event handler pauseButton_Click() (line 107). The behav-
iour of the handler depends on the state of the thread. The possible states
of a Thread are defined in the ThreadState enumeration, which we use in
the event handler to determine what action should be taken when the but-
ton is pressed.

The first time the button is pressed, the thread has not yet been run at
all, so its state is Unstarted (line 123). In this case, we call Start() for the
thread (line 125) and change the button’s caption to ‘Pause’ (line 126). We
will return to the other two possibilities within this event handler after we
consider the code for producing the animation.

When we created the thread on line 31, we registered DrawShapes() (line
131) as the method that should be run when the thread starts. DrawShapes()
obtains the Graphics object for drawingPanel (line 133) rather than for the
entire form, so we can use coordinates that are local to drawingPanel.

The main loop (line 137) is an infinite loop which will draw a new shape
every 100 milliseconds until the user presses the button to interrupt the ani-
mation. Some random values for the colour and location of the shape are
selected (lines 139 to 144) and then a switch (line 145) draws the shape
depending on the value of shapeType, which is set in the event handler for
the radio buttons (line 85). At the end of each iteration, Thread.Sleep() is
called (line 154) to introduce a delay of 100 milliseconds between shapes.

Graphics 427

Returning to pauseButton_Click(), we can now see what happens when
the user wishes to pause the animation. When a thread is running, its state
is set to Running, but from the code in DrawShapes(), we see that most of
the time the thread will probably be asleep due to the Thread.Sleep() on
line 154. A sleeping thread is in a blocked state, which is represented by
WaitSleepJoin in its ThreadState property. We can therefore check to see
if the thread is in either of the states Running or WaitSleepJoin (line 116)
and, if so, call Suspend() to suspend its operation.

Note that we use a bitwise AND & operator to compare the ThreadState
property with values from the ThreadState enumeration. Using an equality
test == would not always work, since it is possible for a thread to be in more
than one state at a time. For example, if the thread is in WaitSleepJoin when
it is suspended, it will then be in both WaitSleepJoin since it has been
blocked by the Thread.Sleep() call, and it will also be in a Suspended state.

The final operation is the resumption of a suspended thread, so the test
on line 111 deals with that. We call Resume() to start the thread from where
it left off.

It is worth noting that although the drawing and the event handling are
being run in separate threads, they both have access to the same data fields
within the program. This allows a radio button click to have an immediate
effect on a running thread by changing the type of shape that is drawn. If the
animation is running and drawing lines, for example, clicking on the ‘Ellipses’
radio button calls the event handler on line 85, which sets shapeType to
ShapeType.Ellipses. This new value is then used on the next iteration of
the while loop in DrawShapes() where the switch statement will now draw
ellipses on line 151.

The ‘Clear’ button calls the handler on line 93, which just clears all the
previous graphics from the panel. This handler will work whether or not the
thread is currently running.

The ‘Quit’ button calls the handler on line 101, which first kills the thread
by calling Abort() and then exits the program. Failing to stop a running thread
before shutting down a program can cause an exception to be thrown.

10.11 ■ Case study: the adventure game graphical
interface

Now that we have covered the elements of GUI and graphics in .NET, we can
extend our adventure game case study (last considered in Chapter 6) so that it
has a graphical interface. Readers who have played commercial games will be
aware that the graphical interfaces in many games are reaching levels of sophis-
tication undreamed of only a few years ago. Not surprisingly, we won’t be able
to approach this standard in graphics in the example presented here, but hope-
fully the version of the adventure game presented in this chapter will give you
an idea of how a GUI can be attached to our previous text-only program.

428 From Java to C#

The only change to the actual content of the game that we will make in
this chapter is to add a few more rooms so that the player has a bit more
area to explore. The types of items and the commands available will not be
changed from the earlier version.

10.11.1 � The interface to the game

Before we get into details, Figure 10.24 shows what the game looks like
when it is first loaded.

The available commands are displayed using a set of radio buttons in the
upper-left corner. Beneath these command buttons is a ListBox which will
list the options (usually available items in the player’s backpack or in a
room) that some commands such as ‘take’ or ‘drop’ require. Under the
ListBox is a button labelled ‘Do command’ which is pressed when the user
has selected the command and the required options. Only those commands
that are possible at the current turn are enabled.

Graphics 429

Figure 10.24 Graphical interface for the adventure game

Under the button is a grey message area where information is printed.
This information consists of such things as the messages that appear when
a ring is worn or a potion is quaffed, descriptions of combat and so on.

Under the information box is a set of buttons that allow the player to
move between rooms. These are actually non-rectangular Buttons (we will
see how to create these below). Only those buttons that correspond to avail-
able exits from the current room will be enabled.

The large area on the upper right is used to draw a map of the current level.
Each room is drawn as a rectangle, and passages between rooms are also indi-
cated. The current location of the player is shown as a red blob in one of the
rooms. The brief name of each room is displayed within each rectangle.

The area at the bottom right displays the player’s current statistics. The
top bar shows the player’s current energy as a bar chart, and also prints the
player’s name and actual number of energy points on the bar.

Under the player’s energy bar is another bar chart that displays the ener-
gy points for any monster in the current location. When no monster is pres-
ent (as at the start of the game, when the player is placed in the entrance
hallway), this bar is just shown in grey without any text.

Underneath these two bar graphs, the rest of the player’s information is
displayed using ordinary text. This includes such information as the hit
and block probabilities, the maximum damage that the player can do, and
information on any items (weapons, armour, potions or rings) being used by
the player.

The menu at the top contains two menu items: an option to start a new
game and a command to exit the program.

One useful feature of a GUI as opposed to a command-line interface is
that we can restrict the commands that can be made by the user to elimi-
nate incorrect input. This means that error-checking code that we included
in the text version from Chapter 6 is no longer needed.

Writing a GUI that allows only correct commands is, however, fairly
tricky in itself, since we have to make sure that only those controls that can
actually be used at the moment are enabled, that only the correct options
for each command are shown in the list box and so on. However, this extra
work does make for a game that is much easier to play, since the user won’t
waste time correcting errors or trying commands that don’t work.

10.11.2 � Class design

The class design is essentially the same as it was in Chapter 6, since we are
not changing the underlying operation of the game. An extra class has been
added for the non-rectangular buttons used for movement.

The main change is that the Adventure class is no longer the starting
point for the program. We have added an AdventureForm class that manages
the GUI aspects, so we have moved Main() to this class. AdventureForm
now contains an instance of Adventure, since Adventure still stores all the
actual data on what rooms (and their contents) are in the game and other

430 From Java to C#

information on the player. The Adventure class has not changed much apart
from adding the code to set up the extra rooms in this expanded version.

We have also made a few minor changes in the Room class to make the
map easier to draw. The other classes for the various item types, monsters
and the player have not changed at all.

10.11.3 � The GUI code

Since virtually all the new code is in AdventureForm, we’ll analyze this class
in some detail. One of the unfortunate aspects of writing GUI code, even
without using the code-generation features of an environment such as Visual
Studio .NET, is that rather a lot of code is needed to get the components up
and running. It can help to organize this code into methods so we can sep-
arate out the various sections of the GUI.

10.11.4 � AdventureForm – initialization

We will examine AdventureForm in stages, which will allow us to discuss
the main features of each part of the GUI. First, we look at the data fields
and constructor:

1. using System;

2. using System.Drawing;

3. using System.Windows.Forms;

4. using System.Collections;

5.
6. public class AdventureForm : Form

7. {

8. public Adventure adventure;

9.
10. MenuItem fileMenu;

11. MenuItem newGameMenu, exitMenu;

12.
13. const int leftMargin = 20;

14.
15. GroupBox commandBox;

16. RadioButton inventoryRadio,

17. takeRadio, dropRadio,

18. eatRadio, lookRadio,

19. quaffRadio, adornRadio,

20. unadornRadio, wieldRadio,

21. wearRadio, attackRadio,

22. zapRadio, lastCommand;

23. RadioButton[] radioArray;

24. public TextBox messageBox;

25. ListBox commandOptionsListBox;

Graphics 431

26. Label instructionLabel;

27. Button goButton;

28.
29. int mapLevel, minXMap, maxXMap, minYMap, maxYMap;

30.
31. ArrowButton[] moveButton;

32. const int arrowWidth = 50, arrowHeight = 30;

33.
34. private enum Command

35. {

36. Inventory, Look, Take, Drop, Eat,

37. Quaff, Adorn, Unadorn, Wield, Wear,

38. Attack, Zap

39. }

40. Command selectedCommand;

41.
42. public AdventureForm()

43. {

44. adventure = new Adventure();

45. this.Layout += new LayoutEventHandler(OnLayoutForm);

46. this.Closing +=

47. new System.ComponentModel.CancelEventHandler(OnQuit);

48. this.Text = "Adventure!";

49. InitializeComponents();

50. }

51.
52. private void InitializeComponents()

53. {

54. ClientSize = new Size(800, 600);

55. StartPosition = FormStartPosition.CenterScreen;

56. SetupMenus();

57. SetupCommandRadioButtons();

58. SetupMoveButtons();

59. BackColor = Color.FromArgb(255, 220, 170);

60. Controls.AddRange(

61. new Control[] { commandBox }

62.);

63. }

Line 8 declares the adventure object, which is now subservient to
AdventureForm. All the details of the rooms, monsters, player and various
items are still created in Adventure, but the display of these features will be
handled in AdventureForm.

The menu items are declared on lines 10 and 11. The const leftMargin

(line 13) is used to specify the size of the margin between the edge of the
form and the controls on the left side of the client area. It is always a good
idea to use consts for quantities like this since it provides an easy-to-under-

432 From Java to C#

stand name within the program, and also allows the margin to be changed
easily by just changing this one quantity instead of hunting through the pro-
gram to find all the places where we specify a margin size.

Lines 15 to 27 declare the various controls (apart from the arrow buttons,
which we’ll get to later) that appear on the left side of the form. Line 29
declares a few parameters that are used in drawing the map in the upper
right. Finally, the arrow buttons are declared on line 31 and a couple of
parameters relating to them on line 32.

The enum on line 34 is used to provide human-readable names for the com-
mands, and is used in processing each command. Finally, the constructor
(line 42) creates adventure, adds a handler to the main form to allow the
graphics to be redrawn if the window is resized and then calls Initialize
Components() (line 52) to set up the various controls.

InitializeComponents() also adds a handler for the form’s Closing event
(line 46). This event is generated when the ‘Close’ button (the little ‘X’ in the
upper-right corner) is pressed. In order to avoid the program closing uninten-
tionally, we provide a confirmation dialog in the OnQuit() handler method:

private void OnQuit(object sender,

System.ComponentModel.CancelEventArgs args)

{

string message = "Do you really want to quit?";

string caption = "Quit game";

MessageBoxButtons buttons = MessageBoxButtons.YesNo;

DialogResult result;

result = MessageBox.Show(this, message, caption, buttons,

MessageBoxIcon.Question);

if(result == DialogResult.Yes)

{

Application.Exit();

}

else

{

args.Cancel = true;

}

}

OnQuit() displays a MessageBox asking the user to confirm they really
want the program to quit. If not, then we set args.Cancel to true to pre-
vent the closing action from continuing, which causes the form to remain
visible and the program to continue running.

InitializeComponents() delegates most of the initialization work to
other methods, since there is quite a bit to do. We’ll consider each of these
methods separately, beginning with SetupMenus():

Graphics 433

private void SetupMenus()

{

exitMenu = new MenuItem("E&xit",

new EventHandler(OnMenu));

newGameMenu = new MenuItem("&New game",

new EventHandler(OnMenu));

fileMenu = new MenuItem("&File",

new MenuItem[] {newGameMenu, exitMenu});

Menu = new MainMenu(new MenuItem[] { fileMenu });

}

Both menu items are handled by OnMenu():

1. private void OnMenu(object sender, EventArgs args)

2. {

3. if (sender == exitMenu)

4. {

5. string message = "Do you really want to quit?";

6. string caption = "Quit game";

7. MessageBoxButtons buttons = MessageBoxButtons.YesNo;

8. DialogResult result;

9.
10. result = MessageBox.Show(this, message, caption,

buttons,

11. MessageBoxIcon.Question);

12.
13. if(result == DialogResult.Yes)

14. {

15. Application.Exit();

16. }

17. }

18. else if (sender == newGameMenu)

19. {

20. string message =

21. "Do you really want to start a new game?\n" +

22. "This will erase the current game.";

23. string caption = "New game";

24. MessageBoxButtons buttons = MessageBoxButtons.YesNo;

25. DialogResult result;

26.
27. result = MessageBox.Show(this, message, caption,

buttons,

28. MessageBoxIcon.Question);

29.
30. if(result == DialogResult.Yes)

31. {

32. adventure = new Adventure();

434 From Java to C#

33. EnableMoveButtons();

34. EnableCommands();

35. Invalidate();

36. }

37. }

38. }

Both the menu items give commands that will erase the current game, so
they both provide a message box asking for confirmation. The ‘Exit’ com-
mand just calls Application.Exit() to stop the program.

Starting a game can be achieved just by creating a new Adventure object
(line 32) since all the startup code is in that class. We then need to refresh
the controls and graphics on the GUI, which we do on lines 33 and 34. We’ll
consider these methods in more detail below.

The next method in InitializeComponents() is SetupCommandRadio
Buttons(), which contains a lot of repetitive code for creating the radio but-
tons and their associated controls for displaying and requesting information:

1. private void SetupCommandRadioButtons()

2. {

3. commandBox = new GroupBox();

4. commandBox.Bounds = new Rectangle(leftMargin,

20, 230, 175);

5. commandBox.Text = "Commands";

6.
7. int buttonX = 10, buttonY = 15;

8. int buttonWidth = 100, buttonHeight = 20;

9. int buttonSpacing = 5;

10. inventoryRadio = new RadioButton();

11. inventoryRadio.Bounds = new Rectangle(buttonX, buttonY,

12. buttonWidth, buttonHeight);

13. inventoryRadio.Text = "Inventory";

14. inventoryRadio.Click += new EventHandler(OnCommand);

15.
16. lookRadio = new RadioButton();

17. buttonY += buttonHeight + buttonSpacing;

18. lookRadio.Bounds = new Rectangle(buttonX,

19. buttonY, buttonWidth, buttonHeight);

20. lookRadio.Text = "Look";

21. lookRadio.Click += new EventHandler(OnCommand);

22.
23. takeRadio = new RadioButton();

24. buttonY += buttonHeight + buttonSpacing;

25. takeRadio.Bounds = new Rectangle(buttonX,

26. buttonY, buttonWidth, buttonHeight);

27. takeRadio.Text = "Take";

28. takeRadio.Click += new EventHandler(OnCommand);

Graphics 435

29.
30. dropRadio = new RadioButton();

31. buttonY += buttonHeight + buttonSpacing;

32. dropRadio.Bounds = new Rectangle(buttonX,

33. buttonY, buttonWidth, buttonHeight);

34. dropRadio.Text = "Drop";

35. dropRadio.Click += new EventHandler(OnCommand);

36.
37. eatRadio = new RadioButton();

38. buttonY += buttonHeight + buttonSpacing;

39. eatRadio.Bounds = new Rectangle(buttonX,

40. buttonY, buttonWidth, buttonHeight);

41. eatRadio.Text = "Eat food";

42. eatRadio.Click += new EventHandler(OnCommand);

43.
44. quaffRadio = new RadioButton();

45. buttonY += buttonHeight + buttonSpacing;

46. quaffRadio.Bounds = new Rectangle(buttonX,

47. buttonY, buttonWidth, buttonHeight);

48. quaffRadio.Text = "Quaff potion";

49. quaffRadio.Click += new EventHandler(OnCommand);

50.
51. buttonX = inventoryRadio.Bounds.X +

52. inventoryRadio.Bounds.Width + 5;

53. buttonY = inventoryRadio.Bounds.Y;

54. adornRadio = new RadioButton();

55. adornRadio.Bounds = new Rectangle(buttonX,

56. buttonY, buttonWidth, buttonHeight);

57. adornRadio.Text = "Wear ring";

58. adornRadio.Click += new EventHandler(OnCommand);

59.
60. unadornRadio = new RadioButton();

61. buttonY += buttonHeight + buttonSpacing;

62. unadornRadio.Bounds = new Rectangle(buttonX,

63. buttonY, buttonWidth, buttonHeight);

64. unadornRadio.Text = "Remove ring";

65. unadornRadio.Click += new EventHandler(OnCommand);

66.
67. wieldRadio = new RadioButton();

68. buttonY += buttonHeight + buttonSpacing;

69. wieldRadio.Bounds = new Rectangle(buttonX,

70. buttonY, buttonWidth, buttonHeight);

71. wieldRadio.Text = "Wield weapon";

72. wieldRadio.Click += new EventHandler(OnCommand);

73.

436 From Java to C#

74. wearRadio = new RadioButton();

75. buttonY += buttonHeight + buttonSpacing;

76. wearRadio.Bounds = new Rectangle(buttonX,

77. buttonY, buttonWidth, buttonHeight);

78. wearRadio.Text = "Wear armour";

79. wearRadio.Click += new EventHandler(OnCommand);

80.
81. zapRadio = new RadioButton();

82. buttonY += buttonHeight + buttonSpacing;

83. zapRadio.Bounds = new Rectangle(buttonX,

84. buttonY, buttonWidth, buttonHeight);

85. zapRadio.Text = "Zap wand";

86. zapRadio.Click += new EventHandler(OnCommand);

87.
88. attackRadio = new RadioButton();

89. buttonY += buttonHeight + buttonSpacing;

90. attackRadio.Bounds = new Rectangle(buttonX,

91. buttonY, buttonWidth, buttonHeight);

92. attackRadio.Text = "Attack monster";

93. attackRadio.Click += new EventHandler(OnCommand);

94.
95. radioArray = new RadioButton[] {

96. inventoryRadio, lookRadio,

97. takeRadio, dropRadio,

98. eatRadio,

99. quaffRadio, adornRadio,

100. unadornRadio, wieldRadio,

101. wearRadio, attackRadio,

102. zapRadio

103. };

104. EnableCommands();

105.
106. commandBox.Controls.AddRange(radioArray);

107.
108. instructionLabel = new Label();

109. instructionLabel.Bounds = new Rectangle(leftMargin,

110. commandBox.Location.Y + commandBox.Height

+ 5, 230, 18);

111. instructionLabel.Text = "";

112. Controls.Add(instructionLabel);

113.
114. commandOptionsListBox = new ListBox();

115. commandOptionsListBox.Bounds =

new Rectangle(leftMargin,

116. instructionLabel.Location.Y +

instructionLabel.Height + 5,

Graphics 437

117. 230, 125);

118. commandOptionsListBox.SelectedValueChanged +=

119. new EventHandler(OnSelect);

120. Controls.Add(commandOptionsListBox);

121.
122. goButton = new Button();

123. int goButtonWidth = 100;

124. int goButtonHeight = 25;

125. goButton.Bounds = new Rectangle(

126. commandOptionsListBox.Location.X +

127. commandOptionsListBox.Width/2 - goButtonWidth/2,

128. commandOptionsListBox.Location.Y +

129. commandOptionsListBox.Height + 5,

130. goButtonWidth, goButtonHeight);

131. goButton.Text = "Do command";

132. goButton.Enabled = false;

133. goButton.Click += new EventHandler(OnGo);

134. Controls.Add(goButton);

135.
136. messageBox = new TextBox();

137. messageBox.Multiline = true;

138. messageBox.ReadOnly = true;

139. messageBox.ScrollBars = ScrollBars.Vertical;

140. messageBox.Bounds = new Rectangle(leftMargin,

141. goButton.Location.Y + goButton.Height + 5, 230, 100);

142. Controls.Add(messageBox);

143. }

Most of this method should be fairly obvious, since it just sets up the var-
ious radio buttons in a similar way to the example earlier in Chapter 9. We
have added event handlers for the Click event for each radio button, which
means that they act in a similar way to a regular Button. We’ve used radio
buttons instead, since it allows the user to see which command they just
selected, which is needed in some cases since some commands (such as
‘take’ and ‘drop’) require the user to select some items from a list. All the
radio buttons are given the same event handler: OnClick().

One of the key points in any GUI is that controls should only be enabled
when they can be used. Many of the radio button commands are only avail-
able in certain cases. For example, ‘take’ should only be available when
there are items in the current room that can be taken, ‘drop’ when the play-
er’s backpack has something in it and so on.

On line 95, we group the radio buttons together into an array and then
call EnableCommands(), which checks all the conditions for the various but-
tons to be enabled or disabled and sets them accordingly:

438 From Java to C#

public void EnableCommands()

{

takeRadio.Enabled =

adventure.GamePlayer.CurrentLocation.ItemList.Count > 0;

dropRadio.Enabled = adventure.GamePlayer.ItemList.Count > 0;

eatRadio.Enabled =

CountItemsOfType(Type.GetType("Food")) > 0;

quaffRadio.Enabled =

CountItemsOfType(Type.GetType("Potion")) > 0 &&

adventure.GamePlayer.QuaffedPotion == null;

adornRadio.Enabled =

CountItemsOfType(Type.GetType("Ring")) > 0 &&

adventure.GamePlayer.WornRing == null;

unadornRadio.Enabled =

adventure.GamePlayer.WornRing != null;

wieldRadio.Enabled =

CountItemsOfType(Type.GetType("Weapon")) > 0;

wearRadio.Enabled =

CountItemsOfType(Type.GetType("Armour")) > 0;

zapRadio.Enabled =

CountItemsOfType(Type.GetType("Wand")) > 0;

attackRadio.Enabled =

adventure.GamePlayer.CurrentLocation.Monster != null;

foreach (RadioButton radio in radioArray)

{

if (!radio.Enabled && radio.Checked)

{

radio.Checked = false;

lastCommand = null;

commandOptionsListBox.Items.Clear();

break;

}

}

}

Many of these commands need to know whether the player is carrying
items of a specific type, such as rings or potions. Since we have used a sepa-
rate derived class for each item type (see the version of the game in Chapter
6 where we introduced inheritance), we can count the number of items in
the player’s inventory that are of specific class types. This is done using the
CountItemsOfType() method, which takes as its parameter a System.Type
object. Each data type in C# has an associated System.Type object which
can be obtained using the static method GetType() from the System.Type
class. GetType() takes a string parameter which gives the name of the class
(or other data type) for which the System.Type object is required.

Graphics 439

For example, when we are counting the number of Food items being car-
ried, we make the call:

eatRadio.Enabled =

CountItemsOfType(Type.GetType("Food")) > 0;

CountItemsOfType() is fairly simple:

private int CountItemsOfType(Type itemType)

{

ArrayList items = adventure.GamePlayer.ItemList;

int numItems = 0;

foreach (Item item in items)

{

if (item.GetType() == itemType)

{

++numItems;

}

}

return numItems;

}

We use a second version of GetType(), which can be called for any
object, to obtain the System.Type of each item in the player’s item list and
compare this type with the itemType parameter, keeping a count of the
number of such items in the player’s item list.

Returning to EnableCommands(), some commands require an extra check
to make sure that the rules of the game are being followed. For example, it
is only possible to quaff one potion at a time, so we enable the ‘Quaff potion’
button only if (a) the player is carrying some potions and (b) no other potion
is currently in effect. A similar check must be carried out when attempting
to wear a ring. The attackRadio button is only enabled if there is a mon-
ster at the current location.

After enabling and disabling the various buttons, we need to check that
the currently selected button is not now disabled. This can happen, for
example, if the player selects ‘Eat food’ and is currently carrying only one
item of food. If the player eats that one item, then they no longer have any
food in their backpack, so the ‘Eat food’ button will be disabled, but still be
selected. In this case, the final foreach loop locates the checked button and
clears it if it is disabled. This results in none of the radio buttons being
checked, so we clear the lastCommand record to show that the previous
command is not valid any more. We also clear the list of options displayed
in the list box.

Returning to SetupCommandRadioButtons(), after creating the radio but-
tons, we need to create the other controls that provide and request infor-
mation. The instructionLabel is a one-line label (lines 108 to 112) that
appears just below the command buttons, and gives information related to
the selected command. For example, if ‘Look’ is done on an empty room,

440 From Java to C#

instructionLabel says ‘The room is empty.’.
Next (line 114), we add the ListBox which contains the items that may

be selected for various commands, such as Food for ‘Eat’ and so on. We add
(line 118) a handler for the SelectedValueChanged event, since we need a
way of telling if the user has made any selections from this list in order to
provide a valid command. For example, if the user selects ‘Take’ but then
does not select anything to take, the ‘take’ command is not valid and should
not be issued. Only when a command is valid does the ‘Do command’ but-
ton become enabled. The OnSelect() handler merely enables this button:

private void OnSelect(object sender, EventArgs args)

{

if (sender == commandOptionsListBox)

{

goButton.Enabled = true;

}

}

The ‘Do command’ button (called goButton) itself is added on line 122,
with an event handler called OnGo(). Finally, a TextBox called messageBox
for displaying general messages about the play of the game, such as reports
of the progress of combat or the effects of potions, rings or wands, is added
(line 136).

We will return to consider the processing of commands after we have
completed looking at the setup of the controls and graphics.

10.11.5 � Non-rectangular buttons

Back in InitializeComponents(), the last setup operation is the creation
of the arrow buttons for moving between rooms. This setup is done in
SetupMoveButtons():

private void SetupMoveButtons()

{

moveButton = new ArrowButton[6];

for (int i = 0; i < 6; i++)

{

moveButton[i] =

new ArrowButton((Room.Direction)i);

moveButton[i].Click +=

new EventHandler(OnArrowButton);

}

moveButton[(int)Room.Direction.North].Bounds =

new Rectangle(leftMargin + arrowHeight + 3,

messageBox.Location.Y + messageBox.Height + 5,

arrowWidth, arrowHeight);

moveButton[(int)Room.Direction.East].Bounds =

Graphics 441

new Rectangle(leftMargin + arrowHeight + arrowWidth + 3,

messageBox.Location.Y + messageBox.Height +

arrowHeight + 5, arrowHeight, arrowWidth);

moveButton[(int)Room.Direction.South].Bounds =

new Rectangle(leftMargin + arrowHeight + 3,

messageBox.Location.Y + messageBox.Height +

arrowHeight + arrowWidth + 5, arrowWidth, arrowHeight);

moveButton[(int)Room.Direction.West].Bounds =

new Rectangle(leftMargin + 3,

messageBox.Location.Y + messageBox.Height +

arrowHeight + 5, arrowHeight, arrowWidth);

moveButton[(int)Room.Direction.Up].Bounds =

new Rectangle(leftMargin + messageBox.Width - arrowWidth,

messageBox.Location.Y + messageBox.Height + 5,

arrowWidth, arrowWidth);

moveButton[(int)Room.Direction.Down].Bounds =

new Rectangle(leftMargin + messageBox.Width - arrowWidth,

messageBox.Location.Y + messageBox.Height +

arrowWidth + 8, arrowWidth, arrowWidth);

for (int i = 0; i < 6; i++)

{

moveButton[i].SetRegion();

}

Controls.AddRange(moveButton);

EnableMoveButtons();

}

The buttons for moving between rooms, visible in the lower left of the
main window in Figure 10.24, are non-rectangular buttons, something we
have not yet met. C# makes it quite easy to create user-defined buttons such
as these, so we’ll have a look at how it’s done.

A user-defined button requires its own class, which inherits Button. Most
of the functionality of a button is therefore just inherited, and we need only
add those methods that customize its appearance and behaviour. We have
created the ArrowButton class which provides the necessary methods.

In SetupMoveButtons(), we create an array of six ArrowButtons in the
initial for loop and attach a handler for Click to each button. We then set
the bounds for each of these buttons by using measurements that are rela-
tive to messageBox which is the TextBox immediately above them. After
this, we use another for loop to define the shape of each button using
SetRegion(), and then we call EnableMoveButtons() to determine which
buttons should be enabled and disabled.

To understand how all this works, we need to look at the code for
ArrowButton:

1. using System;

2. using System.Drawing;

442 From Java to C#

3. using System.Drawing.Drawing2D;

4. using System.Windows.Forms;

5.
6. public class ArrowButton : Button

7. {

8. Room.Direction direction;

9. Color NormalColor = Color.Red,

10. PressedColor = Color.Yellow,

11. DisabledColor = Color.Gray;

12.
13. public ArrowButton(Room.Direction dir)

14. {

15. direction = dir;

16. BackColor = NormalColor;

17. }

18.
19. public new bool Enabled

20. {

21. set

22. {

23. base.Enabled = value;

24. if (Enabled)

25. BackColor = NormalColor;

26. else

27. BackColor = DisabledColor;

28. }

29. get

30. {

31. return base.Enabled;

32. }

33. }

34.
35. public Room.Direction Direction

36. {

37. get

38. { return direction; }

39. }

40.
41. public void SetRegion()

42. {

43. GraphicsPath outline = new GraphicsPath();

44. switch (direction)

45. {

46. case Room.Direction.North:

47. outline.AddPolygon(

48. new Point[]

Graphics 443

49. {

50. new Point(Width/2, 0),

51. new Point(Width, Height),

52. new Point(0, Height)

53. });

54. break;

55. case Room.Direction.East:

56. outline.AddPolygon(

57. new Point[]

58. {

59. new Point(0, 0),

60. new Point(Width, Height/2),

61. new Point(0, Height)

62. });

63. break;

64. case Room.Direction.South:

65. outline.AddPolygon(

66. new Point[]

67. {

68. new Point(0, 0),

69. new Point(Width, 0),

70. new Point(Width/2, Height)

71. });

72. break;

73. case Room.Direction.West:

74. outline.AddPolygon(

75. new Point[]

76. {

77. new Point(Width, 0),

78. new Point(Width, Height),

79. new Point(0, Height/2)

80. });

81. break;

82. case Room.Direction.Up:

83. outline.AddPolygon(

84. new Point[]

85. {

86. new Point(0, Height/3),

87. new Point(Width/2, 0),

88. new Point(Width, Height/3),

89. new Point(2*Width/3, Height/3),

90. new Point(2*Width/3, Height),

91. new Point(Width/3, Height),

92. new Point(Width/3, Height/3)

93. });

94. break;

444 From Java to C#

95. case Room.Direction.Down:
96. outline.AddPolygon(
97. new Point[]
98. {
99. new Point(Width/3, 0),

100. new Point(2*Width/3, 0),
101. new Point(2*Width/3, 2*Height/3),
102. new Point(Width, 2*Height/3),
103. new Point(Width/2, Height),
104. new Point(0, 2*Height/3),
105. new Point(Width/3, 2*Height/3)
106. });
107. break;
108. }
109. Region = new Region(outline);
110. }
111.
112. protected override void OnPaint(PaintEventArgs e)
113. {
114. Graphics g = e.Graphics;
115. g.FillRectangle(new SolidBrush(BackColor), 0, 0,
116. ClientSize.Width, ClientSize.Height);
117. }
118.
119. protected override void OnMouseDown(MouseEventArgs e)
120. {
121. BackColor = PressedColor;
122. base.OnMouseDown(e);
123. }
124.
125. protected override void OnMouseUp(MouseEventArgs e)
126. {
127. BackColor = NormalColor;
128. base.OnMouseUp(e);
129. }
130. }

Each button has a distinctive shape depending on which direction it rep-
resents. The four compass directions (north, east, south and west) are rep-
resented by triangles while up and down are drawn as arrows, as can be seen
on the screenshot of the game (Figure 10.24).

When we create our own buttons, we are responsible for drawing any-
thing that appears on them, and also for changing the button’s appearance
when it is clicked with the mouse. To do this, we need to override the
OnPaint() event handler to draw the graphics on the button, and also the
OnMouseDown() and OnMouseUp() event handlers to change the graphics
when the button is pressed. Further customization is also possible – for
example, we could override OnMouseEnter() and OnMouseLeave() to have
the button change its shape when the mouse passes over it.

Graphics 445

In ArrowButton, an enabled button in a resting state is coloured a solid
red. When the button is pressed, its colour changes to yellow while the
mouse button is held down, then back to red when the mouse button is
released. The Colors are defined on line 9, and the overridden event han-
dlers are on lines 119 to 129. Note that we call the base class event handlers
as well – this is essential if we want to add another event handler to the but-
ton when it is used in AdventureForm. We added a handler for Click back
in SetupMoveButtons() in AdventureForm, and this would not work unless
the base class handlers for the mouse events were called in ArrowButton.

A button may also be enabled or disabled by setting its Enabled proper-
ty. We usually wish to change the button’s appearance when it is disabled,
so we do this by defining our own Enabled property (line 19). Since
Enabled in the base Button class is not declared as virtual, we cannot
override it in ArrowButton. We therefore declare it as new on line 19 which
hides the property from the base class.

The OnPaint() method (line 112) is quite simple here in that all it does
is paint the button with a solid colour. Since graphics may be drawn on a
button just like any other component, the graphics here can be as elaborate
as you like.

All we have done so far is describe how to draw our own graphics on a but-
ton, but we have not yet said how to make the button non-rectangular. In fact,
this requires nothing more than defining the desired shape as a GraphicsPath
and then setting the button’s Region property using this shape. This is done
for the six different button shapes in SetRegion() (line 41 – recall that
SetRegion() was called from SetupMoveButtons()). The outline variable is
a GraphicsPath that contains the outline shape of the button, and it is defined
according to the direction of the button that we defined earlier. At the end
of the method (line 109) we assign the Region by passing outline to the
Region constructor (Region is a class in System.Drawing and can be used for
other things than defining button shapes).

Once we have finished the ArrowButton class, we can use it just like an
ordinary Button back in AdventureForm. Recall that we registered
OnArrowButton() as the event handler for clicking on one of the arrow but-
tons. Its code follows:

public void OnArrowButton(object sender, EventArgs args)

{

ArrowButton arrow = (ArrowButton)sender;

string dirString =

Room.directionNames[(int)arrow.Direction];

adventure.DoMove(dirString);

messageBox.Text = "You move to the " +

adventure.GamePlayer.CurrentLocation.Description +

DoValidTurn();

EnableMoveButtons();

446 From Java to C#

Invalidate();

UpdateCommand();

if (adventure.GamePlayer.Energy <= 0)

EndGame();

}

This method extracts the direction moved from the button and then calls
the old DoMove() method from Adventure that we used back in Chapter 6.
A message is displayed in messageBox stating the room into which we
moved. The last few lines call several methods to update the display after
the move. We shall consider these methods later.

This completes the definition of the control panel on the left side of the
main form. We now consider the map and stats area on the right.

10.11.6 � Drawing the map

Adventure game maps range from the very simple to the fiendishly complex,
with some of them employing algorithms from graph theory to plot out
routes between points. For our purposes, we will use a fairly simple system,
but one that is flexible enough to allow a good variety of floor layouts for
each level in the game.

In our previous version of the game, we defined the map by specifying the
exits from each room, stating the direction of the exit and the other room
to which it leads. Although we could probably work out an algorithm for
drawing a map from this information alone, it is much easier to pin down
the location of each room by specifying some coordinates for it.

To this end, we modify the Room class slightly by adding three data fields:
x, y and level. Each room is assigned to one particular level, with the start-
ing level as level 0. In this version of the game, level 0 contains five rooms
(entrance, guard room, kitchen, laboratory and dining room). The labora-
tory contains an exit down to the dungeon, which is therefore on level -1.
There are three rooms on level -1: the dungeon, a jail and a storeroom.

Within each level, each room has x (measured from left to right) and y
(measured from the top downwards) coordinates. A new constructor is pro-
vided in Room to allow a room to be declared with its three coordinates.
The SetupRooms() method in the old Adventure class thus becomes in the
new version:

private void SetupRooms()

{

rooms = new Room[NumRooms];

rooms[(int)Locn.Laboratory] =

new Room(0, 2, 0, "laboratory");

rooms[(int)Locn.Kitchen] = new Room(1, 2, 0, "kitchen");

rooms[(int)Locn.Entrance] = new Room(1, 0, 0, "entrance");

rooms[(int)Locn.GuardRoom] =

Graphics 447

new Room(1, 1, 0, "guard room");

rooms[(int)Locn.DiningRoom] =

new Room(2, 2, 0, "dining room");

rooms[(int)Locn.Jail] = new Room(0, 0, -1, "jail");

rooms[(int)Locn.Dungeon] = new Room(1, 0, -1, "dungeon");

rooms[(int)Locn.Storeroom] =

new Room(2, 0, -1, "storeroom");

}

Here, the first three parameters in each constructor call are x, y and
level. Thus the laboratory is at (x, y) = (0, 2) and on level 0 and so on.

Once this information is stored, how do we use it to draw the map of a
given level? This is done in DrawMap() in AdventureForm:

1. private void DrawMap(Graphics g)

2. {

3. Pen pen = new Pen(Color.Green);

4. Rectangle clientRect = ClientRectangle;

5. int mapLeft = commandBox.Bounds.X + commandBox.

Width + 5;

6. int mapTop = commandBox.Bounds.Y;

7. int mapWidth = ClientRectangle.Width -

8. (commandBox.Bounds.X + commandBox.Width + 20);

9. int mapHeight = 2*ClientRectangle.Height/3;

10. g.DrawRectangle(pen,

11. mapLeft, mapTop, mapWidth, mapHeight);

12.
13. mapLevel = adventure.GamePlayer.CurrentLocation.Level;

14. MapLimits();

15.
16. int xRoomSize = mapWidth / (maxXMap - minXMap + 1);

17. int yRoomSize = mapHeight / (maxYMap - minYMap + 1);

18. for (int i = 0; i < Adventure.NumRooms; i++)

19. {

20. if (adventure[i].Level == mapLevel)

21. {

22. DrawRoom(g, mapLeft,

23. mapTop, xRoomSize, yRoomSize, adventure[i]);

24. }

25. }

26. }

DrawMap() is called from AdventureForm’s OnPaint() method, so we can
obtain the Graphics object from OnPaint() and pass it along to DrawMap().

The first section of DrawMap() (lines 3 to 11) just draws a frame around
the area to be used for the map. The frame is scaled to the current size of the

448 From Java to C#

client area, so resizing the overall window causes the map to change size.
We obtain the player’s current level on line 13 and then call MapLimits()

to determine the layout of the rooms on that level. The code is:

private void MapLimits()

{

minXMap = 10000;

maxXMap = -10000;

minYMap = 10000;

maxYMap = -10000;

for (int i = 0; i < Adventure.NumRooms; i++)

{

if (adventure[i].Level == mapLevel)

{

if (minXMap > adventure[i].X)

minXMap = adventure[i].X;

if (maxXMap < adventure[i].X)

maxXMap = adventure[i].X;

if (minYMap > adventure[i].Y)

minYMap = adventure[i].Y;

if (maxYMap < adventure[i].Y)

maxYMap = adventure[i].Y;

}

}

}

This method just loops through all the Rooms in the game and records the
limits of x and y for all rooms on the current level. We therefore know the
extent of the rooms in the horizontal and vertical, and how many squares in
each direction we must allocate. For example, on level 0, x ranges between
0 and 2, as does y, so we must allow for a 3 × 3 grid to be able to draw all
the rooms. On the lower level, x ranges from 0 to 2 but all y values are 0, so
a single row of 3 cells is all we need.

The information calculated by MapLimits() is used back in DrawMap() to
work out the size of the rectangle that is allocated to each room (lines 16
and 17). We then loop through all Rooms in the game and call DrawRoom()
for all rooms that are on the current level (lines 18 to 25).

The DrawRoom() method does all the actual drawing:

1. private void DrawRoom(Graphics g, int mapLeft, int mapTop,

2. int xRoomSize, int yRoomSize, Room room)

3. {

4. int roomX = mapLeft + (room.X - minXMap) * xRoomSize;

5. int roomY = mapTop + (room.Y - minYMap) * yRoomSize;

6.
7. Pen pen = new Pen(Color.BlueViolet, 2);

8. Brush brush = new SolidBrush(Color.LightBlue);

Graphics 449

9.
10. g.FillRectangle(brush, roomX + xRoomSize/3,

11. roomY + yRoomSize/3, xRoomSize/3, yRoomSize/3);

12. g.DrawRectangle(pen, roomX + xRoomSize/3,

13. roomY + yRoomSize/3, xRoomSize/3, yRoomSize/3);

14.
15. if (room.Exit(Room.Direction.East) != null)

16. {

17. g.FillRectangle(brush, roomX + 2*xRoomSize/3 - 2,

18. roomY + 4*yRoomSize/9,

19. xRoomSize/3 + 2, yRoomSize/9);

20. }

21. if (room.Exit(Room.Direction.West) != null)

22. {

23. g.FillRectangle(brush, roomX - 2,

24. roomY + 4*yRoomSize/9,

25. xRoomSize/3 + 4, yRoomSize/9);

26. }

27. if (room.Exit(Room.Direction.North) != null)

28. {

29. g.FillRectangle(brush, roomX + 4*xRoomSize/9,

30. roomY - 2,

31. xRoomSize/9, yRoomSize/3 + 4);

32. }

33. if (room.Exit(Room.Direction.South) != null)

34. {

35. g.FillRectangle(brush, roomX + 4*xRoomSize/9,

36. roomY + 2*yRoomSize/3 - 2,

37. xRoomSize/9, yRoomSize/3 + 4);

38. }

39.
40. Font font = new Font("Arial", 8);

41. brush = new SolidBrush(Color.Black);

42. Point point = new Point(roomX + xRoomSize/3,

43. roomY + yRoomSize/3);

44. g.DrawString(room.Description, font, brush, point);

45.
46. if (adventure.GamePlayer.CurrentLocation == room)

47. {

48. brush = new SolidBrush(Color.Red);

49. g.FillEllipse(brush, roomX + 4*xRoomSize/9,

50. roomY + 4*yRoomSize/9, xRoomSize/9,

51. yRoomSize/9);

52. }

53. }

450 From Java to C#

The location of the rectangle for the given room is calculated (lines 4 and
5) from the map’s position and the X and Y coordinates of the room itself. After
defining a pen and brush (lines 7 and 8), we draw the room (lines 10 to 13).
The room does not fill all the space allocated to it since we need some space
to draw the passages between rooms. Here, we have chosen to make the
room’s rectangle fill the middle third of the overall cell.

The exits from each room are drawn by filling a rectangle that has a width
that is one-third of that of the room’s outline (and therefore one-ninth of the
overall cell size). The possible exits are drawn on lines 15 to 38 (up and
down exits are not drawn – these are visible from the arrow buttons in the
control panel).

We could put a number of embellishments within a room, such as sym-
bols to indicate what the room contains, a graphic for the monster and so
on. To keep things fairly short, we’ve just written the room’s name at the top
of the rectangle (lines 40 to 44) and drawn a red ellipse in the room con-
taining the player (lines 46 to 52). You may wish to add some extra graph-
ics to display more information.

10.11.7 � Displaying the player’s statistics

The final bit of the display is the stats area at the bottom right. The display
shows the current energy of the player (and that of the monster, if there is
one in the room) as a bar chart. The bar shows the player’s maximum energy
and current energy as shown in Figure 10.25.

Below this we show the other stats of the player as ordinary text. This dis-
play is produced by DrawStats():

1. private void DrawStats(Graphics g)

2. {

3. Pen pen = new Pen(Color.Blue);

4. Rectangle clientRect = ClientRectangle;

5. int statsLeft = commandBox.Bounds.X + commandBox.

Width + 5;

6. int statsTop =

7. commandBox.Bounds.Y + 2*ClientRectangle.Height/3 + 5;

8. int statsWidth = ClientRectangle.Width -

9. (commandBox.Bounds.X + commandBox.Width + 20);

10. int statsHeight = ClientRectangle.Height/3 - 30;

11. g.DrawRectangle(pen,

Graphics 451

Figure 10.25 Customized bar charts for displaying statistics of player and opponent

12. statsLeft, statsTop, statsWidth, statsHeight);

13.
14. int energyX = statsLeft + 5;

15. int energyY = statsTop + 5;

16. int energyWidth = statsWidth - 10;

17. int energyHeight = 20;

18. Player player = adventure.GamePlayer;

19. int currentEnergy = player.Energy < 0 ? 0 : player.Energy;

20. int currentEnergyWidth =

21. energyWidth * currentEnergy / player.MaxEnergy;

22. string energyString = player.Name + ": " + player.Energy +

23. "/" + player.MaxEnergy;

24. DrawBarGraph(g, energyX, energyY, energyWidth,

energyHeight,

25. currentEnergyWidth, energyString, Color.LightGray,

26. Color.Salmon);

27.
28. Character monster = player.CurrentLocation.Monster;

29. energyY += energyHeight + 5;

30. if (monster != null)

31. {

32. currentEnergy = monster.Energy < 0 ? 0 : monster.Energy;

33. currentEnergyWidth = energyWidth * currentEnergy /

34. monster.MaxEnergy;

35. energyString = monster.Name + ": " + monster.Energy +

36. "/" + monster.MaxEnergy;

37. DrawBarGraph(g, energyX, energyY,

38. energyWidth, energyHeight,

39. currentEnergyWidth, energyString, Color.LightGray,

40. Color.SkyBlue);

41. }

42. else

43. {

44. DrawBarGraph(g, energyX, energyY,

45. energyWidth, energyHeight,

46. 0, "", Color.LightGray, Color.LightGray);

47. }

48.
49. Font font = new Font("Arial", 10, FontStyle.Bold);

50. Brush brush = new SolidBrush(Color.Black);

51. energyY += energyHeight + 5;

52. g.DrawString("Hit: " + player.HitProb + "%", font, brush,

53. energyX, energyY);

54. energyY += energyHeight;

55. g.DrawString("Block: " + player.BlockProb + "%",

56. font, brush,

452 From Java to C#

57. energyX, energyY);

58. energyY += energyHeight;

59. g.DrawString("Max damage: " + player.Damage, font, brush,

60. energyX, energyY);

61. if (player.WornArmour != null)

62. {

63. energyY += energyHeight;

64. g.DrawString("Wearing " + player.WornArmour.

Description,

65. font, brush, energyX, energyY);

66. }

67. if (player.WieldedWeapon != null)

68. {

69. energyY += energyHeight;

70. g.DrawString("Wielding " +

71. player.WieldedWeapon.Description, font, brush,

72. energyX, energyY);

73. }

74. energyX += statsWidth/2;

75. energyY = statsTop + 15 + energyHeight;

76. if (player.QuaffedPotion != null)

77. {

78. energyY += energyHeight;

79. g.DrawString("Quaffed " +

80. player.QuaffedPotion.Description +

81. " (" + player.PotionTime + " turns left)", font,

brush,

82. energyX, energyY);

83. }

84. if (player.WornRing != null)

85. {

86. energyY += energyHeight;

87. g.DrawString("Wearing " +

88. player.WornRing.Description, font, brush,

89. energyX, energyY);

90. }

91. }

Most of this method (from line 49 onwards) just writes out the statistics
as text. The method begins by drawing a frame around the statistics area
(lines 3 to 12). The bar charts for the player and monster are created by
retrieving the player’s MaxEnergy (the player’s energy when at full health)
and current Energy and working out the size of the ‘active’ portion of the
bar compared to the overall length of the bar. We then call DrawBarGraph()
to draw the bar itself.

Graphics 453

This bar graph looks very similar to the ‘progress bar’ that is often seen
to indicate the progress of an operation such as a program installation.
There is, in fact, a ProgressBar class in Windows Forms, but it is quite
primitive and is not really suitable for what we want here.

We have therefore implemented DrawBarGraph() by using ordinary
graphics commands:

private void DrawBarGraph(Graphics g, int x, int y,

int width, int height,

int activeWidth, string text,

Color back, Color front)

{

Brush brush = new SolidBrush(back);

g.FillRectangle(brush, x, y, width, height);

brush = new SolidBrush(front);

g.FillRectangle(brush, x, y, activeWidth, height);

Font font = new Font("Arial", 10, FontStyle.Bold);

SizeF textSize = g.MeasureString(text, font);

Point stringLoc = new Point();

stringLoc.X = (int)(x + width/2 - textSize.Width/2);

stringLoc.Y = (int)(y + 2);

brush = new SolidBrush(Color.Black);

g.DrawString(text, font, brush, stringLoc);

}

This method has a large number of parameters which allow the bar to be
customized in several ways. The x and y parameters specify the upper-left
corner of the bar, and width and height its overall size. Note that width is
the maximum width of the bar, allocated to MaxEnergy. The activeWidth is
the width allocated to the current energy of the player or monster. The text
is printed on top of the bar after both background and active portions have
been filled in. Finally, back and front are the colours used for the back-
ground and foreground respectively. We use the MeasureString() method
from Graphics to find the size of the text and use this information to cen-
tre it horizontally on the bar.

This completes the setup of the interface.

10.11.8 � Event handlers

The other main section of the GUI programming provides the event han-
dlers for the various controls. Most of these handlers simply call methods in
the classes that we wrote for the text version in Chapter 6.

As we mentioned earlier, most commands in the game require two stages.
First, the user must select the command itself (‘take’, ‘look’ and so on). For
some commands such as ‘look’ and ‘inventory’, clicking the corresponding
radio button then produces the required information and no other action is
needed. Most commands, however, do require extra information from the

454 From Java to C#

user. For example, ‘take’ requires a list of items in the current room that the
player wishes to pick up. For these commands, the list of available options
is printed in the ListBox and the user must select at least one of these in
order to complete the command. Commands that require this additional
information can only be completed when the ‘Do command’ button is
enabled by the program, and this only happens when the user has selected
something from the list.

We saw in the code above that an event handler for the Click event was
attached to all the command radio buttons. The OnCommand() method handles
directly those commands that require no further information from the user,
and populates the list box with the available options for all other commands:

1. public void OnCommand(object sender, EventArgs args)

2. {

3. int items;

4. lastCommand = (RadioButton)sender;

5. if (sender == inventoryRadio)

6. {

7. commandOptionsListBox.SelectionMode =

SelectionMode.None;

8. ShowInventory();

9. commandOptionsListBox.Enabled = false;

10. selectedCommand = Command.Inventory;

11. }

12. else if (sender == lookRadio)

13. {

14. ShowLocationContents(

15. adventure.GamePlayer.CurrentLocation);

16. commandOptionsListBox.Enabled = false;

17. selectedCommand = Command.Look;

18. }

19. else if (sender == takeRadio)

20. {

21. commandOptionsListBox.SelectionMode =

22. SelectionMode.MultiExtended;

23. commandOptionsListBox.Enabled = true;

24. items = ShowLocationContents(

25. adventure.GamePlayer.CurrentLocation);

26. if (items > 0)

27. instructionLabel.Text = "Select item(s) to take:";

28. selectedCommand = Command.Take;

29. }

30. else if (sender == dropRadio)

31. {

32. commandOptionsListBox.SelectionMode =

33. SelectionMode.MultiExtended;

Graphics 455

34. commandOptionsListBox.Enabled = true;

35. items = ShowInventory();

36. if (items > 0)

37. instructionLabel.Text = "Select item(s) to drop:";

38. selectedCommand = Command.Drop;

39. }

40. else if (sender == eatRadio)

41. {

42. commandOptionsListBox.SelectionMode =

43. SelectionMode.MultiExtended;

44. commandOptionsListBox.Enabled = true;

45. items = ShowItemsOfType(Type.GetType("Food"));

46. if (items > 0)

47. instructionLabel.Text = "Select item(s) to eat:";

48. else

49. instructionLabel.Text = "You have nothing to eat.";

50. selectedCommand = Command.Eat;

51. }

52. else if (sender == quaffRadio)

53. {

54. commandOptionsListBox.SelectionMode =

SelectionMode.One;

55. commandOptionsListBox.Enabled = true;

56. int numItems = ShowItemsOfType(Type.GetType("Potion"));

57. if (numItems > 0)

58. instructionLabel.Text = "Select potion to quaff:";

59. else

60. instructionLabel.Text = "You have no potions.";

61. selectedCommand = Command.Quaff;

62. }

63. else if (sender == adornRadio)

64. {

65. commandOptionsListBox.SelectionMode =

SelectionMode.One;

66. commandOptionsListBox.Enabled = true;

67. int numItems = ShowItemsOfType(Type.GetType("Ring"));

68. if (numItems > 0)

69. instructionLabel.Text = "Select ring to wear:";

70. else

71. instructionLabel.Text = "You have no rings.";

72. selectedCommand = Command.Adorn;

73. }

74. else if (sender == unadornRadio)

75. {

76. if (adventure.GamePlayer.WornRing == null)

77. {

456 From Java to C#

78. instructionLabel.Text = "You are not wearing

a ring.";

79. }

80. else

81. {

82. commandOptionsListBox.Items.Clear();

83. adventure.DoUnadorn();

84. instructionLabel.Text = "You remove the ring.";

85. }

86. selectedCommand = Command.Unadorn;

87. }

88. else if (sender == wieldRadio)

89. {

90. commandOptionsListBox.SelectionMode =

SelectionMode.One;

91. commandOptionsListBox.Enabled = true;

92. int numItems = ShowItemsOfType(Type.GetType("Weapon"));

93. if (numItems > 0)

94. instructionLabel.Text = "Select weapon to wield:";

95. else

96. instructionLabel.Text = "You have no weapons.";

97. selectedCommand = Command.Wield;

98. }

99. else if (sender == wearRadio)

100. {

101. commandOptionsListBox.SelectionMode =

SelectionMode.One;

102. commandOptionsListBox.Enabled = true;

103. int numItems = ShowItemsOfType(Type.GetType("Armour"));

104. if (numItems > 0)

105. instructionLabel.Text = "Select armour to wear:";

106. else

107. instructionLabel.Text = "You have no armour.";

108. selectedCommand = Command.Wear;

109. }

110. else if (sender == zapRadio)

111. {

112. commandOptionsListBox.SelectionMode =

SelectionMode.One;

113. commandOptionsListBox.Enabled = true;

114. int numItems = ShowItemsOfType(Type.GetType("Wand"));

115. if (numItems > 0)

116. instructionLabel.Text = "Select wand to zap:";

117. else
118. instructionLabel.Text = "You have no wands.";
119. selectedCommand = Command.Zap;

Graphics 457

120. }
121. else if (sender == attackRadio)
122. {
123. commandOptionsListBox.Items.Clear();
124. selectedCommand = Command.Attack;
125. string message = adventure.DoPlayerAttack();
126. message += DoValidTurn();
127. messageBox.Text = message;
128. }
129. goButton.Enabled = false;
130. Invalidate();
131. EnableCommands();
132. if (adventure.GamePlayer.Energy <= 0)
133. EndGame();
134. }

The selected command is saved as lastCommand (line 4) so that it can be
repeated, if appropriate, as the player moves between rooms using the arrow
buttons. This means that the player can select the ‘look’ command and then
see the contents of each room as the player walks through the various rooms
on the map.

The remainder of the method from line 5 onwards provides handler code
for all the radio buttons. In most cases, this code should be fairly obvious so
we won’t go into detail for all of them.

Most of the commands use commandOptionsListBox either to display
some read-only information (as in the ‘look’ and ‘inventory’ commands) or
to display a list of options from which the user can choose. For the latter
group, some commands allow only a single selection (as in ‘quaff’ or ‘wield’,
for example) while others allow multiple selections (as in ‘eat’ or take’). The
state of the list box must thus be set properly before the user is allowed to
make any selections.

The code for the ‘inventory’ command (line 5) displays the contents
of the player’s backpack in commandOptionsListBox as read-only (non-
selectable) information. We therefore set the SelectionMode of the list box
to None (line 7). Doing this prohibits the user from making any selections,
but the text in the box still appears as normal black font, which could mis-
lead the user into thinking that a selection was still possible. We therefore
disable the list box (line 9) which changes the text to grey. (Actually, dis-
abling the control also prevents the user from making any selections, so we
don’t really need line 7, but we’ve included it to show how a list box can pre-
vent selections from being made.)

As an example of a command where multiple selections are allowed, we
can have a look at ‘take’ (line 19). Here the SelectionMode is set to
MultiExtended, which not only allows multiple items to be selected, but also
allows the Shift, Ctrl and arrow keys to be used. The Shift key is used to select
a range of items by selecting the first item with the mouse as usual, then
scrolling to the end of the range, holding down the Shift key and selecting the
last item with the mouse. All items between these two will also be selected.

458 From Java to C#

To select two items without including the range between them, select the first
with the mouse and then hold down Ctrl and select the second.

The list box is loaded with the items currently in the room by calling
ShowLocationContents() (line 24):

private int ShowLocationContents(Room location)

{

commandOptionsListBox.Items.Clear();

commandOptionsListBox.Items.AddRange(

location.ItemList.ToArray());

int items = location.ItemList.Count;

if (items > 0)

{

instructionLabel.Text = "The " + location.Description +

" contains:";

}

else

{

instructionLabel.Text = "The " + location.Description +

" is empty";

}

return items;

}

The list box is cleared of existing entries and then filled with the contents
of location. Note that we can convert an ArrayList to an array by calling
ToArray() and that this array can be used to populate a ListBox directly,
without using a loop.

We then display an appropriate message in instructionLabel, which
appears directly above the list box. In the case of the ‘take’ command, the
message is changed to ‘Select item(s) to take’ if there are some items in the
room (line 26).

An example of a command where only a single selection is allowed is
‘quaff’ (line 52). The SelectionMode is set to One (line 54). We only want to
list the potions being carried by the player, so we use ShowItemsOfType()
to select and display items of a specific type. This method is a slight variant
of CountItemsOfType() that we saw earlier:

private int ShowItemsOfType(Type itemType)

{

commandOptionsListBox.Items.Clear();

ArrayList items = adventure.GamePlayer.ItemList;

int numItems = 0;

foreach (Item item in items)

{

if (item.GetType() == itemType)

{

Graphics 459

commandOptionsListBox.Items.Add(item);

++numItems;

}

}

return numItems;

}

The list box is cleared and the player’s inventory is searched for items
whose object type matches itemType. Any such items are added to the
list box.

Each control handler also sets a selectedCommand parameter, which is
used in the second stage of command handling after the user has selected
some items from the list box. When ‘Do command’ is pressed, we need to
know which command is to be processed.

The only command that is significantly different from all the others is
‘attack’. The handler for ‘attack’ (line 121) clears the list box and then calls
DoPlayerAttack() from the original Adventure class, which we considered
in Chapter 6. The ‘attack’ command is special in that it is the only command
that does not require any additional information from the user, yet still uses
up game time. This is why DoValidTurn() is called (line 126) to give the
monster a chance to attack and to do some other bookkeeping. The results
of a round of combat are then displayed in the messageBox below the ‘Do
command’ button.

Before we consider the handler for ‘Do command’, it is worth looking at
the last few lines in OnCommand(). Line 129 disables the ‘Do command’ but-
ton after any radio button is selected. This makes sense since, if the select-
ed command merely produces information without requiring any further
input, there is nothing more that needs to be done, so ‘Do command’ should
not be enabled. On the other hand, if the user does need to input some more
data by selecting something from the list box, then ‘Do command’ should
not be enabled until that information is provided.

On line 130, Invalidate() is called to refresh the graphics. Some com-
mands change the state of the player so we need to refresh the information
in the display.

Line 131 calls EnableCommands() which we looked at earlier. This
method enables or disables each radio button depending on the current
state of the player, and must be called after each command since the play-
er’s state could change.

Finally (line 132) we check to see if the player has been killed as a result
of the last command and, if so, call EndGame() to display a message and offer
a new game.

After OnCommand(), the ‘Do command’ button may be enabled. If so, it
must be pressed to complete the command. Its handler is OnGo():

private void OnGo(object sender, EventArgs args)

{

if (sender == goButton)

460 From Java to C#

{

switch (selectedCommand)

{

case Command.Take:

DoTake();

break;

case Command.Drop:

DoDrop();

break;

case Command.Eat:

DoEat();

break;

case Command.Quaff:

DoQuaff();

break;

case Command.Adorn:

DoAdorn();

break;

case Command.Wield:

DoWield();

break;

case Command.Wear:

DoWear();

break;

case Command.Zap:

DoZap();

break;

}

goButton.Enabled = false;

EnableCommands();

Invalidate();

}

}

This method just delegates the handler to the method for that specific
command. We will list the code for all these methods here, although most of
them are quite similar to each other, so we’ll only consider a few of them in
any detail:

1. private void DoTake()

2. {

3. ListBox.SelectedObjectCollection selectedItems =

4. commandOptionsListBox.SelectedItems;

5. foreach (Item item in selectedItems)

6. {

7. if (adventure.GamePlayer.AddItem(item))

8. {

Graphics 461

9. adventure.GamePlayer.CurrentLocation.RemoveItem(

10. item.Description);

11. }

12. }

13. int items =

14. ShowLocationContents(

15. adventure.GamePlayer.CurrentLocation);

16. if (items > 0)

17. instructionLabel.Text = "Select item(s) to take:";

18. messageBox.Text = DoValidTurn();

19. }

20.
21. private void DoDrop()

22. {

23. ListBox.SelectedObjectCollection selectedItems =

24. commandOptionsListBox.SelectedItems;

25. foreach (Item item in selectedItems)

26. {

27. adventure.GamePlayer.RemoveItem(item.Description);

28. adventure.GamePlayer.CurrentLocation.AddItem(item);

29. }

30. int items = ShowInventory();

31. if (items > 0)

32. instructionLabel.Text = "Select item(s) to drop:";

33. messageBox.Text = DoValidTurn();

34. }

35.
36. private void DoEat()

37. {

38. ListBox.SelectedObjectCollection selectedItems =

39. commandOptionsListBox.SelectedItems;

40. string itemsEaten = "";

41. int itemCount = 0;

42. foreach (Item item in selectedItems)

43. {

44. adventure.GamePlayer.RemoveItem(item.Description);

45. adventure.GamePlayer.Energy += ((Food)item).Energy;

46. if (adventure.GamePlayer.Energy >

47. adventure.GamePlayer.MaxEnergy)

48. adventure.GamePlayer.MaxEnergy =

49. adventure.GamePlayer.Energy;

50. itemsEaten += item.Description;

51. itemCount++;

52. if (itemCount < selectedItems.Count - 1)

53. {

54. itemsEaten += ", ";

462 From Java to C#

55. }

56. else if (itemCount == selectedItems.Count - 1)

57. {

58. itemsEaten += " and ";

59. }

60. }

61. int items = ShowItemsOfType(Type.GetType("Food"));

62. if (items > 0)

63. instructionLabel.Text = "Select item(s) to eat:";

64. else

65. instructionLabel.Text =

66. "You have nothing to eat in your pack.";

67. messageBox.Text = "You eat " + itemsEaten +

DoValidTurn();

68. }

69.
70. private void DoQuaff()

71. {

72. Potion potion = (Potion)commandOptionsListBox.

SelectedItem;

73. string potionDesc =

74. commandOptionsListBox.SelectedItem.ToString();

75. adventure.DoQuaff(potionDesc);

76. int items = ShowItemsOfType(Type.GetType("Potion"));

77. if (items > 0)

78. instructionLabel.Text = "Select potion to quaff:";

79. else

80. instructionLabel.Text =

81. "You have no potions in your pack.";

82. messageBox.Text = potion.QuaffString + DoValidTurn();

83. }

84.
85. private void DoAdorn()

86. {

87. Ring ring = (Ring)commandOptionsListBox.SelectedItem;

88. string ringDesc =

89. commandOptionsListBox.SelectedItem.ToString();

90. adventure.DoAdorn(ringDesc);

91. ShowItemsOfType(Type.GetType("Ring"));

92. instructionLabel.Text = "";

93. messageBox.Text = ring.AdornString + DoValidTurn();

94. }

95.
96. private void DoWield()

97. {

98. string weapon =

Graphics 463

99. commandOptionsListBox.SelectedItem.ToString();

100. adventure.DoWield(weapon);

101. int items = ShowItemsOfType(Type.GetType("Weapon"));

102. if (items > 0)

103. instructionLabel.Text = "Select weapon to wield:";

104. else

105. instructionLabel.Text =

106. "You have no weapons in your pack.";

107. messageBox.Text = "You are now wielding " + weapon +

108. DoValidTurn();

109. }

110.
111. private void DoWear()

112. {

113. string armour =

114. commandOptionsListBox.SelectedItem.ToString();

115. adventure.DoWear(armour);

116. int items = ShowItemsOfType(Type.GetType("Armour"));

117. if (items > 0)

118. instructionLabel.Text = "Select armour to wear:";

119. else

120. instructionLabel.Text =

121. "You have no armour in your pack.";

122. messageBox.Text = "You are now wearing " + armour +

123. DoValidTurn();

124. }

125.
126. private void DoZap()

127. {

128. string message = "";

129. Wand wand = (Wand)commandOptionsListBox.SelectedItem;

130. string wandDesc =

131. commandOptionsListBox.SelectedItem.ToString();

132. message += adventure.DoZap(wandDesc);

133. int items = ShowItemsOfType(Type.GetType("Wand"));

134. if (items > 0)

135. instructionLabel.Text = "Select wand to zap:";

136. else

137. instructionLabel.Text = "You have no wands

in your pack.";

138. messageBox.Text = message + DoValidTurn();

139. }

464 From Java to C#

Most commands follow the model exemplified by DoTake() (line 1). We
extract the selected items from the list box and store them in a Selected
ObjectCollection. A foreach loop can iterate over the items in this col-
lection and process each item in turn. For ‘take’ we attempt to add an item
to the player’s inventory (which can fail if the item exceeds the weight limit
for the player – see code in Chapter 6).

After completing the command, we update the display (lines 13 to 17)
and call DoValidTurn() to allow monsters to attack and update potion
times if required.

Most of the other commands work in a similar fashion – the selected
item(s) are processed by calling the appropriate method from the
Adventure class or some other class from the text version of the program.
After this, DoValidTurn() is called to update the situation in the game.

The ‘eat’ command (line 36) is a bit different in that if eating some food
increases the player’s Energy beyond MaxEnergy, MaxEnergy is increased to
this new value. This means that eating food can permanently increase the
player’s maximum energy. (We’re treating all food in the game as health food.)

Commands such as ‘quaff’ (line 70) that require exactly one selected item
can obtain this item directly by using the SelectedItem property of the list
box (line 72).

There are a few other utility methods that we have not discussed but
these do not do anything complex or mysterious and can be examined in the
complete code available on the book’s web site.

■ Summary

In this chapter, we have introduced some of .NET’s facilities for producing
graphics. Like Java, C# requires a graphics context to provide the interface
between the code and the output devices on which the images are displayed.
Simple graphics can be produced using the Pen and Brush for drawing and
filling. More effects can be produced by using the various transformations,
and by defining more complex shapes using a GraphicsPath.

We also had a look at drawing text using Fonts, handling mouse events,
and producing animation by using a separate thread to run the graphics,
thus avoiding locking up the main program.

Finally, a full GUI version of the adventure game case study was produced
illustrating how the concepts of the last two chapters can be brought togeth-
er into a larger program.

Graphics 465

466 From Java to C#

Exercises

10.1 Write a program that displays a plain form with a background painted with a
hatched brush. Use the ClientArea property of the form to determine the size
of the rectangle to fill.

10.2 Write a program that fills the form with a series of concentric rectangles, each
one smaller than the last, and with all rectangles centred in the form’s client
area. Each rectangle should have a random solid colour as a fill pattern and a
black border.

10.3 Write a simple plotting program that will draw an x–y graph from a set of data.
To keep things simple, assume that the x and y values both range between 0
and 100. Generate some data by creating an array of 100 ints and fill the array
with values of your choice (or use Random to produce some random values).
Use this array for the y values and assume that the x values consist of the inte-
gers from 1 to 100.

For the first version of the program, use the left and bottom edges of the client
area as the y and x axes respectively and just write some code that calculates
the correct location of each point to be plotted, then join up all the points with
straight line segments.

Various enhancements to the plotting program in the previous exercise are pos-
sible, so try implementing a few of them. For example, draw a rectangular
frame within the client area that leaves a margin between the frame and the
edges of the form. Draw the graph so that all the points fit inside this frame,
and then draw a label using text on the x and y axes. The label on the y axis
should be rotated by 90 degrees so that the text reads upwards.

10.5 Enhance the graph program by using a gradient brush to provide a transition
between two pastel shades in the background.

10.6 Investigate some of the properties of a Pen that allow the style of line to be cus-
tomized. In particular, examine DashStyle, which allows dotted and dashed
lines to be drawn, LineJoin, which allows corners (places where two lines
meet) to be customized, StartCap, EndCap and DashCap, which allow the
shapes of the ends of lines to be customized and so on. Many of these proper-
ties show up best if the lines are fairly thick.

10.7 Write a simple ‘whiteboard’ application which displays a blank form with a
white background and allows the user to draw on it using the mouse. To do
this, you will need to use ‘mouse move’ events in pairs and draw a line segment
for each mouse move event after the first. In this first version, don’t worry about
saving the lines (meaning that the graphics will be lost if the window is hidden
and then redisplayed).

10.8 Enhance the program in the previous exercise so that the lines making up a
drawing are saved in a data structure and drawn in OnPaint(), thus allowing
the drawing to survive minimizing and restoring the window.

Graphics 467

10.9 Further enhance the whiteboard program by adding a menu with a command
allowing the drawing to be saved as a JPEG file on disk. Use a SaveFileDialog
to allow the user to choose a file name.

10.10 Add another option to the drawing program to allow an image file to be read
in from a disk file, and then edited by using the mouse to draw lines on top of
the image. The resulting image could then be saved to disk as a new file.

10.11 Write a program which displays a blank form with a small square displayed in
the middle. Add a mouse event handler so that when the mouse is clicked
inside the square, the square moves a short distance in a random direction (up,
down, left or right). The motion should be animated, so that the square appears
to drift over the distance, rather than just jump to its new location. If the square
hits an edge of the form, it should bounce back in the opposite direction. (Hint:
examine the Rectangle.Contains() method to see how to detect when the
mouse is clicked within the square.)

10.12 Alter the checkers game by changing the way the piece is moved. Rather than
dragging the piece with the mouse, click the mouse on the piece that is to be
moved, then click on the destination square. If the destination is valid, the piece
should slide from the source to the destination using animation in a separate
thread. Once you have the animation working, try to add in code so that if the
mouse is clicked anywhere on the board before the animation is complete, the
move is aborted and the piece snaps back to its starting square.

Databases

11.1 ■ The basics

For better or worse, databases are now a part of everyday life in computing.
They form the core of accounting systems, many web sites, and many home
PC users’ CD collections. Because databases are so common and relatively
easy to use, it is good news that C# and .NET provide solid support for inter-
acting with most common databases.

Since this book is not a textbook on databases, we won’t give a compre-
hensive survey of database theory, but since we don’t assume any prior
knowledge of databases on the part of the reader, we will provide an outline
of what databases are and how to communicate with them.

A database is, not surprisingly, a program that stores data in a structured
way. The most important function of a database is its ability to allow queries
to be made of its data. For example, if you have stored information on your
book collection in a database, you might want to get a list of all books writ-
ten by a particular author, or on a particular subject, or you might even want
a list of all books that are longer than 300 pages.

In order to achieve this, we need to design the structure of the database
carefully so that the retrieval operation is both possible and relatively easy.
To get an idea of what’s involved, let’s start with a list of several books (not
all of which actually exist), for each of which we will list the author(s), title
and number of pages:

It may seem that the simplest way of storing these books in a database
would be to just store the information on each book as a single string in a
text file, such as:

Author:"Wibble, Zaphod";Title:"Wibble’s Guide to the

Classics";Pages:345

Author:"Asimov, Isaac";Title:"The Complete Stories, Vol. 1";

Pages:429

Author:"Asimov, I.";Title:"The Complete Stories, Vol. 2";

Pages:464

11

Author(s) Title No. of pages

Wibble, Zaphod Wibble’s Guide to the Classics 345
Asimov, Isaac The Complete Stories, Vol. 1 429
Asimov, I. The Complete Stories, Vol. 2 464
Dium, T. & Moron, Oxy Honest Politicians 24
Wibble, Z. Q. Wibble’s Guide to Heavy Metal 297

Author:"Dium,T & Moron, Oxy";Title:"Honest Politicians";

Pages:24

Author:"Wibble, Z.Q.";Title:"Wibble’s Guide to Heavy Metal";

Pages:297

With the data stored in this way, we could, for example, search for all
books by Asimov by looking at each line in the file, finding the word
‘Author’, and then searching between the double quotes following ‘Author’
for the name ‘Asimov’.

Although this method would work in principle, it is inefficient in practice,
since it requires a sequential search through a lot of text, much of which is
not relevant to the query we are making.

Rather than a ‘flat file’ format such as this, a database makes use of tables
for defining key features of the data that is being stored. Designing the table
structure of a database is similar to designing the class structure of an
object-oriented program. We need to identify those features of the data that
are most useful in classifying it, and which will best facilitate any queries we
might wish to do.

As with object-oriented design, there is often not a single ‘correct’ design
for a database, but there are designs that certainly make more sense than
others. For our book data, we need to think about the objects that are being
described and ask how they relate to each other. The central object type in
a book database is, of course, the book itself. We therefore create one table
called ‘Books’ for storing information on individual books.

Like a class, a table has individual data fields that describe properties of
the objects that are stored in the table. Each book can have one or more
authors, a title, and a number of pages. (Books can, of course, have many
other properties such as publisher, ISBN, price, publication date, and so on,
but to keep things simple, we will just consider author, title and number of
pages here.) We could, therefore, just define an authors field, a title field and
a number of pages field in our book table.

But does this really organize the data in the most efficient way? We’ve
seen that one book can have more than one author, so do we just list all the
authors in the table’s ‘Author’ field? Or do we allow a single book to have
more than one ‘Author’ field?

What about the authors themselves? Here, we have stored only the
author’s name, but we might want the database to store other information
about each author, such as their birth and death dates, their nationality, and
so on. Also, one author can be associated with more than one book. If we
did specify extra information about each author, does this mean we would
need to repeat the information with each book the author wrote (or co-
wrote)? Doing this not only wastes space, but also opens the database up to
potential errors, since we might make a mistake in copying the information
from one book to the next.

Another problem is evident from the data listed above: sometimes the
same author is written differently, as in ‘Asimov, Isaac’ and ‘Asimov, I.’. If
these both refer to the same person, we don’t want them listed as two sepa-
rate entries in the table.

470 From Java to C#

Clearly using just a single table to store the book data is not very efficient.
A better design is to create a separate table for authors, and then somehow
link the ‘Authors’ table to the ‘Books’ table to indicate which authors wrote
which books. A common method of doing this is to add a numerical key to
each author and book and use these keys to link the tables. We can then use
this key as a reference in another table. As an example, we rewrite the data
above as two tables, one for authors and one for books. We’ll deal with the
links between the tables later.

If each book had only a single author, we could add another column to the
Books table to provide a link to that book’s author. For example, we could
list the first author of each book this way for our data above:

This form of linking works well if there is a ‘one-to-many’ relationship
between two tables, that is, if at most one record in one table can be con-
nected to many records in another table. It is certainly a better solution
than entering all the author’s details alongside every book written by that

Databases 471

Authors

AuthorKey Name

1 Wibble, Zaphod Q
2 Asimov, Isaac
3 Dium, T
4 Moron, Oxy

Books

BookKey Title Number of pages

1 Wibble’s Guide to the Classics 345
2 The Complete Stories, Vol. 1 429
3 The Complete Stories, Vol. 2 464
4 Honest Politicians 24
5 Wibble’s Guide to Heavy Metal 297

Books

BookKey Title Number of pages Author

1 Wibble’s Guide to the Classics 345 1
2 The Complete Stories, Vol. 1 429 2
3 The Complete Stories, Vol. 2 464 2
4 Honest Politicians 24 3
5 Wibble’s Guide to Heavy Metal 297 1

author, since we can change or add information about a given author by
changing only the record corresponding to that author in the Authors table.

A common problem in database design occurs when two tables have a
‘many-to-many’ relationship. This is actually the case with our book exam-
ple, since each author can write more than one book, and each book can
have more than one author. The solution of adding a single Author field in
the Books table will not work in a many-to-many relationship, since each
data field can only store a single value.

To solve this problem, we revert back to the original form of the Books
table (the form without the extra column for Authors). To link together
these two tables connected by a many-to-many relationship and store the
information about which authors wrote which books, we provide a link table
which contains only two columns – the key from the ‘Authors’ table and the
corresponding key from the ‘Books’ table which corresponds to the book
written by that author:

This table shows that author 1 (Wibble, Zaphod Q) wrote book 1 (Wibble’s
Guide to the Classics) and also book 5 (Wibble’s Guide to Heavy Metal),
author 2 wrote books 2 and 3, and that authors 3 and 4 both worked on book
4. The combination of all three of these tables contains all the information
specified in the original data, but in a form that makes it much easier to
search, expand and maintain.

For example, we need enter the information for a given author only once,
since we can use the author’s key number to refer to that author in the
books table rather than duplicating the author’s name for each book. Also,
if we want to add more information on each author such as their birth and
death dates, we can simply add a couple of extra columns to the Authors
table, without having to modify either of the Books or Authors–Books tables.

This sort of table structure relies on each entry in each table having a
unique identifier, which in the Books and Authors tables is the ‘BookKey’ or
‘AuthorKey’ field. A data field in a table that is guaranteed to be unique for
each entry in the table and is used as a reference in other tables is called a
primary key. Although the primary key in the Authors and Books tables is
a single number in our example here, this is not necessary. Any field con-
taining any type of data that is unique for each entry in the table can be

472 From Java to C#

AuthorBook links

AuthorKey BookKey

1 1
1 5
2 2
2 3
3 4
4 4

used as a primary key. In fact, even combinations of more than one field can
be used as a primary key, provided that each combination is unique for each
table entry.

For example, in the Authors–Books link table, neither column on its own
can be used as a primary key since both columns contain duplicate entries.
However, the combination of the two columns always gives a unique combi-
nation of the two key values and so both columns together can be used as a
primary key.

The allowed relationships between pairs of tables can be enforced by
defining relationships between tables. For example, we can enforce a one-
to-many or many-to-many relationship between two tables by setting up
these relationships in the database. These rules have no effect on data input
unless we violate them, in which case the database engine will generate an
error message stating that we have tried to enter invalid data. This process
is known as enforcing relational integrity.

Although there is much more that can be said about building a database,
this brief introduction contains most of what you will need to know to write
C# code to add and delete records from an existing database, and to write
queries to extract information from it.

11.2 ■ SQL

We now have some idea how information is stored in a database, but so far
we have seen neither how we actually add this information, nor how we can
extract information once it has been added.

If you have used a database such as Microsoft Access which has a (mod-
erately) user-friendly front end which allows you to add data by filling out a
form and run queries by answering a few questions about what you are look-
ing for, you have been shielded from what is going on underneath during the
process of accessing the database. Since our goal in this chapter is to drive
a database (and not just those with user-friendly front ends) from within a
C# program, we need to delve a bit more deeply.

Most interaction with databases is done by using Structured Query
Language, or SQL for short. Although for some complex operations SQL
statements can get quite involved, happily most simple database operations
such as inserting, updating and querying a database require only very simple
SQL statements.

It is actually possible to create a database’s tables, define relationships, add
and delete records, update data within individual records, and perform
queries of almost unlimited complexity using SQL. A complete treatment of
SQL is a topic for a book on its own, but the point is that the interaction
between a database and an external program written in C# takes place by
sending the database SQL statements from within the C# program. If the
SQL statement is a query, the database will send back a response containing

Databases 473

a set of records that satisfy the query, and the C# program can then use or
display these results as it sees fit.

We will cover a few of the simpler SQL statements that can be used for
adding, updating and deleting records, and for querying a database. In sec-
tion 11.3, we will see how to connect to an existing database from within C#
and then use these SQL statements to interact with the database.

11.2.1 � Data types

Before we can add any records to a table, we must decide what data types
are to be used to represent each data field in the table. It must be remem-
bered when building a database table that the data types allowed depend on
the database program that is used to manage the database itself and not on
the language (such as C#) that will be used to interact with the database.
Unfortuately, although many data types are common across database pro-
grams, there is not universal agreement on all the types that are available.
We’ll therefore restrict ourselves to the more common ones that are (or
should be) universal.

The data types fall into three main categories: numerical data, text or
character data, and binary data. The numerical data types are used to store
data that is purely numerical, without any textual or binary components.
Text data fields can store strings of ASCII or Unicode characters. Binary
data fields can essentially store any type of data, but are more commonly
used to store images and other types of multimedia. Databases also provide
a special data type for storing dates and times. In our brief introduction to
SQL we will consider only numerical and textual data fields.

For the three tables above, we could define the data types as follows:

We have indicated the primary keys in each table in bold.

474 From Java to C#

Authors – data types

AuthorKey int
Name char

Books – data types

BookKey int
Title char
Number of Pages int

AuthorBook – data types

AuthorKey int
BookKey int

11.2.2 � Inserting a new record

Once we have the tables defined, we can add new records to a table by using
SQL’s INSERT statement. For example, if we wish to add a new record to the
Authors table for ‘Asimov, Isaac’, we could use the statement:

INSERT INTO Authors VALUES(1, 'Asimov, Isaac')

This statement assumes that there is no record in the Authors table with
an AuthorKey value of 1. If there were, and we had defined AuthorKey as a
primary key in the Authors table, the database would complain that we were
attempting to add a record with a key that already existed in the table.

If we are using a single numerical field as the primary key, a simple way of
guaranteeing a unique value is to retrieve the maximum existing key value
and then add 1 to it. This can be done using SQL’s SELECT MAX statement:

SELECT MAX(AuthorKey) FROM Authors

In practice, primary keys can be more complex data types or comprise
more than one data field, so a different algorithm may be needed in other
cases. The important thing is to have some way of ensuring that the primary
key is unique.

A second point to notice about the INSERT statement above is that the
numeric field is not enclosed in quotes, while the text field is enclosed in
quotes. This is always required in an SQL statement: all text fields must
always be enclosed in single quotes. If the text string that we wish to insert
itself contains a quote character, this must be doubled up before enclosing
the entire string in quotes. For example, if we wanted to store the author
Sean O’Reilly we would need an INSERT statement like this:

INSERT INTO Authors VALUES(5, 'O''Reilly, Sean')

The parameters in the VALUES part of the statement must be listed in the
same order as the data fields in the table are defined. If we wish to leave one
of the data fields blank, we must pass the string NULL (not in quotes) as the
parameter for that field. A NULL field in SQL is a special value which indi-
cates that no actual data has been stored in that location.

Although it is traditional to write SQL keywords such as INSERT, INTO
and so on in uppercase, most implementations of SQL are not case-sensitive.
It is still better to use uppercase however, to make the keywords stand out.

After we’ve inserted the four authors above into the Authors table, we can
insert records for the five books in our list. Doing this requires inserting a
record first in the Books table, and then one or more entries in the
AuthorBook link table to connect that book with its author(s). For example,
to insert the first book, we would use the two statements:

INSERT INTO Books VALUES(1,

'Wibble''s Guide to the Classics', 345)

INSERT INTO AuthorBook VALUES(1, 1)

Databases 475

To insert book number 4 which has two authors, we write:

INSERT INTO Books VALUES(4, 'Honest Politicians', 24)

INSERT INTO AuthorBook VALUES(3, 4)

INSERT INTO AuthorBook VALUES(4, 4)

11.2.3 � Queries

Once we have some data in the database, we can run some queries on it.
The main SQL command for querying is SELECT, which can be used in a
number of ways.

The simplest SELECT command retrieves all data from a single table:

SELECT * FROM Authors

This returns all data fields from all records in the Authors table, so the result
of the query is a record set consisting of the data in the table:

The * after SELECT is a wild card character which indicates that all data
fields should be returned.

More usually, we wish to retrieve only some of the data fields, or else
impose a filter on the query so that only records satisfying certain criteria
are returned. A few examples will illustrate some common cases.

First, if we want a list of the authors without their associated keys, we can
specify that we want only the Name field from the Authors table returned:

SELECT Name FROM Authors

This returns the record set:

We can specify some search criteria using a WHERE clause in the
SELECT statement. For example, if we want a list of books with more than
300 pages, we can write:

SELECT * FROM Books WHERE NumberOfPages > 300

476 From Java to C#

1 Wibble, Zaphod Q
2 Asimov, Isaac
3 Dium, T
4 Moron, Oxy

Wibble, Zaphod Q
Asimov, Isaac
Dium, T
Moron, Oxy

This returns the record set:

We can search for a substring in a text field using the LIKE clause:

SELECT * FROM Books WHERE Title LIKE '%Guide%'

This returns:

In this SELECT statement, records where the Title field contains the sub-
string ‘Guide’ are returned. Note that the per cent character % is used as a
wild card to match any string, so the search text '%Guide%' matches any
string with ‘Guide’ anywhere within it. If we had searched for '%Guide', we
would match a string that ended with ‘Guide’ (and would get an empty
record set, since no book has a title ending with ‘Guide’).

We can combine criteria using the AND keyword, so if we wanted all
books whose title contained ‘Guide’ and that had more than 300 pages, we
would say:

SELECT * FROM Books WHERE Title LIKE '%Guide%'

AND NumberOfPages > 300

This produces the single record:

SQL also contains an OR keyword for combining clauses in a WHERE
statement.

If we want a selected list of fields to be returned, we can separate them
with commas, so we could get a list of book titles and page numbers without
the keys for books with more than 300 pages by saying:

SELECT Title,NumberOfPages FROM Books WHERE

NumberOfPages > 300

which returns the set:

Databases 477

1 Wibble’s Guide to the Classics 345
2 The Complete Stories, Vol. 1 429
3 The Complete Stories, Vol. 2 464

1 Wibble’s Guide to the Classics 345
5 Wibble’s Guide to Heavy Metal 297

Wibble’s Guide to the Classics 345
The Complete Stories, Vol. 1 429
The Complete Stories, Vol. 2 464

1 Wibble’s Guide to the Classics 345

Other more esoteric things can be done with SELECT, but these exam-
ples should demonstrate most of the common cases.

11.2.4 � Joins

The examples of SELECT statements in the last section omitted one very
common query – that involving linked tables. For example, if we wanted a
list of all books by a certain author, we need to combine data from the
Authors and Books tables to do the search. Since the only link is through
the AuthorBook link table, how do we do this?

Let us approach this step by step. We know that the link between a book
and its authors is contained in the AuthorBook table, where each record
contains an author key and a book key. Let us start by generating a record
set which expands the record set in AuthorBook so that each AuthorKey is
listed next to the title of the book corresponding to that author rather than
just the book key value.

The original AuthorBook table looks like this:

so what we want is a record set that looks like this:

We can achieve this by using an INNER JOIN to join the AuthorBook table
to the Books table. An INNER JOIN forms part of a SELECT statement,
as follows:

SELECT AuthorBook.AuthorKey, Books.Title

FROM Books INNER JOIN AuthorBook ON

Books.BookKey = AuthorBook.BookKey

478 From Java to C#

AuthorKey BookKey

1 1
1 5
2 2
2 3
3 4
4 4

1 Wibble’s Guide to the Classics
1 Wibble’s Guide to Heavy Metal
2 The Complete Stories, Vol. 1
2 The Complete Stories, Vol. 2
3 Honest Politicians
4 Honest Politicians

To understand what is happening here, we need to consider the FROM
clause first. The second line states that an INNER JOIN should be done
between the Books and AuthorBook tables. An INNER JOIN combines two
tables into one table, ON some condition being true. The condition in this
case is that the BookKey field in the Books table must match the BookKey
field in the AuthorBook table. The inner join therefore examines each
record in the Books table and compares it in turn with each record in the
AuthorBook table. If a record in AuthorBook has a BookKey value that
matches the BookKey value in the record from the Books table, these two
records are combined into a single record and added to the joined table. The
result of this INNER JOIN gives the combined table shown here:

The three columns on the left come from the Books table, and the two on
the right from AuthorBook. Now that we have the combined table, we can
apply the SELECT part of the statement above to it. This SELECT clause says
to select AuthorBook.AuthorKey (column 4) and Books.Title (column 2)
from this joined table. Doing this results in the record set shown above.

We now have a table that links a book with its author(s), but we haven’t
yet retrieved the actual name of the author. To do this, we need to bring the
Authors table into the picture. We could get the author’s name instead of
just the AuthorKey by joining AuthorBook with Authors before doing the
join with Books. That is, we can try a statement like this:

SELECT Authors.Name, Books.Title

FROM Books INNER JOIN

(Authors INNER JOIN AuthorBook ON

Authors.AuthorKey = AuthorBook.AuthorKey)

ON Books.BookKey = AuthorBook.BookKey

Databases 479

Books Table AuthorBook Table

BookKey Title NumberOfPages AuthorKey BookKey

1 Wibble’s Guide to the Classics 345 1 1
5 Wibble’s Guide to Heavy Metal 297 1 5
2 The Complete Stories, Vol. 1 429 2 2
3 The Complete Stories, Vol. 2 464 2 3
4 Honest Politicians 24 3 4
4 Honest Politicians 24 4 4

The third and fourth lines (within the parentheses) join Authors and
AuthorBook to produce the table:

Taking the INNER JOIN of this table with Books produces a combined
table as follows:

Finally, if we select Authors.Name and Books.Title from this table, we get
the desired record set:

This may seem like a lot of work just to get a simple author–title list, but
in fact the amount of calculation that is required to do the inner joins is
much less than if we had simply stored the data in a flat file format as we
did at the beginning of this chapter. It also ensures that there is as little
duplication of data as possible, since there is only one record for each
author, and one record for each book.

480 From Java to C#

Authors AuthorBook

AuthorKey Name AuthorKey BookKey

1 Wibble, Zaphod Q 1 1
1 Wibble, Zaphod Q 1 5
2 Asimov, Isaac 2 2
2 Asimov, Isaac 2 3
3 Dium, T 3 4
4 Moron, Oxy 4 4

Books Authors AuthorBook

1 Wibble’s Guide to the Classics 345 1 Wibble, Zaphod Q 1 1
5 Wibble’s Guide to Heavy Metal 297 1 Wibble, Zaphod Q 1 5
2 The Complete Stories, Vol. 1 429 2 Asimov, Isaac 2 2
3 The Complete Stories, Vol. 2 464 2 Asimov, Isaac 2 3
4 Honest Politicians 24 3 Dium, T 3 4
4 Honest Politicians 24 4 Moron, Oxy 4 4

Wibble, Zaphod Q Wibble’s Guide to the Classics
Wibble, Zaphod Q Wibble’s Guide to Heavy Metal
Asimov, Isaac The Complete Stories, Vol. 1
Asimov, Isaac The Complete Stories, Vol. 2
Dium, T Honest Politicians
Moron, Oxy Honest Politicians

One handy SQL clause that is often used with queries is ORDER BY which
allows a result set to be sorted by one or more of its data fields. For example,
if we wanted to sort the list above by author, we would add the clause

ORDER BY Authors.Name

to the end of the statement above. This results in the output:

We can sort the output first by author and then by title by adding a list of
fields to the ORDER BY clause:

ORDER BY Authors.Name, Books.Title

This produces:

where the last two rows are reversed from the earlier output.
Getting a list of books by a particular author is now just a matter of

appending a WHERE clause to the end of this statement:

SELECT Authors.Name, Books.Title

FROM Books INNER JOIN

(Authors INNER JOIN AuthorBook ON

Authors.AuthorKey = AuthorBook.AuthorKey)

ON Books.BookKey = AuthorBook.BookKey

WHERE Authors.Name LIKE 'Asimov%'

This statement retrieves all books whose author’s name begins with ‘Asimov’:

Databases 481

Asimov, Isaac The Complete Stories, Vol. 1
Asimov, Isaac The Complete Stories, Vol. 2
Dium, T Honest Politicians
Moron, Oxy Honest Politicians
Wibble, Zaphod Q Wibble’s Guide to the Classics
Wibble, Zaphod Q Wibble’s Guide to Heavy Metal

Asimov, Isaac The Complete Stories, Vol. 1
Asimov, Isaac The Complete Stories, Vol. 2
Dium, T Honest Politicians
Moron, Oxy Honest Politicians
Wibble, Zaphod Q Wibble’s Guide to Heavy Metal
Wibble, Zaphod Q Wibble’s Guide to the Classics

Asimov, Isaac The Complete Stories, Vol. 1
Asimov, Isaac The Complete Stories, Vol. 2

11.2.5 � Updates

SQL provides the UPDATE statement to allow existing records in a database
to be edited. UPDATE is combined with a SET clause that provides a list of
fields to update, together with the new values for each field. UPDATE can be
combined with a WHERE clause to filter the records that are updated.

For example, if we wanted to change the title and number of pages of the
book with BookKey = 1, we could say:

UPDATE Books SET NumberOfPages = 357, Title = 'New Title'

WHERE BookKey = 1

If an UPDATE statement does not contain a WHERE clause, it will apply
the updates to all records in the table (so be careful!).

11.2.6 � Deleting records

The last SQL command we will consider in this brief tour is DELETE, which
can be used to delete one or more records from a table. DELETE is used
together with a FROM clause to specify the table from which records should
be removed, and usually with a WHERE clause to provide a filter on which
records should be deleted.

For example, we can delete a specific author from the Authors table
by saying:

DELETE FROM Authors WHERE Name LIKE 'Wibble%'

Deletion must be used with care, since it is not reversible. Also, in data-
bases with link tables, such as AuthorBook in our example above, we must
remember to delete all references to the deleted record in any link tables
before deleting the record itself. As with the UPDATE statement, if no
WHERE clause is present, all records from the named table will be deleted
(so be very careful!).

For example, if we wanted to delete Wibble from the Authors table we
have to note that Wibble occurs twice in the AuthorBook table, since he is
the author of two of the books in the Books table. We could delete these two
records from AuthorBook, and then delete Wibble’s record from Authors,
but if we do that, two books in the Books table will have no authors, since
there are no entries in AuthorBook for those books once Wibble has been
removed. It is possible that this is what we intended since some books don’t
have any specific authors listed, but it is more likely that this is an error,
and that we need to update AuthorBook with another record to provide an
author for these two books. Deletion is not always a straightforward process
in a linked database!

In databases that support referential integrity the database itself will gen-
erate an error message if you attempt to delete a record that is linked to
another table. However, not all databases support referential integrity, so
you must take care to update all tables if a record is to be deleted.

482 From Java to C#

11.3 ■ Driving databases from C#

Now that we’ve covered the basics of databases and SQL, we can have a look
at how to manage databases from within a C# program. If you have done any
database programming in Java using the java.sql package, you should find
the procedures quite similar in C#. We won’t go into any comparisons
between C# and Java at this stage, however, since no prior knowledge of
database programming is assumed of readers.

The .NET namespaces that allow interaction with databases are known
collectively as ADO .NET. The acronym ADO stood originally (in pre-.NET
days) for ActiveX Data Objects. Since ActiveX technology has been effec-
tively replaced by .NET, the acronym is something of a misnomer when we
are talking about ADO .NET, but the name has stuck in any case.

Before we can do any actual database programming using SQL, we first
need to connect to the database from within a C# program. Unfortunately,
the procedure for doing this varies with the database. Since C# and .NET are
Microsoft products, it is natural that the best support for database connec-
tions within .NET is provided for Microsoft databases such as Access and
SQL Server. However, it is possible to connect to most databases using the
.NET database classes.

.NET provides two main namespaces containing classes for dealing with
databases: System.Data.OleDb and System.Data.SqlClient. The first
namespace is designed to work with any database that supports the ODBC
(Open DataBase Connectivity) API (application programming interface).
OleDB is Microsoft’s implementation of ODBC, and has been available in one
form or another for many years – long before .NET came on the scene. The
System.Data.OleDb namespace is a class library that implements OleDB
for the .NET programming environment. It supports not only Microsoft data-
bases such as Access and SQL Server, but other popular databases such as
MySQL, which is an open source database available free of charge to non-
commercial users.

The System.Data.SqlClient namespace is designed specifically for
Microsoft’s SQL Server, and can produce significantly faster code when used
with that database. To a large extent, the two namespaces provide parallel
versions of the same methods, although SqlClient provides some extra fea-
tures not available in OleDb.

To keep things as general as possible, we will use OleDb for most of our
database code, but if your own personal database is SQL Server it would pay
you to use SqlClient code instead. Where there is a difference between the
two methods of writing database code in C#, we will present both techniques.

Databases 483

11.4 ■ ODBC drivers

The first, and often the trickiest, step in writing database code in C# (or any
language) is finding the right statements to connect to the database of your
choice. First of all, of course, you must install the database software and get
it running. This is not something we can cover in this book, since each data-
base has its own installation methods and setup parameters, all of which
should be detailed in the documentation that comes with the database.

Most databases also come with some sort of interface that allows tables to be
constructed, data entered and edited, and SQL queries to be run. Some data-
bases such as MySQL provide minimal GUI support and must be driven from a
command line (unless a third-party GUI front end is obtained), while others like
Access provide a complete GUI front end which includes wizards for building
and querying databases and even generating formatted reports from the data.

Since our goal here is to write C# programs that handle the interface
between the user and the database, the provisions of the database for direct
input from the user need not concern us – we will be providing all the code for
managing the database from within C#. However, before we can do that, we
need a way for a C# program to communicate with the database program itself.

Since OleDb uses the ODBC system, any database with which we wish to
communicate must have an ODBC driver installed. This driver runs sepa-
rately from any C# program that communicates with it, and must be
installed separately. Commercial databases will probably have a driver sup-
plied with them, or have one available on a web site. Unfortunately, locating
and installing these drivers can be a difficult job, and is not something we
can address in this book, since there are many different varieties of database
around. We will present examples for Microsoft’s Access and SQL Server,
and for MySQL in this book, but if you have a different database running on
your own machine, it should be possible to adapt these examples to work in
that case. The best route to follow is to do a web search using the name of
your database (such as MySQL, for example) and ‘ODBC driver’ as key-
words. For most popular databases you should find web sites that offer
downloads of the ODBC drivers and instructions on how to install them. We
will provide an example using MySQL below.

11.5 ■ Connecting to a database from C#

Assuming we have the ODBC driver for the database installed, we can now
turn our attention to connecting to this database from within C#. To keep
the example concrete, let us assume that we have installed both Access and
SQL Server. In both of these, we have defined a new database called
BookTest, and we have inserted into this database the data contained in the
Books, Authors and AuthorBook tables that we used in the section on SQL.
For now, we’ll assume that we have done all this by using the features in the
database package itself (rather than from a C# program) so that we have a
ready made database to play with from within our C# program.

484 From Java to C#

The first job is to connect to the database. We will present a complete pro-
gram that connects to the database and uses a simple SQL statement to
retrieve the list of authors from the Authors table:

1. using System;

2. using System.Data.OleDb;

3.
4. public class MySQLDemo

5. {

6. public static void Main(string[] args)

7. {

8. string source;

9.
10. // Access

11. //source = "Provider=Microsoft.Jet.OLEDB.4.0;" +

12. // @"Data Source=C:\Books\MyBooks\CSharpBook\

BookTest.mdb";

13.
14. // SQL Server

15. source = "Provider=SQLOLEDB;server=(local);" +

16. "uid=<MyUsername>;" +

17. "password=<MyPassword>;database=BookTest";

18.
19. OleDbConnection oleConn = new OleDbConnection(source);

20.
21. try

22. {

23. oleConn.Open();

24. string sql = "SELECT * FROM Authors";

25. OleDbCommand command = new OleDbCommand(sql, oleConn);

26. OleDbDataReader reader = command.ExecuteReader();

27. while (reader.Read())

28. {

29. Console.WriteLine(reader[0] + " " + reader[1]);

30. }

31. }

32. catch (Exception ex)

33. {

34. Console.WriteLine(ex.ToString());

35. }

36. finally

37. {

38. oleConn.Close();

39. }

40. }

41. }

Databases 485

We need to reference the System.Data.OleDb namespace (line 2) to
access the OleDb library.

A connection to a database is made by creating an OleDbConnection
object. The parameter that is passed to its constructor is a string contain-
ing the information required to locate the database driver and connect to it.
We’ve shown typical connection strings for connecting to Access and SQL
Server. Obviously only one of these strings should be active at any one time,
so we’ve commented out the Access string on lines 11 and 12, and made the
SQL Server string on lines 15 to 17 active. If you want to try this code with
an Access database on your own computer, uncomment the Access string
and comment out the SQL Server string. Since the Access database is found
by stating the full path name to the .mdb file, you will probably have to
change this to match the location of the database file on your computer.

A compulsory component in the connection string is a provider. A
provider is essentially a service external to the C# program which allows
OleDbConnection to connect to the database engine we are using.
Unfortunately, these providers have rather cryptic names, so if you wish to
use a database other than Access or SQL Server, you will need to find out
what provider is required.

For Access, the provider is ‘Microsoft.Jet.OLEDB.4.0’ as shown on line 11,
and for SQL Server it is ‘SQLOLEDB’ (line 15).

Although it is possible to use Access over a network, its most common use
is probably as a stand-alone database on a single computer, so we will con-
sider that case here. If you wish to connect to an Access database stored on
your local machine, the only other parameter that is required in the con-
nection string is the ‘Data Source’, which should be specified as the full path
name of the database file (all Access database files have a .mdb extension).
Be careful to spell ‘Data Source’ as two words separated by only a single
space. If you omit the space or insert more than one, you will get the
obscure error message ‘Could not find installable ISAM’.

Be careful also not to leave any blanks anywhere else in the connection
string. For example, it is an error to put blanks around the = in any of the
parameter specifications.

The connection string for SQL Server can be a bit more complicated. If you
want to use SQL Server on the same machine as the C# program, you can
specify ‘server=(local)’ as shown on line 15. It is also possible to connect to a
remotely running SQL Server by inserting the IP address in place of ‘(local)’.

The uid and password fields will, of course, depend on whatever you
have chosen for your username and password when setting up the database
program. The values given on lines 16 and 17 are of course not my real user-
name and password, and you will need to alter these in your own code.

Finally, we must specify the name of the database we wish to access
through the driver – in this case we are connecting to BookTest.

When the string is complete, we create a new OleDbConnection object
(line 19). To get things going, we need to call Open() to actually make the
connection (line 23). Note that we have enclosed all the code that actually

486 From Java to C#

communicates (or tries to) with the database within a try block. This is
highly recommended since it can sometimes take several tries to get the
connection string right, especially if you are trying to get a new database
type to work. You might spell your username or password incorrectly, or get
the database name wrong or make any of a number of other errors, so it is
important to catch any exceptions that are thrown so you can see what’s
gone wrong.

If the connection is successful, we can start talking to the database using
SQL statements. We will delve more deeply into how this is done later in this
chapter, but this simple example should give an idea of how easy database
manipulation from within C# really is.

We define an SQL statement as a string (line 24), and then create an
OleDbCommand object containing the statement and the connection object
(line 25). If the command is a query, as it is here, we can create an OleDb
Reader to receive the results of the query by calling the command’s Execute
Reader() method (line 26). The reader retrieves each record in the result set
as an array of data fields, with one element for each field in that record. For
example, since we are reading all columns from the Authors table, each read-
er result will be an array of two elements, one for the AuthorKey and the
other for the Name. We can iterate through a reader in a loop (line 27) and
use ordinary array notation to access each element (line 29).

The output from this program (assuming all the database connections
work properly) is:

1 Wibble, Zaphod Q

2 Asimov, Isaac

3 Dium, T

4 Moron, Oxy

which we can see matches the contents of the Authors table given in the
section on SQL above.

11.6 ■ Accessing other databases from C# – MySQL
example

As we mentioned above, connecting from C# to a Microsoft database is
fairly easy, since all the support is built into either the database or .NET. If
we wish to connect to another database, however, things can get a bit more
problematic.

Although we can’t give complete instructions for all known databases, we will
provide an example of how to get MySQL working with C#. This section assumes
that you have installed MySQL and have either mastered the command-line
interface that comes with it, or else have installed one of the GUI front ends to
MySQL that allows easier access to its functions.

Databases 487

The process consists of several steps:

1. Download and install an ODBC driver for MySQL.

2. Download and install the ODBC .NET Data Provider from Microsoft.

3. Create a sample database in MySQL using either its command line or a
GUI front end.

4. Create a Data Source Name (DSN) for this database.

5. Write some C# code to connect to the MySQL database.

First, we must locate and download an ODBC driver for MySQL. At the time
of writing, this can be found on MySQL’s web site at http://www. mysql.com
by following the Connector/ODBC link. This is a fairly painless procedure
which just involves running a setup file.

Next, we will need the ODBC .NET Data Provider. This proved somewhat
more difficult to find on Microsoft’s web site, but at the time of writing was
available from http://msdn.microsoft.com/library/default.asp?url=/downloads/
list/netdevframework.asp (the entire URL must of course be on a single line).
Scroll down the page to find the ODBC .NET Data Provider. Again, this is just
a matter of running the downloaded file to install it. (Note that like many pages
on Microsoft’s web site, this page tends to move around, as it did during the
course of writing this book, but hopefully if you visit the location above you
will be redirected to the current site if it has moved again.)

Next, create the BookTest database under MySQL, either by entering
commands at a command line or by using a GUI front end. Instructions for
doing this should be included either with MySQL itself or with the front end
you are using. You will need to create the three database tables (Authors,
Books and AuthorBook) and enter the data above into each table.

Now, grant permission for access to this database with the MySQL server.
The easiest way to do this is by the command line. Open a console window
and change directory to the ‘bin’ directory under your MySQL installation.
For example, if you installed MySQL on the C drive in the directory mysql,
this directory will be C:\mysql\bin. From this directory, issue the command:

mysql -u root –p

This logs you into the MySQL server as the ‘root’ (administrator) user.
The –p will prompt for a password – enter whatever password you defined
when you installed MySQL. Once logged in, issue the command:

grant all on BookTest.* to csharp@127.0.0.1 identified by

'password'

Again, the whole command should be on one line. This creates a new user
called ‘csharp’ (you can, of course, specify whatever username you like
here) with the password ‘password’ (again, choose your own password). The
‘csharp’ user has been granted full access privileges to the BookTest data-

488 From Java to C#

base. (The ‘@127.0.0.1’ bit after the ‘csharp’ username means that the user
csharp is running on the local machine, as 127.0.0.1 is the IP address of a
local computer.)

The next step is to register a Data Source Name (DSN) with Windows for
this new database. To do this under Windows XP (other versions should be
similar), open Windows Explorer, then the Control Panel, then Administrative
Tools, then Data Sources (ODBC). Select the User DSN tab and then click
‘Add’. If you successfully added the MySQL ODBC driver earlier, you should
see MySQL in the list of drivers. Select this and then click ‘Finish’ to bring up
the MySQL driver dialog.

Although there are a lot of boxes here, we only need to fill in a few of
them. First, think of a DSN by which you can identify the database – some-
thing like mysql_csharp would do for this example. Enter this in the
Windows DSN Name box.

In MySQL host, enter 127.0.0.1 if you only plan on using MySQL locally
on a stand-alone PC. If you want to connect to a remote server, enter its IP
address or Internet name. Under MySQL database name, enter BookTest if
you are using the BookTest database. Finally, fill in the username and pass-
word you used in the ‘grant’ command above.

That completes the preparatory work, so we can now write some C# code.
We will write a version of the example program in the last section that
accesses the MySQL database. Apart from the connection string, the code is
essentially identical to that we saw earlier, except that different classes are
used to provide the database access.

1. using System;

2. using System.Data;

3. using Microsoft.Data.Odbc;

4.
5. public class MySQLDemo

6. {

7. public static void Main(string[] args)

8. {

9. string source;

10. source = "DSN=mysql_csharp";

11. OdbcConnection odbcConn = new OdbcConnection(source);

12. try

13. {

14. odbcConn.Open();

15. string sql = "SELECT * FROM Authors";

16. OdbcCommand command = new OdbcCommand(sql, odbcConn);

17. OdbcDataReader reader = command.ExecuteReader();

18. while (reader.Read())

19. {

20. Console.WriteLine(reader[0] + " " + reader[1]);

21. }

Databases 489

22. }

23. catch (Exception ex)

24. {

25. Console.WriteLine(ex.ToString());

26. }

27. finally

28. {

29. odbcConn.Close();

30. }

31. }

32. }

In order to access MySQL databases from within C#, we need to use the
add-on Microsoft.Data.Odbc namespace that we downloaded in step 2
above. This namespace is contained in the file Microsoft.Data.Odbc.dll,
which was installed at that time. To use the classes in this namespace, add
the using statement shown on line 3. You will also need to add this name-
space to the list of references in your project (or onto the compiler’s com-
mand line).

This namespace contains a set of classes that parallel those in the OleDb
set that we used earlier. To get the class names in this new set, just replace
‘OleDb’ in the previous namespace with ‘Odbc’ in the new one. Thus, we
have an OdbcConnection class for connecting to a database, and so on.

Apart from this, the only difference is in the connection string on line 10.
Note that we no longer specify a provider; rather we have a DSN clause that
uses the DSN we defined in the Data Source (ODBC) dialog above. Apart
from that, we just add the uid and pwd clauses (although you may find you
don’t need them). After that, the connection and interaction with the data-
base is identical to the earlier example.

11.7 ■ SQL Server and the SqlClient namespace

Finally, we mention the System.Data.SqlClient namespace which con-
tains another parallel set of classes specifically designed for efficient access
to SQL Server. We can generate an equivalent program to our first example
above by replacing ‘OleDb’ in class names with ‘Sql’:

using System;

using System.Data.SqlClient;

public class SQLOptimum

{

public static void Main(string[] args)

{

string source;

source = "server=(local);" +

490 From Java to C#

"uid=<Username>;password=<Password>;database=BookTest";

SqlConnection sqlConn = new SqlConnection(source);

try

{

sqlConn.Open();

string sql = "SELECT * FROM Authors";

SqlCommand command = new SqlCommand(sql, sqlConn);

SqlDataReader reader = command.ExecuteReader();

while (reader.Read())

{

Console.WriteLine(reader[0] + " " + reader[1]);

}

}

catch (Exception ex)

{

Console.WriteLine(ex.ToString());

}

finally

{

sqlConn.Close();

}

}

}

The only differences here are that we add a using statement for the
SqlClient namespace, and that a ‘provider’ is no longer required in the con-
nection string. Apart from that, the SqlClient classes mirror the function-
ality of the OleDb ones, although in some classes there are extra methods.

It is unlikely that any difference in speed will be noticed unless we are
dealing with large databases or making a large number of SQL requests.
However, if your code is to be used exclusively with SQL Server, it makes
sense to use the SqlClient namespace in order to optimize performance.

11.8 ■ Running SQL commands

We’ll now examine .NET’s capabilities for communicating with databases by
sending them SQL commands. For most of this discussion we will use the
OleDb namespace, but you should keep in mind that the code will also work
if you use SqlClient or Odbc as well, depending on which database you
wish to connect to. The only real difference apart from the class names is in
the connection string, which we have covered in the preceding sections.

For now, we will use only text programs to test the various methods in
OleDb, but we will integrate these methods into GUI programs later in this
chapter. Since it can be difficult to provide a good interface to a database
using only a command-line interface, the programs in this section will be
quite simple.

Databases 491

The main class used to send SQL commands to a database is OleDbCommand
(or its equivalents SqlCommand and OdbcCommand). Within this class, there are
three methods that are used for sending various types of commands:
ExecuteScalar(), ExecuteReader() and ExecuteNonQuery(). The first two
are used to submit a query and the last, as its name implies, is used for all non-
query commands such as INSERT, DELETE and UPDATE.

11.8.1 � Querying

We’ll begin by taking a closer look at how queries can be sent to a database
and the result sets retrieved in C#. For these examples, we will assume that
the BookTest database has been constructed and that it contains the data
used earlier in this chapter in our discussion of SQL.

The two methods used for querying are ExecuteScalar(), which is used
to submit a query whose result consists of a single value, such as a count of
the number of records satisfying a particular set of conditions, and
ExecuteReader() which is used to submit a more general query using the
SELECT command, which can return a result set consisting of one or more
records from the database.

For our first example, we will show a complete program that illustrates
ExecuteScalar(). Subsequent programs will show only the code that actu-
ally creates and submits the SQL command, since all other parts of the pro-
gram are identical to our first example.

We can query the database to find the number of records in the Authors
table as follows:

using System;

using System.Data.OleDb;

public class QueryDemo

{

public static void Main(string[] args)

{

string source;

source = "Provider=Microsoft.Jet.OLEDB.4.0;" +

@"Data Source=C:\Books\MyBooks\CSharpBook\BookTest.mdb";

OleDbConnection oleConn = new OleDbConnection(source);

try

{

oleConn.Open();

string sql = "SELECT COUNT(*) FROM Authors";

OleDbCommand command = new OleDbCommand(sql, oleConn);

int count = (int)command.ExecuteScalar();

Console.WriteLine("Number of authors: " + count);

}

catch (Exception ex)

492 From Java to C#

{

Console.WriteLine(ex.ToString());

}

finally

{

oleConn.Close();

}

}

}

We are using the Access database containing BookTest that we used ear-
lier, although this program would also work with the SQL Server version if
we replaced the connection string with that for SQL Server given above.

The query is constructed in the try block, where we use the SQL func-
tion COUNT() to request the number of records in the Authors table. An
OleDbCommand is created using this command string, and then Execute
Scalar() is called to send the command to the database. ExecuteScalar()
returns an object, since the result of the query need not always be the same
data type. This means that we must cast the result into whatever data type
we are expecting from the query. In this case, since a count should be an
int, we cast the returned value to int, and then print it to the console. The
output from this program is:

Number of authors: 4

A count can be qualified in the same way as a SELECT statement by
adding a WHERE clause. For example, we can count how many authors’
names begin with the string ‘Asimov’

try

{

oleConn.Open();

string sql = "SELECT COUNT(*) FROM Authors " +

"WHERE Name LIKE 'Asimov%'";

OleDbCommand command = new OleDbCommand(sql, oleConn);

int count = (int)command.ExecuteScalar();

Console.WriteLine("Number of authors: " + count);

}

This produces the output:

Number of authors: 1

Incidentally, when specifying longer SQL commands in C# code, it is
common to split them over several lines, as we have done here. If you do
this, remember to leave a blank at the end of each line to separate each word
in the SQL command from the next. Failure to do this can result in error
messages that can be a bit confusing. For example, if we specified our sql
string in the previous example as:

Databases 493

string sql = "SELECT COUNT(*) FROM Authors" +

"WHERE Name LIKE 'Asimov%'";

that is, we omitted the blank at the end of the first line after Authors, we get
the error:

System.Data.OleDb.OleDbException: Syntax error in FROM clause.

since the actual string that was sent to the database was: ‘SELECT
COUNT(*) FROM AuthorsWHERE Name LIKE “Asimov%’”.

To perform more general queries that return result sets containing entire
records from the database, we use ExecuteReader(). We have already seen a
brief example of this method above, but let us consider it here in more detail.

To begin, we’ll consider a slight variant on the original example. The fol-
lowing code constructs an OleDbDataReader that reads all the records in
the Authors table:

OleDbDataReader reader = null;

try

{

string sql = "SELECT * FROM Authors";

OleDbCommand command = new OleDbCommand(sql, oleConn);

reader = command.ExecuteReader();

while (reader.Read())

{

for (int i = 0; i < reader.FieldCount; i++)

Console.Write(reader[i] + " ");

Console.WriteLine();

}

reader.Close();

}

catch (Exception ex)

{

Console.WriteLine(ex.ToString());

}

finally

{

if (reader != null)

reader.Close();

oleConn.Close();

}

We’ve given a broader view of this program since it is important to ensure
that a reader is closed after use. We declare the OleDbDataReader before the
try block to give it a wider scope, and initialize it to null. Within the try
block, we construct the query and the command as usual. We then call
ExecuteReader() to run the query and retrieve the result set.

494 From Java to C#

The result set is essentially a linked list of records from the database, and
when the reader is created, its marker is positioned before the first record
in the result set. The Read() method must be called to advance the marker
to the first record. We use reader.Read() as the parameter inside the
while loop, since Read() returns a bool value which is false if there are no
more records available.

Inside the while loop, we want to print out all the fields (columns) for a
given record on a single line. A reader has a FieldCount property which
contains the number of fields in the current record, so we use that as the
termination condition for the for loop which writes out each column of the
record. The output is:

1 Wibble, Zaphod Q

2 Asimov, Isaac

3 Dium, T

4 Moron, Oxy

Note that the reader can be treated like an array when accessing the data
fields of the current record. The array bracket notation [] can be used to
specify a given column in the record.

The parameter inside the array brackets is an int in this example, but it
can also be the name of the column in the table. For example, if we wanted
to print out the AuthorKey column from the current record, we can refer to
it as reader["AuthorKey"]. If we use an int as the array parameter, we
need to know the order in which the columns are stored within each record,
which will be determined by the original SQL statement. In this case, since
we specified ‘SELECT * FROM Authors’, each record in the result set con-
tains all the columns from the Authors table arranged in the same order as
they were defined when the table was built.

After processing all the records, we call Close() to close the reader. This
is an important step, since a reader effectively locks an OleDbConnection
until it is closed. We could not do anything else with the database connec-
tion after using the reader if we forgot to close it.

The list of records within a reader is a ‘one way’ list, in that we can only
step through it in one direction. There is no ‘previous record’ method in the
OleDbDataReader class, so once we’ve stepped through the result set we
would need to call ExecuteReader() again to refresh the list if we wanted
to step through it again. We’ll see a much more flexible way of reading the
results of a query when we examine the DataSet class later in this chapter.

Since each column in a database table can contain data in various formats
and data types, the value returned by a reference to the reader array is an
object, and if it is to be assigned to a particular data type, it must be cast.
For example, if we wanted to store the AuthorKey value in an int variable,
we could say:

int authorKey = (int)reader["AuthorKey"];

Databases 495

However, the OleDbDataReader class contains a number of ‘Get’ methods
that do this conversion for you, removing the need for a cast. For example,
we could replace the while loop in the above example with:

while (reader.Read())

{

Console.WriteLine(reader.GetInt32(0) +

": " + reader.GetString(1));

}

which produces the output:

1: Wibble, Zaphod Q

2: Asimov, Isaac

3: Dium, T

4: Moron, Oxy

In this case, however, the parameter of each ‘Get’ method must be the
column index as an integer, and not the column name.

11.8.2 � Non-queries

For all SQL commands that do not request information from the database
(basically, any SQL command that doesn’t involve SELECT), the
ExecuteNonQuery() method should be used. This method returns an int
which indicates the number of records in the database that were affected by
the command.

As a simple example, we can insert a new author in the Authors table:

try

{

oleConn.Open();

string sql =

"INSERT INTO Authors VALUES (5, 'Tolkien, J R R')";

OleDbCommand command = new OleDbCommand(sql, oleConn);

int rowsAffected = (int)command.ExecuteNonQuery();

Console.WriteLine("Number of rows affected: "

+ rowsAffected);

sql = "SELECT * FROM Authors";

command = new OleDbCommand(sql, oleConn);

reader = command.ExecuteReader();

while (reader.Read())

{

Console.WriteLine(reader.GetInt32(0) +

": " + reader.GetString(1));

}

reader.Close();

}

496 From Java to C#

We use ExecuteNonQuery() to send the INSERT command and then
ExecuteReader() to read the Authors table and print out the new contents.
The output is:

Number of rows affected: 1

1: Wibble, Zaphod Q

2: Asimov, Isaac

3: Dium, T

4: Moron, Oxy

5: Tolkien, J R R

Incidentally, if you try to run this program twice, you’ll get an error on
the second run, because AuthorKey is defined as a primary key for the
Authors table, so attempting to insert the value 5 twice would violate the
rule that primary keys have to be unique.

This problem illustrates that adding or modifying records in a database
usually requires more care than simply querying existing data. We need to
ensure that primary keys are unique, that relationships aren’t violated and
so on. These problems more properly belong in a textbook on databases, but
we will illustrate some techniques when we consider some GUI applications
later in this chapter.

11.8.3 � Prepared statements

In addition to the three methods in OleDbCommand described above, there is
a fourth method which is often useful when the actual parameter values that
are to be passed to a command are not known at compile time. This is the
Prepare() method.

The Prepare() method accepts an SQL command with one or more
placeholders in it. Each placeholder is filled in with a parameter whose value
can be changed during the course of the program. As an example, we will
show a program which inserts a number of authors in the Authors table by
reading in the author’s name at a command prompt and then passing this
name as a parameter to a prepared SQL statement. This program also illus-
trates one method by which we can ensure that the primary key is unique
for each new record.

1. try

2. {

3. oleConn.Open();

4. string sql = "SELECT MAX(AuthorKey) FROM Authors";

5. OleDbCommand maxCommand = new OleDbCommand(sql,

oleConn);

6. int authorKey = (int)maxCommand.ExecuteScalar();

7.
8. OleDbCommand command = new OleDbCommand(null, oleConn);

9. command.CommandText = "INSERT INTO Authors VALUES

(?, ?)";

Databases 497

10. command.Parameters.Add("authorKey", OleDbType.Integer);

11. command.Parameters.Add("authorName", OleDbType.Char, 80);

12. command.Prepare();

13. do

14. {

15. Console.Write("Author’s name: ");

16. string authorName = Console.ReadLine();

17. if (authorName.Equals("quit"))

18. break;

19. authorKey++;

20. command.Parameters["authorKey"].Value = authorKey;

21. command.Parameters["authorName"].Value = authorName;

22. command.ExecuteNonQuery();

23. } while (true);

24.
25. sql = "SELECT * FROM Authors";

26. command = new OleDbCommand(sql, oleConn);

27. reader = command.ExecuteReader();

28. while (reader.Read())

29. {

30. Console.WriteLine(reader.GetInt32(0) +

31. ": " + reader.GetString(1));

32. }

33. reader.Close();

34. }

We can ensure that the primary key (AuthorKey) is unique by using SQL’s
MAX function to retrieve the maximum AuthorKey currently in the database
(line 4). We store this in the int authorKey (line 6) and then increment this
value to provide an AuthorKey for each new author we add to the table.

To create a prepared statement, we begin by defining an OleDbCommand
with a null command string (line 8). We then assign its command text on
line 9, but notice that there are two ? symbols in the statement. These act
as placeholders for the actual values that will be inserted later.

In order to fill in these placeholders with real values later, we need to
define a parameter for each placeholder. This parameter must be an
instance of OleDbParameter. The Parameters property of the command
provides access to the OleDbParameterCollection, which is a list of
parameters that are attached to the command. The collection’s Add()
method allows parameters to be added to this list, but we must ensure that
they are added in the same order that they occur in the CommandText.

We add the two parameters on lines 10 and 11. The first argument
("authorKey" on line 10, for example) to Add() specifies a name for the
parameter by which it can be referred to later.

The Add() method has a number of overloaded forms which allow param-
eters to be defined in various ways. However, for a prepared SQL statement,
we must use a version of Add() that allows the data type of the parameter

498 From Java to C#

to be specified. This means that we must use one of the overloads of Add()
that accepts an OleDbType parameter. OleDbType contains an enum list of
the standard data types that are used in databases, so we should choose the
OleDbType that matches the datatype for the parameter we are defining. In
our case, the first parameter is for AuthorKey, which is an int, so we use
the data type OleDbType.Integer. The second parameter, for the Name col-
umn, is a string, but if we look in the OleDbType documentation we will not
find a ‘String’ type listed. However, we can use Char instead, as this maps to
the String class.

The Char type represents a data type of variable size, and for such types
we must also specify the maximum size allowed for a parameter of this type.
This is given by the third parameter to Add() – here we specify a maximum
of 80 characters.

When we have added the parameters to the collection, we call the
Prepare() method on line 12. This essentially ‘compiles’ the CommandText
so that parameter values can be passed to it, be incorporated into the SQL
statement and then sent on to the database.

We see how this statement is used inside the loop on line 13. A prompt
requests a name for the author to be added to the table. If the user enters
‘quit’ the loop is terminated.

On line 19, we increment authorKey to provide a unique AuthorKey pri-
mary key value. Then we set the values of the two parameters in the com-
mand. We use the parameter name that was specified in the call to Add()
earlier, and access the parameter’s Value property to assign a value to it.

When both parameters have had values assigned to them, we call
ExecuteNonQuery() to run the INSERT SQL command.

The loop allows as many authors as required to be added, after which we use
a SELECT statement to print out the new state of the Authors table (line 25).

A typical session with this program would look like this:

Author’s name: Bradbury, Ray

Author’s name: Herbert, Frank

Author’s name: Jones, J V

Author’s name: Goodkind, Terry

Author’s name: quit

1: Wibble, Zaphod Q

2: Asimov, Isaac

3: Dium, T

4: Moron, Oxy

5: Tolkien, J R R

6: Bradbury, Ray

7: Herbert, Frank

8: Jones, J V

9: Goodkind, Terry

Databases 499

11.9 ■ DataSets

As we’ve seen, the data reader classes are easy to use for retrieving a result
set from an SQL query, but restrictive in that they only allow us to traverse
the list of records once by successively calling the Read() method. We can-
not back up in the list and if we wish to run through the list more than once,
we need to re-query the database to refresh the list.

.NET provides a much more powerful and flexible class for dealing with
results sets, and indeed with data sets of any form: the DataSet class. A
DataSet is essentially a database in its own right, in that it allows tables to
be created within it, with each table containing its own set of columns and
rows. A DataSet even allows relationships to be defined between tables, and
constraints (such as primary keys) to be defined on one or more columns
within each table.

We’ll delve a bit more deeply into a DataSet’s capabilities later, but we’ll
begin by illustrating its most common use: as a receptacle for the result set
from a query to a ‘real’ database. The easiest way to illustrate the DataSet
is with a brief example. Since it’s been a while since we presented a com-
plete program, and since there are a couple of changes required for using the
DataSet outside the try block, we will present the complete program here.
As with our earlier examples, the code assumes that the BookTest database
is being used, and that all the data described earlier has been entered into
the tables in that database.

We can load the entire contents of the Authors table into a DataSet and
then print out the results to the console using the following code:

1. using System;

2. using System.Data;

3. using System.Data.OleDb;

4.
5. public class DataSetDemo

6. {

7. public static void Main(string[] args)

8. {

9. string source;

10. source = "Provider=Microsoft.Jet.OLEDB.4.0;" +

11. @"Data Source=C:\Books\MyBooks\CSharpBook\

BookTest.mdb";

12.
13. OleDbConnection oleConn = new OleDbConnection(source);

14. try

15. {

16. oleConn.Open();

17. string sql = "SELECT * FROM Authors";

18. OleDbDataAdapter command =

19. new OleDbDataAdapter(sql, oleConn);

500 From Java to C#

20. DataSet dataSet = new DataSet();

21. command.Fill(dataSet, "AuthorInfo");

22. foreach (DataRow row in dataSet.Tables[0].Rows)

23. {

24. Console.WriteLine(row[0] + " - " + row[1]);

25. }

26. Console.WriteLine("\nEntries in reverse order:");

27. for (int i = dataSet.Tables["AuthorInfo"]

.Rows.Count - 1;

28. i >= 0; i--)

29. {

30. DataRow row = dataSet.Tables["AuthorInfo"].Rows[i];

31. Console.WriteLine(row["AuthorKey"] + ": "

32. + row["Name"]);

33. }

34. }

35. catch (Exception ex)

36. {

37. Console.WriteLine(ex.ToString());

38. }

39. finally

40. {

41. oleConn.Close();

42. }

43. }

44. }

Since DataSet is in the System.Data namespace, we need to add a new
using statement (line 2). Also, since some of the base classes referenced
from DataSet rely on XML, we need to add a reference to System.XML in the
references list (either in Visual Studio’s project, or in the command line for
the compiler).

As with the examples in the last section, we are using the Access database
to illustrate, but the example will work with SQL Server as well if the con-
nection string on lines 10 and 11 is changed.

After opening the database (line 16) and defining the SQL statement (line
17), we must create (line 18) an OleDbDataAdapter to provide the interface
between the database and the DataSet. Note that this line replaces the cre-
ation of the OleDbCommand that we used in our earlier examples, since the
data adapter will handle the transmission of the SQL command to the data-
base and the retrieval of the result set.

Next, we create the DataSet (line 20). Although the contents of the
DataSet can be defined by hand (by writing code to define the tables and their
columns), the easiest way to use a DataSet to retrieve a result set from a query
is to use the Fill() method from OleDbDataAdapter (line 21). Fill() takes
two parameters: the first is the DataSet to fill, and the second is the name of

Databases 501

the table that should be created to hold the records returned from the query.
Although this name is usually the same as the table from which the query is
made, it need not be, and in this example we have deliberately given the table
a different name (‘AuthorInfo’) from the table in the database.

The Fill() method loads the results of the query into the DataSet’s
AuthorInfo table, in the process creating enough columns in the table to
store the data fields in the result set. The names of these columns will be
taken from their names in the database, so in this case, the DataSet will
have two columns named ‘AuthorKey’ and ‘Name’. We will see later that if
we wish to change these names it is easy enough to do so. In most cases, to
avoid confusion we will want to keep the same names, but sometimes the
column names in the database are fairly cryptic and if we want to use the
DataSet to display the data to the user, it is handy to be able to provide
more user-friendly column titles.

Once we have filled the DataSet with the result set from the database, the
DataSet becomes a totally independent repository of that data. We could,
for example, close the connection to the database after the Fill() method
is called and then deal with the DataSet off-line. This also means that any
changes made to the DataSet have no effect on the data in the original data-
base, although it is possible to write back any changes to the database if we
wish to.

As we mentioned above, a DataSet has its own set of tables, each of
which has its own set of columns. The DataSet class has a number of prop-
erties that allow easy access to these internal components. We’ll explore the
details in the next section, but the code in the current example shows a
couple of methods.

We list the contents of the DataSet in two ways to show the flexibility of
the interface. On line 22, we use a foreach loop to iterate through the set
of Rows in the AuthorInfo table. Each DataSet has a Tables property which
is an array of the tables that have been added to the DataSet. Each element
with Tables is a DataTable object, and can be referenced by its index num-
ber as we do on line 22, or by the name of the table, as we do on line 27.
Although a DataSet can hold any number of DataTables, the Fill()
method is only capable of filling one table at a time. We could produce a
complete replica of the BookTest database within a DataSet by adding
another couple of tables named Books and AuthorBook to the DataSet and
then calling Fill() for these two tables.

A DataTable has a Rows property, which is an array of the records in the
table, each of which is a DataRow object. A DataRow is an array of objects,
each element of which is one data field from the record. Each element with-
in Rows can be referenced by its index number as on line 24, or by the name
of the column it belongs to, as on lines 31 and 32.

The loop on line 22 iterates through the DataRows in ascending order, and
just to illustrate that the data in a DataSet can be accessed in any order, we
list the data in reverse order in the loop on line 27. The output from the pro-
gram is (assuming that the example at the end of the last section that adds
several new authors to the database has been run):

502 From Java to C#

1 - Wibble, Zaphod Q

2 - Asimov, Isaac

3 - Dium, T

4 - Moron, Oxy

5 - Tolkien, J R R

6 - Bradbury, Ray

7 - Herbert, Frank

8 - Jones, J V

9 - Goodkind, Terry

Entries in reverse order:

9: Goodkind, Terry

8: Jones, J V

7: Herbert, Frank

6: Bradbury, Ray

5: Tolkien, J R R

4: Moron, Oxy

3: Dium, T

2: Asimov, Isaac

1: Wibble, Zaphod Q

To change the column names, we can insert the following code after the
Fill() statement on line 21:

dataSet.Tables[0].Columns[0].ColumnName = "Primary Key";

dataSet.Tables[0].Columns[1].ColumnName = "Author’s name";

It is important to change the column names after filling the DataSet,
since the Fill() method tries to match the existing column names to the
column names in the database table. If we change the DataSet’s column
names before filling it, the two columns will be ignored and two new
columns will be added to the table with the names from the database’s
Authors table.

It is possible to build a ‘hand made’ DataSet by specifying the tables it
should contain and defining the contents of each of these tables in code, but
for our purposes in this book we will not need this level of control over a
DataSet. However, there are several examples in the MSDN documentation
and on the web if you wish to do it yourself. It is worth pointing out that
although a DataSet is most often used to store a result set from a database
query, it can also store data obtained from any source. We can read data in
from a text file or even specify the data within the C# code and build an
‘internal’ database inside the program using a DataSet.

Databases 503

11.10 ■ Databases and Windows Forms: DataGrids

We’ve seen that a DataSet is a powerful class for representing data retrieved
from a database, but it really comes into its own when used together with a
DataGrid in a Windows program.

The DataGrid is a Windows Form control which displays data in a tabu-
lar form similar to that in a spreadsheet. We will illustrate the use of a
DataGrid by loading the Authors table from BookTest into one and then
using it as an interface for adding, deleting and modifying records in the
original database.

The main interface to the DataGridDemo program is as shown in Figure
11.1. The DataGrid occupies the main display and contains two columns
showing the data from the Authors table. Each cell in this grid is editable.
At the bottom there is a button which when pressed transmits any changes
in the data back to the original Access database.

The DataGrid actually displays data from a DataSet, and does not itself
have a direct link to the original database except through this DataSet.
Thus any changes made to the DataGrid affect only the data stored in the
DataSet, which we must remember is only a copy of the data from the data-
base. Pressing the ‘Update’ button causes the data from the DataSet to be
sent back to the original database using SQL commands.

(Incidentally, you may come across some books that use terms such as ‘per-
sisting the data’ when talking about saving data back to the database. I do not
wish to contribute to the breakdown in English grammar that seems to be
emerging from the computing community – ‘persist’ is an intransitive verb (look
it up!), so it is correct to say that something can persist, but it is not correct to
say that something can be persisted. And let’s not even mention ‘leveraging’…)

504 From Java to C#

Figure 11.1 Data in the Authors table displayed in a DataGrid

The initial interface of the program shows the entries from the Authors
table that are there following our sample code from earlier in this chapter.
The DataGrid uses a default width for all columns, which as you can see
from the figure gives too much space to AuthorKey and not enough to Name,
but this can be corrected in the code, which we will do later. For now we
want to concentrate on the interaction between the DataGrid, DataSet and
the original database. (The columns can be resized by dragging their bound-
aries with the mouse anyway.)

This interface is used much like that in an ordinary database table – the
individual text cells are all editable, so the user can make changes to exist-
ing database records just by clicking in the cell and typing. New records can
be added at the bottom by clicking in the line with a * at the left.

The code for this program is as follows:

1. using System;

2. using System.Data;

3. using System.Data.OleDb;

4. using System.Drawing;

5. using System.Windows.Forms;

6.
7. class DataGridDemo : Form

8. {

9. DataGrid dataGrid;

10. Button updateButton;

11. DataSet dataSet;

12. OleDbDataAdapter adapter;

13. OleDbCommandBuilder builder;

14. OleDbConnection oleConn;

15.
16. public DataGridDemo()

17. {

18. InitializeComponents();

19. }

20.
21. public void InitializeComponents()

22. {

23. ClientSize = new Size(300, 400);

24. Text = "DataGrid demo";

25.
26. dataGrid = new DataGrid();

27. dataGrid.Bounds = new Rectangle(10, 10, 250, 350);

28.
29. updateButton = new Button();

30. updateButton.Bounds = new Rectangle(10, 360, 100, 30);

31. updateButton.Text = "Update";

32. updateButton.Click += new EventHandler(OnUpdate);

Databases 505

33. Controls.Add(updateButton);

34.
35. InitializeDatabase();

36. Controls.Add(dataGrid);

37.
38. Rectangle screenSize = Screen.GetWorkingArea(this);

39. Location =

40. new Point(screenSize.Width/2 - Size.Width/2,

41. screenSize.Height/2 - Size.Height/2);

42. }

43.
44. private void InitializeDatabase()

45. {

46. string source = "Provider=Microsoft.Jet.OLEDB.4.0;" +

47. @"Data Source=C:\Books\MyBooks\CSharpBook\

BookTest.mdb";

48. oleConn = new OleDbConnection(source);

49.
50. string sql;

51. try

52. {

53. oleConn.Open();

54. sql = "SELECT MAX(AuthorKey) FROM Authors";

55. OleDbCommand command = new OleDbCommand(sql, oleConn);

56. int maxKey = (int)command.ExecuteScalar();

57. sql = "SELECT * FROM Authors";

58. adapter = new OleDbDataAdapter(sql, oleConn);

59. builder = new OleDbCommandBuilder(adapter);

60. dataSet = new DataSet();

61. adapter.Fill(dataSet, "Authors");

62. dataSet.Tables["Authors"].PrimaryKey =

63. new DataColumn[]

64. {dataSet.Tables["Authors"].Columns["AuthorKey"]};

65. dataSet.Tables["Authors"].Columns["AuthorKey"].

66. AutoIncrement = true;

67. dataSet.Tables["Authors"].Columns["AuthorKey"].

68. AutoIncrementSeed = maxKey + 1;

69.
70. dataGrid.SetDataBinding(dataSet, "Authors");

71. }

72. catch (Exception ex)

73. {

74. Console.WriteLine(ex.ToString());

75. }

76. finally

77. {

506 From Java to C#

78. oleConn.Close();

79. }

80. }

81.
82. private void OnUpdate(object sender, EventArgs e)

83. {

84. if(dataSet.HasChanges())

85. {

86. adapter.Update(dataSet, "Authors");

87. dataSet.AcceptChanges();

88. }

89. }

90.
91. public static void Main(string[] args)

92. {

93. Application.Run(new DataGridDemo());

94. }

95. }

Most of the code in InitializeComponents() should be fairly obvious as
it sets up the controls on the form in the same way as we did in Chapter 9.
A DataGrid is just like any other control in this respect – we create it and
give it its bounds on lines 26 and 27.

The InitializeDatabase() method (line 44) contains a few new fea-
tures. We use the same Access database that we have used for earlier exam-
ples. After opening the database connection (line 53), we find the maximum
AuthorKey using the SQL MAX() function (lines 54 to 56). This value will be
used later for assigning AuthorKeys to new entries.

Since we will be loading the data into a DataSet, we create an
OleDbDataAdapter on line 58. The next line introduces a
OleDbCommandBuilder, which is a very handy class, but its use requires a
little explanation.

One feature of the adapter classes that we have not yet mentioned is that
they have four properties which can contain SQL statements for querying,
inserting, updating and deleting records from the database to which the
adapter is connected. The four corresponding properties in the OleDbData
Adapter class (and the other adapter classes as well) are SelectCommand,
InsertCommand, UpdateCommand, and DeleteCommand. When we pass the
SQL string to the OleDbDataAdapter constructor on line 58, we are in fact
initializing the SelectCommand property, but the other three commands are
not initialized by default.

The remaining three commands are used by the adapter whenever we
wish to write changes back to the database. If all we want to do is just view
the current contents of the database, then there is no need to provide any
values for these three commands, which is the default behaviour. However,
in this example, we wish to use the DataGrid to allow the user to make
changes to the database, so we will need these commands.

Databases 507

The main difference between a SelectCommand and the other three com-
mands is that when we wish to change something in the database, we won’t
know in advance which records will be affected by the changes. For exam-
ple, if we wish to insert a new author into the Authors table, we don’t know
what that author’s name will be when the program is compiled, so obvious-
ly we can’t program the name into the code.

We have seen earlier that it is possible to define prepared statements in
which we can leave some placeholders that can be filled in later, and this is,
in fact, the approach taken with these three command properties of an
adapter. However, defining an appropriate command statement isn’t quite as
simple as just providing an SQL statement with a few placeholders in it – we
actually need to do a fair number of other chores to set everything up prop-
erly. Although it is possible to do this ourselves, it is much easier to use a
command builder class such as OleDbCommandBuilder to do it for us.

A command builder deduces the forms of the other three command
statements by examining the form of SelectCommand. If we want to see what
commands it generates, this can be done by retrieving the CommandText
property for each command. We can insert the following code after line 59,
for example:

Console.WriteLine(builder.GetInsertCommand().CommandText

+ "\n");

Console.WriteLine(builder.GetUpdateCommand().CommandText

+ "\n");

Console.WriteLine(builder.GetDeleteCommand().CommandText);

This produces the output:

INSERT INTO Authors(AuthorKey , Name) VALUES (? , ?)

UPDATE Authors SET AuthorKey = ? , Name = ? WHERE

((AuthorKey = ?) AND ((? IS NULL AND Name IS NULL) OR

(Name = ?)))

DELETE FROM Authors WHERE ((AuthorKey = ?) AND ((? IS

NULL AND Name IS NULL) OR (Name = ?)))

The structure of these statements is deduced from the original
SelectCommand that we provided in the program (line 57):

SELECT * FROM Authors

The * wildcard has been expanded by connecting to the database, and
thus the command builder knows that Authors has two columns named
AuthorKey and Name. From this it constructs the commands for inserting,
updating and deleting a record from the Authors table.

The InsertCommand has two placeholders that are filled in by the two val-
ues entered into the DataGrid by the user (as we will see below).

508 From Java to C#

The other two commands refer to existing records in the table, and so need
a way of identifying which record is to be changed. The UpdateCommand, for
example, sets AuthorKey and Name to two new values, but to identify the cor-
rect record to alter, the previous values of these two fields are used (a DataSet
actually stores both the old and new values for any changed records to allow
this comparison to take place). The WHERE clause therefore first matches the
old values of AuthorKey and Name to locate the correct record. The section
of this clause that checks the condition

((? IS NULL AND Name IS NULL) OR (Name = ?))

allows for the case where Name is NULL (that is, there is no entry in the
Name field), or where Name has a given value. The same check is not done
for AuthorKey, since AuthorKey is identified in the database as a primary
key, and keys cannot be NULL. The same conditions are checked for the
DeleteCommand.

The handy thing about a command builder is that it not only constructs
these commands automatically, but also takes care of all the other chores
that are required to set them up. As we will see a bit later, all that is required
to transfer changes from a DataSet back to the original database is that the
Update() method is called from the adapter – the command builder pro-
vides all the relevant SQL statements to do the updating.

After creating the adapter and builder, we create and fill the DataSet
(lines 60 and 61). Lines 62 to 68 illustrate how to set some of the properties
of a DataSet to make data entry a bit easier. A DataSet is able to mimic
most of the features of a ‘real’ database, including the definition of primary
keys, relationships and so on. On line 62, for example, we define a primary
key for the Authors table within the DataSet so that it matches the primary
key in the database. The PrimaryKey property may be set for a DataTable,
and must be an array of DataColumns, since in general, a primary key can
be one or more columns in a table. In this case, the primary key is only one
column, so we just create it by defining an array dynamically. For a table
such as AuthorBook, where two columns jointly define the primary key, we
would create an array containing both columns.

Setting the PrimaryKey property for a table has the same effect in a DataSet
as in a database – the DataSet will require that all primary keys are unique. If
this condition is violated during data entry into a DataGrid a message box pops
up informing the user of the error and offering a chance to fix it.

Line 65 declares the AuthorKey column to be an AutoIncrement column.
This means that each time we create a new record in the DataGrid, the
value of AuthorKey is set automatically to one more than the last value. The
AutoIncrementSeed property (line 67) specifies the value at which
AuthorKey should begin. We use the maxKey value we determined earlier
(line 56) to start the autoincrementing off at a value one greater than the
largest existing AuthorKey.

We can set other properties of the DataSet if we require – just refer to the
MSDN documentation to see what is available. Once the DataSet is set up,

Databases 509

we can bind it to the DataGrid by calling SetDataBinding() (line 70). A
DataGrid can only display one table at a time (recall that a DataSet can
store multiple tables) so the second parameter of SetDataBinding() is the
name of the table we wish to display.

This completes the initial setup of the interface. The user can now insert
new authors and change or delete existing ones as often as required. The
code to handle all these changes is internal to the DataGrid and need not
concern us here. What is important to remember is that the DataGrid com-
municates all these changes to the DataSet to which it is bound, and the
DataSet will keep track of the states of all the rows. In particular, it tags
each row with a label such as ‘Added’, ‘Deleted’, and so on.

When the user is happy with the changes that have been made in the
DataGrid, the ‘Update’ button is pressed, which calls the OnUpdate() event
handler (line 82). We first test the dataSet to see if any changes have been
made (line 84) and, if so, call Update() to transmit these changes to the
database. This is done by the adapter, which in turn uses the various com-
mands that were created for it by the command builder earlier. The adapter
tests each row in the DataSet to see if it has changed, and if so, it examines
the tag for that row to see what type of change has occurred. If a row is new
(that is, it wasn’t in the original database), it will be marked as ‘Added’ so
the InsertCommand will be run to insert a new record into the database.
Similarly, if a row was deleted, it will be tagged as ‘Deleted’ and the
DeleteCommand is run to remove it from the database.

After all the changes have been saved to the database, we call Accept
Changes() (line 87) on the DataSet. This clears all the tags on the DataSet’s
rows, so that the DataSet will be reset to the ‘unchanged’ state. Further mod-
ifications in the DataGrid will then start from that point, and only further
changes will be updated the next time the ‘Update’ button is pressed.

If the DataSet contains a large number of records, the time taken to do an
update can be reduced by using the GetChanges() method to obtain a second
DataSet that contains only rows from the original DataSet that have changed
since the last update. In this case, we could write instead of lines 86 and 87:

DataSet changeSet = dataSet.GetChanges();
adapter.Update(changeSet, "Authors");
dataSet.Merge(changeSet);
dataSet.AcceptChanges();

To complete the program, a test for any unsaved changes should be
made when the program is shut down, and the user given the chance to save
these changes.

The DataSet–DataGrid combination is an elegant system for interacting
with a database in a GUI environment, and can do much more than we have
space to cover here. If you want to explore further, have a look at the MSDN
documentation for the various classes involved, or consult a specialized
book on databases in .NET.

510 From Java to C#

11.11 ■ More with DataGrids and DataSets

We’ve seen in the last section a few of the basic things that we can do using
a DataGrid to display a DataSet. There is a great deal more that can be
done using DataSets and DataGrids, so we will present another example in
this section that illustrates a few of these features.

First, let’s consider a problem with the simple example in the previous sec-
tion. We saw how to display a DataGrid that allowed the user to add new
records to the Authors table in the main database. We did not, however, con-
sider adding a new book to the Books table. If we recall the structure of the
BookTest database from earlier in this chapter, we will notice that adding a
book to the database requires making an entry in the Books table, but also
adding a new record to the AuthorBook link table for each author of the book.

In principle, this is easy enough to do, but from a GUI perspective, we
need a way to present a list of authors to the user from which a selection
can be made, and then we need to link this selection to the new record in
the Books table to produce the entries in the AuthorBook table.

In this example program, we do this by using a CheckedListBox to pro-
vide a list of authors, and a DataGrid in which the user can type the title
and number of pages of the new book. Along the way we will get some exp-
erience with a few more Windows Forms controls. The interface is as shown
in Figure 11.2.

The main interface uses a TabControl with three tabs. The first is the one
shown in the figure which allows the user to add a new book to the database.
The second tab allows the Authors table to be edited (Figure 11.3).

Databases 511

Figure 11.2 Form for adding a book to the database

The final tab allows the user to query the database and get a list of all
books by a given author (Figure 11.4).

We have also formatted the DataGrids by giving them titles, defining
some widths for the columns, changed the column headers, and provided
contrasting colours for alternating rows in the table.

512 From Java to C#

Figure 11.3 Form for editing authors in the database

Figure 11.4 Form for obtaining a list of books by a given author

The complete code for this program is a fair bit longer than the sample
programs we have used so far, so we will break the code up into sections and
deal with each in turn.

We begin with the using statements and class declarations:

1. using System;

2. using System.Data;

3. using System.Data.OleDb;

4. using System.Drawing;

5. using System.Windows.Forms;

6.
7. class BookDB : Form

8. {

9. DataGrid authorGrid, bookGrid, queryGrid;

10. TabControl tabControl;

11. TabPage bookPage, authorPage, queryPage;

12. CheckedListBox authorList;

13. ListBox authorQueryList;

14. Button updateAuthorsButton, updateBooksButton, queryButton;

15. DataSet dataSet;

16. OleDbDataAdapter authors, books, AuthorBook;

17. OleDbCommandBuilder authorBuilder, bookBuilder,

18. AuthorBookBuilder;

19. OleDbConnection oleConn;

20.
21. public BookDB()

22. {

23. InitializeComponents();

24. }

25.
26. #region Initializations

27. public void InitializeComponents()

28. {

29. ClientSize = new Size(500, 400);

30. Text = "DataGrid demo";

31.
32. tabControl = new TabControl();

33. tabControl.Bounds = new Rectangle(10, 10, 480, 390);

34. Controls.Add(tabControl);

35. InitializeBookPage();

36. InitializeAuthorPage();

37. InitializeQueryPage();

38. InitializeDatabase();

39. SetupGridStyles();

40.

Databases 513

41. Rectangle screenSize = Screen.GetWorkingArea(this);

42. Location = new Point(screenSize.Width/2 - Size.Width/2,

43. screenSize.Height/2 - Size.Height/2);

44. }

This section of code just sets up the various Windows Forms controls that
are needed in the GUI on lines 9 to 14, and then the database objects on
lines 15 to 19. The constructor (line 21) calls InitializeComponents()
(line 27) which in turn calls a number of other methods to set up the tab
pages and database connections.

The three methods that set up the tab pages are as follows:

1. private void InitializeAuthorPage()

2. {

3. authorPage = new TabPage("Authors");

4. tabControl.TabPages.Add(authorPage);

5. updateAuthorsButton = new Button();

6. updateAuthorsButton.Text = "Update";

7. updateAuthorsButton.Bounds =

8. new Rectangle(10, 330, 100, 30);

9. updateAuthorsButton.Click += new EventHandler(OnUpdate);

10. authorPage.Controls.Add(updateAuthorsButton);

11.
12. authorGrid = new DataGrid();

13. authorGrid.Bounds = new Rectangle(10, 10, 450, 300);

14. authorGrid.CaptionText = "Authors in database";

15. authorGrid.CaptionBackColor = Color.DarkGreen;

16. authorPage.Controls.Add(authorGrid);

17. }

18.
19. private void InitializeBookPage()

20. {

21. bookPage = new TabPage("Books");

22. tabControl.TabPages.Add(bookPage);

23.
24. updateBooksButton = new Button();

25. updateBooksButton.Text = "Update";

26. updateBooksButton.Bounds = new Rectangle(10,

330, 100, 30);

27. updateBooksButton.Click += new EventHandler(OnBooksUpdate);

28. bookPage.Controls.Add(updateBooksButton);

29.
30. authorList = new CheckedListBox();

31. authorList.Bounds = new Rectangle(10, 10, 450, 140);

32. authorList.CheckOnClick = true;

33. bookPage.Controls.Add(authorList);

34.

514 From Java to C#

35. bookGrid = new DataGrid();

36. bookGrid.Bounds = new Rectangle(10, 160, 450, 150);

37. bookGrid.CaptionText = "Books in database";

38. bookGrid.CaptionBackColor = Color.DarkRed;

39. bookPage.Controls.Add(bookGrid);

40. }

41.
42. private void InitializeQueryPage()

43. {

44. queryPage = new TabPage("Query");

45. tabControl.TabPages.Add(queryPage);

46. queryButton = new Button();

47. queryButton.Text = "&Query";

48. queryButton.Bounds = new Rectangle(10, 330, 100, 30);

49. queryButton.Click += new EventHandler(OnQuery);

50. queryPage.Controls.Add(queryButton);

51.
52. authorQueryList = new ListBox();

53. authorQueryList.Bounds = new Rectangle(10, 10, 450, 140);

54. queryPage.Controls.Add(authorQueryList);

55.
56. queryGrid = new DataGrid();

57. queryGrid.Bounds = new Rectangle(10, 160, 450, 150);

58. queryGrid.CaptionBackColor = Color.DarkBlue;

59. queryGrid.ReadOnly = true;

60. queryPage.Controls.Add(queryGrid);

61. }

The Authors tab page defines the Button and DataGrid, attaches an
event handler to the Button (line 9) and sets a couple of display properties
for the DataGrid (lines 14 and 15).

The Books tab page is set up in a similar way (line 19). The Button,
CheckedListBox and DataGrid are initialized and added to the page.

Finally, the Query page is set up on line 42. The author list here is dis-
played using an ordinary ListBox, and the results of the query are displayed
using another DataGrid.

These three methods all just set up the appearance of the program. The
actual database connections are done in InitializeDatabase():

1. private void InitializeDatabase()

2. {

3. string source = "Provider=Microsoft.Jet.OLEDB.4.0;" +

4. @"Data Source=C:\Books\MyBooks\CSharpBook\

BookTest.mdb";

5. oleConn = new OleDbConnection(source);

6.
7. string sql;

Databases 515

8. try

9. {

10. oleConn.Open();

11. sql = "SELECT MAX(AuthorKey) FROM Authors";

12. OleDbCommand command = new OleDbCommand(sql, oleConn);

13. int maxAuthorKey = (int)command.ExecuteScalar();

14. sql = "SELECT * FROM Authors";

15. authors = new OleDbDataAdapter(sql, oleConn);

16. authorBuilder = new OleDbCommandBuilder(authors);

17. dataSet = new DataSet();

18. authors.Fill(dataSet, "Authors");

19.
20. dataSet.Tables["Authors"].PrimaryKey =

21. new DataColumn[]

22. {dataSet.Tables["Authors"].Columns["AuthorKey"]};

23. dataSet.Tables["Authors"].Columns["AuthorKey"].

24. AutoIncrement = true;

25. dataSet.Tables["Authors"].Columns["AuthorKey"].

26. AutoIncrementSeed = maxAuthorKey + 1;

27.
28. sql = "SELECT MAX(BookKey) FROM Books";

29. command = new OleDbCommand(sql, oleConn);

30. int maxBookKey = (int)command.ExecuteScalar();

31. sql = "SELECT * FROM Books";

32. books = new OleDbDataAdapter(sql, oleConn);

33. bookBuilder = new OleDbCommandBuilder(books);

34. books.Fill(dataSet, "Books");

35. dataSet.Tables["Books"].PrimaryKey =

36. new DataColumn[]

37. {dataSet.Tables["Books"].Columns["BookKey"]};

38. dataSet.Tables["Books"].Columns["BookKey"].

AutoIncrement =

39. true;

40. dataSet.Tables["Books"].Columns["BookKey"].

41. AutoIncrementSeed = maxBookKey + 1;

42.
43. sql = "SELECT * FROM AuthorBook";

44. AuthorBook = new OleDbDataAdapter(sql, oleConn);

45. AuthorBookBuilder = new OleDbCommandBuilder(AuthorBook);

46. AuthorBook.Fill(dataSet, "AuthorBook");

47. dataSet.Tables["AuthorBook"].PrimaryKey =

48. new DataColumn[]

49. {

50. dataSet.Tables["AuthorBook"].Columns["AuthorKey"],

51. dataSet.Tables["AuthorBook"].Columns["BookKey"]

52. };

516 From Java to C#

53.
54. dataSet.Relations.Add("AuthorLink",

55. dataSet.Tables["Authors"].Columns["AuthorKey"],

56. dataSet.Tables["AuthorBook"].Columns["AuthorKey"]);

57. dataSet.Relations.Add("BookLink",

58. dataSet.Tables["Books"].Columns["BookKey"],

59. dataSet.Tables["AuthorBook"].Columns["BookKey"]);

60. dataSet.EnforceConstraints = true;

61.
62. DataViewManager dataViewManager =

63. new DataViewManager(dataSet);

64. dataViewManager.DataViewSettings["Authors"]

.Sort = "Name";

65. dataViewManager.DataViewSettings["Books"].Sort = "Title";

66. authorGrid.SetDataBinding(dataViewManager, "Authors");

67. bookGrid.SetDataBinding(dataViewManager, "Books");

68.
69. dataSet.Tables["Authors"].DefaultView.Sort = "Name";

70. authorList.DataSource =

71. dataSet.Tables["Authors"].DefaultView;

72. authorList.DisplayMember = "Name";

73. authorList.ValueMember = "AuthorKey";

74. authorQueryList.DataSource =

75. dataSet.Tables["Authors"].DefaultView;

76. authorQueryList.DisplayMember = "Name";

77. authorQueryList.ValueMember = "AuthorKey";

78. }

79. catch (Exception ex)

80. {

81. Console.WriteLine(ex.ToString());

82. }

83. finally

84. {

85. oleConn.Close();

86. }

87. }

This method provides links between the database and all the DataGrids
and lists that display information from the database. We use the same tech-
nique as earlier to determine a primary key value for adding a new author –
we use an SQL MAX command to determine the largest AuthorKey current-
ly in the database (line 11) and then create a local parameter maxAuthorKey
which can be used to generate a new key value.

On lines 14 to 18, we create a DataSet and fill it with the contents of the
Authors table. We’ll connect this DataSet to the DataGrid (authorGrid)
later. First, we set up a few properties of this DataSet on lines 20 to 26, by

Databases 517

defining a primary key for it and turning on AutoIncrement for this key
value in the Authors table. The Books DataGrid is set up in a similar way
on lines 28 to 41.

On lines 43 to 52, we set up the AuthorBook table within the DataSet,
which seems unnecessary since we don’t actually display its contents any-
where in the program. However, if we load this table into the DataSet it is
then possible to duplicate the structure of the original database within the
DataSet, which allows us to define relationships between the tables in the
DataSet that mirror those in the database.

We do this on lines 54 to 60 by adding a couple of relationships to the
Relations property of the DataSet. Each relationship consists of a name
(as a string) followed by the column that is to be the parent of the relation-
ship, and then the column that is the child in the relationship. For example,
on line 54 we create a relation between the AuthorKey column in the
Authors table and the AuthorKey column in the AuthorBook table. We’ll see
what these relations can be used for a bit later. On line 60, we set
EnforceConstraints to ‘true’ to force the DataSet to enforce these rela-
tionships in any changes that are applied to the DataSet by the user.

Although we could bind a DataGrid directly to a DataSet as we did in the
simpler example in the last section, we can provide more control over what
data is displayed in a DataGrid by first attaching a DataView to the
DataSet. A DataView contains a number of properties that allow the data in
a DataSet to be filtered (in much the same way as with a WHERE clause in
SQL) and sorted.

Each table in a DataSet has a DefaultView property which is a DataView
object that can be assigned properties to specify filters or sorting procedures
for that table. For example, on line 69 we specify that the records in the
Authors table should be sorted according to the data in the Name column.
It is possible to sort on two or more columns by giving a list of columns in
the Sort property. We can also specify ascending or descending sorts by
using the keywords ASC and DESC. For example, we could specify that the
Books table be sorted primarily in ascending order by title and then sec-
ondarily in descending order by number of pages by saying:

dataSet.Tables["Books"].DefaultView.Sort =

"Title ASC, NumberOfPages DESC";

Filters can be applied using the RowFilter property in a DataView. Most
of the simple SQL expressions that work in a WHERE clause will work here
as well. For example, we could specify that only books with more than 200
pages should be included by saying:

dataSet.Tables["Books"].DefaultView.RowFilter =

"NumberOfPages > 200";

Filtering is also possible on the state of a row rather than its contents by
using the RowStateFilter property. The state is determined by whether the
row has just been added, modified or deleted. The set of possible states is

518 From Java to C#

defined as an enum in the DataViewRowState class and further document-
ation can be found there. We can for example, list only those rows that have
just been added by saying:

dataSet.Tables["Books"].DefaultView.RowStateFilter =
DataViewRowState.Added;

We can unify the DataViews for a DataSet under a common roof by cre-
ating a DataViewManager for that DataSet, as we do on line 62. A
DataViewManager allows properties to be set up for each table in the
DataSet that it manages by using the DataViewSettings property. For
example, on lines 64 and 65 we define the sorting order for the Authors and
Books tables within the DataSet.

Curiously, a DataViewManager only works if the data is subsequently dis-
played in a DataGrid, and not if the data is displayed in other controls such
as a ListBox. It is for this reason that we have defined both a
DataViewManager and set the DefaultView property for the Authors table
in the code here. Setting only the DataViewManager would not sort the data
that appears in the ListBox or CheckedListBox.

Once we have set up the properties of the data that we wish to display, we
need to connect the DataView or DataViewManager with the GUI control
that will display the data. For a DataGrid, we use SetDataBinding() as in
our earlier example (lines 66 and 67). Note that we bind authorGrid and
bookGrid to the DataViewManager rather than directly to the DataSet. This
allows the sorting and filtering properties defined within the manager to be
displayed in the DataGrids.

Since DataViewManagers don’t work with controls other than DataGrid,
we must bind the CheckedListBox and ListBox to the DefaultView with-
in the Authors table. For example, on lines 70 to 73, we set the DataSource
for the authorList (which is the CheckedListBox that displays the authors
on the Books tab) to the DefaultView in the Authors table. We specify
which column the list should display by setting the DisplayMember proper-
ty (line 72). We can, however, tell the list to store a different column as the
value of a given item by setting its ValueMember, which we do on line 73. If
we then retrieve the value of a selected item later, we will get back the
AuthorKey (which is not displayed on screen) rather than the Name, which
is displayed. The ListBox used for listing the authors on the Query tab is
set up in a similar way (lines 74 to 77).

Before we consider the event handlers, we will show how to set up the
properties of the columns and rows displayed within a DataGrid. This is
done in the SetupGridStyles() method:

1. private void SetupGridStyles()
2. {
3. DataGridTableStyle style = new DataGridTableStyle();
4. style.MappingName = "Books";
5. style.BackColor = Color.White;
6. style.AlternatingBackColor = Color.PeachPuff;

Databases 519

7. DataGridTextBoxColumn[] bookColumns =
8. new DataGridTextBoxColumn[3];
9. bookColumns[0] = new DataGridTextBoxColumn();

10. bookColumns[0].HeaderText = "ID";
11. bookColumns[0].MappingName = "BookKey";
12. bookColumns[0].Width = 30;
13. bookColumns[1] = new DataGridTextBoxColumn();
14. bookColumns[1].HeaderText = "Title";
15. bookColumns[1].MappingName = "Title";
16. bookColumns[1].Width = 200;
17. bookColumns[2] = new DataGridTextBoxColumn();
18. bookColumns[2].HeaderText = "Pages";
19. bookColumns[2].MappingName = "NumberOfPages";
20. bookColumns[2].Width = 50;
21. style.GridColumnStyles.AddRange(bookColumns);
22. bookGrid.TableStyles.Add(style);
23.
24. style = new DataGridTableStyle();
25. style.MappingName = "Authors";
26. style.BackColor = Color.White;
27. style.AlternatingBackColor = Color.Honeydew;
28. DataGridTextBoxColumn[] authorColumns =
29. new DataGridTextBoxColumn[2];
30. authorColumns[0] = new DataGridTextBoxColumn();
31. authorColumns[0].HeaderText = "ID";
32. authorColumns[0].MappingName = "AuthorKey";
33. authorColumns[0].Width = 30;
34. authorColumns[1] = new DataGridTextBoxColumn();
35. authorColumns[1].HeaderText = "Name";
36. authorColumns[1].MappingName = "Name";
37. authorColumns[1].Width = 200;
38. style.GridColumnStyles.AddRange(authorColumns);
39. authorGrid.TableStyles.Add(style);
40.
41. style = new DataGridTableStyle();
42. style.MappingName = "Query";
43. style.BackColor = Color.White;
44. style.AlternatingBackColor = Color.AliceBlue;
45. DataGridTextBoxColumn[] queryColumns =
46. new DataGridTextBoxColumn[2];
47. queryColumns[0] = new DataGridTextBoxColumn();
48. queryColumns[0].HeaderText = "Title";
49. queryColumns[0].MappingName = "Title";
50. queryColumns[0].Width = 200;
51. queryColumns[1] = new DataGridTextBoxColumn();
52. queryColumns[1].HeaderText = "Pages";
53. queryColumns[1].MappingName = "NumberOfPages";

520 From Java to C#

54. queryColumns[1].Width = 50;
55. style.GridColumnStyles.AddRange(queryColumns);
56. queryGrid.TableStyles.Add(style);
57. }

The properties of the rows and columns displayed within a DataGrid are
controlled by the DataGridTableStyle class. There are a large number of
properties in this class so you should explore the documentation to see
what’s available. We only illustrate a few of the possibilities here.

First, we create a style for the bookGrid used to display the Books table
on the Books tab. Each style must be linked to the table that it describes by
specifying the MappingName (line 4). We then specify the two colours used
as backgrounds on alternating rows (lines 5 and 6). To specify column prop-
erties, we create an array of DataGridTextBoxColumns (line 7). The size of
this array must match the number of columns to be displayed – we can’t just
create a DataGridTextBoxColumn for one column that we want to cus-
tomize and hope that some default style will be applied to the other
columns. If we do that, only one column will be shown in the grid.

Each DataGridTextBoxColumn allows various properties to be specified
for a given column. Again, we need to provide a MappingName (line 11) to
link the column to the column in the DataSet that is supposed to display.
We can change the text that is displayed at the top of the column by speci-
fying HeaderText (line 10), and we can change the width by specifying a
Width (line 12). Many other properties can be customized as well – see
the documentation.

When we have finished customizing the columns, we add the array of
DataGridTextBoxColumns to the GridColumnStyles property of the
DataGridTableStyle (line 21) and then add the style itself to bookGrid
(line 22). The rest of this method customized the other two DataGrids that
appear in the program.

Finally, we consider the event handlers for the three Buttons, which pro-
vide the interaction between the program and the underlying database:

1. #region Event handlers
2. private void OnBooksUpdate(object sender, EventArgs e)
3. {
4. foreach (DataRow row in dataSet.Tables["Books"].Rows)
5. {
6. if (row.RowState == DataRowState.Added)
7. {
8. CheckedListBox.CheckedItemCollection checkedItems =
9. authorList.CheckedItems;

10. foreach (object item in checkedItems)
11. {
12. DataRowView viewItem = (DataRowView)item;
13. dataSet.Tables["AuthorBook"].Rows.Add(new Object[]
14. { viewItem["AuthorKey"], row["BookKey"] }
15.);

Databases 521

16. }
17. }
18. }
19. OnUpdate(null, null);
20. }
21.
22. private void OnUpdate(object sender, EventArgs e)
23. {
24. if(dataSet.HasChanges())
25. {
26. AuthorBook.Update(dataSet, "AuthorBook");
27. books.Update(dataSet, "Books");
28. authors.Update(dataSet, "Authors");
29. dataSet.AcceptChanges();
30. }
31. }
32.
33. private void OnQuery(object sender, EventArgs e)
34. {
35. int selectedAuthor = (int)authorQueryList.SelectedValue;
36. string sql = "SELECT Books.Title,

Books.NumberOfPages " +
37. "FROM Books INNER JOIN " +
38. "(Authors INNER JOIN AuthorBook ON

Authors.AuthorKey " +
39. "= AuthorBook.AuthorKey) ON Books.BookKey = " +
40. "AuthorBook.BookKey " +
41. "WHERE Authors.AuthorKey = " + selectedAuthor;
42. OleDbDataAdapter queryAdapter =
43. new OleDbDataAdapter(sql, oleConn);
44. DataSet querySet = new DataSet();
45. queryAdapter.Fill(querySet, "Query");
46. queryGrid.SetDataBinding(querySet, "Query");
47. DataRowView selectedItem =
48. (DataRowView)authorQueryList.SelectedItem;
49. queryGrid.CaptionText = "Query results for " +
50. selectedItem["Name"];
51. }
52. #endregion
53.
54. public static void Main(string[] args)
55. {
56. Application.Run(new BookDB());
57. }
58. }

522 From Java to C#

Let us consider first the Books tab. The user can make a number of
changes (additions, modifications to existing rows, and deletions) to the
DataGrid storing the list of books before pressing the ‘Update’ button. As we
described earlier, we can transfer the changes from the DataSet to the
underlying database by calling the Update() method from the data adapter
that filled the DataSet in the first place.

However, in this example, we have an extra complication: the three tables
in the database are linked to each other, and making a change in one table
can affect the other tables as well. When we add a new record to the Books
table, for example, we must also add an entry to AuthorBook for each author
of that book. Deleting a book requires deleting any entries referring to that
book in AuthorBook as well.

The OnBooksUpdate() method (line 2) handles updates to the Books
table and any related effects on the AuthorBook table. First, consider new
books that have been added. When a user adds a new book, they will first
select one or more authors for that book by checking items in the
CheckedListBox, then clicking on the bottom row of the bookGrid (the row
marked with a * in the left column) and typing in the title and number of
pages of the new book. The DataGrid will automatically add a new record
to the Books table in the DataSet to which it is bound, but it knows noth-
ing about the need to create a new entry in the AuthorLink table, so we need
to do that in the code.

This is done in the loop starting on line 4. We examine each row in the
Books table and test its state to see if it is ‘Added’ (line 6). If so, we need to
retrieve the authors that have been checked in the CheckedListBox and
add an entry to AuthorBook for each author. We retrieve the list of checked
authors on line 8, as a CheckedItemCollection. We then loop through each
item in this collection (line 10). An item in a CheckedItemCollection is
stored as a DataRowView, which allows us to read individual columns by
using array notation and giving the column name as the array index. We can
therefore extract the AuthorKey value from this item and use this value
along with the BookKey value from the current row in the Books table to add
a new row to the AuthorBook table in the DataSet (lines 12 to 15). Note that
this only adds the row to the AuthorBook table in the DataSet – we have
not yet done anything that affects the original database, since we haven’t
made any calls to Update().

After adding the rows to the AuthorBook table, we call OnUpdate()
(which is also the event handler for the ‘Update’ button on the Authors tab,
as we’ll see in a minute), and it updates all three of the tables, and then calls
AcceptChanges() to reset the DataSet to an ‘unchanged’ state, in prepar-
ation for any more changes that the user may wish to make.

You may have noticed that something appears to be missing here. We
have added code to update AuthorBook if we add a new book, but there is
no code for deleting records from AuthorBook if we have deleted a book
from the Books grid. Surely we should have to write a similar piece of code

Databases 523

that checks for rows in the ‘Deleted’ state and then searches the AuthorBook
table for rows that reference the deleted book, and mark each of these rows
for deletion.

In fact, we don’t need to do this since we have defined a relationship
between the BookKey column in the Books table and the BookKey column
in AuthorBook. By telling the DataSet to EnforceConstraints as we did
above, it will do this search for us and delete all associated records from
AuthorBook. This illustrates the reason we created the relationships in the
first place – it saves us from writing a fair bit of code later on.

However, if you’re even more observant, you may have noticed that there
is a problem with the user interface here. The way the OnBooksUpdate()
method is written, it attaches the list of authors as it is when the Update
button is pressed to all ‘Added’ rows in the Books table. The most likely way
a user would use this program, however, is to select an author, enter a book
title, select another author, enter another book title and so on, and only
after entering a number of books in this way to finally press Update to
record all the changes in the database. Unfortunately for our user, what
would get recorded is a list of books, but all these books would have the
same author – the last author that was entered.

A similar problem occurs on the Authors tab. At present, we can add a
number of new authors and then press ‘Update’ and each author is added
correctly to the database. However, if we wish to delete an author, all entries
in the AuthorBook table with a reference to that author will also be deleted,
which could leave some books without any authors attached to them. A bet-
ter response from the program would be to flag an error and prevent the user
from deleting an author unless all books written by that author have been
deleted first.

These problems point to what seems to be a rather serious limitation on
the DataGrid control (at least at the time of writing – future versions of .NET
may have addressed this). Let’s consider the case of deleting an author for
which there are still books written by that author in the database. The user
would do this by selecting the row for that author in the DataGrid and then
pressing the ‘Delete’ key on the keyboard. At present, the response of the pro-
gram to this action is to delete the author from the display, although of course
nothing is changed in the database until the ‘Update’ button is pressed.

Ideally, what should happen is that when the user presses the ‘Delete’ key,
an error message should appear (say, a MessageBox) stating that since there
are still books written by that author in the database, the author cannot be
deleted. To make this happen requires an event to be generated from within
the DataGrid. There is no such event in DataGrid, but there are four events
within DataTable (which represents each table within a DataSet). These
events are: RowChanged, RowChanging, RowDeleted and RowDeleting, which
certainly look promising.

We should be able to add an event handler to the Authors table for the
RowDeleting event (which occurs when a row is about to be deleted, as
opposed to RowDeleted, which occurs after deletion is completed), do the

524 From Java to C#

check in the handler to see if any books by this author exist and, if so, gen-
erate an error message and prevent the deletion from occurring. This seems
to be possible, except that the only way of preventing the deletion process
is to throw an exception inside the RowDeleting event handler. Since the
whole process which led to the RowDeleting event occurring was started
inside a DataGrid, however, we have no access to the code which generates
the event and nowhere to put a try/catch block to catch the exception.
The net result is that the program crashes whenever the user tries to delete
an author who has books in the database.

A number of other bugs have been reported in the use of a DataGrid in
interfacing with a database in more complex situations. Hopefully future
versions of .NET will address these problems, but for now, some careful
thought is needed in using the system.

11.12 ■ Case study: the adventure game

Readers who have been following the adventure game case study so far will
have noticed that setting up the game can be quite tedious, as we need to
write separate blocks of code to add each item, room, monster and so on to
the overall layout. As well, if we want to add more rooms or items, we need
to add code to the program and recompile it. Clearly a more flexible method
would be better.

One way of easing the process of creating the initial game is to store the
required information in a database and then construct the map and its con-
tents by reading in this data in the C# code. We’ll illustrate how this could
be done here.

11.12.1 � Building a database for the adventure game

The first step is, of course, the construction of the database. As with our
other examples in this chapter, we will use Access since it is the easiest sys-
tem to use for small databases, but the same techniques could be used with
other databases such as SQL Server or MySQL by adapting the code as
described in this chapter.

The structure of the database can be based on the classes used to repre-
sent the various objects in the game. The tables and relationships we will
use are shown in the diagram taken from Access (Figure 11.5).

The Room table represents all rooms in the game. The Description field is
text that contains the name of the room, and also serves as the primary key
for the Room table (we are therefore demanding that all rooms have unique
names). The X, Y and Level fields specify the coordinates of the room. The
six direction fields are all text fields that store the Description of the room
that can be reached by moving in that direction, or NULL (the database
NULL) if no exit exists in that direction. The Monster field stores the name
of the monster, if any, in the room or NULL if there is no monster.

Databases 525

The Item table is used to define all types of item that are available in the
game. The Item table’s primary key is again the Description field, requiring
each item to have a unique description. This table includes definitions of item
types that are derived from Item in the code. The class name of a particular
item is stored in the Type field, so a potion would have ‘Potion’ as its type.

Some of the fields in the Item table are generic fields that serve a purpose
that is specific to the item type. The Duration field stores duration for a
Potion or charges for a wand, and is empty for all other item types. StartText
stores the string that is printed when some items are first used, such as
QuaffString for a Potion, AdornString for a Ring and ZapString for a Wand.
Similarly, StopText stores WearOffString for a Potion and UnadornString for
a Ring.

Since a given room can store an arbitrary number of items, we provide a
link table called RoomItem that links rooms to the items they store. We’ve
added an extra field called ItemQuantity to this table to allow a room to
store more than one instance of a given item.

The CharacterPlayer table contains definitions for the Player and all mon-
sters. It is similar in concept to the Item table in that it contains a Type field
to distinguish the Player object from monsters which are represented by the
Character class. Notice that we only need to store those data fields that
are initialized at the start of the game, so fields such as QuaffedPotion,
WornArmour and so on are not included, since the player is assumed to be car-
rying no items at the start of the game. For the same reason, there is no link
table connecting CharacterPlayer with Item. If we wish to modify this to allow
a player to start off with some items, it is easy enough to add this link table.

526 From Java to C#

Figure 11.5 Tables and relationships in the database used in the adventure game

Monsters in rooms, however, can carry objects which are dropped when
the monster is killed. We can’t provide this in the database by a link table
between CharacterPlayer and Item, since CharacterPlayer contains the
generic description of a particular type of monster, such as a zombie, and we
can have more than one zombie in the game (that is, several rooms could
have a monster of the same generic type).

Since only one monster is allowed per room, we have therefore provided
a link table called RoomMonsterItem which provides a list of items carried
by the monster in that room. This table contains only the descriptions of the
room and item (along with the quantity of items) since the monster carry-
ing these items is specified in the Room table under the entry for that par-
ticular room.

Once the database has been constructed, we can use Access’s table inter-
face (or build an Access form) to enter the data, or we could write a C# pro-
gram to provide a customized interface for doing this if we wished. For the
small size of the game we are considering here, this isn’t worth the effort,
since the data entry features provided by Access are adequate.

For example, the CharacterPlayer table after entering the player and a
few monsters is shown in Figure 11.6.

11.12.2 � Writing the C# code

Once we have enough data in the database to create a functioning game, we
can write the C# code to build the game from the database. All the changes
are in the Adventure class, since this is the only class that is used to initial-
ize the game. The relevant portion of this class in its new version is as follows:

1. using System;
2. using System.Collections;
3. using System.Data;
4. using System.Data.OleDb;
5.
6. public class Adventure
7. {
8. private Player gamePlayer;
9. private Room[] rooms;

10. private Random random = new Random();

Databases 527

Figure 11.6 CharacterPlayer table in the adventure game database

11. public int numRooms;
12.
13. OleDbDataAdapter command;
14. DataSet dataSet;
15.
16. public Adventure()
17. {
18. SetupGameFromDB();
19. }
20.
21. private void SetupGameFromDB()
22. {
23. string source;
24.
25. // Access database
26. source = "Provider=Microsoft.Jet.OLEDB.4.0;" +
27. @"Data Source=C:\Books\MyBooks\CSharpBook\

Adventure.mdb";
28. OleDbConnection oleConn = new OleDbConnection(source);
29. dataSet = new DataSet();
30. try
31. {
32. oleConn.Open();
33. string sql = "SELECT * FROM Item";
34. command = new OleDbDataAdapter(sql, oleConn);
35. command.Fill(dataSet, "Item");
36. dataSet.Tables["Item"].PrimaryKey =
37. new DataColumn[]
38. {dataSet.Tables["Item"].Columns["Description"]};
39.
40. sql = "SELECT * FROM Room";
41. command = new OleDbDataAdapter(sql, oleConn);
42. command.Fill(dataSet, "Room");
43. dataSet.Tables["Room"].PrimaryKey =
44. new DataColumn[]
45. {dataSet.Tables["Room"].Columns["Description"]};
46.
47. sql = "SELECT * FROM CharacterPlayer";
48. command = new OleDbDataAdapter(sql, oleConn);
49. command.Fill(dataSet, "CharacterPlayer");
50. dataSet.Tables["CharacterPlayer"].PrimaryKey =
51. new DataColumn[]
52. {dataSet.Tables["CharacterPlayer"].Columns

["Name"]};
53.
54. sql = "SELECT * FROM RoomItem";
55. command = new OleDbDataAdapter(sql, oleConn);

528 From Java to C#

56. command.Fill(dataSet, "RoomItem");
57.
58. sql = "SELECT * FROM RoomMonsterItem";
59. command = new OleDbDataAdapter(sql, oleConn);
60. command.Fill(dataSet, "RoomMonsterItem");
61.
62. SetupRoomsDB();
63. SetupPlayerDB();
64. }
65. catch (Exception ex)
66. {
67. Console.WriteLine(ex.ToString());
68. }
69. finally
70. {
71. oleConn.Close();
72. }
73. }
74.
75. private void SetupRoomsDB()
76. {
77. // Create rooms
78. numRooms = dataSet.Tables["Room"].Rows.Count;
79. rooms = new Room[NumRooms];
80. for (int i = 0; i < NumRooms; i++)
81. {
82. DataRow roomRow = dataSet.Tables["Room"].Rows[i];
83. rooms[i] = new Room((int)roomRow["X"],

(int)roomRow["Y"],
84. (int)roomRow["Level"],
85. (string)roomRow["Description"]);
86. }
87.
88. // Add exits
89. for (int i = 0; i < NumRooms; i++)
90. {
91. DataRow roomRow = dataSet.Tables["Room"].Rows[i];
92. Room currentRoom =
93. FindRoom((string)roomRow["Description"]);
94. int northColIndex =
95. dataSet.Tables["Room"].Columns.IndexOf("North");
96. for (int dir = northColIndex;
97. dir < northColIndex + 6; dir++)
98. {
99. if (roomRow[dir].GetType() ==

100. Type.GetType("System.String"))
101. {

Databases 529

102. string exitTo = (string)roomRow[dir];
103. Room otherRoom = FindRoom(exitTo);
104. currentRoom.SetExit((Room.Direction)
105. (dir - northColIndex), otherRoom);
106. }
107. }
108.
109. // Add monster, if any
110. if (roomRow["Monster"].GetType() ==
111. Type.GetType("System.String"))
112. {
113. string monsterName = (string)roomRow["Monster"];
114. DataRow monsterRow =
115. dataSet.Tables["CharacterPlayer"].Rows.
116. Find(monsterName);
117. Character monster = new Character();
118. monster.Name = (string)monsterRow["Name"];
119. monster.MaxEnergy = (int)monsterRow["MaxEnergy"];
120. monster.Energy = monster.MaxEnergy;
121. monster.BlockProb = (int)monsterRow["BlockProb"];
122. monster.HitProb = (int)monsterRow["HitProb"];
123. monster.Damage = (int)monsterRow["Damage"];
124. currentRoom.Monster = monster;
125. }
126. }
127.
128. // Add items to rooms
129. for (int i = 0;
130. i < dataSet.Tables["RoomItem"].Rows.Count; i++)
131. {
132. DataRow row = dataSet.Tables["RoomItem"].Rows[i];
133. Room room = FindRoom((string)row["RoomDescription"]);
134. DataRow itemRow = dataSet.Tables["Item"].Rows.
135. Find((string)row["ItemDescription"]);
136. int itemQuantity = (int)row["ItemQuantity"];
137. for (int q = 0; q < itemQuantity; q++)
138. {
139. Item addItem = GetItem(itemRow);
140. room.AddItem(addItem);
141. }
142. }
143.
144. // Add items to monsters
145. for (int i = 0;
146. i < dataSet.Tables["RoomMonsterItem"]

.Rows.Count; i++)
147. {

530 From Java to C#

148. DataRow row = dataSet.Tables
["RoomMonsterItem"]. Rows[i];

149. Room room = FindRoom((string)row["RoomDescription"]);
150. DataRow itemRow = dataSet.Tables["Item"].Rows.
151. Find((string)row["ItemDescription"]);
152. int itemQuantity = (int)row["ItemQuantity"];
153. for (int q = 0; q < itemQuantity; q++)
154. {
155. Item monsterItem = GetItem(itemRow);
156. room.Monster.AddItem(monsterItem);
157. }
158. }
159. }
160.
161. private Item GetItem(DataRow itemRow)
162. {
163. Item addItem = null;
164. String itemType = (string)itemRow["Type"];
165. if (itemType.Equals("Item"))
166. {
167. addItem = new Item();
168. }
169. else if (itemType.Equals("Food"))
170. {
171. addItem = new Food();
172. ((Food)addItem).Energy = (int)itemRow["Energy"];
173. }
174. else if (itemType.Equals("Weapon"))
175. {
176. addItem = new Weapon();
177. ((Weapon)addItem).Damage = (int)itemRow["Damage"];
178. ((Weapon)addItem).HitProb = (int)itemRow["HitProb"];
179. }
180. else if (itemType.Equals("Armour"))
181. {
182. addItem = new Armour();
183. ((Armour)addItem).BlockProb = (int)itemRow

["BlockProb"];
184. }
185. else // MagicItem
186. {
187. if (itemType.Equals("Potion"))
188. {
189. addItem = new Potion();
190. ((Potion)addItem).Duration = (int)itemRow

["Duration"];
191. ((Potion)addItem).QuaffString =

Databases 531

192. (string)itemRow["StartText"];
193. ((Potion)addItem).WearOffString =
194. (string)itemRow["StopText"];
195. }
196. else if (itemType.Equals("Ring"))
197. {
198. addItem = new Ring();
199. ((Ring)addItem).AdornString =
200. (string)itemRow["StartText"];
201. ((Ring)addItem).UnadornString =
202. (string)itemRow["StopText"];
203. }
204. else if (itemType.Equals("Wand"))
205. {
206. addItem = new Wand();
207. ((Wand)addItem).Charges = (int)itemRow["Duration"];
208. ((Wand)addItem).ZapString =
209. (string)itemRow["StartText"];
210. }
211. ((MagicItem)addItem).BlockProb =
212. (int)itemRow["BlockProb"];
213. ((MagicItem)addItem).HitProb = (int)itemRow

["HitProb"];
214. ((MagicItem)addItem).Damage = (int)itemRow["Damage"];
215. ((MagicItem)addItem).Energy = (int)itemRow["Energy"];
216. }
217. addItem.Description = (string)itemRow["Description"];
218. addItem.Weight = (int)itemRow["Weight"];
219. return addItem;
220. }
221.
222. private void SetupPlayerDB()
223. {
224. DataRow playerRow = dataSet.Tables

["CharacterPlayer"].Rows.
225. Find("Wibble the Wizard");
226. gamePlayer = new Player((string)playerRow["Name"]);
227. gamePlayer.MaxEnergy = (int)playerRow["MaxEnergy"];
228. gamePlayer.Energy = gamePlayer.MaxEnergy;
229. gamePlayer.HitProb = (int)playerRow["HitProb"];
230. gamePlayer.Damage = (int)playerRow["Damage"];
231. gamePlayer.BlockProb = (int)playerRow["BlockProb"];
232. gamePlayer.MaxCarryWeight =
233. (int)playerRow["MaxCarryWeight"];
234. gamePlayer.CurrentLocation =
235. FindRoom((string)playerRow["CurrentLocation"]);
236. }

532 From Java to C#

237.
238. private Room FindRoom(string description)
239. {
240. foreach (Room room in rooms)
241. {
242. if (room.Description.Equals(description))
243. return room;
244. }
245. return null;
246. }
247.
248. // Remainder of class as before
249. }

The plan is to read the entire database into a DataSet, since this makes
finding the required bits of data much easier. We load the entire database
since everything in the database is needed to create the game.

The data fields in Adventure have not changed much, but a couple of
alterations are worth pointing out. We have made numRooms a variable (line
11) with its own property (not shown) since we do not know in advance how
many rooms are to be in the game. For the same reason, we have removed
the Locn enumeration that was used in earlier versions, since we also don’t
know in advance the names of the rooms we will be loading.

The database objects are declared on lines 13 and 14, and then the con-
structor calls the single method SetupGameFromDB() to get things going.

After connecting to the database (lines 26 to 28 – alter these lines if you
want to use a different database or locate the database file in a different
place), we load the entire database into the DataSet (lines 29 to 60). We
then call SetupRoomsDB() and SetupPlayerDB() to set up the rooms, mon-
sters and player.

SetupRoomsDB() (line 75) begins by creating the rooms array. We obtain the
number of rooms from the DataSet Room table (line 78) and use this value to
allocate the array (line 79). Since we need to create a separate Room object for
each row in the Room table, we can just loop through these rows and extract
the information needed to call the Room constructor (lines 80 to 86). Note that
we can access the various columns within a DataRow by using the column
name as an indexer, but we do need to cast the value to the required data type,
since all column values in a DataRow are stored as objects.

After creating all the Rooms, we add the exits to each room (lines 89 to
107). To do this, we iterate through the Room table in the DataSet again.
For each DataRow, we use FindRoom() to find the Room object corresponding
to this row. FindRoom() (line 238) just loops through the rooms array
searching for a Room with a description that matches its parameter.

Once we have the Room object, we set about adding any exits it may have.
We are assuming that the Room table stores the exit data in consecutive
columns in the order North, East, South, West, Up, Down, since this is the
same order in which the exit data is stored in the Room class’s Direction enu-
meration. We locate the column in the Room table storing the North exit by

Databases 533

using IndexOf() (line 94). We can then loop over the six columns starting at
this location (lines 96 to 107) to locate and attach the exits for that room.

To determine which entries in the Room table correspond to exits, we test
the data type of each column (row 99). Columns with no exit string will have
a System.DBNull stored there, while those with a string will have a System.
String object.

Adding an exit to a Room requires locating the other Room to which the
exit leads, so we do that by using FindRoom() again (line 103) and then
SetExit() (line 104) to connect this room to the current room.

If the Room has a monster, we add it on lines 110 to 125. The monster’s
name is extracted from the Room’s data row (line 113) and the DataRow in
the CharacterPlayer table corresponding to that name is found (line 114).
The Rows property of a data table from a DataSet contains a Find() method
that allows a search to be done on the DataRows in the collection. Find()
will only search columns that are part of the table’s primary key however, so
we need to make sure we define the primary key for the table in the
DataSet. Remember that even though we have defined a primary key in the
original Access database, this information is not read in when we load the
data in the internal DataSet. This is why we set the primary keys when we
read in the data back on lines 33 to 60.

After the DataRow for the monster is located, it is just a matter of using
the information in that row to define the properties of the monster (lines
117 to 123). Finally, we attach the monster to the current room (line 124).

Adding items to rooms works in a similar way (lines 129 to 142). We loop
over all the rows in the RoomItem link table. For each row, we get the Room
description (line 133) and then extract the DataRow for the corresponding
item from the Item table, again using Find() (line 134). The Item object (or
its derived class object) is created by the method GetItem(), which we will
consider below. Finally, the ItemQuantity column is used to attach the cor-
rect number of this item to the room.

The process of adding items to monsters is very similar (lines 145 to 158).
GetItem() (line 161) builds an Item object (or an object from a class that

inherits Item) from the data in a DataRow from the Item table. The trick
here is to build an item of the correct data type, so we first obtain the data
type from the Type column (line 164). The rest of the method then creates
an item of the correct type and adds in the data fields that are appropriate
for that type of item.

The player is set up by SetupPlayerDB() (line 222). This involves noth-
ing more than locating the row containing the player’s name (line 224) and
then using the rest of the row to initialize all the player’s parameters.

Although the amount of code is not trivial, it has the advantage of being
fixed. Additions and alterations to the game can be made just by editing the
database, so the C# program need not be modified unless we want to add
something that requires a new class, such as a new type of item.

The one disadvantage to using the database approach for data storage is
that it does require that the user have the database software installed on
their system. In the next chapter we will have a look at another method
which avoids this problem: XML.

534 From Java to C#

■ Summary

This chapter has explored the facilities provided by .NET and C# for inter-
facing with databases. We began with a survey of the essentials of database
design and the use of SQL for editing and querying databases.

Our survey of .NET’s capabilities began with some simple classes that
allow reading and displaying the data in a database in a one-way fashion.
Then we explored the DataSet which is a powerful class capable of dupli-
cating a database within C# code, and allowing most database operations to
be performed on it.

The DataGrid control allows a reasonably versatile interface, both for dis-
playing the results of queries and allowing editing of the original database.
Due to some limitations in event handling, however, some aspects of the
DataGrid require caution when they are used.

We concluded with another instalment in our continuing case study of the
adventure game, in which the details of the initial setup of the game are
stored in a database and read in to start the game off.

Databases 535

Exercises

11.1 Using a database of your choice (Access, SQL Server, or MySQL preferably, so you
can connect to it using the code in this chapter), design a database for storing
some data on a CD collection. Typical tables might be a Disk table for storing the
data specific to a single CD, an Artists table (or a Composers table if your collec-
tion is classical) for storing details of the band(s) or composer(s) featured on the
CD, and an ArtistDisk link table. In the CD table, provide a column for the CD’s
title and another for the number of tracks. Also provide a CDKey column which
stores a number that is unique for each CD and can serve as the primary key.

The Artists table should contain a column for the artist’s or composer’s name
and an ArtistKey to be used as a primary key. The ArtistDisk table contains only
ArtistKey and DiskKey, which together form a primary key.

Using the Book database in the text as a model, enter some data into the CD data-
base using the facilities provided by the database software. Data on five or so CDs,
provided they feature different artists, should be enough for what follows.

11.2 Write a C# program that connects to the database you have just written. Be
sure to follow through the steps in the text for the particular type of database
you are using. Write an SQL statement and use the appropriate DataReader
class to print to the console a complete list of the titles in the Disk table.

11.3 Modify the SQL statement in the previous question to print out only those CDs
that have more than a certain number of tracks (choose the threshold value to
be one that will return only some of the CDs in your database).

11.4 Write an SQL statement using an INNER JOIN that will return a record set where
each record contains a CD title and the corresponding artist for that CD. Use
the DataReader to run the query and print out the results.

536 From Java to C#

11.5 Using the model in the text, write a Windows Form program containing a sin-
gle DataGrid. Define a DataSet and load just the Artist table into the
DataSet, then display the results in the DataGrid. The DataGrid should dis-
play both columns in the Artist table (ArtistKey and Name).

11.6 Add a TextBox and a Button to the form in the previous exercise. The user
should be able to type a string in the box and then press the button to do a
search of the Artist table for all names containing that string. For example, if the
Artist table contained entries for Beethoven, Schubert and Schumann, typing in
‘Schu’ should return Schubert and Schumann, but not Beethoven. (Hint: recall
the LIKE clause in SQL.)

11.7 Write another program (or add a TabControl to the program from the previ-
ous exercise and add the interface on a second tab) which displays a list of all
CDs in the database. The display should contain a DataGrid with three
columns: CD title, Artist and Number of Tracks (that is, none of the key values
should be displayed).

11.8 Add a TextBox and Button to the interface in the previous exercise which
allows the user to search for all CDs by artists whose name contains the string
entered in the text box. Using the same example as in the previous search exer-
cise, all CDs featuring works by Schubert or Schumann should be listed.

11.9 Returning to the program that displayed all artists in a DataGrid, use the
model in the text to add code to this program allowing users to add extra artists
to the Artist table in the original database. Use a CommandBuilder to provide
the link between the DataSet and database, and add an Update button to
allow the user to update the database after adding a new artist.

11.10 Link together the appropriate programs from the last few exercises, along with
the examples in the text, to produce a complete interface to the CD database,
allowing the user to add new entries in the Disk table, together with correct
updates to the ArtistDisk link table.

11.11 Create a database that could be used to store the name and score of each play-
er that plays the quiz game from Exercise 9.5 in Chapter 9. Read the names and
scores from the database and display them in response to the menu item in
Exercise 9.6 or 9.7.

XML

12.1 ■ Introduction

XML (Extensible Markup Language) has become a widely used technology
over the past few years, especially with regard to the Internet. However, you
could easily be forgiven for wondering (as I did) upon first encountering
XML what all the fuss is about.

We will therefore begin this chapter with a survey of what XML is and how
it can be used both for transmission of data over the Internet and for stor-
ing data locally within your own programs. As with databases, however, we
must remember that this book is primarily a book on C#, so we can’t go into
serious depth on XML.

So what exactly is XML? Basically it is yet another way of storing and
transmitting information. If you are familiar with HTML, the language used
in writing most web pages, you will have seen an example of an XML repre-
sentation of data. (Well, you may have seen a proper example of XML, since
most web browsers will accept HTML that is not, strictly speaking, correctly
formatted. Proper XML requires that all syntax rules be adhered to exactly.)

If you’ve never looked at HTML in any depth, don’t worry – we won’t be
assuming any knowledge of HTML here. However, you might like to have a
look at some HTML by loading up a web page (try to pick a web page with a
fairly plain layout, consisting mainly of text). Most web browsers allow you
to see the source code used to produce the page by selecting the View menu
and then selecting Source. A text window containing the HTML source code
should pop up.

Here’s a simple example, condensed from my own web page:

<HTML>
<HEAD>
<TITLE>growe’s real home page</TITLE>
</HEAD>
<BODY>
<H1 align=center>Welcome to growe’s real home page</H1>
<CENTER>
<P>The time now is 3/3/2003 3:50:09 PM in Dundee, UK</P>

</CENTER>
<!— Other code follows —>
</BODY>
</HTML>

The main thing to notice about this example is that it consists of a num-
ber of tags (words enclosed in angle brackets, such as <HEAD>). These tags
define portions of the document and are interpreted by the web browser as
instructions to display text or images in certain ways.

12

Each tag has a corresponding end tag, which consists of the same word as
in the opening tag but preceded by a slash, such as </HEAD>. Tags in XML
always come in pairs, with the first tag opening a region of the document
and the end tag closing it. (Most browsers will accept HTML where not all
opening tags have a corresponding end tag – this is what was meant earlier
when it was stated that not all HTML is properly formed.)

With HTML, the meaning of each tag is defined by an HTML parser that is
built into the program (usually a web browser such as Internet Explorer or
Netscape) that is used to display the file. For example, text enclosed in the
<TITLE> … </TITLE> tags is displayed in the title bar of the browser’s win-
dow, text enclosed in <H1> … </H1> tags is displayed in a large font and so on.

In XML, the idea behind HTML is extended (hence the ‘extensible’ part of
XML) to allow programmers to define their own tags, and to attach their own
meanings to these tags. At first glance, this sounds like a powerful technol-
ogy, since it should allow us to devise a markup language for pretty well any-
thing: music, mathematics, share prices, whatever we like. At a second
glance, however, we are brought back to earth with the question: how do we
provide meaning for the tags we define? Since we can define any tags to rep-
resent any kind of data, surely the syntax of XML can’t foresee every use to
which it might be put, so a fair amount of work must be involved in def-
ining meanings for these new tags that we invent.

Therein lies the ‘catch’ to XML. Devising a set of tags to store information
is relatively easy for simple sets of data, but providing some environment in
which these new tags actually have any meaning is the hard part.
Fortunately, a lot of tools have been provided to ease the task, which is what
makes XML so popular and powerful.

12.2 ■ Simple XML

To illustrate how we might design our own set of tags to define an XML doc-
ument, we’ll go back to the book example we used in Chapter 11 on data-
bases. The information on each book we stored in the database consisted
of its title, authors and number of pages. To store this information in XML,
we’ll define a <BOOK> tag to store the information on a single book, and then
<AUTHOR> and <TITLE> tags to store each author and the title of the book.
We also define a <BOOKLIST> tag to enclose a list of books.

An XML file containing a list of two books might look like this:

<?xml version="1.0" encoding="utf-8" ?>

<!-- Comment: A list of two books -->

<BOOKLIST>

<BOOK NumPages="345">

<AUTHOR>Zaphod Wibble</AUTHOR>

<TITLE>Wibble’s Guide to the Classics</TITLE>

</BOOK>

538 From Java to C#

<BOOK NumPages="429">

<AUTHOR>Isaac Asimov</AUTHOR>

<TITLE>The Complete Stories, Vol. 1</TITLE>

</BOOK>

</BOOKLIST>

Apart from the first line, which provides some standard information on
the XML version being used, everything else in this example was simply
invented on the spot. All the names of the tags were taken from what they
are supposed to represent – they are not keywords in XML. So what makes
this file XML as opposed to just a random text file?

The main thing that is required of an XML file is that it adhere to a cer-
tain structure which, at the ground level, is very simple. It is easiest to think
of this structure as a tree, since we can most easily display the relationships
between the various components that way.

Each portion of an XML file that is enclosed by a start and an end tag is
called an element. At the top level, a single element must enclose all the other
elements. In our example, the <BOOKLIST> element contains the entire file.

Within this top-level element may be placed any number of other ele-
ments, which may be nested to any depth. In this example, <BOOKLIST>
contains two <BOOK> elements, each of which in turn contains an <AUTHOR>
and a <TITLE>. Since a book could have more than one author, we could put
more than one <AUTHOR> element within each <BOOK> element.

Besides containing other elements, a given element can also contain some
ordinary text. In this example, <AUTHOR> and <TITLE> both contain text
(the name of the author and the book’s title, respectively), but the <BOOK>
element does not contain any text.

An element can also have one or more attributes associated with it. An
attribute has the form name= value, where name is the name of the attrib-
ute and value is a string that contains the value of the attribute. The value
must always be enclosed in double quotes. The attributes are always
enclosed within the opening tag of the element. In the example here, the
<BOOK> element has a single attribute called NumPages, which contains the
number of pages in the book.

Sometimes we can just define an element that contains no other elements
or any text. For example, we might just include a <BOOK> element that con-
tains a NumPages attribute but no authors or title (for example, the book
could be a blank diary). In this case, XML allows the opening and closing
tags of an element to be combined, so we could write the complete element
as follows:

<BOOK NumPages="200" />

This line is equivalent to

<BOOK NumPages="200"></BOOK>

XML 539

We could, of course, have defined a <NUMPAGES> element to store the
number of pages and not used any attributes at all in this XML file.
Generally, an attribute is appropriate for information that only occurs once
for a given element, and usually can be described using a fairly short string.
In many cases, it is just a matter of taste whether an attribute or element is
used to store data.

XML files can contain comment lines, an example of which is shown in the
file above. A comment is started with the string <!-- and ended with -->.

XML allows a few other types of statements to be included, but elements
and attributes are sufficient to store most data, so we’ll leave our description
of XML at this point. However, in general, the term node is used to describe
any individual part of an XML file, so start and end tags, attributes, text and
even comments are all nodes.

To illustrate the tree structure of a typical XML file, we’ll show the above
book file as a tree diagram (Figure12.1).

The BOOKLIST node serves as the root of the tree (tree diagrams are usu-
ally drawn upside-down, with the root at the top). Every XML file must have
an element that encompasses the entire file, which serves as the root of the
tree structure. All other elements within the file are ‘owned’ by this root node.

Within the root node, we can add as many nodes of various types as we
wish, provided that each node is well-formed, by obeying the syntax rules
for that type of node. For example, if a node is an element, the element
must have an opening and a closing tag. Within BOOKLIST we have two
BOOK nodes, each of which contains an AUTHOR and a TITLE.

540 From Java to C#

TITLE
Wibble’s Guide
to the Classics

AUTHOR
Zaphod
Wibble

BOOK
NumPages

= “345”

BOOKLIST

TITLE
The Complete
Stories, Vol. 1

AUTHOR
Isaac

Asimov

BOOK
NumPages

= “429”

Figure 12.1 Structure of elements used to represent books as XML

In the diagram, we’ve included the NumPages attribute and the text with-
in the same box as the element that contains them. To be more precise, we
could have shown attributes and text as separate children of their parent
element, but that tends to make the tree diagram too cluttered.

As mentioned above, there is no restriction on the names given to the var-
ious elements; the only thing that really matters is that every element must
come as a pair of tags, and the hierarchical, or tree, structure of the file must
be preserved. This last rule means that we can’t begin an element with an
opening tag on one layer in the tree and end it on another level.

For example, the following file is not correctly formed XML since the
<AUTHOR> element begins within the <BOOK> node but ends outside it:

<?xml version="1.0" encoding="utf-8" ?>
<BOOKLIST>

<BOOK NumPages="345">
<AUTHOR>Zaphod Wibble
<TITLE>Wibble’s Guide to the Classics</TITLE>

</BOOK>
</AUTHOR>

</BOOKLIST>

Another way of looking at this rule is that each end tag must match the
last unmatched starting tag that occurs before it. In this example, then, the
</BOOK> tag would try to match with the <AUTHOR> tag, since the <TITLE>
element that comes between them is correctly matched.

Some browsers, such as later versions of Internet Explorer, will show a
neatly formatted listing of an XML file if that file is loaded into the browser.
In the absence of any other XML processing software, Internet Explorer can
be used to parse XML files and test them for correctness. If an error is
encountered, a reasonably clear error message is usually produced, showing
the line where the error occurs.

As it stands, an XML file such as this book list isn’t of much use since we
haven’t written any code that uses the data stored in the file. In the next sec-
tion, we’ll consider some of the ways an XML file such as this might be used.

12.3 ■ Using XML

As we’ve seen, an XML file on its own is not of much use, since it just con-
tains some information in a form that is not terribly easy to read for
humans. What can we do to make use of the information?

The main power of XML is that it is a universally accepted format for storing
and transmitting data. It is extremely rare for the computing community to
agree on a universal format for any sort of data storage or transmission, so the
fact that XML has achieved such status is truly cause for celebration. Because
we can rely on the XML standard, we can safely write software that reads in
data in XML from a foreign source. Similarly, we can export data to clients using
XML, confident that the client will be able to make sense of the result.

XML 541

There are various ways we can use an XML data file. The simplest way is
probably just to read it through from start to finish and extract the infor-
mation we need as we progress through the file. Java programmers with
some XML experience may have used the SAX (SAX is actually a second-
order acronym: Simple API for XML) parser in earlier versions of Java which
does just that. It provides a quick, one-way passage through an XML file,
allowing a program to strip out relevant information as it finds it.

While this method is fine for some purposes, in many cases we need to
move around inside the tree structure of the XML file to extract the infor-
mation we want. In this case, we need a parser that recognizes the
Document Object Model or DOM. Using the DOM to parse XML builds up a
tree structure of the entire file within memory and allows the program to
move backwards and forwards within this representation. Although DOM
provides more flexibility in examining an XML file, it also requires consid-
erably more memory, since the entire tree must be held in memory at once,
unlike SAX, which just reads a line, gives us the chance to use it, and then
throws it away to make room for the next line. Java also provides support
for DOM in the JDOM package.

As we’ll see in this chapter, .NET and C# provide comprehensive support
for both ways of parsing XML.

Both these parsing techniques, however, pay no attention to the actual
content of the XML – they just read the nodes and provide the information
for the programmer to do with as they see fit. In many cases, we would like
to extract information of a given type and discard the rest. For example,
given a book file like the example above, we might want to extract a list of
all the authors in the file. True, we could use a SAX-like parser and step
through the entire file looking for AUTHOR tags, but this requires writing
our own code to compare each tag’s name with the string ‘AUTHOR’. Many
other types of search can be considerably more complex to program.

Because a search facility is so commonly needed in processing XML files,
a separate language called XPath was developed to provide a powerful search
facility. Although we don’t have the space in this book to look at XPath in
detail, we will see some simple examples of how it can be used in C# to
search XML files.

Finally, another common task is that of transforming an XML file into
another format. The most common example of such a transform is the con-
version of the data stored in an XML file into HTML so it can be displayed on
a web page. Yet another language called XSLT (Extensible Stylesheet Language
for Transformations) has been developed to make such transformations easier
to achieve. A common application of such a transformation is the production
of HTML in response to a request to a web server. In this case the result of the
XSLT transformation, instead of being written to a file on disk, is sent directly
back to the client over the web to produce a dynamic web page.

You might find one aspect of all this a bit worrying. We’ve seen that XML
imposes very few restrictions on the format of the file. We need only be sure
that we have used a proper tree structure in building the file; there are no

542 From Java to C#

restrictions on the names of the tags, their arrangement relative to each
other, or on the number or names of any attributes we attach to each tag.

If we are designing an XML file format for a particular purpose such as
storing a list of data on books, it would seem safer if we could in some way
define some additional restrictions on the file format in order to avoid errors
such as assigning two titles to a book, omitting the author or numerous
other errors we might make when entering the information into the file.

We can in fact define a schema for an XML file format which allows us to
impose restrictions of this sort. Various types of schema exist, but a popular
standard is the Document Type Definition or DTD. We’ll see later how to
write a simple DTD for the book list file, but again, if you want full details
on this format or any of the other schemas sometimes used, you should con-
sult a book on XML.

Once we have a schema, we can use it to validate the XML that is read
into one of the parsers. The validation process will catch any errors that not
only violate the basic syntax of XML itself, such as improperly matched tags
within an element, but also any that violate the rules defined in the schema.

Hopefully you have now been convinced that XML does have a variety of
useful applications, albeit with a not insignificant amount of effort on the
part of the programmer.

To wrap up this section, we should mention that the various standards relat-
ing to XML are maintained and documented by the World Wide Web
Consortium, known as W3C for short. Their web site (http://www.w3c.org) is a
rich site for anyone wanting the final word on XML and its associated packages.

12.4 ■ Reading XML: XMLTextReader

We’ll begin our examination of how C# and .NET can be used to process XML
with the simplest case – that of one-directional reading and writing of XML.
As mentioned above, this process is realized in Java through the use of SAX,
and readers who have used SAX will find C#’s facilities for reading XML to be
very similar.

As an XML example, we will use the book list given above. Probably the
simplest thing we can do with this XML file is to read it in and print out the
tags and the text content of all the nodes that have a textual component.
The C# code for this is as follows.

using System;

using System.Xml;

public class SimpleXML

{

public static void Main(string[] args)

{

string fileName = "BookList.xml";

XML 543

XmlTextReader reader = new XmlTextReader(fileName);

while(reader.Read())

{

if (reader.NodeType == XmlNodeType.Text)

{

Console.WriteLine(reader.Value);

}

else if (reader.NodeType == XmlNodeType.Element)

{

Console.WriteLine(reader.Name);

}

else if (reader.NodeType == XmlNodeType.EndElement)

{

Console.WriteLine("/" + reader.Name);

}

}

}

}

The XML support in .NET is contained within the System.Xml name-
space, so we need to include a using statement for it, and also include it in
the list of resources used by the program.

This program relies on the BookList.xml file being in the same direct-
ory as the executable program – if it isn’t, you will need to modify the path
to the file in the program.

The .NET analogue of the SAX parser is XmlTextReader, which takes an
input stream as its source of data – here we just use the disk file.

The XmlTextReader steps through the XML source code using the Read()
method. Each call to Read() reads one node (as defined above) from the
XML, which is not necessarily one line from the file. Recall that each tag
counts as a node, as does the text between a start and end tag. Each node
that is read is assigned a particular type, which is one of the XmlNodeType
enumeration.

The program here checks if the current node is of type Text, in which
case it prints the Value of the node (which is just the text), or if the node is
either the start or end tag. An XML start tag begins an Element and an end
tag is an EndElement. Many other types of node can be detected by the
XmlTextReader – see the documentation for details.

When we run this program using the BookList.xml file above, we get the
following output:

BOOKLIST

BOOK

AUTHOR

Zaphod Wibble

/AUTHOR

TITLE

544 From Java to C#

Wibble’s Guide to the Classics

/TITLE

/BOOK

BOOK

AUTHOR

Isaac Asimov

/AUTHOR

TITLE

The Complete Stories, Vol. 1

/TITLE

/BOOK

/BOOKLIST

We can see that we can keep track of exactly where the parser is at each
point by tracking the Element and EndElement names, although there is no
way we can deduce the overall structure of the XML file from the
XmlTextReader since it just plods through the file one node at a time and
never builds the tree structure on which the file is based.

This sort of parser can be useful for extracting information from an XML
file. For example, to get a list of authors, we could replace the Main()
method above with:

public static void Main(string[] args)

{

string fileName = "BookList.xml";

XmlTextReader reader = new XmlTextReader(fileName);

while(reader.Read())

{

if (reader.MoveToContent() == XmlNodeType.Element &&

reader.Name.Equals("AUTHOR"))

{

Console.WriteLine(reader.ReadElementString());

}

}

}

The MoveToContent() method reads nodes until it finds a ‘content’ node,
which includes Element, EndElement, Text and a few others. This method
is a way of skipping over comments, whitespace and other nodes that are
usually not of interest to the program. If the next content node encountered
is an Element, and the Element’s name is ‘AUTHOR’, we then call
ReadElementString() which reads the text component of an Element. The
output of this program thus extracts the text from AUTHOR elements only,
and produces:

Zaphod Wibble

Isaac Asimov

XML 545

Note that the XmlTextReader acts like a bookmark in the XML file that it
is reading. Methods such as Read() and MoveToContent() don’t actually
return parts of the file – rather they move the reader to a particular location
in the file and then allow the programmer to use other methods or proper-
ties such as Name or ReadElementString() to retrieve information about
the current node.

It is also important to realize that XmlTextReader does not allow us to
back up at any point, so if we need information from a node we have to get
it on the first (and only) pass through the file. If this turns out to be a prob-
lem, we need to use a different method of processing the XML file.

Because XML is a standard for storing and transmitting data, it is often
used to communicate data between two applications that may have differ-
ent uses for the same data set. For example, one application might need to
load the book data into an internal data structure in C# so that more com-
plex operations on the data, operations that are not easy or even possible
with XML methods, can be done. In this case, we would like to build the C#
data structure as we read through the XML file.

To see how this works, let us write a C# program that defines a Book class
and then builds a list of Books by reading the data from BookList.xml using
XmlTextReader.

First, we define a Book class for storing the information associated with
each book:

public class Book

{

private string author;

private string title;

private int numPages;

public string Author

{

set

{

author = value;

}

get

{

return author;

}

}

public string Title

{

set

{

title = value;

546 From Java to C#

}

get

{

return title;

}

}

public int NumPages

{

set

{

numPages = value;

}

get

{

return numPages;

}

}

public override string ToString()

{

string description = Title + " by " + Author;

if (NumPages > 0)

{

description += "; " + NumPages + " pages.";

}

return description;

}

}

This class simply declares fields for the author, title and number of pages,
then provides a property for each field, and adds a ToString() override to
allow a book’s fields to be printed out. This method does not check for var-
ious error conditions such as a missing author or title, but it does allow for
the case where NumPages has not been initialized and is therefore still zero.

The other class reads in the data for each book from an XML file and
builds a list of Books:

1. using System;

2. using System.Xml;

3. using System.Collections;

4.
5. public class BuildBookList

6. {

7. private ArrayList bookList;

8.
9. public BuildBookList()

XML 547

10. {

11. bookList = new ArrayList();

12. ReadBookList();

13. }

14.
15. private void ReadBookList()

16. {

17. Book book = null;

18. string text = null;

19. string fileName = "BookList.xml";

20. XmlTextReader reader = new XmlTextReader(fileName);

21. while(reader.Read())

22. {

23. if (reader.NodeType == XmlNodeType.Text)

24. {

25. text = reader.Value;

26. }

27. else if (reader.NodeType == XmlNodeType.Element)

28. {

29. if (reader.Name.Equals("BOOK"))

30. {

31. book = new Book();

32. bookList.Add(book);

33. try

34. {

35. book.NumPages =

36. int.Parse(reader.GetAttribute("NumPages"));

37. }

38. catch {}

39. }

40. }

41. else if (reader.NodeType == XmlNodeType.EndElement)

42. {

43. if (reader.Name.Equals("AUTHOR"))

44. {

45. book.Author = text;

46. }

47. if (reader.Name.Equals("TITLE"))

48. {

49. book.Title = text;

50. }

51. }

52. }

53. }

54.
55. private void WriteBookList()

548 From Java to C#

56. {
57. foreach (object obj in bookList)
58. {
59. Book book = (Book)obj;
60. Console.WriteLine(book.ToString());
61. }
62. }
63.
64. public static void Main(string[] args)
65. {
66. BuildBookList buildBookList = new BuildBookList();
67. buildBookList.WriteBookList();
68. }
69. }

We use an ArrayList to store the list of Books (line 7). An ArrayList is C#’s
version of a variable-length array or linked list, implemented in Java by a
Vector or LinkedList. It is part of the System.Collections namespace which
contains a number of useful utility classes for creating collections of objects.

The constructor (line 9) creates an empty bookList and calls Read
BookList() to read the XML file and add the books to the list.

ReadBookList() is similar to the first version of the XML parser that we
used earlier. It reads from BookList.xml (again assumed to be in the same
directory as the executable version of the program) and uses XmlText
Reader to step through the nodes in the file. When we encounter the start
tag of a BOOK element (line 29), we create a new Book and add it to
bookList. We then extract the NumPages attribute from the same node
(lines 33 to 38). We’ve enclosed this code in a try block since we’re allow-
ing for the possibility that the NumPages attribute is not present for a given
book. Calling GetAttribute() for a non-existent attribute name throws an
exception, but since this isn’t really an error, we just use a catch to skip
over this case without taking any action (line 38).

At this point, the new Book will have only its NumPage field assigned a value
(if the attribute exists), so we still need to read the author and title. These are
contained in separate elements rather than attributes, however, and the infor-
mation is contained as a text node within the corresponding element.

We could extract the information in various ways, but probably the easi-
est is to save a text node as a string whenever it is encountered (lines 23
to 26). Then, when we find the end tag of either an AUTHOR or TITLE ele-
ment, assign the text that was just extracted to the correct field in the Book
(lines 41 to 50). This code assumes that AUTHOR and TITLE elements will
always have some text within them, which of course may not be true. There
are two ways we could deal with this situation. One is to insert some more
error-handling code in the class shown here, but the other is a more elegant
and generally better solution: write a DTD for the book XML file and use val-
idation in the parser to ensure that all AUTHOR and TITLE elements do con-
tain text. We’ll come back to this later when we consider DTDs.

XML 549

We’ve added an extra book to the BookList.xml file to test what happens
if we leave off the NumPages attribute:

<?xml version="1.0" encoding="utf-8" ?>

<BOOKLIST>

<BOOK NumPages="345">

<AUTHOR>Zaphod Wibble</AUTHOR>

<TITLE>Wibble’s Guide to the Classics</TITLE>

</BOOK>

<BOOK NumPages="429">

<AUTHOR>Isaac Asimov</AUTHOR>

<TITLE>The Complete Stories, Vol. 1</TITLE>

</BOOK>

<BOOK>

<AUTHOR>Charles Dickens</AUTHOR>

<TITLE>A Tale of Two Cities</TITLE>

</BOOK>

</BOOKLIST>

When we run the program on this file, we get the output:

Wibble’s Guide to the Classics by Zaphod Wibble; 345 pages.

The Complete Stories, Vol. 1 by Isaac Asimov; 429 pages.

A Tale of Two Cities by Charles Dickens

12.5 ■ Document Type Definitions – validating XML files

As mentioned above, a well-formed XML file is one that adheres to the basic
tree structure required by the XML specifications. A well-formed file, how-
ever, may not conform to the structure that the programmer intended, in
that it may contain tags that are not recognized by the parsing program or
may have elements in the wrong place. It is therefore possible for a well-
formed XML file to be invalid, in that it does not provide its data in a form
recognizable by the parsing program.

In the book list example above, we could have a BOOK element that con-
tained two or more TITLE elements, or we might have tried to enter an
author’s name as an attribute rather than as an AUTHOR element, or we
could have made any of many other possible errors.

A basic XML parser will be able to detect if an XML file is not well-formed,
but it has no way of testing whether the file is valid. We could attempt to
test for validity by writing checks in the C# program that parses the XML,
but in all but the simplest cases, this is an extremely tedious and error-
prone method. It is much better to provide a schema that defines the con-
ditions an XML file must satisfy for it to be valid, and then use a validating
parser to parse the XML.

550 From Java to C#

There are several schemas which may be used to define a valid XML
structure for a given project. Probably the most common of these is the
Document Type Definition or DTD, and it is the only one we will consider in
this book. Another schema gaining in popularity is XML Schema – if you
want to learn more about this technique, consult a book on XML.

Using a DTD to validate an XML document requires three actions from
the programmer. First, we must write the DTD file that defines the con-
straints an XML document must satisfy to be valid. Second, we need to
insert a line in any XML file that is to use this DTD that connects the XML
document with the DTD. Finally, we need to write the parser in such a way
that it uses the DTD to validate the XML document.

12.5.1 � Writing DTDs

Although a DTD can get quite involved for more complex documents, it is fair-
ly simple to compose a DTD for most basic XML documents. We will give an
introduction to the more commonly used features of DTDs and refer you to a
more detailed book on XML if you want to delve more deeply into the subject.

There are four fundamental keywords used in declaring the main parts of
a DTD: ELEMENT, ATTLIST, ENTITY and NOTATION. We will only consid-
er the first two, as they are all that are needed to specify most XML docu-
ment structures.

We will present the DTD for the book list XML document and use it as a
starting point for describing some of the features of these keywords. The
DTD is stored in a file called BookList.dtd and looks like this:

<!ELEMENT BOOKLIST (BOOK*)>

<!ELEMENT BOOK (AUTHOR+, TITLE)>

<!ATTLIST BOOK NumPages CDATA #IMPLIED>

<!ELEMENT AUTHOR (#PCDATA)>

<!ELEMENT TITLE (#PCDATA)>

The ELEMENT keyword is used to specify the structure of an element. We
can specify what other elements the element being declared can contain,
whether it can contain a text node and so on. The structure of the ELE-
MENT declaration is:

<!ELEMENT element-name (content-model)>

or

<!ELEMENT element-name category>

The parts in italics are those which must be filled in to define the ele-
ment. All the ELEMENTs in the book list DTD are of the first type (the con-
tent model type), but we’ll also consider the category type briefly later.

XML 551

An ELEMENT defined using the content model must provide a list of
other nodes that may be contained within it. A DTD must always begin with
the root element of the XML file, in this case BOOKLIST. The BOOKLIST
element has its content model shown as (BOOK*) which means that it may
contain any number (zero or more) BOOK elements and nothing else.

The asterisk (*) is a regular expression symbol which indicates zero or
more of the element it follows. The other commonly used regular expression
symbols are the plus sign (+) indicating ‘one or more’ and the question mark
(?) indicating ‘zero or one’.

This declaration of BOOKLIST means that an XML document may con-
tain an empty list, as in:

<BOOKLIST>

</BOOKLIST>

or just:

<BOOKLIST/>

If we wanted to require that a BOOKLIST element contain at least one
BOOK, we could change the first line to:

<!ELEMENT BOOKLIST (BOOK+)>

The declaration of the BOOK element is:

<!ELEMENT BOOK (AUTHOR+, TITLE)>

which specifies that a BOOK must contain at least one AUTHOR (but
could contain more) and exactly one TITLE (since TITLE has no regular
expression symbol following it). Further, the AUTHORs must precede the
TITLE – in other words, the ordering of the elements in the content model
is significant.

The next line declares the attribute of the BOOK element:

<!ATTLIST BOOK NumPages CDATA #IMPLIED>

This line uses the ATTLIST keyword. The general structure of an ATTLIST is:

<!ATTLIST element-name

attribute1-name attribute-type default-type-or-value

attribute2-name attribute-type default-type-or-value

attribute3-name attribute-type default-type-or-value

…

>

After the keyword ATTLIST must come the name of the element to which
these attributes are to be assigned. In our example, we are defining attrib-
utes for the BOOK element.

Following this, we may list as many attributes as we wish. Each attribute
must have a name (such as NumPages) a type and a default type, which we
shall consider below.

552 From Java to C#

The attribute’s type can be one of ten choices, only two of which we will
consider here. The most common attribute type is CDATA, or character
data, which means that any string is acceptable as a value for the attribute.
The NumPages attribute is declared as CDATA. There is no way of restrict-
ing the type of string any further – for example, we cannot require that the
string represents a number. This sort of processing would have to be written
into the C# parsing program.

The other commonly used type is an enumerated list, which requires us to
list all the acceptable choices for the attribute’s value. We could, for example,
add an attribute to AUTHOR allowing us to specify a title for each author:

<!ATTLIST AUTHOR Title (Mr | Ms | Dr | Prof) #IMPLIED>

In this case, if an AUTHOR element has a Title attribute, the value must
be one of those listed. The choices are separated by the vertical bar | and are
not enclosed in quotes.

The final entry in an attribute’s declaration is its default type or default
value. The possible values here are #REQUIRED, meaning that the attribute
must appear every time the element is used, #IMPLIED, meaning that the
attribute is optional (as is the case with NumPages) or #FIXED (with a default
value provided afterwards), meaning that the attribute is optional but if it
does appear, it must have the value given in the DTD. The most common
default types are #REQUIRED and #IMPLIED.

It is also possible to supply just a default value for the attribute. If this is
done, it means that the attribute itself is optional, and if it is does not appear
in an element in the XML document, then the parser should provide the
default value automatically. This behaviour is only guaranteed if the parser
is a validating parser however, since a non-validating parser may not even
read the DTD file.

For example, we could change the NumPages attribute so that it has a
default value of 100 pages by saying:

<!ATTLIST BOOK NumPages CDATA "100" >

Note that default values must be enclosed in quotes.
Using this declaration would then provide a value of 100 pages for any

BOOK element that did not have a NumPages attribute, such as the Charles
Dickens book in the example earlier in this chapter.

There are a number of other features that are available in DTD authoring,
but those described here should suffice for our needs.

12.5.2 � DOCTYPE statements

The next stage in adding validation is the connection of the XML document
with the DTD. Fortunately this is very easy, requiring only an extra line in
the XML document. Again, there are variations in the way this can be done,
but we’ll just give the most common situation here for simplicity.

XML 553

The connection between XML document and DTD is done by inserting a
DOCTYPE statement into the XML document, usually immediately follow-
ing the XML version definition line at the top. A typical DOCTYPE state-
ment could be inserted into our BookList.xml file as follows:

<?xml version="1.0" encoding="utf-8" ?>

<!DOCTYPE BOOKLIST SYSTEM "BookList.dtd">

<BOOKLIST>

<BOOK NumPages="345">

<AUTHOR>Zaphod Wibble</AUTHOR>

<TITLE>Wibble’s Guide to the Classics</TITLE>

</BOOK>

<BOOK NumPages="429">

<AUTHOR>Isaac Asimov</AUTHOR>

<TITLE>The Complete Stories, Vol. 1</TITLE>

</BOOK>

<BOOK>

<AUTHOR>Charles Dickens</AUTHOR>

<TITLE>A Tale of Two Cities</TITLE>

</BOOK>

</BOOKLIST>

The DOCTYPE statement shows the root node of the XML document
(BOOKLIST), followed by the keyword SYSTEM and then the DTD filename
in quotes. This will work provided that the DTD file is in the same direct-
ory as the XML file.

For use over the web, it is also possible to give a URL for the location of
the DTD file, such as the (fictitious) web address:

<!DOCTYPE BOOKLIST SYSTEM "http://my.web.site/BookList.dtd">

12.5.3 � Using a validating parser

The final stage in the validation process is also quite easy, since .NET pro-
vides a validating parser as part of its System.Xml namespace. To illustrate
how this is used, we will provide a rewritten version of the BuildBookList
class we used earlier to build an internal list of the books by parsing the
BookList.xml file. The new class is called ValidateBookList:

1. using System;

2. using System.Xml;

3. using System.Xml.Schema;

4. using System.Collections;

5.
6. public class ValidateBookList

7. {

8. private ArrayList bookList;

9.

554 From Java to C#

10. public ValidateBookList()

11. {

12. bookList = new ArrayList();

13. ReadBookList();

14. }

15.
16. private void ReadBookList()

17. {

18. Book book = null;

19. string text = null;

20. string fileName = "BookList.xml";

21. XmlTextReader textReader = new XmlTextReader(fileName);

22. XmlValidatingReader reader =

23. new XmlValidatingReader(textReader);

24. reader.ValidationType = ValidationType.Auto;

25. try

26. {

27. while(reader.Read())

28. {

29. if (reader.NodeType == XmlNodeType.Text)

30. {

31. text = reader.Value;

32. }

33. else if (reader.NodeType == XmlNodeType.Element)

34. {

35. if (reader.Name.Equals("BOOK"))

36. {

37. book = new Book();

38. bookList.Add(book);

39. try

40. {

41. book.NumPages =

42. int.Parse(reader.GetAttribute("NumPages"));

43. }

44. catch {}

45. }

46. }

47. else if (reader.NodeType == XmlNodeType.EndElement)

48. {

49. if (reader.Name.Equals("AUTHOR"))

50. {

51. book.Author = text;

52. }

53. if (reader.Name.Equals("TITLE"))

54. {

55. book.Title = text;

XML 555

56. }

57. }

58. }

59. }

60. catch (XmlSchemaException ex)

61. {

62. Console.WriteLine("Error reading " + fileName);

63. Console.WriteLine(ex.Message);

64. }

65. }

66.
67. public void WriteBookList()

68. {

69. foreach (object obj in bookList)

70. {

71. Book book = (Book)obj;

72. Console.WriteLine(book.ToString());

73. }

74. }

75.
76. public static void Main(string[] args)

77. {

78. ValidateBookList buildBookList = new ValidateBookList();

79. buildBookList.WriteBookList();

80. }

81. }

This class is very similar to BuildBookList, but as there are a few impor-
tant differences at various places, we have included the whole class again.

We define the XmlTextReader as before on line 21, but instead of using it
directly to parse the XML document, we create an XmlValidatingReader
on line 22. Note that an XmlValidatingReader requires an XmlTextReader
to provide the link with the XML file, since it takes this as the parameter to
the constructor.

The ValidationType property (line 24) allows us to specify which type
of validation the parser will do. The ValidationType.Auto value that is
assigned here is actually the default value, and means that the parser will
attempt to discover from the XML document what type of validation is
required. It can do this by reading the DOCTYPE statement in the XML file.
Other values for this property allow for several other standard types of XML
validation which we will not cover in this book.

After this initialization is done, we can use the XmlValidatingReader in
exactly the same way as we used the XmlTextReader before. All the meth-
ods for reading and examining XML documents are present in both classes
and work in almost exactly the same way.

556 From Java to C#

The ‘almost’ in the last sentence means that the validating reader will
throw an XmlSchemaException if it finds part of the XML document that
does not satisfy the DTD. This allows us to catch this exception and provide
some sort of error handling when a bad XML file is encountered.

We have done this in the example program here by enclosing the reading
statements within a try block (lines 25 to 59). The catch block (lines 60 to
64) prints out an error message that includes the file that was being read and
the message from the exception. Note that XmlSchemaException is part of the
System.Xml.Schema namespace, so a using statement is required (line 3) to
access it.

We’ll give a couple of examples to show what happens when we attempt to
parse a well-formed but invalid XML file with this new version of the parser.

First, we violate the DTD by giving the first book two TITLEs:

<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE BOOKLIST SYSTEM "BookList.dtd">
<BOOKLIST>

<BOOK NumPages="345">
<AUTHOR>Zaphod Wibble</AUTHOR>
<TITLE>Wibble’s Guide to the Classics</TITLE>
<TITLE>Indispensible for Beethoven Buffs</TITLE>

</BOOK>
<BOOK NumPages="429">

<AUTHOR>Isaac Asimov</AUTHOR>
<TITLE>The Complete Stories, Vol. 1</TITLE>

</BOOK>
<BOOK>

<AUTHOR>Charles Dickens</AUTHOR>
<TITLE>A Tale of Two Cities</TITLE>

</BOOK>
</BOOKLIST>

The output from attempting to parse this file is (formatted a bit to improve
readability):

Error reading BookList.xml
Element 'BOOK' has invalid child element 'TITLE'.
An error occurred at file:///C
:/books/MyBooks/CSharpBook/Programs/Chap12/ValidateBookList/
BookList.xml(7, 6).
Wibble’s Guide to the Classics by Zaphod Wibble; 345 pages.

The error message could be a bit cryptic since it states that BOOK has an
invalid child element called TITLE, rather than stating that only one TITLE
child is allowed, but at least it will direct us to the right general area when
tracking down the error.

This example also illustrates again that the XmlReader classes read the file
sequentially rather than attempting to construct the entire XML tree within
the program. After the error message, we see that the book list actually does

XML 557

contain one entry which was created when the first TITLE element was read
for the first BOOK. The validation error was only detected when the second
TITLE element was found. This caused the exception to be thrown, which
prevented any further processing of the XML document since the entire pars-
ing loop is inside the try block.

As a second example, we try removing both the AUTHOR and TITLE ele-
ments from the second book:

<?xml version="1.0" encoding="utf-8" ?>

<!DOCTYPE BOOKLIST SYSTEM "BookList.dtd">

<BOOKLIST>

<BOOK NumPages="345">

<AUTHOR>Zaphod Wibble</AUTHOR>

<TITLE>Wibble’s Guide to the Classics</TITLE>

</BOOK>

<BOOK NumPages="429">

</BOOK>

<BOOK>

<AUTHOR>Charles Dickens</AUTHOR>

<TITLE>A Tale of Two Cities</TITLE>

</BOOK>

</BOOKLIST>

This file produces the output:

Error reading BookList.xml

Element 'BOOK' has incomplete content. Expected 'AUTHOR'.

An error occurred at

file:///C:/books/MyBooks/CSharpBook/Programs/

Chap12/VerifyBookList/BookList.xml(9, 5).

Wibble’s Guide to the Classics by Zaphod Wibble; 345 pages.

by ; 429 pages.

This is a fairly clear error message and should enable us to track down the
cause quite easily.

12.6 ■ The Document Object Model

As mentioned earlier, there are two main techniques for parsing XML docu-
ments. XmlTextReader provides a one-way trip through a document and is
suited to extracting information from XML for use elsewhere. It takes no
account of the tree structure of the document.

The second method makes use of the Document Object Model or DOM,
which loads an entire XML document into the program and preserves its
structure, allowing the program to navigate within the tree. The main DOM
class is XmlDocument, which stores an entire XML document as a data struc-
ture within a C# program.

558 From Java to C#

Once a document has been loaded, there are a number of methods in the
XmlDocument class that can be used to navigate around the tree and extract
information. The following program illustrates how to load an XmlDocument
and use some of these methods to extract the author, title and number of
pages for each of the books in the XML file used earlier.

1. using System;

2. using System.Xml;

3. using System.Xml.Schema;

4.
5. public class DomReader

6. {

7. private XmlDocument xmlDocument;

8.
9. public DomReader()

10. {

11. xmlDocument = new XmlDocument();

12. ReadBookList();

13. PrintBookList();

14. }

15.
16. private void ReadBookList()

17. {

18. string fileName = @"BookList.xml";

19. XmlTextReader textReader = new XmlTextReader(fileName);

20. XmlValidatingReader reader =

21. new XmlValidatingReader(textReader);

22. reader.ValidationType = ValidationType.Auto;

23. try

24. {

25. xmlDocument.Load(reader);

26. }

27. catch (XmlSchemaException ex)

28. {

29. Console.WriteLine("Error reading " + fileName);

30. Console.WriteLine(ex.Message);

31. }

32. }

33.
34. private void PrintBookList()

35. {

36. XmlNode currNode = xmlDocument.DocumentElement;

37. if (currNode.HasChildNodes)

38. {

39. XmlNode book = currNode.FirstChild;

40. while (book != null)

XML 559

41. {

42. string bookDescription = "";

43. XmlNode bookChild = book.FirstChild;

44. while (bookChild != null)

45. {

46. if (bookChild.NodeType == XmlNodeType.Element)

47. {

48. if (bookChild.Name.Equals("AUTHOR"))

49. {

50. bookDescription += "Author: " +

51. bookChild.InnerText + "; ";

52. }

53. else if (bookChild.Name.Equals("TITLE"))

54. {

55. bookDescription += "Title: " +

56. bookChild.InnerText + "; ";

57. }

58. }

59. bookChild = bookChild.NextSibling;

60. }

61. XmlAttributeCollection attributes = book.Attributes;

62. if (attributes.Count > 0)

63. {

64. bookDescription += attributes["NumPages"].Value +

65. " pages";

66. }

67. Console.WriteLine(bookDescription + "\n");

68. book = book.NextSibling;

69. }

70. }

71. }

72.
73. public static void Main(string[] args)

74. {

75. DomReader buildBookList = new DomReader();

76. }

77. }

We declare the XmlDocument as a class member (line 7) since in most
applications it will be used in various methods within the class. The con-
structor (line 9) initializes the XmlDocument and then uses it to load in an
XML document from a file (in ReadBookList()) and print out the book list.

ReadBookList() (line 16) shows how to use validation in conjunction
with XmlDocument. We create an XmlTextReader (line 19) connected to the
disk file, then attach an XmlValidatingReader to the text reader (line 20),
and finally use XmlDocument’s Load() method (line 25) to load the docu-

560 From Java to C#

ment through the validating reader. The validation occurs in the same way
as before, with an XmlSchemaException being thrown if some part of the
XML document doesn’t match the DTD, so we enclose the call to Load()
within a try block.

Note that the call to Load() is all we need to do to read in the XML doc-
ument, since Load() not only parses the XML file, but also builds the docu-
ment tree within the XmlDocument object, rather than just reading through
the file one line at a time.

Once we have loaded the document, we can navigate through it by using
several other classes designed for the purpose. In PrintBookList(), we
locate all BOOK nodes and then extract the author, title and number of
pages for each book. Rather than doing this by iterating through the nodes
of the XML document as we did before, we need to move about within the
document tree. To do this, we need to start at the root of the tree (the
BOOKLIST element), so we obtain this by using the DocumentElement prop-
erty of XmlDocument (line 36).

Any node in a document tree is represented as an XmlNode, as with
currNode on line 36. Since ‘node’ is a generic term for any component of an
XML document, an XmlNode can store a variety of types of component, but
it is relatively easy to extract the information we need from a given node, as
we’ll see below.

To extract the information on the books stored in the XML file, we need
to traverse the tree starting from the root node. We begin this process on
line 37 by testing if the root (BOOKLIST) has any children using the
HasChildNodes property. (Recall that the DTD did allow BOOKLIST to be
empty, so we do need to check for this.)

If the root node does have some children, we know from the DTD and the
fact that this program uses validation when loading the document that all
these children must be BOOK elements, so we don’t need to check this here.
We can therefore just load the first BOOK into an XmlNode using the
FirstChild property of rootNode (line 39). This child is stored in an
XmlNode called book, and this object is reused within the while loop (line
40) to examine all the BOOK elements in the document.

We will build up a description of each book in the string bookDescription
(line 42). Since we know from the DTD that a BOOK element must have at least
one AUTHOR and a TITLE, we know that all BOOK elements must have chil-
dren, so we do not need to test for this before examining the children of the
book node. We therefore begin by extracting the first child of book on line 43.

We’ll build up the description by scanning through the children of each
book node within the loop on line 44. As mentioned earlier, an XmlNode is a
generic class designed to hold all types of node from an XML document, so we
need to check that each node is of the desired type before we try to use it. We
can do this by looking at its NodeType property (line 46) which returns an
XmlNodeType value. We are looking for elements within the BOOK element, so
we test that the current child of BOOK is of type XmlNodeType.Element. If it
is, then we need to determine the name of the element (AUTHOR or TITLE).

XML 561

We can get this from the Name property (line 48). (Note that Name returns dif-
ferent information depending on the type of the node – see the documentation
for XmlNode for details.) If we have found an AUTHOR element, we can extract
the author’s name by using the InnerText property of the node (line 50). We
use the same process to obtain the book’s title (line 53).

After processing one of the children of a BOOK node, we can move along
to the next child by using the NextSibling property (line 59). NextSibling
returns an XmlNode if there is another sibling, or null if not.

We have not yet extracted the number of pages for the book, so we do this
on line 61 by using the Attributes property of the book node. This returns
a collection (essentially an array) of all attributes for that node (if the node
is of a type that can have attributes, of course). Each element in this col-
lection is an XmlAttribute. As line 64 shows, we can index the attributes
in the collection using their names. Here we access the NumPages attribute’s
value and append it to bookDescription.

Once we have gathered all the information for the current book, we print
it to the console (line 67) and then proceed to the next sibling of the root
node (line 68).

The output of this program for the BookList.xml file we have been using
throughout this chapter is:

Author: Zaphod Wibble; Title: Wibble’s Guide to the

Classics; 345 pages

Author: Isaac Asimov; Title: The Complete Stories, Vol. 1;

429 pages

Author: Charles Dickens; Title: A Tale of Two Cities;

12.7 ■ Searching an XML tree with XPath

The example in the previous section shows how an XML document can be
loaded into an XmlDocument and how the resulting tree can be navigated to
extract information. The example works well if we need to process all the
data stored in the document, but in some cases we need to extract a small
subset of the total data collection by specifying some condition that the data
should satisfy.

There is a standard language called XPath that is used to search XML doc-
uments for nodes satisfying certain conditions. The full specification for
XPath is given on the W3C web site (www.w3c.org). Here we shall describe
the basics of XPath in order that we may understand how it is used in C#
and .NET.

At its simplest level, an XPath specifies a path starting at the root of the
document and extending to some depth into the document tree. The slash
symbol / is used to separate layers in the tree.

562 From Java to C#

For example, the XPath expression:

/BOOKLIST/BOOK/AUTHOR

would search the document for all AUTHOR elements that were children of
a BOOK element that is in turn a child of a BOOKLIST element.

Before we get too deeply into XPath syntax, we should show how XPath
can be used in C# so you can try out the various path statements and see
how they work.

.NET provides a set of classes for dealing with XPath searches, but before
we examine these it is probably easier to use some of the search methods
available in XmlDocument, since these also use XPath expressions.

As a simple example, we can replace the PrintBookList() method in the
DomReader class in the last section with the following:

private void PrintBookList()
{

string search = "/BOOKLIST/BOOK/AUTHOR";
XmlNodeList authorList = xmlDocument.SelectNodes(search);
foreach(XmlNode node in authorList)
{

Console.WriteLine(node.InnerText);
}

}

We specify the XPath search statement as a string, and then use
SelectNodes() to search the document tree for all nodes that satisfy this
condition. (There is a SelectSingleNode() method if we only want the first
occurrence of a node that matches the search condition.) The result is
returned as an XmlNodeList, which is a list of XmlNodes. We can then loop
through the list and print out the InnerText, which is the text component
of the AUTHOR element. The result is:

Zaphod Wibble
Isaac Asimov
Charles Dickens

XPath allows more specific searches to be done by providing ways of spec-
ifying the actual value or values of the data at various places along the path.
For example, if we wanted a list of all books by Isaac Asimov we can use the
search string:

/BOOKLIST/BOOK[AUTHOR = 'Isaac Asimov']

That is, we apply conditions to a node by adding the condition in square
brackets after the node name. The condition BOOK[AUTHOR = 'Isaac
Asimov'] states that in order to be selected, the BOOK element must have
a child element with the name AUTHOR, and that the value (text) of that
element must be ‘Isaac Asimov’. Note that a single = sign is used to specify
the value in the condition. That is, a single = sign in XPath is an equality
operator and not an assignment operator in this context.

XML 563

The value of an attribute can be specified by giving the attribute name
prefixed by an @ sign. For example, we can search for all books containing
429 pages by using the search string:

/BOOKLIST/BOOK[@NumPages = '429']

More complex searches can be done by using one of the XPath functions
that are provided as part of the XPath specification. A complete list of stan-
dard XPath functions is available at the W3C web site.

As a simple example, if we are uncertain as to whether Isaac Asimov’s
name is given as ‘Isaac Asimov’, ‘Asimov, Isaac’, ‘I. Asimov’ or ‘Asimov, I.’,
we can use the contains() function to test if the AUTHOR text field con-
tains the string ‘Asimov’:

/BOOKLIST/BOOK[contains(AUTHOR, 'Asimov')]

The contains() function takes two parameters, the first of which is the
string to be searched and the second of which is the search string. If we give
an element name as the first parameter, the text component of that element is
used as the string to be searched. This XPath expression will therefore find all
BOOK elements that have an AUTHOR child that contains the string ‘Asimov’.

As we mentioned earlier, .NET provides an XPath namespace which
allows quick navigation within a document using XPath commands. The
XPath classes provide read-only access to XML documents (we will see
below that XmlDocument allows editing and writing of documents as well),
and is primarily used as a front end for transforming XML into other docu-
ment types using XSLT, as we will see later in this chapter.

At this point, however, we can give a simple example of how some of the
XPath classes are used. The following code duplicates an earlier example by
reading in the BookList.xml file, searching for all AUTHOR elements and
writing out their text values.

1. using System;

2. using System.Xml;

3. using System.Xml.Schema;

4. using System.Xml.XPath;

5.
6. public class DomReader

7. {

8. private XPathDocument xPathDocument;

9. private XPathNavigator xPathNavigator;

10.
11. public DomReader()

12. {

13. ReadBookList();

14. PrintBookList();

15. }

16.

564 From Java to C#

17. private void ReadBookList()

18. {

19. string fileName = "BookList.xml";

20. XmlTextReader textReader = new XmlTextReader(fileName);

21. XmlValidatingReader reader =

22. new XmlValidatingReader(textReader);

23. reader.ValidationType = ValidationType.Auto;

24. try

25. {

26. xPathDocument = new XPathDocument(reader);

27. xPathNavigator = xPathDocument.CreateNavigator();

28. }

29. catch (XmlSchemaException ex)

30. {

31. Console.WriteLine("Error reading " + fileName);

32. Console.WriteLine(ex.Message);

33. }

34. }

35.
36. private void PrintBookList()

37. {

38. string search = "/BOOKLIST/BOOK/AUTHOR";

39. XPathNodeIterator nodes = xPathNavigator.Select(search);

40. while (nodes.MoveNext())

41. {

42. Console.WriteLine(nodes.Current.Value);

43. }

44. }

45.
46. public static void Main(string[] args)

47. {

48. DomReader buildBookList = new DomReader();

49. }

50. }

Classes in the XPath namespace require a using System.Xml.XPath

statement (line 4).
Using XPath classes requires two main steps. First, we load the document

into an XPathDocument, and then we create an XPathNavigator to allow
navigation within the document.

The creation of the XPathDocument is similar to the creation of an
XmlDocument. If we require validation of the document, we create an
XmlTextReader, then attach an XmlValidatingReader, and then create an
XPathDocument, passing the XmlValidatingReader as a parameter to the
constructor (lines 20 to 26).

XML 565

An XPathNavigator can be created for any data store that implements
the IXPathNavigable interface, although in practice it is used mainly for
navigating through XPathDocuments. The XPathNavigator is the real power
behind the XPath classes, as it provides all the methods for moving around
and searching an XML document using XPath commands. We see how to
create an XPathNavigator from an XPathDocument on line 27.

Once we have the XPathNavigator, we can start moving around the doc-
ument in a variety of ways. The class contains 14 different methods for mov-
ing to a specified node in the tree, and also contains methods that allow
searching of the tree using XPath commands. In our simple example here, we
have used the Select() method (line 39) to select all AUTHOR elements.

Rather than return the results of the search as an array, the Select()
method returns an XPathNodeIterator, which allows us to step through the
list using the MoveNext() method. At each point in the iteration, we can
access the current node using the Current property.

One thing should be noted about the object returned by Current: it is actu-
ally an XPathNavigator that is returned and not, say, an XmlNode. An
XPathNavigator stores a marker to its current position in the tree as well as
allowing movement within the tree. However, the XPathNavigator that is
returned by the Current property should only be used to obtain properties of
the current node, and should not be used to move away from that node to
other parts of the tree. Attempting to move around in the tree can invalidate
the state of the navigator which can cause the iteration to behave incorrectly.

In the example above, we have only used Current to access the Value prop-
erty of the current node, which is the text belonging to the AUTHOR element.

12.8 ■ Editing and writing XML

.NET provides two main facilities for writing XML files from within a C# pro-
gram. The first uses the XmlTextWriter class and is basically a mirror of
XmlTextReader in that it allows XML to be written in a linear fashion with no
recognition of the structure of the document. The second method writes an
XmlDocument to a stream (such as a disk file), and translates all the internal
structure of the document directly into XML code with a single method call.

The first method is probably used less than the second, since if we are
building an XML document within C# code, we usually need to use
XmlDocument in order to retain the structure of the document as it is built.
However, it is worth having a look at a simple example of XmlTextWriter to
illustrate how it is used.

566 From Java to C#

12.8.1 � XmlTextWriter

The following code writes a booklist XML file from scratch and inserts a sin-
gle BOOK element in it:

string simpleFile = "Simple.xml";

XmlTextWriter simpleWriter =

new XmlTextWriter(simpleFile, System.Text.Encoding.UTF8);

simpleWriter.Formatting = Formatting.Indented;

simpleWriter.WriteStartDocument();

simpleWriter.WriteDocType("BOOKLIST", null,

"BookList.dtd", null);

simpleWriter.WriteStartElement("BOOKLIST");

simpleWriter.WriteStartElement("BOOK");

simpleWriter.WriteAttributeString("NumPages", "145");

simpleWriter.WriteElementString("AUTHOR", "Jules Verne");

simpleWriter.WriteElementString("TITLE",

"Around the World in 80 Days");

simpleWriter.WriteEndElement();

simpleWriter.WriteEndElement();

simpleWriter.WriteEndDocument();

simpleWriter.Flush();

simpleWriter.Close();

As can be seen, the code consists of a number of fairly obvious method
calls to produce the XML in a linear fashion. We begin by creating the
XmlTextWriter, passing the name of the file to create, and an encoding
option. UTF-8 encoding is fairly standard for most documents so the option
given should work for most situations. It is also acceptable just to use a
null here.

XmlTextWriter allows the XML to be formatted in various ways – proba-
bly the most useful formatting option is Indented, which produces nicely
indented XML statements which make it easier for humans to read.

After this, we call WriteStartDocument(), which writes out the XML
header line (containing the version number and encoding option, if any).
After this, if we need validation to occur when the XML file is used, we can
insert a call to WriteDocType(), which produces a DOCTYPE statement.
This method contains four parameters which allow for all the various types
of DOCTYPE that are available in the current XML standard. To produce the
simple DOCTYPE we have used earlier in the section on validation, insert
the name of the root element (BOOKLIST here) as the first parameter and
the name of the DTD file as the third parameter, leaving the second and
fourth parameters as null.

After the preliminaries, we can write out the XML code proper. Elements
that contain more than just a text node can be written in stages, by begin-
ning with a call to WriteStartElement(), in which we provide the ele-
ment’s name. Then we can insert the elements that are contained by the

XML 567

top-level element, as we have done here by inserting BOOK element and
then the AUTHOR and TITLE elements contained within the BOOK.

An attribute can be attached to an element by using WriteAttribute
String () , which takes two parameters: the name of the attribute and its value

Elements such as AUTHOR and TITLE, which contain text only, can be
written with a single call to WriteElementString(), providing the element
name and the text as the two parameters.

To complete a compound element after all its internals have been written,
we just call WriteEndElement() without any parameters. Note that XmlText
Writer is intelligent enough to keep track of the last element that was opened
and will provide the correct closing tag each time this method is called.

We clean up with calls to WriteEndDocument(), Flush() and Close().
The output from this code looks like this:

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE BOOKLIST SYSTEM "BookList.dtd">

<BOOKLIST>

<BOOK NumPages="145">

<AUTHOR>Jules Verne</AUTHOR>

<TITLE>Around the World in 80 Days</TITLE>

</BOOK>

</BOOKLIST>

12.8.2 � Writing XML using XmlDocument

While this simple use of XmlTextWriter may be useful if you are reading in
some data from an external source and translating it directly into XML, so
that the structure of the data is known in advance and is not editable, a far
more common situation is an interactive program in which the user may
view existing data and edit it by changing existing entries, adding new
entries or deleting existing entries. For this sort of flexibility, we need to
maintain the structure of the XML document within the C# program, so we
need to use XmlDocument to represent the XML internally.

XmlDocument and its associated classes provide a wide variety of methods
for manipulating XML documents, so we will just illustrate some of the
basics by presenting a GUI program in which the user can view the books in
an existing XML file, and edit these contents by changing the data for exist-
ing books and adding or deleting books from the file.

The interface to the program is as shown in Figure 12.2.
The program reads the BookList.xml file upon startup and displays the

titles of the books it finds in that file in a ListBox in the lower panel. If the
user selects a title with the mouse, the details for that book are displayed in
the text boxes at the top. The user can then edit these text boxes and press
‘Change’ to save the changes to the XML file.

568 From Java to C#

Pressing ‘Clear’ clears all the data in the text boxes and deselects the list.
If the user then types in data for a new book and presses ‘Add’, the new book
is added to the XML file and the title list is updated to show the new entry.
Finally, selecting a title in the list and pressing ‘Delete’ deletes the book from
the XML file and updates the display.

The complete code for this example is fairly long, but much of the code
deals with the initialization of the GUI, and we will not present this here since
it uses no new techniques beyond those that were covered in Chapter 9. The
complete program is available from the book’s web site.

The remainder of the class is as follows:

1. using System;

2. using System.Drawing;

3. using System.Windows.Forms;

4. using System.Xml;

5. using System.Xml.Schema;

6.
7. public class EditXMLForm : Form

8. {

9. private ListBox titleList;

10. private GroupBox detailsBox;

11. private TextBox authorBox, titleBox, numPagesBox;

12. private Button applyButton, clearButton, addButton,

13. deleteButton;

14. private Font titleFont = new Font("Arial", 8,

FontStyle.Bold);

15. private Font labelFont =

XML 569

Figure 12.2 Interface to ‘Edit book XML’ program

16. new Font("Arial", 8, FontStyle.Regular);

17. private XmlDocument xmlDocument;

18. private XmlNode selectedNode;

19. private string fileName = "BookList.xml";

20.
21. public EditXMLForm()

22. {

23. InitializeComponents();

24. ReadBookXML();

25. PopulateTitleList();

26. }

27.
28. private void ReadBookXML()

29. {

30. xmlDocument = new XmlDocument();

31. XmlTextReader textReader = new XmlTextReader(fileName);

32. XmlValidatingReader reader =

33. new XmlValidatingReader(textReader);

34. reader.ValidationType = ValidationType.Auto;

35. try

36. {

37. xmlDocument.Load(reader);

38. textReader.Close();

39. }

40. catch (XmlSchemaException ex)

41. {

42. Console.WriteLine("Error reading " + fileName);

43. Console.WriteLine(ex.Message);

44. }

45. }

46.
47. private void PopulateTitleList()

48. {

49. XmlNodeList titleNodeList =

50. xmlDocument.GetElementsByTagName("TITLE");

51. titleList.Items.Clear();

52. foreach (XmlNode titleNode in titleNodeList)

53. {

54. titleList.Items.Add(titleNode.InnerText);

55. }

56. }

57.
58. private void InitializeComponents()

59. {

60. // Code to set up GUI – see web site for details

61. }

570 From Java to C#

62.
63. private void ClearDisplay()

64. {

65. authorBox.Text = "";

66. titleBox.Text = "";

67. numPagesBox.Text = "";

68. titleList.ClearSelected();

69. selectedNode = null;

70. }

71.
72. private void AddNewBook()

73. {

74. XmlElement newBook = xmlDocument.CreateElement("BOOK");

75. XmlElement authorElement =

76. xmlDocument.CreateElement("AUTHOR");

77. authorElement.InnerText = authorBox.Text;

78. newBook.AppendChild(authorElement);

79. XmlElement titleElement =

80. xmlDocument.CreateElement("TITLE");

81. titleElement.InnerText = titleBox.Text;

82. newBook.AppendChild(titleElement);

83.
84. if (numPagesBox.Text.Length > 0)

85. {

86. newBook.SetAttribute("NumPages", numPagesBox.Text);

87. }

88. xmlDocument.DocumentElement.AppendChild(newBook);

89. WriteBookXML();

90. }

91.
92. private void WriteBookXML()

93. {

94. XmlTextWriter textWriter =

95. new XmlTextWriter(fileName, System.

Text.Encoding.UTF8);

96. textWriter.Formatting = Formatting.Indented;

97. xmlDocument.WriteContentTo(textWriter);

98. textWriter.Close();

99. }

100.
101. private void OnLayoutForm(object sender,

LayoutEventArgs args)

102. {

103. if (sender == this)

104. {

105. detailsBox.Location = new Point(

XML 571

106. this.ClientSize.Width/2 - detailsBox.

Size.Width/2, 20);

107. titleList.Location = new Point(

108. this.ClientSize.Width/2 - titleList.Size.Width/2,

109. detailsBox.Location.Y + detailsBox.

Size.Height + 20);

110. applyButton.Location = new Point(

111. this.ClientSize.Width/2 - (applyButton.Size.Width +

112. addButton.Size.Width + clearButton.Size.Width

113. + deleteButton.Size.Width + 15)/2,

114. titleList.Location.Y + titleList.Size.Height + 20);

115. clearButton.Location = new Point(

116. applyButton.Location.X + applyButton.

Size.Width + 5,

117. titleList.Location.Y + titleList.Size.Height + 20);

118. addButton.Location = new Point(

119. applyButton.Location.X + applyButton.Size.Width +

120. clearButton.Size.Width + 10,

121. titleList.Location.Y + titleList.Size.Height + 20);

122. deleteButton.Location = new Point(

123. applyButton.Location.X + applyButton.Size.Width +

124. clearButton.Size.Width + addButton.Size.Width + 15,

125. titleList.Location.Y + titleList.Size.Height + 20);

126. }

127. }

128.
129. private void OnSelectTitle(object sender,

EventArgs args)

130. {

131. if (titleList.SelectedItem == null) return;

132. string selectedTitle = titleList.

SelectedItem.ToString();

133. selectedNode = xmlDocument.SelectSingleNode(

134. "/BOOKLIST/BOOK[TITLE = \"" + selectedTitle + "\"]");

135. if (selectedNode != null)

136. {

137. XmlNode childNode =

138. selectedNode.SelectSingleNode("TITLE");

139. titleBox.Text = childNode.InnerText;

140. childNode = selectedNode.SelectSingleNode("AUTHOR");

141. authorBox.Text = childNode.InnerText;

142. XmlAttributeCollection attributes =

143. selectedNode.Attributes;

144. if (attributes.Count > 0)

145. {

146. numPagesBox.Text = attributes["NumPages"].Value;

572 From Java to C#

147. }

148. else

149. {

150. numPagesBox.Text = "";

151. }

152. }

153. }

154.
155. private void OnApply(object sender, EventArgs args)

156. {

157. if (sender == applyButton)

158. {

159. if (selectedNode != null)

160. {

161. XmlElement selectedElement = (XmlElement)

selectedNode;

162. XmlNode childNode =

163. selectedElement.SelectSingleNode("TITLE");

164. childNode.InnerText = titleBox.Text;

165. childNode = selectedElement.SelectSingleNode

("AUTHOR");

166. childNode.InnerText = authorBox.Text;

167. if (numPagesBox.Text.Length > 0)

168. {

169. selectedElement.SetAttribute("NumPages",

170. numPagesBox.Text);

171. }

172. else

173. {

174. selectedElement.RemoveAttribute("NumPages");

175. }

176. WriteBookXML();

177. PopulateTitleList();

178. }

179. }

180. }

181.
182. private void OnClear(object sender, EventArgs args)

183. {

184. ClearDisplay();

185. }

186.
187. private void OnAdd(object sender, EventArgs args)

188. {

189. AddNewBook();

190. PopulateTitleList();

XML 573

191. }

192.
193. private void OnDelete(object sender, EventArgs args)

194. {

195. if (selectedNode != null)

196. {

197. XmlNode parent = selectedNode.ParentNode;

198. parent.RemoveChild(selectedNode);

199. WriteBookXML();

200. ClearDisplay();

201. PopulateTitleList();

202. }

203. }

204.
205. public static void Main()

206. {

207. Application.Run(new EditXMLForm());

208. }

209. }

The code in InitializeComponents() creates and places the various
GUI controls, and adds event handlers to the Buttons and ListBox. When
the form is first displayed, OnLayoutForm() is called to position the controls
on the client area. We’ll consider the event handlers after considering the
remaining setup code.

The initial XML file is read in using ReadBookXML() (line 28). This
process is the same as that which we described earlier when introducing
XmlDocument: the XML document is read in, using validation, and stored
internally in xmlDocument.

After this, we fill titleList (the ListBox control that displays the book
titles) in PopulateTitleList(). We use GetElementsByTagName() to
retrieve a list of all TITLE elements in the XML document (lines 49–50). We
then add the InnerText of each of these elements to titleList (lines 52 to
55) to create the initial display that is visible when the program loads.

After this, everything happens in one of the event handlers in response to
a user action. First, suppose the user selects a book in the list by clicking on
it with the mouse. This triggers a SelectedItemChanged event in the
ListBox, to which we have attached the OnSelectTitle() method as an
event handler (line 129).

Line 131 checks that an item has actually been selected, since when we
clear the ListBox (by pressing the ‘Clear’ button; see below), this method is
also called.

The main purpose of OnSelectTitle() is to display the details of the
selected book in the text boxes at the top of the window. We therefore must
find the element in xmlDocument corresponding to the title that was chosen
by the user. We first extract the title that was selected (line 132). We can

574 From Java to C#

then use this title to search xmlDocument for the BOOK element that con-
tains it as the text in its child TITLE element. We do this by using an XPath
search string (lines 133 and 134). For example, if the user selected ‘A Tale
of Two Cities’, the XPath string is:

/BOOKLIST/BOOK[TITLE = "A Tale of Two Cities"]

This statement states that the BOOK node (not the TITLE node) should be
retrieved, which is what we want since we need to extract the other data
relating to that book in order to display it in the text boxes.

At this point, we should make a comment about the use of quotes for
delimiting strings in XPath search statements. Earlier, we used single quotes
(apostrophes) to delimit the strings in attributes and XPath search strings,
while here we have used the double quote (line 134). In fact, both attributes
and XPath search strings may use either type of quote. We have used the dou-
ble quote here since some book titles contain apostrophes (as in “Wibble’s
Guide to the Classics”), and if we use the double quote to delimit the string,
single quotes are considered part of the string rather than delimiters.

This raises the fairly obvious question as to what to do if the string we are
searching for itself contains both single and double quotes. Bizarrely, it seems
that it is not possible to search for strings of this type. None of the standard
procedures for escaping symbols by preceding them with the backslash char-
acter, or of doubling up apostrophes (as is done in SQL statements, for exam-
ple), or of using the long form of special symbols such as " for " or
' for ' seems to work, and the documentation offers no help.

Once we have found the BOOK element corresponding to the selected
title, it is stored in selectedNode, and may then be used to extract the
author and number of pages, which we do inside the if statement on lines
137 to 151.

This code illustrates that we may use XPath to search for a node starting
at an internal element rather than at the root of the document. Line 137
searches for the TITLE element relative to selectedNode, so it will return
the TITLE of the selected book. Line 139 then copies this text into
titleBox, which is the TextBox displaying the book’s title. Lines 140 and
141 do likewise for the AUTHOR element.

To extract the number of pages, we need to retrieve the NumPages attrib-
ute from the BOOK element. Since the DTD allows this node to be optional,
we cannot be sure it will be there for every BOOK. We therefore first retrieve
the list of attributes for selectedNode (line 142) and then check if this list
has any elements in it (line 144). If so, we retrieve the value for NumPages
and display it. If not, we clear numPagesBox, since otherwise selecting a
book without a NumPages attribute after selecting one that did have one
would leave the earlier NumPages value displayed.

Now let us assume that the user makes some changes to the selected book
and wishes to save these changes in the XML file. After editing the text in
the various TextBoxes, the ‘Change’ button is pressed, which calls
OnApply() (line 155).

XML 575

We wish to edit the various child nodes of the current BOOK element in
response to the changes typed in by the user. In order to edit an element,
we need to use the XmlElement class, which is derived from XmlNode. We
therefore cast selectedNode to an XmlElement called selectedElement
(line 161) to allow us to use the XmlElement methods for editing.

To update the title of the book, we search the element for its TITLE node
(line 162) and then copy the text in titleBox into the InnerText property
of the TITLE node (line 164). We repeat the process to update the AUTHOR
(lines 165 to 166).

To update the number of pages, we examine what is in the numPagesBox
text box. If the user has entered a value, we use SetAttribute() to set the
value for the NumPages attribute (line 169). Note that NumPages is an attrib-
ute of a BOOK element, so we call SetAttribute() from selectedElement.

If the user has not entered anything in numPagesBox, we remove the
NumPages attribute from selectedElement (line 174).

This completes the updating of the internal XML element within xml
Document, but to complete the process we need to save the document to
disk. For this, we call WriteBookXML() on line 176.

The code for WriteBookXML() begins on line 92. Writing an XmlDocument
to disk is very simple – we first create an XmlTextWriter as we did in writ-
ing out the straightforward XML above (lines 94 to 96) and then just call
WriteContentTo() from xmlDocument (line 97). This method handles the
creation of all the elements internally so we don’t need to worry about start-
ing and ending elements and so forth.

After calling WriteBookXML() on line 176, we update the title list by call-
ing PopulateTitleList() again (line 177). This will refresh the display by
updating the title displayed in the list.

The other three buttons are all fairly simple. The ‘Clear’ button is con-
nected to the OnClear() event handler (line 182) which just calls Clear
Display(), the code for which is on line 63. We just clear all the text boxes
and the title list box, and set selectedNode to null.

Adding a new book by pressing the ‘Add’ button calls OnAdd() on line 187,
which in turn calls AddNewBook() to add the new book to the XML docu-
ment and write it to disk, and then calls PopulateTitleList() to add the
new title to the display.

AddNewBook() (line 72) illustrates how a brand new element can be
added to an existing XML document. We create the element on line 74 by
calling CreateElement() from XmlDocument. The parameter passed to this
method is the name of the new element. We are adding a new BOOK so we
create this here, and then add its child nodes to it later.

We then create another new element for the AUTHOR element that is to
be a child of the new BOOK (line 75). The InnerText of the AUTHOR is
copied from authorBox, and then AppendChild() is used to attach the
AUTHOR to the new BOOK (line 78).

Note that the order in which new nodes are created and added is important
if we want the new element to be consistent with the DTD, which specifies that
any AUTHOR nodes must precede the TITLE node in a BOOK element.

576 From Java to C#

Remember that XML writers do not validate documents when they write them,
so it’s up to you to make sure you create the XML documents correctly!

We repeat the process to add the TITLE (lines 79 to 82). Then we must
deal with the NumPages attribute. First, we check (line 84) if the user has
entered a value for the number of pages. If so, we use SetAttribute() as
before (line 86) to set a NumPages attribute for the new BOOK. If there is no
entry in numPagesBox we don’t need to do anything, since a new element
will not have any attributes unless we assign them using SetAttribute().

After we have finished creating the new BOOK, we must not forget to con-
nect it to the existing document, and to do so in the right place. In this sim-
ple example, all BOOK elements are attached directly to the root of the doc-
ument, so we can use the DocumentElement property of xmlDocument (line
88) to retrieve this root node and attach the new BOOK to it. In a more gen-
eral situation, we may need to search for the correct node in the document
first (using an XPath statement, for example) before attaching the new node.

After attaching the new node, we save the new document with Write
BookXML() as before (line 89).

Finally, if the user selects a title and then presses ‘Delete’, we must delete
the corresponding BOOK from the document. This is done with the
OnDelete() event handler (line 193).

Deleting a node from an XML tree requires that we obtain the node’s par-
ent, so first we do this by using the ParentNode property (line 197). Once
we have the parent, we can then call RemoveChild() to delete the selected
book (line 198). After this, we call WriteBookXML() to save the document,
then clear all the text boxes and selections with ClearDisplay() and final-
ly update the title list with PopulateTitleList().

After using this program to add ‘Around the World in 80 Days’ by Jules
Verne (with 534 pages), the XML file looks like this:

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE BOOKLIST SYSTEM "BookList.dtd"[]>

<BOOKLIST>

<BOOK NumPages="345">

<AUTHOR>Zaphod Wibble</AUTHOR>

<TITLE>Wibble’s Guide to the Classics</TITLE>

</BOOK>

<BOOK NumPages="429">

<AUTHOR>Isaac Asimov</AUTHOR>

<TITLE>The Complete Stories, Vol. 1</TITLE>

</BOOK>

<BOOK NumPages="145">

<AUTHOR>Charles Dickens</AUTHOR>

<TITLE>A Tale of Two Cities</TITLE>

</BOOK>

<BOOK NumPages="534">

<AUTHOR>Jules Verne</AUTHOR>

XML 577

<TITLE>Around the World in 80 Days</TITLE>
</BOOK>

</BOOKLIST>

This example has shown a few of the simpler techniques for editing
and writing XML documents. You should explore the documentation for
XmlDocument and its associated classes such as XmlElement to learn more
about what’s available.

12.9 ■ Transforming XML – XSLT

We’ve seen in this chapter that XML can be handled within C# in a number
of ways, many of which involve extracting the information within certain
types of elements and using it for whatever purpose is required.

In fact, the process of transforming XML into other forms is so common
that yet another language has been invented for doing just that. XSLT
(Extensible Stylesheet Language for Transformations) allows templates for
each type of element in an XML document to be defined. Each template
converts the information contained in the original XML element into
another representation.

XSLT is commonly used to convert XML into standard HTML for display on
a web page, or to convert the information in one XML document into a differ-
ent form based, perhaps, on a different DTD. The latter application is com-
monly used when sending information from one business or organization to
another that uses a different format for representing similar information.

In principle, we could write C# code to do everything that XSLT does by
just applying the .NET XML libraries that we have studied in this chapter,
but XSLT makes most of these transformations much easier to accomplish.
As with XPath and XML itself, XSLT has a large set of commands and state-
ments which may be used, so we will examine only the basics here to give
the reader a feel for how it can be used in a C# and .NET context. There are
many books on XSLT which will explore the subject in greater depth.

As we mentioned earlier, XSLT allows a template to be defined for each
type of element in an XML document. A template provides instructions on
what information should be extracted from an element of the given type,
and how it should be represented in the transformed document. The gener-
al form of an XSLT template is as follows:

<xsl:template match=XPath expression>
XSLT instructions

</xsl:template>

Here, text that is in italics is just a description of the code that must be
inserted at that point.

The XPath expression in the first line selects the nodes from the XML
document to which the template should be applied. The XSLT instructions
in the middle line define the transformations that will be applied to the
nodes that are retrieved by the search pattern.

578 From Java to C#

Note that an XSLT template definition looks a lot like an ordinary XML
element in that it consists of a tag name (xsl:template) and has an open-
ing and closing tag with content in the middle. All XSLT elements, however,
have names that begin with the xsl: prefix. (In XML, a tag may be defined
as belonging to a namespace in order to avoid clashes in names between
XML documents. The namespace name precedes the regular name and is
delimited with a colon. For more details on XML namespaces, consult a
book on XML.)

An ordinary XML parser will not notice anything special about XSLT ele-
ments, so we need an XSLT parser to handle these statements. Parsers exist
as stand-alone programs or as parts of other programs such as web browsers,
but we shall be concerned only with the XSLT processors within .NET.

Typically, XSLT templates for transforming a particular type of XML doc-
ument are stored in a separate file with a .xsl extension. A link between the
XML document and the XSLT file is then made, either by inserting a line in
the XML file, or by linking the two files in the code that processes them.

This will all make a lot more sense if we see a simple example. As usual,
we will use our BookList.xml file as the XML document, and write a simple
XSLT file that converts the information in the XML file to HTML so that it
can be viewed as ordinary text in a web browser.

The XSLT file is as follows:

1. <?xml version="1.0" encoding="UTF-8" ?>
2. <xsl:stylesheet version="1.0"
3. xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
4. <xsl:template match="/">
5. <HTML>
6. <HEAD>
7. <TITLE>Book information</TITLE>
8. </HEAD>
9. <BODY>

10. <xsl:apply-templates/>
11. </BODY>
12. </HTML>
13. </xsl:template>
14.
15. <xsl:template match="BOOK">
16. <hr/>
17. <xsl:value-of select="AUTHOR"/>
18.

19. <i><xsl:value-of select="TITLE"/></i>
20. <xsl:if test="@NumPages">
21.

22. <xsl:value-of select="@NumPages"/> pages.
23. </xsl:if>
24. </xsl:template>
25.
26. </xsl:stylesheet>

XML 579

Lines 1 to 3 are standard introductory code for an XSLT file, and we won’t
delve into their meaning here since that would carry us too deeply into the
innards of XSLT. Provided you insert these lines (and the last line, which
closes the xsl:stylesheet tag) into all your XSLT files you should avoid
problems at the top level.

After this introductory material, everything else in an XSLT file involves
the definition of templates. The main template is defined on lines 4 through
13. The XPath pattern that is matched on line 4 is given as "/", which
matches the root node of an XML document. This should be the entry point
of any XSLT file. We can select which nodes underneath the root we wish to
transform within this top-level template.

One important point about XSLT files is that any text that is not part of
an xsl tag is interpreted as text that is to be output. Thus all the text on
lines 5 to 9 is just output directly to the HTML file we are building on disk.
Although this text consists of valid XML, it is not interpreted as XSLT com-
mands by the XSLT parser.

If you are not familiar with HTML, don’t worry too much about what the
HTML statements on lines 5 to 9 and elsewhere in this XSLT file are doing.
The important thing at this point is to recognize that the XSLT file will send
directly to the output stream any text that is not part of an xsl element. We
will consider the HTML file that is produced as a result of the transform-
ation below.

Line 10 contains the command xsl:apply-templates. This instructs the
XSLT parser to search the remainder of the XSLT file to see if there are any
template definitions that match other nodes that might be found in the XML
document. We’ll consider these below.

The remainder of the first template prints out a couple of closing tags for the
HTML file (lines 11 and 12) and then closes the xsl:template tag (line 13).

The xsl:apply-templates command on line 10 is a bit like a method
call, in that it redirects the parser to one of the other templates that may be
defined elsewhere in the XSLT file. In our case, we have only one other tem-
plate definition, beginning on line 15.

This template matches all BOOK elements in the XML document. Each
time a BOOK is found, we first print out an <hr> tag (which draws a hori-
zontal line across the web page). Then on line 17 we encounter a new type
of XSLT command: xsl:value-of.

To understand what this command is doing, we first need to understand the
idea of the context node. As XSLT processes an XML document, it keeps a
marker to the node in the overall document that is being processed. This node
is known as the context node, and many XSLT commands are given relative to
the context node, while other commands will change the context node.

The xsl:template command will change the context node to whatever
node is found when applying the match. Other XSLT commands are then
issued relative to this context node.

The match="BOOK" will match each BOOK node in turn, so when the first
BOOK is matched, the xsl:value-of command acts on that BOOK node.
The select attribute of the xsl:value-of command is an XPath search

580 From Java to C#

string which is run starting at the context node. If the search results in a
match, then xsl:value-of extracts the inner text from that element. The
result of line 17 is therefore to extract the author’s name from the AUTHOR
element that is the child element of the current BOOK. This name will be
output surrounded by and tags which makes it appear in boldface
type on the web page. Similarly, line 19 locates the book’s title and displays
it in italics.

Those familiar with HTML might be wondering why we have specified the
horizontal rule and break tags as <hr/> and
 respectively, rather than
the more familiar <hr> and
. The reason is that an XSLT file is a prop-
er XML document and thus must adhere to XML syntax rules, which require
all elements to be closed. If we had given line 16 as just <hr>, for example,
the parser would throw an exception and the transformation would fail. As
we will see, the output to the HTML file writes an ordinary <hr> tag anyway,
so the final product looks like normal HTML.

The final portion of the BOOK template deals with the optional NumPages
attribute. Since we don’t know in advance if a BOOK element will contain
this attribute, we cannot automatically print out the number of pages.

XSLT has a conditional statement just like most other languages, so we
can use xsl:if to check if the NumPages attribute exists first. The format of
the xsl:if is:

<xsl:if test=boolean expression>

do this if true

</xsl:if>

For the purposes of testing the existence of an attribute or element, we
can just set the test to the name of the attribute or element. If the node
exists, test will be true and if not, it will be false.

In this case, we check to see if the current BOOK element has a NumPages
attribute and, if so, we use xsl:value-of to retrieve its value and print it
out, followed by the word ‘pages.’.

Now that we’ve seen a relatively simple XSLT file, we need to see how to
connect it with the original BookList.xml document using C# code. This is,
in fact, quite simple, as the example below shows:

1. using System;

2. using System.Xml;

3. using System.Xml.Schema;

4. using System.Xml.XPath;

5. using System.Xml.Xsl;

6. using System.IO;

7.
8. public class XSLTDemo

9. {

10. private XPathDocument xPathDocument;

11. private XPathNavigator xPathNavigator;

XML 581

12. private XslTransform xslTransform;

13.
14. private void TransformBookList()

15. {

16. string fileName = "BookList.xml";

17. XmlTextReader textReader = new XmlTextReader(fileName);

18. XmlValidatingReader reader =

19. new XmlValidatingReader(textReader);

20. reader.ValidationType = ValidationType.Auto;

21. xslTransform = new XslTransform();

22. FileStream htmlFile = new FileStream("Books.html",

23. FileMode.Create);

24.
25. try

26. {

27. xPathDocument = new XPathDocument(reader);

28. xslTransform.Load("BookWeb.xslt");

29. xPathNavigator = xPathDocument.CreateNavigator();

30. xslTransform.Transform(xPathNavigator, null,

htmlFile);

31. }

32. catch (XmlSchemaException ex)

33. {

34. Console.WriteLine("Error reading " + fileName);

35. Console.WriteLine(ex.Message);

36. }

37. catch (Exception ex)

38. {

39. Console.WriteLine("Error processing " + fileName);

40. Console.WriteLine(ex.Message);

41. }

42. }

43.
44. public static void Main(string[] args)

45. {

46. XSLTDemo buildBookList = new XSLTDemo();

47. buildBookList.TransformBookList();

48. }

49. }

A typical application uses an XPathDocument to hold the XML document,
so we need to include a using System.Xml.XPath (line 4). To use the XSLT
classes, we need to add a using System.Xml.Xsl (line 5). Finally, since we
are writing the results directly to disk, we need to use a FileStream, which
requires the System.IO namespace (line 6).

582 From Java to C#

All the action takes place in TransformBookList() (line 14). We assume
that both the XML document file BookList.xml and the XSLT file
BookWeb.xslt are in the same directory as the executable file for the pro-
gram – if not, you will need to adjust the file paths in the code.

We first set up the reader objects (lines 16 to 20). As before, we are using
validation when we read in the XML document, so we first create an
XmlTextReader, then an XmlValidatingReader. If you are not using vali-
dation (that is, you don’t have a DTD), just skip the creation of the validat-
ing reader on lines 18 to 20 and use textReader directly.

The final bit of setup creates the output file as a FileStream (line 22). A
more realistic application would probably use XSLT to transform some XML
and send the resulting HTML directly over the web to a waiting client. We will
consider this sort of thing in the next chapter, but for now we will just store
the result on disk and then open a web browser to view the result afterwards.

Within the try block on line 25 we do the actual processing. We use
XPathDocument to load the XML file (line 27) since the XSLT parser is
designed to work most efficiently with an XPathDocument to process the var-
ious XPath searches that XSLT contains. Note that we do not actually need
to write any XPathDocument method calls ourselves – this is all handled
internally by the XSLT parser.

The XslTransform object loads in the XSLT command file (line 28), and
an XPathNavigator is created (line 29). Finally, the XML document, XSLT
command file and HTML output file are connected when we call
Transform() on line 30. (The middle parameter in Transform() allows
some optional parameters to be passed to the transformation, but we don’t
need those here.)

All the hard work is done in writing the XML and XSLT files. Once we
have those, it is just a matter of writing a few lines in C# to use the XSLT to
transform the XML. Since a lot of things can go wrong (mainly syntax errors
in the XML or XSLT files) however, it is always a good idea to print out any
exception messages, as we’ve done on lines 32 to 41.

The HTML file produced by this transformation is as follows:

<HTML>
<HEAD>

<META http-equiv="Content-Type" content="text/html;
charset=utf-8">

<TITLE>Book information</TITLE>
</HEAD>
<BODY>

<hr>
Zaphod Wibble

<i>Wibble’s Guide to the Classics</i>

345 pages.
<hr>

XML 583

Isaac Asimov

<i>The Complete Stories, Vol. 1</i>

429 pages.
<hr>
Charles Dickens

<i>A Tale of Two Cities</i>

</BODY>
</HTML>

If you are familiar with HTML, this should look quite familiar. As a quick
reminder, the HEAD section of an HTML document defines a few properties
that don’t appear in the main client area of the browser. In this case, the
META element is actually inserted automatically by the Transform()
method – this was not coded in the XSLT file. The TITLE element specifies
the text that appears in the title bar of the browser window.

The BODY section defines the content that appears in the client area of
the browser. The <hr> tag draws a horizontal line across the entire client
area, specifies that the enclosed text is in boldface, <i></i> draws
text in italics and
 causes a line break.

When loaded into a web browser, this file looks as shown in Figure 12.3.

Although this example has shown how to convert XML into ordinary
HTML, it should be obvious that XSLT has great flexibility in its uses, as it
can be used to transform XML into any format we like. To explore its capa-
bilities further, you should consult a book on XML or have a look at the W3C
web site http://www.w3c.org which contains the specifications and a refer-
ence page for XSLT and its commands.

584 From Java to C#

Figure 12.3 Result of translating XML into HTML using XSLT

12.10 ■ XML documentation in C# code

Java programmers should be familiar with the comprehensive document-
ation that comes with the Java Development Kit (JDK) and most other pack-
ages of Java classes. Many Java programmers will also be aware that this
documentation is produced by a tool called javadoc, which scans Java
source files looking for special types of comments that have been inserted
by the programmer. javadoc will process these comments to create a set of
HTML files giving comprehensive documentation for the classes and their
data fields and methods.

A similar facility exists for authors of C# code, except that in line with
.NET’s philosophy of using XML for most forms of data handling, the ‘special
comments’ that should be inserted into C# source code are written using
XML. Also, rather than providing a separate application to produce the doc-
umentation, the C# compiler includes a /doc option which allows the doc-
umentation to be produced as part of the compilation process, so it is
refreshed each time we compile the project.

A documentation comment may be inserted before a class declaration, a
data field declaration and a method definition. All such comments must be
on separate lines and must begin with a triple slash /// rather than the dou-
ble slash used for ordinary comments.

C# provides 15 XML tag names that may be used to provide document-
ation. We’ll begin with a simple example of how to insert documentation.

We will use the example earlier in this chapter where we illustrated edit-
ing and writing XML. Below is a portion of the EditXMLForm class showing
the documentation comments added. The code is omitted from the methods
and not all the methods from the class are included, since the comments all
follow the same pattern.

1. using System;

2. using System.Drawing;

3. using System.Windows.Forms;

4. using System.Xml;

5. using System.Xml.Schema;

6.
7. /// <summary>

8. /// Demonstrates editing and writing of XML

9. /// using <c>XmlDocument</c>

10. /// </summary>

11. public class EditXMLForm : Form

12. {

13. /// <summary>

14. /// Displays the list of titles from all BOOK elements

15. /// </summary>

16. private ListBox titleList;

17. /// <summary>

XML 585

18. /// Groups the text boxes

19. /// </summary>

20. private GroupBox detailsBox;

21. /// <summary>

22. /// Allows the user to view and edit data for one book

23. /// </summary>

24. private TextBox authorBox, titleBox, numPagesBox;

25.
26. /// <summary>

27. /// Reads the initial XML document from <c>fileName</c>

28. /// </summary>

29. private void ReadBookXML()

30. {

31. }

32.
33. /// <summary>

34. /// Enters titles of books into <c>titleList</c>

35. /// </summary>

36. private void PopulateTitleList()

37. {

38. }

39.
40. /// <summary>

41. /// Sets up controls

42. /// </summary>

43. private void InitializeComponents()

44. {

45. }

46.
47. /// <summary>

48. /// Lays out the controls each time form is displayed

49. /// </summary>

50. /// <param name="sender">Assumed to be the main

form</param>

51. /// <param name="args">Not used</param>

52. private void OnLayoutForm(object sender,

LayoutEventArgs args)

53. {

54. }

55. }

The various XML tags can be used to provide documentation that will
appear in certain places if an HTML page is produced from the XML (as we
will see below). We begin by providing a general description of the
EditXMLForm class using the <summary> tag (lines 7 to 10). The <c> tag is
used on line 9 to mark up text that should be formatted as computer code.

586 From Java to C#

Within a class, we can provide documentation for each variable declaration
and method definition. In each case, all the XML that pertains to a particular
field or method within the class must appear immediately before that field or
method is defined. For example, we’ve provided a description of titleList
with the comments on lines 13 to 15, and of detailsBox on lines 17 to 19. If
we add a comment before a declaration that contains several objects, the same
comment is applied to each object in the declaration. Thus the comment on
lines 21 to 23 is applied to all three of the objects declared on line 24.

We have shown a few examples of adding documentation to methods on lines
26 to 54. For void methods that have no parameters, a simple <summary> is
probably all that is needed in most cases. For methods having parameters, such
as OnLayoutForm() on line 52, we provide a <summary> and then add a
<param> element for each parameter in the method. The <param> takes the
name of the parameter as an attribute, and the description of the parameter as
its inner text.

All the methods in EditXMLForm are void, but if a method has a return
value, we can add a <return> element to the documentation to explain what
value is returned by the method.

If we are using a command-line compiler rather than Visual Studio .NET,
we can produce an XML file from these comments by adding a /doc option
to the compiler’s command line. For this class, we could say:

csc /doc:EditXMLForm.xml EditXMLForm.cs

This will compile the C# source code as usual, but will also produce a file
called EditXMLForm.xml containing a complete XML description of the doc-
umentation as obtained from the special comments in the source code. The
compiler will also perform several checks on the XML comments to be sure
they are correctly formatted. Warnings will even be issued if you have for-
gotten to add documentation to some of the public methods in the class.

It is up to you to decide what to do with the XML file that is produced (if
you are feeling ambitious, you may want to try writing your own XSLT trans-
formation to produce your own documentation style), but if you are using
Visual Studio .NET, there is a facility which converts the XML into a set of
HTML files that allow web-based documentation to be produced. Although
we don’t want to rely too much on Visual Studio .NET in this book, it is
worth describing the procedure since there doesn’t appear to be any other
easy way of producing this type of documentation.

First, to get Visual Studio .NET to produce the XML file (without any
extra HTML documentation), open Solution Explorer (using the View menu
if it’s not visible), select the project for which you want the XML file pro-
duced, then use the View menu to open the Property Pages for this project.

In the panel on the left, open Configuration Properties, then select Build. In
the Outputs section, select XML Documentation File and enter the name of the
file to which you want the XML documentation written. This file’s location is
relative to the home directory of the project. This file name is the same as the
one that is specified with the /doc option in the command-line version above.

XML 587

If you set an XML Documentation File, XML documentation will be pro-
duced automatically every time you compile the project.

To produce the HTML documentation, select the Tools menu and then
choose Build Comment Web Pages, select the project(s) for which you want
the documentation and the location on disk where it should be written and
then click OK. You will get a separate folder called CodeCommentReport con-
taining a number of files which together produce the web documentation. The
main page that should be opened in a browser is called Solution_name.htm,
where ‘name’ will be the name of the solution for which documentation was
produced. The documentation for EditXMLForm is as shown in Figure 12.4.

Each data field and method name in the list is a link to a separate page
where more details are provided on that item, depending on how much
information was written into the comment in the source code. In any case,
the name, data type (including complete namespace name) and accessibili-
ty (private, public, etc) of all data fields are given.

For complete information on the 15 XML tags that are available for for-
matting comments and a tutorial on the production of XML documentation,
see the MSDN documentation (either on the web at msdn.microsoft.com or
the documentation that comes with Visual Studio .NET). The tutorial can be
found by searching for ‘XML Documentation Tutorial’.

588 From Java to C#

Figure 12.4 Documentation produced by using XML in C# code

12.11 ■ Case study: saving and loading the adventure
game

One common use of XML is as a format in which the state of a program may
be saved to disk. We can demonstrate this by adding saving and loading fea-
tures to the adventure game case study that we have been developing
throughout the book.

The previous version of the game was presented in Chapter 11 where we
added a database to store the data required to set the game up initially. The
strategy we will use in adding saving and loading of a game in progress is that
we only need to save that information that can change after the game starts.
For example, the number of rooms in the game is determined by the data in
the database, as are the connections between these rooms, so we need not
save any of this information.

12.11.1 � DTD for the Adventure XML file

Things that can change during the course of a game are the location and
existence of items, the state of the monsters in the rooms, and the state of
the player. The best way to plan out the structure of the XML file that will
store this information is to write a DTD for it. The following DTD is stored
in Adventure.dtd:

<!ELEMENT ADVENTURE (ROOM*, PLAYER)>

<!ELEMENT ROOM (ITEM*, MONSTER?)>
<!ATTLIST ROOM Description CDATA #REQUIRED>

<!ELEMENT PLAYER (ITEM*)>
<!ATTLIST PLAYER CurrentLocation CDATA #REQUIRED>
<!ATTLIST PLAYER Energy CDATA #REQUIRED>
<!ATTLIST PLAYER MaxEnergy CDATA #REQUIRED>
<!ATTLIST PLAYER BlockProb CDATA #REQUIRED>
<!ATTLIST PLAYER HitProb CDATA #REQUIRED>
<!ATTLIST PLAYER Damage CDATA #REQUIRED>
<!ATTLIST PLAYER CarryWeight CDATA #REQUIRED>
<!ATTLIST PLAYER QuaffedPotion CDATA #IMPLIED>
<!ATTLIST PLAYER PotionTime CDATA #IMPLIED>
<!ATTLIST PLAYER WieldedWeapon CDATA #IMPLIED>
<!ATTLIST PLAYER WornArmour CDATA #IMPLIED>
<!ATTLIST PLAYER WornRing CDATA #IMPLIED>

<!ELEMENT ITEM EMPTY>
<!ATTLIST ITEM Description CDATA #REQUIRED>
<!ATTLIST ITEM Charges CDATA #IMPLIED>

<!ELEMENT MONSTER EMPTY>
<!ATTLIST MONSTER Energy CDATA #REQUIRED>

XML 589

The root node (document element) in the XML hierarchy is called
ADVENTURE, and may contain zero or more ROOM elements and exactly
one PLAYER. The only information we need to store about each room is its
description and its contents (items and monster, if any). The ROOM ele-
ment therefore accepts zero or more ITEMs and zero or one MONSTER. The
room’s description is stored as a required attribute.

The player has a large number of attributes to save, some of which are
required and others optional. Technically, we could work out a lot of these val-
ues from the items being carried by the player, but it is easier just to save them
as raw data. The PLAYER element may also contain zero or more ITEMs.

An ITEM consists only of a description, since we will look up the other
data for an item in the database. The wand is the only item type that has a
value that varies during play, so we add the extra attribute to store the num-
ber of charges left on a wand.

In a more complex game, items may have several properties that can vary
as the game is played. Weapons and armour could wear out, food could decay
and so on. In this case it may be better to create a separate element in the XML
file for each item type, since each type will have its own set of attributes.

Finally, the only data we need to store for a monster is its current energy
level. We do not need to save even the monster’s name since all monsters
are fixed to a particular room, and according to the DTD, the only place a
MONSTER element can be found is as a child of ROOM. Since the monster’s
stats are created when the game is initialized and the only thing that can
change is the monster’s energy level, that’s all we need to store. If a monster
in a particular room has been killed by the time the game is saved, then the
room’s Monster property is null and no MONSTER element would be saved
for that room.

12.11.2 � C# code for saving the game as XML

Since the XML that is being written to disk is a fixed snapshot of the game,
we could use XmlTextWriter to write out the XML statements one by one.
However, it is more intuitive to build the document as a tree within the code
before writing it out, so we’ll use XmlDocument to construct the document
first and then write it to disk using WriteContentTo() as we did in the
example earlier in this chapter.

We have added a couple of items to the File menu allowing saving and
loading – the code for this is not included here since it is a straightforward
change to the menu.

Selecting ‘Save game’ on the menu calls SaveGame():

private void SaveGame()

{

SaveFileDialog saveDialog = new SaveFileDialog();

saveDialog.Filter = "Adventure games (*.adv)|*.adv";

saveDialog.InitialDirectory = ".";

590 From Java to C#

if (saveDialog.ShowDialog() == DialogResult.OK)

{

BuildXML();

XmlTextWriter textWriter =

new XmlTextWriter(saveDialog.FileName,

System.Text.Encoding.UTF8);

textWriter.Formatting = Formatting.Indented;

textWriter.WriteStartDocument();

gameXML.WriteContentTo(textWriter);

textWriter.Close();

}

}

This method displays a file selector and filters the displayed files so that
only .adv files are shown. The actual XML document gameXML is built up in
BuildXML() which we consider below. After this, we create a XmlTextWriter
to write the header line using WriteStartDocument() and then write gameXML
to the selected file using WriteContentTo().

BuildXML() looks like this:

1. private void BuildXML()

2. {

3. gameXML = new XmlDocument();

4. XmlDocumentType docType =

5. gameXML.CreateDocumentType("ADVENTURE", null,

6. "Adventure.dtd", null);

7. gameXML.AppendChild(docType);

8. XmlElement adventureElement =

9. gameXML.CreateElement("ADVENTURE");

10. gameXML.AppendChild(adventureElement);

11. for (int i = 0; i < adventure.NumRooms; i++)

12. {

13. Room room = adventure[i];

14. XmlElement roomElement = gameXML.CreateElement("ROOM");

15. roomElement.SetAttribute("Description", room.

Description);

16. for (int j = 0; j < room.ItemList.Count; j++)

17. {

18. Item item = (Item)room.ItemList[j];

19. XmlElement itemElement = gameXML.CreateElement

("ITEM");

20. itemElement.SetAttribute("Description",

21. item.Description);

22. if (item.GetType() == Type.GetType("Wand"))

23. {

24. itemElement.SetAttribute("Charges",

25. ((Wand)item).Charges.ToString());

XML 591

26. }

27. roomElement.AppendChild(itemElement);

28. }

29. if (room.Monster != null)

30. {

31. XmlElement monsterElement =

32. gameXML.CreateElement("MONSTER");

33. monsterElement.SetAttribute("Energy",

34. room.Monster.Energy.ToString());

35. roomElement.AppendChild(monsterElement);

36. }

37. adventureElement.AppendChild(roomElement);

38. }

39.
40. XmlElement playerElement = gameXML.CreateElement("PLAYER");

41. Player player = adventure.GamePlayer;

42. playerElement.SetAttribute("CurrentLocation",

43. player.CurrentLocation.Description);

44. playerElement.SetAttribute("Energy",

45. player.Energy.ToString());

46. playerElement.SetAttribute("MaxEnergy",

47. player.MaxEnergy.ToString());

48. playerElement.SetAttribute("BlockProb",

49. player.BlockProb.ToString());

50. playerElement.SetAttribute("HitProb",

51. player.HitProb.ToString());

52. playerElement.SetAttribute("Damage",

53. player.Damage.ToString());

54. playerElement.SetAttribute("CarryWeight",

55. player.CarryWeight.ToString());

56. if (player.QuaffedPotion != null)

57. {

58. playerElement.SetAttribute("QuaffedPotion",

59. player.QuaffedPotion.Description);

60. playerElement.SetAttribute("PotionTime",

61. player.PotionTime.ToString());

62. }

63. if (player.WieldedWeapon != null)

64. {

65. playerElement.SetAttribute("WieldedWeapon",

66. player.WieldedWeapon.Description);

67. }

68. if (player.WornArmour != null)

69. {

70. playerElement.SetAttribute("WornArmour",

71. player.WornArmour.Description);

592 From Java to C#

72. }

73. if (player.WornRing != null)

74. {

75. playerElement.SetAttribute("WornRing",

76. player.WornRing.Description);

77. }

78. for (int i = 0; i < player.ItemList.Count; i++)

79. {

80. Item item = (Item)player.ItemList[i];

81. XmlElement itemElement = gameXML.CreateElement("ITEM");

82. itemElement.SetAttribute("Description",

item.Description);

83. if (item.GetType() == Type.GetType("Wand"))

84. {

85. itemElement.SetAttribute("Charges",

86. ((Wand)item).Charges.ToString());

87. }

88. playerElement.AppendChild(itemElement);

89. }

90. gameXML.DocumentElement.AppendChild(playerElement);

91. }

This method is a fairly straightforward construction of the document. On
line 4 we create the DOCTYPE line which connects the XML file with the
DTD file (which is assumed to be in the same directory).

The loop starting on line 11 saves the information on the rooms in the game.
The inner loop (line 16) retrieves the information on the items stored in each
room and attaches a node for each item to the corresponding room node.

If the room contains a monster, the code starting on line 29 inserts a
MONSTER element as a child of the room. Finally, each room element is
attached to the root element (line 37).

The player information is stored on lines 40 to 90 and again just consists
in extracting the required information from the objects in the Adventure
class and creating elements to insert into the XML document. The optional
attributes (lines 56 to 77) are only inserted if the corresponding properties
in the Player object are not null.

An example of a file created by this code is as follows:

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE ADVENTURE SYSTEM "Adventure.dtd">

<ADVENTURE>

<ROOM Description="laboratory" />

<ROOM Description="kitchen" />

<ROOM Description="entrance" />

<ROOM Description="guard room" />

<ROOM Description="dining room">

<ITEM Description="roast beef" />

XML 593

<MONSTER Energy="10" />

</ROOM>

<ROOM Description="jail" />

<ROOM Description="dungeon">

<MONSTER Energy="2" />

</ROOM>

<ROOM Description="storeroom">

<ITEM Description="an ice wand" Charges="2" />

<MONSTER Energy="8" />

</ROOM>

<ROOM Description="king’s bedroom">

<ITEM Description="a shield potion" />

<MONSTER Energy="7" />

</ROOM>

<ROOM Description="queen’s bedroom">

<ITEM Description="a jewelled dagger" />

</ROOM>

<ROOM Description="queen’s closet">

<MONSTER Energy="14" />

</ROOM>

<ROOM Description="turret">

<ITEM Description="a banana split" />

<MONSTER Energy="25" />

</ROOM>

<PLAYER CurrentLocation="dungeon" Energy="22" MaxEnergy="27"

BlockProb="20" HitProb="80" Damage="6" CarryWeight="39"

QuaffedPotion="an energy potion" PotionTime="2"

WieldedWeapon="a knife">

<ITEM Description="a carrot" />

<ITEM Description="some chicken" />

<ITEM Description="an invisibility ring" />

<ITEM Description="a power ring" />

<ITEM Description="an energy potion" />

<ITEM Description="a fire wand" Charges="4" />

</PLAYER>

</ADVENTURE>

12.11.3 � C# code for loading a saved game

The strategy for loading a saved game is first to start a new game and then
use the information read in from the XML file to update the information to
the state that was saved. This was the rationale behind saving only that
information that can change during the course of a game.

Selecting the ‘Load game’ menu item calls LoadGame():

594 From Java to C#

private void LoadGame()

{

OpenFileDialog openDialog = new OpenFileDialog();

openDialog.Filter = "Adventure games (*.adv)|*.adv";

openDialog.InitialDirectory = ".";

if (openDialog.ShowDialog() == DialogResult.OK)

{

gameXML = new XmlDocument();

XmlTextReader textReader = new

XmlTextReader(openDialog.FileName);

XmlValidatingReader reader =

new XmlValidatingReader(textReader);

reader.ValidationType = ValidationType.Auto;

try

{

gameXML.Load(reader);

textReader.Close();

RestoreGame();

}

catch (XmlSchemaException ex)

{

MessageBox.Show(ex.Message, "Error reading " +

openDialog.FileName,

MessageBoxButtons.OK, MessageBoxIcon.Error);

}

}

}

LoadGame() allows the user to select the file using a file selector dialog as
usual. We then supply the standard code for creating a validating parser and
then attempt to read the XML file. The Load() call is inside a try block
since we have no guarantee that the XML in the file is valid. (Hopefully if the
file was produced by the Adventure program it will be valid, but since XML
is just text, it could easily be edited by the user, so could contain errors.)

If the XML is loaded successfully, it is stored in gameXML as an XML doc-
ument. We then call RestoreGame() to transfer the information back into
the Adventure object:

1. private void RestoreGame()

2. {

3. adventure = new Adventure();

4. XmlElement adventureElement = gameXML.DocumentElement;

5. XmlNodeList roomList = adventureElement.SelectNodes

("ROOM");

6. foreach (XmlNode roomNode in roomList)

7. {

8. Room room =

XML 595

9. adventure.FindRoom(roomNode.Attributes[0].Value);

10. room.ItemList.Clear();

11. XmlNodeList itemList = roomNode.SelectNodes("ITEM");

12. foreach (XmlNode itemNode in itemList)

13. {

14. Item item = adventure.GetItem(

15. itemNode.Attributes["Description"].Value);

16. room.AddItem(item);

17. if (item.GetType() == Type.GetType("Wand") &&

18. itemNode.Attributes["Charges"] != null)

19. {

20. ((Wand)item).Charges =

21. int.Parse(itemNode.Attributes["Charges"].Value);

22. }

23. }

24. XmlNode monsterNode =

25. roomNode.SelectSingleNode("MONSTER");

26. if (monsterNode != null)

27. {

28. room.Monster.Energy =

29. int.Parse(monsterNode.Attributes["Energy"].Value);

30. }

31. else

32. {

33. room.Monster = null;

34. }

35. }

36.
37. XmlNode playerNode =

38. gameXML.DocumentElement.SelectSingleNode("PLAYER");

39. Player player = adventure.GamePlayer;

40. player.CurrentLocation = adventure.FindRoom(

41. playerNode.Attributes["CurrentLocation"].Value);

42. player.Energy =

43. int.Parse(playerNode.Attributes["Energy"].Value);

44. player.MaxEnergy =

45. int.Parse(playerNode.Attributes["MaxEnergy"].Value);

46. player.BlockProb =

47. int.Parse(playerNode.Attributes["BlockProb"].Value);

48. player.HitProb =

49. int.Parse(playerNode.Attributes["HitProb"].Value);

50. player.Damage =

51. int.Parse(playerNode.Attributes["Damage"].Value);

52. player.CarryWeight =

53. int.Parse(playerNode.Attributes["CarryWeight"].Value);

596 From Java to C#

54. if (playerNode.Attributes["QuaffedPotion"] != null)

55. {

56. Potion potion = (Potion)adventure.GetItem(

57. playerNode.Attributes["QuaffedPotion"].Value);

58. player.QuaffedPotion = potion;

59. }

60. if (playerNode.Attributes["PotionTime"] != null)

61. {

62. player.PotionTime =

63. int.Parse(playerNode.Attributes["PotionTime"].Value);

64. }

65. if (playerNode.Attributes["WieldedWeapon"] != null)

66. {

67. Weapon weapon = (Weapon)adventure.GetItem(

68. playerNode.Attributes["WieldedWeapon"].Value);

69. player.WieldedWeapon = weapon;

70. }

71. if (playerNode.Attributes["WornArmour"] != null)

72. {

73. Armour armour = (Armour)adventure.GetItem(

74. playerNode.Attributes["WornArmour"].Value);

75. player.WornArmour = armour;

76. }

77. if (playerNode.Attributes["WornRing"] != null)

78. {

79. Ring ring = (Ring)adventure.GetItem(

80. playerNode.Attributes["WornRing"].Value);

81. player.WornRing = ring;

82. }

83. player.ItemList.Clear();

84. XmlNodeList playerItemList = playerNode.SelectNodes

("ITEM");

85. foreach (XmlNode itemNode in playerItemList)

86. {

87. Item item = adventure.GetItem(

88. itemNode.Attributes["Description"].Value);

89. player.AddItem(item);

90. if (item.GetType() == Type.GetType("Wand") &&

91. itemNode.Attributes["Charges"] != null)

92. {

93. ((Wand)item).Charges =

94. int.Parse(itemNode.Attributes["Charges"].Value);

95. }

96. }

97. messageBox.Text = "";

98. EnableMoveButtons();

XML 597

99. EnableCommands();

100. Invalidate();

101. }

The process of restoring the data is a bit more involved than saving it,
since we need to extract the correct information from the XML document
and build it back into the various data structures in the Adventure object.

We begin by creating a new Adventure object (line 3) to restore the game
to the starting conditions. Then we start the DocumentElement (the root
node of the document – line 4) and extract an XmlNodeList containing all
the ROOM nodes that are children of the root node (line 5). For each of
these ROOM nodes, we need to update the item list and state of the monster
in the corresponding Room object in the Adventure class. Remember that we
stored the description of the room as the only ROOM attribute in the XML
file, so we can use this value and the FindRoom() method (considered in
Chapter 11) in Adventure to locate a Room object from its description string
(line 8). We now have the actual Room object corresponding to the ROOM
node in the XML document, so we can start updating the information in it.

We begin the updating process by clearing the item list in the room (line
10). This is necessary since some rooms have items placed in them when a
new Adventure is created, and these items could have been picked up and
removed by the player.

For a given room, we select all the children of that room that are ITEM
nodes (line 11) and then loop through each item in the list to build the item
and add it to the room.

The process for doing this is much the same as that used for adding items
to rooms when a new game is created. We call the GetItem() method in
Adventure (line 14) to build an item from its description. The version of
GetItem() that was used in Chapter 11 took a DataRow as a parameter –
here we have just added an overloaded version of GetItem() that looks up
the correct DataRow in the DataSet Item table and then calls the original
version of GetItem() to build the item.

When the item has been built, it is added to the room (line 16). Since wands
are a special case in that the number of charges on the wand could have
changed since the wand was created, we check this case on lines 17 to 22.

Note that when we attempt to use a Value stored in an attribute, the
Value is always stored as a string in the XmlNode’s attribute. If we want to
use it as a numerical value (as with the charges on a wand), we must con-
vert it in the appropriate way. Here, we use the int.Parse() method to con-
vert the string to an int. Other numerical data types all have their own
Parse() methods.

Next, we see if the room contains a monster (line 24) by searching for any
children of the current room node with a MONSTER tag. If one is found, it
means that the room had a monster in it when the game was saved, so we
just set the monster’s current energy to the saved value (line 28). Note that
we do not have to create the monster since this was done when the new

598 From Java to C#

Adventure object was created on line 3 and, since monsters never leave the
room in which they were created, all the constant stats for the monster will
already have been initialized. This simple system obviously would not work
in a more complex game in which more than one monster was allowed in a
room, or where monsters could move between rooms.

If there is no MONSTER node for the current room, we must set the room’s
Monster property to null (line 33) since this could mean that the room was
created with a monster in it, but that it was killed before the game was saved.

The rest of the method restores the player’s properties using much the
same techniques as those used for restoring the rooms.

The end of the method (lines 97 to 100) updates the display to enable the
move buttons and controls and refresh the map and statistics areas to show
the state of the game as it was when it was saved.

We could, of course, have devised our own method of saving and loading
games, but using XML has the advantage that it is a recognized format and
.NET provides a number of powerful tools for manipulation of the results.

Another advantage is that, besides reading in the XML file to restore a game,
we can also transform it using XSLT to produce a display (on a web page, for
example) of the current state of a game in a different format if desired.

■ Summary

This chapter has introduced XML and described a few of its uses for storing
and transmitting data. We then saw how C# can be used to read and process
the information in an XML file, using either a serial parsing process or by
storing the entire XML file in a tree structure within the program.

We then explored the DTD which can be used to validate the structure of
an XML document, and then considered the use of XPath for searching an
XML document for specific types of data. Methods of generating and editing
XML were considered.

An introduction to XSLT showed some of the methods in C# for trans-
forming XML into other forms, most notably HTML for display on web pages.

C# uses XML to produce documentation on the classes, fields and meth-
ods in source code, and an introduction to the production of this documen-
tation was given.

Finally, we extended the adventure game case study by using XML to save
and load a game in progress.

XML 599

600 From Java to C#

Exercises

12.1 Suppose you are in charge of a bookshop and wish to store customer records
in an XML document. The data which should be stored consists of some data
on each customer: the customer’s name (compulsory), address (compulsory),
phone numbers (optional, and more than one phone number is allowed – e.g.
home, business, mobile, etc).

The name and each phone number should just be single strings, but the address
should consist of a street name and number, town or city, country and post
code or zip code.

Invent appropriate XML elements and attributes to store this information, using
your judgement as to whether a data field is to be a separate element or an
attribute within an existing element. Don’t worry about validation at this stage.

Write out a sample XML document containing at least three customer records
using a text editor.

12.2 Use an XmlTextReader to type out (to the console) just the names of the cus-
tomers in your customer list from Exercise 12.1.

12.3 Write a complete Windows Forms application that displays the data in the cus-
tomer XML list in the following way. First, create an Address class and a
Customer class. Use an XmlTextReader to read all the information in the
XML document and create a list or array of Customers, each of which contains
an Address data field, a string field for the customer’s name and a list or
array of strings for storing the phone numbers.

Display the information using an appropriate control, such as a DataGrid or
ListBox. The data should be read-only, so you do not need to include any
facilities for editing or writing any XML.

12.4 Read the documentation on the DataSet class that was used for storing an
internal copy of a database in Chapter 11. Find out how to build a DataSet
from data stored in data structures within the program, such as the array of
Customers that you created in Exercise 12.3. Note that this will require creat-
ing DataTables which may be used to build the DataSet. In effect, what you
are doing is creating an in-code database for storing the data contained in the
original XML document.

12.5 Write a DTD for the Customer XML file, using the requirements in Exercise12.1.
Modify the reader program from Exercise12.2 so that it validates the XML as it
parses it. If your original XML document that you prepared in Exercise12.1 is
valid, introduce some intentional errors into it to see what messages you get
from the validating parser.

12.6 Investigate the XML Schema method of validating XML documents. A couple of
good starting points are the XML Schema primer on the W3C web site
(http://www.w3c.org/TR/xmlschema-0/) and the articles on XML Schema in the
MSDN documentation. Numerous books on XML will also contain tutorials on
XML Schema.

XML 601

Use XML Schema to provide an alternative validation procedure for the
Customer XML document.

12.7 Use an XmlDocument to read in the Customer XML document you created in
Exercise12.1, and print out a list of customers’ names in a console application.

12.8 Use an XmlDocument in conjunction with an XPath search statement to list all
customers with an address in a particular city (modify your XML file so that not
all customers have addresses in the city for which you are searching, just to test
your program).

12.9 Write a Windows Forms application similar to the ‘Edit book’ program in the
text that provides a GUI showing a list of customers’ names in a ListBox.
Selecting a customer should display their details in a number of TextBoxes and
allow the user to edit the details or delete the customer from the list. It should
also be possible to add a new customer to the list. The changes should be saved
to disk as a modified XML file.

12.10 Using XSLT and XslTransform, write an XSLT template that transforms
the Customer XML document into plain text, with each customer’s details for-
matted neatly so that it is easily readable by a human. Write the result to the
console.

12.11 If you know some basic HTML, write another XSLT template that converts the
Customer XML file to a neatly formatted web page. Depending on your depth
of HTML knowledge, you may wish to experiment with defining different fonts
for different parts of each customer’s details, make use of background and fore-
ground colours and so on.

12.12 Add XML documentation to some or all of the programs you have written as
exercises from this book. Generate a documentation web page for each pro-
gram you document in this way.

Web pages and the Internet

13.1 ■ Generating web pages

.NET provides comprehensive support for the creation of interactive web
pages, and C# plays a central role behind the scenes in processing a user’s
interaction with web pages. The main technology used by .NET for manag-
ing web pages is ASP .NET (ASP stands for Active Server Pages). If you have
done any programming with earlier versions of ASP, you will find that ASP
.NET provides a lot more power and flexibility than its earlier incarnations.

ASP .NET is roughly analogous to Java Server Pages (JSP) in the Java
world, but we are not assuming the reader to have progressed this far in
their study of Java, so we will not compare the two systems here.

It is possible to write web pages using ASP .NET on its own, but this is a
topic for a separate book. Since this book is primarily about C#, we don’t
want to dwell too much on the intricacies of ASP .NET itself. Rather we will
concentrate on showing how C# may be used to drive a web page where the
controls and layout of the page are determined by a skeleton ASP .NET file.
We will find that if we use C# to provide most of the processing of a web
page, we do not need to know that much about ASP .NET beyond the syn-
tax for defining a few web controls that we wish to appear on the web page.

First, we will provide a brief overview of how a web server works, and how
ASP .NET fits into this picture. We should note at this stage that in order to
get any of the examples in this chapter to work on your own computer, you
will need Microsoft’s IIS web server, version 5 or later, to be installed. You
do not need an active Internet connection, since all the web pages can be
tested by using the ‘localhost’ address.

The Internet is basically a collection of clients requesting resources from
servers. When we click on a link in a web browser such as Internet Explorer,
the browser reads the address of the computer to which the link should lead.
This address is usually in some textual form such as ‘http://alife.mic.dundee.
ac.uk/default.asp’ (which is the URL, or Uniform Resource Locator, of my
home page). If we have a connection to the Internet, the Internet service
provider (ISP) will have access to a domain name server (DNS) which trans-
lates textual Internet addresses into a numerical IP (for Internet Protocol)
address with four components, such as 134.36.34.124 (which happens to be
the IP address of my office computer’s web site). Routers around the world will
relay the client’s request through various networks until the request reaches
its destination, which is the web server that plays host to the web site.

When the request reaches the web server, that part of the URL that
describes the actual file or service that is requested (the file ‘default.asp’ in
this case) will be read and, if the file can be found, it will be processed by
the server and the result sent back to the client, which will then display it
in the web browser.

13

We mentioned that the server needs to process the outgoing file before it
is sent off to the client. If the file is straightforward HTML containing only
text or images, little or no processing is usually required and the file is just
sent off directly. However, if the file contains ASP .NET code, that code must
be run by the server to produce the actual text that is sent to the client. It
is this code that is the subject of this chapter.

13.2 ■ ASP .NET and C#

Before we present any code, a word is needed about how ASP .NET projects
can be developed. Visual Studio .NET provides a comprehensive environ-
ment in which web applications can be created, so if you have it installed,
you may wish to use it to follow along with the examples in this chapter. To
create a new project in this way, select File → New → Project, then select
‘Visual C# Projects’ as the project type, and ‘ASP .NET Web Application’ as
the template. Enter a name in the ‘Location’ box and then click OK. This
should appear in the ‘New Project’ dialog as http://localhost followed by the
project name. The actual files that are created should appear in the direc-
tory used by your web server to store its web pages. This directory is usual-
ly C:\Inetpub\wwwroot, but will depend on your configuration of IIS, since
it is possible to change the directory where it stores its web sites.

Visual Studio .NET will then create a number of files (most of which you
don’t actually need for simple web pages). It will allow you to test your web
site by running the project in the same way you would when developing an
ordinary C# application, except that it will use Internet Explorer to display
the web pages.

In this book, however, we would like to provide examples that can be
developed without using Visual Studio .NET, so we will not use its develop-
ment environment here. Besides allowing users who do not have Visual
Studio .NET installed to run the examples, this also has the advantage of
producing much less code.

Let us now turn to a simple example to see how ASP .NET and C# can
work together to generate a web page and provide event handlers for con-
trols on that page. We will present the example as two files: one containing
ASP .NET code and the other containing C# code. ASP .NET code files
should have the extension .aspx, since these files are the ones that are used
as part of the URL when a browser is sending its request to the server. Using
a consistent file extension allows the server to identify the incoming request
as one that requires ASP .NET support.

We will write a simple ASP .NET page that displays a button and a label.
When the button is pressed, the label should display the current date and
time. We store the ASP .NET code in a file called TestASP.aspx:

604 From Java to C#

1. <%@ Page Language="c#" AutoEventWireup="false"

2. Src="TestASP.aspx.cs" Inherits="TestASP"%>

3. <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0

Transitional//EN">

4. <HTML>

5. <HEAD>

6. <title>TestASP with C# Code-Behind Test</title>

7. </HEAD>

8. <body>

9. <form id="Form1" method="post" runat="server">

10. <asp:Button id="Button1" runat="server"

11. Text="Press"></asp:Button>

12. <hr>

13. <asp:Label id="Label1" runat="server">Label

</asp:Label>

14. </form>

15. </body>

16. </HTML>

If you’re not overly familiar with HTML, don’t worry too much since we
won’t be using a lot of complex HTML in this chapter, and you should be able
to work out what most of the examples are doing once you understand a few
of the basics. If you have read the start of Chapter 12 on XML this should
also be helpful since the structure of an HTML file is much the same as XML.

ASP .NET files should always begin with a line similar to the one shown on
lines 1 and 2. The <%@ Page … %> directive is ASP code (ASP commands are
contained within the <% … %> delimiters), and is about the only ASP code we
will see in this book. The components of this directive are as follows.

First, we specify the language (C#) that will be used to provide the back-
ground processing for events generated when the user interacts with the
web page. Any language supported by .NET may be used here, but at pres-
ent probably the two most popular choices would be Language="vb" (for
Visual Basic .NET) and Language="c#".

The AutoEventWireup="false" directive means that we will be provid-
ing our own event handlers for loading the page.

The last two directives provide the link between this ASP .NET file and the
background C# code. This ASP .NET file was produced without using Visual
Studio .NET’s wizards, so the form of the file is slightly different from what
you will get if you create an ‘ASP .NET Web Application’ using the wizard. On
line 2, we specify the file TestASP.aspx.cs as the source (Src) file for the
C# code that is the ‘code behind’ the ASP .NET page. In Visual Studio .NET,
the word Src would be replaced by Codebehind. In fact, Codebehind means
nothing to a web server and will be ignored if found in an ASP .NET file on
its own. The Src keyword is recognized by the ASP .NET parser, however,
and tells ASP .NET where to find the C# file that contains the support code.
(Incidentally, if you are using Visual Studio .NET’s wizard to produce the

Web pages and the Internet 605

application, it can be a bit tricky trying to get the editor to display the C#
source code corresponding to an ASP .NET file – this can be done most eas-
ily by right-clicking on the ASP .NET file’s entry in Solution Explorer (use
View → Solution Explorer if it’s not visible) and then selecting ‘View Code’.)

The last directive on line 2 says that this page ‘inherits’ something called
TestASP. In fact what is happening here is that the ASP .NET page inherits the
C# class named TestASP that is to be defined in the file TestASP.aspx.cs.
We’ll now examine this C# file to see how this works. (We’ll come back to what
the rest of the code in the ASP .NET file does later.)

The C# code file contains the following class definition:

using System;

using System.Web.UI;

using System.Web.UI.WebControls;

public class TestASP : Page

{

protected Button Button1;

protected Label Label1;

protected override void OnInit(EventArgs args)

{

Button1.Click += new EventHandler(OnButton1Click);

}

protected void OnButton1Click(object sender, EventArgs

args)

{

Label1.Text = "Time: " + System.DateTime.Now;

}

}

The TestASP class inherits Page, which is found in the System.Web.UI
namespace, and is the base class for a web page (in a similar way that Form
is the base class for a window in a Windows Forms application).

We define two controls: a Button and a Label. We will see later in this
chapter that controls that appear on web pages are not the same as the con-
trols that are used on Windows Forms. This Button and Label are from the
System.Web.UI.WebControls namespace, and are different classes entirely
from Button and Label in System.Windows.Forms, although they are used
in much the same way.

TestASP provides an override of the OnInit() method, which is called
when the page is initialized. In this case we add an event handler to the but-
ton. The event handler is OnButton1Click() and simply sets the label’s text
to display the current time.

If these two files are placed together within a directory called TestASP
that is in the web server’s web site area, then the result can be tested by

606 From Java to C#

opening a web browser and typing the URL http://localhost/TestASP/
TestASP.aspx into the address box. The initial display should look some-
thing like that shown in Figure 13.1.

Pressing the button should change the display to show the current time
(Figure 13.2).

13.2.1 � How it works

The process may look a bit magical, since if we look at the C# class, there
seems to be a fair bit missing. In particular, there is no constructor and no code
that actually initializes the controls, so we might expect a ‘null reference’ error
when we try to run the program, but in fact everything seems to work.

The key is in the Inherits="TestASP" directive that appeared back on
line 2 of the ASP .NET file. This tells the ASP .NET processor that the page
that is defined in the ASP file should inherit the C# class TestASP. To see
how this works, we need to examine the ASP code a bit more closely.

Web pages and the Internet 607

Figure 13.1 A simple ASP .NET page containing a button and a label

Figure 13.2 Pressing the button causes the current date and time to be displayed

Line 3 in TestASP.aspx above is a standard line that states that the doc-
ument type (DOCTYPE) is HTML, and sets the DTD for the version of HTML
that is being used (see the discussion of DTDs in Chapter 12).

The remainder of the file uses XML syntax to define the HTML file. HTML
files have a HEAD section which contains information that is not displayed
in the main area of the browser. In this case we set the title that appears in
the browser’s title bar.

The main section of the document is delimited by <body> tags, and con-
tains an HTML form. (Note that this is not the same as a Windows Form!)
The attributes of this form include runat="server", which tells the web
server that all processing of the form should take place at the server, not the
client. This attribute should usually be attached to all ASP .NET controls,
since otherwise, any events generated by them will remain on the client and
not get handled by the server.

Inside the form we define two ASP web controls, which can be identified
by the asp: namespace identifiers in their tags. The type of control must be
one of the controls defined in the System.Web.UI.WebControls namespace
we mentioned above when discussing the C# code. In order to provide a link
with the C# class, we must ensure that the id of each control matches the
object name that is defined for that control in the C# class. For example, we
have called the Button Button1 so the C# Button object must also be called
Button1. The link between the C# base class and the ASP code is provided
by the inheritance relation defined on line 2.

When this ASP .NET page is requested from the server, the server will first
compile the ‘code-behind’ C# file TestASP.aspx.cs (which it finds by using
the Src link on line 2 of the ASP code) and use the TestASP class found in
that file as the base class for a ‘class’ that is implicitly defined within the ASP
file. Any web controls declared in the base C# class must appear in the ASP
page, although the ASP page can add extra controls that are not defined in
the C# base class.

The reason that we do not need to instantiate the web controls in the C#
class is that the controls themselves are created implicitly when the ASP
page is created by the server for onward transmission to the client.

The key point in all of this is that by using a C# class as the code behind
an ASP .NET page, we can use C# rather than a less powerful scripting lan-
guage to produce all the code that is run whenever the user interacts with a
web page.

So what actually gets sent to the client from the server after the ASP has
been processed? This is easily discovered by using ‘View Source’ on the
browser after the page has loaded. The initial display (when the label just
shows the text ‘Label’) is produced by the HTML code:

<!DOCTYPE HTML PUBLIC

"-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<title>TestASP with C# Code-Behind Test</title>

608 From Java to C#

</HEAD>
<body>

<form name="Form1" method="post" action="TestASP.aspx"
id="Form1">
<input type="hidden" name="__VIEWSTATE"

value="dDwtNjI3MTU0NjQyOzs+rSHg/p0cW4yG
pT9Sc7NOeiEVsGc=" />

<input type="submit" name="Button1" value="Get time"
id="Button1" />

<hr>
Label

</form>
</body>

</HTML>

The structure of this file looks similar to the HTML section of the original
ASP file, except that the ‘Get time’ button is now shown as an input element
and the label is a span element, both of which are standard HTML constructs.

The most curious addition, however, is a new input element with a name
of __VIEWSTATE and a value that looks like some sort of secret code. This
element is the key to how ASP .NET stores the state of a web page between
submissions of the form.

ASP .NET pages are known as stateless pages because no information is
stored on the server between client requests. We will see later, however, that
the page does ‘remember’ user settings (such as text typed into text boxes,
selections made from combo boxes and so on) from one request to the next.
The way this is done is by encoding the content of a page into a hidden
input element called __VIEWSTATE. When the page is resubmitted to the
server, the information on the state of the page is also sent back in this ele-
ment’s coded value. The server can extract the current state of the various
controls from this value and use this information to set each control prop-
erly before the response is sent back to the client.

For this reason, we can expect the content of __VIEWSTATE’s value to
change after each form submission, which is easily checked by examining
the source code each time we press the ‘Get time’ button. After pressing it
once, for example, the code sent to the browser becomes:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>

<HEAD>
<title>TestASP with C# Code-Behind Test</title>

</HEAD>
<body>

<form name="Form1" method="post" action="TestASP.aspx"
id="Form1">

<input type="hidden" name="__VIEWSTATE"
value="dDwtNjI3MTU0NjQyO3Q8O2w8aTwxPjs+O2w8dD
w7bDxpPDM+Oz47bDx0PHA8cDxsPFRleHQ7PjtsPFRpbWU

Web pages and the Internet 609

6IDMvNy8yMDAzIDExOjI3OjQ5Oz4+Oz47Oz47Pj47Pj47
PkmX9PaCjIBB/H02VTrv7tuo07t5" />
<input type="submit" name="Button1" value="Get time"

id="Button1" />
<hr>
Time: 3/7/2003 10:32:11

</form>
</body>

</HTML>

Besides the different (and longer) value of __VIEWSTATE, we also notice
that the label’s text is shown as the current date and time, since the server
constructs this string at its end and sends it back to the client.

13.3 ■ Web controls

The simple example in the previous section illustrates most of what we need
to know about using C# as the power behind an ASP .NET web page. ASP .NET,
of course, has a great deal of functionality that does not require the use of C#,
but that is a topic for a different book and we will not delve into that here.

For web pages that contain basic GUI controls such as text boxes, buttons,
list boxes and so on, there is little more that needs to be said, since the .NET
Web Control library essentially mirrors the Windows Forms library. This
means that most of what can be done with Windows Forms in a stand-alone
application can also be done with ASP .NET, and in much the same way.

13.4 ■ Web controls and databases

Most substantial web installations now rely on databases to store and man-
age the information that is supplied to visitors to their sites. On-line shops
maintain databases of their stock and customer orders, libraries keep
records of the book collections and borrowers’ records in databases, gov-
ernment organizations store everything from weather data to census infor-
mation in databases and so on.

We have seen in earlier chapters how databases may be linked to Windows
applications written in C#, and it should come as no surprise that all of these
techniques can be used in programs in which C# provides the code behind
an ASP .NET web page.

The methods for accessing the database in such cases are identical to
those we have considered in Chapter 11, so we can proceed to use them
directly here. As with Windows Forms, .NET’s web control library provides
a DataGrid in which results of a database query can be displayed. The dis-
play methods in the web version of DataGrid are a bit different from those
used in Windows Forms, however, so it is worth running through a couple of
examples to see how they are used.

610 From Java to C#

13.5 ■ Case study: an on-line scores list for the
adventure game

As a simple example of displaying the results of a database query using a
DataGrid on a web page, we will provide a ‘top scores’ page for the adven-
ture game that we have been using as a case study throughout the book.

The last version of the adventure (in Chapter 12, where we added game
saving and loading using XML) did not have any way of providing a score for
the player, so we first need to add that. We’ll use a simple scoring method
whereby the player gets 1 point for each energy point removed from a mon-
ster during combat. For example, if the player fights the zombie in the dun-
geon and removes 5 energy points and then goes into the dining room and
fights the demon, removing 6 energy points from it, the player gets a total of
11 points (even if neither monster was killed). The code for calculating the
score is straightforward and won’t be shown here – the Chapter 13 version
of the adventure game code contains the details and is available on the
book’s web site. The important thing is that the scores are saved to a data-
base, so we can retrieve the data and display it on a web page.

To save the scores, we add a new table to the Adventure.mdb Access data-
base. The table is called Scores and contains three columns: Name, Date and
Score. Name is the player’s game name (such as ‘Wibble the Wizard’ – we
have also added an option for changing the player’s name during game play
if desired), Date is the date and time when the score was added to the data-
base and Score is the numerical score. The Adventure application will auto-
matically save the score whenever the player gets killed, starts a new game
or quits the program. Again, the code for doing all this is straightforward,
involving constructing an SQL INSERT statement and calling Execute
NonQuery() to insert the data into the database.

What we would like to do here is to build a separate application (that is,
not part of the Adventure project) that builds a web page displaying the
scores in the database, listed in descending order. We’ll do this in two stages.
First, we’ll just use an unadorned DataGrid to display the data, since this
illustrates the basic technique, although it produces an ugly (but readable)
web page.

Second, we will show some of the ways in which the display can be beautified
by using templates for formatting the output data.

Web pages and the Internet 611

13.5.1 � The DataGrid web control

The result of the first attempt at producing a scores list looks like that shown
in Figure 13.3.

As you can see, the data is displayed clearly enough, although the format
wouldn’t win any beauty contests. The code for producing this consists of
the usual .aspx file with a C# class providing the power behind the scenes.
The .aspx file contains the following code:

<%@ Page Language="c#" AutoEventWireup="false"

Src="TopAdventure.aspx.cs" Inherits="TopAdventure"%>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML>

<HEAD>

<title>Scores in Adventure</title>

</HEAD>

<body>

<h2>Top scores in Adventure</h2>

<form id="Form1" method="post" runat="server">

<asp:DataGrid Runat="server" ID="adventureScores" />

</form>

</body>

</HTML>

Apart from the page’s title, the entire output is produced by the DataGrid
control called adventureScores. As the header line states, the ASP .NET
file inherits a C# class called TopAdventure, which is contained in the C#
code file:

using System;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Data;

using System.Data.OleDb;

612 From Java to C#

Figure 13.3 Displaying data in a DataGrid web control

public class TopAdventure : Page
{

protected DataGrid adventureScores;
protected DataSet dataSet;
protected OleDbDataAdapter command;

protected override void OnInit(EventArgs args)
{

string source = "Provider=Microsoft.Jet.OLEDB.4.0;" +
@"Data Source=C:\Books\MyBooks\CSharpBook\Programs\
Chap13\Adventure\Adventure.mdb";

OleDbConnection oleConn = new OleDbConnection(source);
dataSet = new DataSet();
try
{

oleConn.Open();
string sql = "SELECT * FROM Scores ORDER BY Score

DESC";
command = new OleDbDataAdapter(sql, oleConn);
command.Fill(dataSet, "Scores");
adventureScores.DataSource = dataSet.Tables["Scores"];
adventureScores.DataBind();

}
catch (Exception ex)
{

Console.WriteLine(ex.ToString());
}
finally
{

oleConn.Close();
}

}
}

The code should look familiar if you have read Chapter 11 on databases,
since most of the steps involved in retrieving the information are identical
to methods we introduced there. We open the database, construct an SQL
command to retrieve the data from the Scores table (the ‘ORDER BY Score
DESC’ clause sorts the data into descending order using the Score as the
sort field), and then fill a DataSet with the result of the query.

The next two lines are new, however. The easiest way to load the data into
a DataGrid is to set its DataSource to a table from the DataSet. Just set-
ting the DataSource property only provides the link between the DataGrid
and DataSet, however – in order to actually get the DataGrid to display the
data, we must call DataBind().

This example shows how little code is actually needed to link a database
to a web page, but the display leaves a lot to be desired. We’ll now examine
a few methods that can improve this situation.

Web pages and the Internet 613

13.5.2 � Customizing a DataGrid

The DataGrid can be customized in a large number of ways to produce a
prettier display. We will give an example here that uses the same data as in
the previous section, but the reader is encouraged to browse the documen-
tation to see what else is available.

To get an idea of what we are aiming for in the code, Figure 13.4 shows
the new display as seen in a web browser.

To achieve these effects, we have customized the DataGrid by changing
the code both in the .aspx file and in the background C# class. Many of the
custom properties can be set in either location, but we have tried to empha-
size the C# code here.

We’ll begin by having a look at the new .aspx file:

1. <%@ Page Language="c#" AutoEventWireup="false"

2. Src="TopAdventure.aspx.cs" Inherits="TopAdventure"%>

3. <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0

Transitional//EN">

4. <HTML>

5. <HEAD>

6. <title>Scores in Adventure</title>

7. </HEAD>

8. <body>

9. <form id="Form1" method="post" runat="server">

10. <center>

11. <asp:Label Runat="server" ID="headerLabel"/>

12. </center>

13. <asp:DataGrid

14. AutoGenerateColumns="false"

15. Runat="server" ID="adventureScores">

614 From Java to C#

Figure 13.4 Displaying data in a customized DataGrid web control

16. <Columns>

17.
18. <asp:BoundColumn

19. HeaderText="Name"

20. DataField="Name"

21. />

22.
23. <asp:BoundColumn

24. HeaderText="Score"

25. DataField="Score"

26. />

27.
28. <asp:BoundColumn

29. HeaderText="Date obtained"

30. DataField="Date"

31. DataFormatString="{0:dd MMM yyyy (h:mm tt)}"

32. />

33.
34. </Columns>

35.
36. </asp:DataGrid>

37. </form>

38. </body>

39. </HTML>

A Label has been added (line 11) to display the title on the page – its
text is defined in the C# code as we’ll see later.

The DataGrid itself is defined on lines 13 to 36. Glancing back at the
picture above, it can be seen that we have customized each column in the
grid by aligning the text differently in each case. The Name column uses
left-aligned text, the Score column is right-aligned, and the Date column is
centred. The default DataGrid applies the same alignment to all cells in
the table, so we need to build up the DataGrid by hand if we want access
to the individual columns within it.

This is indicated by line 14, where we set AutoGenerateColumns to
false. By default, this property is true, which means that the DataGrid gen-
erates its columns by reading them from the data source to which it is
bound. This restricts the display so that it can only show all the columns in
the data source, and the order in which the columns are displayed must be
the same as their order in the data source.

The DataGrid’s columns are defined within a <Columns> section (lines 16 to
34). There are several types of columns that can be inserted into a DataGrid –
the complete list is shown in the documentation for DataGrid. The
BoundColumn that we use here binds that column to a field in a data source,
which for our purposes will be a column from the Scores table in the database.
Other column types allow each entry in the DataGrid to appear as a button or
as a hyperlink to a URL. It is also possible to make the cells in a column editable.

Web pages and the Internet 615

Each column type has a number of attributes that can be defined in the
.aspx file or in the C# code. Here, we have specified the HeaderText (the text
that appears at the top of the column) and the DataField (which is the name
of the column in the data source to which the DataGrid column is to be
bound). For the last column (displaying the date), we have added a
DataFormatString which uses standard string formatting code to indicate
how the date should be displayed. Complete information on formatting dates
and times can be found in the documentation for DateTimeFormatInfo.

We could set up all the other properties of the various controls in the
.aspx file, but it is more flexible to use the C# class that drives the web
page. Its code is as follows:

1. using System;
2. using System.Web.UI;
3. using System.Web.UI.WebControls;
4. using System.Data;
5. using System.Data.OleDb;
6. using System.Drawing;
7.
8. public class TopAdventure : Page
9. {

10. protected DataGrid adventureScores;
11. protected DataSet dataSet;
12. protected OleDbDataAdapter command;
13. protected Label headerLabel;
14.
15. protected override void OnInit(EventArgs args)
16. {
17. headerLabel.Text = "Adventure game top scores";
18. headerLabel.Height = 40;
19. headerLabel.ForeColor = Color.Red;
20. headerLabel.Font.Name = "Arial";
21. headerLabel.Font.Size = 20;
22. headerLabel.Font.Bold = true;
23.
24. string source = "Provider=Microsoft.Jet.OLEDB.4.0;" +
25. @"Data Source=C:\Books\MyBooks\CSharpBook

\Programs\Chap13"
26. + @"Adventure\Adventure.mdb";
27. OleDbConnection oleConn = new OleDbConnection(source);
28. dataSet = new DataSet();
29. try
30. {
31. oleConn.Open();
32. string sql = "SELECT * FROM Scores ORDER BY

Score DESC";
33. command = new OleDbDataAdapter(sql, oleConn);
34. command.Fill(dataSet, "Scores");

616 From Java to C#

35.
36. adventureScores.DataSource = dataSet.Tables["Scores"];
37. adventureScores.DataBind();
38.
39. adventureScores.HorizontalAlign =

HorizontalAlign.Center;
40. adventureScores.BackColor = Color.Black;
41. adventureScores.BorderColor = Color.Black;
42. adventureScores.BorderWidth = 5;
43. adventureScores.CellPadding = 5;
44. adventureScores.CellSpacing = 2;
45. adventureScores.Font.Name = "Arial";
46.
47. TableItemStyle adventureStyle = adventureScores.

ItemStyle;
48. adventureStyle = adventureScores.ItemStyle;
49. adventureStyle.BackColor = Color.LightYellow;
50. adventureStyle = adventureScores.AlternatingItemStyle;
51. adventureStyle.BackColor = Color.MistyRose;
52.
53. TableItemStyle headerStyle = adventureScores.

HeaderStyle;
54. headerStyle.HorizontalAlign = HorizontalAlign.Center;
55. headerStyle.BackColor = Color.Red;
56. headerStyle.ForeColor = Color.White;
57. headerStyle.Font.Bold = true;
58. headerStyle.Font.Name = "Arial";
59.
60. DataGridColumnCollection cols = adventureScores.

Columns;
61. TableItemStyle itemStyle = cols[0].ItemStyle;
62. itemStyle.HorizontalAlign = HorizontalAlign.Left;
63. itemStyle = cols[1].ItemStyle;
64. itemStyle.HorizontalAlign = HorizontalAlign.Right;
65. itemStyle = cols[2].ItemStyle;
66. itemStyle.HorizontalAlign = HorizontalAlign.Center;
67. }
68. catch (Exception ex)
69. {
70. Console.WriteLine(ex.ToString());
71. }
72. finally
73. {
74. oleConn.Close();
75. }
76. }
77. }

Web pages and the Internet 617

The text and properties of the page’s title are defined on lines 17 to 22.
Some properties of web controls are multi-layered, in the sense that we need
to access an intermediate property to get at the specific property we want.
One such property is the Font, which is actually represented by a FontInfo
object (and not the Font object used in Windows Forms). Lines 20 to 22
illustrate accessing and defining several properties of the font for the page
title. We could also have said:

FontInfo headerFont = headerLabel.Font;

headerFont.Name = "Arial";

headerFont.Size = 20;

headerFont.Bold = true;

The Font itself is read-only, so we can’t prepare a FontInfo object in
advance and then assign it to a web control’s Font property.

Starting on line 24, we load the data into a DataSet as usual, and then
(lines 36 and 37) bind the DataGrid to the DataSet’s Scores table. Calling
DataBind() here causes the columns defined in the .aspx file to bind to the
corresponding columns in the DataSet – we don’t need to write a separate
DataBind() call for each column.

If we stopped at this point, we would get a view similar to that shown in
the last section, except that the columns would be in a different order (since
we deliberately switched the Score and Date columns from their order in the
DataSet just to show how it can be done). To provide the formatting of
the table, we need to apply the formatting styles to the various bits of the
DataGrid control.

First (lines 39 to 45) we define some properties that apply to the DataGrid
as a whole. HorizontalAlign defines the alignment of the DataGrid relative
to the web page, not the alignment of the text within each cell. On line 39, we
set the control so that it should appear centred horizontally on the page.

The other properties should be fairly obvious, but it should be remem-
bered that this example only uses a few of the many properties available.
Have a look at the list of properties in the DataGrid documentation to see
what’s possible, and try things out for yourself.

Lines 47 to 51 illustrate the use of styles within a DataGrid. There are
seven style properties that can be defined for various parts of the grid, each
of which is represented by a TableItemStyle. In this example, we have
defined an ItemStyle and an AlternatingItemStyle. The ItemStyle
defines the parameters used to display the ordinary (that is, in the main
body of the grid, excluding the header and footer, if any) cells in the grid. A
TableItemStyle contains a number of properties that can be set to define
the appearance of a given cell in the table. Here, we’ve just set the
BackColor to LightYellow, but many more properties could be defined.

The AlternatingItemStyle defines properties for every second row in
the table. This produces a banding effect which makes the rows in a large
table easier to read, as can be seen in the picture above. Lines 53 to 58
define the properties for the header row in a similar way.

618 From Java to C#

The styles considered so far all apply to rows within the table. It is also
possible to define styles for individual columns. On lines 60 to 66, we set the
horizontal alignment of the text in each column. To access individual
columns, we need to use the Columns property of the DataGrid, which is a
DataGridColumnCollection (line 60). Each column within this collection
can be accessed using array notation, but in this case the array index must
be an integer – it is not possible to use notation such as cols["Name"] to
access the Name column. It is therefore important to remember the order
in which the columns were defined. We can always refer back to the .aspx
file to do this.

Each column has its own style properties, so we can access these and
modify them to customize the appearance of the overall grid.

13.6 ■ Graphics on web pages

One of Java’s main selling points originally was its provision of applets,
which are Java programs that could be embedded within a web page. A Java
applet allows much of the functionality of a stand-alone Java application,
except that it is not allowed to access the hard disk of the client machine
(for fairly obvious security reasons). In particular, a Java applet allows vec-
tor graphics and raster images to be displayed in exactly the same way as in
a stand-alone application.

.NET does not have an equivalent to the Java applet, and as a result, the
production of vector graphics is not as straightforward in an ASP .NET web
page as it is in a stand-alone C# application (see Chapter 10 on graphics).
However, by means of a little trick, it is actually fairly easy to embed graph-
ics within an ASP .NET page.

The ASP .NET web controls library contains a control called Image which
allows a static raster image (such as that loaded from a JPEG file) to be dis-
played as a control within an ASP .NET container. Note that the Image web
control is quite different from the Image control in Windows Forms, since it
does not allow the creation of a Graphics object and therefore does not
allow any vector graphics to be drawn directly onto it.

The trick is to create an Image web control and direct it to load a JPEG
disk file that has been created using a Windows Forms Image which, as we
saw in Chapter 10, does allow drawing. We can create a Graphics object for
the Windows Forms Image, create the graphics we need and save this image
back to disk on the server as a JPEG file. Finally, we can make the web con-
trols image, which is the one that is visible on the web page, load its data
from the JPEG file created from the Windows Forms Image.

We present a simple example that shows how this can be done. First, the
.aspx file, which contains only the outline of a Table:

<%@ Page Language="c#" AutoEventWireup="false"

Src="GraphicsDemo.aspx.cs" Inherits="GraphicsDemo" %>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

Web pages and the Internet 619

<HTML>

<HEAD>

<title>ASP .NET Graphics Demo</title>

</HEAD>

<body>

<h1>ASP .NET Graphics Demo</h1>

The table contains an image generated using GDI+.

<form runat="server" ID="Form1">

<center>

<asp:Table id="mainTable" Runat="server">

</asp:Table>

</center>

</form>

</body>

</HTML>

We will add a TableRow and TableCell to the Table within the C# code,
rather than in the .aspx file. The backing C# class is called GraphicsDemo
and looks like this:

1. using System;

2. using System.Web.UI;

3. using System.Web.UI.WebControls;

4. using System.Drawing;

5. using System.Drawing.Imaging;

6.
7. public class GraphicsDemo : Page

8. {

9. protected Table mainTable;

10. protected Panel imagePanel;

11. protected System.Web.UI.WebControls.Image tempImage;

12. const int panelWidth = 600, panelHeight = 300;

13.
14. protected override void OnInit(EventArgs args)

15. {

16. Load += new EventHandler(PageLoad);

17. }

18.
19. void BuildTable()

20. {

21. mainTable.HorizontalAlign = HorizontalAlign.Center;

22. TableCell cell = new TableCell();

23. TableRow row = new TableRow();

24.
25. imagePanel = new Panel();

26. imagePanel.Width = panelWidth;

27. imagePanel.Height = panelHeight;

620 From Java to C#

28. imagePanel.BackColor = Color.PeachPuff;

29. tempImage = new System.Web.UI.WebControls.Image();

30. imagePanel.Controls.Add(tempImage);

31. cell.Controls.Add(imagePanel);

32.
33. Bitmap image = new Bitmap((int)imagePanel.Width.Value,

34. (int)imagePanel.Height.Value);

35. Graphics g = Graphics.FromImage(image);

36. g.Clear(Color.PeachPuff);

37. Brush brush = new SolidBrush(Color.Yellow);

38. g.FillRectangle(brush, 5, 5, 100, 200);

39. image.Save(@"C:\Inetpub\wwwroot\Books\CSharpBook\" +

40. "Chap13\GraphicsDemo\imagePanel.jpg",

ImageFormat.Jpeg);

41. tempImage.ImageUrl =

42. "http://growe.homeip.net/Books/CSharpBook/Chap13/" +

43. "GraphicsDemo/imagePanel.jpg";

44. row.Cells.Add(cell);

45. mainTable.Rows.Add(row);

46. }

47.
48. void PageLoad(Object sender, EventArgs e)

49. {

50. BuildTable();

51. }

52. }

BuildTable() (line 19) is called from PageLoad() (line 48) so the graph-
ics are redrawn each time the page is loaded. The Table mainTable defined
in the .aspx file is built up in the C# code by creating a TableRow and a
TableCell (lines 22 and 23). The TableCell is populated by creating a
Panel (line 25) which is inserted into it. For this simple example, we could
get away with just inserting the Image directly into the TableCell, but in
general, the graphics would probably be accompanied by other controls
such as buttons, so using a Panel to organize the contents of the TableCell
is usually a good idea.

We create the web controls Image on line 29 and add it to the Panel on
line 30. This Image will be directed at the JPEG file on disk after it has been
drawn and saved in the code that follows line 33. We create a blank Bitmap
of the desired size on line 33, and create a Graphics to let us draw on it. In
this case, the graphics we produce is just a filled yellow rectangle (lines 37
and 38), but of course you could insert code here to produce whatever
graphics you want.

The key point in the procedure is that after the graphics are drawn, we
save the image to disk as a JPEG file (line 39), making sure to save it in a
directory accessible to the web server. The URL given on line 39 is where it

Web pages and the Internet 621

is stored on my machine, but if you install this program on your own web
server, the path may differ so you may need to change this line.

The final step is to point the web controls Image (tempImage) at this disk
file, which we do on line 41 by setting the ImageUrl property. Finally, we
add the TableCell to the TableRow (line 44) and then add the TableRow to
mainTable which is created in the .aspx file (line 45).

This technique isn’t quite as clean as many other programming tech-
niques, since it requires using classes from outside the web controls library,
but it works well enough. The principle can be extended to load in existing
image files (such as photographs) and edit them in a similar way to the
example in Chapter 10, and then show them on a web page.

13.7 ■ Interactive web pages

All the examples we have seen so far are static pages in the sense that they
simply display information and do not allow the user to interact with the
page in any way. ASP .NET and the Web Controls library provide a great deal
of functionality for creating interactive web pages – pages that use the usual
GUI controls to allow the user to request specific information or even
change information stored in databases on the server.

Before we get into a specific example, we should get a general under-
standing of how interactive web pages work using ASP .NET and C#.

If we load up a web page that is based on ASP .NET and then view the
source HTML that was sent to produce the page, we will find that there is no
mention of any ASP .NET controls or C# code files in the listing – all the
source code sent to the web browser on the client is HTML, since that is all
many browsers understand.

When we access a URL based on an .aspx file, we begin by sending the
server a request for this file. The server recognizes that the file is written
using ASP .NET and that there is a C# class behind the file providing much
of the processing code. The server will then run the code required to pro-
duce the initial version of the page, translate the output into HTML and send
this HTML back to the client.

If the web page is a read-only page, as with the scores listing example in
section 13.5, that ends the process since the user cannot interact with the
page and so has no way of sending anything further back to the server (apart
from reloading the page).

If the web page contains interactive controls, such as the example we will
consider in the next section, each of these controls is capable of generating
events in the same way as in a Windows Forms application. If the control has
been marked with a Runat="Server" attribute, all event processing is done
by submitting the form’s contents to the server which runs the event handler
and generates a new batch of HTML which is sent back to the client in an
operation known as postback. The server keeps track of whether the page is
generated as a result of a postback or whether the page is being generated by

622 From Java to C#

an initial request from the client (as when the page is first loaded into a
browser). The IsPostback property of the Page class can be used in the C#
‘behind-code’ to tell whether the code is being run during a postback or not.
This can be important, since usually initialization code should be run only
when the page is first loaded. Running initialization code during a postback
can erase the user’s settings on the page, which can be highly irritating.

As we mentioned earlier, an ASP .NET server is stateless in that it keeps
no record of the state of a client’s page in between requests from the client.
This information is instead stored in the long string of seemingly random
characters that is sent back to the client as the VIEWSTATE hidden field. The
viewstate contains information such as the current data stored in all the
controls on the form, the current properties of the various controls (such as
their colours, fonts, etc.) and any other information needed to restore the
page to the state it had when the request was sent.

We will now consider an example of an interactive page that uses ASP
.NET to set up the page’s layout, but relegates most of the processing to the
backing C# class.

13.8 ■ Case study: an item editor for the adventure
game

The range of facilities in an interactive ASP .NET program is vast and far
beyond the scope of this book, but we can get a good feel for what is possi-
ble by considering a substantial example. As you will know if you’ve been
following the adventure game case study throughout the book, we have
stored the parameters describing the various items and characters used in
the game in an Access database. Up until now, the only way of reading or
entering information from the database was to use Access’s own facilities for
editing database tables, either by entering the data directly into a table, or
by designing an Access form to make the interface more pleasing.

Although it is possible to design a specialized form within Access for edit-
ing data, it makes an interesting exercise to create an ASP .NET/C# program
which allows the data to be read and edited over the web. Doing this also has
the advantage that we will have a GUI data editor which will work no mat-
ter what database we use to store the data. Since all the interaction with the
database is handled within the C# code, we can easily change the database
connection to link into, say, SQL Server or MySQL within the C# code with-
out having to change the front end editor interface.

Creating a complete web site that allows all aspects of the adventure to be
designed, including creation of items, rooms and characters, and the attach-
ment of items to players and rooms would be a fairly challenging introduc-
tory project, so we’ll restrict ourselves to an editor that allows existing items
to be viewed and edited, and new items to be created. This program will
illustrate most of the techniques that would be needed to expand the appli-
cation to a complete game designer.

Web pages and the Internet 623

13.8.1 � The interface

The interface to the item editor as it appears on a web page looks as shown
in Figure 13.5.

On the left, a drop-down menu shows the types of items (Item, Food,
Weapon, Armour, Potion, Ring and Wand) stored in the database. When the
program starts, Item is selected, but the user would usually start a session
with the editor by selecting one of the other types. Doing so will enable the
appropriate textboxes and labels on the right. For example, if Food is select-
ed (as in the figure above), the Description, Weight and Energy boxes are
enabled since these are the only properties that a Food item can have.

Selecting a type also accesses the database to retrieve a list of items of
that type that are stored already. The Description field of each of the items
of that type is then displayed in a DataList control, as shown. Each entry
in the list is shown as a LinkButton, which is displayed using underlined
text, just like a link on a web page. Clicking one of these links displays its
text in bold (like ‘a banana split’ in the figure) and also transforms it to ordi-
nary text so that it is no longer an active link. The information about that
item is then displayed in the text boxes on the right.

If the user wishes to edit the item’s parameters, this can be done by edit-
ing the text in the text boxes (except for the Description, since this is a pri-
mary key in the database and cannot be changed – a better implementation
would be to modify the database by adding a purely numerical primary key
and thus allow the description of the item to be edited as well). When all
changes have been made, the ‘Update’ button is pressed to update the record
in the database back on the server.

A new item of a particular type can be added by first selecting the desired
type using the drop-down menu, then pressing the ‘New’ button to clear the
text boxes on the right. Enter the desired data and then press ‘Add item’ to
add the new item to the database. Since a Description is required for all
items in the database, we have used ASP .NET’s validation feature to ensure
that something is typed in the Description box when ‘Add item’ is pressed.

624 From Java to C#

Figure 13.5 Interface to a web-based editor for items in the adventure game

The three buttons in the lower left are enabled and disabled at appropriate
times, according to what is possible at that time. In Figure 13.5 above, ‘Add
item’ is disabled because the user has selected one of the items in the list and
therefore can edit that item but not add it as a new item. Clicking ‘New’ de-
selects all items in the list, clears the text boxes and enables ‘Add item’.

Obviously the layout of the components could be improved, but this is
mainly a matter of adjusting the various ASP .NET settings of the controls,
and is not really our main concern here. Readers who have a more compre-
hensive knowledge of ASP .NET may wish to experiment with the layout.

13.8.2 � The ASP .NET code

The page requested by a web browser is stored on the server’s web site in a
file called ItemEditor.aspx. The code is concerned mainly with defining
the layout of the page:

1. <%@ Page Language="c#" AutoEventWireup="false"

2. Src="ItemEditor.aspx.cs" Inherits="ItemEditor"%>

3. <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0

Transitional//EN">

4. <HTML>

5. <HEAD>

6. <title>Scores in Adventure</title>

7. </HEAD>

8. <body>

9. <form runat="server">

10. <center>

11. <asp:Label Runat="server" ID="headerLabel"/>

12. <asp:Table id="mainTable" Runat="server">

13. <asp:TableRow><asp:TableCell>

14. <asp:Panel >

15. <asp:DropDownList ID="typeList"

runat="server"

16. width=200 height=24 />

17.
18. <DIV style="OVERFLOW: auto; WIDTH: 200;

19. HEIGHT: 100" >

20. <asp:DataList ID="itemList"

Runat="server"

21. Width=180 Height=0>

22. <ItemStyle BackColor = "LightYellow"/>

23. <AlternatingItemStyle BackColor =

"Khaki"/>

24. <ItemTemplate>

25. <asp:LinkButton Runat="server"

26. CommandName="Select"

Web pages and the Internet 625

27. Forecolor="Red" ID="Linkbutton1"

28. NAME="Linkbutton1">

29. <%# DataBinder.Eval(Container.

DataItem,

30. "Description") %>

31. </asp:LinkButton>

32. </ItemTemplate>

33. <SelectedItemTemplate>

34.

35. <%# DataBinder.Eval(Container.

DataItem,

36. "Description") %>

37.

38. </SelectedItemTemplate>

39. </asp:DataList>

40. </DIV>

41.
42. <asp:Button

43. ID="newButton" Text="New" Runat="server">

44. </asp:Button>

45. <asp:Button

46. ID="addButton" Text="Add item"

Runat="server">

47. </asp:Button>

48. <asp:Button

49. ID="updateButton" Text="Update"

Runat="server">

50. </asp:Button>

51. </asp:Panel>

52. </asp:TableCell>

53.
54. <asp:TableCell>

55. <asp:Panel runat="server">

56. <asp:Panel runat="server" Wrap="false">

57. <asp:Label ID="descLabel"

Text="Description"

58. Runat="server"/>

59. <asp:TextBox ID="descText"

Runat="server"

60. Width=275/>

61. <asp:RequiredFieldValidator

62. ID="requiredDescription"

63. Runat="server"

64. ErrorMessage="You must enter a

description."

65. ControlToValidate="descText"

626 From Java to C#

66. Display="None"/>

67. </asp:Panel>

68. <asp:Panel runat="server">

69. <asp:Label ID="weightLabel"

Text="Weight"

70. Runat="server"/>

71. <asp:TextBox ID="weightText"

Runat="server"

72. Width= 50/>

73. <asp:Label ID="energyLabel"

Text="Energy"

74. Runat="server"/>

75. <asp:TextBox ID="energyText"

Runat="server"

76. Width= 50/>

77. </asp:Panel>

78. <asp:Panel runat="server">

79. <asp:Label ID="blockProbLabel"

80. Text="Block Prob" Runat="server"/>

81. <asp:TextBox ID="blockProbText"

Runat="server"

82. Width= 50/>

83. <asp:Label ID="hitProbLabel"

Text="Hit Prob"

84. Runat="server"/>

85. <asp:TextBox ID="hitProbText"

Runat="server"

86. Width= 50/>

87. </asp:Panel>

88. <asp:Panel runat="server">

89. <asp:Label ID="damageLabel"

Text="Damage"

90. Runat="server"/>

91. <asp:TextBox ID="damageText"

Runat="server"

92. Width= 50/>

93. <asp:Label ID="durationLabel"

Text="Duration"

94. Runat="server"/>

95. <asp:TextBox ID="durationText"

Runat="server"

96. Width= 50/>

97. </asp:Panel>

98. <asp:Panel runat="server">

99. <asp:Label ID="startLabel"

Text="Start text"

Web pages and the Internet 627

100. Runat="server"/>

101. <asp:TextBox ID="startText"

Runat="server"

102. Width=275/>

103. </asp:Panel>

104. <asp:Panel runat="server">

105. <asp:Label ID="stopLabel" Text="Stop

text"

106. Runat="server"/>

107. <asp:TextBox ID="stopText"

Runat="server"

108. Width= 275/>

109. </asp:Panel>

110. </asp:Panel>

111. </asp:TableCell>

112. </asp:TableRow>

113. </asp:Table>

114. <asp:ValidationSummary Runat="server"

115. ID="validationSummary"

116. HeaderText="Error:"/>

117. </center>

118. </form>

119. <h2>Instructions</h2>

120. Select an item type from the drop-down menu.

121. A list of items of that type

122. currently in the database will appear on the left.

123. <P>

124. If you want to modify

125. an existing item, select it and its stats will

appear on the

126. right. Modify the stats as required and then click

'Update'.

127. (Note that you cannot

128. change the item’s description since this

129. is used as the primary key in the database.)

130. <P>

131. To create a new item, select the item type and

press 'New'

132. to clear the text boxes,

133. then enter its stats in the boxes on the right,

134. then click 'Add item'.

135. </body>

136. </HTML>

628 From Java to C#

Since much of this code is concerned with layout of the components on
the page, it is quite repetitive so we need not consider it all in detail. One of
the problems in writing web pages is that often we need a mix of features
from several different languages. In this example, we need fragments of
HTML to define the overall page sections, ASP .NET to define the controls
we are using, and C# to provide the code behind it all. An unfortunate fea-
ture of this sort of programming is that often all three of these languages pro-
vide features which are also available in the other two, but have different
ways of specifying properties of objects and so on.

Since this is a book on C# (primarily!), the code has been written in an
attempt to place as much of the actual processing in the C# code, but we do
need some of the less trivial features of ASP .NET to get this example to work.

The AutoEventWireup property has been set to false (line 1) which
requires us to connect the Load event for the web page manually. This will
be done in the C# code later. After some HTML preliminaries, we add a
Label (line 11) to display the title ‘Adventure game item editor’.

After this, we begin the layout of the controls. There are various ways this
can be done, but usually a layout involves using a table to provide the over-
all structure and panels within the various table cells to organize controls on
a lower level. The ASP .NET Table is composed of a number of TableRows,
each of which can contain a number of TableCells. It is not possible to nest
Tables directly (that is, a TableCell cannot contain a Table unless that
Table is enclosed within another control such as a Panel), so if we want to
create some lower-level structure within a particular TableCell, we need to
use other methods.

One possibility is to use the RowSpan and ColumnSpan properties of a
TableCell to define the number of rows and columns a particular cell should
span. Working out these values can be tricky, however, so we will use a dif-
ferent approach.

The Panel control is just an empty container which can be used to group
together other controls. Panels can also be nested directly, unlike Tables, so
we can use them to form hierarchical structures within a single TableCell.

The top-level design of the layout uses a Table with a single TableRow,
which in turn contains two TableCells. The first cell contains a Panel
which in turn contains the drop-down list, the data list and the three but-
tons on the left. The second cell contains another Panel which contains all
the labels and text boxes on the right.

The DropDownList (the Web Controls version of a ComboBox in Windows
Forms but bizarrely given a different name) is defined on lines 15 and 16.
This definition illustrates a useful point about placing and sizing controls.
Many ASP .NET controls have a default size or else size themselves to their
contents. A DropDownList, for example, will adjust its width to fit the
longest string it contains. This can be fine if the control’s contents are con-
stant, but if the contents, and hence the size, of the control changes as the
page is used, the overall layout can jump around haphazardly, which is usu-
ally annoying and confusing to the user.

Web pages and the Internet 629

It is usually better to specify the size of a control so that it remains fixed
in place on the layout. This can be done by explicitly setting the Width and
Height properties, as we’ve done on line 16 for the DropDownList and else-
where for some of the other controls.

Each of the text boxes used for entering or editing data is accompanied
by a label. The label’s text remains constant during the program, but its
colour changes to reflect the state of the accompanying text box. An active
text box is matched by a yellow label, while a disabled text box has a grey
label. These settings are all managed within the C# code which we will
examine shortly. The label is implemented using an ASP Label control and
the textbox by TextBox.

13.8.3 � Validation of data

Since the Description field is the primary key in the database, it is essential
that the user enters a description for any new item (no matter what type). ASP
.NET provides a simple validation feature which allows individual controls on
an ASP form to be tested for correct values when the form is submitted to the
server. On line 61, we have added a RequiredFieldValidator to check that
the description text box has something in it. The attributes of the validator
show that an ErrorMessage can be associated with it. ControlToValidate
connects the validator with the control that it is to check. The last attribute
sets Display to None. By default, if a control’s validation check fails, the
ErrorMessage is displayed beside the control on the form. Although this gives
immediate feedback to the user, it also usually destroys the layout of the con-
trols on the form, so is not usually the best way of providing feedback, unless
the form is designed to have a space available for the error message.

A better way of displaying any validation error messages is to use a
ValidationSummary control, which we have added at the end of the form
(line 114). When enabled in the C# code, a ValidationSummary prints out
all error messages from all validation controls in the form in one place.
Although we’ve used the default version here, the control’s appearance can
be customized in the same way as any other web control.

The RequiredFieldValidator is only one of several validator classes.
Others allow a field to be tested to see if its numerical value is in the correct
range, or if a string value matches a regular expression. It is also possible to
define a custom validator which allows the programmer to define a condi-
tion to use for validation. For details, see the documentation under ‘valid-
ation server controls’.

Although validators are easy enough to insert in the ASP code, they do
have a few subtleties related to when they should be active which we will
consider when we study the C# code below.

630 From Java to C#

13.8.4 � Interactive data display

In our previous example showing the scores table, we used a DataGrid to
display the data. DataGrids are flexible controls for non-interactive dis-
plays, but when the user needs to be able to select items in the list, we need
to use a different control that allows some interaction. ASP .NET does have
a ListBox which allows items in the list to be selected and for this applic-
ation it would have been suitable. However, the DataList control is a pow-
erful class in the Web Controls library, so we have used it here to provide an
introduction to its features.

The DataList, along with the DataGrid and another data display control
called a Repeater all support the idea of a display template. Since these
controls are designed to display data from an external source, they may all
be bound to the data source. The data source can be as simple as an array,
but whenever we are dealing with data extracted from a database, it is more
usual to load the data into a DataSet and then bind the data display control
to the DataSet. This is the method that we used in the previous example
with the scores table, and we shall do the same thing here.

The TableCell containing the DataList is defined on lines 20 to 39.
DataLists (in fact, all the data display controls) suffer from a slight defi-
ciency in that they do not support scrolling if the list gets longer than the
space in the table allocated for it. Rather, they tend to expand in size and
force the TableCell containing them to expand with them, thus distorting
the overall layout.

The reason for this is that, since all ASP controls must be translated into
HTML by the server, all the table-like controls such as DataList are trans-
lated into HTML tables, which do not support scrolling. They rely instead on
the web browser’s main window scrolling to accommodate them, which only
works if the table is on its own in the display.

Another problem with the DataList is that if the list contains too few
items to fill up the container which holds it, the list items tend to space
themselves out so that all the space is used, resulting in large gaps between
neighbouring items in the list. This does not distort the table layout, but it
does look quite ugly.

The DataList used here solves both these problems, although not in a
particularly elegant way. To solve the problem of scrolling a large list, we
have resorted to an HTML DIV element (line 18). A DIV acts as a container
of a specified size (as given by the WIDTH and HEIGHT parameters on lines
18 and 19) that is recognized by HTML (and therefore can be sent to a client
unmodified). It also has an OVERFLOW parameter which specifies the
behaviour of the container if its contents overflow the boundaries. Using the
‘auto’ setting for OVERFLOW causes the container to generate scrollbars if
needed, so it is just what we need. We have therefore enclosed the ASP .NET
DataList control within a DIV.

The DataList itself begins on line 20. We can define a width and height
for it as well, but if we set the height to be the same as that of the DIV con-
tainer, the problem with short lists expanding to fill the available space

Web pages and the Internet 631

detracts from the appearance of the list. One trick that seems to fool the
DataList into behaving properly is to set the Height parameter to 0 (line
21). Since a control expands if its contents require more space than that
allowed by its parameter settings, the control’s height is made to fit the
number of items in the list exactly. When the DataList’s height exceeds the
height of the enclosing DIV, the DIV produces scrollbars, so everything
seems to work well. As we said, not the prettiest of solutions, but sometimes
we need to improvise.

There is one slight problem with this setup, however. If the DataList con-
tains a long list so that a scrollbar is produced when it is displayed, and the
user scrolls down to select an item near the bottom of the list, then submits
the form for processing by the server, the position of the scrollbar is not
remembered by the viewstate so when the reply comes back from the serv-
er, the scrollbar is reset to the top of the list again. Since the scrollbar is a
property of the DIV and not the DataList there does not seem any easy way
around this problem, since the C# code cannot access anything that is not
an ASP control.

Using an ASP ListBox avoids this latter problem, since HTML has a list
box of its own which does contain a scrollbar. If we had used a ListBox in
this example, we would not need the DIV element to contain it, and the posi-
tion of the scrollbar would be remembered between visits to the page.
However, a ListBox does not support the display features that are available
in a DataList, to which we now turn.

13.8.5 � Templates

As mentioned above, the three main data display controls, DataGrid,
DataList and Repeater, all support the idea of templates for specifying how
various parts of the list should be displayed. We have already seen the spec-
ification of display styles in the earlier example of the adventure game score
table, and we have added an ItemStyle and AlternatingItemStyle to the
DataList here as well (lines 22 and 23).

However, we can now extend this idea by defining templates for how the
data displayed in each of these areas should be formatted. There are sev-
eral templates available, but all data display controls require at least an
ItemTemplate to be defined.

Our ItemTemplate is on lines 24 to 32. If the ItemTemplate is the only
template defined for the DataList, it will be applied to every item in the list.
The template should contain instructions as to the type of control that is
used to display the data, which in turn contains an expression giving the
actual data to display.

On line 25, we create a LinkButton to display the data within an
ItemTemplate. A LinkButton displays text like a hyperlink on a web page
– the text is underlined and will generate an event when clicked with the
mouse. The event can be used to update information in the rest of the form,
as we will see below.

632 From Java to C#

The actual text that is displayed could be specified as an ordinary string
written directly into the code, but since it is more usual for a DataList to
be bound to a data source, we need a better way of determining the infor-
mation to display.

The most commonly used method of extracting information from a data
source is to use the DataBinder.Eval() method, as we have done on lines
29 to 30. The code given in this example may be copied verbatim into any
situation where data needs to be extracted from a data source:

<%# DataBinder.Eval(Container.DataItem, column-name) %>

The only parameter that needs to be changed from one call of this method
to another is the ‘column-name’, which specifies the column in the data
source from which the data should be drawn. In this case, the data source
is a DataSet (defined in the C# code below), and we wish to display only the
Description field from this set. We could combine data from several columns
in the data source by using a separate DataBinder.Eval() call for each one
and linking them by ordinary text. For example we could say:

<asp:LinkButton Runat="server"
CommandName="Select" Forecolor="Red">
<%# DataBinder.Eval(Container.DataItem,

"Description")
%>
(<%# DataBinder.Eval(Container.DataItem, "Weight") %>)

</asp:LinkButton>

Each line in the DataList would then contain the item’s description fol-
lowed by the weight in parentheses. Note that any text outside the <% … %>
delimiters (such as the parentheses in the example above) is treated as text
that should be inserted into the string that is displayed, and is not inter-
preted as an ASP command. The banana split that is shown in Figure 13.5
would then appear in the list like this:

a banana split (5)

A DataList supports selection of its LinkButton elements using the
mouse and provides a SelectedItemTemplate to allow the programmer to
define how selected items should be displayed. On lines 33 to 38 we have
provided this template. A selected item displays the same information as an
ordinary item, but this time it is displayed as ordinary text (there is no
enclosing LinkButton control). We have added the HTML tag (lines 34
and 37) which displays text in boldface. The ‘banana split’ item in the illus-
tration above shows the effect of this template.

There are several other templates available for the DataList – further
details can be found in the documentation for DataList.

The remainder of the ASP .NET code just inserts the various buttons,
labels and text boxes. None of these controls has any functionality or event
handlers defined in the ASP file – this is all done in the C# code. At the end
of the ASP file we’ve added some plain text that gives instructions on how to
use the web page to edit the database.

Web pages and the Internet 633

13.8.6 � C# code for item editor

The C# behind-code is fairly lengthy for this example, so we will take it in
stages. First, we can have a look at the class field declarations, most of which
just provide identities for the corresponding controls in the ASP file:

using System;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Data;

using System.Data.OleDb;

using System.Drawing;

public class ItemEditor : Page

{

protected DataGrid adventureScores;

protected DataSet dataSet;

protected OleDbDataAdapter command;

protected OleDbConnection oleConn;

protected Label headerLabel;

protected Table mainTable;

protected DropDownList typeList;

protected DataList itemList;

protected ValidationSummary validationSummary;

protected TextBox descText, typeText,

weightText, energyText,

blockProbText, hitProbText,

damageText, durationText,

startText, stopText;

protected Label descLabel, typeLabel,

weightLabel, energyLabel,

blockProbLabel, hitProbLabel,

damageLabel, durationLabel,

startLabel, stopLabel;

protected Button newButton, updateButton, addButton;

protected int numTextBoxes = 10;

protected TextBox[] textArray;

protected Label[] labelArray;

protected bool[] quoteDBField;

All these declarations except for the last few just provide the objects that
are inherited by the ASP file for its various controls. The last three lines
define some arrays that are useful in updating the states (enabled or dis-
abled) of the text boxes and labels, and a bool array that is used in con-
structing SQL statements for adding or updating records in the database.

The OnInit() method is called when the page is first loaded:

634 From Java to C#

1. protected override void OnInit(EventArgs args)
2. {
3. Load += new EventHandler(PageLoad);
4. typeText = new TextBox();
5. typeLabel = new Label();
6. textArray = new TextBox[] {
7. descText, typeText, weightText, energyText,
8. blockProbText, hitProbText, damageText, durationText,
9. startText, stopText

10. };
11. labelArray = new Label[] {
12. descLabel, typeLabel, weightLabel, energyLabel,
13. blockProbLabel, hitProbLabel, damageLabel,

durationLabel,
14. startLabel, stopLabel
15. };
16. quoteDBField = new bool[] { true, true, false, false,

false,
17. false, false, false, true, true };
18.
19. headerLabel.Text = "Adventure game item editor";
20. headerLabel.Height = 40;
21. headerLabel.ForeColor = Color.Red;
22. headerLabel.Font.Name = "Arial";
23. headerLabel.Font.Size = 20;
24. headerLabel.Font.Bold = true;
25.
26. BuildTable();
27. BuildTypeList();
28. itemList.ItemStyle.Font.Name = "Arial";
29. itemList.ItemStyle.Font.Size = 10;
30. itemList.SelectedIndexChanged +=
31. new EventHandler(itemList_SelectedIndexChanged);
32. SetupButtons();
33. }

Since AutoEventWireup was set to false in the ASP file, we need to pro-
vide an explicit handler for the Load event (line 3). This causes the method
PageLoad() to be called whenever the page is loaded, which happens not
only when the web page itself is first accessed by the browser, but also every
time a postback is made from the server in response to a client request.

PageLoad() performs only one function at the moment unless the page is
being loaded for the first time: it turns off validation:

void PageLoad(Object sender, EventArgs e)
{

validationSummary.Enabled = false;
EnableValidation(false);

Web pages and the Internet 635

if (!IsPostBack)
{

typeList_SelectedIndexChanged(null, null);
}

}

The reason for doing this is that leaving validation on all the time can
cause irritating error messages to appear at inappropriate times.

Note that we have used the IsPostBack property to test whether the page
is being loaded for the first time or as a result of a postback from the serv-
er. If the page is being loaded initially, we call the event handler for
typeList (the drop-down menu that displays the item types) to initialize
the display. We will discuss this handler later.

The variables typeText and typeLabel are a dummy TextBox and Label
that are not displayed on the form, but are there to allow us to treat the
entire set of TextBoxes as an array that matches the data fields in the Item
table in the database. If you glance back at the structure of this table as it
was defined in Chapter 11, you will see that the first field is Description, fol-
lowed by Type which stores the type of item (food, weapon, armour and so
on). (Although this may look ugly, the other option would be to restructure
the database so that the fields are in an order that makes it more conv-
enient for this program, which is much more difficult to do. ‘Kludges’ such
as this are, unfortunately, common in industrial programming.)

Lines 6 to 15 set up the arrays of text boxes and labels that we will use
later when updating the states of these controls.

Line 16 sets up quoteDBField which is an array of bools that specify
whether or not a particular field in the database is a string, and will there-
fore require quotes around its value when it is included in an SQL state-
ment. This makes it easier to build the INSERT and UPDATE statements in
the button event handlers we consider later.

Lines 19 to 24 set up the page title. The remaining lines of this method
call some other methods to set up the form and also initialize some proper-
ties of the DataList itemList, including setting up the event handler for
SelectedIndexChanged which is generated when the user selects an item
in the list.

We’ll now have a look at the other methods involved in initializing the
form. First, the code for BuildTable():

void BuildTable()
{

mainTable.BackColor = Color.DarkGray;
mainTable.ForeColor = Color.White;
mainTable.Font.Name = "Arial";
mainTable.Font.Size = 12;
mainTable.Font.Bold = true;
mainTable.GridLines = GridLines.None;
mainTable.HorizontalAlign = HorizontalAlign.Center;

}

636 From Java to C#

This just sets up some default properties for the main table that holds all
the controls.

Next, we build up the DropDownMenu that lists the available item types in
BuildTypeList():

void BuildTypeList()

{

typeList.BackColor = Color.White;

typeList.Items.Add(new ListItem("Item", "Item"));

typeList.Items.Add(new ListItem("Food", "Food"));

typeList.Items.Add(new ListItem("Weapon", "Weapon"));

typeList.Items.Add(new ListItem("Armour", "Armour"));

typeList.Items.Add(new ListItem("Potion", "Potion"));

typeList.Items.Add(new ListItem("Ring", "Ring"));

typeList.Items.Add(new ListItem("Wand", "Wand"));

typeList.AutoPostBack = true;

typeList.SelectedIndexChanged +=

new EventHandler(typeList_SelectedIndexChanged);

}

After adding the ListItems, we set AutoPostPack to true. This means
that when the user selects an item in the list, the server automatically posts
back the result of the event. It is a common error in ASP programming to
forget to set this property – failure to do so results in the control mysteri-
ously not doing anything when it is clicked.

Finally, we add the event handler for selecting one of the items in
typeList. This handler populates the DataList with items of the chosen
type, as we will see below.

The last bit of initialization adds event handlers to the three buttons:

void SetupButtons()

{

newButton.Click +=new EventHandler(newButton_Click);

addButton.Click +=new EventHandler(addButton_Click);

updateButton.Click +=new EventHandler(updateButton_Click);

addButton.Enabled = false;

updateButton.Enabled = false;

}

We also disable the ‘Add item’ and ‘Update’ buttons since these are not
usable when the page is just loaded.

With the initialization done, the form will be displayed on the web page
and will await user interaction, so the next code we shall examine contains
the event handlers for the controls. There are five controls that have cus-
tomized event handlers provided in the C# class: the drop-down menu
typeList which contains the list of item types, the DataList itemList

which displays the items of whatever type was chosen in typeList, and the

Web pages and the Internet 637

three buttons. We will examine the handlers in the order they must be
invoked by the user.

First, an item type must be chosen, so the event handler for typeList
is called:

protected void typeList_SelectedIndexChanged(

object sender, EventArgs e)

{

FillDataSet();

itemList.SelectedIndex = -1;

itemList.DataSource = dataSet.Tables["Item"];

itemList.DataBind();

SetStatsControls(typeList.SelectedValue, null);

oleConn.Close();

addButton.Enabled = false;

updateButton.Enabled = false;

}

This method calls FillDataSet() to load the data from the database,
then binds the DataSet to itemList (the DataList control), and then calls
SetStatsControls() which updates the text boxes and labels so that only
those that correspond to valid data fields for the selected type are enabled.
The last two lines disable the ‘Add item’ and ‘Update’ buttons since these
cannot be used until other selections are made.

FillDataSet() uses standard techniques for loading items of the select-
ed type from the data base:

protected void FillDataSet()

{

OpenDatabase();

string sql = "SELECT * FROM Item WHERE Type='" +

typeList.SelectedValue + "'";

command = new OleDbDataAdapter(sql, oleConn);

command.Fill(dataSet, "Item");

}

OpenDatabase() is called to open the database and create the DataSet:

protected void OpenDatabase()

{

string source = "Provider=Microsoft.Jet.OLEDB.4.0;" +

@"Data Source=C:\Books\MyBooks\CSharpBook\Programs\Chap13

\Adventure\Adventure.mdb";

oleConn = new OleDbConnection(source);

dataSet = new DataSet();

try

{

oleConn.Open();

638 From Java to C#

}

catch (Exception ex)

{

oleConn.Close();

}

}

Back in FillDataSet(), an SQL statement is constructed to select only
those items whose Type match that selected in typeList and the data set is
filled with the results of the query.

Back in the typeList event handler, after the data has been loaded and
the itemList bound to the DataSet, we call SetStatsControls() to enable
or disable each of the text boxes and labels according to the type of item that
was chosen. In order to do this without writing out an enormous number of
individual statements for each text box and each label for each possible type
of item, we define an auxiliary class called EditBox, which stores the lists of
properties that each type of item can have. This class is added to the bot-
tom of the ItemEditor.aspx.cs file and looks like this:

public class EditBox

{

bool[] textBoxEnabled;

public EditBox(string type)

{

if (type.Equals("Item"))

{

textBoxEnabled =

new bool[]

{

true, false, true, false, false, false,

false, false, false, false };

}

else if (type.Equals("Food"))

{

textBoxEnabled =

new bool[]

{

true, false, true, true, false, false,

false, false, false, false };

}

else if (type.Equals("Weapon"))

{

textBoxEnabled =

new bool[]

{

true, false, true, false, false, true,

Web pages and the Internet 639

true, false, false, false };

}

else if (type.Equals("Armour"))

{

textBoxEnabled =

new bool[]

{

true, false, true, false, true, false,

false, false, false, false };

}

else if (type.Equals("Potion"))

{

textBoxEnabled =

new bool[]

{

true, false, true, true, true, true,

true, true, true, true };

}

else if (type.Equals("Ring"))

{

textBoxEnabled =

new bool[]

{

true, false, true, true, true, true,

true, false, true, true };

}

else if (type.Equals("Wand"))

{

textBoxEnabled =

new bool[]

{

true, false, true, true, false, true,

true, true, true, false };

}

}

public bool this [int index]

{

get

{ return textBoxEnabled[index]; }

}

}

The class contains a single data field called textBoxEnabled, which is a
bool array. The elements in this array are to be matched with the corre-
sponding elements in textArray and labelArray that were declared back
in ItemEditor. The value in an element of textBoxEnabled states whether

640 From Java to C#

or not the corresponding text box in textArray is enabled, and therefore
how it should be displayed. An indexer has been added at the bottom of the
class to make it easier to access the textBoxEnabled elements.

This class is used in SetStatsControls() as follows:

protected void SetStatsControls(string type, DataRow itemRow)

{

EditBox editBox = new EditBox(type);

for (int i = 0; i < textArray.Length; i++)

{

if (editBox[i])

{

textArray[i].Enabled = true;

textArray[i].BackColor = Color.White;

textArray[i].Text =

itemRow == null ? "" : itemRow[i].ToString();

labelArray[i].ForeColor = Color.Yellow;

}

else

{

textArray[i].Enabled = false;

textArray[i].BackColor = Color.DarkGray;

textArray[i].Text = "";

labelArray[i].ForeColor = Color.LightGray;

}

}

}

We create an EditBox that is tailored to the item type that has been cho-
sen and then loop through the elements in textArray and labelArray, set-
ting each one according to the value of the corresponding editBox element.
Enabled text boxes have a white background and a yellow label, while dis-
abled text boxes have a dark grey background and light grey label. This lets
the user know which text boxes will accept data for a given item type.

SetStatsControls() has a second parameter which is a DataRow from the
DataSet. However, this is only used when filling the text boxes with data for an
item that has been selected from the DataList, so when SetStatsControls()
is called from typeList’s event handler, a null is passed in for the DataRow.
This results in all the text boxes having their text cleared.

After selecting an item type, the display will show a list of items in the
DataList (itemList) and the text boxes and labels will be correctly
enabled. At this point, the user has a choice of selecting an item from
itemList or pressing the ‘New’ button to create a new item. We’ll consider
the case of selecting an existing item first.

Clicking one of the LinkButtons in itemList calls the event handler for
itemList, which is:

Web pages and the Internet 641

protected void itemList_SelectedIndexChanged(

object sender, EventArgs e)

{

FillDataSet();

itemList.DataSource = dataSet.Tables["Item"];

itemList.DataBind();

DataRow itemRow =

dataSet.Tables["Item"].Rows[itemList.SelectedIndex];

SetStatsControls(typeList.SelectedValue, itemRow);

textArray[0].Enabled = false;

addButton.Enabled = false;

updateButton.Enabled = true;

validationSummary.Enabled = false;

}

FillDataSet() is called again to refresh the data in dataSet. We then
retrieve the DataRow from dataSet that corresponds to the SelectedIndex
in itemList. This works since the items in itemList are listed in the same
order as they were retrieved from dataSet, so the index of an item in
itemList will match the location of that item in dataSet.

The DataRow that is retrieved contains all the information about the
selected item, so it is passed to SetStatsControls() to display the infor-
mation in the correct text boxes. We then disable the Description text box
(textArray[0]) since the user is not allowed to change the Description of
an item, due to its being the primary key in the database.

The ‘Add item’ button is disabled, since it is not possible to add a second
item with the same name as an existing item. The ‘Update’ button is enabled
since the user is allowed to change the data in any non-Description text box
and then update the database.

The last line disables validationSummary which turns off any error mes-
sages produced by a previous validation failure – more on this later.

This completes the event handlers for typeList and itemList. The
remaining event handlers manage the three buttons.

If the user presses the ‘New’ button, the form should be prepared to
accept data that describes a new item of the type currently showing in
typeList (the drop-down menu). This means that the various text boxes
should be enabled or disabled as appropriate, and all text should be cleared
from them. This is exactly what happens in the event handler for typeList,
so we can just call that when the ‘New’ button is pressed as well. The event
handler for the ‘New’ button is therefore very simple:

protected void newButton_Click(object sender, EventArgs e)

{

typeList_SelectedIndexChanged(null, null);

addButton.Enabled = true;

}

642 From Java to C#

The only other action is the enabling of the ‘Add item’ button, since after
the user has entered the data, they must be able to add it to the database.

The handler for ‘Add item’ is a bit more complex. In fact, the version pre-
sented here contains only a single error check, so there is some room for
improvement. Let us consider what must happen when an attempt is made
to add an item to the database.

First, we need to ensure that the user has entered a Description field for
the new item, since Description is the primary key in the database and must
be present. We can use the validation control we inserted in the ASP code
to do this, as we will see.

Several other checks could also be made here, although we have not
implemented them. For example, we should check that the description
entered by the user does not duplicate any existing description in the data-
base, since duplicate primary keys are not allowed. We may also wish to
check that data has been entered in the other text boxes, as appropriate for
the item type, and that the data in these boxes makes sense. For example,
we might wish to check that the weight is a positive number and so on.

Adding these checks is not difficult, but it is tedious and would greatly
expand the code, so we leave them as exercises for the reader.

Assuming we get past all the checks, we then need to construct an SQL
statement from the data in the text boxes and add the result to the database.
The code for the addButton event handler is as follows:

1. protected void addButton_Click(object sender, EventArgs e)

2. {

3. EnableValidation(true);

4. Validate();

5. if (!IsValid)

6. {

7. validationSummary.Enabled = true;

8. typeList_SelectedIndexChanged(null, null);

9. addButton.Enabled = true;

10. return;

11. }

12. EnableValidation(false);

13. EditBox editBox = new EditBox(typeList.SelectedValue);

14. typeText.Text = typeList.SelectedValue;

15. string sql = "INSERT INTO Item VALUES(";

16. for (int i = 0; i < numTextBoxes; i++)

17. {

18. if (i == 1 || editBox[i])

19. {

20. if (quoteDBField[i])

21. sql += textArray[i].Text.Length > 0 ?

22. "'" + EscapeQuotes(textArray[i].Text) + "'" :

23. "NULL";

Web pages and the Internet 643

24. else

25. sql += textArray[i].Text.Length > 0 ?

26. textArray[i].Text : "0";

27. }

28. else

29. {

30. if (quoteDBField[i])

31. sql += "NULL";

32. else

33. sql += "0";

34. }

35. if (i < numTextBoxes - 1)

36. sql += ",";

37. }

38. sql += ")";

39. try

40. {

41. OpenDatabase();

42. OleDbCommand insert = new OleDbCommand(sql, oleConn);

43. insert.ExecuteNonQuery();

44. oleConn.Close();

45. }

46. catch (Exception ex)

47. {

48. headerLabel.Text = ex.ToString() + ": " + sql;

49. }

50. typeList_SelectedIndexChanged(null, null);

51. }

Since the only validation we have in the program is the check on the
Description text box, we only enable validation when addButton is pressed.
Leaving validation enabled at all times can cause irritating behaviour by
constantly demanding that the user input something in the Description box
and locking other controls until this is done. We therefore only enable vali-
dation after addButton has been pressed. A little method called Enable
Validation() has been written for this purpose:

void EnableValidation(bool enable)

{

foreach (WebControl validator in Validators)

{

validator.Enabled = enable;

}

}

This method will work for any number of validators in the class, even
though we only have one in this particular case.

644 From Java to C#

After enabling validation, we call Validate() (line 4) to perform the val-
idation check. The result of this check sets or clears the IsValid property
of the main form, so we can check this on line 5 to decide what to do. If the
validation check is failed, we turn on validationSummary which prints an
error message below the form (since that is where it was placed back in the
ASP file – see line 114 on page 628). We then refresh the display by calling
typeList’s handler again and return from the method.

If validation is successful, we switch it off (line 12) and then proceed to
add the new entry to the database. This is done using standard methods. We
use an EditBox object (line 13) to determine which text boxes are enabled,
and therefore which ones we should try to retrieve data from.

The SQL statement is built up by looping through the text boxes using
editBox[i] as a guide to see if we should read a value or just enter a NULL
or 0 instead. Note that quoteDBField is used to determine which fields are
strings and therefore require quotes around them.

Finally, since a text field containing an apostrophe cannot be placed in an
SQL string without doubling the apostrophe, we have a little routine called
EscapeQuotes() which filters each text string and doubles any apostrophes
that it finds:

protected static string EscapeQuotes(string text)

{

string escaped = "";

char[] textChars = text.ToCharArray();

for (int i = 0; i < textChars.Length; i++)

{

if (textChars[i] == '\'')

escaped += "'";

escaped += textChars[i];

}

return escaped;

}

This is an immensely useful method to have in any program that requires
building SQL statements from user input.

The only remaining event handler is for the ‘Update’ button. Its function-
ality is very similar to ‘Add item’ except that we need not validate the
Description box (since only existing items can be updated, and these must
have a Description since they are already in the database). Its code is:

protected void updateButton_Click(object sender, EventArgs e)

{

EditBox editBox = new EditBox(typeList.SelectedValue);

OpenDatabase();

FillDataSet();

string sql = "UPDATE Item SET ";

for (int i = 2; i < numTextBoxes; i++)

Web pages and the Internet 645

{

if (editBox[i])

{

if (i > 2)

sql += ",";

sql +=

dataSet.Tables["Item"].Columns[i].ColumnName + " = ";

if (quoteDBField[i])

sql += "'" + EscapeQuotes(textArray[i].Text) + "'";

else

sql += textArray[i].Text;

}

}

sql += " WHERE Description = '" +

EscapeQuotes(textArray[0].Text) + "'";

try

{

OleDbCommand insert = new OleDbCommand(sql, oleConn);

insert.ExecuteNonQuery();

oleConn.Close();

typeList_SelectedIndexChanged(null, null);

}

catch (Exception ex)

{

headerLabel.Text = ex.ToString() + "," + sql;

}

finally

{

oleConn.close();

}

}

As with addButton’s handler, we use an EditBox to determine which text
boxes to read data from. To update an existing item in the database howev-
er, we need the exact column name as used in the database in order to set
each data field’s value in the SQL statement. We therefore refresh the
DataSet with a copy of the database and then set about building the
UPDATE statement in SQL.

The code for doing this is similar to that for addButton so we won’t go
into details. After building the command, ExecuteNonQuery() is called
to send it to the database and typeList’s handler is called again to refresh
the display.

The code in the catch block changes the page’s title to display the excep-
tion error message and the SQL statement if anything goes wrong, since in
the development stages the problem is most often due to faulty SQL syntax.

646 From Java to C#

13.9 ■ Web services

A web service provides methods on a remote web site which can be called
by local programs. .NET and Java both provide comprehensive support for
web services.

It is important to understand at the outset that a web service is not just a
software package which is downloaded once and then integrated into a new
program on the local machine. Rather, the methods that are called by the
local program remain on the remote site and are called dynamically each
time the program is run.

This configuration has several important ramifications. First, of course, a
program that uses methods provided by a web service must be connected to
the web when it is run.

From the client’s point of view, probably a more worrying possibility is
that the service may not remain available forever, or that the provider may
change the service in some way that affects its use in the client program.
The provider of a web service should feel a heavy sense of responsibility to
continue to provide the service and not change it without due notification
being made. Having said that, however, the web service setup does allow the
provider to fix bugs and propagate these fixes to all clients without any
explicit notification, since all bug fixes will automatically appear in any
client program the next time the service is called.

Your first reaction to the idea of a web service might be ‘what’s the point’?
If the main point of a web service is to provide software for programmers to
use in their code, it would seem safer and easier to provide this software as
a library which could be downloaded and then used locally, without subse-
quent recourse to the Internet. Requiring a remote call to a method every
time that method is needed seems rather slow and clumsy by comparison.

This argument is valid if our main use of a web service is to access code
that just does some simple calculation, which could be done more quickly on
the local machine. The main power of a web service, however, lies in allow-
ing access to a remote network in a secure way. For example, a company may
provide information in its databases to clients by means of a web service.
Since the data in such databases is often sensitive, the owner of the databas-
es needs to control the access so that clients cannot read or write areas of the
database for which they should not have security clearance. A web service
shields the database by providing methods with all the appropriate security
checks built in. In this sense, a web service acts much like an interface
method in a class, in that it provides regulated access to private data.

As you might imagine, the technology that drives the ability to make a
method call over a network, possibly between methods written in different
languages and (ultimately) running on different operating systems is quite
sophisticated. The idea of making remote method calls is not new, however.
For many years, Windows programs used COM (Component Object Model)
and DCOM (Distributed COM) to achieve the same ends. Anyone who has
attempted to learn COM, however, will appreciate that it was far from easy.

Web pages and the Internet 647

Fortunately, programming web services in .NET is a much more approach-
able proposition.

The reason for the new ease of use is that .NET uses a different commu-
nication method to set up and consume web services. The new technology
is called SOAP (Simple Object Access Protocol), and is an XML-based com-
munication language that allows clients and servers to exchange method
calls in a transparent way.

Understanding SOAP itself, however, can be challenging, but the enor-
mous improvement from our point of view as C# programmers is that,
unlike COM, we do not need to understand how SOAP works to be able to
use it. For that reason, we will not delve any further into it here. Interested
readers can find many books and web sites that give more details about
SOAP and the associated WSDL (Web Service Definition Language). A good
place to start is the W3C web site (www.w3c.org).

As C# programmers, there are two aspects of web services we need to
understand: writing and exposing web services for other programmers to
use, and using or consuming web services provided by others. Both of these
are very simple to implement in C#.

13.9.1 � Writing a web service in C#

If you have access to Visual Studio .NET, you can use its New Project dialog
to create a web services project. To do this, select the File menu, choose
New and then Project to open the dialog. Select Visual C# Projects in the
Project Types list and then ASP .NET Web Service in the Templates list.

As usual, however, since we want to make this book accessible to those
readers who do not have Visual Studio .NET, we will write our code without
using it, which is actually very simple to do.

Since pretty well any C# method can be provided as a web service, we will
restrict ourselves to writing only a simple service here so you can get the
idea of how it is done. Once you understand the technique, it is straightfor-
ward to apply the other programming techniques described elsewhere in
this book to provide more complex services.

To create a web service, all that is required is a single file with an .asmx
extension. Here is a simple file called HelloWorld.asmx:

<%@ WebService Language="c#" Class="HelloWebService" %>

using System.Web.Services;

[WebService(Namespace="http://GroweCSBook.ac.uk")]

public class HelloWebService : System.Web.Services.WebService

{

public HelloWebService()

{}

[WebMethod]

648 From Java to C#

public string HelloWeb()

{

return "Welcome to growe’s web service!";

}

[WebMethod]

public int Square(int x)

{

return x*x;

}

}

The first line is an ASP-style directive, stating that the file contains a web
service in a class called HelloWebService written in C#. The remainder of
the file is written in ordinary C#.

The next line includes the System.Web.Services namespace which is
needed for writing web services.

The class itself is preceded by an attribute in square brackets labelling it
as a WebService. The Namespace in parentheses within this attribute is
optional, but is recommended since it helps give the class a unique identi-
ty. If you create a web service class in Visual Studio, the class is given a
default namespace of http://tempuri.org/, which is not particularly informa-
tive, so it is a good idea to change it.

The namespace is usually given as a URL or URI, but this doesn’t mean
that the URL has be a ‘real’ URL in the sense of being an actual web address
(the URL given in this example is not real). The namespace is not used by
the web service to look up anything – it is merely a label to keep the serv-
ice distinct from other services on the web that could have the same names
for their classes or methods.

The class itself inherits System.Web.Services.WebService, which provides
all the background methods needed to convert this class into a web service.

The remainder of the class is standard C#, except that those methods that are
to be exposed as web services (that is, made available to other users on the web)
must be prefixed by the [WebMethod] attribute. It is therefore possible to write
other methods within the class that are needed for calculations but should not
be exposed – just omit the [WebMethod] attribute from these methods.

The two methods given here are very simple, but illustrate a method
(HelloWeb()) that takes no parameters and simply returns a string, and
another (Square()) that takes a parameter x and returns an int which is
the square of the parameter.

In order to make this class available as a web service on your machine’s
web server, all that is required is that this file is placed within a folder that
is accessible to the web server. If you are running a standard installation of
IIS, for example, the file can be placed anywhere in the C:\Inetpub\
wwwroot directory. That is really all there is to providing a web service.

Web pages and the Internet 649

To test the code that we have just written, we could write a client as
described in the next section, but usually the code can be tested by using an
ordinary web browser such as Internet Explorer. To do this, load up the URL
of the .asmx file that contains the C# class shown above. For example, if the
file HelloWorld.asmx was stored on the server at http://www.fakeurl.
com/WebServices/HelloWorld.asmx (a fictitious address, but just substi-
tute your own server’s address for ‘www.fakeurl.com’ and store the file in the
folder C:\Inetpub\wwwroot\WebServices if IIS is installed normally), just
enter this link in the web browser.

The browser should display a page that looks something like Figure 13.6.

A link is provided on this page for each method that has been exposed.
Clicking on the link displays a new page that allows us to test the method
by entering values for the parameters (if any) and then clicking an Invoke
button to try out the method. The result of the test is a page that displays
the value returned by the method, although it will be encased in XML. For
example, testing the Square method by entering the value 12 for the param-
eter x produces the XML page:

<?xml version="1.0" encoding="utf-8" ?>
<int xmlns="http://GroweCSBook.ac.uk">144</int>

It is also possible to return instances of classes from web services. For exam-
ple, we could add a simple method that takes two ints and returns a Point
(from the System.Drawing package) to the HelloWebService class above:

[WebMethod]
public Point MakePoint(int x, int y)
{

return new Point(x,y);
}

Running a test on this method produces the XML:

<?xml version="1.0" encoding="utf-8" ?>
<Point xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
xmlns="http://GroweCSBook.ac.uk">
<X>12</X>
<Y>45</Y>
</Point>

650 From Java to C#

Figure 13.6 Web page showing web services available

The Point data structure has been converted to XML, with each of its
data fields given as an XML element.

Fortunately, we do not need to concern ourselves with the details of the
XML since it serves merely as a vehicle for transmitting the information
back to a consumer of the web service. .NET provides all the machinery
needed to convert this information back into a form that may be used with-
in a C# program.

13.9.2 � Consuming a web service

Writing a C# program that uses or consumes an existing web service is
slightly more complicated than writing the original service, but not much.
The key step is in locating the service we want to use and linking it with the
program. The procedure for doing this varies depending on whether we are
using Visual Studio or not.

A program that uses a web service need not be created in any special loca-
tion. In fact, the machine on which it runs need not even have a web serv-
er running, although a connection to the Internet is, of course, required.

In the example we are about to give, we will connect to the web service
that we wrote in the last section, but in general, we will need to know the
URL of a service that we wish to use. There are several ways of discovering
where services have been published. A good starting point is Microsoft’s
search engine for web services, available at http://uddi.microsoft.com/
visualstudio/. In our case, we will just use the HelloWorld.asmx file we built
earlier, and assume that it is available at the URL http://www.fakeurl.com/
WebServices/HelloWorld.asmx as before.

Having found the web service, the next step is to connect it with the C#
program we are writing. This requires a bit of work (most of which is done
for us by .NET) since we must remember that the web service we are access-
ing may not have been written in C#. Any .NET-compliant language such as
Visual Basic .NET or a non-.NET language such as Java could have been used
to create the service, so it is not simply a matter of downloading the source
code and adding it to our project.

It is this stage that depends most heavily on whether we are using Visual
Studio to write our C# project. If we are, then in order to access the web
service, we need to add a web reference for the service. To do this, open
Solution Explorer (use the View menu if it’s not immediately visible) and
open the node for the current project. Find the References icon and right-
click on it, then select Add Web Reference. This brings up the Add Web
Reference dialog which contains features for searching for web services on
the local machine or further afield on the web.

Assuming that we already know the address of the service we require, just
type this in the URL text field near the top of the dialog and then press the
Add Reference button on the right. Back in Solution Explorer, a new Web
References icon should appear, within which will be the reference we just
added. The name of this reference is important since we will need to use it

Web pages and the Internet 651

in the code as part of the namespace for the web service methods we are
invoking. (If you don’t like the name given to the reference by Visual Studio,
you can rename it by right-clicking on the icon and selecting Rename.) This
completes the procedure for adding a web reference in Visual Studio, and we
can proceed to write the C# code that uses any of the methods that are pro-
vided as services at that URL.

The process of adding a web reference actually creates a C# class that
links your client program to the methods provided by the web service. To
see this, look in Windows Explorer and find the directory in which your
project is stored. You should find a folder called Web References within this
directory, and within the Web References folder is another folder for the
namespace name of the reference you just added. Within that folder are sev-
eral files, one of which is called Reference.cs. If you have a look in this file
in Visual Studio or Notepad, you will see that it contains a C# class with
some rather cryptic links to the methods provided by the web service.

There is no need to understand this code in detail since we never need to
edit it, but one key point that is worth noting is that the URL of the .asmx
file containing the code for the service is used in the constructor of the C#
class in Reference.cs. This provides the link between your program and
the services you are using, and will cause your program to call the remote
method(s) from the service each time it is run.

If we are not using Visual Studio, we still need to create a C# class that
contains essentially the same code as that in Reference.cs that is produced
by adding a web reference in Visual Studio. This can be done by using a
stand-alone program called wsdl.exe that comes as part of the .NET SDK.
This is a command-line program so you will need to open a console window
to run it. (If the command is not recognized at the command prompt, use
the Windows Search facility from within Windows Explorer to find it – it
should be located in the Visual Studio directory if you have Visual Studio
installed, or in the .NET SDK directory if you don’t.)

To use wsdl.exe, change directory to the main folder of the project you
are working on (the folder that contains the source code for the project).
Then run wsdl.exe giving as a command-line argument the URL of the web
service you wish to use, such as:

wsdl http://www.fakeurl.com/WebServices/HelloWorld.asmx

Running wsdl.exe produces a file containing a C# class that is almost
identical to that provided by Visual Studio, except that it is not part of a
namespace. Also, the file’s name will be derived from the name of the class
in the web service, so in our case the file is called HelloWebService.cs.

The last step is to compile this file into a library (DLL), which can be
done using the command-line C# compiler as follows:

csc /t:library HelloWebService.cs

652 From Java to C#

Then, after you’ve written the client application (which we will call
WebConsume.cs in what follows), compile the whole lot together to produce
an executable file:

csc /t:winexe /r:HelloWebService.dll WebConsume.cs

Assuming you don’t change WebConsume.cs you do not need to recompile
the client file even if the code in the web services changes (although you will
need to recompile the client if more methods are added to the web services
that you want to use, as can happen during development).

With that out of the way, all that remains is to write the client program
that is to use the web services. This is just standard C#, so no more surprises
await us. Here is a simple C# application that tests the two methods provid-
ed in HelloWebService:

using System;

// Required only in Visual Studio

using WebConsumeTest01.GroweNamespace;

public class WebConsume

{

public static void Main(string[] args)

{

HelloWebService service = new HelloWebService();

Console.WriteLine(service.HelloWeb());

Console.WriteLine("Enter an integer: ");

int number = int.Parse(Console.ReadLine());

Console.WriteLine("The square of " + number + " is " +

service.Square(number));

}

}

The second using statement in this program is required only when the
web reference is added to the project using Visual Studio’s Add Web
Reference feature. The namespace to use in this statement can be found
most easily by looking in the Reference.cs file mentioned above – it is the
namespace defined in the first line of code in this file. If you used wsdl.exe
to create the C# class, omit this line.

The remainder of the program just creates an ordinary C# class. We can
create an instance of HelloWebService in the usual way, even though it is
only defined on the remote server. We then call HelloWeb() which is one of
the two methods included in the service, and print out the welcome mes-
sage. We then request an integer from the user and call Square() to calcu-
late its square. The output from the program is:

Welcome to growe’s web service!

Enter an integer:

12

The square of 12 is 144

Web pages and the Internet 653

The .exe file produced after compiling the client can be distributed on its
own to anyone else (provided they have .NET installed on their machine). If
the code in the web service methods is changed, running the program again
will call the new version of the service methods, since the compilation of the
service source code is done on the server, not the client, in much the same
way as an ASP .NET request is processed on the server instead of the client.

Although the example we have presented here is very simple in terms of
its functionality, it should be clear that web services can be used with any
level of complexity in a C# program. It would be fairly straightforward, for
example, to convert the ASP examples earlier in this chapter so that the
database access is done using web services instead of directly.

13.10 ■ Accessing the Internet

Although we’ve seen some impressive methods for using the Internet togeth-
er with .NET and C#, sometimes it is convenient to be able to just download
a file from the web and save it to disk or use it for various purposes within
the program.

.NET provides several classes that make accessing the Internet quite simple.
We’ll examine a few of them in this section.

13.10.1 � Downloading files

Perhaps the simplest thing we can do in .NET is to download a file over the
web. To see just how simple this can be, here is the entire program that
allows a web page’s HTML source to be downloaded and saved to disk on the
local machine:

using System.Net;

public class DownloadFile

{

public static void Main(string[] args)

{

WebClient client = new WebClient();

client.DownloadFile("http://www.computing.dundee.ac.uk/",

"dundee.html");

}

}

The WebClient class provides several methods for accessing data over the
net. The simplest is DownloadFile() which takes two parameters. The first
is the URI of the file to be downloaded and the second is the name of the file
on the local machine to which the downloaded data should be stored. Here
we access the home page of the Department of Applied Computing at the
University of Dundee in Scotland (where I happen to work).

654 From Java to C#

It is probably more likely that we would want to save the HTML source of
a web page for further processing within the program, however. WebClient
provides an OpenRead() method which allows an input stream to be opened
on the file being downloaded, allowing us to save the data in an object with-
in the program rather than directly writing it to disk.

It is easiest to see how this works by presenting another example. The fol-
lowing program downloads a web page’s source code and attempts to find all
links to images embedded within the page. It then tries to download all the
images and store them locally into files with the same name as they had on
the original web site.

Before we delve into the code, it is worth pointing out that writing pro-
grams such as this which attempt to extract information from the HTML
source code of a web page are always fraught with peril. There are a great
many ways that web page code can be written, and the resulting HTML
source code for any reasonably involved page is usually very messy.
Attempting to extract information from such pages is difficult because we
must search for obscure combinations of symbols in an attempt to isolate
the information we want, and the result is rarely perfect. This should serve
as a warning that programs that do attempt to extract bits of information
from web pages should not be relied on too heavily.

For readers not familiar with HTML, the most common syntax for embed-
ding an image in a web page looks something like this:

HTML has a special img tag which signals that an image is to be loaded,
and the source file for the image is given as the value of the src attribute. The
img tag can take many other attributes as well, which can define such things
as the width and height of the image, the message that should appear as a
tooltip when the mouse hovers over the image and so on.

The src attribute can take several forms as well. If the image file is stored
in the same directory as the web page which refers to it, the file may be given
simply as a bare file name, such as src="picture.jpg". Sometimes a web site
stores its images in a special subdirectory contained in the main directory
where the web page itself is found. In this case, the src tag can specify the
image file using a relative path name, such as src="images/picture.jpg".
Finally, the image could be on a completely different web server, so that a full
URI might be used, as in src=http://www.somewhere.com/ images/picture.jpg.

Since we want to extract the actual file name from the URI in order to
determine the file name we should use to store the image locally after it has
been downloaded, we need to do a bit of string parsing. The regular expres-
sion library mentioned in Chapter 3 is very useful in this regard.

The following program is an initial attempt at an image extractor. It is far
from perfect but does manage to extract images from a number of web pages
and more to the point, illustrates several useful techniques for accessing
information from web pages.

Web pages and the Internet 655

1. using System;

2. using System.Net;

3. using System.IO;

4. using System.Text.RegularExpressions;

5.
6. public class ExtractImages

7. {

8. public static void Main(string[] args)

9. {

10. Console.WriteLine("Enter URI: ");

11. string uri = Console.ReadLine();

12. if (!uri.StartsWith("http"))

13. {

14. uri = "http://" + uri;

15. }

16. WebClient client = new WebClient();

17. Stream clientStream = client.OpenRead(uri);

18. StreamReader clientRead = new StreamReader

(clientStream);

19. string line, clientText = "";

20. while ((line = clientRead.ReadLine()) != null)

21. {

22. clientText += line;

23. }

24. string uriPattern = "src=\"[^\"]*[jpg|gif]\"";

25. MatchCollection images = Regex.Matches(clientText,

26. uriPattern, RegexOptions.IgnoreCase);

27. Console.WriteLine("Images found: " + images.Count);

28. foreach (Match image in images)

29. {

30. string imageUri = image.ToString();

31.
32. imageUri = imageUri.Substring(5, imageUri.Length - 6);

33. Uri uriObj;

34. if (!imageUri.StartsWith("http"))

35. {

36. imageUri = uri.Substring(0, uri.LastIndexOf('/')

+ 1) +

37. imageUri;

38. }

39. uriObj = new Uri(imageUri);

40. string fileName = uriObj.LocalPath;

41. int lastSeparator = fileName.LastIndexOf('/');

42. if (lastSeparator >= 0)

43. fileName = fileName.Substring(lastSeparator + 1);

44. try

656 From Java to C#

45. {

46. client.DownloadFile(imageUri, fileName);

47. Console.WriteLine("Downloaded " + fileName);

48. }

49. catch

50. {

51. Console.WriteLine("Couldn’t access: " + imageUri);

52. }

53. }

54. }

55. }

The System.Net namespace (line 2) is required for using WebClient and
System.IO for using streams.

The program is console-based, since it just prints out information on the
files that have been downloaded. It begins by asking the user to enter the
URI of the web page to be scanned for images (line 10). In order to avoid the
necessity of typing in the leading ‘http://’, we test the input string to see if it
begins with ‘http’ (line 12) and, if not, prepend this string to the URI that
was entered.

A WebClient is created (line 16) and then a stream is opened on the web
page using OpenRead() (line 17). A StreamReader is created from the
stream, since this makes reading files easier. Line 19 prepares a couple of
strings that are used in downloading and storing the HTML. The loop on
line 20 reads the HTML from the web page and appends it to clientText
until all the file has been read.

The search for images begins on line 24, where we define the search pat-
tern using a regular expression (admittedly hideous). The search pattern
looks for a string that begins with src=", then contains any number of char-
acters that does not include the quote character " and finally ends either
with jpg" or gif". This should find most JPEG or GIF files that are embed-
ded within a page.

Line 25 then builds the MatchCollection by searching clientText (the
downloaded HTML source). The third parameter in the call to
Regex.Matches() ignores the case, since HTML is not case-sensitive. Line
27 then prints the number of images found.

Now that we have a list of image files, we need to isolate the file name for
each one and attempt to download it. The loop on line 28 tries to do this.
First, we extract the string from each Match object (line 30) and then strip
off the leading src=" and trailing " characters using the Substring()
method from the String class (line 32).

Line 33 introduces the Uri class which is somewhat bizarrely contained
in the System namespace (not System.Net). Uri allows us to break up a full
URI into its component parts, so we can extract the host name, the local
path of the file, and other components commonly found in URIs. Uri is a
read-only class, however, so it cannot be used for building a URI, only for

Web pages and the Internet 657

analyzing an existing one. (There is another class called UriBuilder which
will construct URIs from their components.)

The limited analysis we do on the image’s URI will catch some, but not
all, image files found on web pages. We first check to see if the image’s URI
is absolute (that is, whether it begins with http://) on line 34. If not, the
URI should be relative to the URI that was entered by the user back on line
11. For example, if the URI isolated from the src attribute is images/
picture.jpg, then it is reasonable to assume that the full URI is
http://www.somewhere.com/images/picture.jpg, assuming that the user
entered http://www.somewhere.com/ on line 11.

After patching up the URI of the image, we create a Uri object (line 39)
so that we can try to isolate the file name. The LocalPath (line 40) isolates
that part of the URI that contains the path to the file that is being loaded.
For the full URI given in the last paragraph, LocalPath would be
images/picture.jpg, for example.

All we really want, however, is the file name at the end of the local path,
and unfortunately Uri does not have a property that gives us this, so we
need to do a bit more string manipulation. We can use LastIndexOf() from
the String class to find the last occurrence of the separator character /. If
this does not occur at all, then this method returns -1, which indicates that
the LocalPath consists of a bare file name and may be used as is. If a sepa-
rator is present, we extract the bare file name as the substring that follows
this last separator (line 43).

When we finally have the file name, we can call DownloadFile() to
retrieve the image file and store it locally using the correct name (line 46),
and then write a message to the console (line 47).

If the image could not be found, some type of exception will usually be
thrown so we can catch these and display a message to the user.

Running this program on several sites produces varying results, since the
analysis of the image file name does not consider all possibilities and can fail
to download some images.

Running the program on the Applied Computing web site used earlier in
this section gives the following output:

Enter URI:

www.computing.dundee.ac.uk/

Images found: 2

Downloaded logo.jpg

Downloaded newsicon.gif

Note that if we give a URI that is just a host name (that is, does not con-
tain the name of the actual file and thus relies on the web server to unearth
the home page for that site), we need to add a separator character at the end
of the URI. Again, we could add some more code to the program to test for
this and add the character if it is missing, but this would complicate things.

In this case, two images are found successfully, and they are both down-
loaded to the directory containing the .exe file for the program. Although

658 From Java to C#

this program works with most general web sites, it will not work (not sur-
prisingly) with sites that require authorization, such as sites where a user-
name and password are required for entry.

WebClient is suitable for applications that simply need to download the
source code from an HTML file for further processing in the program, but
lacks the flexibility needed for more involved interaction with the web site.
.NET provides another pair of classes called WebRequest and WebResponse
which are slightly more complicated to use but which provide many more
features, including the ability to send authentication information along with
a request to access a web site. Further information on these classes can be
obtained in the MSDN documentation.

■ Summary

This final chapter provides an introduction to the use of C# as a language
providing the power behind ASP .NET-based web pages. Although ASP .NET
can be used on its own to write web pages, a powerful technique is to use
only skeleton ASP .NET files to provide the controls and layout of the page,
and to relegate all the code for producing the data displayed on the page and
handling user interactions to a C# ‘behind’ file, which provides a base class
for the ASP .NET page.

We examine several techniques that can be used to retrieve, display and edit
information from a database by linking the database to ASP .NET controls.

Finally, we briefly describe how .NET can be used to produce and con-
sume web services, and how C# can be used to access the Internet directly,
without the use of a web browser.

Web pages and the Internet 659

Exercises

13.1 Write a simple ASP .NET file which specifies a web page containing a label, a
text box and a button. The label’s initial text should say ‘Enter your name:’ and
the text box should initially be blank. Write a C# behind-code file which han-
dles the event from clicking the button by reading whatever name the user has
typed into the text box and setting the label’s text to ‘Hello’ followed by the
user’s name.

Examine the source of the web page before and after pressing the button to see the
HTML that is produced by the server. Note the change in the VIEWSTATE string.

13.2 Examine the MSDN documentation to see what web controls are available for
insertion into ASP .NET pages. These controls are all in the System.Web.
UI.WebControls namespace. A complete list of the available web controls
can be found by clicking ‘Derived classes’ from the System.Web.UI.
WebControls.WebControl documentation page.

660 From Java to C#

Try out some of the simpler controls, such as CheckBox, RadioButton,
DropDownList, ListBox and so on. Compare the web control to its Windows
Forms counterpart (which in most cases has the same name). For each control
you try, read the documentation to see what events can be generated by it,
then try inserting the control in an ASP .NET page and adding handlers for some
of the events in the C# behind-code. Since no output to a console is possible
for an ASP .NET project, you can print out test messages in event handlers by
setting the text of a label on the web page.

For the exercises involving databases, we will refer to the Books database used
as an example in Chapter 11, but if you have your own database, the exercises
can be done using that as well.

13.3 Using the Books database from Chapter 11, write an ASP .NET/C# program
which reads the names of all the authors from the Author table and displays
them using an unadorned DataGrid on the web page.

13.4 Refer back to Chapter 11 and construct an SQL statement that will retrieve the
list of books in the database and display each book with its first author in a
DataGrid.

13.5 Investigate the properties available in a DataGrid for customizing the appear-
ance of rows and columns in the grid and modify the grid used to display the
data in Exercises 13.3 and 13.4 to make it more attractive. You should consid-
er changing the font used to display the text, adjusting the column widths so
they fit the data, spacing out the cells, and designing a pleasing colour scheme
for the rows and/or columns.

13.6 Add a search facility to the page in Exercise 13.5. This could consist of a text
box into which the user types a search string and a button which when pressed
searches the database for all books whose title contains that string. These books
should then be displayed in the DataGrid.

13.7 Enhance the interface to Exercise 13.6 by allowing individual books in the grid
to be selected. Add a number of labels and text boxes so that, for each select-
ed book, the details of that book (author, number of pages, etc) can be dis-
played in the text boxes. Allow the user to edit the data in the text boxes and
provide another button that will ‘update’ the data in the database. Ensure that
the text boxes and buttons are enabled and disabled at the correct times.

13.8 In the ItemEditor example in section 13.8, we defined the entire layout of the
web page in the .aspx file by using an ASP .NET Table containing Panels. It
is also possible to create an ASP .NET Table (or parts of it) within the C# code.
For example, the code in ItemEditor.aspx (lines 54 to 111) that defines the
right table cell (the one containing the text boxes displaying the parameters for
a selected item) can be replaced by C# code that builds the table programmat-
ically. To do this, replace lines 54 to 111 in the .aspx file with the single line:

<asp:TableCell runat="server" ID="rightCell"/>

Web pages and the Internet 661

Then define a TableCell field in the ItemEditor class in the C# file and create
(using the new operator) and add the controls to rightCell in the
BuildTable() method within the C# code. You will need to set the proper-
ties of each control (such as Text, Width and so on) with C# statements, but
you do not need to specify ‘Runat = "server"’ since any code in the C# file
is automatically run at the server end.

Make sure that BuildTable() is called before textArray and labelArray
are defined in the OnInit() method, since you are now creating the controls
(using new) within the C# code rather than relying on the ASP .NET page to do
it for you.

Although it is questionable whether creating this particular table cell in C# is
preferable to doing it in the ASP .NET file, the ability to create tables dynami-
cally in the C# code can be very useful if the table size changes from one ‘page
load’ event to the next.

13.9 As a simple exercise in providing a web service, write a method that returns a
clever quote at random from a repository of such quotes. The quotes can be
hard-coded into the method as an array of strings, or if you are more ambi-
tious, you might store them in a database.

For example, the repository of quotes might contain strings such as “A penny
saved is pointless”, “Cleanliness is next to impossible” and “A bird in the hand
is a mess”. Write a C# class that contains a method called Quote() which
returns one of the strings at random, and expose this method as a web service.
Use the procedures described in the text to ensure that the service is working
properly, and then write another C# program that consumes this web service
and prints out a random quote whenever it is run.

13.10 Many web browsers such as Internet Explorer provide an ‘off-line viewing’ fea-
ture which allows you to download a web page and store it locally on your com-
puter so you can view it later after disconnecting from the Internet. Write a C#
program that requests a URI and then downloads the HTML for that URI and
saves it locally as a separate file.

13.11 More advanced off-line viewing features allow you to specify the ‘depth’ of
links you want to store, starting from a particular web page. For example, a
depth of 0 means to store only the starting page, a depth of 1 means to store
the starting page and all pages to which that page is linked by hyperlinks some-
where on the page. A depth of 2 follows all links found on the pages linked to
from the starting page and so on.

Add a depth feature to the program in Exercise 13.9. To do this, you will need
to identify hyperlinks embedded in the HTML, most of which are specified by a
 type link. You will need to extract the URI
from the href attribute and then make a link to that site to download its con-
tent, and then repeat the process from that page, and so on, until the full depth
has been saved. (Be careful with this program, however, since a depth greater
than 1 can lead to an enormous number of links to save!)

abstract 224–7
Access 473, 483, 486
accessing base classes from derived classes 198–9
accessors 19–20
ActiveX technology 483
adapter classes 507
Add () method 498–9
addition (+) operator 39, 49–50

overloading 153, 155–6
addresses 81
ADO.NET 483
adventure class 260–78
affine transformations 391–2
aliases 174
alpha value of colours 373–4
alternating fill algorithm 387–8
anchors 322–4
AND operator 52–3
animation 421–8

and threads 422–8
API (Application Programming Interface) 483
apostrophes 645
applets 619
area calculations 226
arrays 93–7

bounds checking 95
declaration 93–4
initialization lists 96–7, 102
jagged arrays 101–4
length property 94
multidimensional 98–108
null rows 103–4
parameter passing 104–8
rectangular 98–100
of reference data types 94–5
subscripts 93
two-dimensional 98–100
of value data types 94

as keyword 221–2
ASCII character set 36

ASP.NET 603, 604–10
assembly files 315
assignment operator 56, 58–9

overloading 157–8
associativity rules 58–9
ATTLIST 551, 552
attributes in XML 539–40
automatic garbage collection 122, 126–7

backslash 37
base classes 195, 198–9
base keyword 202
binary operator 47, 58
bit shift operator 54–5
bitmap files 351–2
bitwise operators 52–3

overloading 161
Boolean data types 36, 47
bounds checking 95
boxing 216–18

structs 218–20
break statement 71–2
browsers 541
brushes 376–84
Build menu 8–9
buttons 295–6, 322

mnemonic keys 330
non-rectangular 441–7
radio buttons 335–41, 347
on toolbars 351–3

byte 29
byte addresses 81

C#, definition 1–3
C++ 13
calculator program 326–31
callback functions 296
calling method 146
candidates 22
casting 31, 45–7, 162–7

Index

Index 663

explicit 163
implicit 163, 166
misuse of 167
user-defined 164

catch blocks 281, 283–6
CDATA 553
chained statements 56
character classes 247–56
character data types 36–8
checkboxes 335–41
checked keyword 32–3, 46, 166
checkers game 410–17
class data fields 115–16, 202
Class View 8
classes 11, 13, 14–19

adapter 507
adventure 260–78
base 195, 198–9
candidates 22
character 247–56
derived 195–6, 198–9
design 430–1
diagrams 21–2, 234
item 238–47
language-independent 313
Object class 211–15
protection levels 197
room 256–9
URI 657–8
utility 410, 416
wrapper 88, 216–17

client area of forms 330–1
clock program 342–8, 362
code generation systems 314
colours 330, 373–4
COM (Component Object Model) 647
combat sequences 237–8
ComboBox 367
command line compiler 3–5, 6
commands 188–9, 236

command builder 508–9
comments 17, 540
Common Runtime Language (CRL) 1
comparing memory addresses 212–13, 214
comparison operator 55

overloading 157
compatibility of data types 220–1
compound statements 113

concatenating strings 39, 50
conditional operators 57–8

overloading 158–9
conditional statements 61–6
connecting to a database 483–91
consoles 317
Console.Writeline () method 38, 40
const keyword 149
constructors 19, 84, 137–41, 320

and inheritance 201–2
static 147–8

continue statement 71–2
controls see GUI (graphical user interface)

programming; web controls
convenience assignment operator 56–7, 59
conversion of data types 31–2, 44–7
coordinate system 375
COUNT () 493
creating objects 18–19, 84, 145, 149–50
CRL (Common Runtime Language) 1
.cs files 6
cse.exe 4
currency

calculations 35
symbols 41

customizing DataGrids 614–19

data carried by exceptions 289–90
data fields 14, 17

accessing base classes from derived classes
198–9

initializing 19
instance fields 145, 151
ordinary 144–5
static 144–6

data overflow 32–3
Data Source Names (DSN) 489
data types 17, 474

Boolean 36, 47
character 36–8
compatibility of 220–1
conversions 31–2, 44–7
decimal 35
floating-point 33–4
integer 29–31
overflow checking 32–3, 46
reference data types 81–8, 117, 127–8

in arrays 94–5

data types (continued)
round-off errors 34
structs 127–30
see also strings; value data types; variables

data validation see validation
databases 469–535

Access 473, 483, 486
API (Application Programming Interface) 483
connecting to 483–91
DataGrids 504–10, 511–25, 612–19
DataSets 500–3, 510, 511–25
filters 518
many-to-many relationships 472
MySQL 484, 487–90, 490–1
namespaces 483, 490–1
numerical keys 471, 472
ODBC (Open Database Connectivity) 483,

484, 488
one-to-many relationships 471–2
primary keys 472–3, 475, 497–8, 509, 518
queries 469–70, 476–8, 492–6
referential integrity 482
SQL Server 483, 486
tables 470–3
and web controls 610
see also SQL (Structured Query Language)

DataGrids 504–10, 511–25, 612–19
customizing 614–19

DataSets 500–3, 510, 511–25
date and time formatting 41–2
DCOM (Distributed COM) 647
debugging, Start without debugging 9
decimal data type 35
declaration

of arrays 93–4
of delegates 297–8
of objects 14, 18
of variables 14–15, 81–3, 87, 114

and memory management 117–27
decrement (--) operator 50–2

overloading 157
default values 139
delegates 296–300

declaration 297–8
and entry point of threads 310
multicast 301–3

deleting records 482, 524
derived classes 195–6, 198–9

design of classes 430–1
diagrams

of classes 21–2, 234
of inheritance 233

dialog boxes 348–50
Distributed COM (DCOM) 647
division operator 50
DNS (domain name servers) 603
docks 322–4
DOCTYPE statements 553–4, 567
documentation 2, 9, 21, 324–6

in XML 585–8
DOM (Document Object Model) 542, 558–62
domain name servers (DNS) 603
double data type 33–4
do...while 67–8
downloading files 654–9
drawing on images 405–7
drawing shapes 374–6
DrawLine () method 375–6
DSN (Data Source Names) 489
DTD (Document Type Definitions) 550–8,

589–90
DOCTYPE statements 553–4, 567
writing 551–3

dynamic binding 204–6

elements in XML 539–40, 551, 552
encapsulation 14–19, 198
ENTITY 551
entry points 5, 18

of threads 310
enum (enumeration) keyword 17–18, 108–12
enumerated lists 553
equality testing operator 55
Equals () method 212–15
error handling 331–5

see also exceptions
escaped characters 37, 39–40
event handling 227, 295–6, 303–7, 321–2,

454–65
in Java 295–6
keyboard events 418–21
mouse events 407–18
and toolbars 352–3
validating event 332–4
see also delegates

664 Index

exceptions 281–93
data carried by 289–90
handling 283–6
and inheritance 286–8
throwing 288–9
use of 292–3
user-defined 290–2

ExecuteNonQuery () method 496–7, 499
ExecuteReader () method 492, 494–6
ExecuteScalar () method 492–3
explicit casts 163
explicit keyword 165
explicit type conversions 45–7
exponent 34
expressions

conditional 57–8
initialization 68
regular 42–3
update 68, 69, 70

Extensible Markup Language see XML
Extensible Stylesheet Language (XSLT) 542,

578–84

false operator 57
overloading 158–9

filename filter 362
files

downloading files 654–9
extensions 6

filling shapes 376–84, 387–90
filters

in databases 518
for filenames 362

flickering of images 417, 422
floating-point data types 33–4
focus 330, 332
fonts 329, 400–3, 618
for loop 68–70
foreach loop 97–8, 100, 102–3
Form Editor 318–19
format transformations in XML 542, 578–84
formatting

colours 330, 373–4
date and time 41–2
fonts 329, 400–3, 618
layout manager 322–3
strings 40–2

FromFile () method 378

functions 12, 14
callback functions 296
see also methods

garbage collection 122, 126–7
GDI+ (Graphics Device Interface) 372
GetHashCode () method 213
GIF graphics 404
goto 72–4
gradient fills 379
graphics 371–465

animation 421–8
filling shapes 376–84, 387–90
flickering of images 417, 422
GraphicsPath 385–7, 392–3
in Java 371–3
keyboard events 418–21
Matrix class 391–400
mouse events 407–18
raster graphics 372, 404–7
text production 372–3, 400–3
transformations 373, 391–400
vector graphics 372, 373–85
in web pages 619–22

Graphics Device Interface (GDI+) 372
GraphicsPath 385–7, 392–3
GUI (graphical user interface) programming

313–68
anchors 322–4
calculator program 326–31
checkboxes 335–41
ComboBox 367
dialog boxes 348–50
docks 322–4
environment choice 313–15
error handling 331–5
event handlers 321–2
Form Editor 318–19
ListBox 367–8, 519
menus 342–8
radio buttons 335–41, 347
status bars 350, 354, 361
toolbars 351–3
TreeView 368
see also buttons

handling exceptions 283–6
HatchBrush 378–9

Index 665

666 Index

heap 120–6, 127
HTML 537–8, 542, 580, 581, 583–4, 605, 608–10,

622

icons 351
if...else statement 61–3
image files 404–5
immutable variables 39
implicit casts 163, 166
implicit keyword 165
implicit type conversions 31–2, 44–5
import statement 314
increment (++) operator 50–2

overloading 157
indexers 167–70
infinite loops 67
inheritance 14, 195–278

and abstract classes 224–7
accessing base classes from derived classes

198–9
and boxing 216–18

structs 218–20
concept 195–6
and constructors 201–2
diagrams 233
and exceptions 286–8
and interfaces 227–31
of methods 200–1

sealed methods 222–4
static methods 209–210
virtual methods 204–6

and name hiding 201, 202–3, 209
and sealed classes 222–4
and structs 218–20
syntax 196–7
and unboxing 218
and value variables 216–18
and versioning 207–9
see also polymorphism

initialization 260–3, 431–41
of data fields 19
expressions 68
lists 96–7, 102
of variables 91

inserting new records 475–9
instance methods 145, 151
integer data types 29–31
interactive web pages 622–3, 631–2

interfaces 385, 429–30, 624–5
and inheritance 227–31
listener interfaces 227, 295–6
see also GUI (graphical user interface)

programming
Internet

ASP.NET 603, 604–10
downloading files 654–9
servers 603
see also web pages

Internet Service Providers (ISPs) 603
is 220–1
is-a-type-of relationships 196
item classes 238–47
item editor 623–46

data validation 630, 635–6
interactive data display 631–2
interface 624–5
templates 631, 632–3

jagged arrays 101–4
Java

applets 619
event handling 295–6
graphics 371–3
import statement 314
JDK (Java Development Kit) 585
JSP (Java Server Pages) 603
JVM (Java Virtual Machine) 371
layout manager 322–3
libraries 2
platform independence 1
Shape interface 385
threads 307–8

joins 478–81
JPEG graphics 404, 619

keyboard events 418–21
modifier keys 421

keyboard mapping 9
keywords

abstract 224–7
as 221–2
base 202
checked 32–3, 46, 166
const 149
enum (enumeration) 17–18, 108–12
explicit 165

Index 667

implicit 165
new 209, 210
null 83
operator 165
out 91–2
override 205, 207–8, 209, 223
params 106–8
private 14
protected 199
readonly 150
ref 88–91
sealed 222–4
static 144–8
super 201
this 151–3
throw 288–9
using 5, 172–4, 314–15
virtual 204–6
see also operators

language independence 1, 313
layout manager 322–3
left-associative operators 58–9
length property 94
libraries 2, 314–15

see also documentation
line segments 386
LinearGradientBrush 379
ListBox 367–8, 519
listener interfaces 227, 295–6
loading saved files 594–9
local variables 112–15, 116
logical operators 54

overloading 159–61
long 30, 31, 162
loops 66–70

do...while 67–8
for 68–70
foreach 97–8, 100, 102–3
infinite 67
nested 73–4
while 66–7

Main () method 18, 25–6
managed heaps 127
mantissa 34
many-to-many relationships 472
maps for adventure games 447–51

matching characters 42–3
matrices 154, 391–2
Matrix class 391–400
memory 117–27

automatic garbage collection 122, 126–7
comparing addresses 212–13, 214
heap 120–6, 127
stack 120
storage of variables 81–2, 120

menus 342–8
methods 14

abstract 224
Add () 498–9
calling 146
Console.Writeline () 38, 40
DrawLine () 375–6
Equals () 212–15
ExecuteNonQuery () 496–7, 499
ExecuteReader () 492, 494–6
ExecuteScalar () 492–3
FromFile () 378
GetHashCode () 213
implementation in running code 151
and inheritance 200–1

sealed 222–4
static 209–210
virtual 204–6

instance 145, 151
Main () 18, 25–6
OnPaint () 374–5, 393
overloaded 141, 142–4
PlayGame () 26
PrintDescription () 197, 200
ReferenceEquals () 212–15
sealed 222–4
side effects 88
signatures 142, 297
static 146–7, 151, 209–210
ToString () 23–6, 211–12
virtual 204–6
see also constructors; functions; parameter

passing
MFC (Microsoft Foundation Classes) 372, 404
mnemonic keys 330
modal dialog 349–50
modifier keys 421
modulus operator 50
Mono project 1

mouse events 407–18
MSDN documentation 2, 324–6, 368
multi-tasking systems 307
multi-word commands 189
multicast delegates 301–3
multidimensional arrays 98–108
multiplication operator 50

overloading 153
MySQL 484, 487–90, 490–1

name hiding 201, 202–3, 209
namespaces 5, 8, 170–4

aliases 174
for databases 483, 490–1
defining 170–2
motivation for 171
nesting 173
SqlClient 490–1
System namespace 315
using statement 5, 172–4, 314–15

naming variables 108
nested loops 73–4
nesting namespaces 173
.NET xiii

ADO.NET 483
ASP.NET 603, 604–10
definition 1–3
language independence 1, 313
Visual Basic .NET 2, 13, 313
Visual Studio .NET xv, 3, 6–9, 314, 315–17

new keyword 209, 210
new operator 84, 122
newline characters 39
nodes 540
non-modal dialog 349–50
non-printing characters 37
non-rectangular buttons 441–7
NOTATION 551
Notepad 3–4, 364–7
null keyword 83
null rows 103–4
numerical keys 471, 472

Object class 211–15
object-oriented programming 11, 12–13

creating objects 18–19, 84, 145, 149–50
declaring objects 14, 18

ODBC (Open Database Connectivity) 483, 484,
488

OleDB 483, 484
one-to-many relationships 471–2
OnPaint () method 374–5, 393
operands 47–8, 153
operating systems 307
operator keyword 165
operators 47–61

addition (+) 39, 49–50
as 221–2
assignment 56, 58–9
associativity rules 58–9
binary 47, 58
bit shift 54–5
bitwise 52–3
comparison 55
conditional 57–8
convenience assignment 56–7, 59
decrement (—) 50–2
division 50
equality testing 55
false 57
increment (++) 50–2
is 220–1
logical operators 54
modulus 50
multiplication 50
new 84, 122
overloading 153–62

rules for 161–2
precedence 59–61
ternary 47, 57
true 57
unitary 47
XOR 52–3
see also keywords

OR operator 52–3
ORDER BY 481
ordinary data fields 144–5
orthogonal arrays see jagged arrays
out keyword 91–2
overflow checking 32–3, 46
overloading 153–62

addition (+) operator 153, 155–6
assignment operators 157–8
bitwise operators 161
decrement (—) operator 157
false operator 158–9
increment (++) operator 157

668 Index

logical operators 159–61
methods 141, 142–4
multiplication 153
rules for 161–2

override keyword 205, 207–8, 209, 223

paint 371, 374–5
parameter passing 86–91, 115

in arrays 104–8
out keyword 91–2
and polymorphism 207
ref keyword 88–91
scope 115

params keyword 106–8
parsing 542, 550, 554–8
Pascal 11
PathGradientBrush 380–3
pathnames 4–5
pattern matching 42–3
pens 374–6, 384
perimeter calculations 226, 229–30
pixel coordinates 375
placeholders 40
platform independence 1
PlayGame () method 26
pointers xiv
polymorphism 14, 201, 203–4, 206

and compatibility of data types 220–1
and parameter passing 207
and references to abstract classes 227

popup menus 342
postback 622–3
precedence operator 59–61
prepared statements 497–9, 508
primary keys 472–3, 475, 497–8, 509, 518
primitive data types see data types
PrintDescription () method 197, 200
private keyword 14
procedural languages 11–12
procedures 12
projects 6–7
properties 13–14, 19–21
protected keyword 199
protection levels 197
providers 486
pseudo-random numbers 274

queries 469–70, 476–8, 492–6

radio buttons 335–41, 347
random numbers 274
raster graphics 372, 404–7

drawing on images 405–7
image files 404–5

rays 389
reading 543–50
readonly keyword 150
rectangles 225–6, 228–31
rectangular arrays 98–100
ref keyword 88–91
reference data types 81–8, 117, 127–8

in arrays 94–5
ReferenceEquals () method 212–15
references to abstract classes 227
referential integrity 482
regular expressions 42–3
rendering 386
requirements documents 21
RGB colour model 373
right-associative operators 58–9
room class 256–9
rotation actions 373, 391, 396–8
round-off errors 34

saving files 589–94
SAX (Simple API for XML) 542
sbyte 29
scaling actions 373, 391, 398
schemas 543, 550–1
scope rules 112–16
SDK (Software Development Kit) 3, 6
sealed 222–4
searching with XPath see XPath
SELECT 476–9, 492–3
servers 603
set accessor 20
Shape interface 385
shearing actions 373, 391, 398–400
short 30
shortcut keys 346
shortcuts 9
side effects 88
signatures 142, 297
signed integers 29–30
Simple API for XML (SAX) 542
Simula 13
single-word commands 188

Index 669

Smalltalk 13
SOAP (Simple Object Access Protocol) 648
Software Development Kit (SDK) 3, 6
SolidBrush 377
Solution Explorer 6, 8, 316, 587
special characters 39–40
specification of programmes 13
SQL Server 483, 486
SQL (Structured Query Language) 473–82

apostrophes 645
COUNT () 493
data types 474
deleting records 482, 524
inserting new records 475–9
joins 478–81
ORDER BY 481
prepared statements 497–9, 508
queries 476–8, 492–6
running SQL commands 487, 491–9
SELECT 476–9, 492–3
UPDATE 482

SqlClient 490–1
square bracket [] notation 167
stack 120
stack trace 281, 289
stateless pages 609, 623
statements

break 71–2
chained 56
conditional 61–6
continue 71–2
goto 72–4
if...else 61–3
switch 63–6
using 5, 172–4, 314–15

states 371, 372
static constructors 147–8
static data fields 144–6
static keyword 144–8
static methods 146–7, 151, 209–210
statistic displays 451–4
status bars 350, 354, 361
storage of variables 81–2, 120
strings 38–42, 177

concatenating 39, 50
formatting 40–2
inserting special characters 39–40
matching characters 42–3

stroke 371
structs 127–30

boxing 218–20
and inheritance 218–20

sub-menus 346
subpaths 386–7
subscripts in arrays 93
super keyword 201
switch statement 63–6
System namespace 315
System.Object class 211–15

tab sequences 330
TabControl 511–12
tables in databases 470–3

joins 478–81
tags 537–9, 541
templates 578–9, 631, 632–3
ternary operator 47, 57
test code 18
text editors 313–14
text production 372–3, 400–3
TextureBrush 377–8
this keyword 151–3
threads 307–11

and animation 422–8
entry point 310
in Java 307–8

throw keyword 288–9
tiling 383–4
time and date formatting 41–2
toolbars 351–3
top-down design 12
ToString () method 23–6, 211–12
transformations 373, 391–400

affine 391–2
matrix representation 391–2
rotation 373, 391, 396–8
scaling 373, 391, 398
shearing 373, 391, 398–400
translation 373, 391, 393–6
in XML 542, 578–84

translation actions 373, 391, 393–6
tree structure 540, 550
TreeView 368
triangular brush 380–4
true operator 57

overloading 158–9

670 Index

try...catch block 281, 283–6
turn-based combat sequences 237
two-dimensional arrays 98–100

uint 30
ulong 30, 31
UML (Universal Modelling Language) 234
unboxing 218
Unicode system 36–8
unitary operator 47
unmanaged heaps 127
unsafe code xiv
unsigned integers 29–30
UPDATE 482
update expressions 68, 69, 70
URI class 657–8
URL (Uniform Resource Locator) 603
use cases 21–2
user interaction 295
user-defined casts 164
user-defined exceptions 290–2
ushort 30
using 5, 172–4, 314–15
utility classes 410, 416

validation 332–4, 543, 550–8, 630, 635–6
value data types 81–8, 117, 127–8

in arrays 94
and inheritance 216–18
structs 127–30, 218–20

variables
class data fields 115–16, 202
declaring 14–15, 81–3, 87, 114

and memory management 117–27
initializing 91
local 112–15, 116
naming 108
passing as parameters 86–91
scope rules 112–16
storage in memory 81–2, 120
see also data types

vector graphics 372, 373–85
brushes 376–84
colours 373–4
drawing shapes 374–6
filling shapes 376–84, 387–90
pens 374–6, 384

vectors 154, 391
versioning 207–9
virtual 204–6
Visual Basic .NET 2, 13, 313
Visual Studio .NET xv, 3, 6–9, 314, 315–17

web controls 606, 608, 610, 621–2
web pages 603–4

ASP.NET 603, 604–10
downloading files 654–9
graphics 619–22
interactive 622–3, 631–2
postback 622–3
stateless pages 609, 623

web servers 603
Web Service Definition Language (WSDL) 648
web services 647–54

consuming 651–4
well-formed files 550
while loop 66–7, 67–8
whitespace characters 37
winding filling mode 389–90
Windows programs 315–19

see also GUI (graphical user interface)
programming

WrapMode 379
wrapper classes 88, 216–17
WSDL (Web Service Definition Language) 648

XML (Extensible Markup Language) 537–99
attributes 539–40
comment lines 540
documentation 585–8
DOM (Document Object Model) 542, 558–62
DTD (Document Type Definitions) 550–8,

589–90
editing 566–78
elements 539–40
format transformations 542, 578–84
loading saved files 594–9
nodes 540
parsing 542, 550, 554–8
reading 543–50
saving files 589–94
schemas 543, 550–1
searching with XPath 542, 562–6
tags 537–9, 541
tree structure 540, 550

Index 671

672 Index

XML (Extensible Markup Language)
(continued)

using 541–3
validation 543, 550–8
well-formed files 550
writing 566–78

XmlDocument 568–78

XMLTextReader 543–50
XmlTextWriter 566, 567–8
XOR operator 52–3
XPath 542, 562–6
XSLT (Extensible Stylesheet Language) 542,

578–84
templates 578–9

