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Preface

Preface to the 1st Edition

In writing this book our target was to deliver an accessible, introductory text on the funda-
mentals of machine learning and the ways that machine learning is used in practice to solve
predictive data analytics problems in business, science, and other organizational contexts.
As such, the book goes beyond the standard topics covered in machine learning books and
also covers the lifecycle of a predictive analytics project, data preparation, feature design,
and model deployment.

The book is intended for use in machine learning, data mining, data analytics, or artificial
intelligence modules of undergraduate and postgraduate computer science, natural and so-
cial science, engineering, and business courses. The book provides case studies illustrating
the application of machine learning within the industry context of data analytics, which
also makes it a suitable text for practitioners looking for an introduction to the field and a
textbook for industry training courses in these areas.

The design of the book is informed by our many years of experience in teaching machine
learning, and the approach and material in the book has been developed and “road-tested”
in the classroom. In writing this book, we have adopted the following guiding principles
to make the material accessible:

1. Explain the most important and popular algorithms clearly, rather than overview the
full breadth of machine learning. As teachers we believe that giving students a deep
knowledge of the core concepts underpinning a field provides them with a solid ba-
sis from which they can explore the field themselves. This sharper focus allows us
to spend more time introducing, explaining, illustrating, and contextualizing the algo-
rithms that are fundamental to the field and their uses.

2. Informally explain what an algorithm has been designed to do before presenting the
technical formal description of how it does it. Providing this informal introduction to
each topic gives students a solid basis from which to attack the more technical mate-
rial. Our experience with teaching this material to mixed audiences of undergraduates,
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postgraduates, and professionals has shown that these informal introductions enable
students to easily access the topic.

3. Provide complete worked examples. In this book we have presented complete work-
ings for all examples, because this enables readers to check their understanding in
detail.

Preface to the 2nd Edition

Since the first edition of this book was released in 2015, things have been moving very
fast in the world of machine learning. Machine learning models are being used for a more
diverse range of applications than ever before, and new developments in machine learning
methods are opening up even more opportunities. This has led to the field receiving signif-
icant attention from the media (both positive and negative) and a greater interest than ever
before from people who want to become machine learning practitioners. For these reasons
we felt the time was right for a second edition of the book. In this edition we have sought
to expand the topics covered in the first edition to bring them up to date with modern de-
velopments, while at the same time staying true to the approach used in the first edition
of covering the core concepts in the field in depth with fully worked examples. The main
additions in the second edition are the following:

 Due to its expanded size, this edition of the book has been organized into five parts:
Part I: Introduction to Machine Learning and Data Analytics; Part II: Predictive Data
Analytics; Part III: Beyond Prediction; Part IV: Case Studies and Conclusions; and Part
V: Appendices.

 Chapter 8 is a new chapter on deep learning that covers the fundamentals of artificial
neural networks as well as the most important network architectures used in modern
machine learning applications for images, language, and more. This brings the book
right up to date with the most recent developments in machine learning.

 Chapter 10 is a new chapter covering the most important ideas and techniques in unsu-
pervised learning. This chapter is one-half of a new part of the book, Beyond Predic-
tion, that expands beyond the focus of the first edition on supervised learning to allow
broader coverage of machine learning.

 Chapter 11, in the second half of the new Beyond Prediction part of the book, describes
reinforcement learning from the fundamental ideas that underpin it to the use of deep
neural networks in modern reinforcement learning systems.

 Section 4.4.5 has been revised to cover ensemble models in more detail than in the first
edition and includes a new description of gradient boosting methods.

 Appendix D is a new section covering the fundamentals of linear algebra that underpin
the new chapter on deep learning.
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 The question sets at the end of each chapter have been revised and expanded—this in-
cludes over 50 new questions.

We hope that these additions and revisions will make the second edition of the book more
useful and relevant than the first. We are indebted to all those people—readers, students,
instructors, reviewers, colleagues, friends, and family—who gave us feedback on the first
edition, which has helped us massively in designing this new edition.

Structure of the Book

In teaching a technical topic, it is important to show the application of the concepts dis-
cussed to real-life problems. For this reason, we present machine learning within the con-
text of predictive data analytics, an important industry application of machine learning.
The link between machine learning and data analytics runs through every chapter in the
book but is especially strong in Part I, which includes Chapters 1 to 3. In Chapter 1 we
introduce machine learning and explain its role within a standard data analytics project
lifecycle. In Chapter 2 we provide a framework for designing and constructing a predic-
tive analytics solution based on machine learning that meets a business need. All machine
learning algorithms assume that a dataset is available for training; and in Chapter 3 we
explain how to design, construct, and quality check a dataset before using it to build a
prediction model.

Part II[117] of the book includes Chapters 4 to 9 and covers the main supervised machine
learning material. Each of this part’s first five chapters presents a different approach to
machine learning: Chapter 4, learning through information gathering; Chapter 5, learning
through analogy; Chapter 6, learning by predicting probable outcomes; Chapter 7, learning
by searching for solutions that minimize error; and Chapter 8, learning new representations
using deep neural networks. All these chapters follow the same two-part structure:

 The first part of each chapter presents an informal introduction to the material presented
in the chapter, followed by a detailed explanation of the fundamental technical concepts
required to understand the material. Then it presents a standard machine learning algo-
rithm used in that learning approach, along with a detailed worked example.

 The second part of each chapter explains different ways that the standard algorithm can
be extended and well-known variations on the algorithm.

The motivation for structuring these technical chapters in two parts is that it provides a
natural break in the chapter material. As a result, a topic can be included in a course by
covering just the first part of a chapter (Big Idea, fundamentals, standard algorithm, and
worked example); and then—time permitting—the coverage of the topic can be extended
to some or all of the material in the second part. Chapter 9 explains how to evaluate the
performance of prediction models and presents a range of different evaluation metrics. This
chapter also adopts the two-part structure of standard approach followed by extensions
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and variations. Throughout these technical chapters, the link to the broader predictive
analytics context is maintained through detailed and complete real-world examples, along
with references to the datasets and/or papers on which the examples are based.

Part III covers fundamental techniques in machine learning beyond the supervised ma-
chine learning approaches described in Part II. Chapter 10 describes unsupervised machine
learning, and Chapter 11 describes reinforcement learning. These chapters follow the same
two-part structure as the chapters in Part II.

In Part IV the link between the broader business context and machine learning is shown
very clearly in the case studies presented in Chapters 12 (predicting customer churn) and 13
(galaxy classification). In particular, these case studies highlight how a range of issues and
tasks beyond model building—such as business understanding, problem definition, data
gathering and preparation, and communication of insight—are crucial to the success of a
predictive analytics project. Finally, Chapter 14 discusses a range of fundamental topics
in machine learning and highlights that the selection of an appropriate machine learning
approach for a given task involves factors beyond model accuracy—we must also match
the characteristics of the model to the needs of the business.

Part V of the book contains appendices covering background material required to support
the content of the other chapters of the book. This includes descriptive statistics and data
visualization (Appendix A), probability (Appendix B), differentiation (Appendix C), and
linear algebra (Appendix D).

How to Use This Book

Through our years of teaching this material, we have developed an understanding of what
is a reasonable amount of material to cover in a one-semester introductory module and in
a two-semester more advanced module. To facilitate its use in these different contexts, the
book has been designed to be modular—with very few dependencies between chapters. As
a result, instructors using this book can plan their courses by simply selecting the sections
of the book they wish to cover without worrying about dependencies between the sections.
When presented in class, the material in Chapters 1, 2, 12, 13, and 14 typically takes two
to three lecture hours per chapter to cover; and the material in Chapters 3, 4, 5, 6, 7, 8, 9,
10, and 11 normally takes four to six lecture hours per chapter to cover.

In Table 0.1 we have listed a number of suggested course plans targeting different con-
texts. All these courses include Chapter 1 (Machine Learning for Predictive Data Ana-
lytics) and Chapter 14 (The Art of Machine Learning for Predictive Data Analytics). The
first course listed (column “M.L. (short) (deep)”) is designed to be a one-semester machine
learning course with a focus on giving students a deep understanding of two approaches
to machine learning, along with an understanding of the correct methodology to use when
evaluating a machine learning model. In our suggested course we have chosen to cover
all of Chapters 4 (Information-Based Learning) and 7 (Error-Based Learning). However,
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Table 0.1
Suggested course syllabi.

M.L. M.L. M.L. P.D.A. P.D.A.
(short) (short) (long) (short) (long)

Chapter Section (deep) (broad)
1 � � � � �
2 � �
3 3.1, 3.2, 3.3, 3.4, 3.5 � �

3.6 � � � �
4 4.1, 4.2, 4.3 � � � � �

4.4.1, 4.4.2, 4.4.3 � �
4.4.4 � � �
4.4.5 � � � �

5 5.1, 5.2, 5.3, 5.4.1, 5.4.3, 5.4.6 � � �
5.4.2, 5.4.4, 5.4.5 �

6 6.1, 6.2, 6.3, 6.4.1 � � �
6.4.2, 6.4.3, 6.4.4 �

7 7.1, 7.2, 7.3 � � � � �
7.4.1, 7.4.2, 7.4.3 � � �

7.4.4, 7.4.5, 7.4.6, 7.4.7 � � � �
8 8.1, 8.2, 8.3 � � �

8.4.1, 8.4.2, 8.4.3, 8.4.4, 8.4.5, 8.4.6, �
9 9.1, 9.2, 9.3 � � � � �

9.4.1, 9.4.2, 9.4.3,9.4.4, 9.4.5 � � � �
9.4.6 �

10 10.1, 10.2, 10.3 � � � �
10.4.1, 10.4.2, 10.4.4, 10.4.5, 10.4.6

11 11.1, 11.2, 11.3 � �
11.4.1, 11.4.2

12 � �
13 �
14 � � � � �

Chapter 5 (Similarity-Based Learning) and/or 6 (Probability-Based Learning) could be
used instead. The “M.L. (short) (deep)” plan is also an ideal course plan for a short (one-
week) professional training course. The second course (“M.L. (short) (broad)” is another
one-semester machine learning course. Here, however, the focus is on covering a range of
machine learning approaches, and again, evaluation is covered in detail. For a longer two-
semester machine learning course (“M.L. (long)”) we suggest covering data preparation
(Section 3.6), all the machine learning chapters, and the evaluation chapter.
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There are contexts, however, in which the focus of a course is not primarily on machine
learning. We also present two course paths that focus on the context of predictive data
analytics. The course “P.D.A. (short)” defines a one-semester course. This course gives
students an introduction to predictive data analytics, a solid understanding of how machine
learning solutions should be designed to meet a business need, insight into how prediction
models work and should be evaluated, and one of the case studies. The “P.D.A. (short)”
plan is also an ideal course plan for a short (one-week) professional training course. If there
is more time available, then “P.D.A. (long)” expands on the “P.D.A. (short)” course so that
students gain a deeper and broader understanding of machine learning, and it includes the
second case study.

Online Resources

The following website:

www.machinelearningbook.com

provides access to a wide range of material that supports the book. Worked solutions for
all end-of-chapter exercises are available. For questions that are not marked with an �, a
solutions manual is available from the book website. Solutions for those questions that are
marked with an � are contained in an instructors’ manual available on request from MIT
Press.
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Notation

In this section we provide a short overview of the technical notation used throughout this
book.

Notational Conventions

Throughout this book we discuss the use of machine learning algorithms to train prediction
models based on datasets. The following list explains the notation used to refer to different
elements in a dataset. Figure 0.1[xxiii] illustrates the key notation using a simple sample
dataset.

ID  Name Age Country  Rating 

1 Brian 24 Ireland B 

2 Mary 57 France AA 

3 Sinead 45 Ireland AA 

4 Paul 38 USA A 

5 Donald 62 Canada B 

6 Agnes 35 Sweden C 

7 Tim 32 USA B 

DRating = AA

D

d7

d5[3]

d[1]

t4

Figure 0.1
How the notation used in the book relates to the elements of a dataset.
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Datasets
 D denotes a dataset.
 A dataset is composed of n instances, pd1; t1q to pdn; tnq, where d is a set of m descriptive

features, and t is a target feature.
 A subset of a dataset is denoted by D with a subscript to indicate the definition of the

subset. For example, D f�l represents the subset of instances from the dataset D where
the feature f has the value l.

Vectors of Features
 Lowercase boldface letters refer to a vector of features. For example, d denotes a vector

of descriptive features for an instance in a dataset, and q denotes a vector of descriptive
features in a query.

Instances
 Subscripts are used to index into a list of instances.
 xi refers to the ith instance in a dataset.
 di refers to the descriptive features of the ith instance in a dataset.

Individual Features
 Lowercase letters represent a single feature (e.g., f , a, b, c : : :).
 Square brackets rs are used to index into a vector of features (e.g., d r js denotes the value

of the jth feature in the vector d).
 t represents the target feature.

Individual Features in a Particular Instance
 di r js denotes the value of the jth descriptive feature of the ith instance in a dataset.
 ai refers to the value for feature a of the ith instance in a dataset.
 ti refers to the value of the target feature of the ith instance in a dataset

Indexes
 Typically, i is used to index instances in a dataset, and j is used to index features in a

vector.

Models
 We use M to refer to a model.
 Mw refers to a model M parameterized by a parameter vector w.
 Mwpdq refers to the output of a model M parameterized by parameters w for descriptive

features d.
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Set Size
 Vertical bars | | refer to counts of occurrences (e.g., |a � l| represents the number of

times that a � l occurs in a dataset).

Feature Names and Feature Values
 We use a specific typography when referring to a feature by name in the text (e.g., PO-

SITION, CREDITRATING, and CLAIM AMOUNT).
 For categorical features, we use a specific typography to indicate the levels in the domain

of the feature when referring to a feature by name in the text (e.g., center, aa, and soft
tissue).

Notational Conventions for Probabilities

For clarity there are some extra notational conventions used in Chapter 6[243] on probability.

Generic Events
 Uppercase letters denote generic events where an unspecified feature (or set of features)

is assigned a value (or set of values). Typically, we use letters from the end of the
alphabet—e.g., X, Y , Z—for this purpose.

 We use subscripts on uppercase letters to iterate over events. So,
°

i PpXiq should be
interpreted as summing over the set of events that are a complete assignment to the
features in X (i.e., all the possible combinations of value assignments to the features in
X).

Named Features
 Features explicitly named in the text are denoted by the uppercase initial letters of their

names. For example, a feature named MENINGITIS is denoted by M.

Events Involving Binary Features
 Where a named feature is binary, we use the lowercase initial letter of the name of the

feature to denote the event where the feature is true and the lowercase initial letter pre-
ceded by the  symbol to denote the event where it is false. So, m will represent the
event MENINGITIS � true, and  m will denote MENINGITIS � false.

Events Involving Non-Binary Features
 We use lowercase letters with subscripts to iterate across values in the domain of a fea-

ture.
 So

°
i Ppmiq � Ppmq � Pp mq.
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 In situations where a letter, for example, X, denotes a joint event, then
°

i PpXiq should
be interpreted as summing over all the possible combinations of value assignments to the
features in X.

Probability of an Event
 The probability that the feature f is equal to the value v is written Pp f � vq.

Probability Distributions
 We use bold notation Ppq to distinguish a probability distribution from a probability mass

function Ppq.
 We use the convention that the first element in a probability distribution vector is the

probability for a true value. For example, the probability distribution for a binary feature,
A, with a probability of 0:4 of being true would be written PpAq �  0:4; 0:6 ¡.

Notational Conventions for Deep Learning

For clarity, some additional notational conventions are used in Chapter 8[381] on deep learn-
ing.

Activations
 The activation (or output) of single neuron i is denoted by ai

 The vector of activations for a layer of neurons is denoted by apkq where k identifies the
layer.

 A matrix of activations for a layer of neurons processing a batch of examples is denoted
by Apkq where k identifies the layer.

Activation Functions
 We use the symbol ’ to generically represent activation functions. In some cases we

use a subscript to indicate the use of a particular activation function. For example, ’S M

indicates the use of a softmax function activation function, whereas ’ReLU indicates the
use of a rectified linear activation function.

Categorical Targets In the context of handling categorical target features (see Section
8.4.3[463]) using a softmax function, we use the following symbols:

 We use the � symbol to indicate the index of the true category in the distribution.
 We use P to write the true probability distribution over the categories of the target; P̂ to

write the distribution over the target categories that the model has predicted; and P̂� to
indicate the predicted probability for the true category.

 We write t to indicate the one-hot encoding vector of a categorical target.
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 In some of the literature on neural networks, the term logit is used to refer to the result of
a weighted sum calculation in a neuron (i.e., the value we normally denote z). In partic-
ular, this terminology is often used in the explanation of softmax functions; therefore, in
the section on handling categorical features, we switch from our normal z notation, and
instead follow this logit nomenclature, using the notation l to denote a vector of logits
for a layer of neurons, and li to indicate the logit for the ith neuron in the layer.

Elementwise Product
 We use d to denote an elementwise product. This operation is sometimes called the

Hadamard product.

Error Gradients (Deltas) �
 We use the symbol � to indicate the rate of change of the error of the network with

respect to changes in the weighted sum calculated in a neuron. These � values are the
error gradients that are backpropagated during the backward pass of the backpropagation
algorithm. We use a subscript to identify the particular neuron that the � is associated
with; for example, �i is the � for neuron i and is equivalent to the term BE

Bzi
. In some cases

we wish to refer to the vector of �s for the neurons in a layer l; in these cases we write
�plq

Network Error
 We use the symbol E to denote the error of the network at the output layer.

Weights
 We use a lowercase w to indicate a single weight on a connection between two neurons.

We use a double subscript to indicate the neurons that are connected, with the convention
that the first subscript is the neuron the connection goes to, and the second subscript is
the neuron the connection is from. For example, wi;k is the weight on the connection
from neuron k to neuron i.

 We use �wi;k to write the sum of error gradients calculated for the weight wi;k. We sum
errors in this way during batch gradient descent with which we sum over the examples
in the batch; see Equation (8.30)[416] and also in cases in which the weight is shared by a
number of neurons, whether in a convolutional neural network or during backpropagation
through time.

 We use a bold capital W to indicate a weight matrix, and we use a superscript in brackets
to indicate the layer of the network the matrix is associated with. For example, Wpkq is
the weight matrix for the neurons in layer k. In an LSTM network we treat the neurons
in the sigmoid and tanh layers within each gate as a separate layer of neurons, and so
we write Wp f q for the weight matrix for the neurons in the forget gate, and so on for
the weight matrices of the other neuron layers in the other gates. However, in a simple
recurrent network we distinguish the weight matrices on the basis of whether the matrix
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is on the connections between the input and the hidden layer, the hidden layer and the
output, or the activation memory buffer and the hidden layer. Consequently, for these
matrices it is important to highlight the end of the connections the weights are applied
to; we use a double subscript (similar to the subscript for a single weight), writing Whx

for the weight matrix on the connections between the input (x) and the hidden layer (h).

Weighted Sums and Logits
 We use a lowercase z to represent the result of the weighted sum of the inputs in a neuron.

We indicate the identity of the neuron in which the calculation occurred using a subscript.
For example, zi is the result of the weighted sum calculation carried out in neuron i. Note,
however, that in the section on Handling Categorical Target features, we switch to the
term logit to refer to the output of the weight sum in a neuron and update the notation
to reflect this switch; see the previous notation section on Categorical Targets for more
details.

 The vector of weighted sums for a layer of neurons is denoted by zpkq where k identifies
the layer.

 A matrix of weighted sums calculations for a layer of neurons processing a batch of
examples is denoted by Zpkq where k identifies the layer.

Notational Conventions for Reinforcement Learning

For clarity there are some extra notational conventions used in Chapter 11[637] on reinforce-
ment learning (this chapter also heavily uses the notation from the probability chapter).

Agents, States, and Actions
 In reinforcement learning we often describe an agent at time t taking an action, at, to

move from its current state, st, to the next state, st�1.
 An agent’s current state is often modeled as a random variable, S t. We therefore often

describe the probability that an agent is in a specific state, s, at time t as PpS t � sq.
 Often states and actions are explicitly named, in which case we use the following for-

matting: STATE and action.

Transition Probabilities
 We use the Ñ notation to represent an agent transitioning from one state to another.

Therefore, the probability of an agent moving from state s1 to state s2 can be written

Pps1 Ñ s2q � PpS t�1 � s2 | S t � s1q
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 Often we condition the probability of an agent transitioning from one state, s1, to another,
s2, on the agent taking a specific action, a. We write this

Pps1
aÝÑ s2q � PpS t�1 � s2 | S t � s1; At � aq

 The dynamics of an environment in which an agent transitions between states, a Markov
process, can be captured in a transition matrix

P �

�

�����

Pps1 Ñ s1q Pps1 Ñ s2q : : : Pps1 Ñ snq
Pps2 Ñ s1q Pps2 Ñ s2q : : : Pps2 Ñ snq

:::
:::

: : :
:::

Ppsn Ñ s1q Ppsn Ñ s2q : : : Ppsn Ñ snq

�

�����

 When agent decisions are allowed, leading to a Markov decision process (MDP), then
the dynamics of an environment can be captured in a set of transition matrices, one for
each action. For example

P a �

�

��

Pps1
aÝÑ s1q Pps1

aÝÑ s2q : : : Pps1
aÝÑ snq

Pps2
aÝÑ s1q Pps2

aÝÑ s2q : : : Pps2
aÝÑ snq

:
:
:

:
:
:

: : :
:
:
:

Ppsn
aÝÑ s1q Ppsn

aÝÑ s2q : : : Ppsn
aÝÑ snq

�

��
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1 Machine Learning for Predictive Data Analytics

“Study the past if you would define the future.”
—Confucius

Modern organizations collect massive amounts of data. To be of value to an organization,
this data must be analyzed to extract insights that can be used to make better decisions.
The progression from data to insights to decisions is illustrated in Figure 1.1[4]. Extracting
insights from data is the job of data analytics. This book focuses on predictive data
analytics, which is an important subfield of data analytics.

1.1 What Is Predictive Data Analytics?

Predictive data analytics is the art of building and using models that make predictions
based on patterns extracted from historical data. Applications of predictive data analytics
include

 Price Prediction: Businesses such as hotel chains, airlines, and online retailers need
to constantly adjust their prices in order to maximize returns based on factors such as
seasonal changes, shifting customer demand, and the occurrence of special events. Pre-
dictive analytics models can be trained to predict optimal prices on the basis of historical
sales records. Businesses can then use these predictions as an input into their pricing
strategy decisions.

 Dosage Prediction: Doctors and scientists frequently decide how much of a medicine or
other chemical to include in a treatment. Predictive analytics models can be used to assist
this decision making by predicting optimal dosages based on data about past dosages and
associated outcomes.

 Risk Assessment: Risk is one of the key influencers in almost every decision an or-
ganization makes. Predictive analytics models can be used to predict the risk associated
with decisions such as issuing a loan or underwriting an insurance policy. These mod-
els are trained using historical data from which they extract the key indicators of risk.
The output from risk prediction models can be used by organizations to make better risk
judgments.
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Figure 1.1
Predictive data analytics moving from data to insight to decision.

 Propensity Modeling: Most business decision making would be much easier if we could
predict the likelihood, or propensity, of individual customers to take particular actions.
Predictive data analytics can be used to build models that predict future customer actions
on the basis of historical behavior. Successful applications of propensity modeling
include predicting the likelihood of customers to leave one mobile phone operator for
another, to respond to particular marketing efforts, or to buy different products.

 Diagnosis: Doctors, engineers, and scientists regularly make diagnoses as part of their
work. Typically, these diagnoses are based on their extensive training, expertise, and
experience. Predictive analytics models can help professionals make better diagnoses
by leveraging large collections of historical examples at a scale beyond anything one
individual would see over his or her career. The diagnoses made by predictive analytics
models usually become an input into the professional’s existing diagnosis process.

 Document Classification: Predictive data analytics can be used to automatically classify
documents into different categories. Examples include email spam filtering, news sen-
timent analysis, customer complaint redirection, and medical decision making. In fact,
the definition of a document can be expanded to include images, sounds, and videos, all
of which can be classified using predictive data analytics models.

All these examples have two things in common. First, in each case a model is used to
make a prediction to help a person or organization make a decision. In predictive data
analytics we use a broad definition of the word prediction. In everyday usage, the word
prediction has a temporal aspect—we predict what will happen in the future. However, in
data analytics a prediction is the assignment of a value to any unknown variable. This could
be predicting the price that something will be sold for in the future; alternatively, it could
mean predicting the type of document. So, in some cases prediction has a temporal aspect
but not in all. The second thing that the examples listed have in common is that a model
is trained to make predictions based on a set of historical examples. We use machine
learning to train these models.
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1.2 What Is Machine Learning?

Machine learning is defined as an automated process that extracts patterns from data. To
build the models used in predictive data analytics applications, we use supervised machine
learning. Supervised machine learning1 techniques automatically learn a model of the
relationship between a set of descriptive features and a target feature based on a set of
historical examples, or instances. We can then use this model to make predictions for new
instances. These two separate steps are shown in Figure 1.2[5].

(a) Learning a model from a set of historical instances

(b) Using a model to make predictions

Figure 1.2
The two steps in supervised machine learning: (a) learning and (b) predicting.

Table 1.1[6] lists a set of historical instances, or dataset, of mortgages that a bank has
granted in the past.2 This dataset includes descriptive features that describe the mortgage,

1. Other types of machine learning include unsupervised learning, semi-supervised learning, and reinforce-
ment learning. In this book, however, we focus mainly on supervised machine learning and in most of the book
use the terms supervised machine learning and machine learning interchangeably. Chapters 10[597] and 11[637]

provide overviews of unsupervised learning and reinforcement learning, respectively.

2. This dataset has been artificially generated for this example. Siddiqi (2005) gives an excellent overview of
building predictive data analytics models for financial credit scoring.
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Table 1.1
A credit scoring dataset.

LOAN-SALARY

ID OCCUPATION AGE RATIO OUTCOME

1 industrial 34 2.96 repay
2 professional 41 4.64 default
3 professional 36 3.22 default
4 professional 41 3.11 default
5 industrial 48 3.80 default
6 industrial 61 2.52 repay
7 professional 37 1.50 repay
8 professional 40 1.93 repay
9 industrial 33 5.25 default
10 industrial 32 4.15 default

and a target feature that indicates whether the mortgage applicant ultimately defaulted on
the loan or paid it back in full. The descriptive features tell us three pieces of information
about the mortgage: the OCCUPATION (which can be professional or industrial) and AGE

of the applicant and the ratio between the applicant’s salary and the amount borrowed
(LOAN-SALARY RATIO). The target feature, OUTCOME, is set to either default or repay.
In machine learning terms, each row in the dataset is referred to as a training instance,
and the overall dataset is referred to as a training dataset.

An example of a very simple prediction model for this domain is

if LOAN-SALARY RATIO ¡ 3 then
OUTCOME = default

else
OUTCOME = repay

end if

We can say that this model is consistent with the dataset because there are no instances in
the dataset for which the model does not make a correct prediction. When new mortgage
applications are made, we can use this model to predict whether the applicant will repay
the mortgage or default on it and make lending decisions on the basis of this prediction.

Machine learning algorithms automate the process of learning a model that captures
the relationship between the descriptive features and the target feature in a dataset. For
simple datasets like the one presented in Table 1.1[6], we may be able to manually create a
prediction model; in an example of this scale, machine learning has little to offer us.

Consider, however, the dataset presented in Table 1.2[8], which shows a more complete
representation of the same problem. This dataset lists more instances, and there are extra
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descriptive features describing the AMOUNT that a mortgage holder borrows, the mortgage
holder’s SALARY, the type of PROPERTY that the mortgage relates to (which can be farm,
house, or apartment), and the TYPE of mortgage (which can be ftb for first-time buyers or
stb for second-time buyers).

The simple prediction model using only the loan-salary ratio feature is no longer consis-
tent with the dataset. It turns out, however, that there is at least one prediction model that
is consistent with the dataset; it is just a little harder to find than the previous one:

if LOAN-SALARY RATIO   1:5 then
OUTCOME = repay

else if LOAN-SALARY RATIO ¡ 4 then
OUTCOME = default

else if AGE   40 and OCCUPATION � industrial then
OUTCOME = default

else
OUTCOME = repay

end if

To manually learn this model by examining the data is almost impossible. For a machine
learning algorithm, however, this is simple. When we want to build prediction models from
large datasets with multiple features, machine learning is the solution.

1.3 How Does Machine Learning Work?

Machine learning algorithms work by searching through a set of possible prediction models
for the model that best captures the relationship between the descriptive features and target
feature in a dataset. An obvious criteria for driving this search is to look for models that
are consistent with the data. There are, however, at least two reasons why simply searching
for consistent models is not sufficient for learning useful prediction models. First, when
we are dealing with large datasets, it is likely that there is noise3 in the data, and prediction
models that are consistent with noisy data make incorrect predictions. Second, in the vast
majority of machine learning projects, the training set represents only a small sample of
the possible set of instances in the domain. As a result, machine learning is an ill-posed
problem, that is, a problem for which a unique solution cannot be determined using only
the information that is available.

We can illustrate how machine learning is an ill-posed problem using an example in
which the analytics team at a supermarket chain wants to be able to classify customer

3. For example, some of the feature values will be mislabeled.
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Table 1.2
A more complex credit scoring dataset.

LOAN-
SALARY

ID AMOUNT SALARY RATIO AGE OCCUPATION PROPERTY TYPE OUTCOME

1 245,100 66,400 3.69 44 industrial farm stb repay
2 90,600 75,300 1.20 41 industrial farm stb repay
3 195,600 52,100 3.75 37 industrial farm ftb default
4 157,800 67,600 2.33 44 industrial apartment ftb repay
5 150,800 35,800 4.21 39 professional apartment stb default
6 133,000 45,300 2.94 29 industrial farm ftb default
7 193,100 73,200 2.64 38 professional house ftb repay
8 215,000 77,600 2.77 17 professional farm ftb repay
9 83,000 62,500 1.33 30 professional house ftb repay
10 186,100 49,200 3.78 30 industrial house ftb default
11 161,500 53,300 3.03 28 professional apartment stb repay
12 157,400 63,900 2.46 30 professional farm stb repay
13 210,000 54,200 3.87 43 professional apartment ftb repay
14 209,700 53,000 3.96 39 industrial farm ftb default
15 143,200 65,300 2.19 32 industrial apartment ftb default
16 203,000 64,400 3.15 44 industrial farm ftb repay
17 247,800 63,800 3.88 46 industrial house stb repay
18 162,700 77,400 2.10 37 professional house ftb repay
19 213,300 61,100 3.49 21 industrial apartment ftb default
20 284,100 32,300 8.80 51 industrial farm ftb default
21 154,000 48,900 3.15 49 professional house stb repay
22 112,800 79,700 1.42 41 professional house ftb repay
23 252,000 59,700 4.22 27 professional house stb default
24 175,200 39,900 4.39 37 professional apartment stb default
25 149,700 58,600 2.55 35 industrial farm stb default

households into the demographic groups single, couple, or family, solely on the basis of
their shopping habits.4 The dataset given in Table 1.3[9] contains descriptive features de-
scribing the shopping habits of five customers. The descriptive features measure whether a
customer buys baby food, BBY; alcohol, ALC; or organic vegetable products, ORG. Each
feature takes one of two values, yes or no. Alongside these descriptive features is a target

4. This kind of classification is not unusual because supermarket chains can collect huge amounts of data about
customers’ shopping habits through a loyalty card scheme but find it expensive and time consuming to collect
more personal data, such as demographic classifications. Demographic classifications, however, are extremely
useful to marketing departments in designing special offers and other customer incentives.
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Table 1.3
A simple retail dataset.

ID BBY ALC ORG GRP

1 no no no couple
2 yes no yes family
3 yes yes no family
4 no no yes couple
5 no yes yes single

feature, GRP, that describes the demographic group for each customer (single, couple, or
family). The dataset presented in Table 1.3[9] is referred to as a labeled dataset because it
includes values for the target feature.

Imagine that we attempt to learn a prediction model for this retail scenario by searching
for a model that is consistent with the dataset. The first thing we need to do is figure out
how many different possible models actually exist for the scenario. This step defines the
set of prediction models the machine learning algorithm will search. From the perspective
of searching for a consistent model, the most important property of a prediction model is
that it defines a mapping from every possible combination of descriptive feature values to
a prediction for the target feature. For the retail scenario, there are only three binary de-
scriptive features, so there are 23 � 8 possible combinations of descriptive feature values.
However, for each of these 8 possible combinations of descriptive feature values, there are
3 possible target feature values, so this means that there are 38 � 6;561 possible prediction
models that could be used. Table 1.4(a)[10] illustrates the relationship between combinations
of descriptive feature values and prediction models for the retail scenario. The descriptive
feature combinations are listed on the left-hand side of the table, and the set of potential
models for this domain are shown as M1 to M6;561 on the right-hand side of the table. Using
the training dataset from Table 1.3[9], a machine learning algorithm will reduce the full set
of 6;561 possible prediction models for this scenario to only those that are consistent with
the training instances. Table 1.4(b)[10] illustrates this; the blanked-out columns in the table
indicate the models that are not consistent with the training data.

Table 1.4(b)[10] also illustrates that the training dataset does not contain an instance for
every possible combination of descriptive feature values and that there are still a large num-
ber of potential prediction models that remain consistent with the training dataset after the
inconsistent models have been excluded.5 Specifically, there are three remaining descrip-

5. In this simple example it is easy to imagine collecting a training instance to match every possible combination
of descriptive features; because there are only three binary descriptive features, there are only 23 � 8 combina-
tions. In more realistic scenarios, however, there are usually many more descriptive features, which means many
more possible combinations. In the credit scoring dataset given in Table 1.2[8], for example, a conservative esti-
mate of the number of possible combinations of descriptive features is over 3.6 billion!
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Table 1.4
Potential prediction models (a) before and (b) after training data becomes available.

(a) Before training data becomes available.

BBY ALC ORG GRP M1 M2 M3 M4 M5 . . . M6 561

no no no ? couple couple single couple couple . . . couple
no no yes ? single couple single couple couple . . . single
no yes no ? family family single single single . . . family
no yes yes ? single single single single single . . . couple
yes no no ? couple couple family family family . . . family
yes no yes ? couple family family family family . . . couple
yes yes no ? single family family family family . . . single
yes yes yes ? single single family family couple . . . family

(b) After training data becomes available.

BBY ALC ORG GRP M1 M2 M3 M4 M5 . . . M6 561

no no no couple couple couple single couple couple . . . couple
no no yes couple single couple single couple couple . . . single
no yes no ? family family single single single . . . family
no yes yes single single single single single single . . . couple
yes no no ? couple couple family family family . . . family
yes no yes family couple family family family family . . . couple
yes yes no family single family family family family . . . single
yes yes yes ? single single family family couple . . . family

tive feature value combinations for which the correct target feature value is not known,
and therefore there are 33 � 27 potential models that remain consistent with the training
data. Three of these—M2, M4, and M5—are shown in Table 1.4(b)[10]. Because a single
consistent model cannot be found on the basis of the sample training dataset alone, we say
that machine learning is fundamentally an ill-posed problem.

We might be tempted to think that having multiple models that are consistent with the
data is a good thing. The problem is, however, that although these models agree on which
predictions should be made for the instances in the training dataset, they disagree with
regard to which predictions should be returned for instances that are not in the training
dataset. For example, if a new customer starts shopping at the supermarket and buys baby
food, alcohol, and organic vegetables, our set of consistent models will contradict each
other with respect to the prediction that should be returned for this customer; for example,
M2 will return GRP = single, M4 will return GRP = family, and M5 will return GRP =
couple.

The criterion of consistency with the training data doesn’t provide any guidance with
regard to which of the consistent models to prefer in dealing with queries that are out-
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side the training dataset. As a result, we cannot use the set of consistent models to make
predictions for these queries. In fact, searching for predictive models that are consistent
with the dataset is equivalent to just memorizing the dataset. As a result, no learning is
taking place because the set of consistent models tells us nothing about the underlying re-
lationship between the descriptive and target features beyond what a simple look-up of the
training dataset would provide.

If a predictive model is to be useful, it must be able to make predictions for queries that
are not present in the data. A prediction model that makes the correct predictions for these
queries captures the underlying relationship between the descriptive and target features and
is said to generalize well. Indeed, the goal of machine learning is to find the predictive
model that generalizes best. In order to find this single best model, a machine learning
algorithm must use some criteria for choosing among the candidate models it considers
during its search.

Given that consistency with the dataset is not an adequate criterion to select the best
prediction model, which criteria should we use? There are a lot of potential answers to this
question, and that is why there are a lot of different machine learning algorithms. Each
machine learning algorithm uses different model selection criteria to drive its search for
the best predictive model. So, when we choose to use one machine learning algorithm
instead of another, we are, in effect, choosing to use one model selection criterion instead
of another.

All the different model selection criteria consist of a set of assumptions about the char-
acteristics of the model that we would like the algorithm to induce. The set of assump-
tions that defines the model selection criteria of a machine learning algorithm is known as
the inductive bias6 of the machine learning algorithm. There are two types of inductive
bias that a machine learning algorithm can use, a restriction bias and a preference bias.
A restriction bias constrains the set of models that the algorithm will consider during
the learning process. A preference bias guides the learning algorithm to prefer certain
models over others. For example, in Chapter 7[311] we introduce a machine learning algo-
rithm called multivariable linear regression with gradient descent, which implements
the restriction bias of considering only prediction models that produce predictions on the
basis of a linear combination of the descriptive feature values and applies a preference bias
over the order of the linear models it considers in terms of a gradient descent approach
through a weight space. As a second example, in Chapter 4[117] we introduce the Iterative
Dichotomizer 3 (ID3) machine learning algorithm, which uses a restriction bias of con-
sidering only tree prediction models in which each branch encodes a sequence of checks

6. Learning a general rule from a finite set of examples is called inductive learning. This is why machine
learning is sometimes described as inductive learning, and the set of assumptions used by the machine algorithm
that biases it toward selecting a single model is called the inductive bias of the algorithm.
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on individual descriptive features but also uses a preference bias by considering shallower
(less complex) trees over larger trees. It is important to recognize that using an inductive
bias is a necessary prerequisite for learning to occur; without inductive bias, a machine
learning algorithm cannot learn anything beyond what is in the data.

In summary, machine learning works by searching through a set of potential models
to find the prediction model that best generalizes beyond the dataset. Machine learning
algorithms use two sources of information to guide this search, the training dataset and the
inductive bias assumed by the algorithm.

1.4 Inductive Bias Versus Sample Bias

Inductive bias is not the only type of bias that affects machine learning. An in-depth review
of the range of biases that affect machine learning and the social harms that they can cause
are beyond the scope of this book.7 However, we highlight sampling bias8 as a particular
form of bias that a data analyst should be aware of and should proactively guard against in
any data analytics project.

Sampling bias arises when the sample of data used within a data-driven process is col-
lected in such a way that the sample is not representative of the population the sample is
used to represent. One of the most famous examples of sampling bias was in the 1936 U.S.
presidential election, which pitted Franklin D. Roosevelt, the incumbent president, against
Alfred Landon, the Republican governor of Kansas. At the time Literary Digest was a
well-known magazine that had accurately predicted the outcomes of previous presidential
elections. For the 1936 election Literary Digest ran one of the largest pre-election polls in
the U.S. To run the poll Literary Digest created a list of 10 million names by integrating
every telephone directory in the U.S., and a number of other sources, and then mailing
everyone on the list a mock ballot and asking them to return the ballot to the magazine.
Nearly 2.4 million people responded to the survey, and on the basis of this sample, Lit-
erary Digest very publicly and confidently predicted that Alfred Landon would win by a
landslide. However, the actual result was a massive win for Roosevelt, with 62% of the
votes. Literary Digest never recovered from the reputational damage this error in predic-
tion caused and went out of business soon afterward.

7. For an excellent overview of the different types of biases that affect machine learning and the potential harms
these can cause, we recommend Kate Crawford’s The Trouble with Bias keynote from the NeurIPS 2017 confer-
ence (Crawford, 2017). Videos of this talk are freely available online.

8. Sampling bias is closely related to the problem of selection bias, and the terms are often treated as synonyms.
Sometimes, however, a distinction is made that sampling bias affects the ability of a trained model to generalize
appropriately beyond the sample training data to the rest of a population, whereas selection bias is more focused
on the validity of similarities and differences found within the sample. For this reason we use the term sampling
bias here; however, for the purposes of this book, the distinction is not particularly important and in general we
use the terms as synonyms.
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There were two fundamental problems with how Literary Digest collected its sample,
and the result of both was that the sample used for prediction (the survey responses) was
not representative of the overall population. First, only about a quarter of the people who
were surveyed responded to the survey (2.4 million out of 10 million). It is likely that
people who respond to a survey are systematically different from people who don’t, and so
when the response rate within a population is very low, it is likely that the resulting sample
underrepresents particular groups in the population. Second, the selection process used to
generate the original list of 10 million people was based on telephone directories. At the
time not every household in U.S. had telephones, and of those that did, a disproportionate
number (relative to the total voting population of the U.S.) were Republican voters. Con-
sequently, the sample of the population surveyed was skewed toward Republican voters,
and so the predictions based on these surveys were also skewed. Importantly, the resulting
data was skewed even though the surveys were large.

The key point to remember here is that if a sample of data is not representative of a pop-
ulation, then inferences based on that sample will not generalize to the larger population.
This is true no matter how large the sample is. That said, sampling bias is a difficult prob-
lem to tackle. One challenge is that bias in a sample can arise in indirect and non-obvious
ways. For example, in 1936 it was not necessarily obvious that using telephone directories
to create an initial list of names would skew the resulting sample toward a particular group
in the population (in this instance, Republicans). Consequently, data analysts need to think
about the sources of the data they are using and understand how the data was collected and
whether the collection processes introduced a bias relative to the population. They also
need to reflect on the processes they use to preprocess and manage the data, and whether
any of these processes introduce bias into the sample.9 So, in summary, although inductive
bias is necessary for machine learning, and in a sense, a key goal of a data analyst is to find
the correct inductive bias, sample bias is something that a data analyst should proactively
work hard to remove from the data used in any data analytics project.

1.5 What Can Go Wrong with Machine Learning?

Different machine learning algorithms encode different inductive biases. Because a ma-
chine learning algorithm encodes an inductive bias, it can induce models that generalize
beyond the instances in a training dataset. An inappropriate inductive bias, however, can
lead to mistakes. It has been shown that there is no particular inductive bias that on average
is the best one to use.10 Also, in general, there is no way of knowing for a given predic-

9. In this section we have primarily considered the population we are sampling from to be a population of people,
but sampling bias can also arise for any population of predictive subjects, be they insurance policies, holidays,
cars, or anything else.

10. This is known as the No Free Lunch Theorem (Wolpert, 1996).
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Table 1.5
The age-income dataset.

ID AGE INCOME

1 21 24,000
2 32 48,000
3 62 83,000
4 72 61,000
5 84 52,000

tive task which inductive bias will work best. Indeed, the ability to select the appropriate
machine learning algorithm (and hence inductive bias) to use for a given predictive task is
one of the core skills that a data analyst must develop.

There are two kinds of mistakes that an inappropriate inductive bias can lead to: un-
derfitting and overfitting. Underfitting occurs when the prediction model selected by the
algorithm is too simplistic to represent the underlying relationship in the dataset between
the descriptive features and the target feature. Overfitting, by contrast, occurs when the
prediction model selected by the algorithm is so complex that the model fits the dataset too
closely and becomes sensitive to noise in the data.

To understand underfitting and overfitting, consider the task of inducing a model to pre-
dict a person’s INCOME (the target feature) based on AGE (a single descriptive feature).
Table 1.5[14] lists a simple dataset that gives ages and salaries for five people. A visualiza-
tion11 of this dataset is shown in Figure 1.3(a)[15].

The line in Figure 1.3(b)[15] represents one model of the relationship between the AGE

and INCOME features. This line illustrates a very simple linear function that maps AGE

to INCOME. Although this simple model goes some way toward capturing the general
trend of the relationship between AGE and INCOME, it does not manage to capture any
of the subtlety of the relationship. This model is said to underfit the data as it is not
complex enough to fully capture the relationship between the descriptive feature and the
target feature. By contrast, the model shown in Figure 1.3(c)[15], although consistent with
the training instances, seems much more complicated than necessary. This model is said
to overfit the training data.

Models that either underfit or overfit do not generalize well and so will not be able to
make good predictions for query instances beyond the content of the training dataset. The
prediction model shown in Figure 1.3(d)[15], however, is a Goldilocks model: it is just right,
striking a good balance between underfitting and overfitting. We find these Goldilocks

11. We discuss exactly this type of visualization, a scatter plot, in detail in Chapter 3[53]. For this example it
is sufficient to say that a point is shown for each person in the dataset, placed to represent the person’s age
(horizontally) and salary (vertically).
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models by using machine learning algorithms with appropriate inductive biases. This is
one of the great arts of machine learning and something that we return to throughout this
book.

�

�

�

�

�

0 20 40 60 80 100

20
00

0
40

00
0

60
00

0
80

00
0

Age

In
co

m
e

(a) Dataset

�

�

�

�

�

0 20 40 60 80 100

20
00

0
40

00
0

60
00

0
80

00
0

Age
In

co
m

e

(b) Underfitting
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(c) Overfitting
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(d) Just right

Figure 1.3
(a)–(d) Striking a balance between overfitting and underfitting in trying to predict income from age.

1.6 The Predictive Data Analytics Project Lifecycle: CRISP-DM

Building predictive data analytics solutions for the kinds of applications described in Sec-
tion 1.1[3] involves a lot more than just choosing the right machine learning algorithm.
As with any other significant project, the chances of success for a predictive data analytics
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Figure 1.4
A diagram of the CRISP-DM process that shows the six key phases and indicates the important
relationships between them. This figure is based on Figure 2 of Wirth and Hipp (2000).

project are greatly increased if a standard process is used to manage the project through the
project lifecycle. One of the most commonly used processes for predictive data analytics
projects is the Cross Industry Standard Process for Data Mining (CRISP-DM).12 Key
features of the CRISP-DM process that make it attractive to data analytics practitioners are
that it is non-proprietary; it is application, industry, and tool neutral; and it explicitly views
the data analytics process from both an application-focused and a technical perspective.

Figure 1.4[16] shows six key phases of the predictive data analytics project lifecycle that
are defined by the CRISP-DM:

 Business Understanding: Predictive data analytics projects never start out with the goal
of building a prediction model. Instead, they focus on things like gaining new customers,
selling more products, and adding efficiencies to a process. So, during the first phase in
any analytics project, the primary goal of the data analyst is to fully understand the
business (or organizational) problem that is being addressed and then to design a data
analytics solution for it.

12. While the name CRISP-DM refers to data mining (a field that overlaps significantly with predictive data
analytics), it is equally applicable to predictive analytics projects.



1.7 Predictive Data Analytics Tools 17

 Data Understanding: Once the manner in which predictive data analytics will be used
to address a business problem has been decided, it is important that the data analyst fully
understand the different data sources available within an organization and the different
kinds of data that are contained in these sources.

 Data Preparation: Building predictive data analytics models requires specific kinds of
data, organized in a specific kind of structure known as an analytics base table (ABT).13

This phase of CRISP-DM includes all the activities required to convert the disparate data
sources that are available in an organization to a well-formed ABT from which machine
learning models can be induced.

 Modeling: In the Modeling phase of the CRISP-DM process, the machine learning work
occurs. Different machine learning algorithms are used to build a range of prediction
models from which the best model will be selected for deployment.

 Evaluation: Before models can be deployed for use within an organization, it is im-
portant that they are fully evaluated and proved to be fit for the purpose. This phase of
CRISP-DM covers all the evaluation tasks required to show that a prediction model will
be able to make accurate predictions after being deployed and that it does not suffer from
overfitting or underfitting.

 Deployment: Machine learning models are built to serve a purpose within an organiza-
tion, and the last phase of CRISP-DM covers all the work that must be done to success-
fully integrate a machine learning model into the processes within an organization.

Figure 1.4[16] also illustrates the flow between each of these phases and emphasizes that
data is at the heart of the process. Certain phases in CRISP-DM are more closely linked
together than others. For example, Business Understanding and Data Understanding are
tightly coupled, and projects typically spend some time moving back and forth between
these phases. Similarly, the Data Preparation and Modeling phases are closely linked, and
analytics projects often spend some time alternating between these two phases. Using the
CRISP-DM process improves the likelihood that predictive data analytics projects will be
successful, and we recommend its use.

1.7 Predictive Data Analytics Tools

Throughout this book we discuss the many different ways we can use machine learning
techniques to build predictive data analytics models. In these discussions we do not refer to
specific tools or implementations of these techniques. There are, however, many different,
easy-to-use options for implementing machine learning models that interested readers can
use to follow along with the examples in this book.

13. All datasets presented in this chapter have been structured as ABTs.



18 Chapter 1 Machine Learning for Predictive Data Analytics

The first decision that must be made in choosing a machine learning platform is whether
to use an application-based solution or to use a programming language. We will look
at application-based solutions first. Well-designed application-based, or point-and-click,
tools make it very quick and easy to develop and evaluate models and to perform associ-
ated data manipulation tasks. Using one of these tools, it is possible to train, evaluate, and
deploy a predictive data analytics model in less than an hour! Important application-based
solutions for building predictive data analytics models include IBM SPSS, Knime Analyt-
ics Platform, RapidMiner Studio, SAS Enterprise Miner, and Weka.14 The tools by IBM
and SAS are enterprise-wide solutions that integrate with the other offerings by these com-
panies. Knime, RapidMiner, and Weka are interesting because they are all open-source,
freely available solutions that readers can begin to use without any financial investment.

An interesting alternative to using an application-based solution for building predictive
data analytics models is to use a programming language. Two of the most commonly used
programming languages for predictive data analytics are R and Python.15 Building predic-
tive data analytics models using a language like R or Python is not especially difficult. For
example, the following simple lines of code use the R language to build a predictive model
for a simple task:

creditscoring.train <- read.csv("creditScoringTrain.csv")
glm.mod <- glm(Outcome�Amount+Salary+Age+LoanSalaryRatio,

family=binomial(link="logit"), data=creditscoring.train)
creditscoring.test <- read.csv("creditScoringTest.csv")
predicted.values <- predict(glm.mod, creditscoring.test)

The advantage of using a programming language for predictive data analytics projects is
that it gives the data analyst huge flexibility. Anything that the analyst can imagine can be
implemented. This is in contrast to application-based solutions, in which the analyst can
really achieve only what the tool developers had in mind when they designed the tool. The
other main advantage of using a programming language is that, in most cases, the newest
advanced analytics techniques become available in programming languages long before
they are implemented in application-based solutions.

Obviously, however, using programming languages also has its disadvantages. The main
disadvantage is that programming is a skill that takes time and effort to learn. Using a pro-
gramming language for advanced analytics has a significantly steeper learning curve than
using an application-based solution. The second disadvantage is that in using a program-
ming language, we have very little of the infrastructural support, such as data management,

14. For further details, see www.ibm.com/software/ie/analytics/spss, www.knime.org, www.rapidminer.com,
www.sas.com, and www.cs.waikato.ac.nz/ml/weka.

15. The website kdnuggets.com runs a regular poll on the most popular programming languages for predic-
tive data analytics, which R and Python regularly top, www.kdnuggets.com/polls/2013/languages-analytics-data-
mining-data-science.html. For further details about R and Python, see www.r-project.org and www.python.org.

www.ibm.com/software/ie/analytics/spss
www.knime.org
www.rapidminer.com
www.sas.com
www.cs.waikato.ac.nz/ml/weka
www.kdnuggets.com/polls/2013/languages-analytics-data-mining-data-science.html
www.kdnuggets.com/polls/2013/languages-analytics-data-mining-data-science.html
www.r-project.org
www.python.org
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offered with the application-based solutions available to us. This puts an extra burden on
developers to implement these supports themselves.

1.8 The Road Ahead

Predictive data analytics projects use machine learning algorithms to induce prediction
models from historical data. The insights that these prediction models produce are used
to help organizations make data-driven decisions. Machine learning algorithms learn pre-
diction models by inducing a generalized model of the relationship between a set of de-
scriptive features and a target feature from a set of specific training instances. Machine
learning, however, is made difficult because there is usually more than one model that is
consistent with the training dataset—because of this, machine learning is often described
as an ill-posed problem. Machine learning algorithms address this issue by encoding an
inductive bias—or set of assumptions—that guide the algorithm to prefer certain models
over others. We will see as we proceed through this book that the selection of a machine
learning algorithm is not the only way that we can bias the predictive data analytics pro-
cess. All the other choices that we make, such as the data to use, the descriptive features
to use, and the way in which we deploy a model, bias the outcome of the overall process,
and this is something that we need to be keenly aware of.

The purpose of this book is to give readers a solid grounding in the theoretical under-
pinnings of the most commonly used machine learning techniques and a clear view of the
ways machine learning techniques are used in practice in predictive data analytics projects.
With this in mind, readers can view the book as four parts that are mapped to the phases of
the CRISP-DM process.

The first part—Chapters 2[23] and 3[53]—covers the Business Understanding, Data Under-
standing, and Data Preparation phases of the process. In this part we discuss how a business
problem is converted into a data analytics solution, how data can be prepared for this task,
and the data exploration tasks that should be performed during these phases.

The second part of the book covers the Modeling and Evaluation phase of CRISP-DM.
We consider five main families of machine learning algorithm:

 Information-based learning (Chapter 4[117])
 Similarity-based learning (Chapter 5[181])
 Probability-based learning (Chapter 6[243])
 Error-based learning (Chapter 7[311])
 Deep learning (Chapter 8[381])

By looking at these five key families, we cover the most commonly used approaches to
inductive machine learning that can be used to build most predictive data analytics solu-
tions. The second part of the book concludes with Chapter 9[533], which describes a range
of approaches to evaluating prediction models.
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The third part of the book also deals with Modeling, but in this case it looks at modeling
approaches beyond prediction. As described previously in this chapter, supervised machine
learning is one of three main machine learning paradigms. The other two are unsupervised
learning and reinforcement learning. Chapters 10[597] and 11[637] describe these two other
approaches as a counterpoint to the descriptions of supervised learning in the rest of the
book.

The fourth part of the book covers the Deployment phases of CRISP-DM. Chapters 12[685]

and 13[703] present case studies describing specific predictive analytics projects from Busi-
ness Understanding up to Deployment. These case studies demonstrate how everything
described in the preceding chapters comes together in a successful predictive data analyt-
ics project.

Finally, Chapter 14[729] provides some overarching perspectives on machine learning for
predictive data analytics and summarizes some of the key differences between the different
approaches covered in this book.
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1.9 Exercises

1. What is predictive data analytics?
2. What is supervised machine learning?
3. Machine learning is often referred to as an ill-posed problem. What does this mean?
4. The following table lists a dataset from the credit scoring domain that we discussed in

the chapter. Underneath the table we list two prediction models consistent with this
dataset, Model 1 and Model 2.

LOAN-SALARY

ID OCCUPATION AGE RATIO OUTCOME

1 industrial 39 3.40 default
2 industrial 22 4.02 default
3 professional 30 2.7 0 repay
4 professional 27 3.32 default
5 professional 40 2.04 repay
6 professional 50 6.95 default
7 industrial 27 3.00 repay
8 industrial 33 2.60 repay
9 industrial 30 4.5 0 default

10 professional 45 2.78 repay

Model 1
if LOAN-SALARY RATIO ¡ 3:00 then

OUTCOME = default
else

OUTCOME = repay
end if

Model 2
if AGE� 50 then

OUTCOME = default
else if AGE� 39 then

OUTCOME = default
else if AGE� 30 and OCCUPATION = industrial then

OUTCOME = default
else if AGE� 27 and OCCUPATION = professional then

OUTCOME = default
else

OUTCOME = repay
end if

(a) Which of these two models do you think will generalize better to instances not
contained in the dataset?

(b) Propose an inductive bias that would enable a machine learning algorithm to make
the same preference choice that you made in Part (a).

(c) Do you think that the model that you rejected in Part (a) of this question is over-
fitting or underfitting the data?
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� 5. What is meant by the term inductive bias?
� 6. How do machine learning algorithms deal with the fact that machine learning is an

ill-posed problem?
� 7. What can go wrong when an inappropriate inductive bias is used?
� 8. It is often said that 80% of the work done on predictive data analytics projects is done

in the Business Understanding, Data Understanding, and Data Preparation phases of
CRISP-DM, and just 20% is spent on the Modeling, Evaluation, and Deployment
phases. Why do you think this would be the case?

� 9. The following table lists a dataset of five individuals described via a set of stroke risk
factors and their probability of suffering a stroke in the next five years. This dataset has
been prepared by an analytics team who are developing a model as a decision support
tool for doctors.16 The goal of the model is to classify individuals into groups on the
basis of their risk of suffering a stroke STROKE RISK. In this dataset there are three
categories of risk: low, medium, and high. All the descriptive features are Boolean,
taking two levels: true or false.

HIGH BLOOD HEART STROKE

ID PRESSURE SMOKER DIABETES DISEASE RISK

1 true false true true high
2 true true true true high
3 true false false true medium
4 false false false false low
5 true true true false high

(a) How many possible models exist for the scenario described by the features in this
dataset?

(b) How many of these potential models would be consistent with this sample of data?

� 10. You are using U.S. census data to build a prediction model. On inspecting the data
you notice that the RACE feature has a higher proportion of the category White than
you expected. Why do you think this might be?

� 11. Why might a prediction model that has very high accuracy on a dataset not generalize
well after it is deployed?

16. Due to space limitations, this dataset covers only a sample of the risk factors for stroke. There are, for
example, a number of non-modifiable risk factors such as age and gender. There is also an array of modifiable
risk factors, including alcohol and drug use, unhealthy diet, stress and depression, and lack of physical exercise.
Furthermore, this dataset is not based on precise measurements of stroke risk. For more information on stroke
and risk factors related to stroke, please see the National Heart, Lung, and Blood Institute on Stroke: https:
//www.nhlbi.nih.gov/health-topics/stroke.

https://www.nhlbi.nih.gov/health-topics/stroke
https://www.nhlbi.nih.gov/health-topics/stroke
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“We cannot solve our problems with the same thinking we used when we created them.”
—Albert Einstein

Predictive data analytics projects are not handed to data analytics practitioners fully formed.
Rather, analytics projects are initiated in response to a business problem, and it is our job—
as analytics practitioners—to decide how to address this business problem using analytics
techniques. In the first part of this chapter we present an approach to developing analytics
solutions that address specific business problems. This involves an analysis of the needs
of the business, the data we have available for use, and the capacity of the business to use
analytics. Taking these factors into account helps to ensure that we develop analytics so-
lutions that are effective and fit for purpose. In the second part of this chapter we move
our attention to the data structures that are required to build predictive analytics models,
and in particular the analytics base table (ABT). Designing ABTs that properly represent
the characteristics of a prediction subject is a key skill for analytics practitioners. We
present an approach in which we first develop a set of domain concepts that describe the
prediction subject, and then expand these into concrete descriptive features. Throughout
the chapter we return to a case study that demonstrates how these approaches are used in
practice.

2.1 Converting Business Problems into Analytics Solutions

Organizations don’t exist to do predictive data analytics. Organizations exist to do things
like make more money, gain new customers, sell more products, or reduce losses from
fraud. Unfortunately, the predictive analytics models that we can build do not do any of
these things. The models that analytics practitioners build simply make predictions based
on patterns extracted from historical datasets. These predictions do not solve business
problems; rather, they provide insights that help the organization make better decisions to
solve their business problems.

A key step, then, in any data analytics project is to understand the business problem
that the organization wants to solve and, based on this, to determine the kind of insight
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that a predictive analytics model can provide to help the organization address this problem.
This defines the analytics solution that the analytics practitioner will set out to build using
machine learning. Defining the analytics solution is the most important task in the Business
Understanding phase of the CRISP-DM process.

In general, converting a business problem into an analytics solution involves answering
the following key questions:

1. What is the business problem? What are the goals that the business wants to
achieve? These first two questions are not always easy to answer. In many cases
organizations begin analytics projects because they have a clear issue that they want to
address. Sometimes, however, organizations begin analytics projects simply because
somebody in the organization feels that this is an important new technique that they
should be using. Unless a project is focused on clearly stated goals, it is unlikely to be
successful. The business problem and goals should always be expressed in business
terms and not yet be concerned with the actual analytics work at this stage.

2. How does the business currently work? It is not feasible for an analytics prac-
titioner to learn everything about the businesses with which they work as they will
probably move quickly between different areas of an organization, or even different
industries. Analytics practitioners must, however, possess what is referred to as situa-
tional fluency. This means that they understand enough about a business so that they
can converse with partners in the business in a way that these business partners un-
derstand. For example, in the insurance industry, insurance policyholders are usually
referred to as members rather than customers. Although from an analytics perspective,
there is really little difference, using the correct terminology makes it much easier for
business partners to engage with the analytics project. Beyond knowing the correct
terminology to use, an analytics practitioner who is situationally fluent will have suf-
ficient knowledge of the quirks of a particular domain to be able to competently build
analytics solutions for that domain.

3. In what ways could a predictive analytics model help to address the business
problem? For any business problem, there are a number of different analytics solu-
tions that we could build to address it. It is important to explore these possibilities
and, in conjunction with the business, to agree on the most suitable solution for the
business. For each proposed solution, the following points should be described: (1)
the predictive model that will be built; (2) how the predictive model will be used by
the business; and (3) how using the predictive model will help address the original
business problem. The next section provides a case study of the process for converting
a business problem into a set of candidate analytics solutions.
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2.1.1 Case Study: Motor Insurance Fraud
Consider the following business problem: in spite of having a fraud investigation team that
investigates up to 30% of all claims made, a motor insurance company is still losing too
much money due to fraudulent claims. The following predictive analytics solutions could
be proposed to help address this business problem:

 [Claim prediction] A model could be built to predict the likelihood that an insurance
claim is fraudulent. This model could be used to assign every newly arising claim a fraud
likelihood, and those that are most likely to be fraudulent could be flagged for investi-
gation by the insurance company’s claims investigators. In this way the limited claims
investigation time could be targeted at the claims that are most likely to be fraudulent,
thereby increasing the number of fraudulent claims detected and reducing the amount of
money lost to fraud.

 [Member prediction] A model could be built to predict the propensity of a member1

to commit fraud in the near future. This model could be run every quarter to identify
those members most likely to commit fraud, and the insurance company could take a
risk-mitigation action ranging from contacting the member with some kind of warning
to canceling the member’s policies. By identifying members likely to make fraudulent
claims before they make them, the company could save significant amounts of money.

 [Application prediction] A model could be built to predict, at the point of application,
the likelihood that a policy someone has applied for will ultimately result in a fraudulent
claim. The company could run this model every time a new application is made and reject
those applications that are predicted likely to result in a fraudulent claim. The company
would therefore reduce the number of fraudulent claims and reduce the amount of money
they would lose to these claims.

 [Payment prediction] Many fraudulent insurance claims simply over-exaggerate the
amount that should actually be paid out. In these cases the insurance company goes
through an expensive investigation process but still must make a reduced payment in re-
lation to a claim. A model could be built to predict the amount most likely to be paid
out by an insurance company after having investigated a claim. This model could be run
whenever new claims arise, and the policyholder could be offered the amount predicted
by the model as settlement as an alternative to going through a claims investigation pro-
cess. Using this model, the company could save on claims investigations and reduce the
amount of money paid out on fraudulent claims.

1. Remember that in insurance we don’t refer to customers!
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2.2 Assessing Feasibility

Once a set of candidate analytics solutions that address a business problem have been de-
fined, the next task is to evaluate the feasibility of each solution. This involves considering
the following questions:

 Is the data required by the solution available, or could it be made available?
 What is the capacity of the business to utilize the insights that the analytics solution will

provide?

The first question addresses data availability. Every analytics solution will have its own
set of data requirements, and it is useful, as early as possible, to determine if the business
has sufficient data available to meet these requirements. In some cases a lack of appropriate
data will simply rule out proposed analytics solutions to a business problem. More likely,
the easy availability of data for some solutions might favor them over others. In general,
evaluating the feasibility of an analytics solution in terms of its data requirements involves
aligning the following issues with the requirements of the analytics solution:

 The key objects in the company’s data model and the data available regarding them.
For example, in a bricks-and-mortar retail scenario, the key objects are likely to be cus-
tomers, products, sales, suppliers, stores, and staff. In an insurance scenario, the key
objects are likely to be policyholders, policies, claims, policy applications, investiga-
tions, brokers, members, investigators, and payments.

 The connections that exist between key objects in the data model. For example, in
a banking scenario is it possible to connect the multiple accounts that a single customer
might own? Similarly, in an insurance scenario is it possible to connect the information
from a policy application with the details (e.g., claims, payments, etc.) of the resulting
policy itself?

 The granularity of the data that the business has available. In a bricks-and-mortar
retail scenario, data on sales might only be stored as a total number of sales per product
type per day, rather than as individual items sold to individual customers.

 The volume of data involved. The amount of data that is available to an analytics
project is important because (a) some modern datasets are so large that they can stretch
even state-of-the-art machine learning tools; and (b) conversely, very small datasets can
limit our ability to evaluate the expected performance of a model after deployment.

 The time horizon for which data is available. It is important that the data available
covers the period required for the analytics solution. For example, in an online gaming
scenario, it might be possible to find out every customer’s account balance today but
utterly impossible to find out what their balance was last month, or even yesterday.

The second issue affecting the feasibility of an analytics solution is the ability of the
business to utilize the insight that the solution provides. If a business is required to drasti-
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cally revise all their processes to take advantage of the insights that can be garnered from a
predictive model, the business may not be ready to do this no matter how good the model
is. In many cases the best predictive analytics solutions are those that fit easily into an
existing business process.

Based on analysis of the associated data and capacity requirements, the analytics prac-
titioner can assess the feasibility of each predictive analytics solution proposed to address
a business problem. This analysis will eliminate some solutions altogether and for those
solutions that appear feasible will generate a list of the data and capacity required for suc-
cessful implementation. Those solutions that are deemed feasible should then be presented
to the business, and one or more should be selected for implementation.

As part of the process of agreeing on the solution to pursue, the analytics practitioner
must agree with the business, as far as possible, on the goals that will define a successful
model implementation. These goals could be specified in terms of the required accuracy
of the model and/or the impact of the model on the business.

2.2.1 Case Study: Motor Insurance Fraud
Returning to the motor insurance fraud detection case study, below we evaluate the feasibil-
ity of each proposed analytics solution in terms of data and business capacity requirements.

 [Claim prediction] Data Requirements: This solution would require that a large collec-
tion of historical claims marked as fraudulent and non-fraudulent exist. Similarly, the
details of each claim, the related policy, and the related claimant would need to be avail-
able. Capacity Requirements: Given that the insurance company already has a claims
investigation team, the main requirements would be that a mechanism could be put in
place to inform claims investigators that some claims were prioritized above others. This
would also require that information about claims become available in a suitably timely
manner so that the claims investigation process would not be delayed by the model.

 [Member prediction] Data Requirements: This solution would not only require that a
large collection of claims labeled as either fraudulent or non-fraudulent exist with all
relevant details, but also that all claims and policies can be connected to an identifiable
member. It would also require that any changes to a policy are recorded and available
historically. Capacity Requirements: This solution first assumes that it is possible to
run a process every quarter that performs an analysis of the behavior of each customer.
More challenging, there is the assumption that the company has the capacity to contact
members based on this analysis and can design a way to discuss this issue with customers
highlighted as likely to commit fraud without damaging the customer relationship so
badly as to lose the customer. Finally, there are possibly legal restrictions associated
with making this kind of contact.

 [Application prediction] Data Requirements: Again, a historical collection of claims
marked as fraudulent or non-fraudulent along with all relevant details would be required.
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It would also be necessary to be able to connect these claims back to the policies to which
they belong and to the application details provided when the member first applied. It is
likely that the data required for this solution would stretch back over many years, as
the time between making a policy application and making a claim could cover decades.
Capacity Requirements: The challenge in this case would be to integrate the automated
application assessment process into whatever application approval process currently ex-
ists within the company.

 [Payment prediction] Data Requirements: This solution would require the full details
of policies and claims as well as data on the original amount specified in a claim and the
amount ultimately paid out. Capacity Requirements: Again, this solution assumes that
the company has the potential to run this model in a timely fashion whenever new claims
rise and also has the capacity to make offers to claimants. This assumes the existence of
a customer contact center or something similar.

For the purposes of the case study, we assume that after the feasibility review, it was
decided to proceed with the claim prediction solution, in which a model will be built that
can predict the likelihood that an insurance claim is fraudulent.

2.3 Designing the Analytics Base Table

Once we have decided which analytics solution we are going to develop in response to
a business problem, we need to begin to design the data structures that will be used to
build, evaluate, and ultimately deploy the model. This work sits primarily in the Data
Understanding phase of the CRISP-DM process (see Figure 1.4[16]) but also overlaps with
the Business Understanding and Data Preparation phases (remember that the CRISP-
DM process is not strictly linear).

The basic data requirements for predictive models are surprisingly simple. To build a
predictive model, we need a large dataset of historical examples of the scenario for which
we will make predictions. Each of these historical examples must contain sufficient data to
describe the scenario and the outcome that we are interested in predicting. So, for example,
if we are trying to predict whether or not insurance claims are fraudulent, we require a large
dataset of historical insurance claims, and for each one we must know whether or not that
claim was found to be fraudulent.

The basic structure in which we capture these historical datasets is the analytics base
table (ABT), a schematic of which is shown in Table 2.1[29]. An analytics base table is a
simple, flat, tabular data structure made up of rows and columns. The columns are divided
into a set of descriptive features and a single target feature. Each row contains a value
for each descriptive feature and the target feature and represents an instance about which
a prediction can be made.

Although the ABT is the key structure that we use in developing machine learning mod-
els, data in organizations is rarely kept in neat tables ready to be used to build predictive
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Table 2.1
The basic structure of an analytics base table—descriptive features and a target feature.

Target
Descriptive Features Feature

——- ——- ——- ——- ——- ——- ——- ——-
——- ——- ——- ——- ——- ——- ——- ——-
——- ——- ——- ——- ——- ——- ——- ——-
——- ——- ——- ——- ——- ——- ——- ——-

models. Instead, we need to construct the ABT from the raw data sources that are available
in an organization. These may be very diverse in nature. Figure 2.1[29] illustrates some of
the different data sources that are typically combined to create an ABT.

Before we can start to aggregate the data from these different sources, however, a signifi-
cant amount of work is required to determine the appropriate design for the ABT. In design-
ing an ABT, the first decision an analytics practitioner needs to make is on the prediction
subject for the model they are trying to build. The prediction subject defines the basic
level at which predictions are made, and each row in the ABT will represent one instance
of the prediction subject—the phrase one-row-per-subject is often used to describe this
structure. For example, for the analytics solutions proposed for the motor insurance fraud
scenario, the prediction subject of the claim prediction and payment prediction models

Figure 2.1
The different data sources typically combined to create an analytics base table.
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would be an insurance claim; for the member prediction model, the prediction subject
would be a member; and for the application prediction model, it would be an application.

Each row in an ABT is composed of a set of descriptive features and a target feature. The
actual features themselves can be based on any of the data sources within an organization,
and defining them can appear to be a mammoth task at first. This task can be made easier
by making a hierarchical distinction between the actual features contained in an ABT and
a set of domain concepts upon which features are based—see Figure 2.2[30].

Analytics
Solution

Domain
Concept

Domain
Concept

Target
Concept

Domain
Subconcept

Domain
Subconcept

Domain
Subconcept

Domain
Subconcept

Feature Feature Feature Feature Feature Feature Feature Feature

Target
Feature

Figure 2.2
The hierarchical relationship between an analytics solution, domain concepts, and descriptive fea-
tures.

A domain concept is a high-level abstraction that describes some characteristic of the
prediction subject from which we derive a set of concrete features that will be included
in an ABT. If we keep in mind that the ultimate goal of an analytics solution is to build
a predictive model that predicts a target feature from a set of descriptive features, domain
concepts are the characteristics of the prediction subject that domain experts and analytics
experts believe are likely to be useful in making this prediction. Often, in a collaboration
between analytics experts and domain experts, we develop a hierarchy of domain con-
cepts that starts from the analytics solution, proceeds through a small number of levels
of abstraction to result in concrete descriptive features. Examples of domain concepts in-
clude customer value, behavioral change, product usage mix, and customer lifecycle stage.
These are abstract concepts that are understood to be likely important factors in making
predictions. At this stage we do not worry too much about exactly how a domain concept
will be converted into a concrete feature, but rather try to enumerate the different areas
from which features will arise.

Obviously, the set of domain concepts that are important change from one analytics
solution to another. However, there are a number of general domain concepts that are often
useful:
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 Prediction Subject Details: Descriptive details of any aspect of the prediction subject.
 Demographics: Demographic features of users or customers such as age, gender, occu-

pation, and address.
 Usage: The frequency and recency with which customers or users have interacted with

an organization. The monetary value of a customer’s interactions with a service. The
mix of products or services offered by the organization that a customer or user has used.

 Changes in Usage: Any changes in the frequency, recency, or monetary value of a
customer’s or user’s interactions with an organization (for example, has a cable TV sub-
scriber changed packages in recent months?).

 Special Usage: How often a user or customer used services that an organization consid-
ers special in some way in the recent past (for example, has a customer called a customer
complaints department in the last month?).

 Lifecycle Phase: The position of a customer or user in their lifecycle (for example, is a
customer a new customer, a loyal customer, or a lapsing customer?).

 Network Links: Links between an item and other related items (for example, links
between different customers or different products, or social network links between cus-
tomers).

The actual process for determining domain concepts is essentially one of knowledge
elicitation—attempting to extract from domain experts the knowledge about the scenario
we are trying to model. Often, this process will take place across multiple meetings, in-
volving the analytics and domain experts, where the set of relevant domain concepts for
the analytics solution are developed and refined.

2.3.1 Case Study: Motor Insurance Fraud
At this point in the motor insurance fraud detection project, we have decided to proceed
with the proposed claim prediction solution, in which a model will be built that can predict
the likelihood that an insurance claim is fraudulent. This system will examine new claims
as they arise and flag for further investigation those that look like they might be fraud
risks. In this instance the prediction subject is an insurance claim, and so the ABT for this
problem will contain details of historical claims described by a set of descriptive features
that capture likely indicators of fraud, and a target feature indicating whether a claim was
ultimately considered fraudulent. The domain concepts in this instance will be concepts
from within the insurance domain that are likely to be important in determining whether a
claim is fraudulent. Figure 2.3[32] shows some domain concepts that are likely to be useful in
this case. This set of domain concepts would have been determined through consultations
between the analytics practitioner and domain experts within the business.

The domain concepts shown here are Policy Details, which covers information relating
to the policy held by the claimant (such as the age of the policy and the type of the policy);
Claim Details, which covers the details of the claim itself (such as the incident type and
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Figure 2.3
Example domain concepts for a motor insurance fraud prediction analytics solution.

claim amount); Claimant History, which includes information on previous claims made
by the claimant (such as the different types of claims they have made in the past and the
frequency of past claims); Claimant Links, which captures links between the claimant and
any other people involved in the claim (for example, the same people being involved in
multiple insurance claims together is often an indicator of fraud); and Claimant Demo-
graphics, which covers the demographic details of the claimant (such as age, gender, and
occupation). Finally, a domain concept, Fraud Outcome, is included to cover the target
feature. It is important that this is included at this stage because target features often need
to be derived from multiple raw data sources, and the effort that will be involved in this
should not be forgotten.

In Figure 2.3[32] the domain concepts Claimant History and Claimant Links have both
been broken down into a number of domain subconcepts. In the case of Claimant His-
tory, the domain subconcept of Claim Types explicitly recognizes the importance of de-
signing descriptive features to capture the different types of claims the claimant has been
involved in in the past, and the Claim Frequency domain subconcept identifies the need
to have descriptive features relating to the frequency with which the claimant has been in-
volved in claims. Similarly, under Claimant Links, the Links with Other Claims and Links
with Current Claim domain subconcepts highlight the fact that the links to or from this
claimant can be broken down into links related to the current claim and links relating to
other claims. The expectation is that each domain concept, or domain subconcept, will
lead to one or more actual descriptive features derived directly from organizational data
sources. Together these descriptive features will make up the ABT.

2.4 Designing and Implementing Features

Once domain concepts have been agreed on, the next task is to design and implement con-
crete features based on these concepts. A feature is any measure derived from a domain
concept that can be directly included in an ABT for use by a machine learning algorithm.
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Implementing features is often a process of approximation through which we attempt to
express as much of each domain concept as possible from the data sources that are avail-
able to us. Often it will take multiple features to express a domain concept. Also, we
may have to use some proxy features to capture something that is closely related to a
domain concept when direct measurement is not possible. In some extreme cases we may
have to abandon a domain concept completely if the data required to express it isn’t avail-
able. Consequently, understanding and exploring the data sources related to each domain
concept that are available within an organization is a fundamental component of feature
design. Although all the factors relating to data that were considered during the feasibility
assessment of the analytics solution2 are still relevant, three key data considerations are
particularly important when we are designing features.

The first consideration is data availability, because we must have data available to im-
plement any feature we would like to use. For example, in an online payments service
scenario, we might define a feature that calculates the average of a customer’s account bal-
ance over the past six months. Unless the company maintains a historical record of account
balances covering the full six-month period, however, it will not be possible to implement
this feature.

The second consideration is the timing with which data becomes available for inclusion
in a feature. With the exception of the definition of the target feature, data that will be used
to define a feature must be available before the event around which we are trying to make
predictions occurs. For example, if we were building a model to predict the outcomes of
soccer matches, we might consider including the attendance at the match as a descriptive
feature. The final attendance at a match is not available until midway through the game, so
if we were trying to make predictions before kickoff, this feature would not be feasible.

The third consideration is the longevity of any feature we design. There is the potential
for features to go stale if something about the environment from which they are generated
changes. For example, to make predictions on the outcome of loans granted by a bank,
we might use the borrower’s salary as a descriptive feature. Salaries, however, change all
the time based on inflation and other socioeconomic factors. If we were to use a model
that includes salary values over an extended period (for example, 10 years) the salary
values used to initially train the model may have no relationship to the values that would
be presented to the model later on. One way to extend the longevity of a feature is to
use a derived ratio instead of a raw feature. For example, in the loan scenario a ratio
between salary and requested loan amount might have a much longer useful life span than
the salary and loan amount values alone. As a result of these considerations, feature design

2. See the discussion in Section 2.1[23] relating to data availability, data connections, data granularity, data vol-
ume, and data time horizons.
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and implementation is an iterative process in which data exploration informs the design
and implementation of features, which in turn inform further data exploration, and so on.

2.4.1 Different Types of Data
The data that the features in an ABT contain can be of a number of different types:

 Numeric: True numeric values that allow arithmetic operations (e.g., price, age)
 Interval: Values that allow ordering and subtraction, but do not allow other arithmetic

operations (e.g., date, time)
 Ordinal: Values that allow ordering but do not permit arithmetic (e.g., size measured as

small, medium, or large)
 Categorical: A finite set of values that cannot be ordered and allow no arithmetic (e.g.,

country, product type)
 Binary: A set of just two values (e.g., gender)
 Textual: Free-form, usually short, text data (e.g., name, address)

Figure 2.4[35] shows examples of these different data types. We often reduce this catego-
rization to just two data types: continuous (encompassing the numeric and interval types),
and categorical (encompassing the categorical, ordinal, binary, and textual types). When
we talk about categorical features, we refer to the set of possible values that a categorical
feature can take as the levels of the feature or the domain of the feature. For example, in
Figure 2.4[35] the levels of the CREDIT RATING feature are faa, a, b, cg and the levels of the
GENDER feature are fmale, femaleg. As we will see when we look at the machine learning
algorithms covered in Chapters 4[117] to 7[311], the presence of different types of descriptive
and target features can have a big impact on how an algorithm works.

2.4.2 Different Types of Features
The features in an ABT can be of two types: raw features or derived features. Raw
features are features that come directly from raw data sources. For example, customer age,
customer gender, loan amount, or insurance claim type are all descriptive features that we
would most likely be able to transfer directly from a raw data source to an ABT.

Derived descriptive features do not exist in any raw data source, so they must be con-
structed from data in one or more raw data sources. For example, average customer pur-
chases per month, loan-to-value ratios, or changes in usage frequencies for different peri-
ods are all descriptive features that could be useful in an ABT but that most likely need to
be derived from multiple raw data sources. The variety of derived features that we might
wish to use is limitless. For example, consider the number of features we can derive from
the monthly payment a customer makes on an electricity bill. From this single raw data
point, we can easily derive features that store the average payment over six months; the
maximum payment over six months; the minimum payment over six months; the average
payment over three months; the maximum payment over three months; the minimum pay-
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ID  NAME 
DATE OF 
BIRTH GENDER 

CREDIT 
RATING COUNTRY SALARY 

0034 Brian 22/05/78 male aa Ireland 67,000 

0175 Mary 04/06/45 female c France 65,000 

0456 Sinead 29/02/82 female b Ireland 112,000 

0687 Paul 11/11/67 male a USA 34,000 

0982 Donald 01/12/75 male b Australia 88,000 

1103 Agnes 17/09/76 female aa Sweden 154,000 

Ordinal

Textual
Interval

Ordinal
Categorical

Numeric
Binary

Figure 2.4
Sample descriptive feature data illustrating numeric, binary, ordinal, interval, categorical, and textual
types.

ment over three months; a flag to indicate that a missed payment has occurred over the last
six months; a mapping of the last payment made to a low, medium, or high level; the ratio
between the current and previous bill payments, and many more.

Despite this limitless variety, however, there are a number of common derived feature
types:

 Aggregates: These are aggregate measures defined over a group or period and are usu-
ally defined as the count, sum, average, minimum, or maximum of the values within a
group. For example, the total number of insurance claims that a member of an insurance
company has made over his or her lifetime might be a useful derived feature. Similarly,
the average amount of money spent by a customer at an online retailer over periods of
one, three, and six months might make an interesting set of derived features.

 Flags: Flags are binary features that indicate the presence or absence of some character-
istic within a dataset. For example, a flag indicating whether or not a bank account has
ever been overdrawn might be a useful descriptive feature.

 Ratios: Ratios are continuous features that capture the relationship between two or more
raw data values. Including a ratio between two values can often be much more powerful
in a predictive model than including the two values themselves. For example, in a bank-
ing scenario, we might include a ratio between a loan applicant’s salary and the amount
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for which they are requesting a loan rather than including these two values themselves.
In a mobile phone scenario, we might include three ratio features to indicate the mix
between voice, data, and SMS services that a customer uses.

 Mappings: Mappings are used to convert continuous features into categorical features
and are often used to reduce the number of unique values that a model will have to deal
with. For example, rather than using a continuous feature measuring salary, we might
instead map the salary values to low, medium, and high levels to create a categorical
feature.

 Other: There are no restrictions to the ways in which we can combine data to make
derived features. One especially creative example of feature design was when a large
retailer wanted to use the level of activity at a competitor’s stores as a descriptive feature
in one of their analytics solutions. Obviously, the competitor would not give the retailer
this information, and so the analytics team at the retailer sought to find some proxy
feature that would give them much the same information. Being a large retailer, they had
considerable resources at their disposal, one of which was the ability to regularly take
high-resolution satellite photos. Using satellite photos of their competitor’s premises, the
retailer was able to count the number of cars in the competitor’s parking lots and use this
as a proxy measure of activity within the competitor’s stores!

Although in some applications the target feature is a raw value copied directly from an
existing data source, in many others it must be derived. Implementing the target feature
for an ABT can demand significant effort. For example, consider a problem in which we
are trying to predict whether a customer will default on a loan obligation. Should we count
one missed payment as a default or, to avoid predicting that good customers will default,
should we consider a customer to have defaulted only after they miss three consecutive
payments? Or three payments in a six-month period? Or two payments in a five-month
period? Just like descriptive features, target features are based on a domain concept, and
we must determine what actual implementation is useful, feasible, and correct according to
the specifics of the domain in question. In defining target features, it is especially important
to seek input from domain experts.

2.4.3 Handling Time
Many of the predictive models that we build are propensity models, which predict the
likelihood (or propensity) of a future outcome based on a set of descriptive features de-
scribing the past. For example, the goal in the insurance claim fraud scenario we have
been considering is to make predictions about whether an insurance claim will turn out
to be fraudulent after investigation based on the details of the claim itself and the details
of the claimant’s behavior in the time preceding the claim. Propensity models inherently
have a temporal element, and when this is the case, we must take time into account when
designing the ABT. For propensity modeling, there are two key periods: the observa-
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tion period, over which descriptive features are calculated, and the outcome period, over
which the target feature is calculated.3

In some cases the observation period and outcome period are measured over the same
time for all prediction subjects. Consider the task of predicting the likelihood that a cus-
tomer will buy a new product based on past shopping behavior: features describing the past
shopping behavior are calculated over the observation period, while the outcome period is
the time during which we observe whether the customer bought the product. In this situa-
tion, the observation period for all the prediction subjects, in this case, customers, might be
defined as the six months prior to the launch of the new product, and the outcome period
might cover the three months after the launch. Figure 2.5(a)[38] shows these two different
periods, assuming that the customer’s shopping behavior was measured from August 2012
through January 2013, and that whether they bought the product of interest was observed
from February 2013 through April 2013. Figure 2.5(b)[38] illustrates how the observation
and outcome period for multiple customers are measured over the same period.

Often, however, the observation period and outcome period will be measured over dif-
ferent dates for each prediction subject. Figure 2.6(a)[39] shows an example in which, rather
than being defined by a fixed date, the observation period and outcome period are defined
relative to an event that occurs at different dates for each prediction subject. The insurance
claims fraud scenario we have been discussing throughout this section is a good example
of this. In this example the observation period and outcome period are both defined relative
to the date of the claim event, which will happen on different dates for different claims.
The observation period is the time before the claim event, across which the descriptive fea-
tures capturing the claimant’s behavior are calculated, while the outcome period is the time
immediately after the claim event, during which it will emerge whether the claim is fraud-
ulent or genuine. Figure 2.6(a)[39] shows an illustration of this kind of data, while Figure
2.6(b)[39] shows how this is aligned so that descriptive and target features can be extracted
to build an ABT. Note that in Figure 2.6(b)[39] the month names have been abstracted and
are now defined relative to the transition between the observation and outcome periods.

When time is a factor in a scenario, the descriptive features and the target feature will
not necessarily both be time dependent. In some cases only the descriptive features have a
time component to them, and the target feature is time independent. Conversely, the target
feature may have a time component and the descriptive features may not.

Next-best-offer models provide an example scenario where the descriptive features are
time dependent but the target feature is not. A next-best-offer model is used to determine
the least expensive incentive that needs to be offered to a customer who is considering
canceling a service, for example, a mobile phone contract, in order to make them reconsider

3. It is important to remember for this discussion that all the data from which we construct an ABT for training
and evaluating a model will be historical data.
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Figure 2.5
Modeling points in time using an observation period and an outcome period.

and stay. In this case the customer contacting the company to cancel their service is the
key event in time. The observation period that the descriptive features will be based on
is the customer’s entire behavior up to the point at which they make this contact. There
is no outcome period, as the target feature is determined by whether the company is able
to entice the customer to reconsider and, if so, the incentive that was required to do this.
Figure 2.7[39] illustrates this scenario.

Loan default prediction is an example where the definition of the target feature has a
time element but the descriptive features are time independent. In loan default prediction,
the likelihood that an applicant will default on a loan is predicted based on the information
the applicant provides on the application form. There really isn’t an observation period in
this case, as all descriptive features will be based on information provided by the applicant
on the application form, rather than on observing the applicant’s behavior over time.4 The
outcome period in this case is considered the period of the lifetime of the loan during

4. Some might argue that the information on the application form summarizes an applicant’s entire life, so this
constitutes the observation period in this case!
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Figure 2.6
Observation and outcome periods defined by an event rather than by a fixed point in time (each line
represents a prediction subject, and stars signify events). (a) shows the actual data, and (b) shows the
event-aligned data.
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Figure 2.7
Modeling points in time for a scenario with no real outcome period (each line represents a customer,
and stars signify events). (a) shows the actual data, and (b) shows the event-aligned data.

which the applicant will have either fully repaid or defaulted on the loan. In order to
build an ABT for such a problem, a historical dataset of application details and subsequent
repayment behavior is required (this might stretch back over multiple years depending on
the terms of the loans in question). This scenario is illustrated in Figure 2.8[40].

2.4.4 Legal Issues
Data analytics practitioners can often be frustrated by legislation that stops them from
including features that appear to be particularly well suited to an analytics solution in
an ABT. Organizations must operate within the relevant legislation that is in place in the
jurisdictions in which they operate, and it is important that models are not in breach of this.
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Modeling points in time for a scenario with no real observation period (each line represents a cus-
tomer, and stars signify events). (a) shows the actual data, and (b) shows the event-aligned data.

There are significant differences in legislation in different jurisdictions, but a couple of key
relevant principles almost always apply.

The first is related to anti-discrimination legislation. Anti-discrimination legislation
in most jurisdictions prohibits discrimination on the basis of some set of the following
grounds: sex, age, race, ethnicity, nationality, sexual orientation, religion, disability, and
political opinions. For example, the United States Civil Rights Act of 19645 made it il-
legal to discriminate against a person on the basis of race, color, religion, national origin,
or sex. Subsequent legislation has added to this list (for example, disability was later
added as a further basis for non-discrimination). In the European Union the 1999 Treaty
of Amsterdam6 prohibits discrimination on the basis of sex, racial or ethnic origin, reli-
gion or belief, disability, age, or sexual orientation. The exact implementation details of
anti-discrimination law change, however, across the countries in the European Union.

The impact this has on designing features for inclusion in an ABT is that the use of some
features in analytics solutions that leads to some people being given preferential treatment
is in breach of anti-discrimination law. For example, credit scoring models such as the
one discussed in Section 1.2[5] cannot use race as a descriptive feature because this would
discriminate against people on this basis.

The second important principle relates to data protection legislation, and in particular
the rules surrounding the use of personal data. Personal data is defined as data that relates
to an identified or identifiable individual, who is known as a data subject. Although,

5. The full text of the Civil Rights Act of 1964 is available at www.gpo.gov/fdsys/granule/STATUTE-78/
STATUTE-78-Pg241/content-detail.html.

6. The full text of the EU Treaty of Amsterdam is available at www.europa.eu/eu-law/decision-making/treaties/
pdf/treaty of amsterdam/treaty of amsterdam en.pdf.

www.gpo.gov/fdsys/granule/STATUTE-78/STATUTE-78-Pg241/content-detail.html
www.gpo.gov/fdsys/granule/STATUTE-78/STATUTE-78-Pg241/content-detail.html
www.europa.eu/eu-law/decision-making/treaties/pdf/treaty_of_amsterdam/treaty_of_amsterdam_en.pdf
www.europa.eu/eu-law/decision-making/treaties/pdf/treaty_of_amsterdam/treaty_of_amsterdam_en.pdf
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data protection legislation changes significantly across different jurisdictions, there are
some common tenets on which there is broad agreement. The Organisation for Economic
Co-operation and Development (OECD, 2013) defines a set of eight general principles of
data protection legislation.7 For the design of analytics base tables, three are especially
relevant: the collection limitation principle, the purpose specification principle, and the
use limitation principle.

The collection limitation principle states that personal data should only be obtained by
lawful means with the knowledge and consent of a data subject. This can limit the amount
of data that an organization collects and, sometimes, restricts implementing features to
capture certain domain concepts because consent has not been granted to collect the re-
quired data. For example, the developers of a smartphone app might decide that by turning
on location tracking, they could gather data that would be extremely useful in predicting
future usage of the app. Doing this without the permission of the users of the app, however,
would be in breach of this principle.

The purpose specification principle states that data subjects should be informed of the
purpose for which data will be used at the time of its collection. The use limitation principle
adds that collected data should not subsequently be used for purposes other than those
stated at the time of collection. Sometimes this means that data collected by an organization
cannot be included in an ABT because this would be incompatible with the original use for
which the data was collected. For example, an insurance company might collect data on
customers’ travel behaviors through their travel insurance policy and then use this data in
a model that predicts personalized prices for life insurance. Unless, however, this second
use was stated at the time of collection, this use would be in breach of this principle.

The legal considerations surrounding predictive analytics are of growing importance and
need to be seriously considered during the design of any analytics project. Although larger
organizations have legal departments to whom proposed features can be handed over for
assessment, in smaller organizations analysts are often required to make these assessments
themselves, and consequently they need to be aware of the legal implications relating to
their decisions.

2.4.5 Implementing Features
Once the initial design for the features in an ABT has been completed, we can begin to
implement the technical processes that are needed to extract, create, and aggregate the fea-
tures into an ABT. It is at this point that the distinction between raw and derived features
becomes apparent. Implementing a raw feature is simply a matter of copying the rele-
vant raw value into the ABT. Implementing a derived feature, however, requires data from
multiple sources to be combined into a set of single feature values.

7. The full discussion of these principles is available at www.oecd.org/sti/ieconomy/privacy.htm.

www.oecd.org/sti/ieconomy/privacy.htm
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A few key data manipulation operations are frequently used to calculate derived feature
values: joining data sources, filtering rows in a data source, filtering fields in a data source,
deriving new features by combining or transforming existing features, and aggregating data
sources. Data manipulation operations are implemented in and performed by database
management systems, data management tools, or data manipulation tools, and are
often referred to as an extract-transform-load (ETL) process.

2.4.6 Case Study: Motor Insurance Fraud
Let’s return to the motor insurance fraud detection solution to consider the design and im-
plementation of the features that will populate the ABT. As we noted in our discussion
regarding handling time, the motor insurance claim prediction scenario is a good example
of a situation in which the observation period and outcome period are measured over dif-
ferent dates for each insurance claim (the prediction subject for this case study). For each
claim the observation and output periods are defined relative to the specific date of that
claim. The observation period is the time prior to the claim event, over which the descrip-
tive features capturing the claimant’s behavior are calculated, and the outcome period is
the time immediately after the claim event, during which it will emerge whether the claim
is fraudulent or genuine.

The Claimant History domain concept that we developed for this scenario indicates the
importance of information regarding the previous claims made by the claimant to the task
of identifying fraudulent claims. This domain concept is inherently related to the notion
of an observation period, and as we will see, the descriptive features derived from the
domain subconcepts under Claimant History are time dependent. For example, the Claim
Frequency domain subconcept under the Claimant History concept should capture the fact
that the number of claims a claimant has made in the past has an impact on the likelihood
of a new claim being fraudulent. This could be expressed in a single descriptive feature
counting the number of claims that the claimant has made in the past. This single value,
however, may not capture all the relevant information. Adding extra descriptive features
that give a more complete picture of a domain concept can lead to better predictive models.
In this example we might also include the number of claims made by the claimant in the
last three months, the average number of claims made by the claimant per year, and the
ratio of the average number of claims made by the claimant per year to the claims made by
the claimant in the last twelve months. Figure 2.9[43] shows these descriptive features in a
portion of the domain concept diagram.

The Claim Types subconcept of the Claim History is also time dependent. This domain
subconcept captures the variety of claim types made by the claimant in the past, as these
might provide evidence of possible fraud. The features included under this subconcept, all
of which are derived features, are shown in Figure 2.10[44]. The features place a particular
emphasis on claims relating to soft tissue injuries (for example, whiplash) because it is
understood within the insurance industry that these are frequently associated with fraud-
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…

Figure 2.9
A subset of the domain concepts and related features for a motor insurance fraud prediction analytics
solution.

ulent claims. The number of soft tissue injury claims the claimant has made in the past
and the ratio between the number of soft tissue injury claims and other claims made by the
claimant are both included as descriptive features in the ABT. A flag is also included to
indicate that the claimant has had at least one claim refused in the past, because this might
be indicative of a pattern of making speculative claims. Finally, a feature is included that
expresses the variety of different claim types made by the claimant in the past. This uses
the entropy measure that is discussed in Section 4.2[120] as it does a good job of capturing
in a single number the variety in a set of objects.

However, not all the domain concepts in this scenario are time dependent. The Claim
Details domain concept, for example, highlights the importance of the details of the claim
itself in distinguishing between fraudulent and genuine claims. The type of the claim and
amount of the claim are raw features calculated directly from a claims table contained in
one of the insurance company’s operational databases. A derived feature containing the
ratio between the claim amount and the total value of the premiums paid to date on the
policy is included. This is based on an expectation that fraudulent claims may be made
early in the lifetime of a policy before too much has been spent on premiums. Finally,
the insurance company divides their operations into a number of geographic areas defined
internally based on the location of their branches, and a feature is included that maps raw
address data to these regions.
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Figure 2.10
A subset of the domain concepts and related features for a motor insurance fraud prediction analytics
solution.

Table 2.2[46] illustrates the structure of the final ABT that was designed for the motor in-
surance claims fraud detection solution.8 The table contains more descriptive features than
the ones we have discussed in this section.9 The table also shows the first four instances.
If we examine the table closely, we see a number of strange values (for example,�99;999)
and a number of missing values. In the next chapter, we describe the process we should
follow to evaluate the quality of the data in the ABT and the actions we can take if the
quality isn’t good enough.

2.5 Summary

It is important to remember that predictive data analytics models built using machine learn-
ing techniques are tools that we can use to help make better decisions within an organiza-
tion and are not an end in themselves. It is paramount that, when tasked with creating a
predictive model, we fully understand the business problem that this model is being con-

8. The table is too wide to fit on a page, so it has been split into three sections.

9. The mapping between the features we have discussed here and the column names in Table 2.2[46] is as follows:
NUMBER OF CLAIMANTS: NUM. CLMNTS.; NUMBER OF CLAIMS IN CLAIMANT LIFETIME: NUM. CLAIMS;
NUMBER OF CLAIMS BY CLAIMANT IN LAST 3 MONTHS: NUM. CLAIMS 3 MONTHS; AVERAGE CLAIMS
PER YEAR BY CLAIMANT: AVG. CLAIMS PER YEAR; RATIO OF AVERAGE CLAIMS PER YEAR TO NUMBER
OF CLAIMS IN LAST 12 MONTHS: AVG. CLAIMS RATIO; NUMBER OF SOFT TISSUE CLAIMS: NUM. SOFT
TISSUE; RATIO OF SOFT TISSUE CLAIMS TO OTHER CLAIMS: % SOFT TISSUE; UNSUCCESSFUL CLAIM
MADE: UNSUCC. CLAIMS; DIVERSITY OF CLAIM TYPES: CLAIM DIV.; CLAIM AMOUNT: CLAIM AMT.;
CLAIM TO PREMIUM PAID RATIO: CLAIM TO PREM.; ACCIDENT REGION: REGION.
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Figure 2.11
A subset of the domain concepts and related features for a motor insurance fraud prediction analytics
solution.

structed to address and ensure that it does address it. This is the goal behind the process of
converting business problems into analytics solutions as part of the Business Understand-
ing phase of the CRISP-DM process. When undertaking this process, it is important to
take into account the availability of data and the capacity of a business to take advantage of
insights arising from analytics models, as otherwise it is possible to construct an apparently
accurate prediction model that is in fact useless.

Predictive data analytics models are reliant on the data that is used to build them—the an-
alytics base table (ABT) is the key data resource in this regard. An ABT, however, rarely
comes directly from a single source already existing within an organization. Instead, the
ABT has to be created by combining a range of operational data sources together. The
manner in which these data resources should be combined must be designed and imple-
mented by the analytics practitioner in collaboration with domain experts. An effective
way in which to do this is to start by defining a set of domain concepts in collaboration
with the business, and then designing features that express these concepts in order to form
the actual ABT. Domain concepts cover the different aspects of a scenario that are likely
to be important in the modeling task at hand.

Features (both descriptive and target) are concrete numeric or symbolic representations
of domain concepts. Features can be of many different types, but it is useful to think
of a distinction between raw features that come directly from existing data sources and
derived features that are constructed by manipulating values from existing data sources.
Common manipulations used in this process include aggregates, flags, ratios, and map-
pings, although any manipulation is valid. Often multiple features are required to fully
express a single domain concept.
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Table 2.2
The ABT for the motor insurance claims fraud detection solution.

MARITAL NUM. INJURY HOSPITAL CLAIM

ID TYPE INC. STATUS CLMNTS. TYPE STAY AMT.
1 ci 0 2 soft tissue no 1,625
2 ci 0 2 back yes 15,028
3 ci 54,613 married 1 broken limb no -99,999
4 ci 0 3 serious yes 270,200

:::
:::

NUM. AVG. AVG. NUM. %
TOTAL NUM. CLAIMS CLAIMS CLAIMS SOFT SOFT

ID CLAIMED CLAIMS 3 MONTHS PER YEAR RATIO TISSUE TISSUE

1 3,250 2 0 1 1 2 1
2 60,112 1 0 1 1 0 0
3 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0

:::
:::

CLAIM CLAIM

UNSUCC. AMT. CLAIM TO FRAUD

ID CLAIMS REC. DIV. PREM. REGION FLAG

1 2 0 0 32.500 mn 1
2 0 15,028 0 57.140 dl 0
3 0 572 0 -89.270 wat 0
4 0 270,200 0 30.186 dl 0

:::
:::

The techniques described in this chapter cover the Business Understanding, Data Un-
derstanding, and (partially) Data Preparation phases of the CRISP-DM process. Fig-
ure 2.12[47] shows how the major tasks described in this chapter align with these phases.
The next chapter will describe the data understanding and data preparation techniques
mentioned briefly in this chapter in much more detail. It is important to remember that
in reality, the Business Understanding, Data Understanding, and Data Preparation
phases of the CRISP-DM process are performed iteratively rather than linearly. The curved
arrows in Figure 2.12[47] show the most common iterations in the process.
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Figure 2.12
A summary of the tasks in the Business Understanding, Data Understanding, and Data Preparation
phases of the CRISP-DM process.

2.6 Further Reading

On the topic of converting business problems into analytics solutions, Davenport (2006)
and Davenport and Kim (2013) are good business-focused sources. Levitt and Dubner
(2005), Ayres (2008), Silver (2012), and Siegel (2013) all provide nice dicusssions of
different applications of predictive data analytics.

The CRISP-DM process documentation (Chapman et al., 2000) is surprisingly readable,
and adds a lot of extra detail to the tasks described in this chapter. For details on develop-
ing business concepts and designing features, Svolba (2007) is excellent (the approaches
described can be applied to any tool, not just SAS, which is the focus of Svolba’s book).

For further discussion of the legal issues surrounding data analytics, Tene and Polonetsky
(2013) and Schwartz (2010) are useful. Chapter 2 of Siegel (2013) discusses the ethical
issues surrounding predictive analytics.
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2.7 Exercises

1. An online movie streaming company has a business problem of growing customer
churn—subscription customers canceling their subscriptions to join a competitor.
Create a list of ways in which predictive data analytics could be used to help address
this business problem. For each proposed approach, describe the predictive model that
will be built, how the model will be used by the business, and how using the model
will help address the original business problem.

2. A national revenue commission performs audits on public companies to find and fine
tax defaulters. To perform an audit, a tax inspector visits a company and spends a
number of days scrutinizing the company’s accounts. Because it takes so long and
relies on experienced, expert tax inspectors, performing an audit is an expensive exer-
cise. The revenue commission currently selects companies for audit at random. When
an audit reveals that a company is complying with all tax requirements, there is a sense
that the time spent performing the audit was wasted, and more important, that another
business who is not tax compliant has been spared an investigation. The revenue com-
missioner would like to solve this problem by targeting audits at companies who are
likely to be in breach of tax regulations, rather than selecting companies for audit at
random. In this way the revenue commission hopes to maximize the yield from the
audits that it performs.

To help with situational fluency for this scenario, here is a brief outline of how com-
panies interact with the revenue commission. When a company is formed, it registers
with the company registrations office. Information provided at registration includes
the type of industry the company is involved in, details of the directors of the com-
pany, and where the company is located. Once a company has been registered, it must
provide a tax return at the end of every financial year. This includes all financial de-
tails of the company’s operations during the year and is the basis of calculating the tax
liability of a company. Public companies also must file public documents every year
that outline how they have been performing, details of any changes in directorship,
and so on.

(a) Propose two ways in which predictive data analytics could be used to help ad-
dress this business problem.10 For each proposed approach, describe the predic-
tive model that will be built, how the model will be used by the business, and how
using the model will help address the original business problem.

(b) For each analytics solution you have proposed for the revenue commission, outline
the type of data that would be required.

10. Revenue commissioners around the world use predictive data analytics techniques to keep their processes as
efficient as possible. Cleary and Tax (2011) is a good example.
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(c) For each analytics solution you have proposed, outline the capacity that the rev-
enue commission would need in order to utilize the analytics-based insight that
your solution would provide.

3. The table below shows a sample of a larger dataset containing details of policyholders
at an insurance company. The descriptive features included in the table describe each
policy holders’ ID, occupation, gender, age, the value of their car, the type of insurance
policy they hold, and their preferred contact channel.

MOTOR POLICY PREF

ID OCCUPATION GENDER AGE VALUE TYPE CHANNEL

1 lab tech female 43 42,632 planC sms
2 farmhand female 57 22,096 planA phone
3 biophysicist male 21 27,221 planA phone
4 sheriff female 47 21,460 planB phone
5 painter male 55 13,976 planC phone
6 manager male 19 4,866 planA email
7 geologist male 51 12,759 planC phone
8 messenger male 49 15,672 planB phone
9 nurse female 18 16,399 planC sms

10 fire inspector male 47 14,767 planC email

(a) State whether each descriptive feature contains numeric, interval, ordinal, categor-
ical, binary, or textual data.

(b) How many levels does each categorical, binary, or ordinal feature have?

4. Select one of the predictive analytics models that you proposed in your answer to
Question 2 about the revenue commission for exploration of the design of its analytics
base table (ABT).

(a) What is the prediction subject for the model that will be trained using this ABT?

(b) Describe the domain concepts for this ABT.

(c) Draw a domain concept diagram for the ABT.

(d) Are there likely to be any legal issues associated with the domain concepts you
have included?

� 5. Although their sales are reasonable, an online fashion retailer is struggling to generate
the volume of sales that they had originally hoped for when launching their site. List
a number of ways in which predictive data analytics could be used to help address this
business problem. For each proposed approach, describe the predictive model that will
be built, how the model will be used by the business, and how using the model will
help address the original business problem.



50 Chapter 2 Data to Insights to Decisions

� 6. An oil exploration company is struggling to cope with the number of exploratory sites
that they need to drill in order to find locations for viable oil wells. There are many po-
tential sites that geologists at the company have identified, but undertaking exploratory
drilling at these sites is very expensive. If the company could increase the percentage
of sites at which they perform exploratory drilling that actually lead to finding loca-
tions for viable wells, they could save a huge amount of money.

Currently geologists at the company identify potential drilling sites by manually ex-
amining information from a variety of different sources. These include ordinance sur-
vey maps, aerial photographs, characteristics of rock and soil samples taken from po-
tential sites, and measurements from sensitive gravitational and seismic instruments.

(a) Propose two ways in which predictive data analytics could be used to help ad-
dress the problem that the oil exploration company is facing. For each proposed
approach, describe the predictive model that will be built, how the model will
be used by the company, and how using the model will help address the original
problem.

(b) For each analytics solution you have proposed, outline the type of data that would
be required.

(c) For each analytics solution you have proposed, outline the capacity that would
be needed in order to utilize the analytics-based insight that your solution would
provide.

� 7. Select one of the predictive analytics models that you proposed in your answer to the
previous question about the oil exploration company for exploration of the design of
its analytics base table.

(a) What is the prediction subject for the model that will be trained using this ABT?

(b) Describe the domain concepts for this ABT.

(c) Draw a domain concept diagram for the ABT.

(d) Are there likely to be any legal issues associated with the domain concepts you
have included?

� 8. The following table shows a sample of a larger dataset that has been collected to build
a model to predict whether newly released movies will be a hit or not.11 The dataset
contains details of movies that have already been released, including their title, running
time, rating, genre, year of release, and whether or not the actor Kevin Costner had a
starring role. An indicator of whether they were a success—a hit—or not—a miss—
based on box office returns compared to budget is also included.

11. This dataset has been artificially created for this book, but machine learning has been used for this task, for
example, by Mishne and Glance (2006).
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ID TITLE LENGTH RATING GENRE COSTNER YEAR HIT

1 Jaws 124 PG action false 1975 hit
2 Waterworld 135 PG-13 sci-fi true 1995 miss
3 Hudson Hawk 100 R adventure false 1991 miss
4 Downfall 156 R drama false 2004 hit
5 The Postman 177 R action true 1997 miss
6 Toy Story 81 G children’s false 1995 hit
7 Field of Dreams 107 G drama true 1989 hit
8 Amelie 122 R comedy false 2001 hit

(a) State whether each descriptive feature contains numeric, interval, ordinal, categor-
ical, binary, or textual data.

(b) How many levels does each categorical, binary, or ordinal feature have?

� 9. The management of a large hospital group are concerned about the readmission rate
for patients who are hospitalized with problems relating to diabetes. An analysis of
historical data suggests that the rate of readmission within 30 days of being discharged
for patients who were hospitalized for complications relating to diabetes is approxi-
mately 20%, compared to an overall average for all patients of approximately 11%.
Sometimes patients are readmitted for a recurrence of the same problem for which
they were originally hospitalized, but at other times readmission is for different prob-
lems. Hospital management are concerned that the cause of the high readmittance rate
for diabetes patients might be that they are discharged too early or that their care plans
while in the hospital are not addressing all their needs.

Hospital management would like to explore the use of predictive analytics to address
this issue.12 They would like to reduce the readmittance rate of diabetes patients, while
at the same time not keeping patients in the hospital longer than they need to be.

(a) Propose two ways in which predictive data analytics could be used to help address
this problem for the hospital group. For each proposed approach, describe the
predictive model that will be built, how the model will be used by the business,
and how using the model will help address the original problem.

(b) For each analytics solution you have proposed for the hospital group, outline the
type of data that would be required.

(c) For each analytics solution you have proposed, outline the capacity that the hospi-
tal would need in order to use the analytics-based insight that your solution would
provide.

12. There are many applications of predictive analytics in healthcare, and predicting readmittance rates for dia-
betes patients, as well as patients suffering from other issues, is well studied, for example, by Rubin (2015) and
Kansagara et al. (2011).
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� 10. Select one of the predictive analytics models that you proposed in your answer to the
previous question about the readmission of diabetes patients for exploration of the
design of its analytics base table.

(a) What is the prediction subject for the model that will be trained using this ABT?

(b) Describe the domain concepts for this ABT.

(c) Draw a domain concept diagram for the ABT.

(d) Are there likely to be any legal issues associated with the domain concepts you
have included?
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“Fail to prepare, prepare to fail.”
—Roy Keane

In Chapter 2[23] we described the process of moving from a business problem to an analytics
solution and, from there, to the design and construction of an analytics base table (ABT).
An ABT for a predictive analytics solution contains a set of instances that are represented
by a set of descriptive features and a target feature. Before attempting to build predictive
models based on an ABT, it is important that we undertake some exploratory analysis, or
data exploration, of the data contained in the ABT. Data exploration is a key part of both
the Data Understanding and Data Preparation phases of CRISP-DM.

There are two goals in data exploration. The first goal is to fully understand the character-
istics of the data in the ABT. It is important that for each feature in the ABT, we understand
characteristics such as the types of values a feature can take, the ranges into which the val-
ues in a feature fall, and how the values in a dataset for a feature are distributed across the
range that they can take. We refer to this as getting to know the data. The second goal of
data exploration is to determine whether or not the data in an ABT suffer from any data
quality issues that could adversely affect the models that we build. Examples of typical
data quality issues include an instance that is missing values for one or more descriptive
features, an instance that has an extremely high value for a feature, or an instance that has
an inappropriate level for a feature. Some data quality issues arise due to invalid data and
will be corrected as soon as we discover them. Others, however, arise because of perfectly
valid data that may cause difficulty to some machine learning techniques. We note these
types of data quality issues during exploration for potential handling when we reach the
Modeling phase of a project.

The most important tool used during data exploration is the data quality report. This
chapter begins by describing the structure of a data quality report and explaining how it
is used to get to know the data in an ABT and to identify data quality issues. We then
describe a number of strategies for handling data quality issues and when it is appropriate
to use them. Throughout the discussion of the data quality report and how we use it, we
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return to the motor insurance fraud case study from Chapter 2[23]. Toward the end of the
chapter, we introduce some more advanced data exploration techniques that, although not
part of the standard data quality report, can be useful at this stage of an analytics project
and present some data preparation techniques that can be applied to the data in an ABT
prior to modeling.

3.1 The Data Quality Report

The data quality report is the most important tool of the data exploration process. A data
quality report includes tabular reports (one for continuous features and one for categorical
features) that describe the characteristics of each feature in an ABT using standard statisti-
cal measures of central tendency and variation. The tabular reports are accompanied by
data visualizations that illustrate the distribution of the values in each feature in an ABT.
Readers who are not already familiar with standard measures of central tendency (mean,
mode, and median), standard measures of variation (standard deviation and percentiles),
and standard data visualization plots (bar plots, histograms, and box plots) should read
Appendix A[745] for the necessary introduction.

The table in a data quality report that describes continuous features should include a row
containing the minimum, 1st quartile, mean, median, 3rd quartile, maximum, and standard
deviation statistics for that feature as well as the total number of instances in the ABT,
the percentage of instances in the ABT that are missing a value for each feature and the
cardinality of each feature, (cardinality measures the number of distinct values present in
the ABT for a feature). Table 3.1(a)[55] shows the structure of the table in a data quality
report that describes continuous features.

The table in the data quality report that describes categorical features should include a
row for each feature in the ABT that contains the two most frequent levels for the feature
(the mode and 2nd mode) and the frequency with which these appear (both as raw frequen-
cies and as a proportion of the total number of instances in the dataset). Each row should
also include the percentage of instances in the ABT that are missing a value for the feature
and the cardinality of the feature. Table 3.1(b)[55] shows the structure of the table in a data
quality report that describes categorical features.

The data quality report should also include a histogram for each continuous feature in an
ABT. For continuous features with cardinality less than 10, we use bar plots instead of his-
tograms as this usually produces more informative data visualization. For each categorical
feature in an ABT, a bar plot should be included in the data quality report.
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Table 3.1
The structures of the tables included in a data quality report to describe (a) continuous features and
(b) categorical features.

(a) Continuous Features

% 1st 3rd Std.
Feature Count Miss. Card. Min. Qrt. Mean Median Qrt. Max. Dev.
—— —— —— —— —— —— —— —— —— —— ——
—— —— —— —— —— —— —— —— —— —— ——
—— —— —— —— —— —— —— —— —— —— ——

(b) Categorical Features

2nd 2nd

% Mode Mode 2nd Mode Mode
Feature Count Miss. Card. Mode Freq. % Mode Freq. %
—— —— —— —— —— —— —— —— —— ——
—— —— —— —— —— —— —— —— —— ——
—— —— —— —— —— —— —— —— —— ——

3.1.1 Case Study: Motor Insurance Fraud
Table 3.2[56] shows a portion of the ABT that has been developed for the motor insurance
claims fraud detection solution based on the design described in Section 2.4.6[42].1 The data
quality report for this ABT is shown across Table 3.3[57] (tabular reports for continuous and
categorical features) and Figure 3.1[58] (data visualizations for each feature in the dataset).

3.2 Getting to Know the Data

The data quality report gives an in-depth picture of the data in an ABT, and we should
study it in detail in order to get to know the data that we will work with. For each feature,
we should examine the central tendency and variation to understand the types of values
that each feature can take. For categorical features, we should first examine the mode, 2nd

mode, mode %, and 2nd mode % in the categorical features table in the data quality report.
These tell us the most common levels within these features and will identify if any levels
dominate the dataset (these levels will have a very high mode %). The bar plots shown in
the data quality report are also very useful here. They give us a quick overview of all the
levels in the domain of each categorical feature and the frequencies of these levels.

1. In order to allow this dataset fit on one page, only a subset of the features described in the domain concept
diagrams in Figures 2.9[43], 2.10[44], and 2.11[45] are included.
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Figure 3.1
Visualizations of the continuous and categorical features in the motor insurance claims fraud detec-
tion ABT in Table 3.2[56].
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For continuous features we should first examine the mean and standard deviation of each
feature to get a sense of the central tendency and variation of the values within the dataset
for the feature. We should also examine the minimum and maximum values to understand
the range that is possible for each feature. The histograms for each continuous feature in-
cluded in a data quality report are a very easy way for us to understand how the values for
a feature are distributed across the range they can take.2 When we generate histograms of
features, there are a number of common, well-understood shapes that we should look out
for. These shapes relate to well-known standard probability distributions,3 and recogniz-
ing that the distribution of the values in an ABT for a feature closely matches one of these
standard distributions can help us when building machine learning models. During data
exploration we don’t need to go any further than simply recognizing that features seem
to follow particular distributions, and this can be done from examining the histogram for
each feature. Figure 3.2[60] shows a selection of histogram shapes that exhibit characteristics
commonly seen when analyzing features and that are indicative of standard, well-known
probability distributions.

Figure 3.2(a)[60] shows a histogram exhibiting a uniform distribution. A uniform distri-
bution indicates that a feature is equally likely to take a value in any of the ranges present.
Sometimes a uniform distribution is indicative of a descriptive feature that contains an ID
rather than a measure of something more interesting.

Figure 3.2(b)[60] shows a shape indicative of a normal distribution. Features following a
normal distribution are characterized by a strong tendency toward a central value and sym-
metrical variation to either side of this central tendency. Naturally occurring phenomena—
for example, the heights or weights of a randomly selected group of men or women—tend
to follow a normal distribution. Histograms that follow a normal distribution can also be
described as unimodal because they have a single peak around the central tendency. Find-
ing features that exhibit a normal distribution is a good thing, as many of the modeling
techniques we discuss in later chapters work particularly well with normally distributed
data.

Figures 3.2(c)[60] and 3.2(d)[60] show unimodal histograms that exhibit skew. Skew is
simply a tendency toward very high (right skew as seen in Figure 3.2(c)[60]) or very low
(left skew as seen in Figure 3.2(d)[60]) values. Features recording salaries often follow
a right skewed distribution, as most people are paid salaries near a well-defined central
tendency, but there are usually a small number of people who are paid very large salaries.
Skewed distributions are often said to have long tails toward these very high or very low
values.

2. Note that in a density histogram, the height of each bar represents the likelihood that a value in the range
defining that bar will occur in a data sample (see Section A.4.2[752]).

3. We discuss probability distributions in more depth in Chapter 6[243].
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(a) Uniform (b) Normal (unimodal) (c) Unimodal (skewed right)

(d) Unimodal (skewed left) (e) Exponential (f) Multimodal

Figure 3.2
Histograms for six different sets of data, each of which exhibit well-known, common characteristics.

In a feature following an exponential distribution, as shown in Figure 3.2(e)[60], the
likelihood of low values occurring is very high but diminishes rapidly for higher values.
Features such as the number of times a person has made an insurance claim or the number
of times a person has been married tend to follow an exponential distribution. Recognizing
that a feature follows an exponential distribution is another clear warning sign that outliers
are likely. As shown in Figure 3.2(e)[60], exponential distributions have a long tail, and so
very high values are not uncommon.

Finally, a feature characterized by a multimodal distribution has two or more very
commonly occurring ranges of values that are clearly separated. Figure 3.2(f)[60] shows a
bimodal distribution with two clear peaks—we can think of this as two normal distribu-
tions pushed together. Multimodal distributions tend to occur when a feature contains a
measurement made across a number of distinct groups. For example, if we were to mea-
sure the heights of a randomly selected group of Irish men and women, we would expect a
bimodal distribution with a peak at around 1:635m for women and 1:775m for men.
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Observing a multimodal distribution is cause for both caution and optimism. The caution
comes from the fact that measures of central tendency and variation tend to break down
for multimodal data. For example, consider that the mean value of the distribution shown
in Figure 3.2(f)[60] is likely to sit right in the valley between the two peaks, even though
very few instances actually have this value. The optimism associated with finding multi-
modally distributed data stems from the fact that, if we are lucky, the separate peaks in the
distribution will be associated with the different target levels we are trying to predict. For
example, if we were trying to predict gender from a set of physiological measurements,
height would most likely be a very predictive value, as it would separate people into male
and female groups.

This stage of data exploration is mostly an information-gathering exercise, the output
of which is just a better understanding of the contents of an ABT. It does, however, also
present a good opportunity to discuss anything unusual that we notice about the central
tendency and variation of features within the ABT. For example, a salary feature with a
mean of 40 would seem unlikely (40;000 would seem more reasonable) and should be
investigated.

3.2.1 The Normal Distribution
The normal distribution (also known as a Gaussian distribution) is so important that it
is worth spending a little extra time discussing its characteristics. Standard probability dis-
tributions have associated probability density functions, which define the characteristics
of the distribution. The probability density function for the normal distribution is

Npx; �; �q �
1

�
?

2�
e
�
px� �q2

2�2 (3.1)

where x is any value, and � and � are parameters that define the shape of the distribution.
Given a probability density function, we can plot the density curve associated with a dis-
tribution, which gives us a different way to visualize standard distributions like the normal.
Figure 3.3[62] shows the density curves for a number of different normal distributions. The
higher the curve for a particular value on the horizontal axis, the more likely that value is.

The curve defined by a normal probability distribution is symmetric around a single
peak value. The location of the peak value is defined by the parameter � (pronounced
mu), which denotes the population mean (in other words, the mean value of the feature
if we had access to every value that could possibly occur). The height and slope of the
curve is dependent on the parameter � (pronounced sigma), which denotes the population
standard deviation. The larger the value of �, the lower the maximum height of the curve
and the shallower the slope. Figure 3.3(a)[62] illustrates how the location of the peak moves
as the value for � changes, and Figure 3.3(b)[62] illustrates how the shape of the curve
changes as we vary the value for �. Notice that in both figures, the normal distribution
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Figure 3.3
(a) Three normal distributions with different means but identical standard deviations; and (b) three
normal distributions with identical means but different standard deviations.

plotted with the continuous black line has mean � � 0 and standard deviation � � 1. This
normal distribution is known as the standard normal distribution. The statement X is
Np�; �q is often used as a shorthand for X is a normally distributed feature with mean �
and standard deviation �.4 One important characteristic of the normal distribution is often
described as the 68�95�99:7 rule. The rule states that approximately 68% of the values
in a sample that follows a normal distribution will be within one � of �, 95% of the values
will be within two � of �, and 99:7% of values will be within three � of �. Figure 3.4[63]

illustrates this rule. This rule highlights that in data that follows a normal distribution, there
is a very low probability of observations occurring that differ from the mean by more than
two standard deviations.

3.2.2 Case Study: Motor Insurance Fraud
The data quality report in Table 3.3[57] and in Figure 3.1[58] allows us to very quickly become
familiar with the central tendency and variation of each feature in the ABT. These were all
as the business expected. In the bar plots in Figure 3.1[58], the different levels in the domain
of each categorical feature, and how these levels are distributed, are obvious. For example,
INJURY TYPE has four levels. Three of these, broken limb, soft tissue, and back, are quite
frequent in the ABT, while serious is quite rare. The distribution of INSURANCE TYPE is
a little strange, as it displays only one level.

From the histograms in Figure 3.1[58], we see that all the continuous features except for
INCOME and FRAUD FLAG seem to follow an exponential distribution pretty closely. IN-

4. Sometimes, the variance of a feature, �2, rather than its standard deviation, �, is listed as the parameter for
the normal distribution. In this text we always use the standard deviation �.
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�R-3 �X �R-2 �X �R- �X �R �R+�X �R+2�X �R+3�X

Figure 3.4
An illustration of the 68�95�99:7 rule. The gray region defines the area where 95% of values in a
sample are expected.

COME is interesting as it seems to follow what looks like a normal distribution except that
there is one large bar at about 0. The distribution of the FRAUD FLAG feature that can be
seen in its histogram is not typical of a continuous feature.

By analyzing the data quality report, we are able to understand the characteristics of
the data in the ABT. We will return to the features that seemed to have slightly peculiar
distributions.

3.3 Identifying Data Quality Issues

After getting to know the data, the second goal of data exploration is to identify any data
quality issues in an ABT. A data quality issue is loosely defined as anything unusual about
the data in an ABT. The most common data quality issues, however, are missing values,
irregular cardinality problems, and outliers. In this section we describe each of these
data quality issues and outline how the data quality report can be used to identify them.

The data quality issues we identify from a data quality report will be of two types: data
quality issues due to invalid data and data quality issues due to valid data. Data quality
issues due to invalid data typically arise because of errors in the process used to generate
an ABT, usually in relation to calculating derived features. When we identify data quality
issues due to invalid data, we should take immediate action to correct them, regenerate
the ABT, and re-create the data quality report. Data quality issues due to valid data can
arise for a range of domain-specific reasons (we discuss some of these later in this section),
and we do not necessarily need to take any corrective action to address these issues. We
do not correct data quality issues due to valid data unless the predictive models we will
use the data in the ABT to train require that particular data quality issues be corrected.
For example, we cannot train error-based models with data that contains missing values,



64 Chapter 3 Data Exploration

Table 3.4
The structure of a data quality plan.

Feature Data Quality Issue Potential Handling Strategies
—— ———————— ————————————————
—— ———————— ————————————————
—— ———————— ————————————————
—— ———————— ————————————————

and data that contains outliers significantly damages the performance of similarity-based
models. At this stage we simply record any data quality issues due to valid data in a data
quality plan so that we remain aware of them and can handle them later if required. Table
3.4[64] shows the structure of a data quality plan. For each of the data quality issues found,
we include the feature it was found in and the details of the data quality issue. Later we
add information on potential handling strategies for each data quality issue.

3.3.1 Missing Values
Often when an ABT is generated, some instances will be missing values for one or more
features. The % Miss. columns in the data quality report highlight the percentage of
missing values for each feature (both continuous and categorical) in an ABT, and so it is
very easy to identify which features suffer from this issue. If features have missing values,
we must first determine why the values are missing. Often missing values arise from errors
in data integration or in the process of generating values for derived fields. If this is the
case, these missing values are due to invalid data, so the data integration errors can be
corrected, and the ABT can be regenerated to populate the missing values. Missing values
can also arise for legitimate reasons, however. Sometimes in an organization, certain values
will only have been collected after a certain date, and the data used to generate an ABT
might cover time both before and after this date. In other cases, particularly where data
arises from manual entry, certain personally sensitive values (for example, salary, age, or
weight) may be entered only for a small number of instances. These missing values are
due to valid data, so they do not need to be handled but should instead be recorded in the
data quality plan.

There is one case in which we might deal directly with missing values that arise from
valid data during data exploration. If the proportion of missing values for a feature is very
high, a good rule of thumb is anything in excess of 60%, then the amount of information
stored in the feature is so low that it is probably a good idea to simply remove that feature
from the ABT.

3.3.2 Irregular Cardinality
The Card. column in the data quality report shows the number of distinct values present for
a feature within an ABT. A data quality issue arises when the cardinality for a feature does
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not match what we expect, a mismatch called an irregular cardinality. The first things
to check the cardinality column for are features with a cardinality of 1. This indicates a
feature that has the same value for every instance and contains no information useful for
building predictive models. Features with a cardinality of 1 should first be investigated to
ensure that the issue is not due to an ABT generation error. If this is the case, then the error
should be corrected, and the ABT should be regenerated. If the generation process proves
to be error-free, then features with a cardinality of 1, although valid, should be removed
from an ABT because they will not be of any value in building predictive models.

The second things to check for in the cardinality column are categorical features incor-
rectly labeled as continuous. Continuous features will usually have a cardinality value
close to the number of instances in the dataset. If the cardinality of a continuous feature is
significantly less than the number of instances in the dataset, then it should be investigated.
Sometimes a feature is actually continuous but in practice can assume only a small range
of values—for example, the number of children a person has. In this case there is nothing
wrong, and the feature should be left alone. In other cases, however, a categorical feature
will have been developed to use numbers to indicate categories and might be mistakenly
identified as a continuous feature in a data quality report. Checking for features with a low
cardinality will highlight these features. For example, a feature might record gender using
1 for female and 0 for male. If treated as a continuous feature in a data quality report,
this would have a cardinality of 2. Once identified, these features should be recoded as
categorical features.

The third way in which a data quality issue can arise due to an irregular cardinality is if a
categorical feature has a much higher cardinality than we would expect given the definition
of the feature. For example, a categorical feature storing gender with a cardinality of 6 is
worthy of further investigation. This issue often arises because multiple levels are used to
represent the same thing—for example, in a feature storing gender, we might find levels of
male, female, m, f, M, and F, which all represent male and female in slightly different ways.
This is another example of a data quality issue due to invalid data. It should be corrected
through a mapping to a standard set of levels, and the ABT should be regenerated.

The final example of a data quality issue due to an irregular cardinality is when a categor-
ical feature simply has a very high number of levels—anything over 50 is worth investiga-
tion. There are many genuine examples of features that will have such high cardinality, but
some of the machine learning algorithms that we will look at will struggle to effectively
use features with such high cardinality. This is an example of a data issue due to valid data,
so if this occurs for features in an ABT, it should be noted in the data quality plan.

3.3.3 Outliers
Outliers are values that lie far away from the central tendency of a feature. There are two
kinds of outliers that might occur in an ABT: invalid outliers and valid outliers. Invalid
outliers are values that have been included in a sample through error and are often referred
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to as noise in the data. Invalid outliers can arise for all sorts of different reasons. For
example, during a manual data entry process, a fat fingered5 analyst may have entered
100;000 instead of 1;000. Valid outliers are correct values that are simply very different
from the rest of the values for a feature, for example, a billionaire who has a massive salary
compared to everyone else in a sample.

There are two main ways that the data quality report can be used to identify outliers
within a dataset. The first is to examine the minimum and maximum values for each feature
and use domain knowledge to determine whether these are plausible values. For example,
a minimum age value of �12 would jump out as an error. Outliers identified in this way
are likely to be invalid outliers and should immediately be either corrected, if data sources
allow this, or removed and marked as missing values if correction is not possible. In some
cases we might even remove a complete instance from a dataset based on the presence of
an outlier.

The second approach to identifying outliers is to compare the gaps between the median,
minimum, maximum, 1st quartile, and 3rd quartile values. If the gap between the 3rd

quartile and the maximum value is noticeably larger than the gap between the median and
the 3rd quartile, this suggests that the maximum value is unusual and is likely to be an
outlier. Similarly, if the gap between the 1st quartile and the minimum value is noticeably
larger than the gap between the median and the 1st quartile, this suggests that the minimum
value is unusual and is likely to be an outlier. The outliers shown in box plots also help
to make this comparison. Exponential or skewed distributions in histograms are also good
indicators of the presence of outliers.

It is likely that outliers found using the second approach are valid outliers, so they are
a data quality issue due to valid data. Some machine learning techniques do not perform
well in the presence of outliers, so we should note these in the data quality plan for possible
handling later in the project.

3.3.4 Case Study: Motor Insurance Fraud
Using the data quality report in Table 3.3[57] and Figure 3.1[58] together with the ABT extract
in Table 3.2[56], we can perform an analysis of this ABT for data quality issues. We do this
by describing separately missing values, irregular cardinality, and outliers.

3.3.4.1 Missing values The % Miss. column of the data quality report in Table 3.3[57]

shows that MARITAL STATUS and NUM. SOFT TISSUE are the only features with an ob-
vious problem with missing values. Indeed, over 60% of the values for MARITAL STATUS

are missing, so this feature should almost certainly be removed from the ABT (we return
to this feature shortly). Only 2% of the values for the NUM. SOFT TISSUE feature are

5. Fat finger is a phrase often used in financial trading to refer to mistakes that arise when a trader enters extra
zeros by mistake and buys or sells much more of a stock than intended.
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missing, so removal would be extreme in this case. This issue should be noted in the data
quality plan.

An examination of the histogram for the INCOME feature (shown in Figure 3.1(a)[58]) and
the actual data for this feature in Table 3.2[56] reveals an interesting pattern. In the histogram
we can see an unusual number of zero values for INCOME that seems set apart from the
central tendency of the data, which appears to be at about 40;000. Examining the INCOME

row in the data quality report also shows a large difference between the mean and median
values, which is unusual. Examining the actual raw data in Table 3.2[56] shows that these
zeros always co-occur with missing values in the MARITAL STATUS feature. This pattern
was investigated with the business to understand whether this was an issue due to valid or
invalid data. It was confirmed by the business that the zeros in the INCOME feature actually
represent missing values and that MARITAL STATUS and INCOME were collected together,
leading to their both being missing for the same instances in the ABT. No other data source
existed from which these features could be populated, so it was decided to remove both of
them from the ABT.

3.3.4.2 Irregular cardinality Reading down the Card. column of the data quality
report, we can see that the cardinality of the INSURANCE TYPE feature is 1, an obvious
data problem that needs investigation. The cardinality value indicates that every instance
has the same value for this feature, ci. Investigation of this issue with the business revealed
that nothing had gone wrong during the ABT generation process, and that ci refers to car
insurance. Every instance in this ABT should have that value, and this feature was removed
from the ABT.

Many of the continuous features in the dataset also have very low cardinality values.
NUM. CLAIMANTS, NUM. CLAIMS, NUM. SOFT TISSUE, % SOFT TISSUE, and FRAUD

FLAG all have cardinality less than 10, which is unusual in a dataset of 500 instances.
These low cardinalities were investigated with the business. The low cardinality for the
NUM. CLAIMANTS, NUM. CLAIMS, and NUM. SOFT TISSUE features was found to be
valid, because these are categorical features and can only take values in a small range, as
people tend not to make very many claims. The % SOFT TISSUE feature is a ratio of the
NUM. CLAIMS and NUM. SOFT TISSUE features, and its low cardinality arises from their
low cardinality.

The cardinality of 2 for the FRAUD FLAG feature highlights the fact that this is not really
a continuous feature. Rather, FRAUD FLAG is a categorical feature that just happens to
use 0 and 1 as its category labels, which has led to its being treated as continuous in the
ABT. FRAUD FLAG was changed to be a categorical feature. This is particularly important
in this case because FRAUD FLAG is the target feature, and as we will see in upcoming
chapters, the type of the target feature has a big impact on how we apply machine learning
techniques.
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Table 3.5
The data quality plan for the motor insurance fraud prediction ABT.

Feature Data Quality Issue Potential Handling Strategies
NUM. SOFT TISSUE Missing values (2%)
CLAIM AMOUNT Outliers (high)
AMOUNT RECEIVED Outliers (high)

3.3.4.3 Outliers From an examination of the minimum and maximum values for each
continuous feature in Table 3.3(a)[57], CLAIM AMOUNT jumps out as having an unusual
minimum value of �99;999. A little investigation revealed that this minimum value arises
from d3 in Table 3.2[56]. The absence of a large bar at �99;999 in Figure 3.1(c)[58] confirms
that there are not multiple occurrences of this value. The pattern 99;999 also suggests that
this is most likely a data entry error or a system default remaining in the ABT. This was
confirmed with the business in this case, and this value was treated as an invalid outlier and
replaced with a missing value.

CLAIM AMOUNT, TOTAL CLAIMED, NUM. CLAIMS and AMOUNT RECEIVED all
seem to have unusually high maximum values, especially when compared to their median
and 3rd quartile values. To investigate outliers, we should always start by locating the
instance in the dataset that contains the strange maximum or minimum values. In this case
the maximum values for TOTAL CLAIMED and NUM. CLAIMS both come from d460 in
Table 3.2[56]. This policyholder seems to have made many more claims than anyone else,
and the total amount claimed reflects this. This deviation from the norm was investigated
with the business, and it turned out that although these figures were correct, this policy was
actually a company policy rather than an individual policy, which was included in the ABT
by mistake. For this reason, instance d460 was removed from the ABT.

The offending large maximums for CLAIM AMOUNT and AMOUNT RECEIVED both
come from d302 in Table 3.2[56]. Investigation of this claim with the business revealed that
this is in fact a valid outlier and represents an unusually large claim for a very serious in-
jury. Examination of the histograms in Figures 3.1(c)[58] and 3.1(h)[58] show that the CLAIM

AMOUNT and AMOUNT RECEIVED features have a number of large values (evidenced by
the small bars to the right-hand side of these histograms) and that d302 is not unique. These
outliers should be noted in the data quality plan for possible handling later in the project.

3.3.4.4 The data quality plan Based on the analysis described in the preceding sec-
tions, the data quality plan shown in Table 3.5[68] was created. This records each of the
data quality issues due to valid data that have been identified in the motor insurance fraud
ABT. During the Modeling phase of the project, we will use this table as a reminder of data
quality issues that could affect model training. At the end of the next section, we complete
this table by adding potential handling strategies.
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3.4 Handling Data Quality Issues

When we find data quality issues due to valid data during data exploration, we should note
these issues in a data quality plan for potential handling later in the project. The most
common issues in this regard are missing values and outliers, which are both examples of
noise in the data. Although we usually delay handling noise issues until the modeling phase
of a project (different predictive model types require different levels of noise handling, and
we should in general do as little noise handling as we can), in this section we describe the
most common techniques used to handle missing values and outliers. It is a good idea to
add suggestions for the best technique to handle each data quality issue in the data quality
plan during data exploration as it will save time during modeling.

3.4.1 Handling Missing Values
The simplest approach to handling missing values is to simply drop from an ABT any
features that have them. This, however, can result in massive, and frequently needless, loss
of data. For example, if in an ABT containing 1;000 instances, one value is missing for a
particular feature, it would be pretty extreme to remove that whole feature. As a general
rule of thumb, only features that are missing in excess of 60% of their values should be
considered for complete removal, and more subtle handling techniques should be used for
features missing less data.

An alternative to entirely deleting features that suffer from large numbers of missing
values is to derive a missing indicator feature from them. This is a binary feature that
flags whether the value was present or missing in the original feature. This can be useful
if the reason that specific values for a feature are missing might have some relationship to
the target feature—for example, if a feature that has missing values represented sensitive
personal data, people’s readiness to provide this data (or not) might tell us something about
them. When missing indicator features are used, the original feature is usually discarded.

Another simple approach to handling missing values is complete case analysis, which
deletes from an ABT any instances that are missing one or more feature values. This
approach, however, can result in significant amounts of data loss and can introduce a bias
into the dataset if the distribution of missing values in the dataset is not completely random.
In general, we recommend the use of complete case analysis only to remove instances that
are missing the value of the target feature. Indeed, any instances with a missing value for
the target feature should always be removed from an ABT.

Imputation replaces missing feature values with a plausible estimated value based on
the feature values that are present. The most common approach to imputation is to replace
missing values for a feature with a measure of the central tendency of that feature. For con-
tinuous features, the mean or median is most commonly used, and for categorical features,
the mode is most commonly used.
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Imputation, however, should not be used for features that have very large numbers of
missing values because imputing a very large number of missing values will change the
central tendency of a feature too much. We would be reluctant to use imputation on features
missing in excess of 30% of their values and would strongly recommend against the use of
imputation on features missing in excess of 50% of their values.

There are other, more complex approaches to imputation. For example, we can actually
build a predictive model that estimates a replacement for a missing value based on the
feature values that are present in a dataset for a given instance. We recommend, however,
using simple approaches first and turning to more complex ones only if required.

Imputation techniques tend to give good results and avoid the data loss associated with
deleting features or complete case analysis. It is important to note, however, that all impu-
tation techniques suffer from the fact that they change the underlying data in an ABT and
can cause the variation within a feature to be underestimated, which can negatively bias
the relationships between a descriptive feature and a target feature.

3.4.2 Handling Outliers
The easiest way to handle outliers is to use a clamp transformation. This clamps all
values above an upper threshold and below a lower threshold to these threshold values,
thus removing the offending outliers:

ai �

$
’’&

’’%

lower if ai   lower

upper if ai ¡ upper

ai otherwise

(3.2)

where ai is a specific value of feature a, and lower and upper are the lower and upper
thresholds.

The upper and lower thresholds can be set manually based on domain knowledge or can
be calculated from data. One common way to calculate clamp thresholds is to set the lower
threshold to the 1st quartile value minus 1:5 times the inter-quartile range and the upper
threshold to the 3rd quartile plus 1:5 times the inter-quartile range. This works effectively
and takes into account the fact that the variation in a dataset can be different on either side
of a central tendency.

If this approach were to be used for the CLAIM AMOUNT feature from the motor claims
insurance fraud detection scenario, then the upper and lower thresholds would be defined
as follows:

lower � 3;322:3� 1:5� 8;923:2 � �10;062:5

upper � 12;245:5� 1:5� 8;923:2 � 25;630:3

where the values used are extracted from Table 3.3[57]. Any values outside these thresholds
would be converted to the threshold values. Examining the histogram in Figure 3.1(c)[58] is
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useful in considering the impact of applying the clamp transformation using these thresh-
olds. Locating 25;630:3 on the horizontal axis shows that this upper threshold would cause
a relatively large number of values to be changed. The impact of the clamp transformation
can be reduced by changing the multiplier used to calculate the thresholds from 1:5 to a
larger value.

Another commonly used approach to setting the upper and lower thresholds is to use the
mean value of a feature plus or minus 2 times the standard deviation.6 Again this works
well, but it does assume that the underlying data follows a normal distribution.

If this approach were to be used for the AMOUNT RECEIVED feature from the motor
claims insurance fraud detection scenario, then the upper and lower thresholds would be
defined as follows:

lower � 13;051:9� 2� 30;547:2 � �48;042:5

upper � 13;051:9� 2� 30;547:2 � 74;146:3

where the values used are again extracted from Table 3.3[57]. Examining the histogram in
Figure 3.1(h)[58] is again a good indication of the impact of using this transformation. This
impact can be reduced by changing the multiplier used to calculate the thresholds from 2
to a larger value.

Opinions vary widely on when transformations like the clamp transformation should be
used to handle outliers in data. Many argue that performing this type of transformation may
remove the most interesting and, from a predictive modeling point of view, informative in-
stances from a dataset. On the other hand, some of the machine learning techniques that
we discuss in upcoming chapters perform poorly in the presence of outliers. We recom-
mend only applying the clamp transformation in cases where it is suspected that a model
is performing poorly due to the presence of outliers. The impact of the clamp transforma-
tion should then be evaluated by comparing the performance of different models trained
on datasets where the transformation has been applied and where it has not.

3.4.3 Case Study: Motor Insurance Fraud
If we needed to do it, the most sensible approach to handling the missing values in the
NUM. SOFT TISSUE feature would be to use imputation. There are very few missing val-
ues for this feature (2%), so replacing them with an imputed value should not excessively
affect the variance of the feature. In this case the median value of 0:0 (shown in Table
3.3(a)[57]) is the most appropriate value to use to replace the missing values; because this
feature only actually takes discrete values, the mean value of 0:2 never naturally occurs in
the dataset.

6. Recall that in Section 3.2[55] we discussed the 68�95�99:7 rule associated with the normal distribution. This
approach to handling outliers is based directly on this rule.
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Table 3.6
The data quality plan with potential handling strategies for the motor insurance fraud prediction ABT.

Feature Data Quality Issue Potential Handling Strategies
NUM. SOFT TISSUE Missing values (2%) Imputation (median: 0.0)
CLAIM AMOUNT Outliers (high) Clamp transformation (manual: 0, 80,000)
AMOUNT RECEIVED Outliers (high) Clamp transformation (manual: 0, 80,000)

The outliers present in the CLAIM AMOUNT and AMOUNT RECEIVED features could be
easily handled using a clamp transformation. Both features follow a broadly exponential
distribution, however, which means that the methods described for setting the thresholds of
the clamp will not work especially well (both methods work best for normally distributed
data). Therefore, manually setting upper and lower thresholds based on domain knowl-
edge is most appropriate in this case. The business advised that for both features, a lower
threshold of 0 and an upper threshold of 80;000 would make sense.

We completed the data quality plan by including these potential handling strategies. The
final data quality plan is shown in Table 3.6[72]. Together with the data quality report, these
are the outputs of the data exploration work for the motor insurance fraud detection project.

3.5 Advanced Data Exploration

All the descriptive statistics and data visualization techniques that we have used in the
previous sections of this chapter have focused on the characteristics of individual features.
This section will introduce techniques that enable us to examine relationships between
pairs of features.

3.5.1 Visualizing Relationships between Features
In preparing to create predictive models, it is always a good idea to investigate the relation-
ships between pairs of features. This can help indicate which descriptive features might
be useful for predicting a target feature and help find pairs of descriptive features that are
closely related. Identifying pairs of closely related descriptive features is one way to re-
duce the size of an ABT because if the relationship between two descriptive features is
strong enough, we may not need to include both. In this section we describe approaches
to visualizing the relationships between pairs of continuous features, pairs of categorical
features, and pairs including one categorical and one continuous feature.

For the examples in this section, we introduce a new dataset. Table 3.7[73] shows the
details of 30 players on a professional basketball team. The dataset includes the HEIGHT,
WEIGHT, and AGE of each player; the POSITION that the player normally plays (guard,
center, or forward); the CAREER STAGE of the player (rookie, mid-career, or veteran); the
average weekly SPONSORSHIP EARNINGS of each player; and whether the player has a
SHOE SPONSOR (yes or no).
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Table 3.7
The details of a professional basketball team.

CAREER SPONSORSHIP SHOE

ID POSITION HEIGHT WEIGHT STAGE AGE EARNINGS SPONSOR

1 forward 192 218 veteran 29 561 yes
2 center 218 251 mid-career 35 60 no
3 forward 197 221 rookie 22 1,312 no
4 forward 192 219 rookie 22 1,359 no
5 forward 198 223 veteran 29 362 yes
6 guard 166 188 rookie 21 1,536 yes
7 forward 195 221 veteran 25 694 no
8 guard 182 199 rookie 21 1,678 yes
9 guard 189 199 mid-career 27 385 yes
10 forward 205 232 rookie 24 1,416 no
11 center 206 246 mid-career 29 314 no
12 guard 185 207 rookie 23 1,497 yes
13 guard 172 183 rookie 24 1,383 yes
14 guard 169 183 rookie 24 1,034 yes
15 guard 185 197 mid-career 29 178 yes
16 forward 215 232 mid-career 30 434 no
17 guard 158 184 veteran 29 162 yes
18 guard 190 207 mid-career 27 648 yes
19 center 195 235 mid-career 28 481 no
20 guard 192 200 mid-career 32 427 yes
21 forward 202 220 mid-career 31 542 no
22 forward 184 213 mid-career 32 12 no
23 forward 190 215 rookie 22 1,179 no
24 guard 178 193 rookie 21 1,078 no
25 guard 185 200 mid-career 31 213 yes
26 forward 191 218 rookie 19 1,855 no
27 center 196 235 veteran 32 47 no
28 forward 198 221 rookie 22 1,409 no
29 center 207 247 veteran 27 1,065 no
30 center 201 244 mid-career 25 1,111 yes

3.5.1.1 Visualizing pairs of continuous features The scatter plot is one of the most
important tools in data visualization. A scatter plot is based on two axes: the horizontal
axis represents one feature, and the vertical axis represents a second. Each instance in a
dataset is represented by a point on the plot determined by the values for that instance of the
two features being plotted. Figure 3.5(a)[74] shows an example scatter plot for the HEIGHT

and WEIGHT features from the dataset in Table 3.7[73]. The points in this scatter plot are
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arranged in a broadly linear pattern diagonally across the scatter plot. This suggests that
there is a strong, positive, linear relationship between the HEIGHT and WEIGHT features—
as height increases, so does weight. We say that features with this kind of relationship are
positively covariant. Figure 3.5(b)[74] shows a scatter plot for the SPONSORSHIP EARN-
INGS and AGE features from Table 3.7[73]. These features are strongly negatively covariant.
Figure 3.5(c)[74] shows a scatter plot of the HEIGHT and AGE features. These features are
not strongly covariant either positively or negatively.
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Figure 3.5
Example scatter plots for pairs of features from the dataset in Table 3.7[73], showing (a) the strong pos-
itive covariance between HEIGHT and WEIGHT; (b) the strong negative covariance between SPON-
SORSHIP EARNINGS and AGE; and (c) the lack of strong covariance between HEIGHT and AGE.

A scatter plot matrix (SPLOM) shows scatter plots for a whole collection of features
arranged into a matrix. This is useful for exploring the relationships between groups of
features—for example, all the continuous features in an ABT. Figure 3.6[75] shows an ex-
ample scatter plot matrix for the continuous features from the professional basketball team
dataset in Table 3.7[73]: HEIGHT, WEIGHT, AGE, and SPONSORSHIP EARNINGS. Each
row and column represent the feature named in the cells along the diagonal. The cells
above and below the diagonal show scatter plots of the features in the row and column that
meet at that cell.

A scatter plot matrix is a very quick way to explore the relationships within a whole
set of continuous features. The effectiveness of scatter plot matrices, however, diminishes
once the number of features in the set goes beyond 8 because the graphs become too small.
Using interactive tools that aid data exploration can help overcome this limitation.



3.5 Advanced Data Exploration 75

Figure 3.6
A scatter plot matrix showing scatter plots of the continuous features from the professional basketball
team dataset in Table 3.7[73].

3.5.1.2 Visualizing pairs of categorical features The simplest way to visualize the
relationship between two categorical features is to use a collection of bar plots. This is
often referred to as a small multiples visualization. First, we draw a simple bar plot
showing the densities of the different levels of the first feature. Then, for each level of
the second feature, we draw a bar plot of the first feature using only the instances in the
dataset for which the second feature has that level. If the two features being visualized
have a strong relationship, then the bar plots for each level of the second feature will look
noticeably different from one another and from the overall bar plot for the first feature. If
there is no relationship, then we should expect that the levels of the first feature will be
evenly distributed among the instances having the different levels of the second feature, so
all bar plots will look much the same.

Figure 3.7(a)[76] shows an example for the CAREER STAGE and SHOE SPONSOR features
from the professional basketball team dataset in Table 3.7[73]. The bar plot on the left
shows the distribution of the different levels of the CAREER STAGE feature across the
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Figure 3.7
Examples of using small multiple bar plot visualizations to illustrate the relationship between two
categorical features: (a) the CAREER STAGE and SHOE SPONSOR features; and (b) the POSITION

and SHOE SPONSOR features. All data comes from Table 3.7[73].

entire dataset. The two plots on the right show the distributions for those players with
and without a shoe sponsor. Since all three plots show very similar distributions, we can
conclude that no real relationship exists between these two features and that players of any
career stage are equally likely to have a shoe sponsor or not.

Figure 3.7(b)[76] shows another example, for the POSITION and SHOE SPONSOR features
from the same dataset. In this case, the three plots are very different, so we can conclude
that there is a relationship between these two features. It seems that players who play in
the guard position are much more likely to have a shoe sponsor than forwards or centers.
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When using small multiples, it is important that all the small charts are kept consistent
because this ensures that only genuine differences within the data are highlighted, rather
than differences that arise from formatting. For example, the scales of the axes must always
be kept consistent, as should the order of the bars in the individual bar plots. It is also
important that densities are shown rather than frequencies, as the overall bar plots on the
left of each visualization cover much more of the dataset than the other two plots, so
frequency-based plots would look very uneven.

If the number of levels of one of the features being compared is small (we recommend no
more than three), we can use stacked bar plots as an alternative to the small multiples bar
plots approach. When this approach is used, we show a bar plot of the first feature above a
bar plot that shows the relative distribution of the levels of the second feature within each
level of the first. Because relative distributions are used, the bars in the second bar plot
cover the full range of the space available—these are often referred to as 100% stacked bar
plots. If two features are unrelated, then we would expect to see the same proportion of
each level of the second feature within the bars for each level of the first.

Figure 3.8[78] shows two examples of using stacked bar plots. In the first example, Figure
3.8(a)[78], a bar plot of the CAREER STAGE feature is shown above a 100% stacked bar plot
showing how the levels of the SHOE SPONSOR feature are distributed in instances having
each level of CAREER STAGE. The distributions of the levels of SHOE SPONSOR are
almost the same for each level of CAREER STAGE, and therefore we can conclude that there
is no relationship between these two features. The second example, Figure 3.8(b)[78], shows
the POSITION and SHOE SPONSOR features. In this case we can see that distributions of
the levels of the SHOE SPONSOR feature are not the same for each position. From this we
can again conclude that guards are more likely to have a shoe sponsor than players in the
other positions.

3.5.1.3 Visualizing a categorical feature and a continuous feature The best way to
visualize the relationship between a continuous feature and a categorical feature is to use a
small multiples approach, drawing a density histogram of the values of the continuous fea-
ture for each level of the categorical feature. Each histogram includes only those instances
in the dataset that have the associated level of the categorical feature. Similar to using
small multiples for categorical features, if the features are unrelated (or independent), then
the histograms for each level should be very similar. If the features are related, however,
then the shapes and/or the central tendencies of the histograms will be different.

Figure 3.9(a)[79] shows a histogram of the AGE feature from the dataset in Table 3.7[73]. We
can see from this histogram that AGE follows a uniform distribution across a range from
about 19 to about 35. Figure 3.9(c)[79] shows small multiple histograms for values of AGE

broken down by the different levels of the POSITION feature. These histograms show a
slight tendency for centers to be a little older than guards and forwards, but the relationship
does not appear very strong, as each of the smaller histograms are similar to the overall
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Figure 3.8
Examples of using stacked bar plot visualizations to illustrate the relationship between two cate-
gorical features: (a) CAREER STAGE and SHOE SPONSOR features; and (b) POSITION and SHOE

SPONSOR features, all from Table 3.7[73].

uniform distribution of the AGE feature. Figures 3.9(b)[79] and 3.9(d)[79] show a second
example, this time for the HEIGHT and POSITION features. From Figure 3.9(b)[79] we can
see that HEIGHT follows a normal distribution centered around a mean of approximately
194. The three smaller histograms depart from this distribution and suggest that centers
tend to be taller than forwards, who in turn tend to be taller than guards.

An alternative approach to using small multiples to visualize the relationship between a
categorical feature and a continuous feature is to use a collection of box plots. For each
level of the categorical feature, a box plot of the corresponding values of the continuous
feature is drawn. This gives multiple box plots that offer an easy comparison of how the
central tendency and variation of the continuous feature change for the different levels of
the categorical feature. When a relationship exists between the two features, the box plots
should show differing central tendencies and variations. When no relationship exists, the
box plots should all appear similar.
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Figure 3.9
Example of using small multiple histograms to visualize the relationship between a categorical fea-
ture and a continuous feature. All examples use data from the professional basketball team dataset
in Table 3.7[73]: (a) a histogram of the AGE feature; (b) a histogram of the HEIGHT feature; (c)
histograms of the AGE feature for instances displaying each level of the POSITION feature; and (d)
histograms of the HEIGHT feature for instances displaying each level of the POSITION feature.
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Figure 3.10
Using box plots to visualize the relationships between categorical and continuous features from Table
3.7[73]: (a) and (b) show the relationship between the POSITION feature and the AGE feature; and (c)
and (d) show the relationship between the POSITION feature and the HEIGHT feature.

In Figures 3.10(a)[80] and 3.10(b)[80] we illustrate the multiple box plot approach using the
AGE and POSITION features from the dataset in Table 3.7[73]. Figure 3.10(a)[80] shows a box
plot for AGE across the full dataset, while Figure 3.10(b)[80] shows individual box plots for
AGE for each level of the POSITION feature. Similar to the histograms in Figure 3.9[79],
this visualization shows a slight indication that centers tend to be older than forwards and
guards, but the three box plots overlap significantly, suggesting that this relationship is not
very strong.
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Figures 3.10(c)[80] and 3.10(d)[80] show a similar pair of visualizations for the HEIGHT and
POSITION features. Figure 3.10(d)[80] is typical of a series of box plots showing a strong
relationship between a continuous and a categorical feature. We can see that the average
height of centers is above that of forwards, which in turn is above that of guards. Although
the whiskers show that there is some overlap between the three groups, they do appear to
be well separated.

Histograms show more detail than box plots, so small multiple histograms offer a more
detailed view of the relationship between two features. The differences in central tendency
and variation between levels can, however, be easier to see in box plots. Box plots are
also better suited when the categorical feature has many levels—beyond four levels, small
multiple histograms tend to be difficult to interpret. A good approach is to use box plots to
initially determine which pairs of features might have a strong relationship and then further
investigate these pairs using small multiple histograms.

3.5.2 Measuring Covariance and Correlation
As well as visually inspecting scatter plots, we can calculate formal measures of the re-
lationship between two continuous features using covariance and correlation. For two
features, a and b, in a dataset of n instances, the sample covariance between a and b is

covpa; bq �
1

n� 1

n‚

i�1

�
pai � aq �

�
bi � b

		
(3.3)

where ai and bi are values of features a and b for the ith instance in a dataset, and a and b
are the sample means of features a and b. Covariance values fall into the range r�8;8s
where negative values indicate a negative relationship, positive values indicate a positive
relationship, and values near zero indicate that there is little or no relationship between the
features.

Table 3.8[82] shows the workings for the calculation of the covariance between the HEIGHT

feature and the WEIGHT and AGE features from the dataset in Table 3.7[73]. The table shows
how the

�
pai � aq �

�
bi � b

		
portion of Equation (3.3)[81] is calculated for each instance

in the dataset for the two covariance calculations. Given this table we can calculate the
covariances as follows:

covpHEIGHT;WEIGHTq �
7;009:9

29
� 241:72

covpHEIGHT;AGEq �
570:8

29
� 19:7

These figures indicate that there is a strong positive relationship between the height and
weight of a player, and a much smaller positive relationship between height and age. This
supports the relationships suggested by the scatter plots of these pairs of features shown in
Figures 3.5(a)[74] and 3.5(c)[74].
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Table 3.8
Calculating covariance.

HEIGHT WEIGHT ph� hq � AGE ph� hq �

ID (h) h� h (w) w� w pw� wq (a) a� a pa� aq

1 192 0:9 218 3:0 2:7 29 2:6 2:3

2 218 26:9 251 36:0 967:5 35 8:6 231:3

3 197 5:9 221 6:0 35:2 22 �4:4 �26:0

4 192 0:9 219 4:0 3:6 22 �4:4 �4:0

5 198 6:9 223 8:0 55:0 29 2:6 17:9

: : :

26 191 �0:1 218 3:0 �0:3 19 �7:4 0:7

27 196 4:9 235 20:0 97:8 32 5:6 27:4

28 198 6:9 221 6:0 41:2 22 �4:4 �30:4

29 207 15:9 247 32:0 508:3 27 0:6 9:5

30 201 9:9 244 29:0 286:8 25 �1:4 �13:9

Mean 191:1 215:0 26:4

Std. Dev. 13:6 19:8 4:2

Sum 7;009:9 570:8

The table shows how the
�
pai � aq �

�
bi � b

		
portion of Equation (3.3)[81] is calculated for each instance in a

dataset to arrive at the sum required in the calculation. The relevant means and standard deviations are also shown

(standard deviation is not required to calculate covariance but is included as it will be useful later for calculating

correlation).

This example also illustrates a problem with using covariance. Covariance is measured
in the same units as the features that it measures. As a result, comparing the covariance
between pairs of features only makes sense if each pair of features is composed of the same
mixture of units. Correlation7 is a normalized form of covariance that ranges between �1
and �1. We calculate the correlation between two features by dividing the covariance be-
tween the two features by the product of their standard deviations. The correlation between
two features, a and b, can be calculated as

corrpa; bq �
covpa; bq

sdpaq � sdpbq
(3.4)

where covpa; bq is the covariance between features a and b and sdpaq and sdpbq are the
standard deviations of a and b respectively. Because correlation is normalized, it is dimen-

7. The correlation coefficient presented here is more fully known as the Pearson product-moment correlation
coefficient or Pearson’s r and is named after Karl Pearson, one of the giants of statistics.
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sionless and, consequently, does not suffer from the interpretability difficulties associated
with covariance. Correlation values fall into the range r�1; 1s, where values close to �1
indicate a very strong negative correlation (or covariance), values close to 1 indicate a very
strong positive correlation, and values around 0 indicate no correlation. Features that have
no correlation are said to be independent.

The correlations between the HEIGHT and WEIGHT and AGE features can be calculated,
using the covariances and standard deviations from Table 3.8[82], as follows:

corrpHeight;Weightq �
241:72

13:6� 19:8
� 0:898

corrpHeight; Ageq �
19:7

13:6� 4:2
� 0:345

These correlation values are much more useful than the covariances calculated previously
because they are on a normalized scale, which allows us to compare the strength of the
relationships to each other. There is a strong positive correlation between HEIGHT and
WEIGHT features, but very little correlation between HEIGHT and AGE.

In the majority of ABTs there are multiple continuous features between which we would
like to explore relationships. Two tools that can be useful for this are the covariance matrix
and the correlation matrix. A covariance matrix contains a row and column for each fea-
ture, and each element of the matrix lists the covariance between the corresponding pairs
of features. As a result, the elements along the main diagonal list the covariance between
a feature and itself, in other words, the variance of the feature. The covariance matrix,
usually denoted as

°
, between a set of continuous features, ta; b; : : : ; zu, is given as

‚

ta;b;:::;zu

�

�

�����

varpaq covpa; bq � � � covpa; zq
covpb; aq varpbq � � � covpb; zq

:::
:::

: : :
:::

covpz; aq covpz; bq � � � varpzq

�

�����
(3.5)

Similarly, the correlation matrix is just a normalized version of the covariance matrix
and shows the correlation between each pair of features:

correlation matrix
ta;b;:::;zu

�

�

�����

corrpa; aq corrpa; bq � � � corrpa; zq
corrpb; aq corrpb; bq � � � corrpb; zq

:::
:::

: : :
:::

corrpz; aq corrpz; bq � � � corrpz; zq

�

�����
(3.6)
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The covariance and correlation matrices for the HEIGHT, WEIGHT and AGE features are

‚

tHeight;Weight;Ageu

�

�

��
185:128 241:72 19:7
241:72 392:102 24:469
19:7 24:469 17:697

�

��

and

correlation matrix
tHeight;Weight;Ageu

�

�

��
1:0 0:898 0:345

0:898 1:0 0:294
0:345 0:294 1:0

�

��

The scatter plot matrices (SPLOMs) described in Section 3.5.1[72] are really a visualiza-
tion of the correlation matrix. This can be made more obvious by including the correlation
coefficients in SPLOMs in the cells above the diagonal. In Figure 3.11[85] the cells above
the diagonal show the correlation coefficients for each pair of features. The font sizes of
the correlation coefficients are scaled according to the absolute value of the strength of the
correlation to draw attention to those pairs of features with the strongest relationships.

Correlation is a good measure of the relationship between two continuous features, but
it is not by any means perfect. First, the correlation measure given in Equation (3.4)[82]

responds only to linear relationships between features. In a linear relationship between
two features, as one feature increases or decreases, the other feature increases or decreases
by a corresponding amount. Frequently, features will have very strong non-linear relation-
ships that correlation does not respond to. Also, peculiarities in a dataset can affect the
calculation of the correlation between two features.

This problem is illustrated very clearly in the famous example of Anscombe’s quartet,8

shown in Figure 3.12[86]. This is a series of four pairs of features that all have the same
correlation value of 0:816, even though they exhibit very different relationships.

Perhaps the most important thing to remember in relation to correlation is that correlation
does not necessarily imply causation. Just because the values of two features are correlated
does not mean that an actual causal relationship exists between the two. There are two
main ways in which causation can be mistakenly assumed. The first is by mistaking the
order of a causal relationship. For example, based on correlations tests alone, we might
conclude that the presence of swallows cause hot weather, that spinning windmills cause
wind, and that playing basketball causes people to be tall. In fact, swallows migrate to
warmer countries, windmills are made to spin by wind, and tall people often choose to
play basketball because of the advantage their height gives them in that game.

The second kind of mistake that makes people incorrectly infer causation between two
features is ignoring a third important, but hidden, feature. In a famous example of this,
an article was published in the prestigious journal Nature outlining a causal relationship

8. Francis Anscombe was a famous statistician who published his quartet in 1973 (Anscombe, 1973).
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��

Figure 3.11
A scatter plot matrix showing scatter plots of the continuous features from the professional basketball
team dataset in Table 3.7[73] with correlation coefficients included.

between young children sleeping with a night-light turned on and these children develop-
ing near-sightedness in later life (Quinn et al., 1999). Later studies (Zadnik et al., 2000;
Gwiazda et al., 2000), however, could not replicate this link, and eventually a more plau-
sible explanation for the correlation between night-light use and near-sightedness was un-
covered. Near-sighted parents, because of their poor night vision, tend to favor the use of
night-lights to help them find their way around their children’s bedrooms at night. Near-
sighted parents are more likely to have near-sighted children, and it is this that accounts
for the correlation between night-light use and near-sightedness in children, rather than
any causal link. This is an example of a confounding feature, a feature that influences two
others and so leads to the appearance of a causal relationship. Confounding features are
a common explanation of mistaken conclusions about causal relationships. The lesson to
be learned here is that before causation is concluded based on a strong correlation between
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Figure 3.12
Anscombe’s quartet. For all four samples, the correlation measure returns the same value (0:816)
even though the relationship between the features is very different in each case.

two features, in-depth studies involving domain experts are required—correlation alone is
just not enough. In spite of these difficulties, for machine learning purposes, correlation is
a very good measure of the relationship between two continuous features.9

9. There are approaches to formally measuring the relationship between a pair of categorical features (for ex-
ample, the �2 test) and for measuring the relationship between a categorical feature and a continuous feature (for
example, the ANOVA test). We do not cover these in this book, however, and readers are directed to the further
reading section at the end of this chapter for information on these approaches.
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3.6 Data Preparation

Instead of explicitly handling problems like noise within the data in an ABT, some data
preparation techniques change the way data is represented just to make it more compatible
with certain machine learning algorithms. This section describes two of the most common
such techniques: binning and normalization. Both techniques focus on transforming an
individual feature in some way. There are also situations, however, where we wish to
change the size and/or the distributions of target values within the ABT. We describe a
range of different sampling techniques that can be used to do this. As with the techniques
described in the previous section, sometimes these techniques are performed as part of the
Data Preparation phase of CRISP-DM, but sometimes they are performed as part of the
Modeling phase.

3.6.1 Normalization
Having continuous features in an ABT that cover very different ranges can cause difficulty
for some machine learning algorithms. For example, a feature representing customer ages
might cover the range r16; 96s, whereas a feature representing customer salaries might
cover the range r10;000; 100;000s. Normalization techniques can be used to change a
continuous feature to fall within a specified range while maintaining the relative differ-
ences between the values for the feature. The simplest approach to normalization is range
normalization, which performs a linear scaling of the original values of the continuous
feature into a given range. We use range normalization to convert a feature value into the
range rlow; highs as follows:

a
1

i �
ai � minpaq

maxpaq � minpaq
� phigh� lowq � low (3.7)

where a
1

i is the normalized feature value, ai is the original value, minpaq is the minimum
value of feature a, maxpaq is the maximum value of feature a, and low and high are the
minimum and maximum values of the desired range. Typical ranges used for normalizing
feature values are r0;1s and r�1;1s. Table 3.9[88] shows the effect of applying range nor-
malization to a small sample of the HEIGHT and SPONSORSHIP EARNINGS features from
the dataset in Table 3.7[73].

Range normalization has the drawback that it is quite sensitive to the presence of outliers
in a dataset. Another way to normalize data is to standardize it into standard scores.10

A standard score measures how many standard deviations a feature value is from the mean
for that feature. To calculate a standard score, we compute the mean and standard deviation

10. A standard score is equivalent to a z-score, and standardizing in the way described here is also known as
applying a z-transform to the data.
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for the feature and normalize the feature values using the following equation:

a
1

i �
ai � a
sdpaq

(3.8)

where a
1

i is the normalized feature value, ai is the original value, a is the mean for fea-
ture a, and sdpaq is the standard deviation for a. Standardizing feature values in this ways
squashes the values of the feature so that the feature values have a mean of 0 and a standard
deviation of 1. This results in the majority of feature values being in a range of r�1;1s. We
should take care when using standardization as it assumes that data is normally distributed.
If this assumption does not hold, then standardization may introduce some distortions.
Table 3.9[88] also shows the effect of applying standardization to the HEIGHT and SPON-
SORSHIP EARNINGS features.

Table 3.9
A small sample of the HEIGHT and SPONSORSHIP EARNINGS features from the professional bas-
ketball team dataset in Table 3.7[73], showing the result of range normalization and standardization.

HEIGHT SPONSORSHIP EARNINGS

Values Range Standard Values Range Standard
192 0.500 -0.073 561 0.315 -0.649
197 0.679 0.533 1,312 0.776 0.762
192 0.500 -0.073 1,359 0.804 0.850
182 0.143 -1.283 1,678 1.000 1.449
206 1.000 1.622 314 0.164 -1.114
192 0.500 -0.073 427 0.233 -0.901
190 0.429 -0.315 1,179 0.694 0.512
178 0.000 -1.767 1,078 0.632 0.322
196 0.643 0.412 47 0.000 -1.615
201 0.821 1.017 1,111 0.652 0.384

Max 206 1,678
Min 178 47

Mean 193 907
Std. Dev. 8.26 532.18

In upcoming chapters we use normalization to prepare data for use with machine learning
algorithms that require descriptive features to be in particular ranges. As is so often the
case in data analytics, there is no hard and fast rule that says which is the best normalization
technique, and this decision is generally made based on experimentation.
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3.6.2 Binning
Binning involves converting a continuous feature into a categorical feature. To perform
binning, we define a series of ranges (called bins) for the continuous feature that corre-
spond to the levels of the new categorical feature we are creating. The values for the new
categorical feature are then created by assigning to instances in the dataset the level of the
new feature that corresponds to the range that their value of the continuous feature falls
into. There are many different approaches to binning. We will introduce two of the more
popular: equal-width binning and equal-frequency binning.

Both equal-width and equal-frequency binning require that we manually specify how
many bins we would like to use. Deciding on the number of bins can be difficult. The
general trade-off is this:

 If we set the number of bins to a very low number—for example, two or three bins—
(in other words, we abstract to a very low level of resolution), we may lose a lot of
information with respect to the distribution of values in the original continuous feature.
Using a small number of bins, however, has the advantage of having a large number of
instances in each bin.

 If we set the number of bins to a high number—for example, 10 or more—then, just
because there are more bin boundaries, it is more likely that at least some of our bins will
align with interesting features of the distribution of the original continuous feature. This
means that our binning categories will provide a better representation of this distribution.
However, the more bins we have, the fewer instances we will have in each bin. Indeed,
as the number of bins grows, we can end up with empty bins.

Figure 3.13[90] illustrates the effect of using different numbers of bins.11 In this example,
the dashed line represents a multimodal distribution from which a set of continuous fea-
ture values has been generated. The histogram represents the bins. Ideally the histogram
heights should follow the dashed line. In Figure 3.13(a)[90] there are three bins that are each
quite wide, and the histogram heights don’t really follow the dashed line. This indicates
that this binning does not accurately represent the real distribution of values in the under-
lying continuous feature. In Figure 3.13(b)[90] there are 14 bins. In general, the histogram
heights follow the dashed line, so the resulting bins can be considered a reasonable repre-
sentation of the continuous feature. Also, there are no gaps between the histogram bars,
which indicates that there are no empty bins. Finally, Figure 3.13(c)[90] illustrates what
happens when we used 60 bins. The histogram heights fit the contour line to an extent, but
there is a greater variance in the heights across the bins in this image. Some of the bins
are very tall and other bins are empty, as indicated by the gaps between the bars. When we

11. These images were generated using equal-width binning. However, the points discussed in the text are also
relevant to equal-frequency binning.
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(c) 60 bins

Figure 3.13
The effect of using different numbers of bins when using binning to convert a continuous feature into
a categorical feature.

compare, the three images, 14 bins seems to best model the data. Unfortunately, there is no
guaranteed way of finding the optimal number of bins for a set of values for a continuous
feature. Often, choosing the number of bins comes down to intuition and a process of trial
and error experimentation.

Once the number of bins, b, has been chosen, the equal-width binning algorithm splits
the range of the feature values into b bins each of size range

b . For example, if the values for
a feature fell between zero and 100 and we wished to have 10 bins, then bin 1 would cover
the interval12 r0;10q, bin 2 would cover the interval r10; 20q, and so on, up to bin 10, which
would cover the interval r90; 100s. Consequently, an instance with a feature value of 18
would be placed into bin 2.

Equal-width binning is simple and intuitive, and can work well in practice. However, as
the distribution of values in the continuous feature moves away from a uniform distribution,
then some bins will end up with very few instances in them, and other bins will have a lot
of instances in them. For example, imagine our data followed a normal distribution: then
the bins covering the intervals of the feature range at the tails of the normal distribution
will have very few instances, and the bins covering the intervals of the feature range near
the mean will contain a lot of instances. This scenario is illustrated in Figures 3.14(a)[92] to
3.14(c)[92], which shows a continuous feature following a normal distribution converted into
different numbers of bins using equal-width binning. The problem with this is that we are
essentially wasting bins because some of the bins end up representing a very small number

12. In interval notation, a square bracket, r or s, indicates that the boundary value is included in the interval, and
a parenthesis, p or q, indicates that it is excluded from the interval.
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of instances (the height of the bars in the diagram shows the number of instances in each
bin). If we were able to merge the bins in the regions where there are very few instances,
then the resulting spare bins could be used to represent the differences between instances
in the regions where lots of instances are clustered together. Equal-frequency binning does
this.

Equal-frequency binning first sorts the continuous feature values into ascending order
and then places an equal number of instances into each bin, starting with bin 1. The
number of instances placed in each bin is simply the total number of instances divided
by the number of bins, b. For example, if we had 10,000 instances in our dataset and
we wish to have 10 bins, then bin 1 would contain the 1,000 instances with the lowest
values for the feature, and so on, up to bin 10, which would contain the 1,000 instances
with the highest feature values. Figures 3.14(d)[92] to 3.14(f)[92] show the same normally
distributed continuous feature mentioned previously binned into different numbers of bins
using equal-frequency binning.13

Using Figure 3.14[92] to compare these two approaches to binning, we can see that by
varying the width of the bins, equal-frequency binning uses bins to more accurately model
the heavily populated areas of the range of values the continuous feature can take. The
downside to this is that the resulting bins can appear slightly less intuitive because they are
of varying sizes.

Regardless of the binning approach used, once the values for a continuous feature have
been binned, the continuous feature is discarded and replaced by a categorical feature,
which has a level for each bin—the bin numbers can be used, or a more meaningful label
can be manually generated. We will see in forthcoming chapters that using binning to
transform a continuous feature into a categorical feature is often the easiest way for some
of the machine learning approaches to handle a continuous feature. Another advantage
of binning, especially equal-frequency binning, is that it goes some way toward handling
outliers. Very large or very small values simply end up in the highest or lowest bin. It is
important to remember, though, that no matter how well it is done, binning always discards
information from the dataset because it abstracts from a continuous representation to a
coarser categorical resolution.

3.6.3 Sampling
In some predictive analytics scenarios, the dataset we have is so large that we do not use all
the data available to us in an ABT and instead sample a smaller percentage from the larger
dataset. We need to be careful when sampling, however, to ensure that the resulting datasets
are still representative of the original data and that no unintended bias is introduced during

13. The bins created when equal-frequency binning is used are equivalent to percentiles (discussed in Section
A.1[745]).
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(a) 5 equal-width bins
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(c) 15 equal-width bins
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(d) 5 equal-frequency bins
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(e) 10 equal-frequency bins
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(f) 15 equal-frequency bins

Figure 3.14
(a)–(c) Equal-frequency binning of normally distributed data with different numbers of bins; and
(d)–(f) the same data binned into the same number of bins using equal-width binning. The dashed
lines illustrate the distribution of the original continuous feature values, and the gray boxes represent
the bins.

this process. Biases are introduced when, due to the sampling process, the distributions of
features in the sampled dataset are very different from the distributions of features in the
original dataset. The danger of this is that any analysis or modeling we perform on this
sample will not be relevant to the overall dataset.

The simplest form of sampling is top sampling, which simply selects the top s% of
instances from a dataset to create a sample. Top sampling runs a serious risk of introducing
bias, however, as the sample will be affected by any ordering of the original dataset. For
this reason, we recommend that top sampling be avoided.

A better choice, and our recommended default, is random sampling, which randomly
selects a proportion of s% of the instances from a large dataset to create a smaller set.
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Random sampling is a good choice in most cases, as the random nature of the selection of
instances should avoid introducing bias.

Sometimes there are very specific relationships in a dataset that we want to maintain in
a sample. For example, if we have a categorical target feature, we may want to ensure that
the sample has exactly the same distribution of the different levels of the target feature as
the original dataset. In most cases random sampling will maintain distributions; however,
if there are one or more levels of a categorical feature that only a very small proportion of
instances in a dataset have, there is a chance that these will be omitted or underrepresented
by random sampling. Stratified sampling is a sampling method that ensures that the
relative frequencies of the levels of a specific stratification feature are maintained in the
sampled dataset.

To perform stratified sampling, the instances in a dataset are first divided into groups
(or strata), where each group contains only instances that have a particular level for the
stratification feature. The s% of the instances in each stratum are then randomly selected,
and these selections are combined to give an overall sample of s% of the original dataset.
Remember that each stratum will contain a different number of instances, so by sampling
on a percentage basis from each stratum, the number of instances taken from each stratum
will be proportional to the number of instances in each stratum. As a result, this sampling
strategy is guaranteed to maintain the relative frequencies of the different levels of the
stratification feature.

In contrast to stratified sampling, sometimes we would like a sample to contain different
relative frequencies of the levels of a particular feature than the distribution in the original
dataset. For example, we may wish to create a sample in which the levels of a particular
categorical feature are represented equally, rather than with whatever distribution they had
in the original dataset. To do this, we can use under-sampling or over-sampling.

Like stratified sampling, under-sampling begins by dividing a dataset into groups, where
each group contains only instances that have a particular level for the feature to be under-
sampled. The number of instances in the smallest group is the under-sampling target size.
Each group containing more instances than the smallest one is then randomly sampled by
the appropriate percentage to create a subset that is the under-sampling target size. These
under-sampled groups are then combined to create the overall under-sampled dataset.

Over-sampling addresses the same issue as under-sampling but in the opposite way
around. After dividing the dataset into groups, the number of instances in the largest
group becomes the over-sampling target size. From each smaller group, we then create a
sample containing that number of instances. To create a sample that is larger than the size
of the group that we are sampling from, we use random sampling with replacement. This
means that when an instance is randomly selected from the original dataset, it is replaced
into the dataset so that it might be selected again. The consequence of this is that each in-
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stance from the original dataset can appear more than once in the sampled dataset.14 After
having created the larger samples from each group, we combine these to form the overall
over-sampled dataset.

Sampling techniques can be used to reduce the size of a large ABT to make exploratory
analysis easier, to change the distributions of target features in an ABT, and to generate
different portions of an ABT to use for training and evaluating a model.

3.7 Summary

For a data analytics practitioner, the key outcomes of the data exploration process (which
straddles the Data Understanding and Data Preparation phases of CRISP-DM) are that
the practitioner should

1. Have gotten to know the features within the ABT, especially their central tendencies,
variations, and distributions.

2. Have identified any data quality issues within the ABT, in particular, missing values,
irregular cardinality, and outliers.

3. Have corrected any data quality issues due to invalid data.
4. Have recorded any data quality issues due to valid data in a data quality plan along

with potential handling strategies.
5. Be confident that enough good-quality data exists to continue with a project.

Although the data quality report is just a collection of simple descriptive statistics and
visualizations of the features in an analytics base table, it is a very powerful tool and the
key to achieving the outcomes listed above. By examining the data quality report, analytics
practitioners can get a complete picture of the data that they will work with for the rest of
an analytics project. In this chapter we have focused on using the data quality report to
explore the data in an ABT. A data quality report, however, can also be used to explore any
dataset and is commonly used to understand the data in the raw data sources that are used
to populate an ABT.

We also took our first steps toward building predictive models in this chapter when we
looked at correlation. A descriptive feature that correlates strongly with a target feature
would be a good place to start building a predictive model, and we return to correlations in
later chapters. Examining correlation between features as part of data exploration allows
us to add extra outcomes to the list at the beginning of this section:

1. Be aware of the relationships between features in an ABT.
2. Have begun the feature selection exercise by removing some features from the ABT.

14. Although we didn’t mention it explicitly in other cases where we mentioned random sampling, we meant
random sampling without replacement.
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The previous section of the chapter (Section 3.6[87]) focused on data preparation tech-
niques that we can use on the data in an ABT. It is important to remember that when we
perform data preparations (such as those in Section 3.6[87] or those described in Section
3.4[69]), we are changing the data that we will use to subsequently train predictive models.
If we change the data too much, then the models that we build will not relate well to the
original data sources when we deploy them. There is, therefore, a delicate balance that
we need to strike between preparing the data so that it is appropriate for use with machine
learning algorithms and keeping the data true to the underlying processes that generate it.
Well-designed evaluation experiments are the best way to find this balance (we discuss
evaluation in detail in Chapter 9[533]).

The last point worth mentioning is that this chapter relates to deployment. The data in
an ABT is historical data from the disparate data sources within an organization. We use
this data to train and evaluate a machine learning model that will then be deployed for use
on newly arising data. For example, in the motor insurance fraud detection example that
we used in this chapter, the claims in the ABT were all historical. The prediction model
that we would build using this data would be deployed to predict whether newly arising
claims are likely to be fraudulent. It is important that the details of any data preparation
techniques we perform on the data in the ABT be saved (usually in the data quality plan)
so that we can also apply the same techniques to newly arising data. This is an important
detail of model deployment that is sometimes overlooked, which can lead to strange model
performance.

3.8 Further Reading

The basis of data exploration is statistics. Montgomery and Runger (2010) is an excellent
applied introductory text in statistics and covers, in more detail, all the basic measures
used in this chapter. It also covers advanced topics, such as the �2 test and ANOVA
test mentioned in the notes for Section 3.5.2[81]. Rice (2006) provides a good—if more
theoretical—treatment of statistics.

For the practical details of building a data quality report, Svolba (2012, 2007) are very
good, even if the SAS language is not being used. Similarly, Dalgaard (2008) is very good
even if the R language is not being used. As an example of a detailed investigation into the
impact of applying data preparation techniques, Batista and Monard (2003) is interesting.

Data visualization is a mix of statistics, graphic design, art, and psychology. Chang
(2012) and Fry (2007) both provide great detail on visualization in general and the R lan-
guage in particular (the visualizations in this book are almost all generated in R). For more
conceptual discussions of data visualization, Tufte (2001) and Bertin (2010) are important
works in the field.
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3.9 Exercises

1. The table below shows the age of each employee at a cardboard box factory.

ID 1 2 3 4 5 6 7 8 9 10
AGE 51 39 34 27 23 43 41 55 24 25

ID 11 12 13 14 15 16 17 18 19 20
AGE 38 17 21 37 35 38 31 24 35 33

Based on this data, calculate the following summary statistics for the AGE feature:

(a) Minimum, maximum, and range

(b) Mean and median

(c) Variance and standard deviation

(d) 1st quartile (25th percentile) and 3rd quartile (75th percentile)

(e) Inter-quartile range

(f) 12th percentile

2. The table below shows the policy type held by customers at a life insurance company.

ID POLICY

1 Silver
2 Platinum
3 Gold
4 Gold
5 Silver
6 Silver
7 Bronze

ID POLICY

8 Silver
9 Platinum
10 Platinum
11 Silver
12 Gold
13 Platinum
14 Silver

ID POLICY

15 Platinum
16 Silver
17 Platinum
18 Platinum
19 Gold
20 Silver

(a) Based on this data, calculate the following summary statistics for the POLICY

feature:

i. Mode and 2nd mode
ii. Mode % and 2nd mode %

(b) Draw a bar plot for the POLICY feature.
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3. An analytics consultant at an insurance company has built an ABT that will be used to
train a model to predict the best communications channel to use to contact a potential
customer with an offer of a new insurance product.15 The following table contains an
extract from this ABT—the full ABT contains 5;200 instances.

HEALTH HEALTH

MOTOR MOTOR HEALTH HEALTH DEPS DEPS PREF

ID OCC GENDER AGE LOC INS VALUE INS TYPE ADULTS KIDS CHANNEL

1 Student female 43 urban yes 42,632 yes PlanC 1 2 sms
2 female 57 rural yes 22,096 yes PlanA 1 2 phone
3 Doctor male 21 rural yes 27,221 no phone
4 Sheriff female 47 rural yes 21,460 yes PlanB 1 3 phone
5 Painter male 55 rural yes 13,976 no phone

:
:
:

:
:
:

:
:
:

14 male 19 rural yes 48,66 no email
15 Manager male 51 rural yes 12,759 no phone
16 Farmer male 49 rural no no phone
17 female 18 urban yes 16,399 no sms
18 Analyst male 47 rural yes 14,767 no email

:
:
:

:
:
:

:
:
:

2747 female 48 rural yes 35,974 yes PlanB 1 2 phone
2748 Editor male 50 urban yes 40,087 no phone
2749 female 64 rural yes 156,126 yes PlanC 0 0 phone
2750 Reporter female 48 urban yes 27,912 yes PlanB 1 2 email

:
:
:

:
:
:

:
:
:

4780 Nurse male 49 rural no yes PlanB 2 2 email
4781 female 46 rural yes 18,562 no phone
4782 Courier male 63 urban no yes PlanA 2 0 email
4783 Sales male 21 urban no no sms
4784 Surveyor female 45 rural yes 17,840 no sms

:
:
:

:
:
:

:
:
:

5199 Clerk male 48 rural yes 19,448 yes PlanB 1 3 email
5200 Cook 47 female rural yes 16,393 yes PlanB 1 2 sms

The descriptive features in this dataset are defined as follows:

 AGE: The customer’s age

 GENDER: The customer’s gender (male or female)

 LOC: The customer’s location (rural or urban)

 OCC: The customer’s occupation

15. The data used in this question have been artificially generated for this book. Channel propensity modeling is
used widely in industry; for example, see Hirschowitz (2001).
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 MOTORINS: Whether the customer holds a motor insurance policy with the com-
pany (yes or no)

 MOTORVALUE: The value of the car on the motor policy

 HEALTHINS: Whether the customer holds a health insurance policy with the com-
pany (yes or no)

 HEALTHTYPE: The type of the health insurance policy (PlanA, PlanB, or PlanC)

 HEALTHDEPSADULTS: How many dependent adults are included on the health
insurance policy

 HEALTHDEPSKIDS: How many dependent children are included on the health
insurance policy

 PREFCHANNEL: The customer’s preferred contact channel (email, phone, or sms)

The consultant generated the following data quality report from the ABT (visualiza-
tions of binary features have been omitted for space saving).

% 1st 3rd Std.
Feature Count Miss. Card. Min. Qrt. Mean Median Qrt. Max. Dev.
AGE 5,200 0 51 18 22 41.59 47 50 80 15.66
MOTORVALUE 5,200 17.25 3,934 4,352 15,089.5 23,479 24,853 32,078 166,993 11,121
HEALTHDEPSADULTS 5,200 39.25 4 0 0 0.84 1 1 2 0.65
HEALTHDEPSKIDS 5,200 39.25 5 0 0 1.77 2 3 3 1.11

2nd 2nd

% Mode Mode 2nd Mode Mode
Feature Count Miss. Card. Mode Freq. % Mode Freq. %
GENDER 5,200 0 2 female 2,626 50.5 male 2,574 49.5
LOC 5,200 0 2 urban 2,948 56.69 rural 2,252 43.30
OCC 5,200 37.71 1,828 Nurse 11 0.34 Sales 9 0.28
MOTORINS 5,200 0 2 yes 4,303 82.75 no 897 17.25
HEALTHINS 5,200 0 2 yes 3,159 60.75 no 2,041 39.25
HEALTHTYPE 5,200 39.25 4 PlanB 1,596 50.52 PlanA 796 25.20
PREFCHANNEL 5,200 0 3 email 2,296 44.15 phone 1,975 37.98
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HEALTHDEPSKIDS HEALTHTYPE PREFCHANNEL

Discuss this data quality report in terms of the following:

(a) Missing values

(b) Irregular cardinality

(c) Outliers

(d) Feature distributions

4. The following data visualizations are based on the channel prediction dataset given
in Question 3. Each visualization illustrates the relationship between a descriptive
feature and the target feature, PREFCHANNEL. Each visualization is composed of
four plots: one plot of the distribution of the descriptive feature values in the entire
dataset, and three plots illustrating the distribution of the descriptive feature values
for each level of the target. Discuss the strength of the relationships shown in each
visualization.

(a) The visualization below illustrates the relationship between the continuous feature
AGE and the target feature, PREFCHANNEL.
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(b) The visualization below illustrates the relationship between the categorical feature
GENDER and the target feature PREFCHANNEL.

female male
Gender

D
en

si
ty

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

female male

PrefChannel = SMS

Gender

D
en

si
ty

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

female male

PrefChannel = Phone

Gender

D
en

si
ty

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

female male

PrefChannel = Email

Gender

D
en

si
ty

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5



3.9 Exercises 101

(c) The visualization below illustrates the relationship between the categorical feature
LOC and the target feature, PREFCHANNEL.
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5. The table below shows the scores achieved by a group of students on an exam.

ID 1 2 3 4 5 6 7 8 9 10
SCORE 42 47 59 27 84 49 72 43 73 59

ID 11 12 13 14 15 16 17 18 19 20
SCORE 58 82 50 79 89 75 70 59 67 35

Using this data, perform the following tasks on the SCORE feature:

(a) A range normalization that generates data in the range p0; 1q

(b) A range normalization that generates data in the range p�1; 1q

(c) A standardization of the data

6. The following table shows the IQs for a group of people who applied to take part in a
television general-knowledge quiz.

ID 1 2 3 4 5 6 7 8 9 10
IQ 92 107 83 101 107 92 99 119 93 106

ID 11 12 13 14 15 16 17 18 19 20
IQ 105 88 106 90 97 118 120 72 100 104
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Using this dataset, generate the following binned versions of the IQ feature:

(a) An equal-width binning using 5 bins.

(b) An equal-frequency binning using 5 bins

� 7. Comment on the distributions of the features shown in each of the following his-
tograms.
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(d) (e)

(a) The height of employees in a trucking company.

(b) The number of prior criminal convictions held by people given prison sentences
in a city district over the course of a full year.

(c) The LDL cholesterol values for a large group of patients, including smokers and
non-smokers.

(d) The employee ID numbers of the academic staff at a university.

(e) The salaries of car insurance policyholders.
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� 8. The table below shows socioeconomic data for a selection of countries for the year
2009,16 using the following features:

 COUNTRY: The name of the country

 LIFEEXPECTANCY: The average life expectancy (in years)

 INFANTMORTALITY: The infant mortality rate (per 1;000 live births)

 EDUCATION: Spending per primary student as a percentage of GDP

 HEALTH: Health spending as a percentage of GDP

 HEALTHUSD: Health spending per person converted into US dollars

LIFE INFANT HEALTH

COUNTRY EXPECTANCY MORTALITY EDUCATION HEALTH USD
Argentina 75.592 13.500 16.841 9.525 734.093
Cameroon 53.288 67.700 7.137 4.915 60.412
Chile 78.936 7.800 17.356 8.400 801.915
Colombia 73.213 16.500 15.589 7.600 391.859
Cuba 78.552 4.800 44.173 12.100 672.204
Ghana 60.375 52.500 11.365 5.000 54.471
Guyana 65.560 31.200 8.220 6.200 166.718
Latvia 71.736 8.500 31.364 6.600 756.401
Malaysia 74.306 7.100 14.621 4.600 316.478
Mali 53.358 85.500 14.979 5.500 33.089
Mongolia 66.564 26.400 15.121 5.700 96.537
Morocco 70.012 29.900 16.930 5.200 151.513
Senegal 62.653 48.700 17.703 5.700 59.658
Serbia 73.532 6.900 61.638 10.500 576.494
Thailand 73.627 12.700 24.351 4.200 160.136

(a) Calculate the correlation between the LIFEEXPECTANCY and INFANTMORTAL-
ITY features.

(b) The image below shows a scatter plot matrix of the continuous features from this
dataset (the correlation between LIFEEXPECTANCY and INFANTMORTALITY has
been omitted). Discuss the relationships between the features in the dataset that
this scatter plot highlights.

16. The data listed in this table is real and was amalgamated from a number of reports that were retrieved
from Gapminder (www.gapminder.org). The EDUCATION data is based on a report from the World Bank
(data.worldbank.org/indicator/SE.XPD.PRIM.PC.ZS); the HEALTH and HEALTHUSD data are based on reports
from the World Health Organization (www.who.int); all the other features are based on reports created by Gap-
minder.

www.gapminder.org
data.worldbank.org/indicator/SE.XPD.PRIM.PC.ZS
www.who.int
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� 9. Tachycardia is a condition that causes the heart to beat faster than normal at rest. The
occurrence of tachycardia can have serious implications including increased risk of
stroke or sudden cardiac arrest. An analytics consultant has been hired by a major
hospital to build a predictive model that predicts the likelihood that a patient at a heart
disease clinic will suffer from tachycardia in the month following a visit to the clinic.
The hospital will use this model to make predictions for each patient when they visit
the clinic and offer increased monitoring for those deemed to be at risk. The analytics
consultant has generated an ABT to be used to train this model.17 The descriptive
features in this dataset are defined as follows:

 AGE: The patient’s age

 GENDER: The patient’s gender (male or female)

 WEIGHT: The patient’s weight

 HEIGHT: The patient’s height

17. The data used in this question have been artificially generated for this book. This type of application of
machine learning techniques, however, is common; for example, see Osowski et al. (2004).
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 BMI: The patient’s body mass index (BMI) which is calculated as weight
height2

where
weight is measured in kilograms and height in meters.

 SYS. B.P.: The patient’s systolic blood pressure

 DIA. B.P.: The patient’s diastolic blood pressure

 HEART RATE: The patient’s heart rate

 H.R. DIFF.: The difference between the patient’s heart rate at this visit and at their
last visit to the clinic

 PREV. TACHY.: Has the patient suffered from tachycardia before?

 TACHYCARDIA: Is the patient at high risk of suffering from tachycardia in the next
month?

The following table contains an extract from this ABT—the full ABT contains 2;440
instances.

SYS. DIA. HEART H.R. PREV.
ID AGE GENDER WEIGHT HEIGHT BMI B.P. B.P. RATE DIFF. TACHY. TACHYCARDIA

1 6 male 78 165 28.65 161 97 143 true
2 5 m 117 171 40.01 216 143 162 17 true true

:
:
:

:
:
:

:
:
:

143 5 male 108 1.88 305,568.13 139 99 84 21 false true
144 4 male 107 183 31.95 1,144 90 94 -8 false true

:
:
:

:
:
:

:
:
:

1,158 6 female 92 1.71 314,626.72 111 75 75 -5 false
1,159 3 female 151 1.59 596,495.39 124 91 115 23 true true

:
:
:

:
:
:

:
:
:

1,702 3 male 86 193 23.09 138 81 83 false false
1,703 6 f 73 166 26.49 134 86 84 -4 false

:
:
:

:
:
:

:
:
:

The consultant generated the following data quality report from the ABT.

% 1st 3rd Std.
Feature Count Miss. Card. Min. Qrt. Mean Median Qrt. Max. Dev.
AGE 2,440 0.00 7 1.00 3.00 3.88 4.00 5.00 7.00 1.22
WEIGHT 2,440 0.00 174 0.00 81.00 95.70 95.00 107.00 187.20 20.89
HEIGHT 2,440 0.00 109 1.47 162.00 162.21 171.50 179.00 204.00 41.06
BMI 2,440 0.00 1,385 0.00 27.64 18,523.40 32.02 38.57 596,495.39 77,068.75
SYS .B.P. 2,440 0.00 149 62.00 115.00 127.84 124.00 135.00 1,144.00 29.11
DIA. B.P. 2,440 0.00 109 46.00 77.00 86.34 84.00 92.00 173.60 14.25
HEART RATE 2,440 0.00 119 57.00 91.75 103.28 100.00 110.00 190.40 18.21
H.R. DIFF. 2,440 13.03 78 -50.00 -4.00 3.00 1.00 8.00 47.00 12.38
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2nd 2nd

% Mode Mode 2nd Mode Mode
Feature Count Miss. Card. Mode Freq. % Mode Freq. %
GENDER 2,440 0.00 4 male 1,591.00 65.20 female 647.00 26.52
PREV. TACHY. 2,440 44.02 3 false 714.00 52.27 true 652.00 47.73
TACHYCARDIA 2,440 2.01 3 false 1,205.00 50.40 true 1,186.00 49.60
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PREV. TACHY. TACHYCARDIA

Discuss this data quality report in terms of the following:

(a) Missing values

(b) Irregular cardinality

(c) Outliers

(d) Feature distributions

� 10. The following data visualizations are based on the tachycardia prediction dataset from
Question 9 (after the instances with missing TACHYCARDIA values have been re-
moved and all outliers have been handled). Each visualization illustrates the rela-
tionship between a descriptive feature and the target feature, TACHYCARDIA and is
composed of three plots: a plot of the distribution of the descriptive feature values in
the full dataset, and plots showing the distribution of the descriptive feature values for
each level of the target. Discuss the relationships shown in each visualizations.

(a) The visualization below illustrates the relationship between the continuous feature
DIA. B.P. and the target feature, TACHYCARDIA.
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(b) The visualization below illustrates the relationship between the continuous HEIGHT

feature and the target feature TACHYCARDIA.
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(c) The visualization below illustrates the relationship between the categorical feature
PREV. TACHY. and the target feature, TACHYCARDIA.
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� 11. Worldwide breast cancer is the most common form of cancer for women, and the
second most common form of cancer overall.18 Reliable, population-wide screening
is one tool that can be used to reduce the impact of breast cancer, and there is an
opportunity for machine learning to be used for this. A large hospital group has col-
lected a cancer screening dataset for possible use with machine learning that contains
features extracted from tissue samples extracted by biopsy from adults presenting for
screening. Features have been extracted from these biopsies by lab technicians who
rate samples across a number of cagegories on a scale of 1 to 10. The samples have
then been manually categorized by clinicians as either benign or malignant.19 The
descriptive features in this dataset are defined as follows:

 AGE: The age of the person screened.

 SEX: The sex of the person screened, either male or female.

 SIZEUNIFORMITY: A measure of the variation in size of cells in the tissue samples,
higher values indicate more uniform sizes (1 to 10).

 SHAPEUNIFORMITY: A measure of the variation in shape of cells in the tissue
samples, higher values indicate more uniform shapes (1 to 10).

 MARGINALADHESION: A measure of how much cells in the biopsy stick together
(1 to 10).

 MITOSES: A measure of how fast cells are growing (1 to 10).

 CLUMPTHICKNESS: A measurae of the amount of layering in cells (1 to 10).

 BLANDCHROMATIN: A measure of the texture of cell nuclei (1 to 10).

 CLASS: The clinician’s assessment of the biopsy sample as either benign or malig-
nant.

18. Based on data from Bray et al. (2018).

19. The data in this question have been artificially created but were inspired by the famous Wisconsin breast can-
cer dataset first described by Mangasarian and Wolberg (1990), and available from the UCI Machine Learning
Repository (Bache and Lichman, 2013).
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The following table contains an extract from this ABT—the full ABT contains 680
instances.

CLUMP SIZE SHAPE MARGINAL BLAND

ID AGE SEX THICKNESS UNIFORMITY UNIFORMITY ADHESION CHROMATIN MITOSES CLASS

1 56 female 3 4 5 3 4 1 benign
2 77 female 2 1 0 1 1 1 benign

:
:
:

:
:
:

:
:
:

48 34 female 5 2 4 1 1 benign
49 46 female 5 3 1 2 2 1 b
50 106 female 2 1 1 1 1 1 benign

:
:
:

:
:
:

:
:
:

303 95 female 1 1 1 1 benign
304 28 male 5 1 1 1 1 benign
305 0 female 3 1 3 1 benign

:
:
:

:
:
:

:
:
:

679 48 female 10 8 7 4 7 1 m
680 43 female 5 4 6 7 1 malignant

The following data quality report has been generated from the ABT.

2nd 2nd

% Mode Mode 2nd Mode Mode
Feature Count Miss. Card. Mode Freq. % Mode Freq. %
SEX 680 0 2 female 630 92.65 male 50 7.35
CLASS 680 0 4 benign 392 57.65 malignant 211 31.03

% 1st 3rd Std.
Feature Count Miss. Card. Min. Qrt. Mean Median Qrt. Max. Dev.
AGE 680 0.00 80 0 34 49.13 50 65 106 22.95
CLUMPTHICKNESS 680 0.00 10 1 2 4.45 4 6 10 2.82
SIZEUNIFORMITY 680 9.26 10 1 1 3.14 1 5 10 3.08
SHAPEUNIFORMITY 680 9.26 11 0 1 3.20 1 5 10 3.00
MARGINALADHESION 680 0.00 10 1 1 2.84 1 4 10 2.87
BLANDCHROMATIN 680 22.94 10 1 2 3.38 3 4 10 2.44
MITOSES 680 0.00 9 1 1 1.61 1 1 10 1.74
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Discuss this data quality report in terms of the following:

(a) Missing values

(b) Irregular cardinality

(c) Outliers

(d) Feature distributions
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� 12. The following data visualizations are based on the breast cancer prediction dataset
from Question 11 (after some data quality issues present in the dataset have been
corrected). Each visualization illustrates the relationship between a descriptive feature
and the target feature, CLASS and is composed of three plots: a plot of the distribution
of the descriptive feature values in the full dataset, and plots showing the distribution
of the descriptive feature values for each level of the target. Discuss the relationships
shown in each visualizations.

(a) The visualization below illustrates the relationship between the continuous feature
AGE and the target feature, CLASS.
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(b) The visualization below illustrates the relationship between the continuous BLAND-

CHROMATIN feature and the target feature CLASS.
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(c) The visualization below illustrates the relationship between the categorical feature
SEX and the target feature, CLASS.

0
20

0
40

0
60

0

female male

Sex

P
er

ce
nt

0
0.

5
1

F
re

qu
en

cy





II PREDICTIVE DATA ANALYTICS





4 Information-Based Learning

“Information is the resolution of uncertainty.”
—Claude Elwood Shannon

In this chapter we discuss the ways in which concepts from information theory can be
used to build prediction models. We start by discussing decision trees, the fundamental
structure used in information-based machine learning, before presenting the fundamental
measures of information content that are used: entropy and information gain. We then
present the ID3 algorithm, the standard algorithm used to induce a decision tree from a
dataset. The extensions and variations to this standard approach that we present describe
how different data types can be handled, how overfitting can be avoided using decision tree
pruning, and how multiple prediction models can be combined in ensembles to improve
prediction accuracy.

4.1 Big Idea

We start off by playing a game. Guess Who is a two-player game in which one player
chooses a card with a picture of a character on it from a deck, and the other player tries to
guess which character is on the card by asking a series of questions to which the answer
can be only yes or no. The player asking the questions wins by guessing who is on the card
within a small number of questions and loses otherwise. Figure 4.1[118] shows the set of
cards that we will use for our game. We can represent these cards using the dataset given
in Table 4.1[118].

Now, imagine that we have picked one of these cards and you have to guess which one
by asking questions. Which of the following questions would you ask first?

1. Is it a man?
2. Does the person wear glasses?

Most people would ask Question 1 first. Why is this? At first, this choice of question
might seem ineffective. For example, if you ask Question 2, and we answer yes, you can
be sure that we have picked Brian without asking any more questions. The problem with
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Brian John Aphra Aoife

Figure 4.1
Cards showing character faces and names for the Guess Who game.

Table 4.1
A dataset that represents the characters in the Guess Who game.

Man Long Hair Glasses Name
Yes No Yes Brian
Yes No No John
No Yes No Aphra
No No No Aoife

this reasoning, however, is that, on average, the answer to Question 2 will be yes only one
out of every four times you play. That means that three out of every four times you ask
Question 2, the answer will be no, and you will still have to distinguish between the three
remaining characters.

Figure 4.2[119] illustrates the possible question sequences that can follow in a game begin-
ning with Question 2. In Figure 4.2(a)[119] we next ask, Is it a man? and then, if required,
Do they have long hair? In Figure 4.2(b)[119] we reverse this order. In both of these dia-
grams, one path to an answer about the character on a card is 1 question long, one path is
2 questions long, and two paths are 3 questions long. Consequently, if you ask Question 2
first, the average number of questions you have to ask per game is

1� 2� 3� 3
4

� 2:25

On the other hand, if you ask Question 1 first, there is only one sequence of questions
with which to follow it. This sequence is shown in Figure 4.3[120]. Irrespective of the
answers to the questions, you always have to follow a path through this sequence that is
2 questions long to reach an answer about the character on a card. This means that if you
always ask Question 1 first, the average number of questions you have to ask per game is

2� 2� 2� 2
4

� 2



4.1 Big Idea 119
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(b)

Figure 4.2
The different question sequences that can follow in a game of Guess Who beginning with the question
Does the person wear glasses?

What is interesting here is that no matter what question you ask, the answer is always
either yes or no, but, on average, an answer to Question 1 seems to carry more information
than an answer to Question 2. This is not because of the literal message in the answer
(either yes or no). Rather, it is because of the way that the answer to each question splits
the character cards into different sets based on the value of the descriptive feature the ques-
tion is asked about (MAN, LONG HAIR or GLASSES) and the likelihood of each possible
answer to the question.

An answer to Question 1, Is it a man?, splits the game domain into two sets of equal
size: one containing Brian and John and one containing Aphra and Aoife. One of these
sets contains the solution, which leaves you with just one more question to ask to finish the
game. By contrast, an answer to Question 2 splits the game domain into one set containing
one element, Brian, and another set containing three elements: John, Aphra, and Aoife.
This works out really well when the set containing the single element contains the solution.
In the more likely case that the set containing three elements contains the solution, however,
you may have to ask two more questions to uniquely identify the answer. So, when you
consider both the likelihood of an answer and how an answer splits up the domain of
solutions, it becomes clear that an answer to Question 2 leaves you with more work to do
to solve the game than an answer to Question 1.
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Is it a man?
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Figure 4.3
The different question sequences that can follow in a game of Guess Who beginning with the question
Is it a man?

So, the big idea here is to figure out which features are the most informative ones to
ask questions about by considering the effects of the different answers to the questions,
in terms of how the domain is split up after the answer is received and the likelihood of
each of the answers. Somewhat surprisingly, people seem to be able to easily do this on
the basis of intuition. Information-based machine learning algorithms use the same idea.
These algorithms determine which descriptive features provide the most information about
a target feature and make predictions by sequentially testing the features in order of their
informativeness.

4.2 Fundamentals

In this section we introduce Claude Shannon’s approach to measuring information,1 in
particular his model of entropy and how it is used in the information gain measure to

1. Claude Shannon is considered to be the father of information theory. Shannon worked for AT&T Bell Labs,
where he worked on the efficient encoding of messages for telephone communication. It was this focus on
encoding that motivated his approach to measuring information. In information theory, the meaning of the word
information deliberately excludes the psychological aspects of the communication and should be understood as
measuring the optimal encoding length of a message given the set of possible messages that could be sent within
the communication.
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capture the informativeness of a descriptive feature. Before this we introduce decision
trees, the actual prediction models that we are trying to build.

4.2.1 Decision Trees
Just as we did when we played Guess Who, an effective way to generate a prediction is
to carry out a series of tests on the values of the descriptive features describing a query
instance and use the answers to these tests to determine the prediction. Decision trees
take this approach. To illustrate how a decision tree works, we use the dataset listed in
Table 4.2[121]. This dataset contains a set of training instances that can be used to build a
model to predict whether emails are spam or ham (genuine). The dataset has three binary
descriptive features: SUSPICIOUS WORDS is true if an email contains one or more words
that are typically found in spam email (e.g., casino, viagra, bank, or account); UNKNOWN

SENDER is true if the email is from an address that is not listed in the contacts of the person
who received the email; and CONTAINS IMAGES is true if the email contains one or more
images.

Table 4.2
An email spam prediction dataset.

SUSPICIOUS UNKNOWN CONTAINS

ID WORDS SENDER IMAGES CLASS

376 true false true spam
489 true true false spam
541 true true false spam
693 false true true ham
782 false false false ham
976 false false false ham

Figure 4.4[122] shows two decision trees that are consistent with the spam dataset. Deci-
sion trees look very like the game trees that we developed for the Guess Who game. As
with all tree representations, a decision tree consists of a root node (or starting node), in-
terior nodes, and leaf nodes (or terminating nodes) that are connected by branches. Each
non-leaf node (root and interior) in the tree specifies a test to be carried out on a descriptive
feature. The number of possible levels that a descriptive feature can take determines the
number of downward branches from a non-leaf node. Each of the leaf nodes specifies a
predicted level of the target feature.

In the diagrams in Figure 4.4[122], ellipses represent root or interior nodes, and rectangles
represent leaf nodes. The labels of the ellipses indicate which descriptive feature is tested
at that node. The labels on each branch indicate one of the possible feature levels that the
descriptive feature at the node above can take. The labels on the rectangular leaf nodes
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indicate the target level that should be predicted when the tests on the interior nodes create
a path that terminates at that leaf node.
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Figure 4.4
Two decision trees, (a) and (b), that are consistent with the instances in the spam dataset; and (c) the
path taken through the tree shown in (a) to make a prediction for the query instance SUSPICIOUS

WORDS = true, UNKNOWN SENDER = true, and CONTAINS IMAGES = true.

The process of using a decision tree to make a prediction for a query instance starts with
testing the value of the descriptive feature at the root node of the tree. The result of this test
determines which of the root node’s children the process should then descend to. These
two steps of testing the value of a descriptive feature and descending a level in the tree are
then repeated until the process comes to a leaf node at which a prediction can be made.

To demonstrate how this process works, imagine that we were given the query email
SUSPICIOUS WORDS = true, UNKNOWN SENDER = true, CONTAINS IMAGES = true,
and asked to predict whether it is spam or ham. Applying the decision tree from Figure
4.4(a)[122] to this query, we see that the root node of this tree tests the CONTAINS IMAGES

feature. The query instance value for CONTAINS IMAGES is true so the process descends
the left branch from the root node, labeled true, to an interior node that tests the SUSPI-
CIOUS WORDS feature. The query instance value for this feature is true, and so on the
basis of the result of the test at this node, the process descends the left branch, labeled true,
to a leaf node labeled spam. As the process has arrived at a leaf node, it terminates, and
the target level indicated by the leaf node, spam, is predicted for the query instance. The
path through the decision tree for this query instance is shown in Figure 4.4(c)[122].

The decision tree in Figure 4.4(b)[122] would have returned the same prediction for the
query instance. Indeed, both of the decision trees in Figures 4.4(a)[122] and 4.4(b)[122] are
consistent with the dataset in Table 4.2[121] and can generalize sufficiently to make predic-
tions for query instances like the one considered in our example. The fact that there are, at
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least, two decision trees that can do this raises the question: How do we decide which is
the best decision tree to use?

We can apply almost the same approach that we used in the Guess Who game to make
this decision. Looking at the decision trees in Figures 4.4(a)[122] and 4.4(b)[122], we notice
that the tree in Figure 4.4(a)[122] performs tests on two features in order to make a prediction,
whereas the decision tree in Figure 4.4(b)[122] needs to test only the value of one feature.
The reason for this is that SUSPICIOUS WORDS, the descriptive feature tested at the root
node of the tree in Figure 4.4(b)[122], perfectly splits the data into a pure group of spam
emails and a pure group of ham emails. We can say that because of the purity of the splits
that it makes, the SUSPICIOUS WORDS feature provides more information about the value
of the target feature for an instance than the CONTAINS IMAGES feature, and so a tree that
tests this descriptive feature at the root node is preferable.

This gives us a way to choose between a set of different decision trees that are all consis-
tent with a set of training instances. We can introduce a preference for decision trees that
use fewer tests—in other words, trees that are on average shallower.2 This is the primary
inductive bias that a machine learning algorithm taking an information-based approach en-
codes. To build shallow trees, we need to put the descriptive features that best discriminate
between instances that have different target feature values toward the top of the tree. To
do this we need a formal measure of how well a descriptive feature discriminates between
the levels of the target feature. Similar to the way that we analyzed the questions in the
Guess Who game, we measure the discriminatory power of a descriptive feature by analyz-
ing the size and probability of each set of instances created when we test the value of the
feature and how pure each set of instances is with respect to the target feature values of the
instances it contains. The formal measure we use to do this is Shannon’s entropy model.

4.2.2 Shannon’s Entropy Model
Claude Shannon’s entropy model defines a computational measure of the impurity of the
elements in a set. Before we examine the mathematical definition of entropy, we first
provide an intuitive explanation of what it means. Figure 4.5[124] shows a collection of sets
of playing cards of contrasting entropy. An easy way to understand the entropy of a set is
to think in terms of the uncertainty associated with guessing the result if you were to make
a random selection from the set. For example, if you were to randomly select a card from
the set shown in Figure 4.5(a)[124], you would have zero uncertainty, as you would know for
sure that you would select an ace of spades. So, this set has zero entropy. If, however, you

2. In fact, it can be argued that a preference toward shallower decision trees is a good idea in general and can
be viewed as following Occam’s razor. Occam’s razor is the principle of keeping theories as simple as possible.
It is named after a 14th-century Franciscan monk, William of Occam (sometimes spelled Ockham), who was one
of the first to formulate this principle. The razor in the title comes from the idea of shaving off any unnecessary
assumptions from a theory.
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(a) Hpcardq � 0:00 (b) Hpcardq � 0:81 (c) Hpcardq � 1:00

(d) Hpcardq � 1:50 (e) Hpcardq � 1:58 (f) Hpcardq � 3:58

Figure 4.5
The entropy of different sets of playing cards measured in bits.

were to randomly select an element from the set in Figure 4.5(f)[124], you would be very
uncertain about any prediction as there are 12 possible outcomes, each of which is equally
likely. This is why this set has very high entropy. The other sets in Figure 4.5[124] have
entropy values between these two extremes.

This gives us a clue as to how we should define a computational model of entropy. We
can transform the probabilities3 of the different possible outcomes when we randomly
select an element from a set to entropy values. An outcome with a large probability should
map to a low entropy value, and an outcome with a small probability should map to a
large entropy value. The mathematical logarithm, or log, function4 does almost exactly
the transformation that we need.

If we examine the graph of the binary logarithm (a logarithm to the base 2) of proba-
bilities ranging from 0 to 1, shown in Figure 4.6(a)[125], we see that the logarithm function
returns large negative numbers for low probabilities and small negative numbers for high

3. We use some simple elements of probability theory in this chapter. Readers unfamiliar with the way proba-
bilities are calculated based on the relative frequencies of events should read the first section of Appendix B[757]

before continuing with this chapter.

4. The log of a to the base b, written as logbpaq, is the number to which we must raise b to get a. For example,
log2p8q � 3 because 23 � 8 and log5p625q � 4 because 54 � 625.
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Figure 4.6
(a) A graph illustrating how the value of a binary log (the log to the base 2) of a probability changes
across the range of probability values; and (b) the impact of multiplying these values by �1.

probabilities. Aside from the fact that the logarithm function returns negative numbers, the
magnitude of the numbers it returns is ideal as a measure of entropy: large numbers for
low probabilities and small numbers (near zero) for high probabilities. It should also be
noted that the range of values for the binary logarithm of a probability, r�8; 0s, is much
larger than those taken by the probability itself r0; 1s. This is also an attractive characteris-
tic of this function. It is more convenient for us to convert the output of the log function to
positive numbers by multiplying them by �1. Figure 4.6(b)[125] shows the impact of this.

Shannon’s model of entropy is a weighted sum of the logs of the probabilities of each
possible outcome when we make a random selection from a set. The weights used in the
sum are the probabilities of the outcomes themselves, so that outcomes with high probabil-
ities contribute more to the overall entropy of a set than outcomes with low probabilities.
Shannon’s model of entropy is defined as

Hptq � �
l‚

i�1

pPpt � iq � logspPpt � iqqq (4.1)

where Ppt � iq is the probability that the outcome of randomly selecting an element t
is the type i; l is the number of different types of things in the set; and s is an arbitrary
logarithmic base. The minus sign at the beginning of the equation is simply added to
convert the negative numbers returned by the log function to positive ones (as described
above). We will always use 2 as the base, s, when we calculate entropy, which means that
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we measure entropy in bits.5 Equation (4.1)[125] is the cornerstone of modern information
theory and is an excellent measure of the impurity—heterogeneity—of a set.

To understand how Shannon’s entropy model works, consider the example of a set of
52 different playing cards. The probability of randomly selecting any specific card i from
this set, Ppcard � iq, is quite low, just 1

52 . The entropy of the set of 52 playing cards is
calculated

Hpcardq � �
52‚

i�1

Ppcard � iq � log2pPpcard � iqq

� �
52‚

i�1

0:019� log2p0:019q

� �
52‚

i�1

�0:1096

� 5:700 bits

In this calculation, for each possible card Shannon’s model multiplies a small probability,
Ppcardq � i, by a large negative number, log2pPpcardq � iq, resulting in a relatively large
negative number. The individual relatively large negative numbers calculated for all the
cards are then summed to return one large negative number. The sign of this is inverted to
give a large positive value for the entropy of this very impure set.

By contrast, consider the example of calculating the entropy of a set of 52 playing cards
if we distinguish between cards on the sole basis of their suit (hearts V, clubs T, diamonds
W or, spades �). This time, there are only four possible outcomes when a random card
is selected from this set, each with a reasonably large probability of 13

52 . The entropy

5. Using binary logs, the maximum entropy for a set with two types of elements is 1.00 bit, but the entropy for
a set with more than two types of elements may be greater than 1.00 bit. The choice of base used in Shannon’s
model, in the context in which it is used in this chapter, is arbitrary. The choice of base 2 is due partly to a
conventional computer science background and partly to its allowing us to use the bits unit of information.
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associated with this set can be calculated

Hpsuitq � �
‚

lPtV;T;W;�u

Ppsuit � lq � log2pPpsuit � lqq

� �
�
pPpVq � log2pPpVqqq � pPpTq � log2pPpTqqq

� pPpWq � log2pPpWqqq � pPp�q � log2pPp�qqq
�

� �
� �13{52 � log2p13{52q

�
�
�13{52 � log2p13{52q

�

�
�13{52 � log2p13{52q

�
�
�13{52 � log2p13{52q

� 	

� � pp0:25��2q � p0:25��2q � p0:25��2q � p0:25��2qq

� 2 bits

In this calculation Shannon’s model multiples the large probability of selecting a specific
suit, Ppsuit � lq, by a small negative number, log2pPpsuit � lqq, to return a relatively
small negative number. The relatively small negative numbers associated with each suit
are summed to result in a small negative number overall. Again, the sign of this number is
inverted to result in a small positive value for the entropy of this much purer set.

To further explore the entropy, we can return to look at the entropy values of each set
of cards shown in Figure 4.5[124]. In the set shown in Figure 4.5(a)[124], all the cards are
identical. This means that there is no uncertainty about the result when a selection is made
from this set. Shannon’s model of information is designed to reflect this intuition, and the
entropy value for this set is 0.00 bits. In the sets shown in Figures 4.5(b)[124] and 4.5(c)[124],
there is a mixture of two different types of cards, so that these have higher entropy values—
in these instances, 0.81 bits and 1.00 bit. The maximum entropy for a set with two types
of elements is 1.00 bit, which occurs when there are equal numbers of each type in the set.

The sets shown in Figures 4.5(d)[124] and 4.5(e)[124] both have three types of cards. The
maximum entropy for sets with three elements is 1:58 and occurs when there are equal
numbers of each type in the set, as is the case shown in Figure 4.5(e)[124]. Figure 4.5(d)[124]

shows one card type to be more present than the others, so the overall entropy is slightly
lower, 1.50 bits. Finally, the set shown in Figure 4.5(f)[124] has a large number of card types,
each represented only once, which leads to the high entropy value of 3.58 bits.

This discussion highlights that entropy is essentially a measure of the heterogeneity of
a set. As the composition of the sets changed from the set with only one type of ele-
ment (Figure 4.5(a)[124]) to a set with many different types of elements, each with an equal
likelihood of being selected (Figure 4.5(f)[124]), the entropy score for the sets increased.

4.2.3 Information Gain
What is the relationship between a measure of heterogeneity of a set and predictive ana-
lytics? If we can construct a sequence of tests that splits the training data into pure sets
with respect to the target feature values, then we can label queries by applying the same
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Figure 4.7
How the instances in the spam dataset split when we partition using each of the different descriptive
features from the spam dataset in Table 4.2[121].

sequence of tests to a query and labeling it with the target feature value of instances in the
set in which it ends up.

To illustrate this we return to the spam dataset given in Table 4.2[121]. Figure 4.7[128] shows
how the instances in the spam dataset are split when we partition it using each of the three
descriptive features. In Figure 4.7(a)[128], we can see that splitting the dataset based on the
SUSPICIOUS WORDS feature provides a lot of information about whether an email is spam
or ham. In fact, partitioning the data by this feature creates two pure sets: one containing
only instances with the target level spam and the other set containing only instances with
the target level ham. This indicates that the SUSPICIOUS WORDS feature is a good feature
to test if we are trying to decide whether a new email—not listed in the training dataset—is
spam or not.

What about the other features? Figure 4.7(b)[128] shows how the UNKNOWN SENDER

feature partitions the dataset. The resulting sets both contain a mixture of spam and ham
instances. This indicates that the UNKNOWN SENDER feature is not as good at discrimi-
nating between spam and ham emails as the SUSPICIOUS WORDS feature. Although there
is a mixture in each of these sets, however, it seems to be the case that when UNKNOWN

SENDER = true, the majority of emails are spam, and when UNKNOWN SENDER = false,
the majority of emails are ham. Therefore, although this feature doesn’t perfectly discrim-
inate between spam and ham, it does give us some information that we might be able to
use in conjunction with other features to help decide whether a new email is spam or ham.
Finally, if we examine the partitioning of the dataset based on the CONTAINS IMAGES

feature, shown in Figure 4.7(c)[128], it looks like this feature is not very discriminatory for
spam and ham at all. Both the resulting sets contain a balanced mixture of spam and ham
instances.
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What we need to do at this point is to develop a formal model that captures the intuitions
about the informativeness of these features. Unsurprisingly, we do this using Shannon’s
entropy model. The measure of informativeness that we use is known as information
gain, which is a measure of the reduction in the overall entropy of a set of instances that
is achieved by testing on a descriptive feature. Computing information gain is a three-step
process:

1. Compute the entropy of the original dataset with respect to the target feature. This
gives us a measure of how much information is required to organize the dataset into
pure sets.

2. For each descriptive feature, create the sets that result by partitioning the instances in
the dataset using their feature values, and then sum the entropy scores of each of these
sets. This gives a measure of the information that remains required to organize the
instances into pure sets after we have split them using the descriptive feature.

3. Subtract the remaining entropy value (computed in step 2) from the original entropy
value (computed in step 1) to give the information gain.

We need to define three equations to formally specify information gain (one for each step).
The first equation calculates the entropy for a dataset with respect to a target feature6

H pt;Dq � �
‚

lPlevelsptq

pPpt � lq � log2pPpt � lqqq (4.2)

where levelsptq is the set of levels in the domain of the target feature t; and Ppt � lq is the
probability of a randomly selected instance having the target feature level l.

The second equation defines how we compute the entropy remaining after we partition
the dataset using a particular descriptive feature d. When we partition the dataset D using
the descriptive feature d, we create a number of partitions (or sets) Dd�l1 : : :Dd�lk , where
l1 : : : lk are the k levels that feature d can take. Each partition, Dd�li , contains the instances
in D that have a value of level li for the d feature. The entropy remaining after we have
tested d is a weighted sum of the entropy, still with respect to the target feature, of each
partition. The weighting is determined by the size of each partition—so a large partition
should contribute more to the overall remaining entropy than a smaller partition. We use
the term rem pd;Dq to denote this quantity and define it formally

rem pd;Dq �
‚

lPlevelspdq

|Dd�l|
|D|loomoon

weighting

�H pt;Dd�lqlooooomooooon
entropy of

partition Dd�l

(4.3)

6. This is almost identical to the definition of Shannon’s entropy model given in Equation (4.1)[125]. We have
extended the definition to include an explicit parameter for the dataset D for which we are computing the entropy,
and we have specified the base as 2.
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Using Equation (4.2)[129] and Equation (4.3)[129], we can now formally define information
gain made from splitting the dataset D using the feature d

IG pd;Dq � H pt;Dq � rem pd;Dq (4.4)

To illustrate how information gain is calculated and to check how well it models our intu-
itions described at the beginning of this section, we compute the information gain for each
descriptive feature in the spam dataset. The first step is to compute the entropy for the
whole dataset using Equation (4.2)[129]

H pt;Dq � �
‚

lPtspam;hamu

pPpt � lq � log2pPpt � lqqq

� �
�
pPpt � spamq � log2pPpt � spamqq

� pPpt � hamq � log2pPpt � hamqq
�

� �
��3{6 � log2p3{6q

�
�
�3{6 � log2p3{6q

��

� 1 bit

The next step is to compute the entropy remaining after we split the dataset using each of
the descriptive features. The computation for the SUSPICIOUS WORDS feature is7

rem pWORDS;Dq

�
�
|DWORDS�true|

|D|
� H pt;DWORDS�trueq




�
�
|DWORDS�false|

|D|
� H pt;DWORDS�falseq




�

�
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�

��
‚
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�



�



�

�

�3{6 �
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��
‚
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�



�



�
�3{6 �

�
�
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�
�
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�3{6 �

�
�
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�
�
�3{3 � log2p3{3q

����

� 0 bits

7. Note that we have shortened feature names in these calculations to save space.
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The remaining entropy for the UNKNOWN SENDER feature is

rem pSENDER;Dq
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The remaining entropy for the CONTAINS IMAGES feature is

rem pIMAGES;Dq
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We can now complete the information gain calculation for each descriptive feature

IG pWORDS;Dq � H pCLASS;Dq � rem pWORDS;Dq

� 1� 0

� 1 bit

IG pSENDER;Dq � H pCLASS;Dq � rem pSENDER;Dq

� 1� 0:9183

� 0:0817 bits

IG pIMAGES;Dq � H pCLASS;Dq � rem pIMAGES;Dq

� 1� 1

� 0 bits

The information gain of the SUSPICIOUS WORDS feature is 1 bit. This is equivalent to
the total entropy for the entire dataset. An information gain score for a feature that matches
the entropy for the entire dataset indicates that the feature is perfectly discriminatory with
respect to the target feature values. Unfortunately, in more realistic datasets, finding a fea-
ture as powerful as the SUSPICIOUS WORDS feature is very rare. The feature UNKNOWN

SENDER has an information gain of 0:0817 bits. An information gain score this low sug-
gests that although splitting on this feature provides some information, it is not particularly
useful. Finally, the CONTAINS IMAGES feature has an information gain score of 0 bits.
This ranking of the features by information gain mirrors the intuitions that we developed
about the usefulness of these features during our previous discussion.

We started this section with the idea that if we could construct a sequence of tests that
splits the training data into pure sets with respect to the target feature values, then we could
do prediction by applying the same sequence of tests to the prediction queries and labeling
them with the target feature of the set in which they end up. A key part of doing this is
being able to decide which tests should be included in the sequence and in what order. The
information gain model we have developed allows us to decide which test we should add to
the sequence next because it enables us to select the best feature to use on a given dataset.
In the next section, we introduce the standard algorithm for growing decision trees in this
way.

4.3 Standard Approach: The ID3 Algorithm

Assuming that we want to use shallow decision trees, is there a way in which we can auto-
matically create them from data? One of the best known decision tree induction algorithms
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is the Iterative Dichotomizer 3 (ID3) algorithm.8 This algorithm attempts to create the
shallowest decision tree that is consistent with the data given.

The ID3 algorithm builds the tree in a recursive, depth-first manner, beginning at the
root node and working down to the leaf nodes. The algorithm begins by choosing the
best descriptive feature to test (i.e., the best question to ask first). This choice is made
by computing the information gain of the descriptive features in the training dataset. A
root node is then added to the tree and labeled with the selected test feature. The training
dataset is then partitioned using the test. There is one partition created for each possible
test result, which contains the training instances that returned that result. For each partition
a branch is grown from the node. The process is then repeated for each branch using the
relevant partition of the training set in place of the full training set and with the selected
test feature excluded from further testing. This process is repeated until all the instances
in a partition have the same target level, at which point a leaf node is created and labeled
with that level.

The design of the ID3 algorithm is based on the assumption that a correct decision tree for
a domain will classify instances from that domain in the same proportion as the target level
occurs in the domain. So, given a dataset D representing a domain with two target levels
C1 and C2, an arbitrary instance from the domain should be classified as being associated
with target level C1 with the probability |C1|

|C1|�|C2|
and to target level C2 with the probability

|C2|
|C1|�|C2|

, where |C1| and |C2| refer to the number of instances in D associated with C1

and C2, respectively. To ensure that the resulting decision tree classifies in the correct
proportions, the decision tree is constructed by repeatedly partitioning9 the training dataset
until every instance in a partition maps to the same target level.

Algorithm 1[134] lists a pseudocode description of the ID3 algorithm. Although the algo-
rithm looks quite complex, it essentially does one of two things each time it is invoked:
either it stops growing the current path in the tree by adding a leaf node to the tree, Lines
1–6, or it extends the current path by adding an interior node to the tree and growing the
branches of this node by repeatedly rerunning the algorithm, Lines 7–13.

Lines 1–6 of Algorithm 1[134] control when a new leaf node is created in the tree. We
previously mentioned that the ID3 algorithm constructs the decision tree by recursively
partitioning the dataset. An important decision to be made in designing any recursive
process is what the base cases that stop the recursion will be. In the ID3 algorithm the base
cases are the situations in which we stop splitting the dataset and construct a leaf node with
an associated target level. There are two important things to remember in designing these
base cases. First, the dataset of training instances considered at each of the interior nodes
in the tree is not the complete dataset; rather, it is the subset of instances considered at its

8. This algorithm was first published in Quinlan (1986).

9. Hence the name Iterative Dichotomizer.
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Algorithm 1 Pseudocode description of the ID3 algorithm.

Require: set of descriptive features d
Require: set of training instances D

1: if all the instances in D have the same target level C then return a decision tree
consisting of a leaf node with label C

2: else if d is empty then return a decision tree consisting of a leaf node with the label
of the majority target level in D

3: else if D is empty then return a decision tree consisting of a leaf node with the label
of the majority target level of the dataset of the immediate parent node

4: else
5: d rbests — arg max

dPd
IG pd;Dq

6: make a new node, Nodedrbests, and label it with d rbests
7: partition D using d rbests
8: remove d rbests from d
9: for each partition Di of D do

10: grow a branch from Nodedrbests to the decision tree created by rerunning ID3
with D � Di

11: end for
12: end if

parent node that had the relevant feature value for the branch from the parent to the current
node. Second, once a feature has been tested, it is not considered for selection again along
that path in the tree. A feature will be tested only once on any path in the tree, but it may
occur several times in the tree on different paths. On the basis of these constraints, the
algorithm defines three situations where the recursion stops and a leaf node is constructed:

1. All the instances in the dataset have the same target feature level. In this situation, the
algorithm returns a single leaf node tree with that target level as its label (Algorithm
1[134] Lines 1–2).

2. The set of features left to test is empty. This means that we have already tested every
feature on the path between the root node and the current node. We have no more
features we can use to distinguish between the instances, so we return a single leaf
node tree with the majority target level of the dataset as its target level (Algorithm 1[134]

Lines 3–4).
3. The dataset is empty. This can occur when, for a particular partition of the dataset,

there are no instances that have a particular feature value. In this case we return a
single leaf node tree with the majority target level of the dataset at the parent node that
made the recursive call (Algorithm 1[134] Lines 5–6).
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If none of these cases holds, the algorithm continues to recursively create interior nodes,
Lines 7–13 of Algorithm 1[134]. The first step in creating an interior node is to decide which
descriptive feature should be tested at this node (Line 8 of Algorithm 1[134]). When we first
mentioned the ID3 algorithm, we stated that it tries to create the shallowest decision tree
that is consistent with the data given. The feature of the ID3 algorithm that biases it toward
shallow trees is the mechanism that it uses to determine which descriptive feature is the
most informative one to test at a new node. The ID3 algorithm uses the information gain
metric to choose the best feature to test at each node in the tree. Consequently, the selection
of the best feature on which to split a dataset is based on the purity, or homogeneity, of the
resulting partitions in the datasets. Again, remember that each node is constructed in a
context consisting of a dataset of instances containing a subset of the instances used to
construct its parent node and the set of descriptive features that have not been tested on
the path between the root node and parent node. As a result, the information gain for
a particular descriptive feature may be different at different nodes in the tree because it
will be computed on different subsets of the full training dataset. One consequence of
this is that a feature with a low information gain at the root node (when the full dataset is
considered) may have a high information gain score at one of the interior nodes because it
is predictive on the subset of instances that are considered at that interior node.

Once the most informative feature, d rbests, has been chosen, the algorithm adds a new
node, labeled with the feature d rbests, to the tree (Line 9). It then splits the dataset that
was considered at this node, D, into partitions, D1; : : : ;Dk, according to the levels that
d rbests can take, tl1; : : : ; lku (Line 10). Next, it removes the feature d rbests from the set
of features considered for testing later on this path in the tree; this enforces the constraint
that a feature can be tested only once on any particular path in the tree (Line 11). Finally,
in Lines 12 and 13, the algorithm grows a branch in the tree for each of the values in the
domain of d rbests by recursively calling itself for each of the partitions created at Line 10.
Each of these recursive calls uses the partition it is called on as the dataset it considers and
is restricted to selecting from the set of features that have not been tested so far on the path
from the root node. The node returned by the recursive call to the algorithm may be the
root of a subtree or a leaf node. Either way, it is joined to the current node with a branch
labeled with the appropriate level of the selected feature.

4.3.1 A Worked Example: Predicting Vegetation Distributions
In this section we work through an example to illustrate how the ID3 is used to induce a
decision tree. This example is based on ecological modeling, an area of scientific research
that applies statistical and analytical techniques to model ecological processes. One of the
problems faced by ecological management practitioners is that it is often too expensive
to do large-scale, high-resolution land surveys. Using predictive analytics, however, the
results of small-scale surveys can be used to create predictive models that can be applied
across large regions. These models are used to inform resource management and conserva-
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Table 4.3
The vegetation classification dataset.

ID STREAM SLOPE ELEVATION VEGETATION

1 false steep high chapparal
2 true moderate low riparian
3 true steep medium riparian
4 false steep medium chapparal
5 false flat high conifer
6 true steep highest conifer
7 true steep high chapparal

tion activities,10 such as managing the distribution of animal species and vegetation across
geographic regions. The descriptive features used by these models often can be automati-
cally extracted from digitized maps, aerial photographs, or satellite imagery—for example,
the elevation, steepness, color, and spectral reflection of the terrain and the presence or ab-
sence of features such as rivers, roads, or lakes.

Table 4.3 lists an example dataset from the ecological modeling domain.11 In this ex-
ample, the prediction task is to classify the type of vegetation that is likely to be growing
in areas of land on the sole basis of descriptive features extracted from maps of the ar-
eas. Ecological modelers can use information about the type of vegetation that grows in a
region as a direct input into their animal species management and conservation programs
because areas covered in different types of vegetation support different animal species. By
using a predictive model that requires only features from maps, the ecological modelers
can avoid expensive ground-based or aerial surveys. There are three types of vegetation
that should be recognized by this model. First, chapparal is a type of evergreen shrubland
that can be fire-prone. The animal species typically found in this vegetation include gray
foxes, bobcats, skunks, and rabbits. Second, riparian vegetation occurs near streams and
is characterized by trees and shrubs. It is usually home to small animals, including rac-
coons, frogs, and toads. Finally, conifer refers to forested areas that contain a variety of
tree species (including pine, cedar, and fir trees), with a mixture of shrubs on the forest
floor. The animals that may be found in these forests include bears, deer, and cougars. The
type of vegetation in an area is stored in the target feature, VEGETATION.

There are three descriptive features in the dataset. STREAM is a binary feature that
describes whether or not there is a stream in the area. SLOPE describes the steepness of the

10. See Guisan and Zimmermann (2000) and Franklin (2009) for an introduction to uses of predictive analytics
in ecological modeling.

11. This artificially generated example dataset is inspired by the research reported in Franklin et al. (2000).
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Table 4.4
Partition sets (Part.), entropy, remainder (Rem.), and information gain (Info. Gain) by feature for the
dataset in Table 4.3[136].

Split by Partition Info.
Feature Level Part. Instances Entropy Rem. Gain

STREAM
true D1 d2;d3;d6;d7 1.5000

1.2507 0.3060
false D2 d1;d4;d5 0.9183

SLOPE

flat D3 d5 0.0
0.9793 0.5774moderate D4 d2 0.0

steep D5 d1;d3;d4;d6;d7 1.3710

ELEVATION

low D6 d2 0.0

0.6793 0.8774
medium D7 d3;d4 1.0

high D8 d1;d5;d7 0.9183
highest D9 d6 0.0

terrain in an area and has the levels flat, moderate, and steep. ELEVATION describes the
elevation of an area and has the levels low, medium, high, and highest.

The first step in building the decision tree is to determine which of the three descriptive
features is the best one to split the dataset on at the root node. The algorithm does this by
computing the information gain for each feature. The total entropy for this dataset, which
is required to calculate information gain, is computed

H pVEGETATION;Dq

� �
‚

lP

#
chapparal;
riparian;
conifer

+
PpVEGETATION � lq � log2 pPpVEGETATION � lqq

� �
��3{7 � log2

�3{7
��
�
�2{7 � log2

�2{7
��
�
�2{7 � log2

�2{7
���

� 1:5567 bits

(4.5)

Table 4.4[137] shows the calculation of the information gain for each feature using this result.
We can see from the information in Table 4.4[137] that ELEVATION has the largest infor-

mation gain of the three features and therefore is selected by the algorithm at the root node
of the tree. Figure 4.8[138] shows the state of the tree after the dataset is split using ELE-
VATION. Notice that the full dataset has been split into four partitions (labeled D6, D7,
D8, and D9 in Table 4.4[137]) and that the feature ELEVATION is no longer listed in these
partitions because it has already been used to split the data. The D6 and D9 partitions
each contain just one instance. Consequently they are pure sets, and these partitions can
be converted into leaf nodes. The D7 and D8 partitions, however, contain instances with
a mixture of target feature levels, so the algorithm needs to continue splitting these parti-
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Elevation
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Figure 4.8
The decision tree after the data has been split using ELEVATION.

Table 4.5
Partition sets (Part.), entropy, remainder (Rem.), and information gain (Info. Gain) by feature for the
dataset D7 in Figure 4.8[138].

Split by Partition Info.
Feature Level Part. Instances Entropy Rem. Gain

STREAM
true D10 d3 0.0

0.0 1.0
false D11 d4 0.0

SLOPE

flat D12 0.0
1.0 0.0moderate D13 0.0

steep D14 d3;d4 1.0

tions. To do this, the algorithm needs to decide which of the remaining descriptive features
has the highest information gain for each partition.

To address partition D7, first the algorithm computes the entropy of D7

H pVEGETATION;D7q
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��

� 1:0 bits

(4.6)

The information gained by splitting D7 for using STREAM and SLOPE is then computed
as presented in Table 4.5[138].

The calculations in Table 4.5[138] show that STREAM has a higher information gain than
SLOPE and so is the best feature with which to split D7. Figure 4.9[139] depicts the state
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Figure 4.9
The state of the decision tree after the D7 partition has been split using STREAM.

of the decision tree after the D7 partition has been split. Splitting D7 creates two new
partitions (D10 and D11). Notice that SLOPE is the only descriptive feature that is listed in
D10 and D11. This reflects that ELEVATION and STREAM have already been used on the
path from the root node to each of these partitions and so cannot be used again. Both these
new partitions are pure sets with respect to the target feature (indeed, they contain only one
instance each), and consequently these sets do not need to be split any further and can be
converted into leaf nodes.

At this point D8 is the only partition that is not a pure set. There are two descriptive
features that can be used to split D8: STREAM and SLOPE. The decision regarding which
of these features to use for the split is made by calculating which feature has the higher
information gain for D8. The overall entropy for D8 is calculated

H pVEGETATION;D8q

� �
‚

lP

#
chapparal;
riparian;
conifer

+
PpVEGETATION � lq � log2 pPpVEGETATION � lqq

� �
��2{3 � log2p2{3q

�
�
�0{3 � log2p0{3q

�
�
�1{3 � log2p1{3q

��

� 0:9183 bits

(4.7)

Table 4.6[140] details the calculation of the information gain for each descriptive feature in
D8 using this result. It is clear from the information in Table 4.6[140] that in the context of
D8, SLOPE has a higher information gain than STREAM.
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Table 4.6
Partition sets (Part.), entropy, remainder (Rem.), and information gain (Info. Gain) by feature for the
dataset D8 in Figure 4.9[139].

Split by Partition Info.
Feature Level Part. Instances Entropy Rem. Gain

STREAM
true D15 d7 0.0

0.6666 0.2517
false D16 d1;d5 1.0

SLOPE

flat D17 d5 0.0
0.0 0.9183moderate D18 0.0

steep D19 d1;d7 0.0
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Figure 4.10
The state of the decision tree after the D8 partition has been split using SLOPE.

Figure 4.10[140] illustrates the state of the decision tree after D8 has been split. Notice
that one of the partitions created by splitting D8 on the basis of SLOPE is empty: D18.
This is the case because there were no instances in D8 that had a value of moderate for the
SLOPE feature. This empty partition will result in a leaf node that returns a prediction of
the majority target level in D8, chapparal. The other two partitions created by splitting D8

are pure with respect to the target feature: D17 contains one instance with a conifer target
level, and D19 contains two instances that both have a chapparal target level.

At this point all the remaining partitions are pure with respect to the target feature. Con-
sequently, the algorithm converts each partition into a leaf node and returns the final de-
cision tree. Figure 4.11[141] shows this decision tree. If the prediction strategy encoded in
this tree is applied to the original dataset in Table 4.3[136], it will correctly classify all the
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Figure 4.11
The final vegetation classification decision tree.

instances in the dataset. In machine learning terms, the induced model is consistent with
the training data.

One final point: remember that the empty partition in Figure 4.10[140] (D18) has been con-
verted into a leaf node that returns the chapparal target level. The reason is that chapparal
is the majority target level in the partition at the parent node (D8) of this leaf node. Con-
sequently, this tree will return a prediction of VEGETATION = chapparal for the following
query:

STREAM = true, SLOPE = moderate, ELEVATION = high

This is interesting because there are no instances listed in Table 4.3[136] where SLOPE =
moderate and VEGETATION = chapparal. This example illustrates one way in which the
predictions made by the model generalize beyond the dataset. Whether the generalizations
made by the model are correct will depend on whether the assumptions used in generating
the model (i.e., the inductive bias) are appropriate.

The ID3 algorithm works in exactly the same way for larger, more complicated datasets;
there is simply more computation involved. Since it was first proposed, there have been
many modifications to the original ID3 algorithm to handle variations that are common in
real-world datasets. We explore the most important of these modifications in the following
sections.

4.4 Extensions and Variations

The ID3 decision tree induction algorithm described in the previous section provides the
basic approach to decision tree induction: a top-down, recursive, depth-first partitioning
of the dataset beginning at the root node and finishing at the leaf nodes. Although this
algorithm works quite well as presented, it assumes categorical features and clean data. It
is relatively easy, however, to extend the ID3 algorithm to handle continuous descriptive
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features and continuous target features. A range of techniques can also be used to make a
decision tree more robust to noise in the data. In this section we describe the techniques
used to address these issues as well as the use of ensemble methods that allow us to com-
bine the predictions made by multiple models. We begin, however, by introducing some of
the metrics, other than entropy-based information gain, that can be used to select the next
feature to split on as we build the tree.

4.4.1 Alternative Feature Selection and Impurity Metrics
The information gain measure described in Section 4.2.3[127] uses entropy to judge the impu-
rity of the partitions that result from splitting a dataset using a particular feature. Entropy-
based information gain, however, does have some drawbacks. In particular, it preferences
features with many levels because these features split the data into many small subsets,
which tend to be pure irrespective of any correlation between the descriptive feature and
the target feature. One way of addressing this issue is to use information gain ratio in-
stead of entropy. The information gain ratio is computed by dividing the information gain
of a feature by the amount of information used to determine the value of the feature

GR pd;Dq �
IG pd;Dq

�
‚

lPlevelspdq

pPpd � lq � log2pPpd � lqqq
(4.8)

where IG pd;Dq is the information gain of the feature d for the dataset D (computed using
Equation (4.4)[130] from Section 4.2.3[127]), and the divisor is the entropy of the dataset D
with respect to the feature d (note that levels pdq is the set of levels that the feature d
can take). This divisor biases information gain ratio away from features that take on a
large number of values and as such counteracts the bias in information gain toward these
features.

To illustrate how information gain ratio is computed, we compute the information gain
ratio for the descriptive features STREAM, SLOPE, and ELEVATION in the vegetation clas-
sification dataset in Table 4.3[136]. We already know the information gain for these features
(see Table 4.4[137])

IG pSTREAM;Dq � 0:3060

IG pSLOPE;Dq � 0:5774

IG pELEVATION;Dq � 0:8774

To convert these information gain scores into information gain ratios, we need to compute
the entropy of each feature and then divide the information gain scores by the respective
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entropy values. The entropy calculations for these descriptive features are
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Using these results, we can compute the information gain ratio for each descriptive fea-
ture by dividing the feature’s information gain by the entropy for that feature

GR pSTREAM;Dq �
0:3060
0:9852

� 0:3106

GR pSLOPE;Dq �
0:5774
1:1488

� 0:5026

GR pELEVATION;Dq �
0:8774
1:8424

� 0:4762

From these calculations we can see that SLOPE has the highest information gain ratio
score, even though ELEVATION has the highest information gain. The implication is that
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Figure 4.12
The vegetation classification decision tree generated using information gain ratio.

if we built a decision tree for the dataset in Table 4.3[136] using information gain ratio,
then SLOPE (rather than ELEVATION) would be the feature chosen for the root of the tree.
Figure 4.12[144] illustrates the tree that would be generated for this dataset using information
gain ratio.

Notice that there is a chapparal leaf node at the end of the branch ELEVATION = low even
though there are no instances in the dataset where ELEVATION = low and VEGETATION

= chapparal. This leaf node is the result of an empty partition being generated when the
partition at the ELEVATION node was split. This leaf node was assigned the target level
chapparal because this was the majority target level in the partition at the ELEVATION

node.
If we compare this decision tree to the decision tree generated using information gain

(see Figure 4.11[141]), it is obvious that the structure of the two trees is very different. This
difference illustrates the effect of the metric used to select which feature to split on during
tree construction. Another interesting point of comparison between these two trees is that
even though they are both consistent with the dataset given in Table 4.3[136], they do not
always return the same prediction. For example, given the following query:

STREAM = false, SLOPE = moderate, ELEVATION = highest

the tree generated using information gain ratio (Figure 4.12[144]) will return VEGETATION

= riparian, whereas the tree generated using information gain (Figure 4.11[141]) will return
VEGETATION = conifer. The combination of features listed in this query does not occur in
the dataset. Consequently, both the trees are attempting to generalize beyond the dataset.
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This illustrates how two different models that are both consistent with a dataset can make
different generalizations.12 So, which feature selection metric should be used, information
gain or information gain ratio? Information gain has the advantage that it is computation-
ally less expensive than information gain ratio. If there is variation across the number of
values in the domain of the descriptive features in a dataset, however, information gain
ratio may be a better option. These factors aside, the effectiveness of descriptive feature
selection metrics can vary from domain to domain. Therefore, we should experiment with
different metrics to find which one results in the best models for each dataset.

Another commonly used measure of impurity is the Gini index

Gini pt;Dq � 1�
‚

lPlevelsptq

Ppt � lq2 (4.9)

where D is a dataset with a target feature t; levelsptq is the set of levels in the domain of
the target feature; and Ppt � lq is the probability of an instance of D having the target
level l. The Gini index can be understood as calculating how often the target levels of
instances in a dataset would be misclassified if predictions were made on the sole basis of
the distribution of the target levels in the dataset. For example, if there were two target
levels with equal likelihood in a dataset, then the expected rate of misclassification would
be 0:5, and if there were four target levels with equal likelihood, then the expected rate of
misclassification would be 0:75. The Gini index is 0 when all the instances in the dataset
have the same target level, and it is 1� 1

k when there are k possible target levels with equal
likelihood. Indeed, a nice feature of the Gini index is that Gini index scores are always
between 0 and 1, and in some contexts this may make it easier to compare Gini indexes
across features. We can calculate the Gini index for the dataset in Table 4.3[136]

Gini pVEGETATION;Dq
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lP

#
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+
PpVEGETATION � lq2
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��3{7

�2 �
�2{7

�2 �
�2{7

�2
	

� 0:6531

The information gain for a feature based on the Gini index can be calculated in the same
way that it is using entropy: calculate the Gini index for the full dataset and then subtract
the sum of the weighted Gini index scores for the partitions created by splitting with the
feature. Table 4.7[146] shows the calculation of the information gain using the Gini index for
the descriptive features in the vegetation classification dataset. Comparing these results to

12. This is an example of how machine learning is an ill-posed problem, as discussed in Section 1.3[7].
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Table 4.7
Partition sets (Part.), entropy, Gini index, remainder (Rem.), and information gain (Info. Gain) by
feature for the dataset in Table 4.3[136].

Split by Partition Info.
Feature Level Part. Instances Gini Index Rem. Gain

STREAM
true D1 d2;d3;d6;d7 0.6250

0.5476 0.1054
false D2 d1;d4;d5 0.4444

SLOPE

flat D3 d5 0.0
0.4000 0.2531moderate D4 d2 0.0

steep D5 d1;d3;d4;d6;d7 0.5600

ELEVATION

low D6 d2 0.0

0.3333 0.3198
medium D7 d3;d4 0.5000

high D8 d1;d5;d7 0.4444
highest D9 d6 0.0

the information gain calculated using entropy (see Table 4.4[137]), we can see that although
the resulting numbers are different, the relative ranking of the features is the same—in both
cases ELEVATION has the highest information gain. Indeed, for the vegetation dataset, the
decision tree that will be generated using information gain based on the Gini index will be
identical to the one generated using information gain based on entropy (see Figure 4.11[141]).

So, which impurity measure should be used, Gini or entropy? The best advice that we
can give is that it is good practice in building decision tree models to try out different
impurity metrics and compare the results to see which suits a dataset best.

4.4.2 Handling Continuous Descriptive Features
The easiest way to handle a continuous descriptive feature in a decision tree is to define
a threshold within the range of values that the continuous feature can take and to use this
threshold to partition the instances on the basis of whether their values for the feature are
above or below the threshold.13 The only challenge is to determine the best threshold to
use. Ideally, we should use the threshold that results in the highest information gain when
the feature is used to split the dataset. The problem, however, is that with a continuous
feature, there is an infinite number of thresholds to choose from.

There is, however, a simple way to find the optimal threshold, which avoids testing an
infinite number of possible thresholds. First, the instances in the dataset are sorted ac-
cording to the values of the continuous feature. The adjacent instances in the ordering
that have different target feature levels are then selected as possible threshold points. It
can be shown that the optimal threshold value must lie at one of the boundaries between

13. This approach is related to binning, as described in Section 3.6.2[89]. Simply binning continuous features to
convert them into categorical features is another valid approach to handling continuous features in decision trees.
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Table 4.8
Dataset for predicting the vegetation in an area with a continuous ELEVATION feature (measured in
feet).

ID STREAM SLOPE ELEVATION VEGETATION

1 false steep 3,900 chapparal
2 true moderate 300 riparian
3 true steep 1,500 riparian
4 false steep 1,200 chapparal
5 false flat 4,450 conifer
6 true steep 5,000 conifer
7 true steep 3,000 chapparal

Table 4.9
Dataset for predicting the vegetation in an area sorted by the continuous ELEVATION feature.

ID STREAM SLOPE ELEVATION VEGETATION

2 true moderate 300 riparian
4 false steep 1,200 chapparal
3 true steep 1,500 riparian
7 true steep 3,000 chapparal
1 false steep 3,900 chapparal
5 false flat 4,450 conifer
6 true steep 5,000 conifer

adjacent instances with different target levels. The optimal threshold is found by comput-
ing the information gain for each of the target level transition boundaries and selecting the
boundary with the highest information gain as the threshold. Once a threshold has been set,
the continuous feature can compete with the other categorical features for selection as the
splitting feature at any node. To illustrate how this is done, we use a modified version of
the vegetation classification dataset given in Table 4.3[136] in which the ELEVATION feature
now contains actual elevations in feet. This dataset is listed in Table 4.8[147].

To select the best feature to use at the root of the tree, we need to calculate the infor-
mation gain for each feature. We know from our earlier calculations that the entropy for
this dataset is 1:5567 bits (see Equation (4.5)[137]) and that the information gain for the cat-
egorical features are IG pSTREAM;Dq � 0:3060 and IG pSLOPE;Dq � 0:5774 (see Table
4.4[137]). This leaves us with the tasks of calculating the best threshold on which to split the
ELEVATION feature, and calculating the information gain when we partition the dataset
with ELEVATION using this optimal threshold. Our first task is to sort the dataset based on
the ELEVATION feature. The result is shown in Table 4.9[147].

Once the instances have been sorted, we look for adjacent pairs that have different target
levels. In Table 4.9[147] we can see that four pairs of adjacent instances have a transition
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Table 4.10
Partition sets (Part.), entropy, remainder (Rem.), and information gain (Info. Gain) for the candidate
ELEVATION thresholds: ¥750, ¥1;350, ¥2;250 and ¥4;175.

Split by Partition Info.
Threshold Part. Instances Entropy Rem. Gain

¥750
D1 d2 0.0

1.2507 0.3060
D2 d4;d3;d7;d1;d5;d6 1.4591

¥1;350
D3 d2;d4 1.0

1.3728 0.1839
D4 d3;d7;d1;d5;d6 1.5219

¥2;250
D5 d2;d4;d3 0.9183

0.9650 0.5917
D6 d7;d1;d5;d6 1.0

¥4;175
D7 d2;d4;d3;d7;d1 0.9710

0.6935 0.8631
D8 d5;d6 0.0

between the target levels: instances d2 and d4, d4 and d3, d3 and d7, and d1 and d5. The
boundary value between each of these pairs is simply the average of their ELEVATION

values:

 The boundary between d2 and d4 is
300 � 1;200

2
� 750

 The boundary between d4 and d3 is
1;200 � 1;500

2
� 1;350

 The boundary between d3 and d7 is
1;500 � 3;000

2
� 2;250

 The boundary between d1 and d5 is
3;900 � 4;450

2
� 4;175

This results in four candidate thresholds: ¥750, ¥1;350, ¥2;250, and ¥4;175. Table
4.10[148] shows the computation of information gain for a split using each of these thresh-
olds. The threshold¥4;175 has the highest information gain of any of the candidate thresh-
olds (0:8631 bits), and this information gain is also higher than the information gain for
either of the other two descriptive features. Therefore, we should use ELEVATION ¥ 4;175
as the test at the root node of the tree, as shown in Figure 4.13[149].

Unlike categorical features, continuous features can be used at multiple points along a
path in a decision tree, although the threshold applied to the feature at each of these tests
will be different. This is important because it allows multiple splits within a range of
a continuous feature to be considered on a path. Consequently, as we build the rest of
the tree, we may reuse the ELEVATION feature. This is why that ELEVATION feature is
listed in both the partitions (D7 and D8) shown in Figure 4.13[149]. We can continue to
build the tree by recursively extending each branch as we did in the previous decision tree
examples. Figure 4.14[150] shows the decision tree that is ultimately generated from this
process. Notice that the tree uses a mixture of continuous and categorical features and that
the ELEVATION feature is used twice with different thresholds in each case.
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Elevation

 D7 

  ID    Stream    Slope    Elevation    Vegetation  

2 true moderate    300 riparian
4 false steep 1,200 chaparral
3 true steep 1,500 riparian
7 true steep 3,000 chaparral
1 false steep 3,900 chaparral

<4,175

 D8 

  ID    Stream    Slope    Elevation    Vegetation  

5 false ßat 4,450 conifer
6 true steep 5,000 conifer

! 4,175

Figure 4.13
The vegetation classification decision tree after the dataset has been split using ELEVATION ¥ 4;175.

4.4.3 Predicting Continuous Targets
When we use a decision tree to make predictions for a continuous target, we refer to the
tree as a regression tree.14 Typically, the value output by the leaf node of a regression tree
is the mean of the target feature values of the instances from the training set that reached
that node. This means that the error of a regression tree in making a prediction for a query
instance is the difference between the mean of the training instances that reached the leaf
node that returns the prediction and the correct value that should have been returned for
that query. Assuming that the set of training instances reaching a leaf node are indicative
of the queries that will be labeled by the node, it makes sense to construct regression trees
in a manner that reduces the variance in the target feature values of the set of training
instances at each leaf node in the tree. We can do this by adapting the ID3 algorithm to
use a measure of variance15 rather than a measure of entropy in selecting the best feature.
Using variance as our measure of impurity, the impurity at a node can be calculated

var pt;Dq �
°n

i�1 pti � t̄q2

n� 1
(4.10)

where D is the dataset that has reached the node; n is the number of instances in D; t̄ is the
mean of the target feature for the dataset D; and ti iterates across the target value of each
instance in D. Using variance as our measure of impurity, we can select which feature to
split on at a node by selecting the feature that minimizes the weighted variance across the
resulting partitions. The weighted variance is computed by summing the variance of the
target feature within each partition created by splitting a dataset on a descriptive feature

14. Sometimes the task of predicting a continuous target is referred to as a regression task.

15. We introduce variance in Section A.1.2[746], and although we extend the formal definition of variance here to
include a dataset parameter D—we do this to explicitly highlight the fact that we are calculating the variance of a
feature within a particular dataset, usually the dataset at a node in the tree—the measure of variance we are using
is identical to the variance defined in Equation (A.3)[747].
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Figure 4.14
The decision tree that would be generated for the vegetation classification dataset listed in Table
4.9[147] using information gain.

multiplied by the fraction of the dataset in each partition. So, at each node the algorithm
will choose the feature to split on by selecting the feature with the lowest weighted variance
for the target feature

d rbests � arg min
dPd

‚

lPlevelspdq

|Dd�l|
|D|

� varpt;Dd�lq (4.11)

where var pt;Dd�lq is the variance of the target feature in the partition of the dataset D
containing the instances where d � l, |Dd�l| is the size of this partition and |D| is the
size of the dataset. This means that at each decision node, the algorithm will select the
feature that partitions the dataset to most reduce the weighted variance of the partitions.
This causes the algorithm to cluster instances with similar target feature values. As a result,
leaf nodes with small variance in the target feature values across the set of instances at the
node are preferred over leaf nodes where the variance in the target feature values across
the set of instances at the node is large. To change the ID3 algorithm in Algorithm 1[134] to
select features to split on based on variance, we replace Line 5 with Equation 4.11[150].

The other change we need to make to Algorithm 1[134] to handle continuous targets relates
to the base cases that cause the algorithm to stop processing data partitions and to create
a leaf node. In the ID3 algorithm we created a leaf node when there were no instances
left in the partition being processed (Line 3), when there were no features left on which to
split the data (Line 2), or when we had created a pure partition of the dataset with respect
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Figure 4.15
(a) A set of instances on a continuous number line; (b), (c), and (d) depict some of the potential
groupings that could be applied to these instances.

to the target feature levels (Line 1). An algorithm to learn decision trees for a continuous
target can use the first two base cases. When these cases occur, the algorithm will create
a leaf node that returns the mean value of the target feature in a data partition, rather than
the majority level. For continuous targets there is no such thing as a pure split, so we will
need to change the final base case.

Figure 4.15[151] illustrates the type of partitioning we are trying to achieve when we use
a variance measure to select the features to split on in a decision tree. Figure 4.15(a)[151]

depicts a set of instances on the continuous number line. Figure 4.15(b)[151] depicts one
of the extremes for grouping these instances, in which we treat them all as belonging to
one partition. The large gap between the two apparent clusters in this dataset results in
a large variance, which indicates that we are probably underfitting with this grouping.
Figure 4.15(c)[151] shows that the instances have been gathered into two groups that have a
relatively low variance compared with the single group in Figure 4.15(b)[151]. Intuitively we
can see that this grouping is, as Goldilocks put it, just right and is the type of grouping we
are trying to generate when we use a variance measure to select the splitting point.

Figure 4.15(d)[151] depicts one of the problems that can arise when a variance measure
is used to split a continuous target feature. In this example each instance has been put
into an individual partition, and although these partitions each have a variance of zero, this
is indicative of overfitting the data. This extreme partitioning of the dataset into sets of
single instances can happen if there are a lot of descriptive features in the dataset or if there
are one or more continuous descriptive features that the algorithm is allowed to split on
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Table 4.11
A dataset listing the number of bike rentals per day.

WORK

ID SEASON DAY RENTALS

1 winter false 800
2 winter false 826
3 winter true 900
4 spring false 2,100
5 spring true 4,740
6 spring true 4,900

WORK

ID SEASON DAY RENTALS

7 summer false 3,000
8 summer true 5,800
9 summer true 6,200

10 autumn false 2,910
11 autumn false 2,880
12 autumn true 2,820

repeatedly. The reason that partitioning the dataset into single instances is indicative of
overfitting is that if there is any noise in the training data (something that is likely in real
applications), then the leaf nodes generated due to noisy instances will result in unreliable
predictions for queries. To avoid this kind of extreme partitioning, we introduce an early
stopping criterion into the algorithm for building regression trees. The simplest early
stopping criterion is to stop partitioning the dataset if the number of training instances in
the partition at the node we are processing is less than some threshold, usually around 5%
of the overall dataset size.16 This early stopping criterion replaces the base case on Line 1
of the ID3 algorithm.

The change to the mechanism for selecting the best feature to split on (made on Line
5) and the introduction of an early stopping criterion (which replaces Line 1) are the only
modifications we need to make to the ID3 algorithm (Algorithm 1[134]) to allow it to handle
continuous target features. To see how this revised algorithm can induce a decision tree,
we use the example of predicting the number of bike rentals per day for a city bike sharing
program based on the SEASON and whether it is a WORK DAY. Predicting the number
of bike rentals on a given day is useful because it can give the administrators of the bike
sharing program an insight into the number of resources they need to have ready each day.
Table 4.11[152] lists a small dataset from this domain.17

Table 4.12[153] illustrates the computation of the weighted variance that results from par-
titioning the data by SEASON and WORK DAY. It is evident from Table 4.12[153] that par-
titioning the data using SEASON results in a lower weighted variance than partitioning by

16. It is also common to use a minimum partition variance as an early stopping criterion. If the variance in the
partition being processed is below a set threshold, then the algorithm will not partition the data and will instead
create a leaf node.

17. This example is inspired by the research reported in Fanaee-T and Gama (2014). The dataset presented
here is synthesized for this example; however, a real bike sharing dataset for this task is available through the
UCI Machine Learning Repository (Bache and Lichman, 2013) at archive.ics.uci.edu/ml/datasets/Bike+Sharing+
Dataset.

archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset
archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset
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Table 4.12
The partitioning of the dataset in Table 4.11[152] based on SEASON and WORK DAY features and the
computation of the weighted variance for each partitioning.

Split by |Dd�l|

|D|
Weighted

Feature Level Part. Instances var pt;Dq Variance

SEASON

winter D1 d1;d2;d3 0:25 2;692

1;379;331
spring D2 d4;d5;d6 0:25 2;472;533

summer D3 d7;d8;d9 0:25 3;040;000
autumn D4 d10;d11;d12 0:25 2;100

WORK DAY
true D5 d3;d5;d6;d8;d9;d12 0:50 4;026;346

2;551;813
false D6 d1;d2;d4;d7;d10;d11 0:50 1;077;280

Season

 D1 

  ID    Work Day    Rentals  

1 false 800
2 false 826
3 true 900

winter

 D2 

  ID    Work Day    Rentals  

4 false 2,100
5 true 4,740
6 true 4,900

spring

 D3 

  ID    Work Day    Rentals  

7 false 3,000
8 true 5,800
9 true 6,200

summer

 D4 

  ID    Work Day    Rentals  

10 false 2,910
11 false 2,880
12 true 2,820

 autumn

Figure 4.16
The decision tree resulting from splitting the data in Table 4.11[152] using the feature SEASON.

WORK DAY. This tells us that splitting by SEASON results in a better clustering of the
target data than splitting by WORK DAY. Figure 4.16[153] illustrates the state of the decision
tree after the root node has been created using SEASON.

Figure 4.17[154] illustrates the final decision tree that will be generated for this dataset.
This tree will predict the mean target feature value of the leaf node indicated by the de-
scriptive features of a query instance. For example, given a query instance with SEASON

= summer and WORK DAY = true, this decision tree will predict that there will be 6;000
bike rentals on that day.

4.4.4 Tree Pruning
A predictive model overfits the training set when at least some of the predictions it re-
turns are based on spurious patterns present in the training data used to induce the model.
Overfitting happens for a number of reasons, including sampling variance18 and noise in

18. This means that the distribution over the target feature will be different between a training set sample and the
full population.
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Season

Work Day

winter

Work Day

spring

Work Day

 summer Work Day

 autumn

ID RentalsPred.

3 900 900

true

ID RentalsPred.

1 800
813

2 826

 false

ID RentalsPred.

5 4,740
4,820

6 4,900

true

ID RentalsPred.

4 2,100 2,100

false

ID RentalsPred.

8 5,800
6,000

9 6,200

 true

ID RentalsPred.

7 3,000 3,000

 false

ID RentalsPred.

12 2,820 2,820

 true

ID RentalsPred.

10 2,910
2,895

11 2,880

false

Figure 4.17
The final decision tree induced from the dataset in Table 4.11[152]. To illustrate how the tree generates
predictions, this tree lists the instances that ended up at each leaf node and the prediction (PRED.)
made by each leaf node.

the training set.19 The problem of overfitting can affect any machine learning algorithm;
however, the fact that decision tree induction algorithms work by recursively splitting the
training data means that they have a natural tendency to segregate noisy instances and to
create leaf nodes around these instances. Consequently, decision trees overfit by split-
ting the data on irrelevant features that appear relevant only because of noise or sampling
variance in the training data. The likelihood of overfitting increases as a tree gets deeper
because the resulting predictions are based on smaller and smaller subsets as the dataset is
partitioned after each feature test in the path.

Tree pruning identifies and removes subtrees within a decision tree that are likely to be
due to noise and sample variance in the training set used to induce it. In cases in which a
subtree is deemed to be overfitting, pruning the subtree means replacing the subtree with
a leaf node that makes a prediction on the basis of the majority target feature level (or
average target feature value) of the dataset created by merging the instances from all the
leaf nodes in the subtree. Obviously, pruning will result in the creation of decision trees
that are not consistent with the training set used to build them. In general, however, we are
more interested in creating prediction models that generalize well to new data rather than
that are strictly consistent with training data, so it is common to sacrifice consistency for
generalization capacity.

19. For example, there might be errors in the target feature or descriptive feature values of one or more of the
training instances.
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The simplest way to prune a decision tree is to introduce early stopping criteria (similar
to the early stopping criterion discussed in the preceding section) into the tree induction
algorithm. This is often known as pre-pruning. There is a range of simple pre-pruning
strategies. For example, we can stop creating subtrees when the number of instances in
a partition falls below a threshold, when the information gain (or whatever other feature
selection metric is being used) measured at a node is not deemed to be sufficient to make
partitioning the data worthwhile,20 or when the depth of the tree goes beyond a predefined
limit. More advanced approaches to pre-pruning use statistical significance tests to deter-
mine the importance of subtrees, for example, �2 pruning (pronounced chi-squared).21

Pre-pruning approaches are computationally efficient and can work well for small datasets.
By stopping the partitioning of the data early, however, induction algorithms that use pre-
pruning can fail to create the most effective trees because they miss interactions between
features that emerge within subtrees that are not obvious when the parent nodes are being
considered. Pre-pruning can mean that these useful subtrees are never created.

Post-pruning is an alternative approach to tree pruning in which the tree induction algo-
rithm is allowed to grow a tree to completion, and then each branch on the tree is examined
in turn. Branches that are deemed likely to be due to overfitting are pruned. Post-pruning
relies on a criterion that can distinguish between subtrees that model relevant aspects of the
data and subtrees that model irrelevant random patterns in the data. There is a range of dif-
ferent criteria that can be used, from a very simple threshold on the number of instances at
a node in the tree, to statistical significance texts like �2. We recommend the use of criteria
that compare the error rate in the predictions made by a decision tree when a given subtree
is included and when it is pruned. To measure error rate, we set aside some of the training
data as a validation dataset22 that is not used during tree induction. We can measure the
performance of a decision tree by presenting the instances in the validation to the decision
tree and comparing the predictions made for these instances with the actual target feature
values in the dataset. The error rate measures the number of predictions made by the tree
that are incorrect. A subtree is pruned if the error rate on the validation set of the decision
tree with the subtree removed is no greater than the error rate of the decision tree when the
subtree is included. Because the instances in the validation set are not used during training,
the error rate on the validation set provides a good estimate of the generalization capability
of a decision tree.

Reduced error pruning (Quinlan, 1987) is a popular version of post-pruning based on
error rates. In reduced error pruning, a decision tree is built to completion and then the tree
is searched in an iterative, bottom-up, left-to-right manner for subtrees that can be pruned.

20. Critical value pruning (Mingers, 1987) is a well-known version of this pruning technique.

21. See Frank (2000) for a detailed discussion and analysis on the use of statistical tests in decision tree pruning.

22. In the context of decision tree pruning, the validation set is often referred to as the pruning dataset.
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  Core-Temp  

   [icu]   

  Gender  

   [icu]   

low

  Stable-Temp  

   [gen]   

high

icu

male

gen

female

gen

true

icu

false

Figure 4.18
The decision tree for the post-operative patient routing task.

The error rate resulting from predictions for the instances in the validation dataset made at
the root node of each subtree is compared to the error rate resulting from predictions made
at the leaves of the subtree. If the error rate at the subtree root node is less than or equal to
the combined error rate at the leaves, the subtree is pruned.

To show how reduced error pruning works, we consider the task of predicting whether a
post-operative patient should be sent to an intensive care unit (ICU) or to a general ward
for recovery.23 Hypothermia is a major concern for post-operative patients, so many of
the descriptive features relevant to this domain relate to a patient’s body temperature. In
our example, CORE-TEMP describes the core temperature of the patient (which can be low
or high), and STABLE-TEMP describes whether the patient’s current temperature is stable
(true or false). We also include the GENDER of the patient (male or female). The target
feature in this domain, DECISION, records the decision of whether the patient is sent to the
icu or to a general ward (gen) for recovery. Figure 4.18[156] illustrates a decision tree that has
been trained for this post-operative patient routing task. The target level in square brackets
at each interior node in the tree shows the majority target level for the data partition at that
node.

Table 4.13[157] lists a validation dataset for this domain, and Figure 4.19[158] illustrates
how this validation dataset is used to perform reduced error pruning. In Figure 4.19(a)[158]

the pruning algorithm considers the subtree under the GENDER node for pruning. The path
through the tree to make predictions for instances d2, d5, and d6 from the validation dataset
leads to this subtree. The majority target level predicted at the root node of this subtree (the
GENDER node) gives a correct prediction of icu for each of the three instances, so the error

23. The example of predicting where post-operative patients should be sent is inspired by the research reported
in Woolery et al. (1991). A real dataset related to this research is available through the UCI Machine Learning
Repository (Bache and Lichman, 2013) at archive.ics.uci.edu/ml/datasets/Post-Operative+Patient/.

archive.ics.uci.edu/ml/datasets/Post-Operative+Patient/
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Table 4.13
An example validation set for the post-operative patient routing task.

ID CORE-TEMP STABLE-TEMP GENDER DECISION

1 high true male gen
2 low true female icu
3 high false female icu
4 high false male icu
5 low false female icu
6 low true male icu

rate on the validation set for the root node of the subtree is 0. In contrast, the predictions
made at the leaf nodes of this subtree are incorrect for d2 and d5 (because these patients
are female, the prediction made is gen which does not match the validation dataset), so the
error rate for the leaf nodes of this subtree is 0� 2 � 2. Because the error rate for the leaf
nodes is higher than the error rate for the root node of the subtree, this subtree is pruned
and replaced by a leaf node. The result of this pruning is visible on the left branch of the
tree shown in Figure 4.19(b)[158].

In the second iteration of the algorithm, the subtree under the STABLE-TEMP node is
considered for pruning (highlighted in Figure 4.19(b)[158]). In this instance, the error rate
for the root node of this subtree (the STABLE-TEMP node) is 2, whereas the error rate of
the leaf nodes of the tree is 0 � 0 � 0. As the error rate of the root node of the subtree
is higher than the error rate of the leaf nodes, the tree is not pruned. Figure 4.19(c)[158]

illustrates the final iteration of the algorithm. In this iteration the subtree underneath the
root node of the decision tree (the CORE-TEMP node) is considered for pruning (i.e., the
full decision tree). In this iteration, the error rate of the root node (1) is greater than the
error rate of the three leaf nodes, (0� 0� 0 � 0), so the tree is left unchanged.

Post-pruning using an error rate criterion is probably the most popular way to prune
decision trees.24 One of the advantages of pruning decision trees is that it keeps trees
smaller, which in turn makes them easier to interpret. Another advantage is that pruning
often increases the accuracy of the trees when there is noise in the training dataset. The
reason is that pruning typically affects the lower parts of the decision tree, where noisy
training data is most likely to cause overfitting. As such, pruning can be viewed as a noise
dampening mechanism that removes nodes that have been created because of a small set
of noisy instances.

24. See Esposito et al. (1997) and Mingers (1989) for overviews and empirical comparisons of a range of decision
tree pruning methods based on error rate.
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icu (0)
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(a)
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(b)
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icu (0)

low

  Stable-Temp  
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Figure 4.19
The iterations of reduced error pruning for the decision tree in Figure 4.18[156] using the validation set
in Table 4.13[157]. The subtree that is being considered for pruning in each iteration is highlighted in
black. The prediction returned by each non-leaf node is listed in square brackets. The error rate for
each node is given in parantheses.

4.4.5 Model Ensembles
Much of the focus of machine learning is on developing the single most accurate prediction
model possible for a given task. The techniques we introduce in this section take a slightly
different approach. Rather than creating a single model, they generate a set of models and
then make predictions by aggregating the outputs of these models. A prediction model that
is composed of a set of models is called a model ensemble.

The motivation behind using ensemble methods is that a committee of experts working
together on a problem are more likely to solve it successfully than a single expert working
alone. As is always the case when a committee is working together, however, steps should
be taken to guard against group think. In the context of model ensembles, this means
that each model should make predictions independently of the other models in the ensem-
ble. Given a large population of independent models, an ensemble can be very accurate,
even if the individual models in the ensemble perform only marginally better than random
guessing.

There are two defining characteristics of ensemble models:

1. They build multiple different models from the same dataset by inducing each model
using a modified version of the dataset.

2. They make a prediction by aggregating the predictions of the different models in the
ensemble. For categorical target features, this can be done using different types of
voting mechanisms; and for continuous target features, this can be done using a mea-
sure of the central tendency of the different model predictions, such as the mean or the
median.
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There are two standard approaches to creating ensembles: bagging and boosting. The
remainder of this section explains each of these basic approaches. Commonly used, high-
performing extensions to both of the basic approaches are also described: random forests
in the case of bagging and gradient boosting in the case of boosting.

4.4.5.1 Bagging When we use bagging (or bootstrap aggregating), each model in the
ensemble is trained on a random sample25 of the dataset where, importantly, each random
sample is the same size as the dataset, and sampling with replacement is used. These
random samples are known as bootstrap samples, and one model is induced from each
bootstrap sample. The reason that we sample with replacement is that this will result in
duplicates within each of the bootstrap samples, and consequently every bootstrap sample
will be missing some of the instances from the dataset. As a result, each bootstrap sample
will be different, and this means that models trained on different bootstrap samples will
also be different.26

Decision tree induction algorithms are particularly well suited to use with bagging. The
reason is that decision trees are very sensitive to changes in the dataset: a small change in
the dataset can result in a different feature being selected to split the dataset at the root or
high in the tree, and this can have a ripple effect throughout the subtrees under this node.
Frequently, when bagging is used with decision trees, the sampling process is extended so
that each bootstrap sample uses only a randomly selected subset of the descriptive features
in the dataset. This sampling of the feature set is known as subspace sampling. Subspace
sampling further encourages the diversity of the trees within the ensemble and has the
advantage of reducing the training time for each tree.

Figure 4.20[160] illustrates the process of creating a model ensemble using bagging and
subspace sampling. Model ensembles combining bagging, subspace sampling, and deci-
sion trees are known as random forest models. Once the individual models in an ensemble
have been induced, the ensemble makes predictions by returning the majority vote or the
median, depending on the type of prediction required. For continuous target features, the
median is preferred to the mean because the mean is more heavily affected by outliers.27

4.4.5.2 Boosting When we use boosting,28 each new model added to an ensemble is bi-
ased to pay more attention to instances that previous models misclassified. This is done by
incrementally adapting the dataset used to train the models. To do this we use a weighted

25. See Section 3.6.3[91].

26. If we have a very large dataset, we may—for computational reasons—want to create bootstrap samples that
are smaller than the original dataset. If this is the case, then sampling without replacement is preferred. This is
known as subagging.

27. Question 5 in the Exercises section at the end of this chapter explores bagging and random forest ensemble
models in more detail, and worked examples are provided in the solution.

28. Schapire (1999) gives a readable introduction to boosting by one of the originators of the technique.
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MODEL ENSEMBLE

ID F1 F2 F3 Target

1 - - - -

2 - - - -

3 - - - -

4 - - - -

Bagging and 
 Subspace Sampling

ID F1 F3 Target

1 - - -

1 - - -

2 - - -

3 - - -

Machine Learning 
 Algorithm

ID F2 F3 Target

2 - - -

2 - - -

4 - - -

4 - - -

Machine Learning 
 Algorithm

ID F1 F3 Target

1 - - -

3 - - -

3 - - -

4 - - -

Machine Learning 
 Algorithm

F3 F2 F1

F1 F3

Figure 4.20
The process of creating a model ensemble using bagging and subspace sampling.

dataset in which each instance has an associated weight wi ¥ 0, initially set to 1
n where

n is the number of instances in the dataset. These weights are used as a distribution over
which the dataset is sampled to create a replicated training set, in which the number of
times an instance is replicated is proportional to its weight.

Boosting works by iteratively creating models and adding them to the ensemble. The
iteration stops when a predefined number of models have been added. During each iteration
the algorithm does the following:



4.4 Extensions and Variations 161

1. Induces a model using the weighted dataset and calculates the total error, �, in the
set of predictions made by the model for the instances in the training dataset.29 The
� value is calculated by summing the weights of the training instances for which the
predictions made by the model are incorrect.

2. Increases the weights for the instances misclassified by the model using

w ris — w ris �
�

1
2� �



(4.12)

and decreases the weights for the instances correctly classified by the model using30

w ris — w ris �
�

1
2� p1� �q



(4.13)

3. Calculates a confidence factor, �, for the model such that � increases as � decreases.
A common way to calculate the confidence factor is

� �
1
2
� loge

�
1� �

�



(4.14)

Once the set of models has been created, the ensemble makes predictions using a weighted
aggregate of the predictions made by the individual models. The weights used in this ag-
gregation are the confidence factors associated with each model. For categorical target
features, the ensemble returns the majority target level using a weighted vote. The boost-
ing algorithm presented here can be easily adapted to work with continuous targets by
changing the weight update rules to be based on error rather than misclassification, and in
this case the aggregation calculates a weighted mean prediction from the base models in
the ensemble.31

To show how boosting works in practice, we use a modified version of the bike rentals
dataset used in Section 4.4.3[149]. This time we will predict the expected rental demand on
the basis of a single descriptive feature, the forecasted temperature for a day. The first
columns of Table 4.14[162] detail a small sample dataset giving temperatures, TEMP, and
rental demand, RENTALS (which can be either Low or High), for 10 days. The dataset
is visualized in Figure 4.21(a)[163]. At the beginning of the boosting process the sampling
distribution is initialized so that each instance has an equal weight of 1

10 (represented by
the equal segments for each instance in the visualization in Figure 4.21(c)[163]). In the first
iteration of the algorithm a dataset is sampled using this distribution, and the number of

29. Normally in machine learning, we do not test a model using the same dataset that we use to train it. Boosting,
however, is an exception to this rule.

30. Updating the weights using Equations (4.12)[161] and (4.13)[161] ensures that the weights always sum to 1.

31. Adaboost.R2 (Drucker, 1997) is a nice early example of a boosting algorithm designed to work with contin-
uous targets.



162 Chapter 4 Information-Based Learning

Table 4.14
A simple bicycle demand predictions dataset and the workings of the first three iterations of training
an ensemble model using boosting to predict RENTALS given TEMP. For each iteration of the boost-
ing process the columns labeled Dist. give the weight in the sampling distribution for each training
instance, and the columns labeled Freq. give the number of times a training instance was included
in the training set sampled using the sampling distribution. The columns labeled Mipdq give the
predictions made by the model trained at iteration i for each instance in the training dataset.

Iteration 0 Iteration 1 Iteration 2
ID TEMP RENTALS Dist. Freq. M0pdq Dist. Freq. M1pdq Dist. Freq. M2pdq
1 4 Low 0.100 2 Low 0.062 0 High 0.167 2 Low
2 5 Low 0.100 1 Low 0.062 1 High 0.167 1 Low
3 7 Low 0.100 0 Low 0.062 1 High 0.167 3 Low
4 12 High 0.100 1 High 0.062 2 High 0.038 0 Low
5 18 High 0.100 1 High 0.062 0 High 0.038 0 Low
6 23 High 0.100 1 High 0.062 0 High 0.038 0 Low
7 27 High 0.100 1 High 0.062 1 High 0.038 0 Low
8 28 High 0.100 1 High 0.062 1 High 0.038 1 Low
9 32 Low 0.100 2 High 0.250 3 Low 0.154 1 Low
10 35 Low 0.100 0 High 0.250 1 Low 0.154 2 Low

times each training instance is included in this sample is given in the Freq. column in
Table 4.14[162]. Instances d1 and d9 are duplicated in this sample, and instances d3 and d10

are not included at all. A decision tree is then trained using the sample, and it is used to
make predictions for each instance in the complete training set. In this simple example
the decision tree is limited to a single root node with one split based on a value of TEMP

(in this case the tree predicts Low rental demand for temperatures less than or equal to 8:5
degrees and High rental demand for all other temperatures). In Table 4.14[162] the column
labeled M0pdq shows the predictions made by this model.

On the basis of these predictions, � is calculated as 0:200, the sum of the weights of
the two instances misclassified by the model (d9 and d10). The weights of all correctly
classified instances are then updated using Equation (4.13)[161]. For example, the weight for
d1 is updated

w r1s — 0:100�
�

1
2� p1� 0:200q



— 0:0625

Similarly, the weights of all incorrectly classified instances are updated using Equation
(4.12)[161]. For example, the weight for d9 is updated

w r9s — 0:100�
�

1
2� 0:200



— 0:250

Figure 4.21(d)[163] illustrates the new distribution that arises from these changes, in which
the weight of the segments highlighted in black have increased, and those in gray have
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Figure 4.21
(a) A plot of the bike rental dataset from Table 4.14[162]. (b) An illustration of the final ensemble
model trained using the boosting algorithm. The black circles show the training dataset, the gray
squares show the predictions made for the instances in the training dataset by the ensemble model,
and the dotted line shows the predictions that would be made by the ensemble model for the full
range of input temperatures. (c)–(e) A representation of the changing weights used to generate
sample datasets for the first iterations of the boosting process. Black segments represent weights
that have increased, and gray segments represent weights that have decreased (all segments for the
distribution at the first iteration are white because they have done neither).

decreased. The details of the next iteration of the boosting process are also detailed in
Table 4.14[162] and Figure 4.21(e)[163].

Figure 4.21(b)[163] shows an illustration of the final ensemble model trained using five iter-
ations of the boosting algorithm. Even this simple example can nicely illustrate the power
of boosting as, although all the individual decision trees in the ensemble are limited to a
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single split at the root node of the tree, the ensemble is able to learn a more sophisticated
prediction model that none of the individual models within it are capable of representing.

4.4.5.3 Gradient boosting Gradient boosting is a more recently developed, and very
effective, algorithm for training ensemble models using boosting. Like simpler boosting
algorithms, gradient boosting iteratively trains prediction models trying to make later mod-
els specialize in areas that earlier models struggled with. Gradient boosting can be said to
do this in a more aggressive way than the boosting algorithm described previously. In gra-
dient boosting later models are trained to directly correct errors made by earlier models,
rather than the more subtle approach of simply changing weights in a sampling distribution
to encourage this.

The gradient boosting algorithm is actually quite straightforward, and it is easiest to ex-
plain in the context of a prediction problem with a continuous target. Given a training
dataset, D, made up of descriptive feature and target feature pairs, pd; tq, the algorithm be-
gins by training a very simple base model, M0. For problems with a continuous target, this
model typically simply predicts the overall average target value from the training dataset

M0pdq �
1
n

‚

i

ti (4.15)

Gradient boosting then iteratively adds new models to the ensemble. However, rather
than training these models to perform the original prediction task—to predict the target
feature t based on the descriptive features d—these models are trained to predict the errors
that the previous model is likely to have made.32 In this way the newly trained models
are directly trying to correct, and therefore improve, the predictions made by the models
previously added to the ensemble. We write the model trained at the first iteration of
gradient boosting

M1pdq � M0pdq �M�1pdq (4.16)

where M�1 is the model trained to predict the errors made by the base model, M0.
The gradient boosting algorithm proceeds by adding more and more models where each

model is trained to improve the predictions of the previous ones. Equation (4.16)[164] can be
generalized to capture this

Mipdq � Mi�1pdq �M�ipdq (4.17)

The final model is then a model that makes a basic prediction and adds a number of
improvements to this prediction. We can see this if we consider the model trained after

32. These errors are often known as the model residuals.
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four iterations of gradient boosting33

M4pdq � M3pdq �M�4pdq
� pM2pdq �M�3pdqq �M�4pdq
� ppM1 �M�2pdqq �M�3pdqq �M�4pdq
� pppM0pdq �M�1pdqq �M�2pdqq �M�3pdqq �M�4pdq
� M0pdq �M�1pdq �M�2pdq �M�3pdq �M�4pdq (4.18)

Although any model can be used at the model training steps in gradient boosting, it is
most common to use very shallow decision trees, or decision stumps—often just one level
deep. This is using the same approach taken in random forests, which aims to combine a
large number of weak learners into an overall strong learner.

To illustrate gradient boosting, we use another modified version of the bike rentals dataset
used in Section 4.4.3[149]. This will again predict the expected rental demand on the basis
of a single descriptive feature, the forecasted temperature for a day. The first columns of
Table 4.15[166] detail a small sample dataset giving temperatures, TEMP, and rental demand,
RENTALS (this time as actual numeric values), for 10 days. A visualization of the dataset
is provided in Figure 4.22(a)[167].

The first step in building a gradient boosting model for this problem is to train the initial
model, M0. This always simply predicts the average value of the target feature from the
dataset—in this case a rental demand of 1;287:1 bicycles. On the basis of the predictions
made by this model, the first set of errors can be calculated. These are shown in the column
labeled t�M0 in Table 4.15[166]; they are simply the difference between the values predicted
by the initial model and the target feature value for each instance in the dataset. The first
real model trained for this ensemble, M�1, is then trained to predict these errors on the
basis of the descriptive features in the training set. This is a simple one-level decision tree
composed of a root note that performs one split on the basis of TEMPERATURE (because
TEMPERATURE is a continuous target, the process for training regression trees described
in Section 4.4.3[149] is used).

The simple nature of this first trained model is evident from the predictions made by
M�1 shown in Table 4.15[166]. The model predicts a correction value of �460:9 for input
temperatures less than or equal to 9:5 degrees, and a correction value of 691:4 for tempera-
tures above this threshold. These corrections are combined with the M0 predictions to give
the ensemble predictions after the first iteration, M1. The predictions for this very simple
ensemble model are given in Table 4.15[166] and visualized in Figure 4.22(c)[167], from which
the characteristic step pattern of a decision tree is very obvious.

33. Because of the way that they make a number of additions to a basic model, gradient boosting models can be
considered an instance of a generic family of mathematical models known as additive models.
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Figure 4.22
(a) A plot of the bike rental dataset from Table 4.15[166]. (b)–(e) Visualizations of the prediction
models trained in the early iterations of the gradient boosting process. (f) The final ensemble model
trained after 20 iterations of gradient boosting. In the model visualizations black circles show the
training dataset, gray squares show the predictions made for the instances in the training dataset by
the current model, and the dotted line shows the predictions that would be made by the current model
for the full range of input temperatures.
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A new set of errors are then calculated by comparing the M1 predictions to the target
feature values. A new model, M�2, is trained to predict these errors on the basis of the
original descriptive feature values. The outputs of this model are combined with the M1

predictions to give the full model for this step in the ensemble building process, M2. The
outputs of this model for the training dataset instances are shown in Table 4.15[166] and
Figure 4.22(d)[167]. To complete the process of building the ensemble model, the algorithm
continues to iteratively calculate errors and train new models to predict these errors, which
are added as correction terms to the previous model output. Figure 4.22(f)[167] shows the
model output after 20 iterations of model training have been completed.

The gradient boosting algorithm described here does not have an explicit aggregation
step, as do the bagging and boosting algorithms described previously (in which individual
model predictions were combined through averaging or voting). Instead, the final model
trained provides the overall output of the ensemble as it implicitly combines the outputs
of all models trained—recall Equation (4.18)[165]. The simple version of gradient boosting
described here can be extended in many ways. For example, a learning rate34 parameter,
�, can be added to Equation (4.17)[164] to cause predictions of later errors to have less impact
on the overall model than earlier ones, which makes models more robust to outliers.35

Mipdq � Mi�1pdq � ��M�ipdq (4.19)

Another way to make models robust to outliers is to train the models to predict only the
sign of the errors of the previous predictions rather than the magnitudes of the errors; this
is a frequently used adjustment. Although the gradient boosting approach is most easily
explained in the context of predicting continuous targets, it can also be easily adapted
to work with categorical targets. In this case the initial model predicts a likelihood that
an instance belongs to each of the possible target levels, and subsequent models predict
corrections to these likelihoods.

The version of the gradient boosting algorithm described here searches for an ensemble
model that minimizes the mean squared error between the target feature values from the
training dataset and the model predictions. We often describe this as minimizing mean
squared error (or L2) loss.36 Gradient boosting can be extended to learn to minimize other
loss functions, which makes it an extremely effective and flexible approach to predictive
modeling.

34. Learning rates are discussed in much more detail in Chapter 7[311].

35. Learning rate values are typically in p0; 1s, and gradient boosting implementations that use a learning rate
often refer to it as incremental shrinkage.

36. Loss functions are discussed in much more detail in Chapters 7[311] and 8[381]. We can view the gradient
boosting process as equivalent to the gradient descent process described in those chapters.



4.5 Summary 169

4.5 Summary

We have introduced information theory as a method of determining the shortest sequence
of descriptive feature tests required to make a prediction. We have also introduced deci-
sion tree models, which make predictions based on sequences of tests on the descriptive
feature values of a query. Consequently, decision trees naturally lend themselves to be-
ing trained using information-based metrics. We also introduced the ID3 algorithm as a
standard algorithm for inducing decision trees from a dataset. The ID3 algorithm uses a
top-down, recursive, depth-first partitioning of the dataset to build a tree model beginning
at the root node and finishing at the leaf nodes. Although this algorithm works quite well
as presented, it assumes categorical features with no missing values and clean data. The
algorithm can, however, be extended to handle continuous descriptive features and contin-
uous target features. We also discussed how tree pruning can be used to help with the
problem of overfitting.

The C4.5 algorithm is a well-known variant of the ID3 algorithm that uses these exten-
sions to handle continuous and categorical descriptive features and missing features. It
also uses post-pruning to help with overfitting. J48 is an open-source implementation of
the C4.5 algorithm that is used in many data analytics toolkits. Another well-known variant
of the ID3 algorithm is the CART algorithm. The CART algorithm uses the Gini index
(introduced in Section 4.4.1[142]) instead of information gain to select features to add to the
tree. This algorithm can also handle continuous target features. The variant of the decision
tree algorithm that should be used for a particular problem depends on the nature of the
problem and the dataset being used. Performing evaluation experiments using different
model types is really the only way to determine which variant will work best for a specific
problem.

The main advantage of decision tree models is that they are interpretable. It is relatively
easy to understand the sequences of tests a decision tree carried out in order to make a
prediction. This interpretability is very important in some domains. For example, if a
prediction model is being used as a diagnostic tool in a medical scenario, it is not sufficient
for the system to simply return a diagnosis. In these contexts both the doctor and the patient
would want the system to provide some explanation of how it arrives at the predictions it
makes. Decision tree models are ideal for these scenarios.

Decision tree models can be used for datasets that contain both categorical and contin-
uous descriptive features. A real advantage of the decision tree approach is that it has the
ability to model the interactions between descriptive features. This arises from the fact
that the tests carried out at each node in the tree are performed in the context of the re-
sults of the tests on the other descriptive features that were tested at the preceding nodes
on the path from the root. Consequently, if there is an interaction effect between two
or more descriptive features, a decision tree can model this. It is worth noting that this
ability is diminished if pre-pruning is employed, as pre-pruning may stop subtrees that
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capture descriptive feature interactions from forming. Finally, as noted earlier, decision
tree induction is, relatively, robust to noise in the dataset if pruning is used.

There are, however, some situations where decision tree models are not the best option.
Although decision trees can handle both categorical and continuous features, they tend to
become quite large when dealing with continuous descriptive features. This can result in
trees becoming difficult to interpret. Consequently, in dealing with purely continuous data,
other prediction models may be more appropriate, for example, the error-based models
discussed in Chapter 7[311].

Decision trees also have difficulty with domains that have a large number of descrip-
tive features, particularly if the number of instances in the training dataset is small. In
these situations overfitting becomes very likely. The probability-based models discussed
in Chapter 6[243] do a better job of handling high-dimensional data.

Another potential issue with decision trees is that they are eager learners. As such, they
are not suitable for modeling concepts that change over time, because they will need to be
retrained. In these scenarios, the similarity-based prediction models that are the topic of
Chapter 5[181] perform better, as these models can be incrementally retrained.

We concluded by explaining model ensembles. We can build a model ensemble us-
ing any type of prediction model—or indeed, a mixture of model types. We don’t have
to use decision trees. However, decision trees are often used in model ensembles due to
the sensitivity of tree induction to changes in the dataset, and this is why we introduced
model ensembles in this chapter. Model ensembles are among the most powerful machine
learning algorithms; Caruana and Niculescu-Mizil (2006) report a large-scale compari-
son between seven different types of prediction model in which bagged and boosted tree
ensembles are reported as among the best-performing. Which approach should we use?
Bagging is simpler to implement and parallelize than boosting, so it may be better with
respect to ease of use and training time. With respect to the general ability of bagging
and boosting ensembles to make accurate predictions, the results reported in Caruana et al.
(2008) indicate that boosted decision tree ensembles were the best-performing model of
those tested for datasets containing up to 4;000 descriptive features. For datasets con-
taining more that 4;000 features, random forest ensembles (based on bagging) performed
better. Caruana et al. (2008) suggest that a potential explanation for this pattern of results
is that boosted ensembles are prone to overfitting, and in domains with large numbers of
features, overfitting becomes a serious problem. With all model ensembles, however, the
cost of their high performance is increased learning and model complexity.

4.6 Further Reading

Gleick (2011) provides an excellent and accessible introduction to information theory and
its history. Shannon and Weaver (1949) is taken as the foundational book in information
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theory, and Cover and Thomas (1991) is a well-regarded textbook on the topic. MacKay
(2003) is an excellent textbook on information theory and machine learning.

Quinlan (1986) originally described the ID3 algorithm, and Quinlan (1993) and Breiman
(1993) are two of the best-known books on decision trees. Loh (2011) provides a good
overview of more recent developments in tree induction algorithms.

Schapire (1990) desscribed some of the early work on weak learners and computational
learning theory. Freund and Schapire (1995) introduced the AdaBoost algorithm, which is
one of the seminal boosting algorithms. Friedman et al. (2000) generalized the AdaBoost
algorithm and developed another popular boosting algorithm, the LogitBoost algorithm.
Breiman (1996) developed the use of bagging for prediction, and Breiman (2001) intro-
duced random forests. The original gradient boosting paper by Friedman (2001) gives a
detailed explanation on the fundamentals of gradient boosting. The XGBoost (Chen and
Guestrin, 2016) gradient boosting implementation played a significant role in populariz-
ing the approach and is a good example of how the basic algorithm can be optimized for
performance. Dietterich (2000) give an excellent explanation of the motivations behind
using ensembles, and Kuncheva (2004) and Zhou (2012) both provide good overviews of
ensemble learning methods.
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4.7 Exercises

1. The image below shows a set of eight Scrabble pieces.

(a) What is the entropy in bits of the letters in this set?

(b) What would be the reduction in entropy (i.e., the information gain) in bits if we
split these letters into two sets, one containing the vowels and the other containing
the consonants?

(c) What is the maximum possible entropy in bits for a set of eight Scrabble pieces?

(d) In general, which is preferable when you are playing Scrabble: a set of letters with
high entropy or a set of letters with low entropy?

2. A convicted criminal who reoffends after release is known as a recidivist. The follow-
ing table lists a dataset that describes prisoners released on parole and whether they
reoffended within two years of release.37

GOOD DRUG

ID BEHAVIOR AGE   30 DEPENDENT RECIDIVIST

1 false true false true
2 false false false false
3 false true false true
4 true false false false
5 true false true true
6 true false false false

This dataset lists six instances in which prisoners were granted parole. Each of these
instances is described in terms of three binary descriptive features (GOOD BEHAV-
IOR, AGE   30, DRUG DEPENDENT) and a binary target feature (RECIDIVIST). The
GOOD BEHAVIOR feature has a value of true if the prisoner had not committed any
infringements during incarceration, the AGE   30 has a value of true if the prisoner
was under 30 years of age when granted parole, and the DRUG DEPENDENT feature
is true if the prisoner had a drug addiction at the time of parole. The target feature,

37. This example of predicting recidivism is based on a real application of machine learning: parole boards do
rely on machine learning prediction models to help them when they are making their decisions. See Berk and
Bleich (2013) for a recent comparison of different machine learning models used for this task. Datasets dealing
with prisoner recidivism are available online, for example, catalog.data.gov/dataset/prisoner-recidivism/. The
dataset presented here is not based on real data.

catalog.data.gov/dataset/prisoner-recidivism/
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RECIDIVIST, has a true value if the prisoner was arrested within two years of being
released; otherwise it has a value of false.

(a) Using this dataset, construct the decision tree that would be generated by the ID3
algorithm, using entropy-based information gain.

(b) What prediction will the decision tree generated in Part (a) of this question return
for the following query?

GOOD BEHAVIOR = false,AGE   30 = false,
DRUG DEPENDENT = true

(c) What prediction will the decision tree generated in Part (a) of this question return
for the following query?

GOOD BEHAVIOR = true,AGE   30 = true,
DRUG DEPENDENT = false

3. The following table lists a sample of data from a census.38

MARITAL ANNUAL

ID AGE EDUCATION STATUS OCCUPATION INCOME

1 39 bachelors never married transport 25K–50K
2 50 bachelors married professional 25K–50K
3 18 high school never married agriculture  25K
4 28 bachelors married professional 25K–50K
5 37 high school married agriculture 25K–50K
6 24 high school never married armed forces  25K
7 52 high school divorced transport 25K–50K
8 40 doctorate married professional ¡50K

There are four descriptive features and one target feature in this dataset, as follows:

 AGE, a continuous feature listing the age of the individual;

 EDUCATION, a categorical feature listing the highest education award achieved by
the individual (high school, bachelors, doctorate);

 MARITAL STATUS (never married, married, divorced);

 OCCUPATION (transport = works in the transportation industry; professional =
doctor, lawyer, or similar; agriculture = works in the agricultural industry; armed
forces = is a member of the armed forces); and

 ANNUAL INCOME, the target feature with 3 levels ( 25K, 25K–50K, ¡50K).

(a) Calculate the entropy for this dataset.

38. This census dataset is based on the Census Income Dataset (Kohavi, 1996), which is available from the UCI
Machine Learning Repository (Bache and Lichman, 2013) at archive.ics.uci.edu/ml/datasets/Census+Income/.

archive.ics.uci.edu/ml/datasets/Census+Income/
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(b) Calculate the Gini index for this dataset.

(c) In building a decision tree, the easiest way to handle a continuous feature is to
define a threshold around which splits will be made. What would be the opti-
mal threshold to split the continuous AGE feature (use information gain based on
entropy as the feature selection measure)?

(d) Calculate information gain (based on entropy) for the EDUCATION, MARITAL

STATUS, and OCCUPATION features.

(e) Calculate the information gain ratio (based on entropy) for EDUCATION, MAR-
ITAL STATUS, and OCCUPATION features.

(f) Calculate information gain using the Gini index for the EDUCATION, MARITAL

STATUS, and OCCUPATION features.

4. The following diagram shows a decision tree for the task of predicting heart disease.39

The descriptive features in this domain describe whether the patient suffers from chest
pain (CHEST PAIN) and the blood pressure of the patient (BLOOD PRESSURE). The
binary target feature is HEART DISEASE. The table beside the diagram lists a pruning
set from this domain.

  Chest Pain  

   [true]    

  Blood Pressure  

   [false]    

false

true

true

true

high

false

low

CHEST BLOOD HEART

ID PAIN PRESSURE DISEASE

1 false high false
2 true low true
3 false low false
4 true high true
5 false high false

Using the pruning set, apply reduced error pruning to the decision tree. Assume
that the algorithm is applied in a bottom-up, left-to-right fashion. For each iteration of
the algorithm, indicate the subtrees considered as pruning candidates, explain why the
algorithm chooses to prune or leave these subtrees in the tree, and illustrate the tree
that results from each iteration.

39. This example is inspired by the research reported in Palaniappan and Awang (2008).
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5. The following table40 lists a dataset containing the details of five participants in a heart
disease study, and a target feature RISK, which describes their risk of heart disease.
Each patient is described in terms of four binary descriptive features

 EXERCISE, how regularly do they exercise

 SMOKER, do they smoke

 OBESE, are they overweight

 FAMILY, did any of their parents or siblings suffer from heart disease

ID EXERCISE SMOKER OBESE FAMILY RISK

1 daily false false yes low
2 weekly true false yes high
3 daily false false no low
4 rarely true true yes high
5 rarely true true no high

(a) As part of the study, researchers have decided to create a predictive model to
screen participants based on their risk of heart disease. You have been asked to
implement this screening model using a random forest. The three tables below
list three bootstrap samples that have been generated from the above dataset. Us-
ing these bootstrap samples, create the decision trees that will be in the random
forest model (use entropy-based information gain as the feature selection crite-
rion).

ID EXERCISE FAMILY RISK

1 daily yes low
2 weekly yes high
2 weekly yes high
5 rarely no high
5 rarely no high

Bootstrap Sample A

ID SMOKER OBESE RISK

1 false false low
2 true false high
2 true false high
4 true true high
5 true true high

Bootstrap Sample B

ID OBESE FAMILY RISK

1 false yes low
1 false yes low
2 false yes high
4 true yes high
5 true no high

Bootstrap Sample C

(b) Assuming the random forest model you have created uses majority voting, what
prediction will it return for the following query:

EXERCISE=rarely, SMOKER=false, OBESE=true, FAMILY=yes

40. The data in this table has been artificially generated for this question, but is inspired by the results from the
Framingham Heart Study: www.framinghamheartstudy.org.

www.framinghamheartstudy.org
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� 6. The following table lists a dataset containing the details of six patients. Each pa-
tient is described in terms of three binary descriptive features (OBESE, SMOKER, and
DRINKS ALCOHOL) and a target feature (CANCER RISK).41

DRINKS CANCER

ID OBESE SMOKER ALCOHOL RISK

1 true false true low
2 true true true high
3 true false true low
4 false true true high
5 false true false low
6 false true true high

(a) Which of the descriptive features will the ID3 decision tree induction algorithm
choose as the feature for the root node of the decision tree?

(b) In designing a dataset, it is generally a bad idea if all the descriptive features are
indicators of the target feature taking a particular value. For example, a potential
criticism of the design of the dataset in this question is that all the descriptive
features are indicators of the CANCER RISK target feature taking the same level,
high. Can you think of any descriptive features that could be added to this dataset
that are indicators of the low target level?

� 7. The following table lists a dataset collected in an electronics shop showing details of
customers and whether they responded to a special offer to buy a new laptop.

ID AGE INCOME STUDENT CREDIT BUYS

1   31 high no bad no
2   31 high no good no
3 31� 40 high no bad yes
4 ¡ 40 med no bad yes
5 ¡ 40 low yes bad yes
6 ¡ 40 low yes good no
7 31� 40 low yes good yes
8   31 med no bad no
9   31 low yes good yes
10 ¡ 40 med yes bad yes
11   31 med yes good yes
12 31� 40 med no good yes
13 31� 40 high yes bad yes
14 ¡ 40 med no good no

41. The data in this table has been artificially generated for this question. The American Cancer Society does,
however, provide information on the causes of cancer: www.cancer.org/cancer/cancercauses/.

www.cancer.org/cancer/cancercauses/
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This dataset has been used to build a decision tree to predict which customers will
respond to future special offers. The decision tree, created using the ID3 algorithm, is
the following:

  Age  

  Student  

 < 31

yes

 31Ñ40

  Credit  

 > 40

no

 no

yes

 yes

yes

 bad

no

 good

(a) The information gain (calculated using entropy) of the feature AGE at the root
node of the tree is 0:247. A colleague has suggested that the STUDENT feature
would be better at the root node of the tree. Show that this is not the case.

(b) Yet another colleague has suggested that the ID feature would be a very effective
at the root node of the tree. Would you agree with this suggestion?

� 8. This table lists a dataset of the scores students achieved on an exam described in terms
of whether the student studied for the exam (STUDIED) and the energy level of the
lecturer when grading the student’s exam (ENERGY).

ID STUDIED ENERGY SCORE

1 yes tired 65
2 no alert 20
3 yes alert 90
4 yes tired 70
5 no tired 40
6 yes alert 85
7 no tired 35

Which of the two descriptive features should we use as the testing criterion at the root
node of a decision tree to predict students’ scores?
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� 9. Calculate the probability of a model ensemble that uses simple majority voting mak-
ing an incorrect prediction in the following scenarios. (Hint: Understanding how to
use the binomial distribution will be useful in answering this question.)

(a) The ensemble contains 11 independent models, all of which have an error rate of
0:2.

(b) The ensemble contains 11 independent models, all of which have an error rate of
0:49.

(c) The ensemble contains 21 independent models, all of which have an error rate of
0:49.

� 10. The following table shows the target feature, OUTCOME, for a set of instances in a
small dataset. An ensemble model is being trained using this dataset using boosting.
The table also shows the instance distribution weights, w4, for this dataset used at
the fifth iteration of the boosting process. The last column of the table shows the
predictions made by the model trained at the fifth iteration of boosting, M4.

ID OUTCOME w4 M4

1 Bad 0.167 Bad
2 Good 0.047 Good
3 Bad 0.167 Bad
4 Good 0.071 Bad
5 Good 0.047 Good
6 Bad 0.047 Bad
7 Bad 0.047 Bad
8 Good 0.047 Good
9 Bad 0.167 Bad

10 Good 0.071 Bad
11 Bad 0.047 Bad
12 Good 0.071 Bad

(a) Calculate the error, �, associated with the set of predictions made by the model M4

given in the table above.

(b) Calculate the confidence factor, �, associated with M4.

(c) Calculate the updated instance distribution, wr5s, based on the predictions made
by M4.
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� 11. The following table shows a set of predictions made by six models in an ensemble and
the ground truth of the target feature in a small test dataset, PROGNOSIS.

ID PROGNOSIS M0 M1 M2 M3 M4 M5

1 Bad Bad Bad Good Bad Bad Good
2 Good Good Good Good Bad Good Bad
3 Good Bad Good Bad Good Good Good
4 Bad Bad Bad Bad Bad Bad Good
5 Bad Good Bad Good Bad Good Good

(a) Assuming that these models are part of an ensemble training using bagging, cal-
culate the overall output of the ensemble for each instance in the test dataset.

(b) Measure the performance of this bagged ensemble using misclassification rate
(misclassification rate is discussed in detail in Section 9.3[535]; it is simply the
percentage of instances in the test dataset that a model has incorrectly classified).

(c) Assuming that these models are part of an ensemble trained using boosting and
that the confidence factors, �, for the models are as follows:

M0 M1 M2 M3 M4 M5

0.114 0.982 0.653 0.912 0.883 0.233

calculate the overall output of the ensemble for each instance in the test dataset.

(d) Measure the performance of this boosted ensemble using misclassification rate.





5 Similarity-Based Learning

“When I see a bird that walks like a duck and swims like a duck and quacks like a duck, I call that bird
a duck.”
—James Whitcomb Riley

Similarity-based approaches to machine learning come from the idea that the best way to
make predictions is to simply look at what has worked well in the past and predict the same
thing again. The fundamental concepts required to build a system on the basis of this idea
are feature spaces and measures of similarity, and these are covered in the fundamentals
section of this chapter. These concepts allow us to understand the standard approach to
building similarity-based models: the nearest neighbor algorithm. After covering the
standard algorithm, we then look at extensions and variations that allow us to handle noisy
data (the k nearest neighbor, or k-NN, algorithm), to make predictions more efficiently
(k-d trees), to predict continuous targets, and to handle different kinds of descriptive fea-
tures with varying measures of similarity. We also take the opportunity to introduce the
use of data normalization and feature selection in the context of similarity-based learn-
ing. These techniques are generally applicable to all machine learning algorithms but are
especially important when similarity-based approaches are used.

5.1 Big Idea

The year is 1798, and you are Lieutenant-Colonel David Collins of HMS Calcutta explor-
ing the region around Hawkesbury River, in New South Wales. One day, after an expedition
up the river has returned to the ship, one of the men from the expedition tells you that he
saw a strange animal near the river. You ask him to describe the animal to you, and he
explains that he didn’t see it very well because, as he approached it, the animal growled at
him, so he didn’t approach too closely. However, he did notice that the animal had webbed
feet and a duck-billed snout.

In order to plan the expedition for the next day, you decide that you need to classify
the animal so that you can determine whether it is dangerous to approach it or not. You
decide to do this by thinking about the animals you can remember coming across before
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Table 5.1
Matching animals you remember to the features of the unknown animal described by the sailor.

Grrr! Score

3 7 7 1

7 3 7 1

7 3 3 2

Images created by Jan Gillbank, English for the Australian Curriculum website (www.e4ac.edu.au). Used under

Creative Commons Attribution 3.0 license.

and comparing the features of these animals with the features the sailor described to you.
Table 5.1[182] illustrates this process by listing some of the animals you have encountered
before and how they compare with the growling, web-footed, duck-billed animal that the
sailor described. For each known animal, you count how many features it has in common
with the unknown animal. At the end of this process, you decide that the unknown animal
is most similar to a duck, so that is what it must be. A duck, no matter how strange, is not
a dangerous animal, so you tell the men to get ready for another expedition up the river the
next day.

The process of classifying an unknown animal by matching the features of the animal
against the features of animals you have encountered before neatly encapsulates the big
idea underpinning similarity-based learning: if you are trying to make a prediction for a
current situation, then you should search your memory to find situations that are similar to
the current one and make a prediction based on what was true for the most similar situation
in your memory. In this chapter we are going to see how this type of reasoning can be
implemented as a machine learning algorithm.

5.2 Fundamentals

As the term similarity-based learning suggests, a key component of this approach to pre-
diction is defining a computational measure of similarity between instances. Often this
measure of similarity is actually some form of distance measure. A consequence of this,
and a somewhat less obvious requirement of similarity-based learning, is that if we are

www.e4ac.edu.au
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Table 5.2
The SPEED and AGILITY ratings for 20 college athletes and whether they were drafted by a profes-
sional team.

ID SPEED AGILITY DRAFT

1 2.50 6.00 no
2 3.75 8.00 no
3 2.25 5.50 no
4 3.25 8.25 no
5 2.75 7.50 no
6 4.50 5.00 no
7 3.50 5.25 no
8 3.00 3.25 no
9 4.00 4.00 no
10 4.25 3.75 no

ID SPEED AGILITY DRAFT

11 2.00 2.00 no
12 5.00 2.50 no
13 8.25 8.50 no
14 5.75 8.75 yes
15 4.75 6.25 yes
16 5.50 6.75 yes
17 5.25 9.50 yes
18 7.00 4.25 yes
19 7.50 8.00 yes
20 7.25 5.75 yes

going to compute distances between instances, we need to have a concept of space in the
representation of the domain used by our model. In this section we introduce the concept
of a feature space as a representation for a training dataset and then illustrate how we can
compute measures of similarity between instances in a feature space.

5.2.1 Feature Space
Table 5.2[183] lists an example dataset containing two descriptive features, the SPEED and
AGILITY ratings for college athletes (both measures out of 10), and one target feature that
lists whether the athletes were drafted to a professional team.1 We can represent this dataset
in a feature space by taking each of the descriptive features to be the axes of a coordinate
system. We can then place each instance within the feature space based on the values of its
descriptive features. Figure 5.1[184] is a scatter plot to illustrate the resulting feature space
when we do this using the data in Table 5.2[183]. In this figure, SPEED has been plotted on
the horizontal axis, and AGILITY has been plotted on the vertical axis. The value of the
DRAFT feature is indicated by the shape representing each instance as a point in the feature
space: triangles for no and crosses for yes.

There is always one dimension for every descriptive feature in a dataset. In this example,
there are only two descriptive features, so the feature space is two-dimensional. Feature
spaces can, however, have many more dimensions—in document classification tasks, for
example, it is not uncommon to have thousands of descriptive features and therefore thou-
sands of dimensions in the associated feature space. Although we can’t easily draw feature
spaces beyond three dimensions, the ideas underpinning them remain the same.

1. This example dataset is inspired by the use of analytics in professional and college sports, often referred to as
sabremetrics. Two accessible introductions to this field are Lewis (2004) and Keri (2007).
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Figure 5.1
A feature space plot of the college athlete data in Table 5.2[183].

We can formally define a feature space as an abstract m-dimensional space that is created
by making each descriptive feature in a dataset an axis of an m-dimensional coordinate
system and mapping each instance in the dataset to a point in this coordinate system based
on the values of its descriptive features.

For similarity-based learning, the nice thing about the way feature spaces work is that if
the values of the descriptive features of two or more instances in the dataset are the same,
then these instances will be mapped to the same point in the feature space. Also, as the
differences between the values of the descriptive features of two instances grows, so too
does the distance between the points in the feature space that represent these instances. So
the distance between two points in the feature space is a useful measure of the similarity
of the descriptive features of the two instances.

5.2.2 Measuring Similarity Using Distance Metrics
The simplest way to measure the similarity between two instances, a and b, in a dataset is
to measure the distance between the instances in a feature space. We can use a distance
metric to do this: metricpa;bq is a function that returns the distance between two instances
a and b. Mathematically, a metric must conform to the following four criteria:

1. Non-negativity: metricpa;bq ¥ 0
2. Identity: metricpa;bq � 0 ðæ a � b
3. Symmetry: metricpa;bq � metricpb; aq
4. Triangular Inequality: metricpa;bq ⁄ metricpa; cq � metricpb; cq
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One of the best-known distance metrics is Euclidean distance, which computes the
length of the straight line between two points. Euclidean distance between two instances a
and b in an m-dimensional feature space is defined as

Euclideanpa;bq �

gffe
m‚

i�1

pa ris � b risq2 (5.1)

The descriptive features in the college athlete dataset are both continuous, which means
that the feature space representing this data is technically known as a Euclidean coor-
dinate space, and we can compute the distance between instances in it using Euclidean
distance. For example, the Euclidean distance between instances d12 (SPEED � 5:00,
AGILITY � 2:50) and d5 (SPEED � 2:75, AGILITY � 7:50) from Table 5.2[183] is

Euclideanpd12;d5q �
b
p5:00� 2:75q2 � p2:50� 7:50q2

�
?

30:0625 � 5:4829

Another, less well-known, distance metric is the Manhattan distance.2 The Manhattan
distance between two instances a and b in a feature space with m dimensions is defined as

Manhattanpa;bq �
m‚

i�1

abspa ris � b risq (5.2)

where the abspq function returns the absolute value. For example, the Manhattan dis-
tance between instances d12 (SPEED � 5:00, AGILITY � 2:50) and d5 (SPEED � 2:75,
AGILITY � 7:50) in Table 5.2[183] is

Manhattanpd12;d5q � absp5:00� 2:75q � absp2:5� 7:5q
� 2:25� 5 � 7:25

Figure 5.2(a)[186] illustrates the difference between the Manhattan and Euclidean distances
between two points in a two-dimensional feature space. If we compare Equation (5.1)[185]

and Equation (5.2)[185], we can see that both distance metrics are essentially functions of
the differences between the values of the features. Indeed, the Euclidean and Manhattan
distances are special cases of the Minkowski distance, which defines a family of distance
metrics based on differences between features.

2. The Manhattan distance, or taxi-cab distance, is so called because it is the distance that a taxi driver would
have to cover if going from one point to another on a road system that is laid out in blocks, like the Manhattan
road system.
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Figure 5.2
(a) A generalized illustration of the Manhattan and Euclidean distances between two points; and (b)
a plot of the Manhattan and Euclidean distances between instances d12 and d5, and between d12 and
d17 from Table 5.2[183].

The Minkowski distance between two instances a and b in a feature space with m de-
scriptive features is defined as

Minkowskipa;bq �

�
m‚

i�1

abspa ris � b risqp

� 1
p

(5.3)

where the parameter p is typically set to a positive value and defines the behavior of the
distance metric. Different distance metrics result from adjusting the value of p. For ex-
ample, the Minkowski distance with p � 1 is the Manhattan distance, and with p � 2 is
the Euclidean distance. Continuing in this manner, we can define an infinite number of
distance metrics.

The fact that we can define an infinite number of distance metrics is not merely an aca-
demic curiosity. In fact, the predictions produced by a similarity-based model will change
depending on the exact Minkowski distance used (i.e., p � 1; 2; : : : ;8). Larger values of p
place more emphasis on large differences between feature values than smaller values of p
because all differences are raised to the power of p. Consequently, the Euclidean distance
(with p � 2) is more strongly influenced by a single large difference in one feature than
the Manhattan distance (with p � 1).3

3. In the extreme case with p � 8, the Minkowski metric simply returns the maximum difference between any
of the features. This is known as the Chebyshev distance but is also sometimes called the chessboard distance
because it is the number of moves a king must make in chess to go from one square on the board to any other.
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We can see this if we compare the Euclidean and Manhattan distances between instances
d12 and d5 with the Euclidean and Manhattan distances between instances d12 and d17

(SPEED � 5:25, AGILITY � 9:50). Figure 5.2(b)[186] plots the Manhattan and Euclidean
distances between these pairs of instances.

The Manhattan distances between both pairs of instances are the same: 7:25. It is strik-
ing, however, that the Euclidean distance between d12 and d17 is 8:25, which is greater
than the Euclidean distance between d12 and d5, which is just 5:48. This is because the
maximum difference between d12 and d17 for any single feature is 7 units (for AGILITY),
whereas the maximum difference between d12 and d5 on any single feature is just 5 units
(for AGILITY). Because these differences are squared in the Euclidean distance calcula-
tion, the larger maximum single difference between d12 and d17 results in a larger overall
distance being calculated for this pair of instances. Overall the Euclidean distance weights
features with larger differences in values more than features with smaller differences in
values. This means that the Euclidean difference is more influenced by a single large dif-
ference in one feature rather than a lot of small differences across a set of features, whereas
the opposite is true of Manhattan distance.

Although we have an infinite number of Minkowski-based distance metrics to choose
from, Euclidean distance and Manhattan distance are the most commonly used of these.
The question of which is the best one to use, however, still remains. From a computational
perspective, the Manhattan distance has a slight advantage over the Euclidean distance—
the computation of the squaring and the square root is saved—and computational con-
siderations can become important when dealing with very large datasets. Computational
considerations aside, Euclidean distance is often used as the default.

5.3 Standard Approach: The Nearest Neighbor Algorithm

We now understand the two fundamental components of similarity-based learning: a fea-
ture space representation of the instances in a dataset and a measure of similarity be-
tween instances. We can put these components together to define the standard approach
to similarity-based learning: the nearest neighbor algorithm. The training phase needed
to build a nearest neighbor model is very simple and just involves storing all the training
instances in memory. In the standard version of the algorithm, the data structure used to
store training data is a simple list. In the prediction stage, when the model is used to make
predictions for new query instances, the distance in the feature space between the query in-
stance and each instance in memory is computed, and the prediction returned by the model
is the target feature level of the instance that is nearest to the query in the feature space.
The default distance metric used in nearest neighbor models is Euclidean distance. Algo-
rithm 2[188] provides a pseudocode definition of the algorithm for the prediction stage. The
algorithm really is very simple, so we can move straight to looking at a worked example
of it in action.
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Algorithm 2 Pseudocode description of the nearest neighbor algorithm.

Require: a set of training instances
Require: a query instance

1: Iterate across the instances in memory to find the nearest neighbor—this is the instance
with the shortest distance across the feature space to the query instance.

2: Make a prediction for the query instance that is equal to the value of the target feature
of the nearest neighbor.

5.3.1 A Worked Example
Assume that we are using the dataset in Table 5.2[183] as our labeled training dataset, and
we want to make a prediction to tell us whether a query instance with SPEED � 6:75 and
AGILITY � 3:00 is likely to be drafted or not. Figure 5.3[188] illustrates the feature space of
the training dataset with the query, represented by the ? marker.
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Figure 5.3
A feature space plot of the data in Table 5.2[183], with the position in the feature space of the query
represented by the ? marker.

Just by visually inspecting Figure 5.3[188], we can see that the nearest neighbor to the
query instance has a target level of yes, so this is the prediction that the model should re-
turn. However, let’s step through how the algorithm makes this prediction. Remember that
during the prediction stage, the nearest neighbor algorithm iterates across all the instances
in the training dataset and computes the distance between each instance and the query.
These distances are then ranked from lowest to highest to find the nearest neighbor. Table
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Table 5.3
The distances (Dist.) between the query instance with SPEED � 6:75 and AGILITY � 3:00 and each
instance in Table 5.2[183].

ID SPEED AGILITY DRAFT Dist.
18 7.00 4.25 yes 1.27
12 5.00 2.50 no 1.82
10 4.25 3.75 no 2.61
20 7.25 5.75 yes 2.80
9 4.00 4.00 no 2.93
6 4.50 5.00 no 3.01
8 3.00 3.25 no 3.76

15 4.75 6.25 yes 3.82
7 3.50 5.25 no 3.95

16 5.50 6.75 yes 3.95

ID SPEED AGILITY DRAFT Dist.
11 2.00 2.00 no 4.85
19 7.50 8.00 yes 5.06
3 2.25 5.50 no 5.15
1 2.50 6.00 no 5.20

13 8.25 8.50 no 5.70
2 3.75 8.00 no 5.83

14 5.75 8.75 yes 5.84
5 2.75 7.50 no 6.02
4 3.25 8.25 no 6.31

17 5.25 9.50 yes 6.67

5.3[189] shows the distances between our query instance and each instance from Table 5.2[183]

ranked from lowest to highest. Just as we saw in Figure 5.3[188], this shows that the nearest
neighbor to the query is instance d18, with a distance of 1:2749 and a target level of yes.

When the algorithm is searching for the nearest neighbor using Euclidean distance, it is
partitioning the feature space into what is known as a Voronoi tessellation,4 and it is trying
to decide which Voronoi region the query belongs to. From a prediction perspective, the
Voronoi region belonging to a training instance defines the set of queries for which the
prediction will be determined by that training instance. Figure 5.4(a)[190] illustrates the
Voronoi tessellation of the feature space using the training instances from Table 5.2[183] and
shows the position of our sample query instance within this decomposition. We can see
in this figure that the query is inside a Voronoi region defined by an instance with a target
level of yes. As such, the prediction for the query instance should be yes.

The nearest neighbor prediction algorithm creates a set of local models, or neighbor-
hoods, across the feature space where each model is defined by a subset of the training
dataset (in this case, one instance). Implicitly, however, the algorithm is also creating a
global prediction model based on the full dataset. We can see this if we highlight the deci-
sion boundary within the feature space. The decision boundary is the boundary between
regions of the feature space in which different target levels will be predicted. We can
generate the decision boundary by aggregating the neighboring local models (in this case,
Voronoi regions) that make the same prediction. Figure 5.4(b)[190] illustrates the decision
boundary within the feature space for the two target levels in the college athlete dataset.

4. A Voronoi tessellation is a way of decomposing a space into regions in which each region belongs to an
instance and contains all the points in the space whose distance to that instance is less than the distance to any
other instance.
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Given that the decision boundary is generated by aggregating the Voronoi regions, it is not
surprising that the query is on the side of the decision boundary representing the yes target
level. This illustrates that a decision boundary is a global representation of the predictions
made by the local models associated with each instance in the training set. It also high-
lights the fact that the nearest neighbor algorithm uses multiple local models to create an
implicit global model to map from the descriptive feature values to the target feature.

(a) Voronoi tessellation (b) Decision boundary (k � 1)

Figure 5.4
(a) The Voronoi tessellation of the feature space for the dataset in Table 5.2[183], with the position of
the query represented by the ? marker; and (b) the decision boundary created by aggregating the
neighboring Voronoi regions that belong to the same target level.

One of the advantages of the nearest neighbor approach to prediction is that it is relatively
straightforward to update the model when new labeled instances become available—we
simply add them to the training dataset. Table 5.4[191] lists the updated dataset when the ex-
ample query instance with its prediction of yes is included.5 Figure 5.5(a)[192] illustrates the
Voronoi tessellation of the feature space that results from this update, and Figure 5.5(b)[192]

presents the updated decision boundary. Comparing Figure 5.5(b)[192] with Figure 5.4(b)[190],
we can see that the main difference is that the decision boundary in the bottom-right region
of the feature space has moved to the left. This reflects the extension of the yes region due
to the inclusion of the new instance.

5. Instances should be added to the training dataset only if we have determined after making the prediction that
the prediction was, in fact, correct. In this example, we assume that at the draft, the query player was drafted.
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Table 5.4
The extended version of the college athletes dataset.

ID SPEED AGILITY DRAFT

1 2.50 6.00 no
2 3.75 8.00 no
3 2.25 5.50 no
4 3.25 8.25 no
5 2.75 7.50 no
6 4.50 5.00 no
7 3.50 5.25 no
8 3.00 3.25 no
9 4.00 4.00 no
10 4.25 3.75 no
11 2.00 2.00 no

ID SPEED AGILITY DRAFT

12 5.00 2.50 no
13 8.25 8.50 no
14 5.75 8.75 yes
15 4.75 6.25 yes
16 5.50 6.75 yes
17 5.25 9.50 yes
18 7.00 4.25 yes
19 7.50 8.00 yes
20 7.25 5.75 yes
21 6.75 3.00 yes

In summary, the inductive bias underpinning similarity-based machine learning algo-
rithms is that things that are similar (i.e., instances that have similar descriptive features)
also have the same target feature values. The nearest neighbor algorithm creates an implicit
global predictive model by aggregating local models, or neighborhoods. The definition of
these neighborhoods is based on similarity within the feature space to the labeled training
instances. Predictions are made for a query instance using the target level of the training
instance defining the neighborhood in the feature space that contains the query.

5.4 Extensions and Variations

We now understand the standard nearest neighbor algorithm. The algorithm, as presented,
can work well with clean, reasonably sized datasets containing continuous descriptive fea-
tures. Often, however, datasets are noisy, very large, and may contain a mixture of different
data types. As a result, a lot of extensions and variations of the algorithm have been devel-
oped to address these issues. In this section we describe the most important of these.

5.4.1 Handling Noisy Data
Throughout our worked example using the college athlete dataset, the top-right corner of
the feature space contained a no region (see Figure 5.4[190]). This region exists because one
of the no instances occurs far away from the rest of the instances with this target level.
Considering that all the immediate neighbors of this instance are associated with the yes
target level, it is likely that either this instance has been incorrectly labeled and should
have a target feature value of yes, or one of the descriptive features for this instance has an
incorrect value and hence it is in the wrong location in the feature space. Either way, this
instance is likely to be an example of noise in the dataset.
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(a) Voronoi tessellation (b) Decision boundary (k � 1)

Figure 5.5
(a) The Voronoi tessellation of the feature space when the dataset has been updated to include the
query instance; and (b) the updated decision boundary reflecting the addition of the query instance
in the training set.

Fundamentally, the nearest neighbor algorithm is a set of local models, each defined
using a single instance. Consequently, the algorithm is sensitive to noise because any
errors in the description or labeling of training data results in erroneous local models and
hence incorrect predictions. The most direct way of mitigating against the impact of noise
in the dataset on a nearest neighbor algorithm is to dilute the dependency of the algorithm
on individual (possibly noisy) instances. To do this we simply modify the algorithm to
return the majority target level within the set of k nearest neighbors to the query q:

Mkpqq � arg max
lPlevelsptq

k‚

i�1

�pti; lq (5.4)

where Mkpq) is the prediction of the model M for the query q given the parameter of
the model k; levelsptq is the set of levels in the domain of the target feature, and l is an
element of this set; i iterates over the instances di in increasing distance from the query
q; ti is the value of the target feature for instance di; and �pti; lq is the Kronecker delta
function, which takes two parameters and returns 1 if they are equal and 0 otherwise.
Figure 5.6(a)[193] demonstrates how this approach can regularize the decision boundary for
the dataset in Table 5.4[191]. In this figure we have set k � 3, and this modification has
resulted in the no region in the top right corner of the feature space disappearing.

Although, in our example, increasing the set of neighbors from 1 to 3 removed the noise
issue, k � 3 does not work for every dataset. There is always a trade-off in setting the
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(a) Decision boundary (k � 3) (b) Decision boundary (k � 5)

Figure 5.6
The decision boundary using majority vote of the nearest 3 and 5 instances.

value of k. If we set k too low, we run the risk of the algorithm being sensitive to noise in
the data and overfitting. Conversely, if we set k too high, we run the risk of losing the true
pattern of the data and underfitting. For example, Figure 5.6(b)[193] illustrates what happens
to the decision boundary in our example feature space when k � 5. Here we can see that
the decision boundary may have been pushed too far back into the yes region (one of the
crosses is now on the wrong side of the decision boundary). So, even a small increase in k
can have a significant impact on the decision boundary.

The risks associated with setting k to a high value are particularly acute when we are
dealing with an imbalanced dataset. An imbalanced dataset is a dataset that contains
significantly more instances of one target level than another. In these situations, as k in-
creases, the majority target level begins to dominate the feature space. The dataset in the
college athlete example is imbalanced—there are 13 no instances and only 7 yes instances.
Although this differential between the target levels in the dataset may not seem substantial,
it does have an impact as k increases. Figure 5.7(a)[194] illustrates the decision boundary
when k � 15. Clearly, large portions of the yes region are now on the wrong side of the
decision boundary. Moreover, if k is set to a value larger than 15, the majority target level
dominates the entire feature space. Given the sensitivity of the algorithm to the value of k,
how should we set this parameter? The most common way to tackle this issue is to perform
evaluation experiments to investigate the performance of models with different values for k
and to select the one that performs best. We return to these kinds of evaluation experiments
in Chapter 9[533].
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(a) Decision boundary (k � 15) (b) Weighted decision boundary (k � 21)

Figure 5.7
(a) The decision boundary using majority vote of the nearest 15 neighbors; and (b) the weighted k
nearest neighbor model decision boundary (with k � 21).

Another way to address the problem of how to set k is to use a weighted k nearest
neighbor approach. The problem with setting k to a high value arises because the algorithm
starts taking into account neighbors that are far away from the query instance in the feature
space. As a result, the algorithm tends toward the majority target level in the dataset. One
way of counterbalancing this tendency is to use a distance weighted k nearest neighbor
approach. When a distance weighted k nearest neighbor approach is used, the contribution
of each neighbor to the prediction is a function of the inverse distance between the neighbor
and the query. So when calculating the overall majority vote across the k nearest neighbors,
the votes of the neighbors that are close to the query get a lot of weight, and the votes of
the neighbors that are farther away from the query get less weight. The easiest way to
implement this weighting scheme is to weight each neighbor by the reciprocal6 of the
squared distance between the neighbor d and the query q:

1
distpq;dq2

(5.5)

Using the distance weighted k nearest neighbor approach, the prediction returned for
a given query is the target level with the highest score when we sum the weights of the
votes of the instances in the neighborhood of k nearest neighbors for each target level. The

6. When using the reciprocal of the squared distance as a weighting function, we need to be careful to avoid
division by zero in the case in which the query is exactly the same as its nearest neighbor. Typically this problem
case is handled by assigning the query the target level of the training instance d that it exactly matches.
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weighted k nearest neighbor model is defined as

Mkpqq � arg max
lPlevelsptq

k‚

i�1

1
distpq;diq2

� �pti; lq (5.6)

where Mkpq) is the prediction of the model M for the query q given the parameter of the
model k; levelsptq is the set of levels in the domain of the target feature, and l is an element
of this set; i iterates over the instances di in increasing distance from the query q; ti is
the value of the target feature for instance di; and �pti; lq is the Kronecker delta function,
which takes two parameters and returns 1 if they are equal and 0 otherwise. The reason we
multiply by the Kronecker delta function is to ensure that in calculating the score for each
of the candidate target levels, we include only the weights for the instances whose target
feature value matches that level.

When we weight the contribution to a prediction of each of the neighbors by the recipro-
cal of the distance to the query, we can actually set k to be equal to the size of the training
set and therefore include all the training instances in the prediction process. The issue of
losing the true pattern of the data is less acute now because the training instances that are
very far away from the query naturally won’t have much of an effect on the prediction.

Figure 5.7(b)[194] shows the decision boundary for a weighted k nearest neighbor model
for the dataset in Table 5.4[191] with k � 21 (the size of the dataset) and weights computed
using the reciprocal of the squared distance. One of the most striking things about this plot
is that the top-right region of the feature space again belongs to the no region. This may
not be a good thing if this instance is due to noise in the data, and this demonstrates that
there is no silver bullet solution to handling noise in datasets. This is one of the reasons
why creating a data quality report7 and spending time on cleaning the dataset is such an
important part of any machine learning project. That said, there are some other features of
this plot that are encouraging. For example, the size of a no region in the top right of the
feature space is smaller than the corresponding region for the nearest neighbor model with
k � 1 (see Figure 5.4(b)[190]). So by giving all the instances in the dataset a weighted vote,
we have at least reduced the impact of the noisy instance. Also, the decision boundary is
much smoother than the decision boundaries of the other models we have looked at in this
section. This may indicate that the model is doing a better job of modeling the transition
between the different target levels.

Using a weighted k nearest neighbor model does not require that we set k equal to the
size of the dataset, as we did in this example. It may be possible to find a value for k—using
evaluation experiments—that eliminates, or further reduces, the effect of the noise on the
model. As is so often the case in machine learning, fitting the parameters of a model is as
important as selecting which model to use.

7. See Section 3.1[54].
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Finally, it is worth mentioning two situations where this weighted k nearest neighbor
approach can be problematic. The first is if the dataset is very imbalanced, then even with
a weighting applied to the contribution of the training instances, the majority target level
may dominate. The second is when the dataset is very large, which means that computing
the reciprocal of squared distance between the query and all the training instances can
become too computationally expensive to be feasible.

5.4.2 Efficient Memory Search
The fact that the nearest neighbor algorithm stores the entire training dataset in memory has
a negative effect on the time complexity of the algorithm. In particular, if we are working
with a large dataset, the time cost in computing the distances between a query and all the
training instances and retrieving the k nearest neighbors may be prohibitive. Assuming that
the training set will remain relatively stable, this time issue can be offset by investing in
some one-off computation to create an index of the instances that enables efficient retrieval
of the nearest neighbors without doing an exhaustive search of the entire dataset.

The k-d tree,8 which is short for k-dimensional tree, is one of the best known of these
indices. A k-d tree is a balanced binary tree9 in which each of the nodes in the tree
(both interior and leaf nodes) index one of the instances in a training dataset. The tree is
constructed so that nodes that are nearby in the tree index training instances that are nearby
in the feature space.

To construct a k-d tree, we first pick a feature and split the data into two partitions using
the median value of this feature.10 We then recursively split each of the two new partitions,
stopping the recursion when there are fewer than two instances in a partition. The main
decision to be made in this process is how to select the feature to split on. The most
common way to do this is to define an arbitrary order over the descriptive features before
we begin building the tree. Then, using the feature at the start of the list for the first split,
we select the next feature in the list for each subsequent split. If we get to a point where
we have already split on all the features, we go back to the start of the feature list.

Every time we partition the data, we add a node with two branches to the k-d tree. The
node indexes the instance that had the median value of the feature, the left branch holds
all the instances that had values less than the median, and the right branch holds all the

8. The primary papers introducing k-d trees are Bentley (1975) and Friedman et al. (1977). Also note that the
k here has no relationship with the k used in k nearest neighbor. It simply specifies the number of levels in the
depth of the tree, which is arbitrary and typically determined by the algorithm that constructs the tree.

9. A binary tree is simply a tree in which every node in the tree has at most two branches.

10. We use the median value as the splitting threshold because it is less susceptible to the influence of outliers than
the mean, and this helps keep the tree as balanced as possible—having a balanced tree helps with the efficiency
in retrieval. If more than one instance in a dataset has the median value for a feature we are splitting on, then we
select one of these instances to represent the median and place the other instances with the median value in the
set containing the instances whose values are greater than the median.
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instances that had values greater than the median. The recursive partitioning then grows
each of these branches in a depth-first manner.

Each node in a k-d tree defines a boundary that partitions the feature space along the
median value of the feature the data was split on at that node. Technically these boundaries
are hyperplanes11 and, as we shall see, play an important role when we are using the k-d
tree to find the nearest neighbor for a query. In particular, the hyperplane at a node defines
the boundary between the instances stored on each of the subtrees below the node. We will
find this useful when we are trying to decide whether to search both branches of a node
when we are looking for the nearest neighbor or whether we can prune one of them.

Figure 5.8[198] illustrates the creation of the first two nodes of a k-d tree for the college
athlete dataset in Table 5.4[191]. In generating this figure we have assumed that the algorithm
selected the features to split on using the following ordering over the features: SPEED,
AGILITY. The non-leaf nodes in the trees list the ID of the instance the node indexes and
the feature and value pair that define the hyperplane partition on the feature space defined
by the node. Figure 5.9(a)[199] shows the complete k-d tree generated for the dataset, and
Figure 5.9(b)[199] shows the partitioning of the feature space as defined by the k-d tree. The
lines in this figure indicate the hyperplanes partitioning the feature space that were created
by the splits encoded in the non-leaf nodes in the tree. The heavier the weight of the line
used to plot the hyperplane, the earlier in the tree the split occurred.

Once we have stored the instances in a dataset in a k-d tree, we can use the tree to quickly
retrieve the nearest neighbor for a query instance. Algorithm 3[200] lists the algorithm we
use to retrieve the nearest neighbor for a query. The algorithm starts by descending through
the tree from the root node, taking the branch at each interior node that matches the value
of the query for the feature tested at that node, until it comes to a leaf node (Line 3 of the
algorithm). The algorithm stores the instance indexed by the leaf node in the best variable
and sets the best-distance variable to the distance between the instance indexed by the
leaf node and the query instance (Lines 5, 6, and 7). Unfortunately, there is no guarantee
that this instance will be the nearest neighbor, although it should be a good approximate
neighbor for the query. So the algorithm then searches the tree looking for instances that
are closer to the query than the instance stored in best (Lines 4-11 of the algorithm control
this search).

At each node encountered in the search, the algorithm does three things. First, it checks
that the node is not NULL. If this is the case, then the algorithm has reached the parent node
of the root of the tree and should terminate (Line 4) by returning the instance stored in best
(Line 12). Second, the algorithm checks if the instance indexed by the node is closer to the
query than the instance at the current best node. If it is, best and best-distance are updated

11. A hyperplane is a geometric concept that generalizes the idea of a plane into different dimensions. For
example, a hyperplane in 2D space is a line and in a 3D space is a plane.
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Figure 5.8
(a) The k-d tree generated for the dataset in Table 5.4[191] after the initial split using the SPEED feature
with a threshold of 4:5; (b) the partitioning of the feature space by the k-d tree in (a); (c) the k-d tree
after the dataset at the left child of the root has been split using the AGILITY feature with a threshold
of 5:5; and (d) the partitioning of the feature space by the k-d tree in (c).

to reflect this (Lines 5, 6, and 7). Third, the algorithm chooses which node it should move
to next: the parent of the node or a node in the subtree under the other branch of the node
(Lines 8, 9, 10, and 11).

The decision of which node to move to next is made by checking if any instances in-
dexed by nodes in the subtree on the other branch of the current node could be the nearest
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Figure 5.9
(a) The final k-d tree generated for the dataset in Table 5.4[191]; and (b) the partitioning of the feature
space defined by this k-d tree.

neighbor. The only way that this can happen is if there is at least one instance on the other
side of the hyperplane boundary that bisects the node that is closer to the query than the
current best-distance. Fortunately, because the hyperplanes created by the k-d tree are all
axis-aligned, the algorithm can test for this condition quite easily. The hyperplane bound-
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Algorithm 3 Pseudocode description of the k-d tree nearest neighbor retrieval algorithm.

Require: query instance q and a k-d tree kdtree
1: best = null
2: best-distance =8
3: node = descendTree(kdtree,q)
4: while node! = NULL do
5: if distance(q,node)   best-distance then
6: best = node
7: best-distance = distance(q,node)
8: end if
9: if boundaryDist(q, node)   best-distance then

10: node = descendtree(node,q)
11: else
12: node = parent(node)
13: end if
14: end while
15: return best

ary bisecting a node is defined by the value used to split the descriptive feature at the node.
This means that we only need to test whether the difference between the value for this
feature for the query instance and the value for this feature that defines the hyperplane is
less than the best-distance (Line 8). If this test succeeds, the algorithm descends to a leaf
node of this subtree, using the same process it used to find the original leaf node (Line
9). If this test fails, the algorithm ascends the tree to the parent of the current node and
prunes the subtree containing the region on the other side of the hyperplane without testing
the instances in that region (Line 11). In either case, the search continues from the new
node as before. The search finishes when it reaches the root node and both its branches
have been either searched or pruned. The algorithm returns the instance stored in the best
variable as the nearest neighbor.

We can demonstrate how this retrieval algorithm works by showing how the algorithm
finds the nearest neighbor for a query instance with SPEED � 6:00 and AGILITY � 3:50.
Figure 5.10(a)[201] illustrates the first stage of the retrieval of the nearest neighbor. The
bold lines show the path taken to descend the tree from the root to a leaf node based on
the values of the query instance (use Figure 5.9(a)[199] to trace this path in detail). This
leaf node indexes instance d12 (SPEED � 5:00, AGILITY � 2:50). Because this is the
initial descent down the tree, best is automatically set to d12, and best-distance is set to the
distance between instance d12 and the query, which is 1:4142 (we use Euclidean distance
throughout this example). At this point the retrieval process will have executed Lines 1–7
of the algorithm.
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Figure 5.10
(a) The path taken from the root node to a leaf node when we search the tree with a query SPEED �

6:00, AGILITY � 3:50; and (b) the ? marks the location of the query, and the dashed circle plots the
extent of the target, and for convenience in the discussion, we have labeled some of the nodes with
the IDs of the instances they index (12, 15, 18, and 21).

Figure 5.10(b)[201] illustrates the location of the query in the feature space (the ?). The
dashed circle centered on the query location has a radius equal to the best-distance. We
can see in Figure 5.10(b)[201] that this circle intersects with the triangle marking the location
of d12, which is currently stored in best (i.e., it is our current best guess for the nearest
neighbor). This circle covers the area in the feature space that we know must contain all
the instances that are closer to the query than best. Although this example is just two
dimensional, the k-d tree algorithm can work in a many dimensional feature space, so we
will use the term target hypersphere12 to denote the region around the query that is inside
the best-distance. We can see in Figure 5.10(b)[201] that instance d12 is not the true nearest
neighbor to the query—several other instances are inside the target hypersphere.

The search process must now move to a new node (Lines 8, 9, 10, and 11). This move is
determined by Line 8, which checks if the distance between the query and the hyperplane13

defined by the current node is less than the value of best-distance. In this case, however,

12. Similar to a hyperplane, a hypersphere is a generalization of the geometric concept of a sphere across multiple
dimensions. Hence, in a 2D space the term hypersphere denotes a circle, in 3D it denotes a sphere, and so on.

13. Recall that each non-leaf node in the tree indexes an instance in the dataset and also defines a hyperplane that
partitions the feature space. For example, the horizontal and vertical lines in Figure 5.9(b)[199] plot the hyperplanes
defined by the non-leaf nodes of the k-d tree shown in Figure 5.9(a)[199].
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the current node is a leaf node, so it does not define a hyperplane on the feature space. As
a result, the condition checked in Line 8, fails and the search moves to the parent node of
the current node (Line 11).

This new node indexes d15. The node is not NULL, so the while loop on Line 4 suc-
ceeds. The distance between instance d15 and the query instance is 3:0208, which is not
less than the current value of best-distance, so the if statement on Line 5 will fail. We can
see this easily in Figure 5.10(b)[201], as d15 is well outside the target hypersphere. The search
will then move to a new node (Lines 8, 9, 10, and 11). To calculate the distance between
the query instance and the hyperplane defined by the node indexing d15 (the boundaryDist
function on Line 8), we use only the AGILITY feature, as it is the splitting feature at this
node. This distance is 2:75, which is greater than best-distance (we can see this in Fig-
ure 5.10(b)[201], as the hyperplane defined at the node indexing d15 does not intersect with
the target hypersphere). This means that the if statement on Line 8 fails, and the search
moves to the parent of the current node (Line 11).

This new node indexes d21, which is not NULL, so the while loop on Line 4 succeeds.
The distance between the query instance and d21 is 0:9014, which is less than the value
stored in best-distance (we can see this in Figure 5.10(b)[201], as d21 is inside the target
hypersphere). Consequently, the if statement on Line 5 succeeds, and best is set to d21,
and best-distance is set to 0:9014 (Lines 6 and 7). Figure 5.11(a)[203] illustrates the extent
of the revised target hypersphere once these updates have been made.

The if statement on Line 8, which tests the distance between the query and the hyper-
plane defined by the current best node, is executed next. The distance between the query
instance and the hyperplane defined by the node that indexes instance d21 is 0:75 (recall
that because the hyperplane at this node is defined by the SPEED value of 6:75, we only
compare this to the SPEED value of the query instance, 6:00). This distance is less than the
current best-distance (in Figure 5.11(a)[203], the hyperplane defined by the node that indexes
instance d21 intersects with the target hypersphere). The if statement on line 8 will suc-
ceed, and the search process will descend down the other branch of the current node (Line
9), because there is possibly an instance closer than the current best instance stored down
this branch.

It is obvious from Figure 5.11(a)[203] that the search process will not find any instances
closer to the query than d21, nor are there any other hyperplanes that intersect with the
target hypersphere. So the rest of the search process will involve a descent down to the
node, indexing d18 and a direct ascent to the root node where the search process will then
terminate and return d21 as the nearest neighbor (we will skip the details of these steps).
Figure 5.11(b)[203] illustrates the parts of the k-d tree that were checked or pruned during
the search process.

In this example, using a k-d tree saved us calculating the distance between the query
node and 14 of the instances in the dataset. This is the benefit of using a k-d tree and
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Figure 5.11
(a) The target hypersphere after instance d21 has been stored as best, and best-distance has been
updated; and (b) the extent of the search process: white nodes were checked by the search process,
and the node with the bold outline indexed instance d21, which was returned as the nearest neighbor
to the query. Grayed-out branches indicate the portions of the k-d tree pruned from the search.

becomes especially apparent when datasets are very large. However, using a k-d tree is not
always appropriate; k-d trees are reasonably efficient when there are a lot more instances
than there are features. As a rough rule of thumb, we should have around 2m instances
for m descriptive features. Once this ratio drops, the efficiency of the k-d tree diminishes.
Other approaches to efficient memory access have been developed, for example, locality
sensitivity hashing, R-Trees, B-Trees, M-Trees, and VoRTrees, among others. All these
approaches are similar to k-d trees in that they are trying to set up indexes that enable
efficient retrieval from a dataset. Obviously, the differences between them make them
more or less appropriate for a given dataset, and it often requires some experiments to
figure out which is the best one for a given problem.

We can extend this algorithm to retrieve the k nearest neighbors by modifying the search
to use distance of the kth closest instance found as best-distance. We can also add instances
to the tree after if has been created. This is important because one of the key advantages of
a nearest neighbor approach is that it can be updated with new instances as more labeled
data arrive. To add a new instance to the tree, we start at the root node and descend to
a leaf node, taking the left or right branch of each node depending on whether the value
of the instance’s feature is less than or greater than the splitting value used at the node.
Once we get to a leaf node, we simply add the new instance as either the left or the right
child of the leaf node. Unfortunately, adding nodes in this way results in the tree becoming
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Table 5.5
A dataset listing salary and age information for customers and whether they purchased a product.

ID SALARY AGE PURCH

1 53,700 41 no
2 65,300 37 no
3 48,900 45 yes
4 64,800 49 yes
5 44,200 30 no

ID SALARY AGE PURCH

6 55,900 57 yes
7 48,600 26 no
8 72,800 60 yes
9 45,300 34 no

10 73,200 52 yes

unbalanced, which can have a detrimental effect on the efficiency of the tree. So if we
add a lot of new instances, we may find that the tree has become too unbalanced and that
we will need to construct a new tree from scratch using the extended dataset to restore the
efficiency of the retrieval process.

5.4.3 Data Normalization
A financial institution is planning a direct marketing campaign to sell a pension product to
its customer base. In preparation for this campaign, the financial institution has decided
to create a nearest neighbor model using a Euclidean distance metric to predict which
customers are most likely to respond to direct marketing. This model will be used to
target the marketing campaign only to those customers who are most likely to purchase the
pension product. To train the model, the institution has created a dataset from the results
of previous marketing campaigns that list customer information—specifically the annual
salary (SALARY) and age (AGE) of the customer—and whether the customer bought a
product after they had been contacted via a direct marketing message (PURCH). Table
5.5[204] lists a sample from this dataset.

Using this nearest neighbor model, the marketing department wants to decide whether
they should contact a customer with the following profile: SALARY � 56;000 and AGE �
35. Figure 5.12(a)[205] presents a plot of the feature space defined by the SALARY and AGE

features, containing the dataset in Table 5.5[204]. The location of the query customer in the
feature space is indicated by the ?. From inspecting Figure 5.12(a)[205], it would appear as if
instance d1—which has a target level no—is the closest neighbor to the query. So we would
expect that the model would predict no and that the customer would not be contacted.

The model, however, will actually return a prediction of yes, indicating that the customer
should be contacted. We can analyze why this happens if we examine the Euclidean dis-
tance computations between the query and the instances in the dataset. Table 5.6[206] lists
these distances when we include both the SALARY and AGE features, only the SALARY

features, and only the AGE feature in the distance calculation. The nearest neighbor model
uses both the SALARY and AGE features when it calculates distances to find the nearest
neighbor to the query. The SALARY and AGE section of Table 5.6[206] lists these distances
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Figure 5.12
(a) The feature space defined by the SALARY and AGE features in Table 5.5[204]; and (b) the normal-
ized SALARY and AGE feature space based on the normalized data in Table 5.7[208]. The instances
are labeled with their IDs; triangles represent instances with the no target level; and crosses repre-
sent instances with the yes target level. The location of the query SALARY = 56,000, AGE = 35 is
indicated by the ?.

and the ranking that the model applies to the instances in the dataset using them. From the
rankings we can see that the nearest neighbor to the query is instance d6 (indicated by its
rank of 1). Instance d6 has a target value of yes, and this is why the model will return a
positive prediction for the query.

Considering the distribution of the instances in the feature space as depicted in Figure
5.12(a)[205], the result that instance d6 is the nearest neighbor to the query is surprising.
Several other instances appear to be much closer to the query, and importantly, several of
these instances have a target level of no, for example, instance d1. Why do we get this
strange result?

We can get a hint about what is happening by comparing the distances computed using
both the SALARY and AGE features with the distances computed using the SALARY feature
only, that listed in the SALARY Only section of Table 5.6[206]. The distances calculated using
only the SALARY feature are almost exactly the same as the distances calculated using both
the SALARY and AGE features. This is happening because the salary values are much larger
than the age values. Consequently, the SALARY feature dominates the computation of the
Euclidean distance whether we include the AGE feature or not. As a result, AGE is being
virtually ignored by the metric. This dominance is reflected in the ranking of the instances
as neighbors. In Table 5.6[206], if we compare the rankings based on SALARY and AGE with
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Table 5.6
The dataset from Table 5.5[204] with the Euclidean distance between each instance and the query
SALARY = 56,000, AGE = 35 when we use both the SALARY and AGE features, just the SALARY

feature, and just the AGE feature.

Dataset SALARY and AGE SALARY Only AGE Only
ID SALARY AGE PURCH Dist. Rank Dist. Rank Dist. Rank
1 53,700 41 no 2,300.0078 2 2,300 2 6 4
2 65,300 37 no 9,300.0002 6 9,300 6 2 2
3 48,900 45 yes 7,100.0070 3 7,100 3 10 6
4 64,800 49 yes 8,800.0111 5 8,800 5 14 7
5 44,200 30 no 11,800.0011 8 11,800 8 5 5
6 55,900 57 yes 102.3914 1 100 1 22 9
7 48,600 26 no 7,400.0055 4 7,400 4 9 3
8 72,800 60 yes 16,800.0186 9 16,800 9 25 10
9 45,300 34 no 10,700.0000 7 10,700 7 1 1
10 73,200 52 yes 17,200.0084 10 17,200 10 17 8

The Rank columns rank the distances of each instance to the query (1 is closest, 10 is farthest away).

the rankings based solely on SALARY, we see that the values in these two columns are
identical. The model is using only the SALARY feature and is ignoring the AGE feature
when it makes predictions.

This dominance of the distance computation by a feature based solely on the fact that it
has a larger range of values than other features is not a good thing. We do not want our
model to bias toward a particular feature simply because the values of that feature happen
to be large relative to the other features in the dataset. If we allowed this to happen, then
our model will be affected by accidental data collection factors, such as the units used to
measure something. For example, in a model that is sensitive to the relative size of the
feature values, a feature that was measured in millimeters would have a larger effect on the
resulting model predictions than a feature that was measured in meters.14 Clearly we need
to address this issue.

Fortunately, we have already discussed the solution to this problem. The problem is
caused by features having different variance. In Section 3.6.1[87] we discussed variance
and introduced a number of normalization techniques that normalize the variances in a set
of features. The basic normalization technique we introduced was range normalization,15

14. Figure 5.12(a)[205] further misleads us because when we draw scatter plots, we scale the values to make the
plot fit into a square-shaped image. If we were to plot the axis for the SALARY feature to the same scale as the
AGE feature in Figure 5.12(a)[205], it would stretch over almost 400 pages.

15. For convenience, we repeat Equation (3.7)[87] for range normalization

a
1
i �

ai � min paq
max paq � min paq

� phigh� lowq � low
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and we can apply it to the pension plan prediction dataset to normalize the variance in the
SALARY and AGE features. For example, range normalization using the range r0; 1s is
applied to instance d1 from Table 5.5[204] as follows:

SALARY:
�

53;700� 44;200
73;200� 44;200



� p1:0� 0:0q � 0 � 0:3276

AGE:
�

41� 26
60� 26



� p1:0� 0:0q � 0 � 0:4412

Table 5.7[208] lists the dataset from Table 5.5[204] after we have applied range normalization
using a range of r0; 1s to the SALARY and AGE features. When we normalize the features
in a dataset, we also need to normalize the features in any query instances using the same
normalization process and parameters. We normalize the query instance with SALARY

=56;000 and AGE = 35 as follows:

SALARY:
�

56;000� 44;200
73;200� 44;200



� p1:0� 0:0q � 0 � 0:4069

AGE:
�

35� 26
60� 26



� p1:0� 0:0q � 0 � 0:2647

Figure 5.12(b)[205] shows a plot of the feature space after the features have been normalized.
The major difference between Figure 5.12(a)[205] and Figure 5.12(b)[205] is that the axes are
scaled differently. In Figure 5.12(a)[205] the SALARY axis ranged from 45;000 to 75;000,
and the AGE axis ranged from 25 to 60. In Figure 5.12(b)[205], however, both axes range
from 0 to 1. Although this may seem like an insignificant difference, the fact that both
features now cover the same range has a huge impact on the performance of a similarity-
based prediction model that uses this data.

Table 5.7[208] also repeats the calculations from Table 5.6[206] using the normalized dataset
and the normalized query instance. In contrast with Table 5.6[206], where there was a close
match between the SALARY and AGE distances and the SALARY only distances and related
rankings, in Table 5.7[208] there is much more variation between the SALARY and AGE

distances and the SALARY only distances. This increased variation is mirrored in the fact
that the rankings based on the distances calculated using the SALARY and AGE features
are quite different from the rankings based on the distances calculated using SALARY only.
These changes in the rankings of the instances is a direct result of normalizing the features
and reflects the fact that the distance calculations are no longer dominated by the SALARY

feature. The nearest neighbor model is now factoring both SALARY and AGE into the
ranking of the instances. The net effect of this is that instance d1 is now ranked as the
nearest neighbor to the query—this is in line with the feature space representation in Figure
5.12(b)[205]. Instance d1 has a target level of no, so the nearest neighbor model now predicts
a target level of no for the query, meaning that the marketing department won’t include the
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Table 5.7
The updated version of Table 5.6[206] once we have applied range normalization to the SALARY and
AGE features in the dataset and to the query instance.

Normalized Dataset SALARY and AGE SALARY Only AGE Only
ID SALARY AGE PURCH Dist. Rank Dist. Rank Dist. Rank
1 0.3276 0.4412 no 0.1935 1 0.0793 2 0.17647 4
2 0.7276 0.3235 no 0.3260 2 0.3207 6 0.05882 2
3 0.1621 0.5588 yes 0.3827 5 0.2448 3 0.29412 6
4 0.7103 0.6765 yes 0.5115 7 0.3034 5 0.41176 7
5 0.0000 0.1176 no 0.4327 6 0.4069 8 0.14706 3
6 0.4034 0.9118 yes 0.6471 8 0.0034 1 0.64706 9
7 0.1517 0.0000 no 0.3677 3 0.2552 4 0.26471 5
8 0.9862 1.0000 yes 0.9361 10 0.5793 9 0.73529 10
9 0.0379 0.2353 no 0.3701 4 0.3690 7 0.02941 1
10 1.0000 0.7647 yes 0.7757 9 0.5931 10 0.50000 8

The Rank columns rank the distances of each instance to the query (1 is closest, 10 is farthest away).

customer in their list of direct marketing prospects. This is the opposite of the prediction
made using the original dataset.

In summary, distance computations are sensitive to the value ranges of the features in
the dataset. This is something we need to control for when we are creating a model, as
otherwise we are allowing an unwanted bias to affect the learning process. When we nor-
malize the features in a dataset, we control for the variation across the variances of features
and ensure that each feature can contribute equally to the distance metric. Normalizing the
data is an important thing to do for almost all machine learning algorithms, not just nearest
neighbor.

5.4.4 Predicting Continuous Targets
It is relatively easy to adapt the k nearest neighbor approach to handle continuous target
features. To do this we simply change the approach to return a prediction of the average
target value of the nearest neighbors, rather than the majority target level. The prediction
for a continuous target feature by a k nearest neighbor model is therefore

Mkpqq �
1
k

k‚

i�1

ti (5.7)

where Mkpqq is the prediction returned by the model using parameter value k for the query
q, i iterates over the k nearest neighbors to q in the dataset, and ti is the value of the target
feature for instance i.

Let’s look at an example. Imagine that we are dealers in rare whiskey, and we would
like some assistance in setting the reserve price for bottles of whiskey that we are selling at
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Table 5.8
A dataset of whiskeys listing the age (in years), the rating (between 1 and 5, with 5 being the best),
and the bottle price of each whiskey.

ID AGE RATING PRICE

1 0 2 30.00
2 12 3.5 40.00
3 10 4 55.00
4 21 4.5 550.00
5 12 3 35.00
6 15 3.5 45.00
7 16 4 70.00
8 18 3 85.00
9 18 3.5 78.00
10 16 3 75.00

ID AGE RATING PRICE

11 19 5 500.00
12 6 4.5 200.00
13 8 3.5 65.00
14 22 4 120.00
15 6 2 12.00
16 8 4.5 250.00
17 10 2 18.00
18 30 4.5 450.00
19 1 1 10.00
20 4 3 30.00

auction. We can use a k nearest neighbor model to predict the likely sale price of a bottle
of whiskey based on the prices achieved by similar bottles at previous auctions.16 Table
5.8[209] lists a dataset of whiskeys described by the RATING they were given in a popular
whiskey enthusiasts magazine and their AGE (in years). The PRICE achieved at auction by
the each bottle is also included.

One thing that is immediately apparent in Table 5.8[209] is that the AGE and RATING fea-
tures have different ranges. We should normalize these features before we build a model.
Table 5.9[210] lists the whiskey dataset after the descriptive features have been normalized,
using range normalization to the range r0; 1s.

Let’s now make a prediction using this model for a two-year-old bottle of whiskey that
received a magazine rating of 5. Having normalized the dataset, we first need to normalize
the descriptive feature values of this query instance using the same normalization process.
This results in a query with AGE � 0:0667 and RATING � 1:00. For this example we set
k � 3. Figure 5.13[211] shows the neighborhood that this defines around the query instance.
The three closest neighbors to the query are instances d12, d16 and d3. Consequently, the
model will return a price prediction that is the average price of these three neighbors:

M3ph0:0667; 1:00iq �
200:00� 250:00� 55:00

3
� 168:33

We can also use a weighted k nearest neighbor model to make predictions for contin-
uous targets that take into account the distance from the query instance to the neighbors
(just like we did for categorical target features in Section 5.4.1[191]). To do this, the model

16. The example given here is based on artificial data generated for the purposes of this book. Predicting the prices
of assets such as whiskey or wine using machine learning is, however, done in reality. For example, Ashenfelter
(2008) deals with predicting wine prices and was covered in Ayres (2008).
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Table 5.9
The whiskey dataset after the descriptive features have been normalized.

ID AGE RATING PRICE

1 0.0000 0.25 30.00
2 0.4000 0.63 40.00
3 0.3333 0.75 55.00
4 0.7000 0.88 550.00
5 0.4000 0.50 35.00
6 0.5000 0.63 45.00
7 0.5333 0.75 70.00
8 0.6000 0.50 85.00
9 0.6000 0.63 78.00
10 0.5333 0.50 75.00

ID AGE RATING PRICE

11 0.6333 1.00 500.00
12 0.2000 0.88 200.00
13 0.2667 0.63 65.00
14 0.7333 0.75 120.00
15 0.2000 0.25 12.00
16 0.2667 0.88 250.00
17 0.3333 0.25 18.00
18 1.0000 0.88 450.00
19 0.0333 0.00 10.00
20 0.1333 0.50 30.00

prediction equation in Equation (5.7)[208] is changed to

Mkpqq �

k‚

i�1

1
distpq;diq2

� ti

k‚

i�1

1
distpq;diq2

(5.8)

where distpq;diq is the distance between the query instance and its ith nearest neighbor.
This is a weighted average of the target values of the k nearest neighbors, as opposed to the
simple average in Equation (5.7)[208].

Table 5.10[212] shows the calculation of the numerator and denominator of Equation (5.8)[210]

for our whiskey bottle example, using the normalized dataset with k set to 20 (the full size
of the dataset). The final prediction for the price of the bottle of whiskey we plan to sell is

16;249:85
99:2604

� 163:71

The predictions using the k � 3 nearest neighbor model and the weighted k nearest
neighbor model with k set to the size of the dataset are quite similar: 168:33 and 163:71.
So, which model is making the better prediction? In this instance, to find out which model
is best, we would really need to put the bottle of whiskey up for auction and see which
model predicted the closest price. In situations where we have a larger dataset, how-
ever, we could perform evaluation experiments17 to see which value of k leads to the
best-performing model. In general, standard k nearest neighbor models and weighted k
nearest neighbor models will produce very similar results when a feature space is well

17. These are covered in Section 9.4.1[540].
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Figure 5.13
The AGE and RATING feature space for the whiskey dataset. The location of the query instance
is indicated by the ? symbol. The circle plotted with a dashed line demarcates the border of the
neighborhood around the query when k � 3. The three nearest neighbors to the query are labeled
with their ID values.

populated. For datasets that only sparsely populate the feature space, however, weighted k
nearest neighbor models usually make more accurate predictions, as they take into account
the fact that some of the nearest neighbors can actually be quite far away.

5.4.5 Other Measures of Similarity
So far we have discussed and used the Minkowski-based Euclidean and Manhattan distance
metrics to compute the similarity between instances in a dataset. There are, however, many
other ways in which the similarity between instances can be measured. In this section we
introduce some alternative measures of similarity and discuss when it is appropriate to use
them. Any of these measures of similarity can simply replace the Euclidean measure we
used in our demonstrations of the nearest neighbor algorithm.

Throughout this section we use the terms similarity and distance almost interchange-
ably, because we often judge the similarity between two instances in terms of the distance
between them in a feature space. The only difference to keep in mind is that when we
use distances, smaller values mean that instances are closer together in a feature space,
whereas when we use similarities, larger values indicate this. We will, however, be specific
in distinguishing between metrics and indexes. Recall that in Section 5.2.2[184] we defined
four criteria that a metric must satisfy: non-negativity, identity, symmetry, and trian-
gular inequality. It is possible, however, to successfully use measures of similarity in
similarity-based models that do not satisfy all four of these criteria. We refer to measures
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Table 5.10
The calculations for the weighted k nearest neighbor prediction.

PRICE �

ID PRICE Distance Weight Weight
1 30.00 0.7530 1.7638 52.92
2 40.00 0.5017 3.9724 158.90
3 55.00 0.3655 7.4844 411.64
4 550.00 0.6456 2.3996 1319.78
5 35.00 0.6009 2.7692 96.92
6 45.00 0.5731 3.0450 137.03
7 70.00 0.5294 3.5679 249.75
8 85.00 0.7311 1.8711 159.04
9 78.00 0.6520 2.3526 183.50
10 75.00 0.6839 2.1378 160.33
11 500.00 0.5667 3.1142 1557.09
12 200.00 0.1828 29.9376 5987.53
13 65.00 0.4250 5.5363 359.86
14 120.00 0.7120 1.9726 236.71
15 12.00 0.7618 1.7233 20.68
16 250.00 0.2358 17.9775 4494.38
17 18.00 0.7960 1.5783 28.41
18 450.00 0.9417 1.1277 507.48
19 10.00 1.0006 0.9989 9.99
20 30.00 0.5044 3.9301 117.90

Totals: 99.2604 16,249.85

of similarity of this type as indexes. Most of the time the technical distinction between a
metric and an index is not that important; we simply focus on choosing the right measure
of similarity for the type of instances we are comparing. It is important, however, to know
if a measure is a metric or an index, as there are some similarity-based techniques that
strictly require measures of similarity to be metrics. For example, the k-d trees described
in Section 5.4.2[196] require that the measure of similarity used be a metric (in particular that
the measure conform to the triangular inequality constraint).

5.4.5.1 Similarity indexes for binary descriptive features There are lots of datasets
that contain binary descriptive features—categorical features that have only two levels. For
example, a dataset may record whether or not someone liked a movie, a customer bought
a product, or someone visited a particular webpage. If the descriptive features in a dataset
are binary, it is often a good idea to use a similarity index that defines similarity between
instances specifically in terms of co-presence or co-absence of features, rather than an
index based on distance.
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Table 5.11
A binary dataset listing the behavior of two individuals on a website during a trial period and whether
they subsequently signed up for the website.

ID PROFILE FAQ HELPFORUM NEWSLETTER LIKED SIGNUP

1 true true true false true yes
2 true false false false false no

To illustrate a series of similarity indexes for binary descriptive features, we will use an
example of predicting upsell in an online service. A common business model for online
services is to allow users a free trial period after which time they have to sign up to a paid
account to continue using the service. These businesses often try to predict the likelihood
that users coming to the end of the trial period will accept the upsell offer to move to
the paid service. This insight into the likely future behavior of a customer can help a
marketing department decide which customers coming close to the end of their trial period
the department should contact to promote the benefits of signup to the paid service.

Table 5.11[213] lists a small binary dataset that a nearest neighbor model could use to
make predictions for this scenario. The descriptive features in this dataset are all binary
and record the following information about the behavior of past customers:

 PROFILE: Did the user complete the profile form when registering for the free trial?
 FAQ: Did the user read the frequently asked questions page?
 HELPFORUM: Did the user post a question on the help forum?
 NEWSLETTER: Did the user sign up for the weekly newsletter?
 LIKED: Did the user Like the website on Facebook?

The target feature, SIGNUP, indicates whether the customers ultimately signed up to the
paid service or not (yes or no).

The business has decided to use a nearest neighbor model to predict whether a current
trial user whose free trial period is about to end is likely to sign up for the paid service.
The query instance, q, describing this user is:

PROFILE = true, FAQ = false, HELPFORUM = true,
NEWSLETTER = false, LIKED = false

Table 5.12[214] presents a pairwise analysis of similarity between the current trial user, q,
and the two customers in the dataset in Table 5.11[213] in terms of

 co-presence (CP), how often a true value occurred for the same feature in both the query
data q and the data for the comparison user (d1 or d2)

 co-absence (CA), how often a false value occurred for the same feature in both the query
data q and the data for the comparison user (d1 or d2)
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Table 5.12
The similarity between the current trial user, q, and the two users in the dataset, d1 and d2, in terms
of co-presence (CP), co-absence (CA), presence-absence (PA), and absence-presence (AP).

q
Pres. Abs.

d1
Pres. CP = 2 PA = 0
Abs. AP = 2 CA = 1

q
Pres. Abs.

d2
Pres. CP = 1 PA = 1
Abs. AP = 0 CA = 3

 presence-absence (PA), how often a true value occurred in the query data q when a false
value occurred in the data for the comparison user (d1 or d2) for the same feature

 absence-presence (AP), how often a false value occurred in the query data q when a true
value occurred in the data for the comparison user (d1 or d2) for the same feature

One way of judging similarity is to focus solely on co-presence. For example, in an
online retail setting, co-presence could capture what two users jointly viewed, liked, or
bought. The Russel-Rao similarity index focuses on this and is measured in terms of the
ratio between the number of co-presences and the total number of binary features consid-
ered:

simRRpq;dq �
CPpq;dq
|q|

(5.9)

where q and d are two instances, |q| is the total number of features in the dataset, and
CPpq;dq measures the total number of co-presences between q and d. Using Russel-Rao,
q has a higher similarity to d1 than to d2:

simRRpq;d1q �
2
5
� 0:4

simRRpq;d2q �
1
5
� 0:2

This means that the current trial user is judged to be more similar to the customer repre-
sented by instance d1 than the customer represented by instance d2.

In some domains co-absence is important. For example, in a medical domain when
judging the similarity between two patients, it may be as important to capture the fact that
neither patient had a particular symptom as it is to capture the symptoms that the patients
have in common. The Sokal-Michener similarity index takes this into account and is
defined as the ratio between the total number of co-presences and co-absences and the
total number of binary features considered:

simS Mpq;dq �
CPpq;dq �CApq;dq

|q|
(5.10)
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Using Sokal-Michener for our online services example q, is judged to be more similar to
instance d2 than instance d1:

simS Mpq;d1q �
3
5
� 0:6

simS Mpq;d2q �
4
5
� 0:8

Sometimes, however, co-absences aren’t that meaningful. For example, we may be in
a retail domain in which there are so many items that most people haven’t seen, listened
to, bought, or visited the vast majority of them, and as a result, the majority of features
will be co-absences. The technical term to describe a dataset in which most of the features
have zero values is sparse data. In these situations we should use a metric that ignores co-
absences. The Jaccard similarity index is often used in these contexts. This index ignores
co-absences and is defined as the ratio between the number of co-presences and the total
number of features, excluding those that record a co-absence between a pair of instances:18

simJpq;dq �
CPpq;dq

CPpq;dq � PApq;dq � APpq;dq
(5.11)

Using Jaccard similarity, the current trial user in the online retail example is judged to be
equally similar to instance d1 and d2:

simJpq;d1q �
2
4
� 0:5

simJpq;d2q �
1
2
� 0:5

The fact that the judgment of similarity between current trial user and the other users
in the dataset changed dramatically depending on which similarity index was employed
illustrates the importance of choosing the correct index for the task. Unfortunately, beyond
highlighting that the Jaccard index is useful for sparse binary data, we cannot give a hard
and fast rule for how to choose between these indexes. As is so often the case in predictive
analytics, making the right choice requires an understanding of the requirements of the
task that we are trying to accomplish and matching these requirements with the features
we want to emphasize in our model.

18. One note of caution: the Jaccard similarity index is undefined for pairs of instances in which all the features
manifest co-absence, because this leads to a division by zero.
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5.4.5.2 Cosine similarity Cosine similarity is an index that can be used as a measure of
the similarity between instances with continuous descriptive features. The cosine similarity
between two instances is the cosine of the inner angle between the two vectors that extend
from the origin of a feature space to each instance. Figure 5.14(a)[218] illustrates the inner
angle, �, between the vector from the origin to two instances in a feature space defined by
two descriptive features, SMS and VOICE.

Cosine similarity is an especially useful measure of similarity when the descriptive fea-
tures describing instances in a dataset are related to each other. For example, in a mobile
telecoms scenario, we could represent customers with just two descriptive features: the
average number of SMS messages a customer sends per month, and the average number
of VOICE calls a customer makes per month. In this scenario it is interesting to take a
perspective on the similarity between customers that focuses on the mix of these two types
of services they use, rather than the volumes of the services they use. Cosine similarity
allows us to do this. The instances shown in Figure 5.14(a)[218] are based on this mobile
telecoms scenario. The descriptive feature values for d1 are SMS = 97 and VOICE = 21,
and for d2 are SMS = 181 and VOICE = 184.

We compute the cosine similarity between two instances as the normalized dot product
of the descriptive feature values of the instances. The dot product is normalized by the
product of the lengths of the descriptive feature value vectors.19 The dot product of two
instances, a and b, defined by m descriptive features is

a � b �
m‚

i�1

pa ris � b risq � pa r1s � b r1sq � � � � � pa rms � b rmsq (5.12)

Geometrically, the dot product can be interpreted as equivalent to the cosine of the angle
between the two vectors multiplied by the length of the two vectors:

a � b �

gffe
m‚

i�1

a ris2 �

gffe
m‚

i�1

b ris2 � cosp�q (5.13)

We can rearrange Equation (5.13)[216] to calculate the cosine of the inner angle between two
vectors as the normalized dot product

a � b
d

m‚

i�1

a ris2 �

d
m‚

i�1

b ris2
� cosp�q

(5.14)

19. The length of a vector, |a|, is computed as the square root of the sum of the elements of the vector squared:
|a| �

°m
i�1 a ris2.
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So, in an m-dimensional feature space, the cosine similarity between two instances a and
b is defined as

simCOS INEpa;bq �
a � b

d
m‚

i�1

a ris2 �

d
m‚

i�1

b ris2

�

m‚

i�1

pa ris � b risq

d
m‚

i�1

a ris2 �

d
m‚

i�1

b ris2

(5.15)

The cosine similarity between instances will be in the range r0; 1s, where 1 indicates max-
imum similarity and 0 indicates maximum dissimilarity.20 We can calculate the cosine
similarity between d1 and d2 from Figure 5.14(a)[218] as

simCOS INEpd1;d1q �
p97� 181q � p21� 184q

?
972 � 212 �

?
1812 � 1842

� 0:8362

Figure 5.14(b)[218] highlights the normalization of descriptive feature values that takes
place as part of calculating cosine similarity. This is different from the normalization
we have looked at elsewhere in this chapter as it takes place within an instance rather than
across all the values of a feature. All instances are normalized so as to lie on a hypersphere
of radius 1:0 with its center at the origin of the feature space. This normalization is what
makes cosine similarity so useful in scenarios in which we are interested in the relative
spread of values across a set of descriptive features rather than the magnitudes of the values
themselves. For example, if we have a third instance with SMS � 194 and VOICE � 42,
the cosine similarity between this instance and d1 will be 1.0, because even though the
magnitudes of their feature values are different, the relationship between the feature values
for both instances is the same: both customers use about four times as many SMS messages
as VOICE calls. Cosine similarity is also an appropriate similarity index for sparse data
with non-binary features (i.e., datasets with lots of zero values) because the dot product
will essentially ignore co-absences in its computation (0� 0 � 0).

5.4.5.3 Mahalanobis distance The final measure of similarity that we will introduce
is the Mahalanobis distance, which is a metric that can be used to measure the similarity
between instances with continuous descriptive features. The Mahalanobis distance is dif-

20. If either vector used to calculate a cosine similarity contains negative feature values, then the cosine similarity
will actually be in the range r�1; 1s. As previously, 1 indicates high similarity, and 0 indicates dissimilarity, but
it can be difficult to interpret negative similarity scores. Negative similarity values can be avoided, however, if we
use range normalization (see Section 3.6.1[87]) to ensure that descriptive feature values always remain positive.
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Figure 5.14
(a) The � represents the inner angle between the vector emanating from the origin to instance d1 and
the vector emanating from the origin to instance d2; and (b) shows d1 and d2 normalized to the unit
circle.

ferent from the other distance metrics we have looked at because it allows us to take into
account how spread out the instances in a dataset are when judging similarities. Figure
5.15[219] illustrates why this is important. This figure shows scatter plots for three bivariate
datasets that have the same central tendency, marked A and located in the feature space
at p50; 50q, but whose instances are spread out differently across the feature space. In all
three cases the question we would like to answer is, are instance B, located at at p30; 70q,
and instance C, located at p70; 70q, likely to be from the same population from which the
dataset has been sampled? In all three figures, B and C are equidistant from A based on
Euclidean distance.

The dataset in Figure 5.15(a)[219] is equally distributed in all directions around A, and
as a result, we can say that B and C are equally likely to be from the same population
as the dataset. The dataset in Figure 5.15(b)[219], however, demonstrates a strong negative
covariance21 between the features. In this context, instance B is much more likely to be
a member of the dataset than instance C. Figure 5.15(c)[219] shows a dataset with a strong
positive covariance, and for this dataset, instance C is much more likely to be a member
than instance B. What these examples demonstrate is that when we are trying to decide
whether a query belongs to a group, we need to consider not only the central tendency

21. Covariance between features means that knowing the value of one feature tells us something about the value
of the other feature. See Section 3.5.2[81] for more information.
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Figure 5.15
Scatter plots of three bivariate datasets with the same center point A and two queries B and C both
equidistant from A; (a) a dataset uniformly spread around the center point; (b) a dataset with negative
covariance; and (c) a dataset with positive covariance.

of the group, but also how spread out the members in a group are. These examples also
highlight that covariance is one way of measuring the spread of a dataset.

The Mahalanobis distance uses covariance to scale distances so that distances along a
direction where the dataset is very spread out are scaled down, and distances along direc-
tions where the dataset is tightly packed are scaled up. For example, in Figure 5.15(b)[219]

the Mahalanobis distance between B and A will be less than the Mahalanobis distance be-
tween C and A, whereas in Figure 5.15(c)[219] the opposite will be true. The Mahalanobis
distance is defined as

Mahalanobispa;bq �
gfffffe
�
a r1s � b r1s ; : : : ; a rms � b rms

�
�
‚�1

�

�

���

a r1s � b r1s
:::

a rms � b rms

�

���
(5.16)

Let’s step through Equation (5.16)[219] bit by bit. First, this equation computes a distance
between two instances a and b, each with m descriptive features. The first big term we
come to in the equation is ra r1s � b r1s ; : : : ; a rms � b rmss. This is a row vector that is
created by subtracting each descriptive feature value of instance b from the corresponding
feature values of a. The next term in the equation,

°�1, represents the inverse covariance
matrix22 computed across all instances in the dataset. Multiplying the difference in feature

22. We explain covariance matrices in Section 3.5.2[81]. The inverse covariance matrix is the matrix such that
when the covariance matrix is multiplied by its inverse, the result is the identity matrix:

°
�
°�1 � I. The
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values by the inverse covariance matrix has two effects. First, the larger the variance of
a feature, the less weight the difference between the values for that feature will contribute
to the distance calculation. Second, the larger the correlation between two features, the
less weight they contribute to the distance. The final element of the equation is a column
vector that is created in the same way as the row vector at the beginning of the equation—
by subtracting each feature value from b from the corresponding feature value from a.
The motivation for using a row vector to hold one copy of the feature differences and a
column vector to hold the second copy of the features differences is to facilitate matrix
multiplication. Now that we know that the row and column vector both contain the dif-
ference between the feature values of the two instances, it should be clear that, similar to
Euclidean distance, the Mahalanobis distance squares the differences of the features. The
Mahalanobis distance, however, also rescales the differences between feature values (using
the inverse covariance matrix) so that all the features have unit variance, and the effects of
covariance are removed.

The Mahalanobis distance can be understood as defining an orthonormal coordinate sys-
tem with (1) an origin at the instance we are calculating the distance from (a in Equa-
tion (5.16)[219]); (2) a primary axis aligned with the direction of the greatest spread in the
dataset; and (3) the units of all the axes scaled so that the dataset has unit variance along
each axis. The rotation and scaling of the axes are the result of the multiplication by the
inverse covariance matrix of the dataset (

°�1). So, if the inverse covariance matrix is the
identity matrix I, then no scaling or rotation occurs. This is why for datasets such as the
one depicted in Figure 5.15(a)[219], where there is no covariance between the features, the
Mahalanobis distance is simply the Euclidean distance.23

Figure 5.16[221] illustrates how the Mahalanobis distance defines this coordinate system,
which is translated, rotated, and scaled with respect to the standard coordinates of a feature
space. The three scatter plots in this image are of the dataset in Figure 5.15(c)[219]. In each
case we have overlaid the coordinate system defined by the Mahalanobis distance from a
different origin. The origins used for the figures were (a) p50; 50q, (b) p63; 71q, and (c)
p42; 35q. The dashed lines plot the axes of the coordinate system, and the ellipses plot the
1, 3, and 5 unit distance contours. Notice how the orientation of the axes and the scaling

identity matrix is a square matrix in which all the elements of the main diagonal are 1, and all other elements are
0. Multiplying any matrix by the identity matrix leaves the original matrix unchanged—this is the equivalent of
multiplying by 1 for real numbers. So the effect of multiplying feature values by an inverse covariance matrix is
to rescale the variances of all features to 1 and to set the covariance between all feature pairs to 0. Calculating
the inverse of a matrix involves solving systems of linear equations and requires the use of techniques from linear
algebra such as Gauss-Jordan elimination or LU decomposition. We do not cover these techniques here, but
they are covered in most standard linear algebra textbooks such as Anton and Rorres (2010).

23. The inverse of the identity matrix I is I. Therefore, if there is no covariance between the features, both the
covariance and the inverse covariance matrix will be equal to I.
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of the distance contours are consistent across the figures. This is because the same inverse
covariance matrix based on the entire dataset was used in each case.
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Figure 5.16
The coordinate systems defined by the Mahalanobis distance using the covariance matrix for the
dataset in Figure 5.15(c)[219] using three different origins: (a) p50; 50q; (b) p63; 71q; and (c) p42; 35q.
The ellipses in each figure plot the 1, 3, and 5 unit distance contours.

Let’s return to the original question depicted in Figure 5.15[219]: Are B and C likely to be
from the same population from which the dataset has been sampled? Focusing on Figure
5.15(c)[219], for this dataset it appears reasonable to conclude that instance C is a member
of the dataset but that B is probably not. To confirm this intuition we can calculate the
Mahalanobis distance between A and B and A and C using Equation (5.16)[219] as

MahalanobispA; Bq

�

gffer50� 30; 50� 70s �
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where the inverse covariance matrix used in the calculations is based on the covariance
matrix24 calculated directly from the dataset:

�
82:39 74:26
74:26 84:22

�

Figure 5.17[222] shows a contour plot of these Mahalanobis distances. In this figure, A
indicates the central tendency of the dataset in Figure 5.15(c)[219], and the ellipses plot the
Mahalanobis distance contours that the distances from A to the instances B and C lie on.
These distance contours were calculated using the inverse covariance matrix for the dataset
and point A as the origin. The result is that instance C is much closer to A than B and so
should be considered a member of the same population as this dataset.
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Figure 5.17
The effect of using a Mahalanobis versus Euclidean distance. A marks the central tendency of the
dataset in Figure 5.15(c)[219]. The ellipses plot the Mahalanobis distance contours from A that B and C
lie on. In Euclidean terms, B and C are equidistant from A; however, using the Mahalanobis distance,
C is much closer to A than B.

24. Section 3.5.2[81] describes the calculation of covariance matrices. The inverse covariance matrix was calcu-
lated using the solve function from the R programming language.
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To use Mahalanobis distance in a nearest neighbor model, we simply use the model
in exactly the same way as described previously but substitute Mahalanobis distance for
Euclidean distance.

5.4.5.4 Summary In this section we have introduced a number of commonly used met-
rics and indexes for judging similarity between instances in a feature space. These are
typically used in situations where a Minkowski distance is not appropriate. For example,
if we are dealing with binary features, it may be more appropriate to use the Russel-Rao,
Sokal-Michener, or Jaccard similarity metric. Or it may be that the features in the dataset
are continuous—typically indicating that a Minkowski distance metric is appropriate—but
that the majority of the descriptive features for each instance have zero values,25 in which
case we may want to use a similarity index that ignores descriptive features with zero values
in both features, for example, cosine similarity. Alternatively, we may be dealing with a
dataset where there is covariance between the descriptive features, in which case we should
consider using the Mahalanobis distance as our measure of similarity. There are many
other indexes and metrics we could have presented, for example, Tanimoto similarity
(which is a generalization of the Jaccard similarity to non-binary data), and correlation-
based approaches such as the Pearson correlation. The key things to remember, however,
are that it is important to choose a similarity metric or index that is appropriate for the
properties of the dataset we are using (be it binary, non-binary, sparse, covariant, etc.) and
second, experimentation is always required to determine which measure of similarity will
be most effective for a specific prediction model.

5.4.6 Feature Selection
Intuitively, adding more descriptive features to a dataset provides more information about
each instance and should result in more accurate predictive models. Surprisingly, however,
as the number of descriptive features in a dataset increases, there often comes a point at
which continuing to add new features to the dataset results in a decrease in the predictive
power of the induced models. The reason for this phenomenon is that, fundamentally, the
predictive power of an induced model is based on one of the following:

1. Partitioning the feature space into regions based on clusters of training instances with
the same target value, and assigning a query located in a region the target value of the
cluster that defines that region.

25. Recall that a dataset in which the majority of descriptive features have zero as the value is known as sparse
data. This often occurs in document classification problems, when a bag-of-words representation is used to
represent documents as the frequency of occurrence of each word in a dictionary (the eponymous bag-of-words).
The bag-of-words representation is covered more in Question 2[236] at the end of this chapter. One problem with
sparse data is that with so few non-zero values, the variation between two instances may be dominated by noise.
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2. Assigning a query a target value interpolated (for instance, by majority vote or aver-
age) from the target values of individual training instances that are near the query in
the feature space.

Both of these strategies depend on a reasonable sampling density of the training in-
stances across the feature space. The sampling density is the average density of training
instances across the feature space. If the sampling density is too low, then large regions of
the feature space do not contain any training instances, and it doesn’t make sense to asso-
ciate such a region with any cluster of training instances or to look for training instances
that are nearby. In such instances a model is essentially reduced to guessing predictions.
We can measure the sampling density across a feature space in terms of the average den-
sity of a unit hypercube26 in the feature space. The density of a unit hypercube is equal
to

density � kp
1
m q (5.17)

where k is the number of instances inside the hypercube, and m is the number of dimensions
of the feature space.

Figure 5.18[226] provides a graphical insight into the relationship between the number of
descriptive features in a dataset and the sampling density of the feature space. Figure
5.18(a)[226] plots a one-dimensional dataset consisting of 29 instances spread evenly be-
tween 0:0 and 3:0. We have marked the unit hypercube covering the interval 0 to 1 in this
figure. The density of this unit hypercube is 10

1
1 � 10 (there are 10 instances inside the

hypercube). If we increase the number of descriptive features, the dimensionality of the
feature space increases. Figures 5.18(b)[226] and 5.18(c)[226] illustrate what happens if we
increase the number of descriptive features in a dataset but do not increase the number of
instances. In Figure 5.18(b)[226] we have added a second descriptive feature, Y, and assigned
each of the instances in the dataset a random Y value in the range r0:0; 3:0s. The instances
have moved away from each other, and the sampling density has decreased. The density of
the marked unit hypercube is now 4

1
2 � 2 (there are only 4 instances inside the hypercube).

Figure 5.18(c)[226] illustrates the distribution of the original 29 instances when we move to a
three-dimensional feature space (each instance has been given a random value in the range
r0:0; 3:0s for the Z feature). It is evident that the instances are getting farther and farther
away from each other, and the feature space is becoming very sparsely populated, with
relatively large areas where there are no or very few instances. This is reflected in a further
decrease in the sampling density. The density of the marked hypercube is 2

1
3 � 1:2599.

Figures 5.18(d)[226] and 5.18(e)[226] illustrate the cost we would have to incur in extra in-
stances if we wished to maintain the sampling density in the dataset in line with each

26. A hypercube is a generalization of the geometric concept of a cube across multiple dimensions. Hence in a
two-dimensional space, the term hypercube denotes a square; in three-dimensional space, it denotes a cube; and
so on. A unit hypercube is a hypercube in which the length of every side is 1 unit.
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increase in the dimensionality of the feature space. In the two-dimensional feature space
in Figure 5.18(d)[226], we have maintained the sampling density (the density of the marked
unit hypercube is 100

1
2 � 10) at the expense of a very large increase in the number of

instances—there are 29 � 29 � 841 instances plotted in this figure. This is quite a dra-
matic increase; however, it gets even more dramatic when we increase from two to three
descriptive features. In Figure 5.18(e)[226] we have, again, maintained the sampling density
(the density of the marked unit hypercube is 1000

1
3 � 10) at the expense of a very large

increase in the number of instances—there are 29 � 29 � 29 � 24;389 instances in this
figure!

So, in order to maintain the sampling density of the feature space as the number of de-
scriptive features increases, we need to dramatically, indeed, exponentially, increase the
number of instances. If we do not do this, then as we continue to increase the dimension-
ality of the feature space, the instances will continue to spread out until we reach a point
in a high-dimensional feature space where most of the feature space is empty. When this
happens, most of the queries will be in locations where none of the training instances are
nearby, and as a result, the predictive power of the models based on these training instances
will begin to decrease. This trade-off between the number of descriptive features and the
density of the instances in the feature space is known as the curse of dimensionality.

Typically, we are not able to increase the number of instances in our dataset, and we face
the scenario of a sparsely populated feature space,27 as illustrated in Figures 5.18(b)[226]

and 5.18(c)[226]. Fortunately, several features of real data can help us to induce reasonable
models in high-dimensional feature spaces.28 First, although real data does spread out,
it doesn’t spread out quite as randomly and quickly as we have illustrated here. Real
instances tend to cluster. The net effect of this is that the distribution of real data tends to
have a lower effective dimensionality than the dimensionality of the feature space. Second,
within any small region or neighborhood of the feature space, real data tends to manifest
a smooth correlation between changes in descriptive feature values and the values of the
target feature. In other words, small changes in descriptive features result in small changes
in the target feature. This means that we can generate good predictions for queries by
interpolating from nearby instances with known target values.

Another factor that can help us deal with the curse of dimensionality is that some learn-
ing algorithms have a natural resistance to the problem. For example, the decision tree
learning algorithms we looked at in the last chapter worked by selecting subsets of features
from which to build predictive trees and so naturally reduce dimensionality. Even these al-
gorithms, however, do eventually succumb to the curse as the dimensionality grows. Other

27. This should not be confused with the concept of sparse data that was introduced earlier.

28. The discussion relating to the features of real data that help with the induction of models in high-dimensional
spaces is based on Bishop (2006), pp. 33–38.
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Figure 5.18
A set of scatter plots illustrating the curse of dimensionality. Across (a), (b), and (c), the number of
instances remains the same, so the density of the marked unit hypercubes decreases as the number
of dimensions increases; (d) and (e) illustrate the cost we must incur, in terms of the number of extra
instances required, if we wish to maintain the density of the instances in the feature space as its
dimensionality increases.

algorithms, such as the nearest neighbor algorithm, which use all the descriptive features
when making a prediction, are particularly sensitive to the curse. The moral here is that
the curse of dimensionality is a problem for all inductive learning approaches, and given
that acquiring new labeled instances is typically not an option, the best way to avoid it is
to restrict the number of descriptive features in a dataset to the smallest set possible, while
still providing the learning algorithm with enough information about the instances to be
able to build a useful model. This is difficult, however, because when we design descrip-
tive features, we tend not to know exactly which ones will be predictive and which ones
will not.
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Fortunately, we can use feature selection29 to help reduce the number of descriptive
features in a dataset to just the subset that is most useful. Before we begin our discussion
of approaches to feature selection, it is useful to distinguish between different types of
descriptive features.

 Predictive: a predictive descriptive feature provides information that is useful in esti-
mating the correct value of a target feature.

 Interacting: by itself, an interacting descriptive feature is not informative about the
value of the target feature. In conjunction with one or more other features, however, it
becomes informative.

 Redundant: a descriptive feature is redundant if it has a strong correlation with another
descriptive feature.

 Irrelevant: an irrelevant descriptive feature does not provide information that is useful
in estimating the value of the target feature.

The goal of any feature selection approach is to identify the smallest subset of descriptive
features that maintains overall model performance. Ideally, a feature selection approach
will return the subset of features that includes the predictive and interacting features while
excluding the irrelevant and redundant features.

The most popular and straightforward approach to feature selection is to rank and
prune. In this approach the features are ranked using a measure of their predictiveness,
and any feature outside the top X% of the features in the list is pruned. The measures of
predictiveness are called filters because they are used to filter apparently irrelevant features
before learning occurs. Technically, a filter can be defined as a heuristic rule that assesses
the predictiveness of a feature using only the intrinsic properties of the data, independently
of the learning algorithm that will use the features to induce the model. For example, we
can use information gain30 as a filter in a rank and prune approach.

Although rank and prune approaches using filters are computationally efficient, they suf-
fer from the fact that the predictiveness of each feature is evaluated in isolation from the
other features in the dataset. This leads to the undesirable result that ranking and pruning
can exclude interacting features and include redundant features.

To find the ideal subset of descriptive features to use to train a model, we could attempt
to build a model using every possible subset, evaluate the performance of all these models,
and select the feature subset that leads to the best model. This is unfeasible, however,
as for d features, there are 2d different possible feature subsets, which is far too many to
evaluate unless d is very small. For example, with just 20 descriptive features, there are
220 � 1;048;576 possible feature subsets. Instead, feature selection algorithms often frame

29. Feature selection is sometimes also known as variable selection.

30. See Section 4.2.3[127].
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Figure 5.19
Feature subset space for a dataset with three features X, Y, and Z.

feature selection as a greedy local search problem, where each state in the search space
specifies a subset of possible features. For example, Figure 5.19[228] illustrates a feature
subset space for a dataset with three descriptive features: X, Y, and Z. In this figure
each rectangle represents a state in the search space that is a particular feature subset. For
instance, the rectangle on the very left represents the feature subset that includes no features
at all, and the rectangle at the top of the second column from the left represents the feature
subset including just the feature X. Each state is connected to all the other states that can
be generated by adding or removing a single feature from that state. A greedy local search
process moves across a feature subset space like this search in order to find the best feature
subset.

When framed as a greedy local search problem, feature selection is defined in terms of
an iterative process consisting of the following components:

1. Subset Generation: This component generates a set of candidate feature subsets that
are successors of the current best feature subset.

2. Subset Selection: This component selects the feature subset from the set of candidate
feature subsets generated by the subset generation component that is the most desir-
able for the search process to move to. One way to do this (similar to the ranking and
pruning approach described previously) is to use a filter to evaluate the predictiveness
of each candidate set of features and select the most predictive one. A more com-
mon approach is to use a wrapper. A wrapper evaluates a feature subset in terms of
the potential performance of the models that can be induced using that subset. This
involves performing an evaluation experiment31 for each candidate feature subset, in

31. We discuss the design of evaluation experiments in detail in Chapter 9[533].
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which a model is induced using only the features in the subset, and its performance
is evaluated. The candidate feature subset that leads to the best-performing model is
then selected. Wrapper approaches are more computationally expensive than filters,
as they involve training multiple models during each iteration. The argument for using
a wrapper approach is that to get the best predictive accuracy, the inductive bias of the
particular machine learning algorithm that will be used should be taken into consider-
ation during feature selection. That said, filter approaches are faster and often result
in models with good accuracy.

3. Termination Condition: This component determines when the search process should
stop. Typically we stop when the subset selection component indicates that none of
the feature subsets (search states) that can be generated from the current feature subset
is more desirable than the current subset. Once the search process is terminated, the
features in the dataset that are not members of the selected feature subset are pruned
from the dataset before the prediction model is induced.

Forward sequential selection is a commonly used implementation of the greedy local
search approach to feature selection. In forward sequential selection, the search starts
in a state with no features (shown on the left of Figure 5.19[228]). In the subset generation
component of forward sequential selection, the successors of the current best feature subset
are the set of feature subsets that can be generated from the current best subset by adding
just a single extra feature. For example, after beginning with the feature subset including
no features, the forward sequential search process generates three feature subsets, each
containing just one of X, Y, or Z (shown in the second column of Figure 5.19[228]). The
subset selection component in forward sequential selection can use any of the approaches
described above and moves the search process to a new feature subset. For example, after
starting with the feature subset including no features, the process will move to the most
desirable of the feature subsets containing just one feature. Forward sequential selection
terminates when no accessible feature subset is better than the current subset.

Backward sequential selection is a popular alternative to forward sequential selection.
In backward sequential selection, we start with a feature subset including all the possible
features in a dataset (shown on the right of Figure 5.19[228]). The successors of the current
best feature subset generated in backward sequential selection are the set of feature subsets
that can be generated from the current best subset by removing just a single extra feature.
Backward sequential selection terminates when no accessible feature subset is better than
or as good as the current subset.

Neither forward nor backward sequential selection consider the effect of adding or re-
moving combinations of features, and as a result, they aren’t guaranteed to find the abso-
lute optimal subset of features. So which approach should we use? Forward sequential
selection is a good approach if we expect lots of irrelevant features in the dataset, because
typically it results in a lower overall computational cost for feature selection due to the fact
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Figure 5.20
The process of model induction with feature selection.

that on average it generates smaller feature subsets. This efficiency gain, however, is at the
cost of the likely exclusion of interacting features. Backward sequential selection has the
advantage that it allows for the inclusion of sets of interacting features that individually
may not be predictive (because all features are included at the beginning), with the extra
computational cost of evaluating larger feature subsets. So if model performance is more
important than computational considerations, backward sequential selection may be the
better option; otherwise use forward sequential selection.

Figure 5.20[230] illustrates how filter selection fits into the model induction process. It
is important to remember that feature selection can be used in conjunction with almost
any machine learning algorithm, not just similarity-based approaches. Feature selection
is appropriate when there are large numbers of features, so we do not present a worked
example here. We do, however, discuss the application of feature selection in the case
study in Chapter 13[703].

5.5 Summary

Similarity-based prediction models attempt to mimic a very human way of reasoning by
basing predictions for a target feature value on the most similar instances in memory. The
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fact that similarity-based models attempt to mimic a way of reasoning that is natural to
humans makes them easy to interpret and understand. This advantage should not be under-
estimated. In a business context where people are using models to inform decision making,
being able to understand how the model works gives people more confidence in the model
and, hence, in the insight that it provides.

The standard approach to implementing a similarity-based prediction model is the near-
est neighbor algorithm. This algorithm is built on two fundamental concepts: (1) a fea-
ture space, and (2) measures of similarity between instances within the feature space. In
this chapter we presented a range of measures of similarity, including distance metrics
(such as the Euclidean, Manhattan, and Mahalanobis) and similarity indexes (such as
the Russel-Rao, Sokal-Michener, Jaccard, and Cosine). Each of these measures is suit-
able for different types of data, and matching the appropriate measure to the data is an
important step in inducing an accurate similarity-based prediction model.

A point that we didn’t discuss in this chapter is that it is possible to create custom mea-
sures for datasets with both continuous and categorical descriptive features by combining
measures. For example, we might use a Euclidean distance metric to handle the continuous
features in a dataset and the Jaccard similarity index to handle the categorical features. The
overall measure of similarity could then be based on a weighted combination of the two.
By combining measures in this way, we can apply nearest neighbor models to any dataset.

Custom metrics aside, the standard distance metrics and similarity indexes weight all
features equally. Consequently, the predictions made by a nearest neighbor model are
based on the full set of descriptive features in a dataset. This is not true of all prediction
models. For example, the predictions made by decision tree models are based on the subset
of descriptive features tested on the path from the root of the tree to the leaf node that
specifies the prediction. The fact that nearest neighbor models use the full set of descriptive
features when making a prediction makes them particularly sensitive to the occurrence of
missing descriptive feature values. In Section 3.4[69] we introduced a number of techniques
for handling missing values, and particular care should be taken to handle missing values
if a nearest neighbor model is being used. The same is true for large range variations across
the descriptive features in a dataset and normalization techniques (like those described in
Section 3.6.1[87]) should almost always be applied when nearest neighbor models are used.

Nearest neighbor models are essentially a composition of a set of local models (recall
our discussion on Voronoi tessellation) with the predictions made being a function of the
target feature value of the instance in the dataset closest to the query. As a result, these
models are very sensitive to noise in the target feature. The easiest way to solve this
problem is to employ a k nearest neighbor model, which uses a function of the target
feature values of the k closest instances to a query. Care must be taken, however, when
selecting the parameter k, particularly when working with imbalanced datasets.
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Nearest neighbor models are also sensitive to the presence of redundant and irrelevant
descriptive features in training data. Consequently, feature selection is a particularly im-
portant process for nearest neighbor algorithms. Feature selection excludes redundant and
irrelevant features from the induction process and by doing so alleviates the curse of di-
mensionality. The fact that we have emphasized feature selection in this chapter does not
mean that it is not important to predictive analytics in general. The issue with redundant
and irrelevant features is inherent in any large dataset, and the feature selection techniques
described in this chapter are generally applicable when any type of machine learning algo-
rithm is being used.

Finally, the nearest neighbor algorithm is what is known as a lazy learner. This con-
trasts with eager learners, such as the information-based (Chapter 4[117]), probability-based
(Chapter 6[243]), and error-based (Chapter 7[311]) approaches to machine learning described
in other chapters in this book. The distinction between easy learners and lazy learners
is based on when the algorithm abstracts from the data. The nearest neighbor algorithm
delays abstracting from the data until it is asked to make a prediction. At this point the
information in the query is used to define a neighborhood in the feature space, and a pre-
diction is made based on the instances in this neighborhood. Eager learners abstract away
from the data during training and use this abstraction to make predictions, rather than di-
rectly comparing queries with instances in the dataset. The decision trees described in
Chapter 4[117] are an example of this type of abstraction. One consequence of abstracting
away from the training data is that models induced using an eager learning algorithm are
typically faster at making predictions than models based on a lazy learner. In the case of
a nearest neighbor algorithm, as the number of instances becomes large, the model will
become slower because it has more instances to check when defining the neighborhood.
Techniques such as the k-d tree can help with this issue by creating a fast index at the cost
of some preprocessing. This means that a nearest neighbor model may not be appropriate
in domains where speed of prediction is of the essence.

An advantage of the lazy learning strategy, however, is that similarity-based machine
learning approaches are robust to concept drift. Concept drift is a phenomenon that occurs
when the relationship between the target feature and the descriptive features changes over
time. For example, the characteristics of spam emails change both cyclically through the
year (typical spam emails at Christmastime are different from typical spam at other times
of the year) and also longitudinally (spam in 2014 is very different from spam in 1994).
If a prediction task is affected by concept drift, an eager learner may not be appropriate
because the abstraction induced during training will go out of date, and the model will
need to be retrained at regular intervals, a costly exercise. A nearest neighbor algorithm
can be updated without retraining. Each time a prediction is made, the query instance
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can be added into the dataset and used in subsequent predictions.32 In this way, a nearest
neighbor model can be easily updated, which makes it relatively robust to concept drift (we
will return to concept drift in Section 9.4.6[578]).

To conclude, the weaknesses of similarity-based learning approaches are that they are
sensitive to the curse of dimensionality, they are slower than other models at making pre-
dictions (particularly with very large datasets), and they may not be able to achieve the
same levels of accuracy as other learning approaches. The strengths of these models, how-
ever, are that they are easy to interpret, they can handle different types of descriptive fea-
tures, they are relatively robust to noise (when k is set appropriately), and they may be
more robust to concept drift than models induced by eager learning algorithms.

5.6 Further Reading

Nearest neighbor models are based on the concepts of a feature space and measures of
similarity within this feature space. We have claimed that this is a very natural way for hu-
mans to think, and indeed, there is evidence from cognitive science to support a geometric
basis to human thought (Gädenfors, 2004). Gädenfors (2004) also provides an excellent
introduction and overview of distance metrics.

Chapter 13 of Hastie et al. (2009) gives an introduction to the statistical theory underpin-
ning nearest neighbor models. The measure used to judge similarity is a key element in a
nearest neighbor model. In this chapter, we have described a number of different distance
metrics and similarity indexes. Cunningham (2009) provides a broader introduction to the
range of metrics and indexes that are available.

Efficiently indexing and accessing memory is an important consideration in scaling near-
est neighbor models to large datasets. In this chapter we have shown how k-d trees (Bent-
ley, 1975; Friedman et al., 1977) can be used to speed up the retrieval of nearest neighbors.
There are, however, alternatives to k-d trees. Samet (1990) gives an introduction to r-
trees and other related approaches. More recently, hash-based indexes, such as locality
sensitive hashing, have been developed. Andoni and Indyk (2006) provide a survey of
these hash-based approaches. Another approach to scaling nearest neighbor models is to
remove redundant or noisy instances from the dataset in which we search for neighbors.
For example, the condensed nearest neighbor approach (Hart, 1968) was one of the ear-
liest attempts at this and removes the instances not near target level boundaries in a feature
space, as they are not required to make predictions. More recent attempts to do this include
Segata et al. (2009) and Smyth and Keane (1995).

Nearest neighbor models are often used in text analytics applications. Daelemans and
van den Bosch (2005) discuss why nearest neighbor models are so suitable for text ana-
lytics. Widdows (2004) provides a very readable and interesting introduction to geometry

32. Obviously we must verify that the prediction made was correct before adding a new instance to the dataset.
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Figure 5.21
A duck-billed platypus. This platypus image was created by Jan Gillbank, English for the Australian
Curriculum website (www.e4ac.edu.au). Used under Creative Commons Attribution 3.0 license.

and linguistic meaning; see, in particular, Chapter 4 for an excellent introduction to sim-
ilarity and distance. For a more general textbook on natural language processing, we
recommend Jurafsky and Martin (2008). Finally, nearest neighbor models are the basis
of case-based reasoning (CBR), which is an umbrella term for applications based on
similarity-based machine learning. Richter and Weber (2013) is a good introduction, and
overview, to CBR.

5.7 Epilogue

Returning to 1798 and HMS Calcutta, the next day you accompany your men on the expe-
dition up the river, and you encounter the strange animal the sailor had described to you.
This time when you see the animal yourself, you realize that it definitely isn’t a duck! It
turns out that you and your men are the first Europeans to encounter a platypus.33

This epilogue illustrates two important, and related, aspects of supervised machine learn-
ing. First, supervised machine learning is based on the stationarity assumption, which
states that the data doesn’t change—it remains stationary—over time. One implication of
this assumption is that supervised machine learning assumes that new target levels—such
as previously unknown animals—don’t suddenly appear in the data from which queries
that are input to the model are sampled. Second, in the context of predicting categorical
targets, supervised machine learning creates models that distinguish between the target lev-
els that are present in the dataset from which they are induced. So if a prediction model is
trained to distinguish between lions, frogs, and ducks, the model will classify every query
instance as being either a lion, a frog, or a duck—even if the query is actually a platypus.

33. The story recounted here of the discovery of the platypus is loosely based on real events. See Eco (1999) for
a more faithful account of what happened and for a discussion of the implications of this discovery for classi-
fication systems in general. The platypus is not the only animal from Australia whose discovery by Europeans
has relevance to predictive machine learning. See Taleb (2008) regarding the discovery of black swans and its
relevance to predictive models.

www.e4ac.edu.au
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Creating models that can identify queries as being sufficiently different from what was
in a training dataset so as to be considered a new type of entity is a difficult research
problem. Some of the areas of research relevant to this problem include outlier detection
and one-class classification.
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5.8 Exercises

1. The table below lists a dataset that was used to create a nearest neighbor model that
predicts whether it will be a good day to go surfing.

ID WAVE SIZE (FT) WAVE PERIOD (SECS) WIND SPEED (MPH) GOOD SURF

1 6 15 5 yes
2 1 6 9 no
3 7 10 4 yes
4 7 12 3 yes
5 2 2 10 no
6 10 2 20 no

Assuming that the model uses Euclidean distance to find the nearest neighbor, what
prediction will the model return for each of the following query instances?

ID WAVE SIZE (FT) WAVE PERIOD (SECS) WIND SPEED (MPH) GOOD SURF

Q1 8 15 2 ?
Q2 8 2 18 ?
Q3 6 11 4 ?

2. Email spam filtering models often use a bag-of-words representation for emails. In
a bag-of-words representation, the descriptive features that describe a document (in
our case, an email) each represent how many times a particular word occurs in the
document. One descriptive feature is included for each word in a predefined dictio-
nary. The dictionary is typically defined as the complete set of words that occur in the
training dataset. The table below lists the bag-of-words representation for the follow-
ing five emails and a target feature, SPAM, whether they are spam emails or genuine
emails:

 “money, money, money”

 “free money for free gambling fun”

 “gambling for fun”

 “machine learning for fun, fun, fun”

 “free machine learning”

Bag-of-Words
ID MONEY FREE FOR GAMBLING FUN MACHINE LEARNING SPAM

1 3 0 0 0 0 0 0 true
2 1 2 1 1 1 0 0 true
3 0 0 1 1 1 0 0 true
4 0 0 1 0 3 1 1 false
5 0 1 0 0 0 1 1 false
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(a) What target level would a nearest neighbor model using Euclidean distance return
for the following email: “machine learning for free”?

(b) What target level would a k-NN model with k � 3 and using Euclidean distance
return for the same query?

(c) What target level would a weighted k-NN model with k � 5 and using a weighting
scheme of the reciprocal of the squared Euclidean distance between the neighbor
and the query, return for the query?

(d) What target level would a k-NN model with k � 3 and using Manhattan distance
return for the same query?

(e) There are a lot of zero entries in the spam bag-of-words dataset. This is indicative
of sparse data and is typical for text analytics. Cosine similarity is often a good
choice when dealing with sparse non-binary data. What target level would a 3-NN
model using cosine similarity return for the query?

3. The predictive task in this question is to predict the level of corruption in a country
based on a range of macroeconomic and social features. The table below lists some
countries described by the following descriptive features:

 LIFE EXP., the mean life expectancy at birth

 TOP-10 INCOME, the percentage of the annual income of the country that goes to
the top 10% of earners

 INFANT MORT., the number of infant deaths per 1;000 births

 MIL. SPEND, the percentage of GDP spent on the military

 SCHOOL YEARS, the mean number years spent in school by adult females

The target feature is the Corruption Perception Index (CPI). The CPI measures
the perceived levels of corruption in the public sector of countries and ranges from 0
(highly corrupt) to 100 (very clean).34

34. The data listed in this table is real and is for 2010/11 (or the most recent year prior to 2010/11 when the data
was available). The data for the descriptive features in this table was amalgamated from a number of surveys
retrieved from Gapminder (www.gapminder.org). The Corruption Perception Index is generated annually by
Transparency International (www.transparency.org).

www.gapminder.org
www.transparency.org
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COUNTRY LIFE TOP-10 INFANT MIL. SCHOOL

ID EXP. INCOME MORT. SPEND YEARS CPI
Afghanistan 59.61 23.21 74.30 4.44 0.40 1.5171
Haiti 45.00 47.67 73.10 0.09 3.40 1.7999
Nigeria 51.30 38.23 82.60 1.07 4.10 2.4493
Egypt 70.48 26.58 19.60 1.86 5.30 2.8622
Argentina 75.77 32.30 13.30 0.76 10.10 2.9961
China 74.87 29.98 13.70 1.95 6.40 3.6356
Brazil 73.12 42.93 14.50 1.43 7.20 3.7741
Israel 81.30 28.80 3.60 6.77 12.50 5.8069
USA 78.51 29.85 6.30 4.72 13.70 7.1357
Ireland 80.15 27.23 3.50 0.60 11.50 7.5360
UK 80.09 28.49 4.40 2.59 13.00 7.7751
Germany 80.24 22.07 3.50 1.31 12.00 8.0461
Canada 80.99 24.79 4.90 1.42 14.20 8.6725
Australia 82.09 25.40 4.20 1.86 11.50 8.8442
Sweden 81.43 22.18 2.40 1.27 12.80 9.2985
New Zealand 80.67 27.81 4.90 1.13 12.30 9.4627

We will use Russia as our query country for this question. The table below lists the
descriptive features for Russia.

COUNTRY LIFE TOP-10 INFANT MIL. SCHOOL

ID EXP. INCOME MORT. SPEND YEARS CPI
Russia 67.62 31.68 10.00 3.87 12.90 ?

(a) What value would a 3-nearest neighbor prediction model using Euclidean distance
return for the CPI of Russia?

(b) What value would a weighted k-NN prediction model return for the CPI of Rus-
sia? Use k � 16 (i.e., the full dataset) and a weighting scheme of the reciprocal of
the squared Euclidean distance between the neighbor and the query.

(c) The descriptive features in this dataset are of different types. For example, some
are percentages, others are measured in years, and others are measured in counts
per 1;000. We should always consider normalizing our data, but it is particularly
important to do this when the descriptive features are measured in different units.
What value would a 3-nearest neighbor prediction model using Euclidean distance
return for the CPI of Russia when the descriptive features have been normalized
using range normalization?

(d) What value would a weighted k-NN prediction model—with k � 16 (i.e., the full
dataset) and using a weighting scheme of the reciprocal of the squared Euclidean
distance between the neighbor and the query—return for the CPI of Russia when
it is applied to the range-normalized data?
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(e) The actual 2011 CPI for Russia was 2:4488. Which of the predictions made was
the most accurate? Why do you think this was?

� 4. You have been given the job of building a recommender system for a large online shop
that has a stock of over 100;000 items. In this domain the behavior of customers is
captured in terms of what items they have bought or not bought. For example, the
following table lists the behavior of two customers in this domain for a subset of the
items that at least one of the customers has bought.

ITEM ITEM ITEM ITEM ITEM

ID 107 498 7256 28063 75328
1 true true true false false
2 true false false true true

(a) The company has decided to use a similarity-based model to implement the rec-
ommender system. Which of the following three similarity indexes do you think
the system should be based on?

Russell-Rao(X,Y) �
CPpX;Yq

P

Sokal-Michener(X,Y) �
CPpX;Yq �CApX;Yq

P

Jaccard(X,Y) �
CPpX;Yq

CPpX;Yq � PApX;Yq � APpX;Yq

(b) What items will the system recommend to the following customer? Assume that
the recommender system uses the similarity index you chose in the first part of this
question and is trained on the sample dataset listed above. Also assume that the
system generates recommendations for query customers by finding the customer
most similar to them in the dataset and then recommending the items that this
similar customer has bought but that the query customer has not bought.

ITEM ITEM ITEM ITEM ITEM

ID 107 498 7256 28063 75328
Query true false true false false

� 5. You are working as an assistant biologist to Charles Darwin on the Beagle voyage.
You are at the Galápagos Islands, and you have just discovered a new animal that
has not yet been classified. Mr. Darwin has asked you to classify the animal using a
nearest neighbor approach, and he has supplied you the following dataset of already
classified animals.
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1 true false true true false false true false mammal
2 false true false false true true false false amphibian
3 true false true true false false true false mammal
4 false true false true false true false true bird

The descriptive features of the mysterious newly discovered animal are as follows:

ID B
IR

T
H

S
L

IV
E

Y
O

U
N

G

L
A

Y
S

E
G

G
S

F
E

E
D

S
O

FF
S

P
R

IN
G

O
W

N
M

IL
K

W
A

R
M

-B
L

O
O

D
E

D

C
O

L
D

-B
L

O
O

D
E

D

L
A

N
D

A
N

D
W

A
T

E
R

B
A

S
E

D

H
A

S
H

A
IR

H
A

S
F

E
A

T
H

E
R

S

CLASS

Query false true false false false true false false ?

(a) A good measure of distance between two instances with categorical features is
the overlap metric (also known as the hamming distance), which simply counts
the number of descriptive features that have different values. Using this measure
of distance, compute the distances between the mystery animal and each of the
animals in the animal dataset.

(b) If you used a 1-NN model, what class would be assigned to the mystery animal?

(c) If you used a 4-NN model, what class would be assigned to the mystery animal?
Would this be a good value for k for this dataset?

� 6. You have been asked by a San Francisco property investment company to create a
predictive model that will generate house price estimates for properties they are con-
sidering purchasing as rental properties. The table below lists a sample of properties
that have recently been sold for rental in the city. The descriptive features in this
dataset are SIZE (the property size in square feet) and RENT (the estimated monthly
rental value of the property in dollars). The target feature, PRICE, lists the prices that
these properties were sold for in dollars.
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ID SIZE RENT PRICE

1 2,700 9,235 2,000,000
2 1,315 1,800 820,000
3 1,050 1,250 800,000
4 2,200 7,000 1,750,000
5 1,800 3,800 1,450,500
6 1,900 4,000 1,500,500
7 960 800 720,000

(a) Create a k-d tree for this dataset. Assume the following order over the features:
RENT then SIZE.

(b) Using the k-d tree that you created in the first part of this question, find the nearest
neighbor to the following query: SIZE = 1;000, RENT = 2;200.

� 7. A data analyst building a k-nearest neighbor model for a continuous prediction prob-
lem is considering appropriate values to use for k.

(a) Initially the analyst uses a simple average of the target variables for the k nearest
neighbors in order to make a new prediction. After experimenting with values for
k in the range 0�10, it occurs to the analyst that they might get very good results
if they set k to the total number of instances in the training set. Do you think that
the analyst is likely to get good results using this value for k?

(b) If the analyst was using a distance weighted averaging function rather than a sim-
ple average for his or her predictions, would this have made the analyst’s idea any
more useful?

� 8. The following table describes a set of individuals in terms of their WEIGHT in kilo-
grams, HEIGHT in meters, and whether or not they have DIABETES:

ID WEIGHT HEIGHT DIABETES

1 68 1.7 true
2 55 1.6 false
3 65 1.6 true
4 100 1.9 true
5 65 1.5 false

(a) A doctor has carried out a regular checkup on a patient and measured the patient’s
WEIGHT to be 65 kilograms and their HEIGHT to be 1.7 meters. The doctor
inputs these details into a k-NN classifier to check whether the patient is at risk of
DIABETES. Assuming that k � 1, and that the model uses Euclidean distance as
its similarity metric, will the model return true or false for this patient?

(b) Clinicians often use BMI as a combined measure of an individual’s WEIGHT and
HEIGHT. BMI is defined as an individual’s weight in kilograms divided by their
height in meters-squared. Assuming that the profiles of the five individuals in the
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system were updated so that the features WEIGHT and HEIGHT were replaced by
a single feature BMI and also that the doctor entered the patient’s BMI into the
system, what prediction would the system return for this patient?

� 9. A lecturer is about to leave for the airport to go on vacation when they find a script
for a student they forgot to mark. They don’t have time to manually grade the script
before the flight, so they decide to use a k-nearest neighbor model to grade it instead.
The model is designed to award a grade to a student on the basis of how similar they
are to other students in the module in terms of their grades on other modules. The
following table describes a set of students in terms of their grades out of 100 on two
other modules (MODULE 1 and MODULE 2) and the GRADE they got in the lecturer’s
module: first-class honors, second-class honors, pass, or fail.

ID MODULE 1 MODULE 2 GRADE

1 55 85 first
2 45 30 fail
3 40 20 fail
4 35 35 fail
5 55 75 pass
6 50 95 second

(a) Looking up the results on the other modules of the student whose script hasn’t been
corrected, the lecturer finds that the student got the following marks: MODULE

1=60, and MODULE 2=85. Assuming that the k-nearest neighbor model uses k=1
and Euclidean distance as its similarity metric, what GRADE would the model
assign the student?

(b) Reviewing the spread of marks for the other two modules, the lecturer notices that
there is a larger variance across students in the marks for Module 2 than there is for
Module 1. So, the lecturer decides to update the k-nearest neighbor model to use
the Mahalanobis distance instead of Euclidean distance as its similarity measure.
Assuming that the inverse covariance matrix for the Module 1 and Module 2
results is

�1‚
�

�
0:046 �0:009

�0:009 0:003

�

what GRADE would the k-nearest neighbor model assign the student?
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“When my information changes, I alter my conclusions. What do you do, sir?”
—John Maynard Keynes

In this chapter we introduce probability-based approaches to machine learning. Probability-
based prediction approaches are heavily based on Bayes’ Theorem, and the fundamentals
section of this chapter introduces this important cornerstone of computer science after cov-
ering some other fundamentals of probability theory. We then present the naive Bayes
model, the standard approach to using probability-based approaches to machine learning.
The extensions and variations to this standard approach that we describe are the use of
smoothing to combat overfitting, the modifications required to the standard naive Bayes
model to allow it to handle continuous features, and Bayesian network models that give us
more control than a naive Bayes model over the assumptions that are encoded in a model.

6.1 Big Idea

Imagine that you are at a county fair and a stall owner is offering all comers a game of find
the lady. Find the lady is a card game that hucksters have been using to earn money from
unsuspecting marks for centuries.1 In a game, the dealer holds three cards—one queen and
two aces (as shown in Figure 6.1(a)[244])—and, typically with a little bit of flair, quickly
drops these cards facedown onto a table. Faced with the backs of three cards (as shown
in Figure 6.1(b)[244]), the player then has to guess where the queen has landed. Usually the
player bets money on their ability to do this, and the dealer uses a little manual trickery to
misdirect the player toward the wrong card.

When you first see the game played, because the dealer lays out the three cards so quickly,
you think that there is no way to tell where the queen lands. In this case you can only
assume that the queen is equally likely to be in any of the three possible positions: left,

1. It is appropriate to use a game involving gambling to introduce probability-based machine learning. The
origins of probability theory come from attempts to understand gambling and games of chance, in particular, the
work of Gerolamo Cardano and the later work of Pierre de Fermat and Blaise Pascal.
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Figure 6.1
A game of find the lady: (a) the cards used; (b) the cards dealt facedown on a table; (c) the initial
likelihoods of the queen ending up in each position; and (d) a revised set of likelihoods for the
position of the queen based on evidence collected.

center, or right. This is shown in the bar plot in Figure 6.1(c)[244], which shows an equal
likelihood for each position. Not feeling quite brave enough to play a game, you decide to
instead study the dealer playing games with other people.

After watching the dealer play 30 games with other players, you notice that he has a
tendency to drop the queen in the position on the right (19 times) more than the left (3
times) or center (8 times). Based on this, you update your beliefs about where the queen
is likely to land based on the evidence that you have collected. This is shown in Figure
6.1(d)[244], where the bars have been redistributed to illustrate the revised likelihoods.

Confident that your study will help you, you lay a dollar down to play a game, ready to
guess that the queen is in the position on the right. This time, however, as the dealer drops
the cards onto the table, a sudden gust of wind turns over the card on the right to reveal
that it is the ace of spades (shown in Figure 6.2(a)[245]). The extra piece of evidence means
that you need to revise your belief about the likelihoods of where the queen will be once
again. These revised likelihoods are shown in Figure 6.2(b)[245]. As you know that the card
is not in the position on the right, the likelihood that you had associated with this position
is redistributed among the other two possibilities. Based on the new likelihoods, you guess
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Figure 6.2
(a) The set of cards after the wind blows over the one on the right; (b) the revised likelihoods for the
position of the queen based on this new evidence; and (c) the final positions of the cards in the game.

that the queen is in the center position, and happily, this turns out to be correct (see Figure
6.2(c)[245]). The dealer encourages you to play again, but you know that you’ve got to know
when to walk away, so you head off with an extra dollar in your pocket.

This illustrates the big idea underlying probability-based machine learning. We can use
estimates of likelihoods to determine the most likely predictions that should be made. Most
important, though, we revise these predictions based on data we collect and whenever extra
evidence becomes available.

6.2 Fundamentals

In this section we describe Bayes’ Theorem and the important fundamentals of probability
theory that are required to use it. This section assumes a basic understanding of probabil-
ity theory, including the basics of calculating probabilities based on relative frequencies,
calculating conditional probabilities, the probability product rule, the probability chain
rule, and the Theorem of Total Probability. Appendix B[757] provides a comprehensive in-
troduction to these aspects of probability theory, so we recommend that readers unfamiliar
with them review this appendix before continuing with this chapter.
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Table 6.1
A simple dataset for a MENINGITIS diagnosis with descriptive features that describe the presence or
absence of three common symptoms of the disease: HEADACHE, FEVER, and VOMITING.

ID HEADACHE FEVER VOMITING MENINGITIS

1 true true false false
2 false true false false
3 true false true false
4 true false true false
5 false true false true
6 true false true false
7 true false true false
8 true false true true
9 false true false false
10 true false true true

We will use the dataset2 in Table 6.1[246] to illustrate how the terminology of probability
is mapped into the language of machine learning for predictive data analytics. The target
being predicted in this dataset is whether a patient is suffering from MENINGITIS, and
the descriptive features are common symptoms associated with this disease (HEADACHE,
FEVER, and VOMITING).

From a probability point of view, each feature in a dataset is a random variable, and the
sample space for the domain associated with a prediction problem is the set of all possible
combinations of assignments of values to features. Each row in a dataset represents an
experiment, which associates a target feature value with a set of descriptive feature values,
and the assignment of a set of descriptive features with values is an event. So, for example,
each row in Table 6.1[246] represents an experiment, and the assignment of the descriptive
features to the values shown in each row can be referred to as a distinct event.

A probability function, Ppq, returns the probability of an event. For example, PpFEVER �
trueq returns the probability of the FEVER feature taking the value true. This probability,
which is 0:4, can be counted directly from the dataset. Probability functions for categor-
ical features are referred to as probability mass functions, while probability functions
for continuous features are known as probability density functions. In the early part
of this chapter, we focus on categorical features, but we return to continuous features in
Section 6.4[265]. A joint probability refers to the probability of an assignment of specific
values to multiple different features, for example, PpMENINGITIS � true;HEADACHE �
trueq � 0:2. Last, a conditional probability refers to the probability of one feature taking

2. This data has been artificially generated for this example.
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a specific value given that we already know the value of a different feature, for example,
PpMENINGITIS � true | HEADACHE � trueq � 0:2857.

It is often useful to talk about the probabilities for all the possible assignments to a
feature. To do this we use the concept of a probability distribution. A probability distri-
bution is a data structure that describes the probability of each possible value a feature can
take. For example, the probability distribution for the binary feature MENINGITIS from
Table 6.1[246] is PpMENINGITISq � h0:3; 0:7i (by convention we give the true probability
first). We use bold notation to distinguish between a probability distribution, Ppq, and a
probability function, Ppq. The sum of a probability distribution must equal 1:0.

A joint probability distribution is a probability distribution over more than one feature
assignment and is written as a multidimensional matrix in which each cell lists the proba-
bility of a particular combination of feature values being assigned. The dimensions of the
matrix are dependent on the number of features and the number of values in the domains
of the features. The sum of all the cells in a joint probability distribution must be 1:0. For
example, the joint probability distribution for the four binary features from Table 6.1[246]

(HEADACHE, FEVER, VOMITING, and MENINGITIS) is written3

PpH; F;V;Mq �

�

��������������

Pph; f ; v;mq; Pp h; f ; v;mq
Pph; f ; v; mq; Pp h; f ; v; mq
Pph; f ; v;mq; Pp h; f ; v;mq
Pph; f ; v; mq; Pp h; f ; v; mq
Pph; f ; v;mq; Pp h; f ; v;mq
Pph; f ; v; mq; Pp h; f ; v; mq
Pph; f ; v;mq; Pp h; f ; v;mq
Pph; f ; v; mq; Pp h; f ; v; mq

�

��������������

(6.1)

Given a joint probability distribution, we can compute the probability of any event in the
domain that it covers by summing over the cells in the distribution where that event is true.
For example, to compute the probability of Pphq in the domain specified by the joint prob-
ability distribution PpH; F;V;Mq, we simply sum the values in the cells containing h (the
cells in the first column). Calculating probabilities in this way is known as summing out.
We can also use summing out to compute conditional probabilities from a joint probability
distribution. To calculate the probability Pph | f q from PpH; F;V;Mq, we sum the values
in all the cells where h and f are the case (the top four cells in the first column).

We are now ready to take on Bayes’ Theorem!

3. To save space, throughout this chapter, named features are denoted by the uppercase initial letters of their
names (e.g., the MENINGITIS feature is denoted M). If a named feature is binary, we use either the lowercase
initial letter of the feature name to denote that the feature is true or the lowercase initial letter preceded by the  
symbol to denote that it is false (e.g., m denotes MENINGITIS � true, and  m denotes MENINGITIS � false).
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6.2.1 Bayes’ Theorem
Bayes’ Theorem4 is so elegant and intuitive that it can be stated in one sentence of plain
English:

the probability that an event has happened given a set of evidence for it is equal to the
probability of the evidence being caused by the event multiplied by the probability of the
event itself

or slightly more succinctly:

Ppan event given evidenceq � Ppthe evidence given the eventq
� Ppthe eventq

Reading from left to right, the theorem shows us how to calculate the probability of an
event given the evidence we have of that event in terms of the likelihood of the event caus-
ing this evidence. This is useful because reasoning from the evidence to events (inverse
reasoning) is often much more difficult than reasoning from an event to the evidence it
causes (forward reasoning). Bayes’ Theorem allows us to easily swap back and forth
between these two types of reasoning.

The formal definition of Bayes’ Theorem is

PpX | Yq �
PpY | XqPpXq

PpYq
(6.2)

Bayes’ Theorem defines the conditional probability of an event, X, given some evidence,
Y , in terms of the product of the inverse conditional probability, PpY | Xq, and the prior
probability of the event PpXq.

For an illustrative example of Bayes’ Theorem in action, imagine that after a yearly
checkup, a doctor informs a patient that there is both bad news and good news. The bad
news is that the patient has tested positive for a serious disease and that the test the doctor
used is 99% accurate (i.e., the probability of testing positive when a patient has the disease
is 0:99, as is the probability of testing negative when a patient does not have the disease).
The good news, however, is that the disease is extremely rare, striking only 1 in 10;000
people. So what is the actual probability that the patient has the disease? And why is the
rarity of the disease good news given that the patient has tested positive for it?

We can use Bayes’ Theorem to answer both of these questions. To calculate the probabil-
ity that the patient actually has the disease based on the evidence of the test result, Ppd | tq,
we apply Bayes’ Theorem:

Ppd | tq �
Ppt | dqPpdq

Pptq

4. Bayes’ Theorem is named after the Reverend Thomas Bayes, who wrote an essay that described how to
update beliefs as new information arises. After Thomas Bayes died, this essay was edited and published by the
Reverend Richard Price (Bayes and Price, 1763). The modern mathematical form of Bayes’ Theorem, however,
was developed by Simon Pierre Laplace.
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The information about the scenario gives us the probability of having the disease as Ppdq �
0:0001 and the probability of not having the disease as Pp dq � 0:9999. The accuracy of
the test is captured as Ppt | dq � 0:99 and Ppt |  dq � 0:01. The overall probability of
the test returning a positive value, Pptq, is not given in the description above, but it can be
easily calculated using the Theorem of Total Probability5 as

Pptq � Ppt | dqPpdq � Ppt |  dqPp dq
� p0:99� 0:0001q � p0:01� 0:9999q
� 0:0101

We can insert these probabilities into the application of Bayes’ Theorem to give

Ppd | tq �
0:99� 0:0001

0:0101
� 0:0098

So, the probability of actually having the disease, in spite of the positive test result, is
less than 1%. This is why the doctor said the rarity of the disease was such good news.
One of the important characteristics of Bayes’ Theorem is its explicit inclusion of the prior
probability of an event when calculating the likelihood of that event based on evidence.6

Let’s look at Bayes’ Theorem in a little more detail. Bayes’ Theorem is easily derived
from the product rule.7 We know from the product rule and the logical symmetry of the
and operation8 that

PpY | XqPpXq � PpX | YqPpYq

If we divide both sides of this equation by the prior probability on the left-hand side, PpYq,
we get

PpX | YqPpYq
PpYq

�
PpY | XqPpXq

PpYq
The PpYq terms on the left-hand side of this equation, however, cancel each other out to
give us Bayes’ Theorem

PpX | Yq���PpYq

���PpYq
�

PpY | XqPpXq
PpYq

æPpX | Yq �
PpY | XqPpXq

PpYq

5. The Theorem of Total Probability is explained in detail in Section B.3[762] of Appendix B[757].

6. Famously, an experiment in which doctors were asked this question about the probability of the patient’s
having the disease showed that most of them got this question wrong (Casscells et al., 1978).

7. The product rule is explained in detail in Section B.3[762] of Appendix B[757].

8. That is, a and b � b and a.
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There are two important observations regarding the division in Bayes’ Theorem by the
denominator PpYq. The first is that this division functions as a normalization mechanism
ensuring that

0 ⁄ PpX | Yq ⁄ 1

and ‚

i

PpXi | Yq � 1:0

where
°

i PpXiq should be interpreted as summing over the set of events that are a complete
assignment to the features in X. The reason that the division functions as a normalization
mechanism is that the prior probability of the evidence, PpYq, is not conditional on Xi, and
as a result, it is constant for all Xi.

The second interesting observation about the division of the right-hand side of Bayes’
Theorem by PpYq is that we can calculate PpYq in two different ways. First, we can
calculate PpYq directly from a dataset as

PpYq �
|trows where Y is the caseu|
|trows in the datasetu|

(6.3)

Alternatively, we can use the Theorem of Total Probability to calculate PpYq:

PpYq �
‚

i

PpY | XiqPpXiq (6.4)

Notice that ignoring the subscripts, the expression we are summing in Equation (6.4)[250]

is identical to the numerator in Bayes’ Theorem. This gives us a way to calculate the
posterior probability distribution over the possible assignment of values to the features
in event X conditioned on the event Y , that is, PpX | Yq, which avoids explicitly calculating
PpYq. If we let

� �
1

‚

i

PpY | XiqPpXiq
(6.5)

then
PpXi | Yq � �� PpY | XiqPpXiq (6.6)

where the term � explicitly represents a normalization constant. Because Bayes’ Theorem
can be calculated in this way, it is sometimes written as

PpX | Yq � �� PpY | XqPpXq (6.7)

where � is as defined in Equation (6.5)[250].
So we have two different definitions of Bayes’ Theorem (Equation (6.2)[248] and Equation

(6.7)[250]), but which one should we use? The choice is really a matter of convenience. If
we are calculating the probability of a single event given some evidence, then calculating
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PpYq directly from the data using Equation (6.2)[248] is the easier option. If, however, we
need to calculate the posterior probability distribution over X given Y , that is PpX | Yq,
then we will be actually calculating each of the PpY | XiqPpXiq values in Equation (6.5)[250]

as part of this calculation, and it is more efficient to use Equation (6.7)[250].
We are now ready to use Bayes’ Theorem to generate predictions based on a dataset. The

next section will examine how this is done.

6.2.2 Bayesian Prediction
To make Bayesian predictions, we generate the probability of the event that a target feature,
t, takes a specific level, l, given the assignment of values to a set of descriptive features,
q, from a query instance. We can restate Bayes’ Theorem using this terminology and
generalize the definition of Bayes’ Theorem so that it can take into account more than one
piece of evidence (each descriptive feature value is a separate piece of evidence). The
Generalized Bayes’ Theorem is defined as

Ppt � l | q r1s ; : : : ;q rmsq �
Ppq r1s ; : : : ;q rms | t � lqPpt � lq

Ppq r1s ; : : : ;q rmsq
(6.8)

To calculate a probability using the Generalized Bayes’ Theorem, we need to calculate
three probabilities:

1. Ppt � lq, the prior probability of the target feature t taking the level l
2. Ppq r1s ; : : : ;q rmsq, the joint probability of the descriptive features of a query in-

stance taking a specific set of values
3. Ppq r1s ; : : : ;q rms | t � lq, the conditional probability of the descriptive features of

a query instance taking a specific set of values given that the target feature takes the
level l

The first two of these probabilities are easy to calculate. Ppt � lq is simply the relative
frequency with which the target feature takes the level l in a dataset. Ppq r1s ; : : : ;q rmsq
can be calculated as the relative frequency in a dataset of the joint event that the descriptive
features of an instance take on the values q r1s ; : : : ;q rms. As discussed in the previous
section, it can also be calculated using the Theorem of Total Probability (in this instance,
summing over all the target levels

°
kPlevelsptq Ppq r1s ; : : : ;q rms | t � kqPpt � kq), or

replaced entirely with a normalization constant, �.
The final probability that we need to calculate, Ppq r1s ; : : : ;q rms | t � lq, can be cal-

culated either directly from a dataset (by calculating the relative frequency of the joint
event q r1s ; : : : ;q rms within the set of instances where t � l), or alternatively, it can be
calculated using the probability chain rule.9 The chain rule states that the probability of
a joint event can be rewritten as a product of conditional probabilities. So, we can rewrite

9. The probability chain rule is explained in detail in Section B.3[762] of Appendix B[757].
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Ppq r1s ; : : : ;q rmsq as

Ppq r1s ; : : : ;q rmsq �
Ppq r1sq � Ppq r2s | q r1sq � � � � � Ppq rms | q rm� 1s ; : : : ;q r2s ;q r1sq

We can use the chain rule for conditional probabilities by just adding the conditioning term
to each term in the expression, so

Ppq r1s ; : : : ;q rms | t � lq �
Ppq r1s | t � lq � Ppq r2s | q r1s ; t � lq � : : :

� � � � Ppq rms | q rm� 1s ; : : : ;q r3s ;q r2s ;q r1s ; t � lq
(6.9)

This transformation from a joint probability conditioned on a single event into a product
of conditional probabilities with just one event being conditioned in each term may not
appear to achieve much. We will see shortly, however, that this transformation is incredibly
useful.

Let’s look at an example of how we can now use Bayes’ Theorem to make predic-
tions based on the meningitis diagnosis dataset in Table 6.1[246] for a query instance with
HEADACHE � true, FEVER � false, and VOMITING � true. Returning to the shortened
notation that we used previously, a predicted diagnosis for this query instance can be given
using Bayes’ Theorem as

PpM | h; f ; vq �
Pph; f ; v | Mq � PpMq

Pph; f ; vq

There are two values in the domain of the MENINGITIS feature, true and false, so we
have to do this calculation once for each. Considering first the calculation for m, we need
the following probabilities, which can be computed directly from Table 6.1[246]

Ppmq �
|td5;d8;d10u|

|td1;d2;d3;d4;d5;d6;d7;d8;d9;d10u|
�

3
10
� 0:3

Pph; f ; vq �
|td3;d4;d6;d7;d8;d10u|

|td1;d2;d3;d4;d5;d6;d7;d8;d9;d10u|
�

6
10
� 0:6

We also need to calculate the likelihood of the descriptive feature values of the query
given that the target is true. We could calculate this directly from the dataset, but in this
example, we will illustrate the chain rule approach just described. Using the chain rule
approach, we compute the overall likelihood of the descriptive feature values given a tar-
get value of true as the product of a set of conditional probabilities that are themselves
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calculated from the dataset

Pph; f ; v | mq � Pph | mq � Pp f | h;mq � Ppv |  f ; h;mq

�
|td8;d10u|
|td5;d8;d10u|

�
|td8;d10u|
|td8;d10u|

�
|td8;d10u|
|td8;d10u|

�
2
3
�

2
2
�

2
2
� 0:6666

We can now combine the three probabilities just calculated to calculate the overall proba-
bility of the target feature taking the level true given the query instance

Ppm | h; f ; vq �
Pph; f ; v | mq � Ppmq

Pph; f ; vq

�
0:6666� 0:3

0:6
� 0:3333

The corresponding calculation for Pp m | h; f ; vq is:

Pp m | h; f ; vq �
Pph; f ; v |  mq � Pp mq

Pph; f ; vq

�

�
Pph |  mq � Pp f | h; mq
� Ppv |  f ; h; mq � Pp mq

�

Pph; f ; vq

�
0:7143� 0:8� 1:0� 0:7

0:6
� 0:6667

These calculations tell us that it is twice as probable that the patient does not have menin-
gitis as it is that the patient does. This might seem a little surprising given that the patient
is suffering from a headache and is vomiting, two key symptoms of meningitis. Indeed, we
have a situation where the posterior for a given prediction given the evidence is quite low
(here Ppm | h; f ; vq � 0:3333), even though the likelihood of the evidence if we assume
the prediction to be correct is quite high, Pph; f ; v | mq � 0:6666.

What is happening here is that, as Bayes’ Theorem states, when calculating a posterior
prediction, we weight the likelihood of the evidence given the prediction by the prior of the
prediction. In this case, although the likelihood of suffering from a headache and vomiting
is quite high when someone has meningitis, the prior probability of having meningitis is
quite low. So, even when we take the evidence into account, the posterior probability
of having meningitis remains low. This can seem counterintuitive at first. The mistake
is to confuse the probability of a prediction given the evidence with the probability of
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the evidence given the prediction and is another example of the paradox of the false
positive.10

Calculating exact probabilities for each of the possible target levels is often very useful
to a human decision maker, for example, a doctor. However, if we are trying to build a
predictive model that automatically assigns a target level to a query instance, then we need
to decide how the model will make a prediction based on the computed probabilities. The
obvious way to do this is to have the model return the target level that has the highest
posterior probability given the state of the descriptive features in the query. A prediction
model that works in this way is making a maximum a posteriori (MAP) prediction.11 We
can formally define a Bayesian MAP prediction model as

Mpqq � arg max
lPlevelsptq

Ppt � l | q r1s ; : : : ;q rmsq

� arg max
lPlevelsptq

Ppq r1s ; : : : ;q rms | t � lq � Ppt � lq
Ppq r1s ; : : : ;q rmsq

(6.10)

where Mpqq is the prediction returned by the model M using a MAP prediction mechanism
for a query, q, composed of q r1s ; : : : ;q rms descriptive features; levelsptq is the set of
levels the target feature can take; and arg maxlPlevelsptq specifies that we return the level, l,
that has the maximum value computed using the function on the right of the arg max term.

Notice that the denominator in Equation (6.10)[254] is not dependent on the target feature,
so it is functioning as a normalization constant. Furthermore, if we want to make a MAP
prediction, we don’t necessarily have to calculate the actual probabilities for each level in
the target domain; we simply need to know which of the levels in the target domain has the
largest probability. Consequently, we don’t necessarily have to normalize the scores for
each target level—something we would have to do if we wanted the actual probabilities.
Instead, we can simply return the target level that has the highest score from the numerator
term. Using this simplification, the Bayesian MAP prediction model can be restated as

Mpqq � arg max
lPlevelsptq

Ppq r1s ; : : : ;q rms | t � lq � Ppt � lq (6.11)

Although it might seem that we now have a good solution for building probability-based
prediction models, we are not quite done yet. There is one fundamental flaw with the
approach that we have developed. To illustrate this, we will consider a second query

10. The paradox of the false positive states that in order to make predictions about a rare event, the model has to
be at least as accurate as the event is rare (i.e., the probability of the model making an error has to be less than the
probability of the rare event occurring) or there is a significant chance of false positive predictions (i.e., predicting
the event when it is not the case). Doctorow (2010) provides an interesting discussion of this phenomenon.

11. The MAP prediction is the prediction mechanism that we assume throughout this book. An alternative mech-
anism is the Bayesian optimal classifier, but we won’t discuss it in this text. See Mitchell (1997) for more
details.
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instance for the meningitis diagnosis problem, this time with descriptive feature values
HEADACHE � true, FEVER � true, and VOMITING � false. The probability of MENIN-
GITIS = true given this query is

Ppm | h; f ; vq �

�
Pph | mq � Pp f | h;mq
� Pp v | f ; h;mq � Ppmq

�

Pph; f ; vq

�
0:6666� 0� 0� 0:3

0:1
� 0

and for MENINGITIS = false

Pp m | h; f ; vq �

�
Pph |  mq � Pp f | h; mq
� Pp v | f ; h; mq � Pp mq

�

Pph; f ; vq

�
0:7143� 0:2� 1:0� 0:7

0:1
� 1:0

The calculated posterior probabilities indicate that it is a certainty that the patient does
not have meningitis! This is because as we progress along the sequence of conditional
probabilities specified by the chain rule, the size of the set of conditioning events for each
term increases. As a result, the set of events that fulfill the conditions for each conditional
probability in the sequence, and hence that are considered when we compute the probabil-
ity, get smaller and smaller as more and more conditions are added. The technical term for
this splitting of the data into smaller and smaller sets based on larger and larger sets of con-
ditions is data fragmentation. Data fragmentation is essentially an instance of the curse
of dimensionality. As the number of descriptive features grows, the number of potential
conditioning events grows. Consequently, an exponential increase is required in the size
of the dataset as each new descriptive feature is added to ensure that for any conditional
probability, there are enough instances in the training dataset matching the conditions so
that the resulting probability is reasonable.

Returning to our example query, in order to calculate Pph; f ; v | mq, the chain rule
requires us to define three conditional probabilities, Pph | mq, Pp f | h;mq, and Pp v |
f ; h;mq. For the first of these terms, Pph | mq, only three instances in the dataset fulfill the
condition of m (d5, d8 and d10). In two out of these three rows (d8 and d10), h is the case,
so the conditional probability Pph | mq � 0:6666. These are also the only two rows that
fulfill the conditions of the second term in the chain sequence, Pp f | h;mq. In neither of
these rows is f the case, so the conditional probability for Pp f | h;mq is 0. Because the
chain rule specifies the product of a sequence of probabilities, if any of the probabilities
in the sequence is zero, then the overall probability will be zero. Even worse, because
there are no rows in the dataset where f , h, and m are true, there are no rows in the dataset
where the conditions for the third term Pp v | f ; h;mq hold, so this probability is actually
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undefined, as calculating it involves a division by zero. Trying to compute the probability
of Pph; f ; v | mq directly from the data rather than using the chain rule also suffers from
the same problem.

In summary, whether we compute the likelihood term for this example using the chain
rule or directly from the dataset, we will end up with a probability of zero, or worse, an
undefined probability. This is because there are no instances in the dataset where a patient
who had meningitis was suffering from a headache and had a fever but wasn’t vomiting.
Consequently, the probability for the MENINGITIS feature being true given the evidence
in the query using this dataset was zero.

Clearly, the probability of a patient who has a headache and a fever having meningitis
should be greater than zero. The problem here is that our dataset is not large enough to
be truly representative of the meningitis diagnosis scenario, and our model is overfitting
to the training data. The problem is even more serious than this, however, as in practice,
it is almost never possible to collect a dataset that is big enough to sufficiently cover all
the possible combinations of descriptive feature values that can occur in a dataset so as
to avoid this. All is not lost, however, as the concepts of conditional independence and
factorization can help us overcome this flaw of our current approach.

6.2.3 Conditional Independence and Factorization
So far our treatment of probability has assumed that the evidence we have collected affects
the probability of the event we are trying to predict. This is not always the case. For
example, it would seem reasonable to argue that the behavior of an octopus in a swimming
tank should not affect the outcome of a soccer match.12 If knowledge of one event has no
effect on the probability of another event, and vice versa, then the two events are said to be
independent of each other. If two events X and Y are independent, then

PpX | Yq � PpXq
PpX;Yq � PpXq � PpYq

Full independence between events is quite rare. A more common phenomenon is that
two or more events may be independent if we know that a third event has happened. This
is known as conditional independence. The typical situation where conditional inde-
pendence holds between events is when the events share the same cause. For example,
consider the symptoms of meningitis. If we don’t know whether the patient has meningi-

12. During the European Soccer Championships in 2008 and the 2010 Soccer World Cup, an octopus in Germany,
called Paul, was attributed with achieving an 85% success rate at predicting the results of the matches involving
Germany. Paul’s impressive accuracy should not be taken to suggest that octopus behavior affects soccer matches
but rather that independent events may be correlated, at least for an interval of time, without the events actually
being dependent. As the oft-quoted maxim states: correlation does not imply causation! (See Section 3.5.2[81] for
further discussion.)
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tis, then knowing that the patient has a headache may increase the probability we assign
to the patient of suffering from a fever. This is because having a headache increases the
probability of the patient having meningitis, which in turn increases the probability of the
patient having a fever. However, if we already know that the patient has meningitis, then
also knowing that the patient has a headache will not affect the probability of the patient
having a fever. This is because the information we get from knowing that the patient has
a headache is already contained within the information that the patient has meningitis. In
this situation, knowing that someone has meningitis makes the events of them having a
headache and having a fever independent of each other. For two events, X and Y , that are
conditionally independent given knowledge of a third event, here Z, we can say that

PpX | Y;Zq � PpX | Zq
PpX;Y | Zq � PpX | Zq � PpY | Zq

This allows us an important reformulation of the chain rule for situations in which con-
ditional independence applies. Recall that the chain rule for calculating the probability that
a set of descriptive features, q r1s ; : : : ;q rms, takes a specific set of values when a target
feature, t, takes a specific level, l, is

Ppq r1s ; : : : ;q rms | t � lq �
Ppq r1s | t � lq � Ppq r2s | q r1s ; t � lq � : : :

� � � � Ppq rms | q rm� 1s ; : : : ;q r3s ;q r2s ;q r1s ; t � lq
(6.12)

If the event of the target feature t taking the level l causes the assignment of values to
the descriptive features, q r1s ; : : : ;q rms, then the events of each descriptive feature taking
a value are conditionally independent of each other given the value of the target feature.
This means that the chain rule definition can be simplified as follows:

Ppq r1s ; : : : ;q rms | t � lq
� Ppq r1s | t � lq � Ppq r2s | t � lq � � � � � Ppq rms | t � lq

�
m„

i�1

Ppq ris | t � lq
(6.13)

The reason that this simplification is so important is that it allows us to simplify the cal-
culations in Bayes’ Theorem, under the assumption of conditional independence between
the descriptive features, given the level l of the target feature, from

Ppt � l | q r1s ; : : : ;q rmsq �

�

��

Ppq r1s | t � lq � Ppq r2s | q r1s ; t � lq�
� � � � Ppq rms | q rm� 1s ; : : : ;q r1s ; t � lq
� Ppt � lq

�

�

Ppq r1s ; : : : ;q rmsq
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to the much simpler

Ppt � l | q r1s ; : : : ;q rmsq �

�
m„

i�1

Ppq ris | t � lq

�

� Ppt � lq

Ppq r1s ; : : : ;q rmsq
(6.14)

Where appropriate, conditional independence not only simplifies the calculations but
also enables us to compactly represent the full joint probability distribution for a domain.
Rather than calculating and storing the probabilities of all the joint events in a domain,
we can break up the distribution into data structures called factors, which define distribu-
tions over subsets of features. We can then compute any of the probabilities in the joint
probability distribution using the product of these factors.

For example, Equation (6.1)[247] listed the joint probability distribution for the four binary
features in the meningitis diagnosis dataset in Table 6.1[246]. This distribution contained 16
entries. If, however, it is in fact the case that HEADACHE, FEVER, and VOMITING are
conditionally independent of each other given MENINGITIS, then we would need to store
only four factors: PpMq, PpH | Mq, PpF | Mq, and PpV | Mq. We can recalculate all the
elements of the joint probability distribution using the product of these four factors:

PpH; F;V;Mq � PpMq � PpH | Mq � PpF | Mq � PpV | Mq

Because all the features in this example are binary, we need to store only the probabilities
for the events where the features are true under the different combinations of values for the
conditioning cases, as the probabilities for the complementary events can be computed
by subtracting the stored probabilities from 1:0. Consequently, under this factorization,
we need to calculate only seven probabilities directly from the data: Ppmq, Pph | mq,
Pph |  mq, Pp f | mq, Pp f |  mq, Ppv | mq, and Ppv |  mq. The four factors required
to represent the full joint distribution over the features HEADACHE, FEVER, VOMITING,
and MENINGITIS (when the first three are assumed to be conditionally independent given
MENINGITIS) can be stated as

Factor1 �


PpMq

�

Factor2 �


Pph | mq; Pph |  mq

�

Factor3 �


Pp f | mq; Pp f |  mq

�

Factor4 �


Ppv | mq; Ppv |  mq

�

and the product required to calculate the probability of any joint event in the domain using
these four factors is

PpH; F;V;Mq � PpMq � PpH | Mq � PpF | Mq � PpV | Mq

So, the assumed conditional independence between the features permits us to factorize
the distribution and in doing so reduces the number of probabilities we need to calculate
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and store from the data. The reduction from 16 to 7 probabilities to represent this domain
may not seem to achieve much, but there are two things to bear in mind. First, individually,
the 7 probabilities have fewer constraints on them than the 16 in the full joint probability
distribution. As a result, it is typically easier to collect the data required to calculate these
probabilities. Second, as the number of features in the domain grows, the difference be-
tween the number of probabilities required for a factorized representation and the number
of probabilities in the full joint probability distribution gets larger. For example, in a do-
main with one target feature and nine descriptive features, all of which are binary, the full
joint probability distribution will contain 210 � 1;024 probabilities. However, if all the de-
scriptive features are conditionally independent given the target feature, we can factorize
the joint distribution and represent it using just 19 probabilities (one for the prior of the
target and two conditional probabilities for each descriptive feature).

Apart from making a model more compact, conditional independence and factorization
also increase the coverage of a probability-based prediction model by allowing the model
to calculate reasonable probabilities for queries with combinations of evidence that do not
occur in the training dataset. To illustrate this, let’s return to the example query instance
for the meningitis diagnosis problem, where HEADACHE � true, FEVER � true, and
VOMITING � false. When we originally tried to calculate probabilities for this query, a
problem arose from the requirement that we have instances in the training dataset where
all the evidence events hold. If we treat the evidence events as conditionally independent
given the target feature, however, then we can factorize the evidence into its component
events and calculate probabilities for each of these events separately. By doing this, we
relax the requirement that, to avoid probabilities of zero, all the evidence events must hold
in at least one instance for each value in the domain of the target. Instead, to avoid zero
probabilities, we require only that for each value in the domain of the target feature, there
be at least one instance in the dataset where each event in the evidence holds. For example,
this allows us to use the probability of a patient having a fever given that the patient has
meningitis, rather than the more constrained conditional probability of the patient having
a fever given that the patient has meningitis and is suffering from a headache.

We reiterate the factors required to represent the full joint distribution for the meningitis
diagnosis scenario when we assume that the descriptive features are conditionally inde-
pendent given the target, this time including the actual probabilities calculated from the
dataset:

Factor1 �


Ppmq � 0:3

�

Factor2 �


Pph | mq � 0:6666; Pph |  mq � 0:7413

�

Factor3 �


Pp f | mq � 0:3333; Pp f |  mq � 0:4286

�

Factor4 �


Ppv | mq � 0:6666; Ppv |  mq � 0:5714

�

(6.15)
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Using the factors in Equation (6.15)[259], we calculate the posterior distribution for menin-
gitis given the query instance using Equation (6.14)[258] as

Ppm | h; f ; vq �
Pph | mq � Pp f | mq � Pp v | mq � Ppmq

‚

i

Pph | Miq � Pp f | Miq � Pp v | Miq � PpMiq

�
0:6666� 0:3333� 0:3333� 0:3

p0:6666� 0:3333� 0:3333� 0:3q � p0:7143� 0:4286� 0:4286� 0:7q
� 0:1948

Pp m | h; f ; vq �
Pph |  mq � Pp f |  mq � Pp v |  mq � Pp mq
°

i Pph | Miq � Pp f | Miq � Pp v | Miq � PpMiq

�
0:7143� 0:4286� 0:4286� 0:7

p0:6666� 0:3333� 0:3333� 0:3q � p0:7143� 0:4286� 0:4286� 0:7q
� 0:8052

As with our previous calculations, the posterior probabilities for meningitis, calculated
under the assumption of conditional independence of the evidence, indicates that the pa-
tient probably does not have meningitis, and consequently, a MAP Bayesian model would
return MENINGITIS � false as the prediction for this query instance. However, the poste-
rior probabilities are not as extreme as those calculated when we did not assume conditional
independence. What has happened is that asserting conditional independence has allowed
the evidence of the individual symptoms to be taken into account, rather than requiring
an exact match across all the symptoms taken together. By doing this, the Bayesian pre-
diction model is able to calculate reasonable probabilities for queries with combinations of
evidence that do not occur in the dataset. This results in the model having a higher coverage
with respect to the possible queries it can handle. Furthermore, the conditional indepen-
dence assumption enables us to factorize the distribution of the domain, and consequently
we need fewer probabilities with fewer constraints to represent the domain. As we will
see, a fundamental component of creating probabilistic prediction models is deciding on
the conditional independence assumptions we wish to make and the resulting factorization
of the domain.

In the next section we introduce the naive Bayes model, a probability-based machine
learning algorithm that asserts a global conditional independence between the descriptive
features given the target. As a result of this conditional independence assumption, naive
Bayes models are very compact and relatively robust to overfitting the data, making them
one of the most popular predictive modeling approaches.
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6.3 Standard Approach: The Naive Bayes Model

A naive Bayes model returns a MAP prediction where the posterior probabilities for the
levels of the target feature are computed under the assumption of conditional indepen-
dence between the descriptive features in an instance given a target feature level. More
formally, the naive Bayes model is defined as

Mpqq � arg max
lPlevelsptq

��
m„

i�1

Ppq ris | t � lq

�

� Ppt � lq

�

(6.16)

where t is a target feature with a set of levels, levelsptq, and q is a query instance with a set
of descriptive features, q r1s ; : : : ;q rms.

In Section 6.2[245] we described how a full joint probability distribution could be used to
compute the probability for any event in a domain. The problem with this, however, is that
generating full joint probability distributions suffers from the curse of dimensionality, and
as a result, this approach is not tractable for domains involving more than a few features.
In Section 6.2.3[256], however, we showed how conditional independence between features
allows us to factorize the joint distribution, and this helps with the curse of dimensionality
problem by reducing the number of probabilities we are required to calculate from the
data as well as the number of conditioning constraints on these probabilities. The naive
Bayes model leverages conditional independence to the extreme by assuming conditional
independence between the assignment of all the descriptive feature values given the target
level. This assumption allows a naive Bayes model to radically reduce the number of
probabilities it requires, resulting in a very compact, highly factored representation of a
domain.

We say that the naive Bayes model is naive because the assumption of conditional in-
dependence between the features in the evidence given the target level is a simplifying
assumption that is made whether or not it is incorrect. Despite this simplifying assump-
tion, however, the naive Bayes approach has been found to be surprisingly accurate across
a large range of domains. This is partly because errors in the calculation of the posterior
probabilities for the different target levels do not necessarily result in prediction errors. As
we noted when we dropped the denominator of Bayes’ Theorem from the MAP prediction
model (Equation (6.11)[254]), for a categorical prediction task, we are primarily interested in
the relative size of the posterior probabilities for the different target levels rather than the
exact probabilities. Consequently, the relative ranking of the likelihood of the target levels
are, to a certain extent, robust to errors in the calculation of the exact probabilities.13

13. One consequence of this, however, is that a naive Bayes model is not a good approach for predicting a
continuous target, because errors in calculating posterior probabilities do directly affect the accuracy of the model.
This is the only modeling approach covered in this book for which we will not present a way to predict both
continuous and categorical target features.
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The assumption of conditional independence between the features in the evidence given
the level of the target feature also makes the naive Bayes model relatively robust to data
fragmentation and the curse of dimensionality. This is particularly important in scenar-
ios with small datasets or with sparse data.14 One application domain where sparse data
is the norm rather than the exception is in text analytics (for example, spam filtering),
and naive Bayes models are often successful in this domain.

The naive Bayes model can also be easily adapted to handle missing feature values:
we simply drop the conditional probabilities for the evidence events that specify features
taking values that are not in the data from the product of the evidence events. Obviously,
doing this may have a negative effect on the accuracy of posterior probabilities computed
by the model, but again this may not translate directly into prediction errors.

A final advantage of the naive Bayes model is how simple it is to train. For a given
prediction task, all that is required to train a naive Bayes model is to calculate the priors
for each target level and the conditional probability for each feature given each target level.
As a result, a naive Bayes model can be trained relatively quickly compared to many other
prediction models. A further advantage that results from this simplicity is the compactness
of the naive Bayes model with which a very large dataset can be represented.

Overall, although naive Bayes models may not be as powerful as some other prediction
models, they often provide reasonable accuracy results, for prediction tasks with categori-
cal targets, while being robust to the curse of dimensionality and also being easy to train.
As a result, a naive Bayes model is often a good prediction model to use to define a baseline
accuracy score or when working with limited data.

6.3.1 A Worked Example
We will use the dataset presented in Table 6.2[263] to illustrate how to create and use a naive
Bayes model for a prediction problem. This dataset relates to a fraud detection scenario in
which we would like to build a model that predicts whether loan applications are fraudulent
or genuine. There are three categorical descriptive features in this dataset. CREDIT HIS-
TORY captures the credit history of the applicant, and its levels are none (the applicant has
no previous loans), paid (the applicant had loans previously and has paid them off), current
(the applicant has existing loans and are current in repayments), and arrears (the applicant
has existing loans and are in arrears in repayments). The GUARANTOR/COAPPLICANT

feature records whether the loan applicant has a guarantor or coapplicant associated with
the application. The levels are none, guarantor, and coapplicant. The ACCOMMODATION

feature refers to the applicant’s current accommodation, and the levels are own (the ap-
plicant owns their accommodation), rent (the applicant rents their accommodation), and

14. Recall that sparse data, discussed in Section 5.4.5[211], refers to datasets where the majority of descriptive
features have a value of zero.
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Table 6.2
A dataset from a loan application fraud detection domain.

CREDIT GUARANTOR/
ID HISTORY COAPPLICANT ACCOMMODATION FRAUD

1 current none own true
2 paid none own false
3 paid none own false
4 paid guarantor rent true
5 arrears none own false
6 arrears none own true
7 current none own false
8 arrears none own false
9 current none rent false
10 none none own true
11 current coapplicant own false
12 current none own true
13 current none rent true
14 paid none own false
15 arrears none own false
16 current none own false
17 arrears coapplicant rent false
18 arrears none free false
19 arrears none own false
20 paid none own false

free (the applicant has free accommodation). The binary target feature, FRAUD, tells us
whether the loan application turned out to be fraudulent (true or false).

To train a naive Bayes model using this data, we need to compute the prior probabilities
of the target feature taking each level in its domain, and the conditional probability of each
feature taking each level in its domain conditioned for each level that the target can take.
There are two levels in the target feature domain, four levels in the CREDIT HISTORY

domain, three in the GUARANTOR/COAPPLICANT domain, and three in the ACCOMMO-
DATION domain. This means that we need to calculate 2�p2�4q�p2�3q�p2�3q � 22
probabilities. Although this sounds like a lot of probabilities considering the size of the
example dataset, it is worth noting that these 22 probabilities would suffice no matter how
many new instances are added to the dataset, be it hundreds of thousands, or even millions.
This is an example of the compactness of a naive Bayes representation. Be aware, however,
that if new descriptive features were added to the dataset, then the number of probabilities
required would grow by |domain of target| � |domain of new feature|, and, furthermore, if
an extra value were added to the domain of the target, then the number of probabilities
would grow exponentially. Once the required probabilities are calculated, our naive Bayes
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model is ready to make predictions for queries. It is that simple! Table 6.3[264] lists the
probabilities we need for our naive Bayes fraud detection model.

Table 6.3
The probabilities needed by a naive Bayes prediction model, calculated from the data in Table 6.2[263].

Pp f rq � 0:3 Pp f rq � 0:7

PpCH � none | f rq � 0:1666 PpCH � none |  f rq � 0

PpCH � paid | f rq � 0:1666 PpCH � paid |  f rq � 0:2857

PpCH � current | f rq � 0:5 PpCH � current |  f rq � 0:2857

PpCH � arrears | f rq � 0:1666 PpCH � arrears |  f rq � 0:4286

PpGC � none | f rq � 0:8334 PpGC � none |  f rq � 0:8571

PpGC � guarantor | f rq � 0:1666 PpGC � guarantor |  f rq � 0

PpGC � coapplicant | f rq � 0 PpGC � coapplicant |  f rq � 0:1429

PpACC � own | f rq � 0:6666 PpACC � own |  f rq � 0:7857

PpACC � rent | f rq � 0:3333 PpACC � rent |  f rq � 0:1429

PpACC � free | f rq � 0 PpACC � free |  f rq � 0:0714

Notation key: FR = FRAUD, CH = CREDIT HISTORY, GC = GUARANTOR/COAPPLICANT, ACC

=ACCOMMODATION.

The following is a query instance for the fraud detection domain:

CREDIT HISTORY = paid, GUARANTOR/COAPPLICANT = none,
ACCOMMODATION = rent

Table 6.4[265] shows the relevant probabilities needed to make a prediction for this query
and the calculation of the scores for each possible prediction. Each calculation applies
Equation (6.16)[261] and can be understood as a product of the four factors that the naive
Bayes model represents: PpFRq, PpCH | FRq, PpGC | FRq, and PpACC | FRq. The
scores are 0:0139 for a prediction of true and 0:0245 for a prediction of false. It is worth
emphasizing that the scores calculated are not the actual posterior probabilities for each
target level given the query evidence (to get the actual probabilities we would need to
normalize these scores), but they do give us enough information to rank the different target
levels based on the relative posterior probabilities. A naive Bayes prediction model returns
the MAP prediction, so our naive Bayes model would make a prediction of false and so
classify this loan application query as not fraudulent.
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Table 6.4
The relevant probabilities, from Table 6.3[264], needed by the naive Bayes prediction model to make
a prediction for a query with CH = paid, GC = none, and ACC = rent, and the calculation of the
scores for each target level.

Pp f rq � 0:3 Pp f rq � 0:7

PpCH � paid | f rq � 0:1666 PpCH � paid |  f rq � 0:2857

PpGC � none | f rq � 0:8334 PpGC � none |  f rq � 0:8571

PpACC � rent | f rq � 0:3333 PpACC � rent |  f rq � 0:1429
� m„

k�1

P pq rks | f rq


� P p f rq � 0:0139

� m„

k�1

P pq rks |  f rq


� Pp f rq � 0:0245

There is one, non-obvious, aspect of this example that is particularly interesting. If we
look for an instance in the dataset in Table 6.2[263] that matches all the descriptive feature
values in the query, we won’t find one. Despite the lack of any instances that perfectly
match the evidence, the fact that we were still able to calculate a score for each target
level and make a prediction for the query highlights how the conditional independence
assumption between the evidence given the target level both increases the coverage of the
model and allows the model to generalize beyond the data used to induce it.

6.4 Extensions and Variations

In this section we discuss extensions and variations of the naive Bayes model that increase
its ability to generalize and avoid overfitting (smoothing) and that allow it to handle con-
tinuous descriptive features. We also describe Bayesian networks, which are a probability-
based modeling approach that allows us to include more subtle assumptions in a model
than the global assumption of conditional independence between all descriptive features
that the naive Bayes model makes.

6.4.1 Smoothing
Although the assumption of conditional independence extends the coverage of a naive
Bayes model and allows it to generalize beyond the contents of the training data, naive
Bayes models still do not have complete coverage of the set of all possible queries. We
can see the reason for this in Table 6.3[264], where there are still some probabilities equal
to zero, for example, PpCH � none |  f rq. These arise when there are no instances in
the training data that match a specific combination of target feature and descriptive feature
levels. Consequently, a model is likely to overfit the data for any query where one or more
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Table 6.5
The relevant probabilities, from Table 6.3[264], needed by the naive Bayes prediction model to make
a prediction for the query with CH = paid, GC = guarantor, and ACC = free, and the calculation of
the scores for each possible target level.

Pp f rq � 0:3 Pp f rq � 0:7

PpCH � paid | f rq � 0:1666 PpCH � paid |  f rq � 0:2857

PpGC � guarantor | f rq � 0:1666 PpGC � guarantor |  f rq � 0

PpACC � free | f rq � 0 PpACC � free |  f rq � 0:0714
� m„

k�1

P pq rks | f rq


� P p f rq � 0:0

� m„

k�1

P pq rks |  f rq


� P p f rq � 0:0

of the evidence events match the conditioned event of one of these zero probabilities. For
example, consider the following query:

CREDIT HISTORY = paid, GUARANTOR/COAPPLICANT = guarantor,
ACCOMMODATION = free

Table 6.5[266] lists the relevant probabilities needed to make a prediction for this query, and
the calculation of the scores for each of the possible target levels. In this instance, both
possible predictions have a score of zero! Both scores are set to zero because one of the
conditional probabilities used to calculate them is zero. For f r the probability PpACC �
free | f rq causes the problem, and for  f r the probability PpGC � guarantor |  f rq is
the offender. As a result, the model is unable to return a prediction for this query.

The way to solve this problem is by smoothing the probabilities used by the model. We
know from the definition of probability that the sum of the probabilities of a feature taking
each of its possible levels should equal 1:0:

‚

lPlevelsp f q

Pp f � lq � 1:0

where f is a feature and levelsp f q is the set of levels in the domain of the feature. This
means that we have a total probability mass of 1.0 that is shared out between the different
assignments of a level to a feature based on their relative frequency. Smoothing involves
taking some of the probability mass from the assignments with probability greater than
average and spreading it across the probabilities that are below average, or even equal to
zero.
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Table 6.6
The posterior probability distribution for the GUARANTOR/COAPPLICANT feature under the condi-
tion that FRAUD = false.

PpGC � none |  f rq � 0:8571

PpGC � guarantor |  f rq � 0

PpGC � coapplicant |  f rq � 0:1429
‚

lPlevelspGCq

PpGC � l |  f rq � 1:0

For example, if we sum across the posterior probability distribution for the GUARAN-
TOR/COAPPLICANT feature under the condition that FRAUD = false, we will get a value
of 1.0 (see Table 6.6[267]). Notice that within this set, PpGC � none |  f rq is quite large,
and at the other extreme, PpGC � guarantor |  f rq � is equal to zero. Smoothing takes
some of the probability mass from the events with high probability and shares this with
the events with low probabilities. If this is done correctly, then the total probability mass
for the set will remain equal to 1.0, but the spread of probabilities across the set will be
smoother (hence the name smoothing).

There are several different ways to smooth probabilities. We will use Laplace smooth-
ing. Note, that in general, it does not make sense to smooth the unconditional (prior)
probabilities for the different target feature levels,15 so here we will focus on smoothing
the conditional probabilities for the features. Laplace smoothing for conditional probabili-
ties is defined as

Pp f � l | tq �
countp f � l | tq � k

countp f | tq � pk � |Domainp f q|q

where countp f � l | tq is how often the event f � l occurs in the subset of rows in the
dataset where the target level is t, countp f | tq is how often the feature, f , took any level in
the subset of rows in the dataset where the target level is t, |Domainp f q| is the number of
levels in the domain of the feature, and k is a predetermined parameter. Larger values of k
mean that more smoothing occurs—that is, more probability mass is taken from the larger
probabilities and given to the small probabilities. Typically k takes small values such as 1,
2, or 3.

15. The primary reason why we apply smoothing is to remove zero probabilities from a model’s representation
of a domain, and in the vast majority of cases, all the unconditional target level probabilities will be non-zero
(because there will be at least one instance with each target level in the training data). Even in cases where one
of the target levels is very rare, it may not be appropriate to smooth the target level priors. See Bishop (2006, pp.
45) for a discussion on how to train a probability-based prediction model in situations where one of the target
levels is rare.
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Table 6.7
Smoothing the posterior probabilities for the GUARANTOR/COAPPLICANT feature conditioned on
FRAUD = false.

Raw PpGC � none |  f rq � 0:8571

Probabilities PpGC � guarantor |  f rq � 0

PpGC � coapplicant |  f rq � 0:1429

Smoothing k � 3

Parameters countpGC |  f rq � 14

countpGC � none |  f rq � 12

countpGC � guarantor |  f rq � 0

countpGC � coapplicant |  f rq � 2

|DomainpGCq| � 3

Smoothed PpGC � none |  f rq �
12� 3

14� p3� 3q
� 0:6522

Probabilities PpGC � guarantor |  f rq �
0� 3

14� p3� 3q
� 0:1304

PpGC � coapplicant |  f rq �
2� 3

14� p3� 3q
� 0:2174

Table 6.7[268] illustrates the steps in smoothing the posterior probabilities for the GUAR-
ANTOR/COAPPLICANT feature when conditioned on FRAUD = false. We can see that
after smoothing, the probability mass is more evenly distributed across the events in the
set. Crucially, the posterior probability for PpGC � guarantor |  f rq is no longer zero,
and as a result, the coverage of the model has been extended to include queries with GUAR-
ANTOR/COAPPLICANT values of guarantor.

Table 6.8[269] lists the prior and smoothed conditional probabilities for the fraud domain
that are relevant to a naive Bayes model. Notice that there are no zero probabilities, so the
model will be able to return a prediction for any query in this domain. We can illustrate
the extended coverage of the model by returning to the query from the beginning of this
section:

CREDIT HISTORY = paid, GUARANTOR/COAPPLICANT = guarantor,
ACCOMMODATION = free

Table 6.9[270] illustrates how a naive Bayes model would calculate the scores for each can-
didate target level for this query using the smoothed probabilities from Table 6.8[269]. Using
our smoothed probabilities, we are able to calculate a score for both target levels: 0:0036
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Table 6.8
The Laplace smoothed (with k � 3) probabilities needed by a naive Bayes prediction model, calcu-
lated from the dataset in Table 6.2[263].

Pp f rq � 0:3 Pp f rq � 0:7

PpCH � none | f rq � 0:2222 PpCH � none |  f rq � 0:1154

PpCH � paid | f rq � 0:2222 PpCH � paid |  f rq � 0:2692

PpCH � current | f rq � 0:3333 PpCH � current |  f rq � 0:2692

PpCH � arrears | f rq � 0:2222 PpCH � arrears |  f rq � 0:3462

PpGC � none | f rq � 0:5333 PpGC � none |  f rq � 0:6522

PpGC � guarantor | f rq � 0:2667 PpGC � guarantor |  f rq � 0:1304

PpGC � coapplicant | f rq � 0:2 PpGC � coapplicant |  f rq � 0:2174

PpACC � own | f rq � 0:4667 PpACC � own |  f rq � 0:6087

PpACC � rent | f rq � 0:3333 PpACC � rent |  f rq � 0:2174

PpACC � free | f rq � 0:2 PpACC � free |  f rq � 0:1739

Notation key: FR =FRAUD, CH = CREDIT HISTORY, GC = GUARANTOR/COAPPLICANT,

ACC =ACCOMMODATION.

for true and 0:0043 for false. The target level false has the highest score (if only marginally)
and is the MAP prediction for this query. Therefore, our naive Bayes model will predict
that this loan application is not fraudulent.

6.4.2 Continuous Features: Probability Density Functions
To calculate the probability of an event, we have simply counted how often the event oc-
curred and divided this number by how often the event could have occurred. A continuous
feature can have an infinite number of values in its domain, so any particular value will oc-
cur a negligible amount of the time. In fact, the relative frequency of any particular value
for a continuous feature will be indistinguishable from zero given a large dataset.

The way to solve the problem of zero probabilities is to think in terms of how the prob-
ability of a continuous feature taking a value is distributed across the range of values that
a continuous feature can take. A probability density function (PDF) represents the prob-
ability distribution of a continuous feature using a mathematical function, and there are a
large number of standard, well-defined probability distributions—such as the normal dis-
tribution—that we can use to model the probability of a continuous feature taking different
values in its range.
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Table 6.9
The relevant smoothed probabilities, from Table 6.8[269], needed by the naive Bayes prediction model
to make a prediction for the query with CH = paid, GC = guarantor, and ACC = free, and the
calculation of the scores for each target levels.

Pp f rq � 0:3 Pp f rq � 0:7

PpCH � paid | f rq � 0:2222 PpCH � paid |  f rq � 0:2692

PpGC � guarantor | f rq � 0:2667 PpGC � guarantor |  f rq � 0:1304

PpACC � free | f rq � 0:2 PpACC � free |  f rq � 0:1739
� m„

k�1

P pq rms | f rq


� P p f rq � 0:0036

� m„

k�1

P pq rms |  f rq


� P p f rq � 0:0043
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Figure 6.3
Plots of some well-known probability distributions.

Table 6.10[271] shows the definition of some of the standard probability distributions—the
normal, exponential, and mixture of Gaussians distributions—that are commonly used
in probabilistic prediction models, and Figure 6.3[270] illustrates the shapes of the density
curves of these distributions. All standard PDFs have parameters that alter the shape of the
density curve defining that distribution. The parameters required for the normal, exponen-
tial, and mixture of Gaussians PDFs are shown in Table 6.10[271]. In order to use a PDF to
represent the probability of a continuous feature taking different values, we need to choose
these parameters to fit the characteristics of the data. We have already described the normal
distribution, in some detail, in Section 3.2.1[61], so we won’t repeat that introduction here,
but we will describe the other distributions in a little detail.
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Table 6.10
Definitions of some standard probability distributions.
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The student-t distribution is symmetric around a single peak. In fact, it looks very sim-
ilar to a normal distribution, as shown in Figure 6.3(a)[270]. The definition of the student-t
probability density function uses the gamma function, �pq, which is a standard statistical
function.16 The student-t distribution is a member of the location-scale family of distribu-
tions.17 These distributions take two parameters: a location parameter �, which specifies
the position of the peak density of the distribution, and a non-negative scale parameter �,
which specifies how spread out the distribution is; the higher the scale the more spread
out the distribution. The normal distribution is a member of this location-scale family,
with the mean � specifying the location, and the standard deviation � acting as the scale

16. See Tijms (2012), or any good probability textbook, for an introduction to the gamma function.

17. The student-t distribution can be defined in a number of ways. For example, it can be defined so that it takes
only one parameter, degrees of freedom. In this text we use the extended location-scale definition.
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parameter. We use different notation for location and scale parameters, � and �, than we do
for mean and standard deviation parameters of the normal, � and �, because the values of
these parameters are estimated using different techniques: generally, the location and scale
parameters for distributions are fitted to the data using a guided search process.18 The
student-t distribution, however, takes an extra parameter �. This parameter is the degrees
of freedom of the distribution. In statistics the degrees of freedom of a distribution is the
number of variables in the calculation of the statistic that are free to vary. For the student-t
distribution, the degrees of freedom is always set to the sample size (number of rows in the
dataset) minus one.

From a distribution perspective, the main distinction between a normal distribution and
a student-t is that a normal distribution has light tails whereas the student-t distribution
has fat tails. Figure 6.4[273] illustrates the distinction between fat and light tail distribu-
tions using histograms of two datasets. The dataset in Figure 6.4(a)[273] follows a light tail
distribution—the bars at the extreme left and right of the distribution have zero height.
The dataset in Figure 6.4(b)[273] has a fat tail distribution—the bars on the extreme left
and right of the distribution are still above zero, if only just. This distinction between fat
and light tailed distributions is important because it highlights that when we use a normal
distribution, we are implicitly assuming that the likelihood of values that differ from the
mean of the distribution drops quite dramatically as we move away from the mean. A
common mistake made by many data analysts is to automatically default to modeling uni-
modally distributed data with a normal distribution.19 There are statistical tests (such as the
Kolmogorov-Smirnov test) that can be used to check whether or not a feature is normally
distributed, and in cases where the feature is not normally distributed, another unimodal
distribution, such as the student-t distribution, may be a better fit.

Another consequence of the normal distribution having light tails is that it is sensitive
to outliers in the data. Figure 6.5[273] illustrates how outliers affect normal and student-t
distributions. Figure 6.5(a)[273] shows a histogram of a dataset that has been overlaid with
the curves of a normal and a student-t distribution that have been fitted to the data. The
normal and the student-t distributions are both very similar, and both do a good job of
matching the shape of the density histogram. Figure 6.5(b)[273] shows a histogram of the
same dataset after some outliers have been added to the extreme right of the distribution.
Again, we have overlaid the histogram with plots of the curves for a normal and a student-t
distribution that have been fitted to the updated dataset. Comparing Figure 6.5(a)[273] and
Figure 6.5(b)[273], we can see clearly that the introduction of outliers has a much larger effect

18. This guided search process is similar to the gradient descent search we use to fit our regression models in
Chapter 7[311]. Many data analytics packages and programming APIs provide functions that implement methods
to fit a distribution to a dataset.

19. Taleb (2008) discusses the problems that arise when analysts use normal distributions to model social and
economic features, where the assumptions regarding light tails don’t hold.
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(a) (b)

Figure 6.4
Histograms of two unimodal datasets: (a) the distribution has light tails; and (b) the distribution has
fat tails.

Normal
Student-t

(a)

Normal
Student-t

(b)

Figure 6.5
Illustration of the robustness of the student-t distribution to outliers: (a) a density histogram of a
unimodal dataset overlaid with the density curves of a normal and a student-t distribution that have
been fitted to the data; and (b) a density histogram of the same dataset with outliers added, overlaid
with the density curves of a normal and a student-t distribution that have been fitted to the data. (This
figure is inspired by Figure 2.16 in Bishop (2006).)

on the normal distribution than it does on the student-t distribution. The robustness of the
student-t to outliers is another reason to consider using this distribution, as opposed to a
normal distribution, to model unimodal data in situations with relatively small or possibly
noisy datasets.
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The plot of the density curve for the exponential distribution (Figure 6.3(b)[270]) shows
that it assigns a high probability to values near the left of the distribution and that the
probability of a value occurring drops dramatically as we move to the right. The standard
range for the exponential distribution is from zero upward (i.e., the density assigned to
values less than zero is zero). However, we can adjust this by offsetting the values input
into the distribution. The exponential distribution takes one parameter, �, known as the
rate. Varying the value � changes the rate at which the density drops off. As � gets larger,
the peak of the distribution (on the left) gets larger, and the drop-off in density gets steeper.
To fit an exponential distribution to a continuous feature, we set � equal to 1 divided by the
mean of the feature. The exponential distribution is often used to model waiting times (for
example, how long it will take for a call to be answered at a help desk, how long you will
have to wait for a bus, or how long before a piece of hardware fails), where the parameter
� is equal to 1 divided by the average time it takes for the event.

As the name suggests, the mixture of Gaussians distribution is the distribution that
results when a number of normal (or Gaussian) distributions are merged. Mixture of Gaus-
sians distributions are used to represent data that is composed of multiple subpopulations.
Figure 6.6(a)[275] illustrates the profile typical of data with multiple subpopulations. The
multiple peaks in the density curve arise from the different subpopulations (a distribution
with multiple peaks is called multimodal). Using a mixture of Gaussians distribution as-
sumes that all the subpopulations in the data are distributed following a normal distribution,
but that each of these subpopulation normal distributions has a different mean and may also
have a different standard deviation.

The definition of the mixture of Gaussians distribution in Table 6.10[271] shows how the
individual normal distributions in a mixture of Gaussians distribution are combined using
a weighted sum. Each normal that is merged is known as a component of the mixture.
The weight of a component in the sum determines the contribution of the component to the
overall density of the resulting mixture. A mixture of Gaussians distribution is defined by
three parameters for each component: a mean, �, a standard deviation, �, and a weight, !.
The set of weight parameters for the mixture must sum to 1.

There is no closed form solution to calculate the parameters to fit a mixture of Gaussians
distribution to a set of feature values, as there is for the exponential and normal distribu-
tions. Instead, given the set of values for a continuous feature, we fit a mixture of Gaussians
distribution to this data by searching for the number of components and set of parameters
for each component that best matches the data. Guided search techniques, such as the
gradient descent algorithm, are used for this task. Analysts will often input a suggested
starting point for this search based on their own analysis of the data in order to guide the
process.

In Figure 6.6(b)[275] we can see the three normal distributions used to model the multi-
modal distribution in Figure 6.6(a)[275]. Each normal distribution has a different mean but
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Figure 6.6
Illustration of how a mixture of Gaussians model is composed of a number of normal distributions.
The curve plotted using a solid line is the mixture of Gaussians density curve, created using an
appropriately weighted summation of the three normal curves, plotted using dashed and dotted lines.

the same standard deviation. The size of the individual normal density curves is propor-
tional to the weight for that normal used in the mixture. Figure 6.6(c)[275] overlays the mul-
timodal density curve on top of the three weighted normals. It is clear from this figure that
the weighted sum of the three normals does an excellent job of modeling the multimodal
density distribution.

The fact that we have a range of parameterized distributions to choose from means that
in order to define a probability density function (PDF), we must

1. Select which probability distribution we believe will best model the distribution of
the values of the feature. The simplest and most direct way to choose a distribution
for a feature is to create a density histogram of the feature’s values and compare the
shape of this histogram to the shapes of the standard distributions. We should choose
whichever standard distribution best matches the shape of the histogram to model the
feature.

2. Fit the parameters of the selected distribution to the feature values in the dataset. It
is relatively straightforward to fit the parameters, � and �, of the normal distribution
to a dataset by using the sample mean and standard deviation of the feature values
in a dataset as estimates of � and � respectively. Similar to the normal distribution,
the � parameter for the exponential distribution can be easily calculated by using the
value of 1 divided by the mean of the data. However, for many of the other statistical
distributions, for example, the mixture of Gaussians distribution, we cannot define an
equation over the data that estimates the parameters appropriately. For these distribu-
tions, the parameters are set using guided search techniques such as gradient descent.
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Fortunately, most data analytics packages and programming APIs provide functions
that implement methods to fit a specified distribution to a given dataset.20

A PDF is an abstraction over a density histogram and, as such, defines a density curve.
The shape of the curve is determined by (a) the statistical distribution that is used to define
the PDF, and (b) the values of the statistical distribution parameters. To use a PDF to
calculate a probability, we need to think in terms of the area under an interval of the PDF
curve. Consequently, to calculate a probability using a PDF, we need to first decide on
the interval we wish to calculate the probability for, and then calculate the area under the
density curve for that interval to give the probability of a value from that interval occurring.
There is no hard and fast rule for deciding on interval size. Instead, this decision is made
on a case-by-case basis and is dependent on the precision required in answering a question.
In some cases, the size of the interval is defined as part of the problem we are trying to
solve, or there may be a natural interval to use because of the domain. For example, when
we are dealing with a financial feature, we might use intervals that represent cents, while
if we were dealing with temperature, we might define the interval to be 1 degree. Once we
have selected the interval size, we need to calculate the area under the density curve for
that interval.21

When we use a PDF to represent the probability distribution of a descriptive feature in a
naive Bayes model, however, we don’t actually need to calculate exact probabilities. We
only need to calculate the relative likelihood of a continuous feature taking a value given
different levels of a target feature. The height of the density curve defined by a PDF at a
particular feature value gives us this, so we can avoid the effort of calculating the actual
probability. We can use a value from a PDF as a relative measure of likelihood because
when the interval is very small, the actual area under a PDF curve for that interval can be
approximated (with a small error proportional to the width of the interval) by the height of
the PDF curve at the center of the interval multiplied by the width of the interval. Figure
6.7[277] illustrates this approximation.

If we were to include the interval width when calculating conditional probabilities for a
continuous descriptive feature in a naive Bayes prediction model, using Equation (6.16)[261],
we would multiply the value returned by the PDF by the same interval width each time we
calculated the likelihood score for a level of the target feature. Consequently, we can drop
this multiplication and just use the value returned by the PDF as a relative measure of the
likelihood that the feature takes a specific value.

20. For example, the R language provides the fitdistr() method, as part of the MASS package, that implements a
maximum-likelihood fitting of a number of univariate distributions to a given dataset.

21. We can do this either by consulting a probability table or by using integration to calculate the area under the
curve within the bounds of the interval. There are many excellent statistical textbooks that explain how to do both
of these, for example, Montgomery and Runger (2010).
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Figure 6.7
(a) The area under a density curve between the limits x � �

2 and x � �
2 ; (b) the approximation of

this area computed by PDFpxq � �; and (c) the error in the approximation is equal to the difference
between area A, the area under the curve omitted from the approximation, and area B, the area above
the curve erroneously included in the approximation. Both of these areas will get smaller as the
width of the interval gets smaller, resulting in a smaller error in the approximation.

To ground our discussion of PDFs, and to illustrate how they can be used in making naive
Bayes prediction models, we will extend our loan application fraud detection scenario to
have two extra continuous features: ACCOUNT BALANCE, which specifies the amount
of money in the account of the loan applicant at the time of the application; and LOAN

AMOUNT, which specifies the amount of the loan being applied for. Table 6.11[278] lists this
extended dataset. We first use only the extra ACCOUNT BALANCE feature in the dataset
(ignoring LOAN AMOUNT, which we return to later in this chapter) to demonstrate how
PDFs allow us to include continuous features in a naive Bayes model.

To enable the naive Bayes model to handle the ACCOUNT BALANCE feature, we have
to extend the set of probabilities used by the model to represent the domain to include the
probabilities for this feature. Recall that the naive Bayes domain representation defines a
conditional probability for each possible value in the domain of a descriptive feature for
each level in the domain of the target. In our example, the target feature, FRAUD, is binary,
so we need to define two conditional probabilities for each value in the domain of the new
descriptive feature: PpAB � x | f rq and PpAB � x |  f rq. Because the descriptive
feature ACCOUNT BALANCE is continuous, there is an infinite number of values in the
feature’s domain. However, we know that using an appropriately defined PDF, we can
approximate the probability of the feature taking any value in its domain. As a result,
we simply need to define two PDFs for the new feature with each PDF conditioned on
a different level of the target feature: PpAB � x | f rq � PDF1pAB � x | f rq and
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Table 6.11
The dataset from the loan application fraud detection domain (from Table 6.2[263]) with two continu-
ous descriptive features added: ACCOUNT BALANCE and LOAN AMOUNT.

CREDIT GUARANTOR/ ACCOMMO- ACCOUNT LOAN

ID HISTORY COAPPLICANT DATION BALANCE AMOUNT FRAUD

1 current none own 56:75 900 true
2 current none own 1;800:11 150;000 false
3 current none own 1;341:03 48;000 false
4 paid guarantor rent 749:50 10;000 true
5 arrears none own 1;150:00 32;000 false
6 arrears none own 928:30 250;000 true
7 current none own 250:90 25;000 false
8 arrears none own 806:15 18;500 false
9 current none rent 1;209:02 20;000 false

10 none none own 405:72 9;500 true
11 current coapplicant own 550:00 16;750 false
12 current none free 223:89 9;850 true
13 current none rent 103:23 95;500 true
14 paid none own 758:22 65;000 false
15 arrears none own 430:79 500 false
16 current none own 675:11 16;000 false
17 arrears coapplicant rent 1;657:20 15;450 false
18 arrears none free 1;405:18 50;000 false
19 arrears none own 760:51 500 false
20 current none own 985:41 35;000 false

PpAB � x |  f rq � PDF2pAB � x |  f rq. These two PDFs do not have to be defined
using the same distribution. Once we have selected the distributions we wish to use, to
define a PDF for a descriptive feature that is conditioned on a particular target, we fit the
parameters of the selected distribution to the subset of the data where the target has that
value.

The first step in defining the two PDFs is to decide which distribution we will use to de-
fine the PDFs for each target feature level. To make this decision, we partition the training
data based on the target feature and generate histograms of the values of the descriptive
feature for each of the splits. We then select the statistical distribution that is most similar
in shape to each of the resulting histograms. Figure 6.8[279] shows the histograms of the
values of the ACCOUNT BALANCE feature partitioned on the two levels of the FRAUD

target feature. It is clear from these histograms that the distribution of values taken by
the ACCOUNT BALANCE feature in the set of instances where FRAUD = true follows an
exponential distribution; whereas, the distribution of the values taken by the ACCOUNT
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Figure 6.8
Histograms, using a bin size of 250 units, and density curves for the ACCOUNT BALANCE feature:
(a) the fraudulent instances overlaid with a fitted exponential distribution; and (b) the non-fraudulent
instances overlaid with a fitted normal distribution.

BALANCE feature in the set of instances where the FRAUD = false is similar to a normal
distribution.

Once we have selected the distributions, the next step is to fit the distributions to the data.
To fit the exponential distribution, we compute the sample mean of the ACCOUNT BAL-
ANCE feature in the set of instances where FRAUD = true and set the � parameter equal to 1
divided by this value. To fit the normal distribution to the set of instances where FRAUD =
false, we compute the sample mean and sample standard deviation for the ACCOUNT BAL-
ANCE feature for this set of instances and set the parameters of the normal distribution to
these values. Table 6.12[280] shows how these values are calculated, and the dashed lines in
Figure 6.8[279] plot the density curves that result from this process. Once distributions have
been fitted to the data, we can extend the naive Bayes domain representation to include the
PDFs. Table 6.13[281] shows the extended domain representation.

To use the extended domain representation of the model to make a prediction for a query,
we calculate the product of the relevant descriptive feature probabilities and the priors for
the different target levels as before, but using PDFs to calculate the probabilities for the
continuous feature. Table 6.14[282] shows how a prediction is made for the following query:

CREDIT HISTORY = paid, GUARANTOR/COAPPLICANT = guarantor,
ACCOMMODATION = free, ACCOUNT BALANCE = 759:07
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Table 6.12
Partitioning the dataset based on the value of the target feature and fitting the parameters of a statis-
tical distribution to model the ACCOUNT BALANCE feature in each partition.

(a) Instances where FRAUD = true and the fitted
parameters for the exponential distribution

ACCOUNT

ID : : : BALANCE FRAUD

1 56:75 true
4 749:50 true
6 928:30 true

10 : : : 405:72 true
12 223:89 true
13 103:23 true

AB 411:22
� � 1!{AB 0:0024

(b) Instances where FRAUD = false and the fit-
ted parameters for the normal distribution

ACCOUNT

ID : : : BALANCE FRAUD

2 1;800:11 false
3 1;341:03 false
5 1;150:00 false
7 250:90 false
8 806:15 false
9 1;209:02 false

11 : : : 550:00 false
14 758:22 false
15 430:79 false
16 675:11 false
17 1;657:20 false
18 1;405:18 false
19 760:51 false
20 985:41 false

AB 984:26
sdpABq 460:94

Note: ACCOUNT BALANCE has been shortened to AB in these tables.

The calculations for the probabilities for the ACCOUNT BALANCE feature are made using
the equations for the normal and exponential distributions in Table 6.10[271]. The result is
that FRAUD = false still has the highest score and will be returned as the prediction for this
query.

6.4.3 Continuous Features: Binning
A commonly used alternative to representing a continuous feature using a probability den-
sity function is to convert the feature into a categorical feature using binning. In Section
3.6.2[89] we explained two of the best known binning techniques, equal-width binning and
equal-frequency binning, and discussed some of the general advantages and disadvan-
tages of each technique. One feature of equal-width binning is that it can result in a very
uneven distribution of instances across the bins, with some bins containing a large num-
ber of instances and other bins being nearly empty. This uneven distribution of instances
across bins can have dramatic and unwanted consequences for probability-based models.
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Table 6.13
The Laplace smoothed (with k � 3) probabilities needed by a naive Bayes prediction model, calcu-
lated from the dataset in Table 6.11[278], extended to include the conditional probabilities for the new
ACCOUNT BALANCE feature, which are defined in terms of PDFs.

Pp f rq � 0:3 Pp f rq � 0:7

PpCH � none | f rq � 0:2222 PpCH � none |  f rq � 0:1154

PpCH � paid | f rq � 0:2222 PpCH � paid |  f rq � 0:2692

PpCH � current | f rq � 0:3333 PpCH � current |  f rq � 0:2692

PpCH � arrears | f rq � 0:2222 PpCH � arrears |  f rq � 0:3462

PpGC � none | f rq � 0:5333 PpGC � none |  f rq � 0:6522

PpGC � guarantor | f rq � 0:2667 PpGC � guarantor |  f rq � 0:1304

PpGC � coapplicant | f rq � 0:2 PpGC � coapplicant |  f rq � 0:2174

PpACC � own | f rq � 0:4667 PpACC � own |  f rq � 0:6087

PpACC � rent | f rq � 0:3333 PpACC � rent |  f rq � 0:2174

PpACC � free | f rq � 0:2 PpACC � free |  f rq � 0:1739

PpAB � x | f rq PpAB � x |  f rq

� E

�

��
x;

� � 0:0024

�

� � N

�

�����

x;

� � 984:26;

� � 460:94

�

����

Notation key: FR = FRAUD, CH = CREDIT HISTORY, GC = GUARANTOR/COAPPLICANT,

ACC =ACCOMMODATION, AB =ACCOUNT BALANCE.

Bins that contain only a few instances may have extremely small or extremely large condi-
tional probabilities (depending on how the instances are divided when conditioned on the
target feature), and these extreme conditional probabilities may bias a model based on the
parameters of the binning technique (for example, the number of bins we choose to have)
rather than on real distributions in the data. For this reason, we recommend the use of
equal-frequency binning to convert continuous features to categorical ones for probability-
based models.

Returning to our loan application fraud detection example, we will show how binning
can be used to include the LOAN AMOUNT feature (see Table 6.11[278]) in a naive Bayes
prediction model for this scenario. Table 6.15[283] shows the discretization of the LOAN

AMOUNT feature into four equal-frequency bins. In this table, the instances in the dataset
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Table 6.14
The probabilities, from Table 6.13[281], needed by the naive Bayes prediction model to make a pre-
diction for the query with CH = paid, GC = guarantor, ACC = free, and AB = 759:07, and the
calculation of the scores for each candidate prediction.

Pp f rq � 0:3 Pp f rq � 0:7

PpCH � paid | f rq � 0:2222 PpCH � paid |  f rq � 0:2692

PpGC � guarantor | f rq � 0:2667 PpGC � guarantor |  f rq � 0:1304

PpACC � free | f rq � 0:2 PpACC � free |  f rq � 0:1739

PpAB � 759:07 | f rq PpAB � 759:07 |  f rq

� E

�

��
759:07;

� � 0:0024

�

� � 0:00039 � N

�

�����

759:07;

� � 984:26;

� � 460:94

�

����
� 0:00077

� m„

k�1

P pq rks | f rq


� P p f rq � 0:0000014

� m„

k�1

P pq rks |  f rq


� P p f rq � 0:0000033

have been reordered in ascending order based on their LOAN AMOUNT values. Even when
using equal-frequency binning, there is still chance that the partitioning of the data will
give rise to extreme conditional probabilities. For example, all the bin3 values have a
target feature value of false. Consequently, the posterior probability of LOAN AMOUNT

= bin3 conditioned on FRAUD = true will be 0.0 and LOAN AMOUNT = bin3 conditioned
FRAUD = false will be 1.0. Smoothing should be used in conjunction with binning to help
with these extreme probabilities.

Once we have discretized the data using binning, we need to record the raw continuous
feature thresholds between the bins. The reason for this is that we need to be able to bin
the features of any query instances appropriately before we make predictions for them. To
calculate these thresholds, we take the midpoint in the feature range between the instance
with the highest feature value in one bin and the feature with the lowest feature value in the
next bin. For example, the instances in Table 6.15[283] are ordered in ascending order based
on the magnitude of their original LOAN AMOUNT value. So, the threshold between bin1
and bin2 will be the midpoint between the LOAN AMOUNT values for d12 (9;850) and d4

(10;000) which is 9;925. The threshold boundaries for the four bins used to discretize the
LOAN AMOUNT feature are
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Table 6.15
The LOAN AMOUNT continuous feature discretized into four equal-frequency bins.

BINNED

LOAN LOAN

ID AMOUNT AMOUNT FRAUD

15 500 bin1 false
19 500 bin1 false
1 900 bin1 true

10 9,500 bin1 true
12 9,850 bin1 true
4 10,000 bin2 true

17 15,450 bin2 false
16 16,000 bin2 false
11 16,750 bin2 false
8 18,500 bin2 false

BINNED

LOAN LOAN

ID AMOUNT AMOUNT FRAUD

9 20,000 bin3 false
7 25,000 bin3 false
5 32,000 bin3 false

20 35,000 bin3 false
3 48,000 bin3 false

18 50,000 bin4 false
14 65,000 bin4 false
13 95,500 bin4 true
2 150,000 bin4 false
6 250,000 bin4 true

bin1 ⁄ 9;925
9;925   bin2 ⁄ 19;250

19;225   bin3 ⁄ 49;000
49;000   bin4

Once we have discretized the continuous features and calculated the thresholds for bin-
ning query features, we are ready to create our predictive model. As before, for a naive
Bayes model, we calculate the prior probability distribution for the target feature and the
posterior distribution for each descriptive feature conditioned on the target feature. Again,
we should smooth the resulting probabilities. Table 6.16[284] shows the Laplace smoothed
(with k � 3) probabilities required by a naive Bayes prediction model calculated from the
dataset in Table 6.11[278]. Notice that in this domain representation, we blend different ap-
proaches to continuous features: we are retaining the PDFs developed in Section 6.4.2[269]

for the ACCOUNT BALANCE feature and extend the representation with the binned version
of the LOAN AMOUNT feature, BINNED LOAN AMOUNT.

We are now ready to process a query that has the continuous LOAN AMOUNT feature as
part of the evidence:

CREDIT HISTORY = paid, GUARANTOR/COAPPLICANT = guarantor,
ACCOMMODATION = free, ACCOUNT BALANCE = 759:07,

LOAN AMOUNT = 8;000

The LOAN AMOUNT value for this query (8;000) is below the threshold for bin1. Conse-
quently, the query LOAN AMOUNT feature will be treated as being equal to bin1 during
prediction. Table 6.17[285] lists the calculations of the naive Bayes scores for the candidate
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Table 6.16
The Laplace smoothed (with k � 3) probabilities needed by a naive Bayes prediction model, calcu-
lated from the data in Tables 6.11[278] and 6.15[283].

Pp f rq � 0:3 Pp f rq � 0:7

PpCH � none | f rq � 0:2222 PpCH � none |  f rq � 0:1154

PpCH � paid | f rq � 0:2222 PpCH � paid |  f rq � 0:2692

PpCH � current | f rq � 0:3333 PpCH � current |  f rq � 0:2692

PpCH � arrears | f rq � 0:2222 PpCH � arrears |  f rq � 0:3462

PpGC � none | f rq � 0:5333 PpGC � none |  f rq � 0:6522

PpGC � guarantor | f rq � 0:2667 PpGC � guarantor |  f rq � 0:1304

PpGC � coapplicant | f rq � 0:2 PpGC � coapplicant |  f rq � 0:2174

PpACC � own | f rq � 0:4667 PpACC � own |  f rq � 0:6087

PpACC � rent | f rq � 0:3333 PpACC � rent |  f rq � 0:2174

PpACC � free | f rq � 0:2 PpACC � free |  f rq � 0:1739

PpAB � x | f rq PpAB � x |  f rq

� E

�

��
x;

� � 0:0024

�

� � N

�

�����

x;

� � 984:26;

� � 460:94

�

����

PpBLA � bin1 | f rq � 0:3333 PpBLA � bin1 |  f rq � 0:1923

PpBLA � bin2 | f rq � 0:2222 PpBLA � bin2 |  f rq � 0:2692

PpBLA � bin3 | f rq � 0:1667 PpBLA � bin3 |  f rq � 0:3077

PpBLA � bin4 | f rq � 0:2778 PpBLA � bin4 |  f rq � 0:2308

Notation key: FR =FRAUD, CH = CREDIT HISTORY, GC = GUARANTOR/COAPPLICANT,

ACC =ACCOMMODATION, AB =ACCOUNT BALANCE, BLA =BINNED LOAN AMOUNT.

predictions for this query: 0:000000462 for true and 0:000000633 for false. The target
level false has the highest score and will be the prediction made by the model.

6.4.4 Bayesian Networks
In this chapter we have introduced two ways to represent the probabilities of events in
a domain, a full joint probability distribution and a naive Bayes model. A full joint
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Table 6.17
The relevant smoothed probabilities, from Table 6.16[284], needed by the naive Bayes model to make
a prediction for the query with CH = paid, GC = guarantor, ACC = free, AB = 759:07, and LA =
8;000, and the calculation of the scores for each candidate prediction.

Pp f rq � 0:3 Pp f rq � 0:7

PpCH � paid | f rq � 0:2222 PpCH � paid |  f rq � 0:2692

PpGC � guarantor | f rq � 0:2667 PpGC � guarantor |  f rq � 0:1304

PpACC � free | f rq � 0:2 PpACC � free |  f rq � 0:1739

PpAB � 759:07 | f rq PpAB � 759:07 |  f rq

� E

�

��
759:07;

� � 0:0024

�

� � 0:00039 � N

�

�����

759:07;

� � 984:26;

� � 460:94

�

����
� 0:00077

PpBLA � bin1 | f rq � 0:3333 PpBLA � bin1 |  f rq � 0:1923
� m„

k�1

P pq rks | f rq


� P p f rq � 0:000000462

� n„

k�1

P pq rks |  f rq


� P p f rq � 0:000000633

probability distribution encodes the probabilities for all joint events in the domain. Using
a full joint probability distribution, we can do probabilistic inference by summing out the
features we are not interested in. Full joint probability distributions, however, grow at an
exponential rate as new features or feature levels are added to the domain. This exponential
growth rate is partially due to the fact that a full joint probability distribution ignores the
structural relationships between features, such as direct influence and conditional indepen-
dence relationships. As a result, full joint distributions are not tractable for any domain of
reasonable complexity. By contrast, a naive Bayes model uses a very compact represen-
tation of a domain. The reason for this is that the model assumes that all the descriptive
features are conditionally independent of each other given the value of the target feature.
The compactness of the representation is at the cost of making a naive assumption that may
adversely affect the predictive accuracy of the model.

Bayesian networks use a graph-based representation to encode the structural relation-
ships (such as direct influence and conditional independence) between subsets of features
in a domain. Consequently, a Bayesian network representation is generally more com-
pact than a full joint distribution (because it can encode conditional independence rela-
tionships), yet it is not forced to assert a global conditional independence between all
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descriptive features. As such, Bayesian network models are an intermediary between full
joint distributions and naive Bayes models and offer a useful compromise between model
compactness and predictive accuracy.

A Bayesian network is a directed acyclical graph (there are no cycles in the graph) that
is composed of three basic elements:

 nodes: each feature in a domain is represented by a single node in the graph.
 edges: nodes are connected by directed links; the connectivity of the links in a graph

encodes the influence and conditional independence relationships between nodes.
 conditional probability tables: each node has a conditional probability table (CPT)

associated with it. A CPT lists the probability distribution of the feature represented by
the node conditioned on the features represented by the other nodes to which a node is
connected by edges.

Figure 6.9(a)[287] illustrates a simple Bayesian network. This network describes a domain
consisting of two features A and B. The directed link from A to B indicates that the value
of A directly influences the value of B. In probability terms, the directed edge from A to B
in Figure 6.9(a)[287] states that

PpA; Bq � PpB | Aq � PpAq (6.17)

For example, the probability of the event a and  b is

Ppa; bq � Pp b | aq � Ppaq � 0:7� 0:4 � 0:28

where the probabilities used in the calculation are read directly from the CPTs in Figure
6.9(a)[287]. In the terminology of Bayesian networks, node A is a parent node of B, and
node B is a child node of A, because there is a direct edge from A into B. The CPT as-
sociated with each node defines the probabilities of each feature taking a value given the
value(s) of its parent node(s). Node A has no parents, so the CPT just lists the uncon-
ditional probability distribution for A. Notice that each row in the CPT tables sum to 1.
Consequently, for a categorical feature with N levels, we need only N � 1 probabilities in
each row, with the final probability being understood as equal to 1 minus the sum of the
other N�1 probabilities. For example, when dealing with binary features, we need simply
state the probability of each feature being true, and the false value is understood as 1 minus
this probability. The network in Figure 6.9(a)[287] could be simplified in this way, and we
will use this simplification for all networks drawn from now on. The standard approach for
handling continuous features in a Bayesian network is to use binning. As a result, the CPT
representation is sufficient to handle both categorical and (binned) continuous features.
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Figure 6.9
(a) A Bayesian network for a domain consisting of two binary features. The structure of the network
states that the value of feature A directly influences the value of feature B. (b) A Bayesian network
consisting of four binary features with a path containing three generations of nodes: D, C, and B.

Equation (6.17)[286] can be generalized to the statement that for any network with N nodes,
the probability of an event x1; : : : ; xn, can be computed using the following formula:

Ppx1; : : : ; xnq �
n„

i�1

Ppxi | Parentspxiqq (6.18)

where Parentspxiq describes the set of nodes in the graph that directly link into node xi.
Using this equation, we can compute any joint event in the domain represented by the
Bayesian network. For example, using the slightly more complex Bayesian network in
Figure 6.9(b)[287], we can calculate the probability of the joint event Ppa; b; c; dq as

Ppa; b; c; dq � Pp b | a; cq � Pp c | dq � Ppaq � Ppdq
� 0:5� 0:8� 0:4� 0:4 � 0:064

When we are computing a conditional probability, we need to be aware of the state of
both the parents of a node and the children of a node and their parents. This is because
knowledge of the state of a child node can tell us something about the state of the parent
node. For example, returning to our simple Bayesian network in Figure 6.9(a)[287], we can
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Figure 6.10
A depiction of the Markov blanket of a node. The gray nodes define the Markov blanket of the black
node. The black node is conditionally independent of the white nodes given the state of the gray
nodes.

compute Ppa |  bq using Bayes’ Theorem as follows:

Ppa |  bq �
Pp b | aq � Ppaq

Pp bq
�

Pp b | aq � Ppaq
°

i Pp b | Aiq

�
Pp b | aq � Ppaq

pPp b | aq � Ppaqq � pPp b |  aq � Pp aqq

�
0:7� 0:4

p0:7� 0:4q � p0:6� 0:6q
� 0:4375

Essentially, here we are using Bayes’ Theorem to invert the dependencies between the
nodes. So, for a conditional independence, we need to take into account not only the
parents of a node but also the state of its children and their parents. If we have knowledge
of these parent and children nodes, however, then the node is conditionally independent of
the rest of the nodes in the graph. The set of nodes in a graph that make a node independent
of the rest of the graph are known as the Markov blanket of a node. Figure 6.10[288]

illustrates the Markov blanket of a node.
So, the conditional probability of a node xi in a graph with n nodes can be defined as

Ppxi | x1; : : : ; xi�1; xi�1; : : : ; xnq �

Ppxi | Parentspxiqq
„

jPChildrenpxiq

Ppx j | Parentspx jqq (6.19)

where Parentspxiq describes the set of nodes in the graph that directly link into node xi, and
Childrenpxiq describes the set of nodes in the graph that xi directly links into. Applying
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this definition to the network in Figure 6.9(b)[287], we can calculate the probability of Ppc |
 a; b; dq as

Ppc |  a; b; dq � Ppc | dq � Ppb | c; aq
� 0:2� 0:4 � 0:08

We already used Equation (6.19)[288] when we were making predictions for a naive Bayes
classifier. A naive Bayes classifier is a Bayesian network with a specific topological struc-
ture. Figure 6.11(a)[290] illustrates the network structure of a naive Bayes classifier and how
it encodes the conditional independence between the descriptive features given assumed
knowledge of the target. Figure 6.11(b)[290] illustrates the network structure of the naive
Bayes model for predicting a fraudulent loan application that was built in Section 6.3.1[262].
We can see in this structure that the target feature, FRAUD, has no parents and is the single
parent for all the descriptive feature nodes. This structure directly reflects the assumption,
made by naive Bayes models, of the conditional independence between descriptive fea-
tures given knowledge of the target feature and is why the conditional probabilities of the
descriptive features in a naive Bayes model are conditioned only on the target feature.

When we computed a conditional probability for the target feature using a naive Bayes
model, we used the following calculation:

Ppt | d r1s ; : : : ;d rnsq � Pptq
„

jPChildrenptq

Ppd r js | tq

This equation is equivalent to Equation (6.19)[288]. The fact that the probability Pptq is an
unconditional probability simply reflects the structure of the naive Bayes’ network where
the target feature has no parent nodes (see Figure 6.11(a)[290]).

Computing a conditional probability for a node becomes more complex if the value of
one or more of the parent nodes is unknown. In this situation the node becomes dependent
on the ancestors of its unknown parent. This is because if a parent node is unknown, then
to compute the distribution for the node, we must sum out this parent. However, to do
this summing out, we must know the distribution for the unknown parent, which in turn
requires us to sum out the parents of the parent, and so on if necessary. As a result of
this recursive summing out, the distribution over a node is dependent on knowledge of
the ancestors of any of its parent nodes.22 For example, in Figure 6.9(b)[287], if the status of
node C is not known, then node B becomes dependent on node D. For example, to compute
Ppb | a; dq we would do the following calculations:

1. Compute the distribution for C given D: Ppc | dq � 0:2, Pp c | dq � 0:8

22. The conditional independence relationship between any two nodes in a Bayesian network can be specified
using the framework of d-separation (the “d” stands for directed) (Pearl, 1988). We don’t discuss d-separation
in this book as it is not required for our discussion.
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Figure 6.11
(a) A Bayesian network representation of the conditional independence asserted by a naive Bayes
model between the descriptive features given knowledge of the target feature; and (b) a Bayesian
network representation of the conditional independence assumption for the naive Bayes model in the
fraud example.

2. Compute Ppb | a;Cq by summing out C: Ppb | a;Cq �
°

i Ppb | a;Ciq

Ppb | a;Cq �
‚

i

Ppb | a;Ciq �
‚

i

Ppb; a;Ciq
Ppa;Ciq

�
pPpb | a; cq � Ppaq � Ppcqq � pPpb | a; cq � Ppaq � Pp cqq

pPpaq � Ppcqq � pPpaq � Pp cqq

�
p0:2� 0:4� 0:2q � p0:5� 0:4� 0:8q

p0:4� 0:2q � p0:4� 0:8q
� 0:44

This example illustrates the power of Bayesian networks. When complete knowledge of
the state of all the nodes in the network is not available, we clamp the values of nodes
that we do have knowledge of and sum out the unknown nodes. Furthermore, during these
calculations, we only need to condition a node on its Markov blanket, which dramatically
reduces the number of probabilities required by the network.
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Figure 6.12
Two different Bayesian networks, each defining the same full joint probability distribution.

6.4.4.1 Building Bayesian networks Bayesian networks can be constructed by hand or
learned from data. Learning both the topology of a Bayesian network and the parameters
in the CPTs in the network is a difficult computational task. One of the things that makes
learning the structure of a Bayesian network so difficult is that it is possible to define
several different Bayesian networks as representations for the same full joint probability
distribution. Consider, for example, a probability distribution for three binary features A,
B, and C. The probability for a joint event in this domain PpA; B;Cq can be decomposed
using the chain rule in the following way:

PpA; B;Cq � PpC | A; Bq � PpB | Aq � PpAq (6.20)

The chain rule, however, doesn’t specify any constraints on which features in the domain
we choose to condition on. We could just as easily have decomposed the probability of the
joint event as follows:

PpA; B;Cq � PpA | C; Bq � PpB | Cq � PpCq (6.21)

Both of these decompositions are valid, and both define different Bayesian networks for
the domain. Figure 6.12(a)[291] illustrates the Bayesian network representing the decompo-
sition defined in Equation (6.20)[291], and Figure 6.12(b)[291] illustrates the Bayesian network
representing the decompositions defined in Equation (6.21)[291].
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We can show that both of the networks in Figure 6.12[291] represent the same joint proba-
bility by using each of them to calculate the probability of an arbitrarily chosen joint event
from the domain. We should get the same probability for the joint event from both of the
networks. For this example, we will calculate the probability of the event  a, b, c. Using
the Bayesian network in Figure 6.12(a)[291], we would carry out the calculation as follows:

Pp a; b; cq � Ppc |  a; bq � Ppb |  aq � Pp aq
� 0:25� 0:5� 0:4 � 0:05

Using the network in Figure 6.12(b)[291], the calculation would be

Pp a; b; cq � Pp a | c; bq � Ppb | cq � Ppcq
� 0:5� 0:5� 0:2 � 0:05

Both networks return the same probability for the joint event. In fact, these networks will
return identical probabilities for all events in this domain.

The basic approach to learning the structure of a Bayesian network is to use a local search
algorithm that moves through the space of possible networks and parameters, and searches
for the network topology and CPT parameters that best fit with the data. To start the search,
the algorithm is given a seed network and then iteratively adapts this network by adding,
removing, or reversing links (and/or adding and removing hidden nodes), accompanied
by iterations of parameter learning after each network structure adaptation. One of the
difficulties with learning a network structure is that we can always improve the likelihood
of the data given a network by simply adding new links into the network. Each time we
add a link to a network, we increase the number of CPT entries in the network. The CPT
entries are essentially parameters on the network, and the more parameters a network has,
the greater its ability to fit (or overfit) the data. So, care must be taken to ensure that
the objective function used by the search process avoids overfitting the data by simply
creating a very highly connected graph. Consequently, the objective functions used by
these algorithms are often based on the minimum description length principle, which
asserts that the solution with the fewest parameters (shortest description) is the best one.
We have already met the minimum description length principle in the more general form of
Occam’s razor. A popular metric used by these algorithms is the Bayesian information
criterion (BIC):

BICpG;Dq � loge
�
PpD | P̂;Gq

�
�
�

d
2
� logepnq



(6.22)

where G denotes the network graph, D is the training data, P̂ is the set of entries in the
CPTs of G, d is the number of parameters of G (i.e., how many entries in the CPTs of G),
and n is the number of instances in D. This metric contains a term describing how well
the model predicts the data PpD|P̂;Gq as well as a term that punishes complex models
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�
�

d
2 � logepnq

�
. As such, it balances the search goals of model accuracy and simplicity.

The term PpD|P̂;Gq can be computed using metrics such as the Bayesian score or the K2
score.23 The search space for these algorithms is exponential in the number of features.
Consequently, developing algorithms to learn the structure of Bayesian networks is an
ongoing research challenge.24

It is much simpler to construct a Bayesian network using a hybrid approach, where the
topology of the network is given to the learning algorithm, and the learning task involves
inducing the CPT entries from the data. This type of learning illustrates one of the real
strengths of the Bayesian network framework, namely, that it provides an approach to
learning that naturally accommodates human expert information. In this instance, the hu-
man expert specifies that topology of the network, and the learning algorithm induces the
CPT entries for nodes in the topology in the same way that we computed the conditional
probabilities for the naive Bayes model.25

Given that there are multiple Bayesian networks for any domain, an obvious question
to ask is, what is the best topological structure to give the algorithm as input? Ideally,
we would like to use the network whose structure most accurately reflects the causal re-
lationships in the domain. Specifically, if the value of one feature directly influences, or
causes, the value taken by another feature, then this should be reflected in the structure
of the graph by having a link from the cause feature to the effect feature. Bayesian net-
works whose topological structure correctly reflects the causal relationships between the
features in a dataset are called causal graphs. There are two advantages to using a causal
graph: (1) people find it relatively easy to think in terms of causal relationships, and as a
result, networks that encode these relationships are relatively easy to understand; (2) often
networks that reflect the causal structure of a domain are more compact in terms of the
number of links between nodes and hence are more compact with respect to the number of
CPT entries.

We will use an example from social science to illustrate how to construct a causal graph
using this hybrid approach. In this example, we will build a Bayesian network that enables
us to predict the level of corruption in a country based on a number of macroeconomic and

23. The K2 score is named after the K2 algorithm, one of the earliest and best-known algorithms for learning
Bayesian networks (Cooper and Herskovits, 1992).

24. See Kollar and Friedman (2009) for a discussion of algorithms that seek to address this research challenge.

25. In some cases we may not have data for all the features; and in these instances, the standard approach to
learning the CPT entries is to use a gradient descent approach (similar to the one we introduce in Chapter 7[311]),
where the objective function of the local search algorithm is simply how well the product of the induced condi-
tional probabilities match the relative frequency of each joint event in the data. In other words, we choose the set
of conditional probabilities that maximize the likelihood of the training data.
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social descriptive features. Table 6.18[295] lists some countries described using the following
features:26

 GINI COEF measures the equality in a society, where a larger Gini coefficient indicates
a more unequal society.

 LIFE EXP measures life expectancy at birth.
 SCHOOL YEARS refers to the mean number of years spent in school for adult females.
 CPI is the Corruption Perception Index (CPI), and it is the target feature. The CPI

measures the perceived level of corruption in the public sector of a country and ranges
from 0 (highly corrupt) to 100 (very clean).

The original feature values shown in Table 6.18[295] are continuous, so we use the standard
approach of converting them to categorical features using equal-frequency binning, with
two bins for each feature: low and high. The columns labeled Binned Feature Values in
Table 6.18[295] show the data after it has been binned.

Once the data has been prepared, there are two stages to building the Bayesian network.
First, we define the topology of the network. Second, we create the network CPTs. The
topology of the network will be a causal graph that models this domain. In order to build
this, we must have a theory of the causal relationships between the features in the domain.
A potential causal theory between the features in this dataset is that

the more equal a society, the higher the investment that society will make in health and
education, and this in turn results in a lower level of corruption

Figure 6.13[296] illustrates a Bayesian network with a topology that encodes this causal
theory. Equality directly affects both health and education, so there are directed arcs from
GINI COEF to both LIFE EXP and SCHOOL YEARS. Health and education directly affect
corruption, so there is a directed arc from LIFE EXP and from SCHOOL YEARS to CPI.
To complete the network, we need to add the CPTs. To do this, we compute the required
conditional probabilities from the binned data in Table 6.18[295]. The CPTs are shown in
Figure 6.13[296].

6.4.4.2 Using a Bayesian network to make predictions Once a network has been
created, it is relatively straightforward to use to make a prediction. We simply compute
the probability distribution for the target feature conditioned on the state of the descriptive
features in the query and return the target feature level with the maximum a posteriori

26. The data listed in this table is real. The Gini coefficient data is for 2013 (or the most recent year prior to
2013 for which the data was available for a country) and was retrieved from the World Bank (data.worldbank.
org/indicator/SI.POV.GINI); the life expectancy and mean years in school data was retrieved from Gapminder
(www.gapminder.org) and is for 2010/11 (or the most recent year prior to 2010/11 for which the data was avail-
able for a country); and the mean years in school were originally sourced from the Institute for Health Metrics and
Evaluation (www.healthdata.org). The Corruption Perception Index is for 2011 and was retrieved from Trans-
parency International (www.transparency.org).

data.worldbank.org/indicator/SI.POV.GINI
data.worldbank.org/indicator/SI.POV.GINI
www.gapminder.org
www.healthdata.org
www.transparency.org
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Table 6.18
Some socioeconomic data for a set of countries, and a version of the data after equal-frequency
binning has been applied.

Original Feature Values Binned Feature Values
COUNTRY GINI SCHOOL LIFE GINI SCHOOL LIFE

ID COEF YEARS EXP CPI COEF YEARS EXP CPI
Afghanistan 27.82 0.40 59.61 1.52 low low low low
Argentina 44.49 10.10 75.77 3.00 high low low low
Australia 35.19 11.50 82.09 8.84 low high high high
Brazil 54.69 7.20 73.12 3.77 high low low low
Canada 32.56 14.20 80.99 8.67 low high high high
China 42.06 6.40 74.87 3.64 high low low low
Egypt 30.77 5.30 70.48 2.86 low low low low
Germany 28.31 12.00 80.24 8.05 low high high high
Haiti 59.21 3.40 45.00 1.80 high low low low
Ireland 34.28 11.50 80.15 7.54 low high high high
Israel 39.2 12.50 81.30 5.81 low high high high
New Zealand 36.17 12.30 80.67 9.46 low high high high
Nigeria 48.83 4.10 51.30 2.45 high low low low
Russia 40.11 12.90 67.62 2.45 high high low low
Singapore 42.48 6.10 81.788 9.17 high low high high
South Africa 63.14 8.50 54.547 4.08 high low low low
Sweden 25.00 12.80 81.43 9.30 low high high high
UK 35.97 13.00 80.09 7.78 low high high high
USA 40.81 13.70 78.51 7.14 high high high high
Zimbabwe 50.10 6.7 53.684 2.23 high low low low

probability:
Mpqq � arg max

lPlevelsptq
BayesianNetworkpt � l;qq (6.23)

where Mpqq is the prediction made by the model for the query q, levelsptq is the set of
levels in the domain of the target feature t, and BayesianNetworkpt � l;qq returns the
probability computed by the network for the event t � l given the evidence specified in the
query q.

For example, imagine we wanted to use the Bayesian network in Figure 6.13[296] to predict
the CPI for a country with the following profile:

GINI COEF = low, SCHOOL YEARS = high, LIFE EXP = high

Because both the parent nodes for CPI are known (SCHOOL YEARS and LIFE EXP), the
probability distribution for CPI is independent of the GINI COEF feature. Therefore, we
can read the relevant probability distribution for CPI directly from the CPT for the CPI
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Figure 6.13
A Bayesian network that encodes the causal relationships between the features in the corruption
domain. The CPT entries have been calculated using the binned data from Table 6.18[295].

node. From this CPT we can see that when SCHOOL YEARS = high, and LIFE EXP = high,
then the most likely level is CPI = high. As a result, CPI = high is the MAP CPI value
for this query, and this is the prediction the model will return. In other words, countries
that are relatively equal and that have good education and high life expectancy are likely
to have a low level of corruption.

6.4.4.3 Making predictions with missing descriptive feature values One real ad-
vantage of Bayesian networks over the other predictive model types that we discuss in
this book is they a provide an elegant solution to making predictions for a target feature
when one or more of the descriptive feature values in a query instance are missing.27 For
example, we may wish to predict the CPI for a country with the following profile:

GINI COEF = high, SCHOOL YEARS = high

where the value of the LIFE EXP feature is unknown for the country. This means that in the
network, one of the parents of the target feature node, CPI, is unknown. Consequently, we
need to sum out this feature for each level of the target. We can calculate the probability

27. The most common way to achieve this for the other model types covered in this book is to impute the missing
values in the query instance using one of the techniques described in Section 3.4.1[69].
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for CPI = high as follows:28

PpCPI � high | SY � high;GC � highq

�
PpCPI � high; SY � high;GC � highq

PpSY � high;GC � highq

�

‚

iP
!

high;
low

)
PpCPI � high; SY � high;GC � high; LE � iq

PpSY � high;GC � highq

We calculate the numerator in this term as follows:
‚

iP
!

high;
low

)
PpCPI � high; SY � high;GC � high; LE � iq

�
‚

iP
!

high;
low

)

�

�����

PpCPI � high | SY � high; LE � iq
� PpSY � high | GC � highq
� PpLE � i | GC � highq
� PpGC � highq

�

����

�
�

PpCPI � high | SY � high; LE � highq

� PpSY � high | GC � highq � PpLE � high | GC � highq � PpGC � highq
	

�
�

PpCPI � high | SY � high; LE � lowq

� PpSY � high | GC � highq � PpLE � low | GC � highq � PpGC � highq
	

� p1:0� 0:2� 0:2� 0:5q � p0� 0:2� 0:8� 0:5q � 0:02

and denominator as:

PpSY � high;GC � highq
� PpSY � high | GC � highq � PpGC � highq
� 0:2� 0:5 � 0:1

28. In the following calculations we have abbreviated feature names as follows: GC = GINI COEF, LE = LIFE
EXP, and SY = SCHOOL YEARS.



298 Chapter 6 Probability-Based Learning

We can now calculate the probability for CPI = high as

PpCPI � high | SY � high;GC � highq �
0:02
0:1

� 0:2

We know from this result that the probability for CPI = low must be 0:8. So, the network
will predict CPI = low as the MAP target value for the query. This tells us that an unequal
society that has a good education system but for which we have no evidence about the
health system is still likely to suffer from corruption.

These calculations make it apparent that even in this small example domain, the calcula-
tion of a probability becomes computationally complex very quickly, particularly when we
need to sum out one or more features. The complexity of the calculations can be reduced
by being careful with the positioning of features with respect to summations and by using
dynamic programming techniques to avoid repeated computations. A well-known algo-
rithm that focuses on this approach to reducing the complexity is the variable elimination
algorithm (Zhang and Poole, 1994). However, even using the variable elimination algo-
rithm, calculating exact probabilities from a Bayesian network when descriptive feature
values are missing is prohibitively complex.

Given the complexity of exact probabilistic inference for Bayesian networks, a popular
alternative is to approximate the probability distribution required for a prediction using
Monte Carlo methods.29 Monte Carlo methods generate a large number of sample events
and then use the relative frequency of an event in the set of generated samples as the ap-
proximation for the probability of that event in the real distribution. Monte Carlo methods
work well in conjunction with Bayesian networks because a Bayesian network models the
probability distribution over the features. More specifically, a Bayesian network can be
viewed as defining a Markov chain. A Markov chain is a system that has a set of finite
states and a set of transition probabilities that define the likelihood of the system moving
from one state to another. When we view a Bayesian network as a Markov chain, a state
is a complete assignment of values to all the nodes in the network (for example, GINI

COEF = high, SCHOOL YEARS = low, LIFE EXP = high, CPI = high would be a state in
the Markov chain defined by the network in Figure 6.13[296]), and the CPTs of the network
provide a distributed representation of the transition probabilities of the Markov chain.
If the distribution used to generate the samples for a Monte Carlo method is a Markov
chain, then the specific algorithms we use to implement this approach come from a family
known as Markov chain Monte Carlo (MCMC) algorithms. Gibbs sampling is one of
the best-known MCMC algorithms and is particularly suitable when we wish to generate
probabilities that are conditioned on some evidence, so this is the algorithm we discuss in
this section.

29. Monte Carlo methods are named after the Mediterranean principality that is famous for its casino.
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The Gibbs sampling algorithm initializes a Bayesian network by clamping the values
of the evidence nodes and randomly assigning values to the non-evidence nodes. The
algorithm then iteratively generates samples by changing the value of one of the non-
evidence nodes. The selection of which non-evidence node to change can be random or
follow a predefined list through which the algorithm iterates. The new value for the selected
node is drawn from the distribution for the node (the CPT), conditioned on the current state
of all the other nodes in the network. Each time a node is updated, a new sample state has
been generated. More formally, for a network with three nodes x1; x2; x3, using a predefined
node selection order of x1; x2; x3; x1; : : : and assuming that at iteration � each node has the
values xp�q1 , xp�q2 , xp�q3 , the next four states generated will be

1.
D
xp��1q

1 — Ppx1 | xp�q2 ; xp�q3 q; x
p�q
2 ; xp�q3

E

2.
D
xp��1q

1 ; xp��2q
2 — Ppx2 | xp��1q

1 ; xp�q3 q; x
p�q
3

E

3.
D
xp��1q

1 ; xp��2q
2 ; xp��3q

3 — Ppx3 | xp��1q
1 ; xp��2q

2 q
E

4.
D
xp��4q

1 — Ppx1 | xp��2q
2 ; xp��3q

3 q; xp��2q
2 ; xp��3q

3

E

There are three technical requirements that must hold for distribution of states generated
from Gibbs sampling to converge with the distribution that we are sampling from—in this
case, the distribution defined by the Bayesian network. The first is that the distribution we
are sampling from must be a stationary distribution (also known as an invariant distri-
bution). A stationary distribution is a distribution that doesn’t change. The distribution
defined by a Bayesian network doesn’t change during Gibbs sampling, so this requirement
always holds in this context. The second requirement is that the Markov chain used to gen-
erate the samples must be ergodic. A Markov chain is ergodic if every state is reachable
from every other state and there are no cycles in the chain. The Markov chain defined by
a Bayesian network is ergodic if there are no zero entries in any of the CPTs.30 The third
requirement is that the generated states should be independent of each other. As each gen-
erated state is a modified version of the preceding state, it is clear that successive states will
be correlated with each other. So to obtain independent sample states, we often sub-sample
from the sequence (sub-sampling in this way is also known as thinning). Once these three
conditions hold (stationary distribution, ergodicity, and independent states), the samples
generated will eventually converge with the distribution, and it is appropriate to use Gibbs
sampling.

Because we start sampling from a random state, however, we do not know whether the
initial state is an appropriate state from which to start generating samples. It may, for
example, be a state that has a very low probability in the distribution. As a result, it
is a good idea to run the network for a number of iterations before the generated states

30. If there are one or more zero entries in the CPTs, then the Markov chain may still be ergodic, but it is non-
trivial to prove ergodicity in these cases.
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are recorded as samples. This burn-in time is to allow the Markov chain to settle into
a state that is independent of the initial random state and that is a probable state for the
distribution we are sampling from. The time it takes for the Markov chain to forget the
initial random state is called the mixing time. Unfortunately, estimating how long the
burn-in should be is difficult. For some Markov chains, mixing may require only a few
iterations, but for others, it may require hundreds or thousands of iterations. The topology
of the network can provide some insight into this problem. Larger graphs will tend to have
longer mixing times. Also, an evenly connected network typically has a relatively short
mixing time (for the size of the graph). If, however, a graph is composed of a number
of clusters connected via bottleneck nodes, this would typically indicate a longer mixing
time. Another approach used to determine the appropriate burn-in time is to start several
Markov chains with different initial states and wait until all the chains are generating states
with similar distribution characteristics (mean state, mode state, etc.). When this happens,
it indicates that all the chains are sampling from the same distribution and, hence, that
it is likely that they have all forgotten their starting states. Once this happens, the target
probability can be computed by calculating the relative frequency of the event within the
selected subset of generated states.

Table 6.19[301] lists a some of the samples generated using Gibbs sampling for the Bayesian
network in Figure 6.13[296] for the query

GINI COEF = high, SCHOOL YEARS = high

A burn-in of 30 iterations was used, and the samples were thinned by sub-sampling every
7th iteration. When the algorithm was used to generate 500 samples, the relative frequency
of CPI = high was 0:196. When 2;000 samples were generated, the relative frequency
rose to 0:1975. This rise in relative frequency illustrates that, as the number of samples
generated increases, the resulting distribution approaches the actual distribution. Recall
that when we did an exact calculation for this query the probability of CPI = high was 0:2.

We can make predictions using Gibbs sampling in the same way that we made predic-
tions using exact probabilistic inference by predicting the target level with the maximum a
posteriori probability:

Mpqq � arg max
lPlevelsptq

Gibbs pt � l;qq (6.24)

where Mpqq is the prediction made by the model for the query q, levelsptq is the set of
levels in the domain of the target feature t, and Gibbspt � l;qq returns the probability for
the event t � l given the evidence specified in the query q using Gibbs sampling.

6.5 Summary

There are two ways to reason with probabilities forward and inverse. Forward probability
reasons from causes to effects: if we know that a particular causal event has happened,
then we increase the probability associated with the known effects that it causes. Inverse
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Table 6.19
Examples of the samples generated using Gibbs sampling.

Sample Gibbs Feature GINI SCHOOL LIFE

Number Iteration Updated COEF YEARS EXP CPI
1 37 CPI high high high low
2 44 LIFE EXP high high high low
3 51 CPI high high high low
4 58 LIFE EXP high high low high
5 65 CPI high high high low
6 72 LIFE EXP high high high low
7 79 CPI high high low high
8 86 LIFE EXP high high low low
9 93 CPI high high high low

10 100 LIFE EXP high high high low
11 107 CPI high high low high
12 114 LIFE EXP high high high low
13 121 CPI high high high low
14 128 LIFE EXP high high high low
15 135 CPI high high high low
16 142 LIFE EXP high high low low

: : :

probability reasons from effects to causes: if we know that a particular event has occurred,
then we can increase the probability that one or more of the events that could cause the
observed event have also happened. Bayes’ Theorem relates these two views of proba-
bility by using the notion of a prior probability. Put in subjective terms, Bayes’ Theorem
tells us that by modifying our initial beliefs about what has happened (our prior beliefs
about the world) proportionally with how our observations relate to their potential causes
(inverse probability), we can update our beliefs regarding what has happened to cause our
observations (forward probability). Put more formally:

Ppt | dq �
Ppd | tq � Pptq

Ppdq
(6.25)

The use of prior probabilities in Bayes’ Theorem is what distinguishes between Bayesian
and maximum likelihood approaches to probability.

Bayesian prediction is a very intuitive approach to predicting categorical targets. In order
to make a prediction, we have to learn two things:

1. the probability of an instance having a particular set of descriptive feature values given
that it has a particular target level Ppd | tq

2. the prior probability of that target level Pptq
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Given these two pieces of information, we can compute the relative likelihood of a partic-
ular instance having a particular target level as

Ppt | dq � Ppd | tq � Pptq (6.26)

Once the relative likelihoods for each target level have been calculated, we simply return
the maximum a posteriori (MAP) prediction.

The biggest challenge in creating a Bayesian prediction model is overcoming the expo-
nential growth in the number of probabilities (model parameters) that are required as the
dimensionality of the feature space increases. The standard approach to addressing this
problem is to use the independence and conditional independence relationships between
the features in a domain to factorize the full joint distribution of the domain. Factoriz-
ing the domain representation reduces the number of interactions between the features and
reduces the number of model parameters.

A naive Bayes model addresses this problem by naively assuming that each of the de-
scriptive features in a domain is conditionally independent of all the other descriptive fea-
tures, given the state of the target feature. This assumption, although often wrong, en-
ables the naive Bayes model to maximally factorize the representation that it uses of the
domain—in other words, to use the smallest possible number of probabilities to represent
the domain.

Surprisingly, given the naivete and strength of the assumption it depends upon, naive
Bayes models often perform well. This is partly because naive Bayes models are able
to make correct predictions even if the probabilities that they calculate are incorrect, so
long as the error in the calculated probabilities does not affect the relative rankings of the
different target levels. One consequence of this observation is that naive Bayes models are
not really suitable for predicting continuous targets. When predicting a continuous target,
every error in the calculation of a probability is reflected in reduced model performance.

The conditional independence assumption means that naive Bayes models use very few
parameters to represent a domain. One consequence of this is that naive Bayes models can
be trained using a relatively small dataset: with so few parameters and so few conditions
on each parameter—only the state of the target feature—it is possible to make reasonable
estimates for the parameters using a small dataset. Another benefit of the reduced repre-
sentation of the model is that the behavior of the model is relatively easy to interpret. It is
possible to look at the probabilities for each descriptive feature and analyze how that value
contributed to the final prediction. This information can be useful in informing the devel-
opment of more powerful models later in a project. Consequently, a naive Bayes model is
often a good model to begin with: it is easy to train and has the potential to provide both
a baseline accuracy score and some insight into the problem structure. The major draw-
back of naive Bayes models is the inability of the model to handle the interactions between
features.
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Bayesian networks provide a more flexible representation for encoding the conditional
independence assumptions between the features in a domain. Ideally, the topology of a
network should reflect the causal relationships between the entities in a domain. Prop-
erly constructed Bayesian networks are relatively powerful models that can capture the
interactions between descriptive features in determining a prediction. Although the task
of inducing the optimal network structure from data is strictly intractable, algorithms that
encode various assumptions exist that allow good models to be learned. Also, in domains
where the causal relationships between features are known, Bayesian networks have the
advantage of providing a natural framework for integrating expert human knowledge with
data-driven induction. Bayesian networks have been successfully applied across a range of
fields, including medical diagnosis, object recognition, and natural language understand-
ing.

Several parallels can be drawn between probability-based learning and the other ap-
proaches to machine learning that we present in this book. Intuitively, the prior probability
of a nearest neighbor model predicting a particular target level is simply the relative fre-
quency of that target level in the dataset. For this reason, in general it is wrong to artificially
balance the dataset used by a nearest neighbor model,31 and doing so biases the target level
priors used by the model.

The relationship between probability-based and information-based learning is simply
that the amount of information provided by an observation—such as a descriptive feature
taking a particular value—is reflected in the difference between the prior and posterior
probabilities caused by the observation. If the prior and posterior probabilities are sim-
ilar, then the information content in the observation was low. If the prior and posterior
probabilities are very different, then the information content in the observation was high.

Finally, it can be shown that, under some assumptions, any learning algorithm that min-
imizes the squared error of the model over the data will output a maximum likelihood
prediction.32 The relevance of this finding is that it provides a probabilistic justification for
the approach to learning we present in Chapter 7[311].

6.6 Further Reading

McGrayne (2011) is an accessible book on the development and history of Bayes’ Theo-
rem. All data analysts should have at least one good textbook on statistics and probability.
We would recommend either Montgomery and Runger (2010) or Tijms (2012) (or both).
Jaynes (2003) deals with the use of probability theory in science and is a suitable text for
postgraduate students.

31. See Davies (2005, pp. 693–696).

32. See Mitchell (1997, pp. 164–167).



304 Chapter 6 Probability-Based Learning

Chapter 6 of Mitchell (1997) provides an excellent overview of Bayesian learning. Bar-
ber (2012) is a more recent machine learning textbook that adopts a Bayesian approach to
learning and inference.

Judea Pearl is recognized as one of the key pioneers in developing the use of Bayesian
networks in the field of artificial intelligence, and his books (Pearl, 1988, 2000) are acces-
sible and provide good introductions to the theory and methods of Bayesian networks, as
well as the more general field of graphical models. Neapolitan (2004) is a good textbook
on Bayesian networks. Kollar and Friedman (2009) is a comprehensive text on the theory
and methods of graphical models and is a good reference text for postgraduate students
who are doing research using graphical models.
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6.7 Exercises

1. (a) Three people flip a fair coin. What is the probability that exactly two of them will
get heads?

(b) Twenty people flip a fair coin. What is the probability that exactly eight of them
will get heads?

(c) Twenty people flip a fair coin. What is the probability that at least four of them
will get heads?

2. The table below gives details of symptoms that patients presented and whether they
were suffering from meningitis.

ID HEADACHE FEVER VOMITING MENINGITIS

1 true true false false
2 false true false false
3 true false true false
4 true false true false
5 false true false true
6 true false true false
7 true false true false
8 true false true true
9 false true false false

10 true false true true

Using this dataset, calculate the following probabilities:

(a) PpVOMITING � trueq

(b) PpHEADACHE � falseq

(c) PpHEADACHE � true;VOMITING � falseq

(d) PpVOMITING � false | HEADACHE � trueq

(e) PpMENINGITIS | FEVER � true;VOMITING � falseq

3. Predictive data analytics models are often used as tools for process quality control and
fault detection. The task in this question is to create a naive Bayes model to monitor
a wastewater treatment plant.33 The table below lists a dataset containing details of
activities at a wastewater treatment plant for 14 days. Each day is described in terms
of six descriptive features that are generated from different sensors at the plant. SS-
IN measures the solids coming into the plant per day; SED-IN measures the sediment
coming into the plant per day; COND-IN measures the electrical conductivity of the

33. The dataset in this question is inspired by the Waste Water Treatment Dataset that is available from the UCI
Machine Learning repository (Bache and Lichman, 2013) at archive.ics.uci.edu/ml/machine-learning-databases/
water-treatment. The creators of this dataset reported their work in Bejar et al. (1991).

archive.ics.uci.edu/ml/machine-learning-databases/water-treatment
archive.ics.uci.edu/ml/machine-learning-databases/water-treatment
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water coming into the plant.34 The features SS-OUT, SED-OUT, and COND-OUT are
the corresponding measurements for the water flowing out of the plant. The target
feature, STATUS, reports the current situation at the plant: ok, everything is working
correctly; settler, there is a problem with the plant settler equipment; or solids, there
is a problem with the amount of solids going through the plant.

SS SED COND SS SED COND

ID -IN -IN -IN -OUT -OUT -OUT STATUS

1 168 3 1,814 15 0.001 1,879 ok
2 156 3 1,358 14 0.01 1,425 ok
3 176 3.5 2,200 16 0.005 2,140 ok
4 256 3 2,070 27 0.2 2,700 ok
5 230 5 1,410 131 3.5 1,575 settler
6 116 3 1,238 104 0.06 1,221 settler
7 242 7 1,315 104 0.01 1,434 settler
8 242 4.5 1,183 78 0.02 1,374 settler
9 174 2.5 1,110 73 1.5 1,256 settler

10 1,004 35 1,218 81 1,172 33.3 solids
11 1,228 46 1,889 82.4 1,932 43.1 solids
12 964 17 2,120 20 1,030 1,966 solids
13 2,008 32 1,257 13 1,038 1,289 solids

(a) Create a naive Bayes model that uses probability density functions to model the
descriptive features in this dataset (assume that all the descriptive features are
normally distributed).

(b) What prediction will the naive Bayes model return for the following query?

SS-IN = 222, SED-IN = 4.5, COND-IN = 1,518, SS-OUT = 74 SED-OUT = 0.25,
COND-OUT = 1,642

4. The following is a description of the causal relationship between storms, the behavior
of burglars and cats, and house alarms:

Stormy nights are rare. Burglary is also rare, and if it is a stormy night, burglars are
likely to stay at home (burglars don’t like going out in storms). Cats don’t like storms either,
and if there is a storm, they like to go inside. The alarm on your house is designed to be
triggered if a burglar breaks into your house, but sometimes it can be set off by your cat
coming into the house, and sometimes it might not be triggered even if a burglar breaks in
(it could be faulty or the burglar might be very good).

(a) Define the topology of a Bayesian network that encodes these causal relationships.

34. The conductivity of water is affected by inorganic dissolved solids and organic compounds, such as oil.
Consequently, water conductivity is a useful measure of water purity.
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(b) The table below lists a set of instances from the house alarm domain. Using the
data in this table, create the conditional probability tables (CPTs) for the network
you created in Part (a) of this question.

ID STORM BURGLAR CAT ALARM

1 false false false false
2 false false false false
3 false false false false
4 false false false false
5 false false false true
6 false false true false
7 false true false false
8 false true false true
9 false true true true
10 true false true true
11 true false true false
12 true false true false
13 true true false true

(c) What value will the Bayesian network predict for ALARM, given that there is both
a burglar and a cat in the house but there is no storm?

(d) What value will the Bayesian network predict for ALARM, given that there is a
storm but we don’t know if a burglar has broken in or where the cat is?

� 5. The table below lists a dataset containing details of policyholders at an insurance com-
pany. The descriptive features included in the table describe each policy holders’ ID,
occupation, gender, age, type of insurance policy, and preferred contact channel. The
preferred contact channel is the target feature in this domain.

POLICY PREF

ID OCCUPATION GENDER AGE TYPE CHANNEL

1 lab tech female 43 planC email
2 farmhand female 57 planA phone
3 biophysicist male 21 planA email
4 sheriff female 47 planB phone
5 painter male 55 planC phone
6 manager male 19 planA email
7 geologist male 49 planC phone
8 messenger male 51 planB email
9 nurse female 18 planC phone

(a) Using equal-frequency binning, transform the AGE feature into a categorical
feature with three levels: young, middle-aged, mature.
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(b) Examine the descriptive features in the dataset and list the features that you would
exclude before you would use the dataset to build a predictive model. For each
feature you decide to exclude, explain why you have made this decision.

(c) Calculate the probabilities required by a naive Bayes model to represent this do-
main.

(d) What target level will a naive Bayes model predict for the following query:

GENDER = female, AGE = 30, POLICY = planA

� 6. Imagine that you have been given a dataset of 1;000 documents that have been clas-
sified as being about entertainment or education. There are 700 entertainment doc-
uments in the dataset and 300 education documents in the dataset. The tables below
give the number of documents from each topic that a selection of words occurred in.

Word-document counts for the entertainment dataset
fun is machine christmas family learning
415 695 35 0 400 70

Word-document counts for the education dataset
fun is machine christmas family learning
200 295 120 0 10 105

(a) What target level will a naive Bayes model predict for the following query docu-
ment: “machine learning is fun”?

(b) What target level will a naive Bayes model predict for the following query docu-
ment: “christmas family fun”?

(c) What target level will a naive Bayes model predict for the query document in Part
(b) of this question, if Laplace smoothing with k � 10 and a vocabulary size of 6
is used?

� 7. A naive Bayes model is being used to predict whether patients have a high risk of
stroke in the next five years (STROKE=true) or a low risk of stroke in the next five
years (STROKE=false). This model uses two continuous descriptive features AGE

and WEIGHT (in kilograms). Both of these descriptive features are represented by
probability density functions, specifically normal distributions. The table below shows
the representation of the domain used by this model.
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PpS troke � trueq � 0:25 PpS troke � f alseq � 0:75
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�

�
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�
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�

�
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�



PpWEIGHT � x | S troke � trueq PpWEIGHT � x | S troke � f alseq

� N

�

�
x;

� � 88;
� � 8

�

 � N

�

�
x;

� � 76;
� � 6

�



(a) What target level will the naive Bayes model predict for the following query:

AGE = 45, WEIGHT = 80

� 8. The table below lists a dataset of books and whether or not they were purchased by an
individual (i.e., the feature PURCHASED is the target feature in this domain).

ID SECONDHAND GENRE COST PURCHASED

1 false romance expensive true
2 false science cheap false
3 true romance cheap true
4 false science cheap true
5 false science expensive false
6 true romance reasonable false
7 true literature cheap false
8 false romance reasonable false
9 frue science cheap false
10 true literature reasonable true

(a) Calculate the probabilities (to four places of decimal) that a naive Bayes classifier
would use to represent this domain.

(b) Assuming conditional independence between features given the target feature value,
calculate the probability (rounded to four places of decimal) of each outcome
(PURCHASED=true, and PURCHASED=false) for the following book:

SECONDHAND=false, GENRE=literature, COST=expensive

(c) What prediction would a naive Bayes classifier return for the above book?

� 9. The following is a description of the causal relationship between storms, the behavior
of burglars and cats, and house alarms:

Jim and Martha always go shopping separately. If Jim does the shopping he buys wine,
but not always. If Martha does the shopping, she buys wine, but not always. If Jim tells
Martha that he has done the shopping, then Martha doesn’t go shopping, but sometimes Jim
forgets to tell Martha, and so sometimes both Jim and Martha go shopping.
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(a) Define the topology of a Bayesian network that encodes these causal relationships
between the following Boolean variables: JIM (Jim has done the shopping, true or
false), MARTHA (Martha has done the shopping, true or false), WINE (wine has
been purchased, true or false).

(b) The table below lists a set of instances from the house alarm domain. Using the
data in this table, create the conditional probability tables (CPTs) for the network
you created in the first part of this question, and round the probabilities to two
places of decimal.

ID JIM MARTHA WINE

1 false false false
2 false false false
3 true false true
4 true false true
5 true false false
6 false true true
7 false true false
8 false true false
9 true true true
10 true true true
11 true true true
12 true true false

(c) What value will the Bayesian network predict for WINE if:

JIM=true and MARTHA=false

(d) What is the probability that JIM went shopping given that WINE=true?
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“Ever tried. Ever failed. No matter. Try again. Fail again. Fail better.”
—Samuel Beckett

In error-based machine learning, we perform a search for a set of parameters for a parame-
terized model that minimizes the total error across the predictions made by that model with
respect to a set of training instances. The Fundamentals section of this chapter introduces
the key ideas of a parameterized model, measuring error, and an error surface. We then
present the standard approach to building error-based predictive models: multivariable
linear regression with gradient descent. The extensions and variations to this standard
approach that we describe are how to handle categorical descriptive features, the use of lo-
gistic regression to make predictions for categorical target features, fine-tuning regression
models, techniques for building non-linear and multinomial models, and support vec-
tor machines, which take a slightly different approach to using error to build prediction
models.

7.1 Big Idea

Anyone who has learned a new sport will have had the sometimes painful experience of
taking an error-based approach to learning. Take surfing, for example. One of the key
skills the novice surfer has to learn is how to successfully catch a wave. This involves
floating on your surfboard until a wave approaches and then paddling furiously to gain
enough momentum for the wave to pick up both you and your board. The position of your
body on the board is key to doing this successfully. If you lie too far toward the back of
the board, the board will sink and create so much drag that even big waves will pass by,
leaving you behind. If you lie too far forward on your board, you will begin to make great
progress before the surfboard tilts nose down into the water and launches you head over
heels into the air. Only when you are positioned at the sweet spot in the middle of the
board—neither too far forward nor too far back—will you be able to use your paddling
efforts to successfully catch a wave.
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At their first attempt, new surfers will typically position themselves either too far forward
or too far backward on their board when they attempt to catch their first wave, resulting
in a bad outcome. The outcome of an attempt to catch a wave is a judgment on how well
the surfer is doing, so an attempt constitutes an error function: lying too far back on the
board leads to a medium error, lying too far forward on the board leads to a more dramatic
error, while successfully catching a wave means really no error at all. Armed with the
unsuccessful outcome of their first attempt, surfers usually overcompensate on the second
attempt, resulting in the opposite problem. On subsequent attempts, surfers will slowly
reduce their error by slightly adjusting their position until they home in on the sweet spot
at which they can keep their board perfectly balanced to allow a seamless transition to
tickling the face of an awesome toob!

A family of error-based machine learning algorithms takes the same approach. A pa-
rameterized prediction model is initialized with a set of random parameters, and an error
function is used to judge how well this initial model performs when making predictions for
instances in a training dataset. Based on the value of the error function, the parameters are
iteratively adjusted to create a more and more accurate model.

7.2 Fundamentals

In this section we introduce a simple model of linear regression, some metrics for measur-
ing the error of a model, and the concept of an error surface. The discussion in this section,
and in the rest of this chapter, assumes that you have a basic understanding of differen-
tiation, in particular, what a derivative is, how to calculate a derivative for a continuous
function, the chain rule for differentiation, and what a partial derivative is. If you don’t
understand any of these concepts, see Appendix C[765] for the necessary introduction.

7.2.1 Simple Linear Regression
Table 7.1[313] shows a simple dataset recording the rental price (in Euro per month) of Dublin
city-center offices (RENTAL PRICE), along with a number of descriptive features that are
likely to be related to rental price: the SIZE of the office (in square feet), the FLOOR in the
building in which the office space is located, the BROADBAND rate available at the office
(in Mb per second), and the ENERGY RATING of the building in which the office space is
located (ratings range from A to C, where A is the most efficient). Over the course of this
chapter, we look at the ways in which all these descriptive features can be used to train
an error-based model to predict office rental prices. Initially, though, we will focus on a
simplified version of this task in which just SIZE is used to predict RENTAL PRICE.

Figure 7.1(a)[314] shows a scatter plot of the office rentals dataset with RENTAL PRICE on
the vertical (or y) axis and SIZE on the horizontal (or x) axis. From this plot, it is clear that
there is a strong linear relationship between these two features: as SIZE increases so does
RENTAL PRICE by a similar amount. If we could capture this relationship in a model, we
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Table 7.1
A dataset that includes office rental prices and a number of descriptive features for 10 Dublin city-
center offices.

BROADBAND ENERGY RENTAL

ID SIZE FLOOR RATE RATING PRICE

1 500 4 8 C 320
2 550 7 50 A 380
3 620 9 7 A 400
4 630 5 24 B 390
5 665 8 100 C 385
6 700 4 8 B 410
7 770 10 7 B 480
8 880 12 50 A 600
9 920 14 8 C 570
10 1,000 9 24 B 620

would be able to do two important things. First, we would be able to understand how office
size affects office rental price. Second, we would be able to fill in the gaps in the dataset to
predict office rental prices for office sizes that we have never actually seen in the historical
data—for example, how much would we expect a 730-square-foot office to rent for? Both
of these things would be of great use to real estate agents trying to make decisions about
the rental prices they should set for new rental properties.

There is a simple, well-known mathematical model that can capture the relationship
between two continuous features like those in our dataset. Many readers will remember
from high school geometry that the equation of a line can be written

y � mx� b (7.1)

where m is the slope of the line, and b is known as the y-intercept of the line (i.e., the
position at which the line meets the vertical axis when the value of x is set to zero). The
equation of a line predicts a y value for every x value given the slope and the y-intercept,
and we can use this simple model to capture the relationship between two features such as
SIZE and RENTAL PRICE. Figure 7.1(b)[314] shows the same scatter plot as shown in Figure
7.1(a)[314] with a simple linear model added to capture the relationship between office sizes
and office rental prices. This model is

RENTAL PRICE � 6:47� 0:62� SIZE (7.2)

where the slope of the line is 0:62 and the y-intercept is 6:47.
This model tells us that for every increase of a square foot in SIZE, RENTAL PRICE

increases by 0:62 Euro. We can also use this model to determine the expected rental price
of the 730-square-foot office mentioned previously by simply plugging this value for SIZE
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Figure 7.1
(a) A scatter plot of the SIZE and RENTAL PRICE features from the office rentals dataset; and (b) the
scatter plot from (a) with a linear model relating RENTAL PRICE to SIZE overlaid.

into the model

RENTAL PRICE � 6:47� 0:62� 730

� 459:07

Hence, we can expect our 730-square-foot office to rent for about 460 Euro per month.
This kind of model is known as a simple linear regression model. This approach to mod-
eling the relationships between features is extremely common in both machine learning
and statistics.

For consistency with the notation that we use in this book, we can rewrite the simple
linear regression model

Mwpdq � w r0s � w r1s � d r1s (7.3)

where w is the vector


w r0s ;w r1s

�
; the parameters w r0s and w r1s are referred to as

weights;1 d is an instance defined by a single descriptive feature d r1s; and Mwpdq is the
prediction output by the model for the instance d. The key to using simple linear regression
models is determining the optimal values for the weights in the model. The optimal values
for the weights are the ones that allow the model to best capture the relationship between

1. Weights are also known as model parameters, and so regression models are often known as parameterized
models.
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the descriptive features and a target feature. A set of weights that capture this relationship
well are said to fit the training data. In order to find the optimal set of weights, we need
some way to measure how well a model defined using a candidate set of weights fits a
training dataset. We do this by defining an error function to measure the error between
the predictions a model makes on the basis of the descriptive features for each instance in
the training data and the actual target values for each instance in the training data.

7.2.2 Measuring Error
The model shown in Equation (7.2)[313] is defined by the weights w r0s � 6:47 and w r1s �
0:62. What tells us that these weights suitably capture the relationship within the training
dataset? Figure 7.2(a)[316] shows a scatter plot of the SIZE and RENTAL PRICE descriptive
features from the office rentals dataset and a number of different simple linear regression
models that might be used to capture this relationship. In these models the value for w r0s
is kept constant at 6:47, and the values for w r1s are set to 0:4, 0:5, 0:62, 0:7, and 0:8 from
top to bottom. Out of the candidate models shown, the third model from the top (with
w r1s set to 0:62), passes most closely through the actual dataset and is the one that most
accurately fits the relationship between office sizes and office rental prices—but how do
we measure this formally?

In order to formally measure the fit of a linear regression model with a set of training data,
we require an error function. An error function captures the error between the predictions
made by a model and the actual values in a training dataset.2 There are many different
kinds of error functions, but for measuring the fit of simple linear regression models, the
most commonly used is the sum of squared errors error function, or L2. To calculate
L2 we use our candidate model Mw to make a prediction for each member of the training
dataset, D, and then calculate the error (or residual) between these predictions and the
actual target feature values in the training set.

Figure 7.2(b)[316] shows the office rentals dataset and the candidate model with w r0s �
6:47 and w r1s � 0:62 and also includes error bars to highlight the differences between
the predictions made by the model and the actual RENTAL PRICE values in the training
data. Notice that the model sometimes overestimates the office rental price, and sometimes
underestimates the office rental price. This means that some of the errors will be positive
and some will be negative. If we were to simply add these together, the positive and
negative errors would effectively cancel each other out. This is why, rather than just using
the sum of the errors, we use the sum of the squared errors because this means all values
will be positive.

2. Error functions are commonly referred to as loss functions because they represent what we lose by reducing
the training set to a simple model.
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Figure 7.2
(a) A scatter plot of the SIZE and RENTAL PRICE features from the office rentals dataset. A collection
of possible simple linear regression models capturing the relationship between these two features are
also shown. For all models w r0s is set to 6:47. From top to bottom, the models use 0:4, 0:5, 0:62,
0:7, and 0:8, respectively, for w r1s. (b) A scatter plot of the SIZE and RENTAL PRICE features from
the office rentals dataset showing a candidate prediction model (with w r0s � 6:47 and w r1s � 0:62)
and the resulting errors.

The sum of squared errors error function, L2, is formally defined as

L2pMw;Dq �
1
2

n‚

i�1

pti �Mw pdiqq2 (7.4)

where the training set is composed of n training instances; each training instance is com-
posed of descriptive features d and a target feature t; Mwpdiq is the prediction made by
a candidate model Mw for a training instance with descriptive features di; and the candi-
date model Mw is defined by the weight vector w. For our simple scenario in which each
instance is described with a single descriptive feature, Equation (7.4)[316] expands to

L2pMw;Dq �
1
2

n‚

i�1

pti � pw r0s � w r1s � di r1sqq2 (7.5)

Table 7.2[317] shows the calculation of the sum of squared errors for the candidate model
with w r0s � 6:47 and w r1s � 0:62. In this case, the sum of squared errors is equal to
2;837:08.

If we perform the same calculation for the other candidate models shown in Figure
7.2(a)[316], we find that with w r1s set to 0:4, 0:5, 0:7, and 0:8, the sums of squared errors are
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Table 7.2
Calculating the sum of squared errors for the candidate model (with w r0s � 6:47 and w r1s � 0:62)
to make predictions for the office rentals dataset.

RENTAL Model Squared
ID SIZE PRICE Prediction Error Error

1 500 320 316.47 3.53 12.46
2 550 380 347.47 32.53 1,058.20
3 620 400 390.87 9.13 83.36
4 630 390 397.07 -7.07 49.98
5 665 385 418.77 -33.77 1,140.41
6 700 410 440.47 -30.47 928.42
7 770 480 483.87 -3.87 14.98
8 880 600 552.07 47.93 2,297.28
9 920 570 576.87 -6.87 47.20

10 1,000 620 626.47 -6.47 41.86
Sum 5,674.15

Sum of squared errors (Sum/2) 2,837.08

136;218, 42;712, 20;092, and 90;978 respectively. The fact that the sums of squared errors
for these models are larger than for the model with w r1s set to 0:62 demonstrates that our
previous visual intuition that this model most accurately fits the training data was correct.

The sum of squared errors function can be used to measure how well any combination
of weights fits the instances in a training dataset. The next section explains how the values
of an error function for many different potential models can be combined to form an error
surface across which we can search for the optimal weights with the minimum sum of
squared errors.3

7.2.3 Error Surfaces
For every possible combination of weights, w r0s and w r1s, there is a corresponding sum
of squared errors value. We can think about all these error values joined to make a surface
defined by the weight combinations, as shown in Figure 7.3(a)[318]. Here, each pair of
weights w r0s and w r1s defines a point on the x-y plane, and the sum of squared errors
for the model using these weights determines the height of the error surface above the x-y
plane for that pair of weights. The x-y plane is known as a weight space, and the surface
is known as an error surface. The model that best fits the training data is the model
corresponding to the lowest point on the error surface.

3. One of the best-known and earliest applications of solving a problem by reducing the sum of squared errors
occurred in 1801, when Carl Friedrich Gauss used it to minimize the measurement error in astronomical data
and by doing so was able to extrapolate the position of the dwarf planet Ceres, which had recently been found but
then was lost behind the glare of the sun.
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Figure 7.3
(a) A 3D surface plot and (b) a bird’s-eye view contour plot of the error surface generated by plotting
the sum of squared errors for the office rentals training set for each possible combination of values
for w r0s (from the range r�10; 20s) and w r1s (from the range r�2; 3s).

Although for some simple problems, like those presented in our office rentals dataset, it
is possible to try out every reasonable combination of weights and through this brute-force
search find the best combination, for most real-world problems this is not feasible—the
computation required would take far too long. Instead, we need a more efficient way
to find the best combination of weights. Fortunately, for prediction problems like those
posed by the office rentals dataset, the associated error surfaces have two properties that
help us find the optimal combination of weights: they are convex, and they have a global
minimum. By convex we mean that the error surfaces are shaped like a bowl. Having a
global minimum means that on an error surface, there is a unique set of optimal weights
with the lowest sum of squared errors. The reason why the error surface always has these
properties is that its overall shape is determined by the linearity of the model, rather than
the properties of the data. If we can find the global minimum of the error surface, we can
find the set of weights defining the model that best fits the training dataset. This approach
to finding weights is known as least squares optimization.

Because we can expect the error surface to be convex and possess a global minimum, we
can find the optimal weights at the point where the partial derivatives of the error surface
with respect to w r0s and w r1s are equal to 0. The partial derivatives of the error surface
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with respect to w r0s and w r1s measure the slope of the error surface at the point w r0s
and w r1s. The point on the error surface at which the partial derivatives with respect to
w r0s and w r1s are equal to 0 is simply the point at the very bottom of the bowl defined by
the error surface—there is no slope at the bottom of the bowl. This point is at the global
minimum of the error surface, and the coordinates of this point define the weights for the
prediction model with the lowest sum of squared errors on the dataset. Using Equation
(7.5)[316], we can formally define this point on the error surface as the point at which

B
Bw r0s

1
2

n‚

i�1

pti � pw r0s � w r1s � di r1sqq2 � 0 (7.6)

and

B
Bw r1s

1
2

n‚

i�1

pti � pw r0s � w r1s � di r1sqq2 � 0 (7.7)

There are a number of different ways to find this point. In this chapter we describe a
guided search approach known as the gradient descent algorithm. This is one of the
most important algorithms in machine learning and, as we discuss in other chapters, can
be used for many different purposes. The next section describes how gradient descent
can be used to find the optimal weights for linear regression models that handle multiple
descriptive features: multivariable linear regression models.

7.3 Standard Approach: Multivariable Linear Regression with Gradient Descent

The most common approach to error-based machine learning for predictive analytics is to
use multivariable linear regression with gradient descent to train a best-fit model for
a given training dataset. This section explains how this works. First, we describe how
we extend the simple linear regression model described in the previous section to handle
multiple descriptive features, and then we describe the gradient descent algorithm.

7.3.1 Multivariable Linear Regression
The simple linear regression model we looked at in Section 7.2.1[312] handled only a single
descriptive feature. Interesting problems in predictive analytics, however, are multivari-
able4 in nature. Fortunately, extending the simple linear regression model to a multivariable
linear regression model is straightforward. We can define a multivariable linear regression

4. The words multivariable and multi-feature are equivalent. The use of multivariable is a sign of the origins
of regression in statistics rather than machine learning.
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model as

Mwpdq � w r0s � w r1s � d r1s � � � � � w rms � d rms

� w r0s �
m‚

j�1

w r js � d r js (7.8)

where d is a vector of m descriptive features, d r1s : : : d rms, and w r0s : : :w rms are pm �
1q weights. We can make Equation (7.8)[320] look a little neater by inventing a dummy
descriptive feature, d r0s, that is always equal to 1. This then gives us

Mwpdq � w r0s � d r0s � w r1s � d r1s � � � � � w rms � d rms

�
m‚

j�0

w r js � d r js

� w � d (7.9)

where w � d is the dot product of the vectors w and d. The dot product of two vectors is
the sum of the products of their corresponding elements.

The expansion of the sum of squared errors loss function, L2, that we gave in Equation
(7.5)[316] changes slightly to reflect the new regression equation

L2pMw;Dq �
1
2

n‚

i�1

pti �Mwpdiqq2

�
1
2

n‚

i�1

pti � pw � diqq2 (7.10)

where the training dataset is composed of n training instances pdi; tiq; Mwpdiq is the pre-
diction made by a model Mw for a training instance with descriptive features di; and the
model Mw is defined by the weight vector w.

This multivariable model allows us to include all but one of the descriptive features
in Table 7.2[317] in a regression model to predict office rental prices (we will see how to
include the categorical ENERGY RATING in the model in Section 7.4.3[336]). The resulting
multivariable regression model equation is

RENTAL PRICE � w r0s � w r1s � SIZE � w r2s � FLOOR

� w r3s � BROADBAND RATE

We will see in the next section how the best-fit set of weights for this equation are found,
but for now we will set w r0s � �0:1513, w r1s � 0:6270, w r2s � �0:1781, and w r3s �
0:0714. This means that the model is rewritten

RENTAL PRICE � �0:1513 � 0:6270� SIZE � 0:1781� FLOOR

� 0:0714� BROADBAND RATE
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Using this model, we can, for example, predict the expected rental price of a 690-square-
foot office on the 11th floor of a building with a broadband rate of 50 Mb per second

RENTAL PRICE � �0:1513� 0:6270� 690� 0:1781� 11� 0:0714� 50

� 434:0896

The next section describes how the weights can be determined using the gradient descent
algorithm.

7.3.2 Gradient Descent
In Section 7.2.3[317] we said that the best-fit set of weights for a linear regression model can
be found at the global minimum of the error surface defined by the weight space associated
with the relevant training dataset. We also mentioned that this global minimum can be
found at the point at which the partial derivatives of the error surface, with respect to
the weights, are equal to zero. Although it is possible to calculate this point directly for
some simpler problems, this approach is not computationally feasible for most interesting
predictive analytics problems. The number of instances in the training set and the number
of weights for which we need to find values simply make the problem too large. The
brute-force search approach that was mentioned in Section 7.2.3[317] is not feasible either—
especially as the number of descriptive features, and subsequently the number of weights,
increases.

There is, however, a simple approach to learning weights that we can take based on the
facts that, even though they are hard to visualize, the error surfaces that correspond to these
high-dimensional weight spaces still have the convex shape seen in Figure 7.3[318] (albeit
in multiple dimensions), and that a single global minimum exists. This approach uses a
guided search from a random starting position and is known as gradient descent.

To understand how gradient descent works, imagine a hiker unlucky enough to be stranded
on the side of a valley on a foggy day. Because of the dense fog, it is not possible for her
to see the way to her destination at the bottom of the valley. Instead, it is only possible to
see the ground at her feet to within about a three-foot radius. It might, at first, seem like
all is lost and that it will be impossible for the hiker to find her way down to the bottom
of the valley. There is, however, a reliable approach that the hiker can take that will guide
her to the bottom (assuming, somewhat ideally, that the valley is convex and has a global
minimum). If the hiker looks at the slope of the ground at her feet, she will notice that in
some directions, the ground slopes up, and in other directions, the ground slopes down. If
she takes a small step in the direction in which the ground slopes most steeply downward
(the direction of the gradient of the mountain), she will be headed toward the bottom of the
mountain. If she repeats this process over and over again, she will make steady progress
down the mountain until eventually she arrives at the bottom. Gradient descent works in
exactly the same way.
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Gradient descent starts by selecting a random point within the weight space (i.e., each
weight in the multivariable linear regression equation is assigned a random value within
some sensible range) and calculating the sum of squared errors associated with this point
based on predictions made for each instance in the training set using the randomly selected
weights (as shown in Section 7.2.2[315]). This defines one point on the error surface. Al-
though the error value at this point in the weight space can be calculated, we know little
else about the relative position of this point on the error surface. Just like our imagined
mountain climber, the algorithm can use only very localized information. It is possible,
however, to determine the slope of the error surface by determining the derivative of the
function used to generate it, and then calculating the value of this derivative at the random
point selected in the weight space. This means that, again like our mountain climber, the
gradient descent algorithm can use the direction of the slope of the error surface at the
current location in the weight space. Taking advantage of this information, the randomly
selected weights are adjusted slightly in the direction of the error surface gradient to move
to a new position on the error surface. Because the adjustments are made in the direction
of the error surface gradient, this new point will be closer to the overall global minimum.
This adjustment is repeated over and over until the global minimum on the error surface
is reached. Figure 7.4[323] shows an error surface (defined over just two weights so that we
can visualize the error surface) and some examples of the path down this surface that the
gradient descent algorithm would take from different random starting positions.5

For the simple version of the office rentals example that uses only the SIZE descriptive
feature, described in Section 7.2.1[312], it is easy to visualize how the gradient descent algo-
rithm would move iteratively toward a model that best fits the training data, making small
adjustments each time—with each adjustment reducing the error of the model, just as our
surfer from Section 7.1[311] did. Figure 7.5[324] shows the journey across the error surface that
is taken by the gradient descent algorithm when training this model. Figure 7.6[325] shows
a series of snapshots of the candidate models created at steps along this journey toward
the best-fit model for this dataset. Notice how the model gets closer and closer to a model
that accurately captures the relationship between SIZE and RENTAL PRICE. This is also
apparent in the final panel in Figure 7.6[325], which shows how the sum of squared errors
decreases as the model becomes more accurate.

The gradient descent algorithm for training multivariable regression models is formally
presented in Algorithm 4[326]. Each weight is iteratively adjusted by a small amount based
on the error in the predictions made by the current candidate model so as to generate
subsequently more and more accurate candidate models. Eventually, the algorithm will

5. In fact, this is the error surface that results from the office rentals dataset when the descriptive features in the
dataset are normalized to the range r�1; 1s using range normalization before being used. We discuss normaliza-
tion subsequently in the chapter.



7.3 Standard Approach: Multivariable Linear Regression with Gradient Descent 323

(a) (b)

Figure 7.4
(a) A 3D plot of an error surface and (b) a bird’s-eye view contour plot of the same error surface. The
lines indicate the path that the gradient descent algorithm would take across this error surface from
four different starting positions to the global minimum—marked as the white dot in the center.

converge to a point on the error surface where any subsequent changes to weights do not
lead to a noticeably better model (within some tolerance). At this point we can expect the
algorithm to have found the global minimum of the error surface and, as a result, the most
accurate predictive model possible.

The most important part to the gradient descent algorithm is the line on which the weights
are updated, Line 4[326]. Each weight is considered independently, and for each one a
small adjustment is made by adding a small value, called a delta value, to the current
weight, w r js. This adjustment should ensure that the change in the weight leads to a move
downward on the error surface. The learning rate, �, determines the size of the adjust-
ments made to weights at each iteration of the algorithm and is discussed further in Section
7.3.3[328].

The remainder of this section focuses on the error delta function, which calculates the
delta value that determines the direction (either positive or negative) and the magnitude of
the adjustments made to each weight. The direction and magnitude of the adjustment to be
made to a weight is determined by the gradient of the error surface at the current position
in the weight space. Recalling that the error surface is defined by the error function, L2
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(a) (b)

Figure 7.5
(a) A 3D surface plot and (b) a bird’s-eye view contour plot of the error surface for the office rentals
dataset showing the path that the gradient descent algorithm takes toward the best-fit model.

(given in Equation (7.10)[320]), the gradient at any point on this error surface is given by the
value of the partial derivative of the error function with respect to a particular weight at
that point. The error delta function invoked on Line 4[326] of Algorithm 4[326] performs this
calculation to determine the delta value by which each weight should be adjusted.

To understand how to calculate the value of the partial derivative of the error function
with respect to a particular weight, let us imagine for a moment that our training dataset,
D, contains just one training instance: pd; tq, where d is a set of descriptive features and t
is a target feature. The gradient of the error surface is given as the partial derivative of L2

with respect to each weight, w r js

B
Bw r js

L2 pMw;Dq �
B

Bw r js

�
1
2
pt �Mw pdqq2



(7.11)

� pt �Mwpdqq �
B

Bw r js
pt �Mwpdqq (7.12)

� pt �Mwpdqq �
B

Bw r js
pt � pw � dqq (7.13)

� pt �Mwpdqq � �d r js (7.14)
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Figure 7.6
A selection of the simple linear regression models developed during the gradient descent process for
the office rentals dataset. The bottom-right panel shows the sums of squared errors generated during
the gradient descent process.

Equation (7.12)[324] is calculated from Equation (7.11)[324] by applying the differentiation
chain rule.6 To understand the move from Equation (7.13)[324] to Equation (7.14)[324], imag-
ine a problem with four descriptive features d r1s : : : d r4s. Remembering that we always
include the dummy feature d r0s with a value of 1, the dot product w � d becomes

w � d � w r0s � d r0s � w r1s � d r1s � w r2s � d r2s
� w r3s � d r3s � w r4s � d r4s

6. See Appendix C[765].
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Algorithm 4 The gradient descent algorithm for training multivariable linear regression
models.
Require: set of training instances D
Require: a learning rate � that controls how quickly the algorithm converges
Require: a function, errorDelta, that determines the direction in which to adjust a given

weight, w r js, so as to move down the slope of an error surface determined by the
dataset, D

Require: a convergence criterion that indicates that the algorithm has completed
1: w — random starting point in the weight space
2: repeat
3: for each w r js in w do
4: w r js — w r js � �� errorDeltapD;w r jsq
5: end for
6: until convergence occurs

If we take the partial derivative of this with respect to w r0s, all the terms that do not contain
w r0s are treated as constants, so

B
Bw r0s

w � d �
B

Bw r0s
pw r0s � d r0s � w r1s � d r1s � w r2s � d r2s

� w r3s � d r3s � w r4s � d r4sq
� d r0s � 0� 0� 0� 0 � d r0s

Similarly, the partial derivative with respect to w r4s is

B
Bw r4s

w � d �
B

Bw r4s
pw r0s � d r0s � w r1s � d r1s � w r2s � d r2s

� w r3s � d r3s � w r4s � d r4sq
� 0� 0� 0� 0� d r4s � d r4s

So, in the move between Equations (7.13)[324] and (7.14)[324], B
Bwr js pt � pw � dqq becomes

�d r js (remember that in this equation, t is a constant and so becomes zero when differen-
tiated).

Equation (7.14)[324] calculates the gradient based only on a single training instance. To
take into account multiple training instances, we calculate the sum of the squared errors
for each training instance (as we did in all our previous examples). So, Equation (7.14)[324]

becomes

B
Bw r js

L2pMw;Dq �
n‚

i�1

ppti �Mw pdiqq � �di r jsq (7.15)
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where pd1; t1q : : : pdn; tnq are n training instances, and di r js is the jth descriptive feature
of training instance pdi; tiq. The direction of the gradient calculated using this equation is
toward the highest values on the error surface. The error delta function from Line 4[326]

of Algorithm 4[326] should return a small step toward a lower value on the error surface.
Therefore, we move in the opposite direction of the calculated gradient, and the error delta
function can be written

errorDeltapD;w r jsq � �
B

Bw r js
L2pMw;Dq

�
n‚

i�1

ppti �Mw pdiqq � di r jsq (7.16)

Line 4[326] of Algorithm 4[326] can therefore be rewritten as what is known as the weight
update rule for multivariable linear regression with gradient descent

w r js — w r js � ��
n‚

i�1

ppti �Mw pdiqq � di r jsq
loooooooooooooooomoooooooooooooooon

errorDeltapD;wr jsq

(7.17)

where w r js is any weight, � is a constant learning rate, ti is the expected target feature value
for the ith training instance, Mwpdiq is the prediction made for this training instance by the
current candidate model defined by the weight vector w, and di r js is the jth descriptive
feature of the ith training instance and corresponds with weight w r js in the regression
model.

To intuitively understand the weight update rule given in Equation (7.17)[327], it helps to
think in terms of what the weight update rule does to weights based on the error in the
predictions made by the current candidate model:

 If the errors show that, in general, predictions made by the candidate model are too high,
then w r js should be decreased if di r js is positive and increased if di r js is negative.

 If the errors show that, in general, predictions made by the candidate model are too low,
then w r js should be increased if di r js is positive and decreased if di r js is negative.

The approach to training multivariable linear regression models described so far is more
specifically known as batch gradient descent. The word batch is used because only one
adjustment is made to each weight at each iteration of the algorithm based on summing
the squared error made by the candidate model for each instance in the training dataset.7

7. Stochastic gradient descent is a slightly different approach, in which an adjustment to each weight is made
on the basis of the error in the prediction made by the candidate model for each training instance individually.
This means that many more adjustments are made to the weights. We do not discuss stochastic gradient descent
in any detail in this book, although the modifications that need to be made to the gradient descent algorithm for
stochastic gradient descent are fairly simple.
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Batch gradient descent is a straightforward, accurate, and reasonably efficient approach
to training multivariable linear regression models and is used widely in practice. The
inductive bias encoded in this algorithm includes a preference bias to prefer models that
minimize the sum of squared errors function and a restriction bias introduced by the facts
that we consider only linear combinations of descriptive features and that we take a single
path through the error gradient from a random starting point.

7.3.3 Choosing Learning Rates and Initial Weights
The values chosen for the learning rate and initial weights can have a significant impact on
how the gradient descent algorithm proceeds. Unfortunately, there are no theoretical results
that help in choosing the optimal values for these parameters. Instead, these algorithm
parameters must be chosen using rules of thumb gathered through experience.

The learning rate, �, in the gradient descent algorithm determines the size of the ad-
justment made to each weight at each step in the process. We can illustrate this using
the simplified version of the RENTAL PRICE prediction problem based only on office size
(SIZE). A linear regression model for the problem uses only two weights, w r0s and w r1s.
Figure 7.7[329] shows how different learning rates—0:002, 0:08, and 0:18—result in very
different journeys across the error surface.8 The changing sum of squared errors that result
from these journeys are also shown.

Figure 7.7(a)[329] shows the impact of a very small learning rate. Although the gradient
descent algorithm will converge to the global minimum eventually, it takes a very long time
as tiny changes are made to the weights at each iteration of the algorithm. Figure 7.7(c)[329]

shows the impact of a large learning rate. The large adjustments made to the weights during
gradient descent cause it to jump completely from one side of the error surface to the other.
Although the algorithm can still converge toward an area of the error surface close to the
global minimum, there is a strong chance that the global minimum itself will be missed,
and the algorithm will simply jump back and forth across it. In fact, if inappropriately large
learning rates are used, the jumps from one side of the error surface to the other can cause
the sum of squared errors to repeatedly increase rather than decrease, leading to a process
that will never converge. Figure 7.7(b)[329] shows that a well-chosen learning rate strikes a
good balance, converging quickly but also ensuring that the global minimum is reached.
Note that even though the shape of the curve in Figure 7.7(e)[329] is similar to the shape in
Figure 7.7(d)[329], it takes far fewer iterations to reach the global minimum.

Unfortunately, choosing learning rates is not a well-defined science. Although there are
some algorithmic approaches, most practitioners use rules of thumb and trial and error. A
typical range for learning rates is r0:00001; 10s, and practitioners will usually try out higher

8. Note that in this example, we have normalized the RENTAL PRICE and SIZE features to the range r�1; 1s, so
the error surfaces shown look slightly different from those shown in Figure 7.3[318] and Figure 7.5[324].
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Figure 7.7
Plots of the journeys made across the error surface for the simple office rentals prediction problem
for different learning rates: (a) a very small learning rate (0:002); (b) a medium learning rate (0:08);
and (c) a very large learning rate (0:18). The changing sum of squared errors are also shown.

values and observe the resulting learning graph. If the graph looks too much like Figure
7.7(f)[329], a smaller value will be tested until something approaching Figure 7.7(e)[329] is
found.

When the gradient descent algorithm is used to find optimal weights for linear regression
models, the initial weights are chosen randomly from a predefined range that must be
specified as an input to the algorithm. The choice of the range from which these initial
weights are selected affects how quickly the gradient descent algorithm will converge to a
solution. Unfortunately, as is the case with the learning rate, there are no well-established,
proven methods for choosing initial weights. Normalization also has a part to play here. It
is much easier to select initial weights for normalized feature values than for raw feature
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values, as the range in which weights for normalized feature values might reasonably fall
(particularly for the intercept weight, w r0s) is much better defined than the corresponding
range when raw feature values are used. The best advice we can give is that, based on
empirical evidence, choosing random initial weights uniformly from the range r�0:2; 0:2s
tends to work well.

7.3.4 A Worked Example
We are now in a position to build a linear regression model that uses all the continuous
descriptive features in the office rentals dataset in Table 7.1[313] (i.e., all features except for
ENERGY RATING). The general structure of the model is

RENTAL PRICE � w r0s � w r1s � SIZE � w r2s � FLOOR

� w r3s � BROADBAND RATE

so there are four weights—w r0s, w r1s, w r2s, and w r3s—for which optimal values must
be found. For this example, let’s assume that the learning rate, �, is 0:00000002 and the
initial weights are chosen from a uniform random distribution in the range r�0:2; 0:2s to
be w r0s � �0:146, w r1s � 0:185, w r2s � �0:044, and w r3s � 0:119. Table 7.3[331]

details the important values from the first two iterations of the gradient descent algorithm
when applied to this data.9

Using the initial weights predictions are made for all the instances in the training dataset,
as shown in the Predictions column (column 3) of Table 7.3[331]. By comparing these pre-
dicted values with the actual RENTAL PRICE (column 2), we can compute an error and a
squared error term for each training instance, columns 4 and 5 of the table.

To update the weights, we must first calculate the delta value for each weight. This
is calculated by summing over all the instances in the training set the prediction error
multiplied by the value of the relevant feature for that instance (see Equation (7.16)[327]).
The last four columns on the right of the table list for each instance the product of the
prediction error and the feature value. Remember that d r0s is a dummy descriptive feature,
added to match w r0s, with a value of 1 for all training instances. As a result, the values
in column 6 are identical to the values in the error column. Focusing on the top cell
of column 7, we see the value 113;370:05. This value was calculated by multiplying the
prediction error for d1 (226:74) by the SIZE value for this instance (500). The other cells in
these columns are populated with similar calculations. The errorDeltapD;w r jsq for each
weight is then the summation of the relevant column, for example, errorDeltapD;w r0sq �
3;185:61 and errorDeltapD;w r1sq � 2;412;073:90.

9. All values in Table 7.3[331], and similar subsequent tables, are reported at a precision of two places of decimal.
Because of this, some error values and squared error values may appear inconsistent. This, however, is only due
to rounding differences.
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Table 7.3
Details of the first two iterations when the gradient descent algorithm is used to train a multivariable
linear regression model for the office rentals dataset (using only the continuous descriptive features).

Initial Weights
w r0s: -0.146 w r1s: 0.185 w r2s: -0.044 w r3s: 0.119

Iteration 1
RENTAL Squared errorDeltapD;w r jsq

ID PRICE Pred. Error Error w r0s w r1s w r2s w r3s
1 320 93.26 226.74 51,411.08 226.74 113,370.05 906.96 1,813.92
2 380 107.41 272.59 74,307.70 272.59 149,926.92 1,908.16 13,629.72
3 400 115.15 284.85 81,138.96 284.85 176,606.39 2,563.64 1,993.94
4 390 119.21 270.79 73,327.67 270.79 170,598.22 1,353.95 6,498.98
5 385 134.64 250.36 62,682.22 250.36 166,492.17 2,002.91 25,036.42
6 410 130.31 279.69 78,226.32 279.69 195,782.78 1,118.76 2,237.52
7 480 142.89 337.11 113,639.88 337.11 259,570.96 3,371.05 2,359.74
8 600 168.32 431.68 186,348.45 431.68 379,879.24 5,180.17 21,584.05
9 570 170.63 399.37 159,499.37 399.37 367,423.83 5,591.23 3,194.99

10 620 187.58 432.42 186,989.95 432.42 432,423.35 3,891.81 10,378.16
Sum 1,067,571.59 3,185.61 2,412,073.90 27,888.65 88,727.43

Sum of squared errors (Sum/2) 533,785.80

New Weights (after Iteration 1)
w r0s: -0.146 w r1s: 0.233 w r2s: -0.043 w r3s: 0.121

Iteration 2
RENTAL Squared errorDeltapD;w r jsq

ID PRICE Pred. Error Error w r0s w r1s w r2s w r3s
1 320 117.40 202.60 41,047.92 202.60 101,301.44 810.41 1,620.82
2 380 134.03 245.97 60,500.69 245.97 135,282.89 1,721.78 12,298.44
3 400 145.08 254.92 64,985.12 254.92 158,051.51 2,294.30 1,784.45
4 390 149.65 240.35 57,769.68 240.35 151,422.55 1,201.77 5,768.48
5 385 166.90 218.10 47,568.31 218.10 145,037.57 1,744.81 21,810.16
6 410 164.10 245.90 60,468.86 245.90 172,132.91 983.62 1,967.23
7 480 180.06 299.94 89,964.69 299.94 230,954.68 2,999.41 2,099.59
8 600 210.87 389.13 151,424.47 389.13 342,437.01 4,669.60 19,456.65
9 570 215.03 354.97 126,003.34 354.97 326,571.94 4,969.57 2,839.76

10 620 187.58 432.42 186,989.95 432.42 432,423.35 3,891.81 10,378.16
Sum 886,723.04 2,884.32 2,195,615.84 25,287.08 80,023.74

Sum of squared errors (Sum/2) 443,361.52

New Weights (after Iteration 2)
w r0s: -0.145 w r1s: 0.277 w r2s: -0.043 w r3s: 0.123
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Once the errorDeltapD;w r jsq for a weight has been calculated, we can then update the
weight using Equation (7.17)[327]. This weight update occurs on Line 4[326] of Algorithm
4[326]. The update involves multiplying the errorDeltapD;w r jsq for a given weight by the
learning rate and then adding this to the current weight to give a new, updated, weight. The
new set of weights is labeled New Weights (after Iteration 1) in Table 7.3[331].

We can see from Iteration 2 in the bottom half of Table 7.3[331] that the new set of predic-
tions made using the updated set of weights calculated in iteration 1 result in a lower sum
of squared errors, 443;361:52. Based on this error another new set of weights is calculated
using the error deltas shown. The algorithm then keeps iteratively applying the weight up-
date rule until it converges on a stable set of weights beyond which little improvement in
model accuracy is possible. In our example, convergence occurred after 100 iterations, and
the final values for the weights were w r0s � �0:1513, w r1s � 0:6270, w r2s � �0:1781,
and w r3s � 0:0714. The sum of squared errors for the final model was 2;913:5.10

A last point to make about this example is that careful examination of Table 7.3[331] shows
why such a low learning rate is used in this example. The large values of the RENTAL

PRICE feature, r320; 620s, cause the squared errors and, in turn, the error delta values to
become very large. This means that a very low learning rate is required in order to ensure
that the changes made to the weights at each iteration of the learning process are small
enough for the algorithm to work effectively. Using normalization (see Section 3.6.1[87])
on the features can help avoid these large squared errors, and we do this in most examples
from now on.

7.4 Extensions and Variations

In this section we discuss common and useful extensions to the basic multivariable linear
regression with gradient descent approach described in Section 7.3[319]. Topics covered in-
clude interpreting a linear regression model, using weight decay to set the learning rate,
handling categorical descriptive and target features, using feature selection, using mul-
tivariable linear regression models to model non-linear relationships, and using support
vector machines (SVMs) as an alternative to linear regression models.

7.4.1 Interpreting Multivariable Linear Regression Models
A particularly useful feature of linear regression models is that the weights used by the
model indicate the effect of each descriptive feature on the predictions returned by the
model. First, the signs of the weights indicate whether different descriptive features have
a positive or a negative impact on the prediction. Table 7.4[333] repeats the final weights for

10. Because this is a higher-dimensional problem (three dimensions in the feature space and four dimensions in
the weight space), it is not possible to draw the same graphs of the error surfaces that were shown for the previous
examples.
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Table 7.4
Weights and standard errors for each feature in the office rentals model.

Descriptive Feature Weight Standard Error t-statistic p-value
SIZE 0.6270 0.0545 11.504  0.0001
FLOOR -0.1781 2.7042 -0.066 0.949
BROADBAND RATE 0.071396 0.2969 0.240 0.816

the office rentals model trained in Section 7.3.4[330]. We can see that increasing office size
leads to increasing rental prices; that lower building floors lead to higher rental prices; and
that rental prices increase with broadband rates. Second, the magnitudes of the weights
show how much the value of the target feature changes for a unit change in the value of
a particular descriptive feature. For example, for every increase of a square foot in office
size, we can expect the rental price to go up by 0:6270 Euro per month. Similarly, for every
floor we go up in an office building, we can expect the rental price to decrease by 0:1781
Euro per month.

It is tempting to infer the relative importance of the different descriptive features in the
model from the magnitude of the weights—that is, the descriptive features associated with
higher weights are more predictive than those with lower weights. This is a mistake, how-
ever, when the descriptive features themselves have varying scales. For example, in the
office rentals dataset, the values of the SIZE feature range from 500 to 1;000, whereas the
values for the FLOOR feature range from only 4 to 14. So, direct comparison of the weights
tells us little about their relative importance. A better way to determine the importance of
each descriptive feature in the model is to perform a statistical significance test.

A statistical significance test works by stating a null hypothesis and then determining
whether there is enough evidence to accept or reject this hypothesis. This accept/reject
decision is carried out in three steps:

1. A test statistic is computed.
2. The probability of a test-statistic value as big as or greater than the one computed

being the result of chance is calculated. This probability is called a p-value.
3. The p-value is compared to a predefined significance threshold, and if the p-value is

less than or equal to the threshold (i.e., the p-value is small), the null hypothesis is
rejected. These thresholds are typically the standard statistical thresholds of 5% or
1%.

The statistical significance test we use to analyze the importance of a descriptive feature
d r js in a linear regression model is the t-test. The null hypothesis that we adopt for this
test is that the feature does not have a significant impact on the model. The test statistic
we calculate is called the t-statistic. In order to calculate this test statistic, we first have to
calculate the standard error for the overall model and the standard error for the descriptive
feature we are investigating the importance of. The standard error for the overall model is
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calculated as follows:

se �

gffffe

n‚

i�1

pti �Mwpdiqq2

n� 2
(7.18)

where n is the number of instances in the training dataset. A standard error calculation is
then done for a descriptive feature as follows:

sepd r jsq �
se

d
n‚

i�1

�
di r js � d r js

	2
(7.19)

where d r js is some descriptive feature and d r js is the mean value of that descriptive feature
in the training set.

The t-statistic for this test is calculated as follows:

t �
w r js

se pd r jsq
(7.20)

where w r js is the weight associated with descriptive feature d r js. Using a standard t-
statistic look-up table, we can then determine the p-value associated with this test (this is
a two tailed t-test with degrees of freedom set to the number of instances in the training
set minus 2). If the p-value is less than the required significance level, typically 0:05, we
reject the null hypothesis and say that the descriptive feature has a significant impact on
the model; otherwise we say that it does not. We can see from Table 7.4[333] that only the
SIZE descriptive feature has a significant impact on the model. If a descriptive feature is
found to have a significant impact on the model, this indicates that there is a significant
linear relationship between it and the target feature.

7.4.2 Setting the Learning Rate Using Weight Decay
In Section 7.3.3[328] we illustrated the impact of a learning rate parameter on the gradient
descent algorithm. In that section we also explained that most practitioners use rules of
thumb and trial and error to set the learning rate. A more systematic approach is to use
learning rate decay, which allows the learning rate to start at a large value and then decay
over time according to a predefined schedule. Although there are different approaches in
the literature, a good approach is to use the following decay schedule:

�� � �0
c

c� �
(7.21)

where �0 is an initial learning rate (this is typically quite large, e.g., 1:0), c is a constant
that controls how quickly the learning rate decays (the value of this parameter depends
on how quickly the algorithm converges, but it is often set to quite a large value, e.g.,
100), and � is the current iteration of the gradient descent algorithm. Figure 7.8[335] shows
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the journey across the error surface and related plot of the sums of squared errors for the
office rentals problem—using just the SIZE descriptive feature—when error decay is used
with �0 � 0:18 and c � 10 (this is a pretty simple problem, so smaller values for these
parameters are suitable). This example shows that the algorithm converges to the global
minimum more quickly than any of the approaches shown in Figure 7.7[329].

The differences between Figures 7.7(f)[329] and 7.8(b)[335] most clearly show the impact of
learning rate decay as the initial learning rates are the same in these two instances. When
learning rate decay is used, there is much less thrashing back and forth across the error
surface than when the large static learning rate is used. Using learning rate decay can even
address the problem of inappropriately large error rates causing the sum of squared errors
to increase rather than decrease. Figure 7.9[336] shows an example of this in which learning
rate decay is used with �0 � 0:25 and c � 100. The algorithm starts at the position marked
1 on the error surface, and learning steps actually cause it to move farther and farther up the
error surface. This can be seen in the increasing sums of squared errors in Figure 7.9(b)[336].
As the learning rate decays, however, the direction of the journey across the error surface
moves back downward, and eventually the global minimum is reached. Although learning

(a) (b)

Figure 7.8
(a) The journey across the error surface for the office rentals prediction problem when learning rate
decay is used (�0 � 0:18, c � 10 ); and (b) a plot of the changing sum of squared errors during this
journey.
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rate decay almost always leads to better performance than a fixed learning rate, it still does
require that problem-dependent values are chosen for �0 and c.

7.4.3 Handling Categorical Descriptive Features
The regression equation for a multivariable linear regression model for the full dataset
shown in Table 7.1[313] would look like

RENTAL PRICE � w r0s � w r1s � SIZE � w r2s � FLOOR

� w r3s � BROADBAND RATE

� w r4s � ENERGY RATING

The multiplication of w r4s � ENERGY RATING causes a problem here. Energy rating is a
categorical feature, so multiplying the values of this feature by a numeric weight is simply
not sensible. The basic structure of the multivariable linear regression model allows for
only continuous descriptive features. Obviously, though, in real-world datasets, we often
encounter categorical descriptive features, so for the linear regression approach to be really
useful, we need a way to handle these.

(a) (b)

Figure 7.9
(a) The journey across the error surface for the office rentals prediction problem when learning rate
decay is used (�0 � 0:25, c � 100); (b) a plot of the changing sum of squared errors during this
journey.
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Table 7.5
The office rentals dataset from Table 7.1[313] adjusted to handle the categorical ENERGY RATING

descriptive feature in linear regression models.

BROADBAND ENERGY ENERGY ENERGY RENTAL

ID SIZE FLOOR RATE RATING A RATING B RATING C PRICE

1 500 4 8 0 0 1 320
2 550 7 50 1 0 0 380
3 620 9 7 1 0 0 400
4 630 5 24 0 1 0 390
5 665 8 100 0 0 1 385
6 700 4 8 0 1 0 410
7 770 10 7 0 1 0 480
8 880 12 50 1 0 0 600
9 920 14 8 0 0 1 570
10 1,000 9 24 0 1 0 620

The most common approach to handling categorical features in linear regression models
is to use a transformation that converts a single categorical descriptive feature into a num-
ber of continuous descriptive feature values that can encode the levels of the categorical
feature. This is done by creating one new binary descriptive feature for every level of the
categorical feature. These new features can then be used to encode a level of the original
categorical descriptive feature by setting the value of the new feature corresponding to the
level of the categorical feature to 1 and the other new continuous features to 0.

For example, if we were to use the ENERGY RATING descriptive feature from Table
7.1[313] in a linear regression model, we would convert it into three new continuous descrip-
tive features, as energy rating can have one of three distinct levels: A, B, or C. Table 7.5[337]

shows this transformed dataset in which the energy rating feature has been replaced with
ENERGY RATING A, ENERGY RATING B, and ENERGY RATING C. For training instances
in which the original ENERGY RATING feature had a value A, the new ENERGY RATING

A feature has a value of 1, and the ENERGY RATING B and ENERGY RATING C are both
set to 0. A similar rule is used for instances with the ENERGY RATING feature levels of B
and C.

Returning to our example, the regression equation for this RENTAL PRICE model would
change to

RENTAL PRICE � w r0s � w r1s � SIZE � w r2s � FLOOR

� w r3s � BROADBAND RATE

� w r4s � ENERGY RATING A

� w r5s � ENERGY RATING B

� w r6s � ENERGY RATING C
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where the newly added categorical features allow the original ENERGY RATING feature to
be included. Everything else about using such a model is exactly the same as before.

The downside to this approach is that it introduces a number of extra weights for which
optimal values must be found—in this simple example for only four descriptive features,
we need seven weights. This increases the size of the weight space through which we need
to search when training the model. One way we can reduce the impact of this is that for
each categorical feature we transform, we can reduce the number of newly added features
by one by assuming that a zero in all the new features implies that the original feature had
the final level. So, for example, for our ENERGY RATING feature, instead of adding three
new features (ENERGY RATING A, ENERGY RATING B, and ENERGY RATING C), we
could just add ENERGY RATING A and ENERGY RATING B and assume that whenever
they both have a value of 0, ENERGY RATING C is implicitly set.

7.4.4 Handling Categorical Target Features: Logistic Regression
In Section 7.3[319] we described how a multivariable linear regression model trained using
gradient descent can be used to make predictions for continuous target features. Although
this is useful for a range of real-world predictive analytics problems, we are also interested
in prediction problems with categorical target features. This section covers the reasonably
simple adjustments that must be made to the multivariable linear regression with gradient
descent algorithm to handle categorical target features, in particular, logistic regression.

7.4.4.1 Predicting categorical targets using linear regression Table 7.6[339] shows a
sample dataset with a categorical target feature. This dataset contains measurements of
the revolutions per minute (RPM) that power station generators are running at, the amount
of vibration in the generators (VIBRATION), and an indicator to show whether the gener-
ators proved to be working or faulty the day after these measurements were taken. The
RPM and VIBRATION measurements come from the day before the generators proved to
be operational or faulty. If power station administrators could predict upcoming generator
failures before the generators actually fail, they could improve power station safety and
save money on maintenance.11 Using this dataset, we would like to train a model to distin-
guish between properly operating power station generators and faulty generators using the
RPM and VIBRATION measurements.

Figure 7.10(a)[340] shows a scatter plot of this dataset in which we can see that there is a
good separation between the two types of generator. In fact, as shown in Figure 7.10(b)[340],
we can draw a straight line across the scatter plot that perfectly separates the good gen-
erators from the faulty ones. This line is known as a decision boundary, and because we
can draw this line, this dataset is said to be linearly separable in terms of the two descrip-

11. Gross et al. (2006) describes a real-world example of this kind of application of predictive analytics.
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Table 7.6
A dataset listing features for a number of generators.

ID RPM VIBRATION STATUS

1 568 585 good
2 586 565 good
3 609 536 good
4 616 492 good
5 632 465 good
6 652 528 good
7 655 496 good
8 660 471 good
9 688 408 good
10 696 399 good
11 708 387 good
12 701 434 good
13 715 506 good
14 732 485 good
15 731 395 good
16 749 398 good
17 759 512 good
18 773 431 good
19 782 456 good
20 797 476 good
21 794 421 good
22 824 452 good
23 835 441 good
24 862 372 good
25 879 340 good
26 892 370 good
27 913 373 good
28 933 330 good

ID RPM VIBRATION STATUS

29 562 309 faulty
30 578 346 faulty
31 593 357 faulty
32 626 341 faulty
33 635 252 faulty
34 658 235 faulty
35 663 299 faulty
36 677 223 faulty
37 685 303 faulty
38 698 197 faulty
39 699 311 faulty
40 712 257 faulty
41 722 193 faulty
42 735 259 faulty
43 738 314 faulty
44 753 113 faulty
45 767 286 faulty
46 771 264 faulty
47 780 137 faulty
48 784 131 faulty
49 798 132 faulty
50 820 152 faulty
51 834 157 faulty
52 858 163 faulty
53 888 91 faulty
54 891 156 faulty
55 911 79 faulty
56 939 99 faulty

tive features used. As the decision boundary is a linear separator, it can be defined using
the equation of the line (remember Equation (7.2.1)[313]). In Figure 7.10(b)[340] the decision
boundary is defined as

VIBRATION � 830� 0:667� RPM (7.22)

or
830� 0:667� RPM � 1� VIBRATION � 0 (7.23)
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(a) (b)

Figure 7.10
(a) A scatter plot of the RPM and VIBRATION descriptive features from the generators dataset shown
in Table 7.6[339], where good generators are shown as crosses, and faulty generators are shown as
triangles; and (b) as decision boundary separating good generators (crosses) from faulty generators
(triangles).

So, for any instance that is actually on the decision boundary, the RPM and VIBRA-
TION values satisfy the equality in Equation (7.23)[339]. What is more interesting is that
instances not actually on the decision boundary behave in a very regular way. The descrip-
tive feature values of all instances above the decision boundary will result in a negative
value when plugged into the decision boundary equation, whereas the descriptive features
of all instances below the decision boundary will result in a positive value. For example,
applying Equation (7.23)[339] to the instance RPM � 810, VIBRATION � 495, which is
above the decision boundary in Figure 7.10(b)[340], gives the following result:

830� 0:667� 810� 495 � �205:27

By contrast, if we apply Equation (7.23)[339] to the instance RPM � 650 and VIBRATION �
240, which is below the decision boundary in Figure 7.10(b)[340], we get

830� 0:667� 650� 240 � 156:45

Figure 7.11(a)[341] illustrates the consistent relationship between Equation (7.23)[339] and the
decision boundary by plotting the value of Equation (7.23)[339] for all values of RPM and
VIBRATION.12

12. Note that in this figure, both the RPM and VIBRATION features have been normalized to the range r�1; 1s
(using range normalization as described in Section 3.6.1[87]). It is standard practice to normalize descriptive
features whenever we are using regression models to predict a categorical target feature.
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(a) (b)

Figure 7.11
(a) A surface showing the value of Equation (7.23)[339] for all values of RPM and VIBRATION, with
the decision boundary given in Equation (7.23)[339] highlighted; and (b) the same surface linearly
thresholded at zero to operate as a predictor.

Because the values of this equation are so well behaved, we can use it to predict a cate-
gorical target feature. Reverting to our previous notation, we have

Mwpdq �

#
1 if w � d ¥ 0

0 otherwise
(7.24)

where d is a set of descriptive features for an instance; w is the set of weights in the
model; and the good and faulty generator target feature levels are represented as 0 and 1
respectively. Figure 7.11(b)[341] shows the value of Equation (7.24)[341] for every possible
value of RPM and VIBRATION. This surface is known as a decision surface.

One problem that we need to solve in order to use the model defined in Equation (7.24)[341]

is how to determine the values for the weights, w, that will minimize the error function for
our hypothesis Mwpdq. Unfortunately, in this case we cannot just use the gradient descent
algorithm. The hard decision boundary given in Equation (7.24)[341] is discontinuous, so
is not differentiable, which means we cannot calculate the gradient of the error surface
using the derivative. Another problem with this model is that the model always makes
completely confident predictions of 0 or 1. A model able to distinguish between instances
that are very close to the boundary and those that are farther away would be preferable.
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We can solve both these problems by using a more sophisticated threshold function that
is continuous, and therefore differentiable, and that allows for the subtlety desired: the
logistic function.13

The logistic function14 is given by

logisticpxq �
1

1� e�x (7.25)

where x is a numeric value and e is Euler’s number and is approximately equal to 2:7183.
A plot of the logistic function for values of x in the range r�10; 10s is shown in Figure
7.12(a)[343]. We can see that the logistic function is a threshold function that pushes values
above zero to 1 and values below zero to 0. This is very similar to the hard threshold
function given in Equation (7.24)[341], except that it has a soft boundary. The next section
explains how use of the logistic function allows us to build logistic regression models that
predict categorical target features.

7.4.4.2 Logistic regression To build a logistic regression model, we threshold the out-
put of the basic linear regression model using the logistic function. So, instead of the
regression function simply being the dot product of the weights and the descriptive fea-
tures (as given in Equation (7.9)[320]), the dot product of weights and descriptive feature
values is passed through the logistic function

Mwpdq � logisticpw � dq

�
1

1� e�w�d (7.26)

To see the impact of this, we can build a multivariable logistic regression model for the
dataset in Table 7.6[339]. After the training process (which uses a slightly modified version
of the gradient descent algorithm, which we will explain shortly), the resulting logistic
regression model is15

MwphRPM;VIBRATIONiq �
1

1� e�p�0:4077�4:1697�RPM�6:0460�VIBRATIONq
(7.27)

13. A hard threshold can be used fairly successfully to train prediction models for categorical targets using the
perceptron learning rule, although we do not cover that in this book.

14. The logistic function is a real workhorse of mathematical modeling and is used in a huge range of different
applications. For example, the logistic function has been used to model how new words enter a language over
time, first used very infrequently before moving through a tipping point to become widespread in a language.

15. Note that in this example and in the examples that follow, a normalized version of the generators dataset is
used (all descriptive features are normalized to the range r�1; 1s using range normalization), so the weights in
Equation (7.27)[342] are different from those in Equation (7.23)[339]. If it were not for normalization, these two sets
of weights would be the same.
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(a) (b)

Figure 7.12
(a) A plot of the logistic function (Equation (7.25)[342]) for the range of values r�10; 10s; and (b) the
logistic decision surface that results from training a model to represent the generators dataset given
in Table 7.6[339] (note that the data has been normalized to the range r�1; 1s).

The decision surface resulting from Equation (7.27)[342] is shown in Figure 7.12(b)[343]. The
important thing to notice about this decision surface, in contrast to the decision surface in
Figure 7.11(b)[341], is that there is a gentle transition from predictions of the faulty target
level to predictions of the good generator target level. This is one of the key benefits of
using logistic regression. Another benefit of using the logistic function is that logistic
regression model outputs can be interpreted as probabilities of the occurrence of a target
level. So

Ppt � faulty|dq � Mwpdq

and
Ppt � good|dq � 1�Mwpdq

To find the optimal decision boundary for a logistic regression problem, we use the gradi-
ent descent algorithm (Algorithm 4[326]) to minimize the sum of squared errors based on the
training dataset. Figure 7.13[344] shows a series of the candidate models that were explored
on the way to finding this boundary. The final panel in Figure 7.13[344] shows how the sum
of squared errors changed during the training process.
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Figure 7.13
A selection of the logistic regression models developed during the gradient descent process for the
machinery dataset from Table 7.6[339]. The bottom-right panel shows the sums of squared errors
generated during the gradient descent process.

To repurpose the gradient descent algorithm for training logistic regression models, the
only change that needs to be made is in the error delta function, which is used in the weight
update rule given on Line 4[326] of Algorithm 4[326]. To derive this new weight update rule,
imagine that there is just a single training instance, pd; tq, in our training dataset. The
partial derivative of the error function, L2, is then

B
Bw r js

L2pMw;Dq �
B

Bw r js
1
2
pt �Mwpdqq2
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where w r js is a single weight from the set of weights w. Applying the chain rule to this,
we get

B
Bw r js

L2pMw;Dq � pt �Mwpdqq �
B

Bw r js
pt �Mwpdqq

But Mwpdq � logisticpw � dq, so

B
Bw r js

L2pMw;Dq � pt � logisticpw � dqq �
B

Bw r js
pt � logisticpw � dqq

Applying the chain rule again to the partial derivative part of this equation, and remember-
ing that B

Bwr jsw � d � d r js, we get

B
Bw r js

L2pMw;Dq � pt � logisticpw � dqq �
B

Bw r js
logisticpw � dq

�
B

Bw r js
w � d

� pt �Mwpdqq �
B

Bw r js
logisticpw � dq � d r js

Fortunately, the derivative of the logistic function is well known:
d
dx

logisticpxq � logisticpxqp1� logisticpxqq (7.28)

So
B

Bw r js
L2pMw;Dq � pt � logisticpw � dqq

� logisticpw � dqp1� logisticpw � dqq � d r js (7.29)

Rewriting logisticpw � dq as Mwpdq for readability, we get

B
Bw r js

L2pMw;Dq � pt �Mwpdqq (7.30)

�Mwpdq � p1�Mwpdqq � d r js (7.31)

This is the partial derivative of the error surface with respect to a particular weight w r js
and indicates the gradient of the error surface. Using this formulation for the gradient, we
can write the weight update rule for logistic regression as

w r js — w r js � �� pt �Mwpdqq �Mwpdq � p1�Mwpdqq � d r js (7.32)

where Mwpdq � logisticpw � dq � 1
1�e�w�d .

The rule given in Equation (7.32)[345] assumes that only a single training instance exists.
To modify this to take into account a full training dataset, we simply need to sum across
all the training instances as we did before in Equation (7.17)[327]. This gives us the weight
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update rule for multivariable logistic regression:

w r js — w r js � ��
n‚

i�1

ppti �Mwpdiqq �Mwpdiq � p1�Mwpdiqq � di r jsq (7.33)

Other than changing the weight update rule, we don’t need to make any other changes
to the model training process presented for multivariable linear regression models. To
further illustrate this process, the next section presents a worked example of training a
multivariable logistic regression model for an extended version of the generators dataset.

7.4.4.3 A worked example of multivariable logistic regression One of the advantages
of using a logistic regression model is that it works well for datasets in which the instances
with target features set to different levels overlap with each other in the feature space. Table
7.7[347] shows an extended version of the generators dataset given in Table 7.6[339], including
extra instances that make the separation between good generators and faulty generators
less clear cut. This kind of data is very common in real-world scenarios. A scatter plot of
this dataset is shown in Figure 7.14[349], in which the overlap between the different types
of generator in this dataset is clearly visible. Even though the separation between the
instances with the different levels of the target feature in this case is not particularly well
defined, a logistic regression model can be trained to distinguish between the two types of
generator. In the remainder of this section, we examine this in some detail.

There is an ongoing argument regarding whether descriptive features should be normal-
ized before being used in linear regression models. The main disadvantage of normaliza-
tion is that the interpretative analysis discussed in Section 7.4.4[338] becomes more difficult
as the descriptive feature values used in the model do not relate to the actual feature values
in the data. For example, if the age of a customer was used as a descriptive feature in a
financial credit scoring model, it is more difficult to talk about changes in normalized age
on a scale from 0 to 1 than it is to discuss original age values on their natural scale, about 18
to 80. The main advantages of normalizing descriptive feature values are that all weights
become directly comparable with each other (as all descriptive features are on the same
scale), and the behavior of the gradient descent algorithm used to train the model becomes
much less sensitive to the learning rate and the initial weights. Although it is less important
for simple linear regression models, for logistic regression models we recommend that de-
scriptive feature values always be normalized. In this example, before the training process
begins, both descriptive features are normalized to the range r�1; 1s.

To begin the gradient descent process, random starting values for the weights within
the model, w r0s ;w r1s ;w r2s, are selected. In this example, random values were selected
from the range r�3; 3s to give w r0s � �2:9465, w r1s � �1:0147, and w r2s � 2:1610.
Using these weights, a prediction is made for every instance in the training dataset, and the
resulting sum of squared errors is calculated. The predictions made using these weights
and the related error are shown in Table 7.8[348] under Iteration 1.
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Table 7.7
An extended version of the generators dataset from Table 7.6[339].

ID RPM VIBRATION STATUS

1 498 604 faulty
2 517 594 faulty
3 541 574 faulty
4 555 587 faulty
5 572 537 faulty
6 600 553 faulty
7 621 482 faulty
8 632 539 faulty
9 656 476 faulty
10 653 554 faulty
11 679 516 faulty
12 688 524 faulty
13 684 450 faulty
14 699 512 faulty
15 703 505 faulty
16 717 377 faulty
17 740 377 faulty
18 749 501 faulty
19 756 492 faulty
20 752 381 faulty
21 762 508 faulty
22 781 474 faulty
23 781 480 faulty
24 804 460 faulty
25 828 346 faulty
26 830 366 faulty
27 864 344 faulty
28 882 403 faulty
29 891 338 faulty
30 921 362 faulty
31 941 301 faulty
32 965 336 faulty
33 976 297 faulty
34 994 287 faulty

ID RPM VIBRATION STATUS

35 501 463 good
36 526 443 good
37 536 412 good
38 564 394 good
39 584 398 good
40 602 398 good
41 610 428 good
42 638 389 good
43 652 394 good
44 659 336 good
45 662 364 good
46 672 308 good
47 691 248 good
48 694 401 good
49 718 313 good
50 720 410 good
51 723 389 good
52 744 227 good
53 741 397 good
54 770 200 good
55 764 370 good
56 790 248 good
57 786 344 good
58 792 290 good
59 818 268 good
60 845 232 good
61 867 195 good
62 878 168 good
63 895 218 good
64 916 221 good
65 950 156 good
66 956 174 good
67 973 134 good
68 1002 121 good
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Table 7.8
Details of the first two iterations when the gradient descent algorithm is used to train a logistic
regression model for the extended generators dataset given in Table 7.7[347].

Initial Weights
w r0s: -2.9465 w r1s: -1.0147 w r2s: -2.1610

Iteration 1
TARGET Squared errorDeltapD;w r jsq

ID LEVEL Pred. Error Error w r0s w r1s w r2s
1 1 0.5570 0.4430 0.1963 0.1093 -0.1093 0.1093
2 1 0.5168 0.4832 0.2335 0.1207 -0.1116 0.1159
3 1 0.4469 0.5531 0.3059 0.1367 -0.1134 0.1197

� � �

66 0 0.0042 -0.0042 0.0000 0.0000 0.0000 0.0000
67 0 0.0028 -0.0028 0.0000 0.0000 0.0000 0.0000
68 0 0.0022 -0.0022 0.0000 0.0000 0.0000 0.0000

Sum 24.4738 2.7031 -0.7015 1.6493
Sum of squared errors (Sum/2) 12.2369

New Weights (after Iteration 1)
w r0s: -2.8924 w r1s: -1.0287 w r2s: -2.1940

Iteration 2
TARGET Squared errorDeltapD;w r jsq

ID LEVEL Pred. Error Error w r0s w r1s w r2s
1 1 0.5817 0.4183 0.1749 0.1018 -0.1018 0.1018
2 1 0.5414 0.4586 0.2103 0.1139 -0.1053 0.1094
3 1 0.4704 0.5296 0.2805 0.1319 -0.1094 0.1155

� � �

66 0 0.0043 -0.0043 0.0000 0.0000 0.0000 0.0000
67 0 0.0028 -0.0028 0.0000 0.0000 0.0000 0.0000
68 0 0.0022 -0.0022 0.0000 0.0000 0.0000 0.0000

Sum 24.0524 2.7236 -0.6646 1.6484
Sum of squared errors (Sum/2) 12.0262

New Weights (after Iteration 2)
w r0s: -2.8380 w r1s: -1.0416 w r2s: -2.2271
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Figure 7.14
A scatter plot of the extended generators dataset given in Table 7.7[347], which results in instances
with the different target levels overlapping each other. Instances representing good generators are
shown as crosses, and those representing faulty generators as triangles.

This first candidate model is not particularly accurate with an initial sum of squared
errors of 12:2369. In fact, instances 1 and 2 are the only instances at this stage that
are given predictions of the faulty target level, level 1 (note that their prediction val-
ues are the only ones greater than 0:5). This can also be seen in the top left-hand im-
age of Figure 7.15[350],which shows the candidate model corresponding to this initial set
of weights. Based on the errors in these predictions, the delta contributions, labeled
as errorDeltapD;w r0sq, errorDeltapD;w r1sq and errorDeltapD;w r2sq in Table 7.8[348],
from each training instance are calculated according to Equation (7.31)[345]. These individ-
ual delta contributions are then summed so that the weight update rule (Equation (7.33)[346])
can be applied, in this example using a learning rate of 0:02. So, for example, the new
value of w r0s is calculated as the old value plus the learning rate times the sum of the
errorDeltapD;w r0sq contributions to give �2:9465 � 0:02 � 2:7031 � �2:8924. This
gives the new set of weights shown as New Weights (after Iteration 1).

The process then starts again using these new weights as the basis for the predictions
and errors marked as Iteration 2 in Table 7.8[348]. The new weights result in slightly more
accurate predictions, evident from the slightly reduced sum of squared errors of 12:0262.
Based on the updated errors, a new set of weights is calculated, marked in Table 7.8[348] as
New Weights (after Iteration 2). Table 7.8[348] shows just the first two iterations of the
gradient descent process for this model. The continuing process that finds the final model
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is illustrated in Figure 7.15[350], which shows a selection of the candidate models generated
on the way to generating the final model, and the bottom-right panel shows how the sum
of squared errors changed during the process. The final model trained is

MwphRPM;VIBRATIONiq �
1

1� e�p�0:4077�4:1697�RPM�6:0460�VIBRATIONq

which has a sum of squared errors of 1:8804. Obviously, because there are instances with
different levels for the target feature overlapping in the feature space, it is not possible in
this case to build a model that perfectly separates the good and faulty machines. The model
trained, however, strikes a good balance between mistaking good machines for faulty ones
and vice versa.

Figure 7.15
A selection of the logistic regression models developed during the gradient descent process for the
extended generators dataset in Table 7.7[347]. The bottom-right panel shows the sums of squared errors
generated during the gradient descent process.
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Table 7.9
A dataset describing grass growth on Irish farms in July 2012.

ID RAIN GROWTH

1 2.153 14.016
2 3.933 10.834
3 1.699 13.026
4 1.164 11.019
5 4.793 4.162
6 2.690 14.167
7 3.982 10.190
8 3.333 13.525
9 1.942 13.899
10 2.876 13.949
11 4.277 8.643

ID RAIN GROWTH

12 3.754 11.420
13 2.809 13.847
14 1.809 13.757
15 4.114 9.101
16 2.834 13.923
17 3.872 10.795
18 2.174 14.307
19 4.353 8.059
20 3.684 12.041
21 2.140 14.641
22 2.783 14.138

ID RAIN GROWTH

23 3.960 10.307
24 3.592 12.069
25 3.451 12.335
26 1.197 10.806
27 0.723 7.822
28 1.958 14.010
29 2.366 14.088
30 1.530 12.701
31 0.847 9.012
32 3.843 10.885
33 0.976 9.876

7.4.5 Modeling Non-Linear Relationships
All the simple linear regression and logistic regression models that we have looked at so far
model a linear relationship between descriptive features and a target feature. Linear models
work very well when the underlying relationships in the data are linear. Sometimes, how-
ever, the underlying data will exhibit non-linear relationships that we would like to capture
in a model. For example, the dataset in Table 7.9[351] is based on an agricultural scenario
and shows rainfall (in mm per day), RAIN, and resulting grass growth (in kilograms per
acre per day), GROWTH, measured on a number of Irish farms during July 2012. A scatter
plot of these two features is shown in Figure 7.16(a)[352], from which the strong non-linear
relationship between rainfall and grass growth is clearly apparent—grass does not grow
well when there is very little rain or too much rain, but hits a sweet spot at rainfall of about
2:5mm per day. It would be useful for farmers to be able to predict grass growth for differ-
ent amounts of forecasted rainfall so that they could plan the optimal times to harvest their
grass for making hay.

A simple linear regression model cannot handle this non-linear relationship. Figure
7.16(b)[352] shows the best simple linear regression model that can be trained for this pre-
diction problem. This model is

GROWTH � 13:510��0:667� RAIN

To successfully model the relationship between grass growth and rainfall, we need to
introduce non-linear elements. A generalized way in which to do this is to introduce basis
functions that transform the raw inputs to the model into non-linear representations but still
keep the model itself linear in terms of the weights. The advantage of this is that, except for
introducing the mechanism of basis functions, we do not need to make any other changes
to the approach we have presented so far. Furthermore, basis functions work for both
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(a) (b)

Figure 7.16
(a) A scatter plot of the RAIN and GROWTH feature from the grass growth dataset; and (b) the
same plot with a simple linear regression model trained to capture the relationship between the grass
growth and rainfall.

simple multivariable linear regression models that predict a continuous target feature and
multivariable logistic regression models that predict a categorical target feature.

To use basis functions, we recast the simple linear regression model (see Equation (7.9)[320])
as follows:

Mwpdq �
b‚

k�0

w rks � �kpdq (7.34)

where d is a set of m descriptive features, w is a set of b weights, and �0 to �b are a series
of b basis functions that each transform the input vector d in a different way. It is worth
noting that there is no reason that b must equal m, and usually b is quite a bit larger than
m—that is, there are usually more basis functions than there are descriptive features.

One of the most common uses of basis functions in linear regression is to train models
to capture polynomial relationships. A linear relationship implies that the target is calcu-
lated from the descriptive features using only the addition of the descriptive feature values
multiplied by weight values. Polynomial relationships allow multiplication of descriptive
feature values by each other and raising of descriptive features to exponents. The most
common form of polynomial relationship is the second order polynomial, also known as
the quadratic function, which takes the general form a � bx � cx2. The relationship be-
tween rainfall and grass growth in the grass growth dataset can be accurately represented
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as a second order polynomial through the following model:

GROWTH � w r0s � �0pRAINq � w r1s � �1pRAINq � w r2s � �2pRAINq

where

�0pRAINq � 1

�1pRAINq � RAIN

�2pRAINq � RAIN2

What makes this approach really attractive is that, although this new model stated in
terms of basis functions captures the non-linear relationship between rainfall and grass
growth, the model is still linear in terms of the weights and so can be trained using gradient
descent without making any changes to the algorithm. Figure 7.17[354] shows the final non-
linear model that results from this training process, along with a number of the interim
steps on the way to this model. The final model is

GROWTH � 3:707� �0pRAINq � 8:475� �1pRAINq � �1:717� �2pRAINq

where �0, �1, and �2 are as described before. This model captures the non-linear rela-
tionship in the data very well but was still easy to train using a gradient descent approach.
Basis functions can also be used for multivariable simple linear regression models in the
same way, the only extra requirement being the definition of more basis functions.

Basis functions can also be used to train logistic regression models for categorical pre-
diction problems that involve non-linear relationships. Table 7.10[355] shows a dataset, the
EEG dataset, based on a neurological experiment designed to capture how neural responses
change when experiment participants view positive images (e.g., a picture of a smiling
baby) and negative images (e.g., a picture of rotting food). In an experiment performed
to capture this data, participants were shown a series of different images, and their neural
responses were measured using electroencephalography (EEG). In particular, the values
of the commonly used P20 and P45 potentials were measured while a participant viewed
each image. These are the descriptive features in this dataset, and the target feature, TYPE,
indicates whether the subject was viewing a positive or a negative image. If a model could
be trained to classify brain activity as being associated with positive images or negative
images, doctors could use this model to help in assessing the brain function of people who
have suffered severe brain injuries and are non-communicative.16 Figure 7.18[355] shows a
scatter plot of this dataset, from which it is clear that the decision boundary between the

16. This example is very much simplified for illustration purposes, but very interesting work is done on building
prediction models from the output of EEG and fMRI scans—for example, Mitchell et al. (2008).
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Figure 7.17
A selection of the models developed during the gradient descent process for the grass growth dataset
from Table 7.9[351].

two different types of images is not linear—that is, the two types of images are not linearly
separable.

The non-linear decision boundary that is just about perceivable in Figure 7.18[355] can
be represented using a third-order polynomial in the two descriptive features, P20 and
P45. The simple regression model we trained previously cannot cope with a non-linear
decision boundary like the one seen in Figure 7.18[355]. We can, however, rewrite the logistic
regression equation from Equation (7.26)[342] to use basis functions as follows:

Mwpdq �
1

1� e
�

�

��

b‚

j�0

w r js � jpdq

�

�

(7.35)
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Table 7.10
A dataset showing participants’ responses to viewing positive and negative images measured on the
EEG P20 and P45 potentials.

ID P20 P45 TYPE

1 0.4497 0.4499 negative
2 0.8964 0.9006 negative
3 0.6952 0.3760 negative
4 0.1769 0.7050 negative
5 0.6904 0.4505 negative
6 0.7794 0.9190 negative

:::

ID P20 P45 TYPE

26 0.0656 0.2244 positive
27 0.6336 0.2312 positive
28 0.4453 0.4052 positive
29 0.9998 0.8493 positive
30 0.9027 0.6080 positive
31 0.3319 0.1473 positive

:::

Figure 7.18
A scatter plot of the P20 and P45 features from the EEG dataset. Instances representing positive
images are shown as crosses, and those representing negative images as triangles.

Using this representation with the following set of basis functions will give the learning
process the flexibility to find the non-linear decision boundary required to successfully
separate the different types of images in the EEG dataset:17

17. The term arising from �7 is commonly referred to as an interaction term because it allows two descriptive
features to interact in the model.
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�0phP20; P45iq � 1 �4phP20; P45iq � P452

�1phP20; P45iq � P20 �5phP20; P45iq � P203

�2phP20; P45iq � P45 �6phP20; P45iq � P453

�3phP20; P45iq � P202 �7phP20; P45iq � P20 � P45

This model can be trained using gradient descent to find the optimal decision boundary
between the two different types of images. Figure 7.19[356] shows a series of the models built
during the gradient descent process. The final model can accurately distinguish between
the two different types of image based on the measured P20 and P45 activity. Figure
7.19(f)[356] shows a 3D plot of the final decision surface. Note that although this decision
surface is more complex than the ones we have seen before (e.g., Figure 7.12[343]), the
logistic shape is still maintained.

Figure 7.19
A selection of the models developed during the gradient descent process for the EEG dataset from
Table 7.10[355]. The final panel shows the decision surface generated.
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Using basis functions is a simple and effective way in which to capture non-linear rela-
tionships within a linear regression model. One way to think about this process is that we
change the dataset from two dimensions to a higher-dimensional space. There is no limit
to the kinds of functions that can be used as basis functions, and as we have seen in the
previous example, the basis functions for different descriptive features in a dataset can be
quite different. One disadvantage of using basis functions, however, is that the analyst has
to design the basis function set that will be used. Although there are some well-known
sets of functions—for example, different order polynomial functions—this can be a con-
siderable challenge. Second, as the number of basis functions grows beyond the number
of descriptive features, the complexity of our models increases, so the gradient descent
process must search through a more complex weight space. Using basis functions is an in-
teresting way to change the inductive bias, in particular the restriction bias, encoded in the
gradient descent algorithm for learning regression models. By using basis functions such
as those given in the examples in this section, we relax the restriction on the algorithm
to consider only linear models and instead allow more complex model types such as the
higher-order polynomial models seen in these examples.

7.4.6 Multinomial Logistic Regression
The multinomial logistic regression18 model is an extension that handles categorical tar-
get features with more than two levels. A good way to build multinomial logistic regression
models is to use a set of one-versus-all models.19 If we have r target levels, we create r
one-versus-all logistic regression models. A one-versus-all model distinguishes between
one level of the target feature and all the others. Figure 7.20[358] shows three one-versus-all
prediction models for a prediction problem with three target levels (these models are based
on the dataset in Table 7.11[359] that is introduced subsequently in this section).

For r target feature levels, we build r separate logistic regression models Mw1 to Mwr :

Mw1pdq � logisticpw1 � dq
Mw2pdq � logisticpw2 � dq

:::

Mwrpdq � logisticpwr � dq

(7.36)

where Mw1 to Mwr are r different one-versus-all logistic regression models, and w1 to
wr are r different sets of weights. To combine the outputs of these different models, we

18. Multinomial logistic regression models are often known as maximum entropy, conditional maximum en-
tropy, or MaxEnt models.

19. This is an example of an ensemble model like those described in Section 4.4.5[158].



358 Chapter 7 Error-Based Learning

(a) (b) (c)

Figure 7.20
An illustration of three different one-versus-all prediction models for the customer type dataset in
Table 7.11[359], with three target levels: (a) single (squares), (b) business (triangles), and (c) family
(crosses).

normalize their results as follows:

M1
wk
pdq �

Mwkpdq‚

lPlevelsptq

Mwlpdq (7.37)

where M1
wk
pdq is a revised, normalized prediction for the one-versus-all model for the target

level k. The denominator in this equation sums the predictions of each of the one-versus-all
models for the r levels of the target feature and acts as a normalization term. This ensures
that the output of all models sums to 1. The r one-versus-all logistic regression models
used are trained in parallel, and the revised model outputs, M1

wk
pdq, are used in calculating

the sum of squared errors for each model during the training process. This means that the
sum of squared errors function is changed slightly to

L2pMwk ;Dq �
1
2

n‚

i�1

�
ti �M1

wk
pdi r1sq

�2 (7.38)

The revised predictions are also used in making predictions for query instances. The
predicted level for a query, q, is the level associated with the one-versus-all model that
outputs the highest result after normalization. We can write this

Mpqq � arg max
lPlevelsptq

M1
wl
pqq (7.39)

Table 7.11[359] shows a sample from a dataset of mobile customers that includes details
of customers’ shopping habits with a large national retail chain. Each customer’s average
weekly spending with the chain, SPEND, and average number of visits per week to the
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Table 7.11
A dataset of customers of a large national retail chain.

ID SPEND FREQ TYPE

1 21.6 5.4 single
2 25.7 7.1 single
3 18.9 5.6 single
4 25.7 6.8 single

:::

26 107.9 5.8 business
27 92.9 5.5 business

:::

ID SPEND FREQ TYPE

28 122.6 6.0 business
29 107.7 5.7 business

:::

47 53.2 2.6 family
48 52.4 2.0 family
49 46.1 1.4 family
50 65.3 2.2 family

:::

chain, FREQ, are included along with the TYPE of customer: single, business, or family.
An extended version of this dataset was used to build a model that can determine the type
of a customer based on a few weeks of shopping behavior data. Figure 7.21[360] shows the
training sequence for a multinomial logistic regression model trained using this data (after
the data had been range normalized to r�1; 1s). There are three target levels, so three
one-versus-all models are built. The evolution of the decision boundary for each model is
shown.

The final one-versus-all decision boundaries shown in the bottom-middle panel of Figure
7.21[360] do not look like the individual one-versus-all decision boundaries shown in Figure
7.20[358]. The reason for this is that the boundaries shown in Figure 7.20[358] were trained in
isolation, whereas the boundaries shown in Figure 7.21[360] were trained in parallel and so
are interconnected. Although it might look like the decision boundary for the single target
level shown by the solid line does not discriminate between the instances with the single
target level and those with the other target levels, when used in conjunction with the other
two decision boundaries, it does. We can see this in the decision boundaries shown in the
bottom-right panel of Figure 7.21[360]. We use an example to illustrate how a prediction is
made using a multinomial regression model.

The parameters of the models learned for the three final decision boundaries in Figure
7.21[360] are

Mwsinglepqq � logisticp0:7993� 15:9030� SPEND � 9:5974� FREQq
Mwfamilypqq � logisticp3:6526��0:5809� SPEND � 17:5886� FREQq

Mwbusinesspqq � logisticp4:6419� 14:9401� SPEND � 6:9457� FREQq
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Figure 7.21
A selection of the models developed during the gradient descent process for the customer group
dataset from Table 7.11[359]. Squares represent instances with the single target level, triangles the
business level, and crosses the family level. The bottom-right panel illustrates the overall decision
boundaries between the three target levels.

For a query instance with SPEND � 25:67 and FREQ � 6:12, which are normalized to
SPEND � �0:7279 and FREQ � 0:4789, the predictions of the individual models would
be

Mwsinglepqq � logisticp0:7993� 15:9030� p�0:7279q � 9:5974� 0:4789q
� 0:9999

Mwfamilypqq � logisticp3:6526��0:5809� p�0:7279q � 17:5886� 0:4789q
� 0:01278

Mwbusinesspqq � logisticp4:6419� 14:9401� p�0:7279q � 6:9457� 0:4789q
� 0:0518
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These predictions would be normalized as follows:

M1
wsingle

pqq �
0:9999

0:9999� 0:01278� 0:0518
� 0:9393

M1
wfamily

pqq �
0:01278

0:9999� 0:01278� 0:0518
� 0:0120

M1
wbusiness

pqq �
0:0518

0:9999� 0:01278� 0:0518
� 0:0487

This means the overall prediction for the query instance is single, as this gets the highest
normalized score.

7.4.7 Support Vector Machines
Support vector machines (SVM) are another approach to predictive modeling that is
based on error-based learning. Figure 7.22(a)[361] shows a scatter plot of a reduced version
of the generators dataset (shown in Table 7.6[339]) with a decision boundary drawn across
it. The instance nearest the decision boundary, based on perpendicular distance, is high-
lighted. This distance from the decision boundary to the nearest training instance is known
as the margin. The dashed lines on either side of the decision boundary show the extent
of the margin, and we refer to these as the margin extents.

(a) (b)

Figure 7.22
A small sample of the generators dataset with two features, RPM and VIBRATION, and two target
levels, good (shown as crosses) and faulty (shown as triangles): (a) a decision boundary with a very
small margin; and (b) a decision boundary with a much larger margin. In both cases, the instances
along the margins are highlighted.
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Figure 7.22(b)[361] shows a similar diagram but with a different decision boundary, which
has a much larger margin. The intuition behind support vector machines is that this sec-
ond decision boundary should distinguish between the two target levels much more reliably
than the first. Training a support vector machine involves searching for the decision bound-
ary, or separating hyperplane,20 that leads to the maximum margin because this will best
separate the levels of the target feature. Although the goal of finding the best decision
boundary is the same for algorithms that build support vector machines as it is for logistic
regression models, the inductive bias encoded in the algorithms to select this boundary is
different, which leads to different decision boundaries being found.

The instances in a training dataset that fall along the margin extents, and therefore the
margins, are known as the support vectors. These are the most important instances in
the dataset because they define the decision boundary. There will always be at least one
support vector for each level of the target feature, but there is no limit to how many support
vectors there can be in total.

We define the separating hyperplane in the same way that we did at the beginning of the
discussion of logistic regression

w0 � w � d � 0 (7.40)

Note that this time we have separated w0 from the other weights, w, as this will make later
equations simpler.21 Recall from Section 7.4.4[338] that for instances above a separating
hyperplane

w0 � w � d ¡ 0

and for instances below a separating hyperplane

w0 � w � d   0

For support vector machines, we first set the negative target feature level to �1 and the
positive target feature level to �1. We then build a support vector machine prediction
model so that instances with the negative target level result in the model outputting ⁄ �1
and instances with the positive target level result in the model outputting ¥ �1. The space
between the outputs of �1 and �1 allows for the margin.

20. Remember that for problems with more than two descriptive features, the decision boundary is a hyperplane
rather than a line.

21. This also means that we no longer use the dummy descriptive feature, d r0s, which we previously always set
to 1; see Equation (7.9)[320].
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A support vector machine model is defined as

M���;w0pqq �
s‚

i�1

pti ���� ris � pdi � qq � w0q (7.41)

where q is the set of descriptive features for a query instance; pd1; t1q; : : : ; pds; tsq are s
support vectors (instances composed of descriptive features and a target feature); w0 is the
first weight of the decision boundary; and ��� is a set of parameters determined during the
training process (there is a parameter for each support vector ��� r1s ; : : : ;��� rss).22 When
the output of this equation is greater than 1, we predict the positive target level for the
query, and when the output is less than �1, we predict the negative target level. An im-
portant feature of this equation is that the support vectors are a component of the equation.
This reflects the fact that a support vector machine uses the support vectors to define the
separating hyperplane and hence to make the actual model predictions.

To train a support vector machine, we need to find values for each of the components
in Equation (7.41)[363] (the support vectors, w0, and the ��� parameters) that define the op-
timal decision boundary between the target levels. This is an instance of a constrained
quadratic optimization problem, and there are well-known approaches to solving this
type of problem. In this book we do not describe this step of the process in detail.23

Instead, we focus on explaining how the process is set up and how the training process
reflects the inductive bias of searching for the separating hyperplane with the maximum
margin. As the name constrained quadratic optimization problem suggests, this type of
problem is defined in terms of (1) a set of constraints and (2) an optimization criterion.

When training a support vector machine, we wish to find a hyperplane that distinguishes
between the two target levels, �1 and �1. So, the required constraints required by the
training process are

w0 � w � d ⁄�1 for ti � �1 (7.42)

and

w0 � w � d ¥�1 for ti � �1 (7.43)

Figure 7.23[364] shows two different decision boundaries that satisfy these constraints. Note
that the decision boundaries in these examples are equally positioned between positive and
negative instances, which is a consequence of the fact that decision boundaries satisfy these
constraints. The support vectors are highlighted in Figure 7.23[364] for each of the decision
boundaries shown. For simplicity in later calculations, we can combine the two constraints

22. These parameters are formally known as Lagrange multipliers.

23. We provide references in Section 7.6[370].
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(a) (b)

Figure 7.23
Different margins that satisfy the constraint in Equation (7.44)[364], the instances that define the margin
are highlighted in each case; (b) shows the maximum margin and also shows two query instances
represented as black dots.

in Equations (7.42)[363] and (7.43)[363] into a single constraint (remember that ti is always
equal to either �1 or �1)

ti � pw0 � w � dq ¥ 1 (7.44)

The optimization criterion used when training a support vector machine allows us to
choose between multiple different decision boundaries that satisfy the constraint given in
Equation (7.44)[364], such as those shown in Figure 7.23[364]. The optimization criterion used
is defined in terms of the perpendicular distance from any instance to the decision boundary
and is given by

distpdq �
abspw0 � w � dq

||w||

where ||w|| is known as the Euclidean norm of w and is calculated

||w|| �
b

w r1s2 � w r2s2 � : : :� w rms2

For instances along the margin extents, abspw0 � w � dq � 1 (according to Equation
(7.44)[364]). So, the distance from any instance along the margin extents to the decision
boundary is 1

||w|| , and because the margin is symmetrical to either side of the decision
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boundary, the size of the margin is 2
||w|| . The goal when training a support vector machine

is to maximize 2
||w|| subject to the constraint expressed in Equation (7.44)[364].

Once the constraints and optimization criterion have been defined, the solution to the
constrained quadratic optimization process will identify and define all the components in
Equation (7.41)[363] (the support vectors, w0, and the ��� parameters) for the optimal decision
boundary.

The optimal decision boundary and associated support vectors for the example we have
been following are shown in Figure 7.23(b)[364]. In this case good is the positive level and
set to �1, and faulty is the negative level and set to �1. The descriptive feature values
and target feature values for the support vectors in these cases are ph�0:225; 0:217i ;�1q,
ph�0:066;�0:069i ;�1q, and ph�0:273;�0:080i ;�1q. The value of w0 is �0:1838, and
the values of the ��� parameters are h23:056; 6:998; 16:058iq. Figure 7.23(b)[364] shows the
position of two new query instances for this problem. The descriptive feature values for
these query instances are q1 � h�0:314;�0:251i and q2 � h�0:117; 0:31i. For the first
query instance, q1, the output of the support vector machine model is:

M���;w0pq1q
� p1� 23:056� pp�0:225��0:314q � p0:217��0:251qq � 0:1838q

� p�1� 6:998� pp�0:066��0:314q � p�0:069��0:251qq � 0:1838q

� p�1� 16:058� pp�0:273��0:314q � p�0:080��0:251qq � 0:1838q

� � 2:145

The model output is less than �1, so this query is predicted to be a faulty generator. For
the second query instance, the model output is calculated similarly and is 1:592. This is
greater than �1, so this instance is predicted to be a good generator.

In the same way we used basis functions with logistic regression models in Section
7.4.5[351], basis functions can be used with support vector machines to handle training data
that is not linearly separable. In order to use basis functions, we must update Equation
(7.44)[364] to

ti � pw0 � w � ��� pdqq ¥ 1 for all i (7.45)

where ��� is a set of basis functions applied to the descriptive features d, and w is a set
of weights containing one weight for each member of ���. Typically, the number of basis
functions in ��� is larger than the number of descriptive features, so the application of the
basis functions moves the data into a higher-dimensional space. The expectation is that
a linear separating hyperplane will exist in this higher-dimensional space even though it
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does not in the original feature space. The prediction model in this case becomes

M���;���;w0pqq �
s‚

i�1

pti ���� ris � p���pdiq � ���pqqq � w0q (7.46)

Equation (7.46)[366] requires a dot product calculation between the result of applying the
basis functions to the query instance and to each of the support vectors. During the training
process, this is repeated multiple times. A dot product of two high-dimensional vectors is a
computationally expensive operation, but a clever trick—the kernel trick—is used to avoid
it. The same result obtained by calculating the dot product of the descriptive features of a
support vector and a query instance after having applied the basis functions can be obtained
by applying a much less costly kernel function, kernel, to the original descriptive feature
values of the support vector and the query.24 The prediction equation becomes

M���;kernel;w0pqq �
s‚

i�1

pti ���� ris � kernel pdi;qq � w0q (7.47)

A wide range of standard kernel functions can be used with support vector machines. Some
popular options are

Linear kernel kernelpd;qq � d � q� c

where c is an optional constant

Polynomial kernel kernelpd;qq � pd � q� 1qp

where p is the degree of a polynomial
function

Gaussian radial basis kernel kernelpd;qq � expp�||d� q||2q
where  is a manually chosen tuning
parameter

The appropriate kernel function for a particular prediction model should be selected by
experimenting with different options. It is best to start with a simple linear or low-degree
polynomial kernel function and move to more complex kernel functions only if good per-
formance cannot be achieved with this.

The description of the support vector machine approach given in this section assumes
that it is possible to separate the instances with the two different target feature levels with
a linear hyperplane. Sometimes this is not possible, even after using a kernel function to
move the data to a higher-dimensional feature space. In these instances, a margin cannot
be defined, as we have done in this example. An extension of the standard support vector
machine approach that allows a soft margin, however, caters for this and allows overlap

24. Question 4 in the Exercises at the end of this chapter explores the kernel trick in more detail, and worked
examples are provided in the solution.
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between instances with target features of the two different levels. Another extension al-
lows support vector machines to handle multinomial target features using a one-versus-all
approach similar to that described in Section 7.4.6[357]. There are also extensions to handle
categorical descriptive features (similar to the approach described in Section 7.4.3[336]) and
continuous target features.

Support vector machines have become a very popular approach to building predictive
models in recent times. They can be quickly trained, are not overly susceptible to overfit-
ting, and work well for high-dimensional data. In contrast to logistic regression models,
however, they are not very interpretable, and, especially when kernel functions are used, it
is very difficult to understand why a particular prediction has been made.

7.5 Summary

The simple multivariable linear regression (Section 7.3[319]) model (for convenience, re-
peated here as Equation (7.48)[367]) makes a prediction for a continuous target feature based
on a weighted sum of the values of a set of descriptive features. In an error-based model,
learning equates to finding the optimal values for these weights. Each of the infinite num-
ber of possible combinations of values for the weights will result in a model that fits, to
some extent, the relationship present in the training data between the descriptive features
and the target feature. The optimal values for the weights are the values that define the
model with the minimum prediction error.

Mwpdq � w � d

�
m‚

j�0

w r js � d r js
(7.48)

We use an error function to measure how well a set of weights fits the relationship in
the training data. The most common error function used for error-based models is the sum
of squared errors. The value of the error function for every possible weight combination
defines an error surface, similar to the one shown in Figure 7.24(a)[368]—for each combi-
nation of weight values, we get a point on the surface whose coordinates are the weight
values, with an elevation defined by the error of the model using the weight values. To find
the optimal set of weights, we begin with a set of random weight values that corresponds
to some random point on the error surface. We then iteratively make small adjustments to
these weights based on the output of the error function, which leads to a journey down the
error surface that eventually leads to the optimal set of weights. The zig-zagging line in
Figure 7.24(a)[368] shows an example journey across an error surface, and Figure 7.24(b)[368]

shows the reduction in the sum of squared errors as the search for the optimal weights
progresses down the error surface.

To ensure that we arrive at the optimal set of weights at the end of this journey across
the error surface, we need to ensure that each step we take moves downward on the error
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(a) (b)

Figure 7.24
(a) The journey across an error surface; and (b) the changing sums of squared errors during this
journey.

surface. We do this by directing our steps according to the gradient of the error surface
at each step. This is the gradient descent algorithm, which is one of the most important
algorithms in all of computer science, let alone machine learning.

The simple multivariable linear regression model that we presented at the beginning of
this chapter can be extended in many ways, and we presented some of the most important of
these. Logistic regression models (Section 7.4.4[338]) allow us to predict categorical targets
rather than continuous ones by placing a threshold on the output of the simple multivariable
linear regression model using the logistic function.

The simple linear regression and logistic regression models that we first looked at were
only capable of representing linear relationships between descriptive features and a target
feature. In many cases, this limits the creation of an accurate prediction model. By apply-
ing a set of basis functions (Section 7.4.5[351]) to descriptive features, models that represent
non-linear relationships can be created. The advantages of using basis functions is that
they allow models that represent non-linear relationships to be built even though these
models themselves remain a linear combination of inputs (e.g., we still use something very
similar to Equation (7.48)[367] to predict continuous targets). Consequently, we can still use
the gradient descent process to train them. The main disadvantages of using basis functions
are, first, that we must manually decide what set of basis functions to use; and second, that
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the number of weights in a model using basis functions is usually far greater than the num-
ber of descriptive features, so finding the optimal set of weights involves a search across a
much larger set of possibilities—that is, a much larger weight space.

It is somewhat surprising how often a linear multivariable regression model can accu-
rately represent the relationship between descriptive features and a target feature without
the use of basis functions. We recommend that simple linear models be evaluated first and
basis functions introduced only when the performance of the simpler models is deemed
unsatisfactory.

The logistic regression approach (and the SVM approach) discussed in this chapter is at
a disadvantage to those discussed in the previous chapters in that in its basic form, it can
only handle categorical target features with two levels. In order to handle categorical target
features with more than two levels, that is multinomial prediction problems, we need
to use a one-versus-all approach in which multiple models are trained. This introduces
something of an explosion in the number of weights required for a model, as we have
an individual set of weights for every target feature level. This is one reason that other
approaches are often favored over logistic regression for predicting categorical targets with
many levels.

One of the most attractive features of the regression models discussed in this chapter is
that they are based on a large body of research and best practice in statistics, a much older
discipline than machine learning. The maturity of regression-based approaches means that
they are easily accepted in other disciplines (e.g., biological, physical, and social sciences)
and that there is a range of techniques that allow a degree of analysis of regression models
beyond what is possible for other approaches. We saw some of these techniques in Section
7.4.1[332] when we examined the importance of the different descriptive features in a linear
regression model through an analysis of the model weights. A range of other approaches
we do not cover in this book can be used to do other in-depth analysis of regression models.
Section 7.6[370] recommends further reading on this topic.

Near the end of this chapter we covered support vector machines (SVM). SVM models
are trained in a slightly different way than regression models, but the concepts underpin-
ning both approaches are similar. The main advantages of SVM models are that they are
robust to overfitting and perform well for very high-dimensional problems. SVM models
are just one of a whole range of error-based approaches that are active areas for machine
learning research, and new approaches are constantly being developed. In this chapter
we have not covered artificial neural networks, another popular error-based approach to
learning that is a very active research area. One type of artificial neural network can be
built by connecting layers of logistic regression models, but there are many other network
topologies used in practice. We cover artificial neural networks and deep learning in detail
in Chapter 8[381].
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The next section discusses recommended readings for more information on the regres-
sion approaches discussed in this chapter and on some of the more recent developments in
error-based learning.

7.6 Further Reading

The key component of the gradient descent algorithm presented in this chapter is the use
of differentiation to compute the slope of the error surface. Differentiation is a part of
calculus, which is a large and very important field of mathematics. In Appendix C[765]

we provide an introduction to differentiation that covers all the techniques required to
understand how the gradient descent algorithm works. If, however, you wish to get a
broader understanding of calculus, we recommend Stewart (2012) as an excellent textbook
on all aspects of calculus.

For a more in-depth treatment of regression models and their underpinnings in statistics,
Chapter 14 of Rice (2006) offers a nice treatment of the topic, and Kutner et al. (2004)
provides massive detail. Ayres (2008) gives a lighter discussion of the many different
ways in which regression models are applied in practice.

Burges (1998) is still a good, freely available tutorial on support vector machines. For
more details, Cristianini and Shawe-Taylor (2000) is a well-respected textbook on the topic
and covers the extensions mentioned in Section 7.4.7[361], while Vapnik (2000) gives a good
overview of the theoretical underpinnings of support vector machines.
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7.7 Exercises

1. A multivariate linear regression model has been built to predict the heating load in a
residential building on the basis of a set of descriptive features describing the charac-
teristics of the building. Heating load is the amount of heat energy required to keep a
building at a specified temperature, usually 65� Fahrenheit during the winter regard-
less of outside temperature. The descriptive features used are the overall surface area
of the building, the height of the building, the area of the building’s roof, and the per-
centage of wall area in the building that is glazed. This kind of model would be useful
to architects or engineers when designing a new building.25 The trained model is

HEATING LOAD �� 26:030� 0:0497� SURFACE AREA

� 4:942� HEIGHT � 0:090� ROOF AREA

� 20:523� GLAZING AREA

Use this model to make predictions for each of the query instances shown in the fol-
lowing table.

SURFACE ROOF GLAZING

ID AREA HEIGHT AREA AREA

1 784.0 3.5 220.5 0.25
2 710.5 3.0 210.5 0.10
3 563.5 7.0 122.5 0.40
4 637.0 6.0 147.0 0.60

2. You have been hired by the European Space Agency to build a model that predicts
the amount of oxygen that an astronaut consumes when performing five minutes of
intense physical work. The descriptive features for the model will be the age of the
astronaut and their average heart rate throughout the work. The regression model is

OXYCON � w r0s � w r1s � AGE � w r2s � HEARTRATE

The table that follows shows a historical dataset that has been collected for this task.

25. This question is inspired by Tsanas and Xifara (2012), and although the data used is artificially generated,
it is based on the Energy Efficiency Dataset available from the UCI Machine Learning Repository (Bache and
Lichman, 2013) at archive.ics.uci.edu/ml/datasets/Energy+efficiency/.

archive.ics.uci.edu/ml/datasets/Energy+efficiency/
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HEART

ID OXYCON AGE RATE

1 37.99 41 138
2 47.34 42 153
3 44.38 37 151
4 28.17 46 133
5 27.07 48 126
6 37.85 44 145

HEART

ID OXYCON AGE RATE

7 44.72 43 158
8 36.42 46 143
9 31.21 37 138
10 54.85 38 158
11 39.84 43 143
12 30.83 43 138

(a) Assuming that the current weights in a multivariate linear regression model are
w r0s � �59:50, w r1s � �0:15, and w r2s � 0:60, make a prediction for each
training instance using this model.

(b) Calculate the sum of squared errors for the set of predictions generated in Part (a).

(c) Assuming a learning rate of 0:000002, calculate the weights at the next iteration
of the gradient descent algorithm.

(d) Calculate the sum of squared errors for a set of predictions generated using the
new set of weights calculated in Part (c).

3. A multivariate logistic regression model has been built to predict the propensity of
shoppers to perform a repeat purchase of a free gift that they are given. The descrip-
tive features used by the model are the age of the customer, the socioeconomic band
to which the customer belongs (a, b, or c), the average amount of money the customer
spends on each visit to the shop, and the average number of visits the customer makes
to the shop per week. This model is being used by the marketing department to deter-
mine who should be given the free gift. The weights in the trained model are shown
in the following table.

Feature Weight
Intercept (w r0s) -3.82398
AGE -0.02990
SOCIOECONOMIC BAND B -0.09089
SOCIOECONOMIC BAND C -0.19558
SHOP VALUE 0.02999
SHOP FREQUENCY 0.74572

Use this model to make predictions for each of the following query instances.

SOCIOECONOMIC SHOP SHOP

ID AGE BAND FREQUENCY VALUE

1 56 b 1.60 109.32
2 21 c 4.92 11.28
3 48 b 1.21 161.19
4 37 c 0.72 170.65
5 32 a 1.08 165.39



7.7 Exercises 373

4. The use of the kernel trick is key in writing efficient implementations of the support
vector machine approach to predictive modelling. The kernel trick is based on the fact
that the result of a kernel function applied to a support vector and a query instance is
equivalent to the result of calculating the dot product between the support vector and
the query instance after a specific set of basis functions have been applied to both—in
other words, kernel pd;qq � ��� pdq � ��� pqq.

(a) Using the support vector


d r1s ;d r2s

�
and the query instance



q r1s ;q r2s

�
as

examples, show that applying a polynomial kernel with p � 2, kernelpd;qq �
pd � q� 1q2, is equivalent to calculating the dot product of the support vector and
query instance after applying the following set of basis functions:

�0p


d r1s ;d r2s

�
q � d r1s2 �1p



d r1s ;d r2s

�
q � d r2s2

�2p


d r1s ;d r2s

�
q �

?
2� d r1s � d r2s �3p



d r1s ;d r2s

�
q �

?
2� d r1s

�4p


d r1s ;d r2s

�
q �

?
2� d r2s �5p



d r1s ;d r2s

�
q � 1

(b) A support vector machine model has been trained to distinguish between dosages
of two drugs that cause a dangerous interaction and those that interact safely. This
model uses just two continuous features, DOSE1 and DOSE2, and two target lev-
els, dangerous (the positive level, �1) and safe (the negative level, �1). The
support vectors in the trained model are shown in the following table.

DOSE1 DOSE2 CLASS

0.2351 0.4016 +1
-0.1764 -0.1916 +1
0.3057 -0.9394 -1
0.5590 0.6353 -1

-0.6600 -0.1175 -1

In the trained model the value of w0 is 0:3074, and the values of the ��� parameters
are h7:1655; 6:9060; 2:0033; 6:1144; 5:9538i.
i. Using the version of the support vector machine prediction model that uses

basis functions (see Equation 7.46) with the basis functions given in Part (a),
calculate the output of the model for a query instance with DOSE1 � 0:90 and
DOSE2 � �0:90.

ii. Using the version of the support vector machine prediction model that uses a
kernel function (see Equation 7.47) with the polynomial kernel function, cal-
culate the output of the model for a query instance with DOSE1 � 0:22 and
DOSE2 � 0:16.

iii. Verify that the answers calculated in Parts (i) and (ii) of this question would
have been the same if the alternative approach (basis functions or the polyno-
mial kernel function) had been used in each case.
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iv. Compare the amount of computation required to calculate the output of the
support vector machine using the polynomial kernel function with the amount
required to calculate the output of the support vector machine using the basis
functions.

� 5. In building multivariate logistic regression models, it is recommended that all continu-
ous descriptive features be normalized to the range r�1; 1s. The following table shows
a data quality report for the dataset used to train the model described in Question 3.

% 1st 3rd Std.
Feature Count Miss. Card. Min. Qrt. Mean Median Qrt. Max. Dev.
AGE 5,200 6 40 18 22 32.7 32 32 63 12.2
SHOP FREQUENCY 5,200 0 316 0.2 1.0 2.2 1.3 4.3 5.4 1.6
SHOP VALUE 5,200 0 3,730 5 11.8 101.9 100.14 174.6 230.7 72.1

2nd 2nd

% Mode Mode 2nd Mode Mode
Feature Count Miss. Card. Mode Count % Mode Count %
SOCIOECONOMIC BAND 5,200 8 3 a 2,664 51.2 b 1,315 25.3
REPEAT PURCHASE 5,200 0 2 no 2,791 53.7 yes 2,409 46.3

On the basis of the information in this report, all continuous features were normalized
using range normalization, and any missing values were replaced using mean im-
putation for continuous features and mode imputation for categorical features. After
applying these data preparation operations, a multivariate logistic regression model
was trained to give the weights shown in the following table.

Feature Weight
Intercept (w r0s) 0.6679
AGE -0.5795
SOCIOECONOMIC BAND B -0.1981
SOCIOECONOMIC BAND C -0.2318
SHOP VALUE 3.4091
SHOP FREQUENCY 2.0499

Use this model to make predictions for each of the query instances shown in the fol-
lowing table (question marks refer to missing values).

SOCIOECONOMIC SHOP SHOP

ID AGE BAND FREQUENCY VALUE

1 38 a 1.90 165.39
2 56 b 1.60 109.32
3 18 c 6.00 10.09
4 ? b 1.33 204.62
5 62 ? 0.85 110.50
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� 6. The effects that can occur when different drugs are taken together can be difficult
for doctors to predict. Machine learning models can be built to help predict optimal
dosages of drugs so as to achieve a medical practitioner’s goals.26 In the following
figure, the image on the left shows a scatter plot of a dataset used to train a model to
distinguish between dosages of two drugs that cause a dangerous interaction and those
that cause a safe interaction. There are just two continuous features in this dataset,
DOSE1 and DOSE2 (both normalized to the range p�1; 1q using range normalization),
and two target levels, dangerous and safe. In the scatter plot, DOSE1 is shown on
the horizontal axis, DOSE2 is shown on the vertical axis, and the shapes of the points
represent the target level—crosses represent dangerous interactions and triangles rep-
resent safe interactions.

In the preceding figure, the image on the right shows a simple linear logistic regression
model trained to perform this task. This model is

PpTYPE � dangerousq �
Logisticp0:6168� 2:7320� DOSE1 � 2:4809� DOSE2q

Plainly, this model is not performing well.

(a) Would the similarity-based, information-based, or probability-based predictive
modeling approaches already covered in this book be likely to do a better job
of learning this model than the simple linear regression model?

(b) A simple approach to adapting a logistic regression model to learn this type of
decision boundary is to introduce a set of basis functions that will allow a non-

26. The data used in this question has been artificially generated for this book. Mac Namee et al. (2002) is,
however, a good example of prediction models used to help doctors select correct drug dosages.
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linear decision boundary to be learned. In this case, a set of basis functions that
generate a cubic decision boundary will work well. An appropriate set of basis
functions is as follows:

�0phDOSE1;DOSE2iq � 1 �1phDOSE1;DOSE2iq � DOSE1
�2phDOSE1;DOSE2iq � DOSE2 �3phDOSE1;DOSE2iq � DOSE12

�4phDOSE1;DOSE2iq � DOSE22 �5phDOSE1;DOSE2iq � DOSE13

�6phDOSE1;DOSE2iq � DOSE23 �7phDOSE1;DOSE2iq � DOSE1 � DOSE2

Training a logistic regression model using this set of basis functions leads to the
following model:

PpTYPE � dangerousq �
Logistic

�
� 0:848� �0phDOSE1;DOSE2iq � 1:545� �1phDOSE1;DOSE2iq
� 1:942� �2phDOSE1;DOSE2iq � 1:973� �3phDOSE1;DOSE2iq
� 2:495� �4phDOSE1;DOSE2iq � 0:104� �5phDOSE1;DOSE2iq
� 0:095� �6phDOSE1;DOSE2iq � 3:009� �7phDOSE1;DOSE2iq

�

Use this model to make predictions for the following query instances:

ID DOSE1 DOSE2
1 0.50 0.75
2 0.10 0.75
3 -0.47 -0.39
4 -0.47 0.18

� 7. The following multinomial logistic regression model predicts the TYPE of a retail
customer (single, family, or business) on the basis of the average amount that they
spend per visit, SPEND, and the average frequency of their visits, FREQ:

Mwsinglepqq � logisticp0:7993� 15:9030� SPEND � 9:5974� FREQq
Mwfamilypqq � logisticp3:6526��0:5809� SPEND � 17:5886� FREQq

Mwbusinesspqq � logisticp4:6419� 14:9401� SPEND � 6:9457� FREQq

Use this model to make predictions for the following query instances:

ID SPEND FREQ

1 -0.62 0.10
2 -0.43 -0.71
3 0.00 0.00
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� 8. A support vector machine has been built to predict whether a patient is at risk of
cardiovascular disease. In the dataset used to train the model, there are two target
levels—high risk (the positive level, �1) or low risk (the negative level, �1)—and
three descriptive features—AGE, BMI, and BLOOD PRESSURE. The support vectors
in the trained model are shown in the table below (all descriptive feature values have
been standardized).

BLOOD

AGE BMI PRESSURE RISK

-0.4549 0.0095 0.2203 low risk
-0.2843 -0.5253 0.3668 low risk
0.3729 0.0904 -1.0836 high risk

0.558 0.2217 0.2115 high risk

In the model the value of w0 is �0:0216, and the values of the ��� parameters are
h1:6811; 0:2384; 0:2055; 1:7139i. What predictions would this model make for the
following query instances?

BLOOD

ID AGE BMI PRESSURE

1 -0.8945 -0.3459 0.5520
2 0.4571 0.4932 -0.4768
3 -0.3825 -0.6653 0.2855
4 0.7458 0.1253 -0.7986

� 9. A multivariate logistic regression model has been built to diagnose breast cancer in
patients on the basis of features extracted from tissue samples extracted by biopsy.27

The model uses three descriptive features—MITOSES, a measure of how fast cells
are growing; CLUMPTHICKNESS, a measure of the amount of layering in cells; and
BLANDCHROMATIN, a measure of the texture of cell nuclei—and predicts the status
of a biopsy as either benign or malignant. The weights in the trained model are shown
in the following table.

Feature Weight
Intercept (w r0s) �13:92
MITOSES 3:09
CLUMPTHICKNESS 0.63
BLANDCHROMATIN 1.11

27. The data in this question has been artificially created but is inspired by the famous Wisconsin breast cancer
dataset first described in Mangasarian and Wolberg (1990) and is available from the UCI Machine Learning
Repository (Bache and Lichman, 2013).
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(a) Use this model to make predictions for each of the following query instances.

CLUMP BLAND

ID MITOSES THICKNESS CHROMATIN

1 7 4 3
2 3 5 1
3 3 3 3
4 5 3 1
5 7 4 4
6 10 4 1
7 5 2 1

(b) The following are the ground truth labels for the query instances from Part (a).

d1 d2 d3 d4 d5 d6 d7

benign benign malignant benign malignant malignant benign

i. Using the ground truth labels, calculate the squared error loss for each query
instance (assume that benign � 0 and malignant � 1).

ii. Categorical cross entropy is another loss function that is commonly used for
classification models. Categorical cross entropy is defined as

�pti � ln pMw pdiqq � p1� tiq � ln p1�Mw pdiqqq

Using the ground truth labels previously given, calculate the categorical cross
entropy for the query set. Compare these values to the squared error loss values
for each instance.

� 10. The following images are handwritten instances of the digits 0 and 1.28 The images
are small, 8 pixels by 8 pixels, and each pixel contains a gray level from the range
r0; 7s.

Rather than use individual pixel values, which can lead to very high-dimensional fea-
ture vectors, a simpler way to represent images for use with regression models is to
calculate a histogram for each image and use this as the feature vector instead. In this
case the histograms simply count the frequency of occurrence of each possible gray

28. These images are based on the dataset from the UCI Machine Learning repository Dua and Graff (2017) and
originally described by Alimoglu and Alpaydin (1996).
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level in each image. The table that follows shows the histograms for a small dataset of
16 images split between examples of digits 0 and 1.

ID GL-0 GL-1 GL-2 GL-3 GL-4 GL-5 GL-6 GL-7 DIGIT

0 31 3 6 2 7 5 6 4 0
1 37 3 1 4 1 3 2 13 1
2 31 3 4 1 8 7 3 7 0
3 38 2 3 0 1 1 5 14 1
4 31 5 3 2 5 2 5 11 0
5 32 6 3 2 1 1 5 14 1
6 31 3 5 2 3 6 2 12 0
7 31 4 3 4 1 5 5 11 0
8 38 4 2 2 2 4 4 8 1
9 38 3 2 3 4 4 1 9 1

A logistic regression model has been trained to classify digits as either 0 or 1. The
weights in this model are as follows:

Intercept GL-0 GL-1 GL-2 GL-3 GL-4 GL-5 GL-6 GL-7
wr0s wr1s wr2s wr3s wr4s wr5s wr6s wr7s wr8s

0:309 0:100 �0:152 �0:163 0:191 �0:631 �0:716 �0:478 �0:171

This model has been used to make predictions for the instances in the training set
above. These predictions, and the related calculations required for calculating error
and errorDelta values are shown in the following table.

Squared errorDeltapD;w r jsq
ID Mwpdiq ti Error Error w r0s w r1s w r2s w r3s w r4s w r5s w r6s w r7s w r8s

0 0.051 0 -0.051 ? -0.0025 -0.0765 -0.0074 -0.0148 -0.0049 -0.0173 -0.0123 -0.0148 -0.0099
1 ? 1 0.003 0.0000 -0.0025 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001
2 0.019 0 -0.019 0.0004 -0.0025 -0.0110 -0.0011 -0.0014 -0.0004 -0.0028 -0.0025 -0.0011 ?
3 0.993 1 0.007 0.0000 ? 0.0018 0.0001 0.0001 0.0000 0.0000 0.0000 0.0002 0.0007
4 ? 0 -0.489 0.2391 -0.0025 -3.7879 -0.6110 -0.3666 -0.2444 -0.6110 -0.2444 -0.6110 -1.3441
5 0.945 1 ? 0.0030 -0.0025 0.0915 0.0172 0.0086 0.0057 0.0029 0.0029 0.0143 0.0400
6 ? 0 -0.400 0.1600 -0.0025 -2.9760 -0.2880 -0.4800 -0.1920 -0.2880 -0.5760 -0.1920 -1.1520
7 0.703 0 ? 0.4942 -0.0025 -4.5502 ? -0.4403 -0.5871 -0.1468 -0.7339 -0.7339 -1.6146
8 0.980 1 0.020 ? -0.0025 0.0149 0.0016 0.0008 0.0008 0.0008 0.0016 0.0016 0.0031
9 0.986 1 0.014 0.0002 -0.0025 0.0073 0.0006 0.0004 0.0006 0.0008 0.0008 0.0002 0.0017

(a) Some of the model predictions are missing in the preceding table (marked with a
?). Calculate these.

(b) Some of the Error and Squared Error values are missing in the preceding table
(marked with a ?). Calculate these.

(c) Some of the errorDelta values are missing in the preceding table (marked with a
?). Calculate these.

(d) Calculate a new set of weights for this model using a learning rate of 0:01.
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(e) The following table shows handwritten examples of the digits 7 and 8 and their
corresponding histogram values.

GL-0 GL-1 GL-2 GL-3 GL-4 GL-5 GL-6 GL-7

35 1 5 4 5 2 4 8

30 6 2 0 5 4 4 13

i. Calculate the output of the model (using the updated weights calculated in the
previous part) for these two instances.

ii. Comment on the appropriateness of these outputs.
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“A map is not the territory it represents, but, if correct, it has a similar structure to the territory, which
accounts for its usefulness.”
—Alfred Korzybski, Science and Sanity, p. 58

In this chapter1 we introduce deep learning, an approach to machine learning that is
inspired by how the brain is structured and operates. Deep learning is a relatively new
term that describes research on modern artificial neural networks. Artificial neural network
models are composed of large numbers of simple processing units, called neurons, that
typically are arranged into layers and are highly interconnected. Artificial neural networks
are some of the most powerful machine learning models, able to learn complex non-linear
mappings from inputs to outputs. As such, they generally work well in domains in which
there are large numbers of input features (such as image, speech, or language processing),
and for which there are very large datasets available for training. Although the history of
artificial neural networks can be traced back to the 1940s, the term deep learning came
to prominence only in the mid-2000s.2 The term deep learning emphasizes that modern
networks are deeper (in terms of number of layers) than previous networks. This extra
depth enables the networks to learn more complex input-output mappings.

The Fundamentals section of this chapter introduces the standard artificial neural net-
work architecture: a feedforward neural network. We then present the backpropagation
algorithm, the standard algorithm used to train neural networks, and illustrate how the
algorithm functions with a worked example.

The first two extensions and variations sections explain why the backpropagation algo-
rithm can struggle with unstable gradients when training a deep network and how a number
of important hyper-parameter decisions, such as the choice of the network weight initial-

1. Parts of this chapter assume a familiarity with calculus, in particular the concepts of a partial derivative and
the chain rule; see Appendix C[765] for an introduction to these concepts. This chapter also draws on a number of
concepts introduced in Chapter 7[311], including the gradient descent algorithm, and logistic regression models.

2. See Kelleher (2019) for a history of the development of neural network models and the emergence of deep
learning.
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ization process, and activation functions, can help with the challenge of unstable gradients.
We then explain how a neural network can be modified and trained to handle categorical
target features, using a softmax output layer and the cross-entropy loss function. Then we
introduce a well-known extension to backpropagation training known as dropout, which
can help stop a network from overfitting. The final two extensions and variations sec-
tions introduce well-known neural network architectures, including convolutional neural
networks and recurrent neural networks.

8.1 Big Idea

The human brain is an incredibly powerful learning system. Thanks to neuroscience we
now know quite a bit about the structure of the brain. For example, we know that the brain
works by propagating electrical signals through a massive network of interconnected cells,
known as neurons. In fact, it is estimated that the human brain contains around 100 billion
interconnected neurons (Herculano-Houzel, 2009).

There are many different types of neurons in the brain; however, in general, neurons have
a simple three-part structure consisting of (1) a cell body; (2) a set of relatively short fibers
connected to the cell body, called dendrites; and (3) a single long fiber connected to the cell
body, called an axon. The dendrites of one neuron connect to the axons of other neurons
via connections known as synapses. These synapses allow electrical signals to pass from
the axon of one neuron to a dendrite of another. Essentially, the dendrites are the neuron’s
input channels, and the axon is the output channel. Figure 8.1 presents a schematic of the
structure of a neuron that illustrates how the neuron’s cell body, dendrites, and axon are
interconnected and how one neuron connects to other neurons in the brain. Functionally,
an individual neuron can be understood as a simple signal processing system. A neuron
functions as an all-or-none switch: if the electrical stimuli gathered by its dendrites are
strong enough, the neuron transmits an electrical pulse, known as an action potential, along
its axon; otherwise it has no output.

Although neuroscience has discovered a lot about the neural structure of the brain, neu-
roscientists are still working on understanding how learning happens in the brain and how
high-level human behavior arises from the processing of neurons. In 1949 Donald O. Hebb
proposed a theory that attempted to explain how general human behavior emerged from the
physiology of the brain. The basis of this theory was that complex behavior emerges from
the interactions between massive numbers of highly interconnected neurons rather than
from complex processing within neurons. The idea that human mental phenomena emerge
through the interconnections between neurons became known as connectionism. Hebb
also postulated a mechanism for how lasting memories are learned in the brain on the basis
of a process of changes to the connections between neurons:



8.2 Fundamentals 383

Figure 8.1
A high-level schematic of the structure of a neuron. This figure illustrates three interconnected
neurons; the middle neuron is highlighted in black, and the major structural components of this
neuron are labeled cell body, dendrites, and axon. Also marked are the synapses connecting the axon
of one neuron and the dendrite of another, which allow signals to pass between the neurons.

When an axon of a cell A is near enough to excite a cell B and repeatedly or persistently takes part
in firing it, some growth process or metabolic change takes place in one or both cells such that A’s
efficiency, as one of the cells firing B, is increased. (Hebb, 1949, p. 62)

Hebb’s theory that learning occurs through changes in the connections between neurons
and that behavior emerges through the flow of information across these connections has
been very influential both in neuroscience and, as we will discuss, in deep learning.

The big idea in deep learning is to develop computational models that are inspired by the
structure and operations of the human brain. The human brain is, of course, much more
complex and sophisticated than even the most advanced deep learning models. However,
it is because deep learning models are inspired by the human brain that they are known as
artificial neural networks: they are designed (at least at a very abstract level) to mirror the
structure of the brain, and the adoption of a learning mechanism based on adjusting the
connections between neurons can be understood as mimicking Hebb’s theory of how the
brain learns.

8.2 Fundamentals

We begin this section by introducing the basic building block of all deep learning models,
the artificial neuron (see Section 8.2.1[384]); we then describe how the artificial neurons can
be connected together to create an artificial neural network (see Section 8.2.2[388]). After
we have covered the fundamentals of the models, we explain how these artificial neural
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networks can be understood as sequences of matrix multiplications (see Section 8.2.3[390]).
Understanding how a neural network can be represented and implemented as a sequence
of matrix multiplications has important implications in terms of training time speedups.
The matrix representation of a neural network is also useful in terms of understanding
why we need to include a non-linear function as part of the information processing within
each of the neurons in a network (see Section 8.2.4[394]) and why the depth of a network
(i.e., the number of layers) is important (see Section 8.2.5[395]). Finally, we use the matrix
representation of a network as a compact representation of neural networks in the worked
examples. For example, we use the matrix representation to present elements of the worked
example in Section 8.3.5[421], in which we step through the training of a feedforward neural
network using backpropagation.

8.2.1 Artificial Neurons
The fundamental building block of a neural network is a computational model known as an
artificial neuron. The template structure of these computational models was first defined
by McCulloch and Pitts (1943). McCulloch and Pitts were trying to develop a model of the
activity in the human brain based on propositional logic. Their inspiration for this work
was linking the fact that propositional logic using a Boolean representation (TRUE/FALSE
or 1/0) and neurons in the brain are somewhat similar, insofar as they have an all-or-none
character (i.e., they act as a switch that responds to a set of inputs by outputting either a
high activation or no activation). As a result, they designed a model of the neuron that
would take in multiple inputs and then output either a high signal, a 1, or a low signal, a 0.
This McCulloch and Pitts model had a two-part structure.

In the first stage of the McCulloch and Pitts model, each input is multiplied by a weight,
and the results of these multiplications are then added together. This calculation is known
as a weighted sum because it involves summing the weighted inputs. For example, for a
weighted sum calculation over two inputs we require two predefined weights. If we assume
the two predefined weights are w1 � 0:5 and w2 � 3 and the two inputs are input1 � 6
and input2 � 7, then the weighted sum calculation would proceed as follows:

p0:5� 6q � p3� 7q � 24

More generally, we can mathematically define the weighted sum calculation

z � w r0s � d r0s � w r1s � d r1s � � � � � w rms � d rmsloooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon
weighted sum

(8.1)

There are, in fact, multiple ways of mathematically defining a weighted sum calculation:
we can use the

°
symbol to reduce the length of the equation, or we can represent it as a
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dot product or as a matrix product

z � w r0s � d r0s � w r1s � d r1s � � � � � w rms � d rmsloooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon
weighted sum

�
m‚

j�0

w r js � d r js

� w � dloomoon
dot product

� wT dloomoon
matrix product

� rw0;w1; : : : ;wms

�

�����

d0

d2
:::

dm

�

�����
(8.2)

where d is a vector of m � 1 descriptive features, d r0s : : : d rms; and w r0s : : :w rms are
pm � 1q weights. However, no matter which way we choose to define the weighted sum,
the operation remains the same.

The weights can either be excitatory (having a positive value, which increases the prob-
ability of the neuron activating) or inhibitory (having a negative value, which decreases
the probability of a neuron firing). We have in fact already come across the weighted sum
calculation in Chapter 7[311] when we defined the multivariate linear regression model (see
Equation (7.9)[320]). Recall from Chapter 7[311] that w r0s is the equivalent of the y-intercept
in the equation of the line from high school geometry (see (7.2.1)[313]), and d r0s is a dummy
descriptive feature used for notational convenience and is always equal to 1 (see (7.9)[320]).
Including this dummy feature makes the d and w vectors have the same length, and this
allows us to write the equation as the dot product of the two vectors (i.e., w � d). The
inclusion of the weight w r0s means that there is one more weight term than there are real
descriptive features. In other words, there are more weight parameters on the model than
there are dimensions in the input space. This extra weight term allows the model to define
lines that do not go through the origin of the input space: setting the w r0s to a value other
than 0 translates the line defined by the model away from the origin of the input space, just
as changing the value of the y-intercept in the equation of a line moves a line up and down
the y-axis away from the origin. This w r0s term is often referred to as the bias parameter
because in the absence of any other input, the output of the weighted sum is biased to be the
value of w r0s. Technically, the inclusion of the bias parameter as an extra weight in this
operation changes the function from a linear function on the inputs to an affine function.
An affine function is composed of a linear function followed by a translation; this simply
means that the mapping defined by an affine function from inputs to outputs is linear but
the plot of this mapping does not necessarily pass through the origin. For example, if we
dropped the d r0s dummy feature and then multiplied each of the real descriptive features
by a weight and summed the results, we would be applying a linear function to the in-
puts. A plot of this function would pass through the origin because there is no y-intercept
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(or bias term) included in the calculation. However, if we then add the bias term (the y-
intercept) to the results of the linear function, we are translating the results of the linear
function away from the origin. By including the bias term in the set of weights along with
a dummy descriptive feature, the function implemented by multiplying the weights by the
extended descriptive features is now an affine function. In much of this chapter we discuss
matrix representations and calculations, so it is worth noting here that a linear function can
always be represented by a single matrix multiplication and that an affine transformation
in m dimensions can always be represented as a linear function in m�1 dimensions (as we
have done here) and consequently as a single matrix multiplication in m � 1 dimensions.
In this chapter, affine and linear functions are so closely associated that we often use the
term linear to refer to affine operations.

In the second stage of the McCulloch and Pitts model, the result of the weighted sum
calculation, z, is then converted into a high or a low activation by comparing the value of z
with a manually preset threshold; if z is greater than or equal to the threshold, the artificial
neuron outputs a 1 (high activation), and otherwise it outputs a 0 (low activation). This
threshold is nothing more than a number that is selected by the designer of the artificial
neuron. Using the symbol � to denote the threshold, the second stage of processing in the
McCulloch and Pitts model can be defined

Mwpdq �

#
1 if z ¥ �

0 otherwise
(8.3)

In the McCulloch and Pitts model the weights were manually set, but subsequently in
this chapter we explain how these weights can be learned from data using backpropaga-
tion. However, the two-part structure of the McCulloch and Pitts model of the neuron is the
blueprint for the neurons used in modern neural networks. The main difference between
the McCulloch and Pitts model and modern artificial neurons is that the thresholding func-
tion is replaced by other functions. Frequently, the term activation function is used as a
general term to refer to whatever function is employed in the second stage of an artificial
neuron, because the function maps the weighted sum value, z, into the output value, or ac-
tivation, of the neuron. Until recently, one of the most popular functions used in artificial
neurons was the logistic function introduced in Chapter 7 (see Equation (7.25)[342] and Fig-
ure 7.12[343]). However, today the most popular choice of function for an activation function
is the rectified linear activation function or rectifier

recti f ierpzq � maxp0; zq (8.4)

Note that neurons are often referred to as units, and they are distinguished by the type
of activation function they use. Hence a neuron that uses a logistic activation function is
referred to as a logistic unit, and a unit that uses the rectifier function is known as a rec-
tified linear unit or ReLU. We will explain why the logistic function became so popular



8.2 Fundamentals 387

Figure 8.2
Plots for activation functions that have been popular in the history of neural networks.

as an activation function when we introduce the backpropagation algorithm (see Section
8.3[403]), and why the rectified linear function replaced it when we explain the vanishing
gradient problem (see Section 8.4.1[434]). Figure 8.2[387] shows plots of some of the ac-
tivation functions that have been popular in neural networks over the last few decades,
including the threshold, logistic, tanh, and rectifier linear functions.

Figure 8.2[387] makes it apparent that a common characteristic of all of these activation
functions is that they are not linear functions. This is not a coincidence. In fact, it is the
introduction of a non-linearity into the input to output mapping defined by a neuron that
enables an artificial neural network to learn complex non-linear mappings; indeed, it is this
ability to learn these complex non-linear mappings that makes artificial neural networks
such powerful models, in terms of their ability to be accurate on complex tasks. We will
explain in more detail why we need non-linear activation functions in neurons in Section
8.2.4[394].

If we use the symbol ’ to represent the activation function of a neuron, we can mathe-
matically define an artificial neuron as follows:

Mwpdq � ’ pw r0s � d r0s � w r1s � d r1s � � � � � w rms � d rmsq
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(8.5)
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Figure 8.3
A schematic of an artificial neuron.

where d is a vector of m � 1 descriptive features (including the dummy d r0s feature),
d r0s ;d r1s ; : : : ;d rms; w is a vector of m�1 weights (including the bias term) w r0s ;w r1s;
: : : ;w rms; and ’ represents the activation function (threshold, tanh, logistic, or rectifier,
etc.) that converts the result of the weighted sum to the output activation. Figure 8.3
presents a graphical representation of this same function. In this figure the arrows carry
activations in the direction the arrow is pointing, the weight label on each arrow represents
the weight that will be applied to the descriptive feature carried along the arrow, the

°
sym-

bol represents the weighted sum of the inputs, and the ’ symbol represents the threshold
function being applied to the result of the weighted sum to convert it into an activation.

8.2.2 Artificial Neural Networks
An artificial neural network consists of a network of interconnected artificial neurons. Fig-
ure 8.4[390] illustrates the structure of a basic artificial neural network. In this network the
neurons are organized into a sequence of layers. An artificial neural network can have any
structure, but a layer-based organization of neurons is common. There are two types of
neurons in this network: sensing neurons and processing neurons. First, the two squares
on the left of the figure represent the two memory locations through which inputs are pre-
sented to this network. These locations can be thought of as sensing neurons that permit
the network to sense the external inputs. Although we consider these memory locations
as (sensing) neurons within the network, the inputs presented to the network are not trans-
formed by these sensing neurons. This is why they are represented by squares to visually
distinguish them from the other neurons in the network that do transform their inputs. Each
of the circles in the network represents a processing neuron that transforms its input using
the previously described two-step process of a weighted sum followed by an activation
function.
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The arrows connecting the neurons in the network indicate the flow of information
through the network. Examining the arrows in the network shows that the input to the
processing neurons can be any of the following: an external input presented to the network
via the sensing neurons, the output activation of another processing neuron in the network,
or a dummy input that is always set to 1 (the input from a black circle). Also, each arrow
is labeled with the weight that the neuron receiving the activation flowing along that con-
nection applies to that activation during the weighted sum calculation. The bias terms are
the weights on the dummy inputs. Notice that the indices in the weight subscripts are in
reverse order from what might be expected: the first subscript is the index of the neuron
to which the activation is flowing, and the second subscript is the index of the neuron that
generated the activation. In the case of bias terms, this second index is always equal to
zero. The advantage of this index ordering becomes clear when we describe how matrix
multiplications can be used to speed up the training and inference in neural networks (see
Section 8.2.3[390]). Training a neural network involves finding a good set of values for these
weights.

The network architecture shown in Figure 8.4[390] is an example of a feedforward net-
work. The defining characteristic of a feedforward network is that there are no loops or
cycles in the network connections that would allow the output of a neuron to flow back
into the neuron as an input (even indirectly). In other words, in a feedforward network
the activations in the network always flow forward through the sequence of layers. This
network is also a fully connected network because each of the neurons in the network is
connected in such a way that it receives inputs from all the neurons in the preceding layer
and passes its output activation to all the neurons in the next layer. Subsequently in this
chapter we introduce network architectures that are not feedforward and also architectures
that are not fully connected.

When this network is processing a set of external inputs, the inputs are presented to the
network through sensing neurons in the input layer; this causes the neurons in the next
layer to generate activation signals in response to these inputs; and these activations flow
forward through the network until the output layer is reached, where the response of the
network to the inputs is the activations of the neurons in this final output layer. The internal
layers in the network, which are neither input nor output layers, are called hidden layers.

The depth of a neural network is equal to the number of hidden layers plus the output
layer. Therefore, the network in Figure 8.4[390] has three layers. The number of layers
required for a network to be considered deep is an open question; however, Cybenko (1988)
proved that a network with three layers of (processing) neurons (i.e., two hidden layers and
an output layer) can approximate any function to arbitrary accuracy. So, here we define
the minimum number of hidden layers necessary for a network to be considered deep as
two; under this definition the network in shown Figure 8.4[390] would be described as a deep
network. However, most deep networks have many more than two hidden layers. Today
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Figure 8.4
A schematic of a feedforward artificial neural network.

some deep networks have tens or even hundreds of layers. In Section 8.2.5[395] we discuss
how the depth of a neural network affects the ability of the network to represent and learn
functions at different levels of complexity.

8.2.3 Neural Networks as Matrix Operations
In Section 8.2.1[384] we described how adding a dummy feature dr0s � 1 to the input vec-
tor of a neuron and also including the y-intercept term (or bias term) from the equation
of a line as part of the weight vector of the neuron, as wr0s, permitted us to calculate the
weighted sum of the neuron using a single dot product between the weight vector and the
input vector. One advantage of this was notational convenience; we were able to simplify
Equation (8.2)[385]. A much more important advantage, however, is that it can enable sig-
nificant computational speedups in the training and application of a neural network. There
are two ways that this can speed up neural network training and data processing:

1. In a fully connected network, all the neurons in one layer receive activations from all
the neurons in the preceding layer; and, because all the neurons in a layer receive the
same vector of activations as inputs, we can calculate the weighted sum calculations
for all of these neurons using a single vector by matrix multiplication.
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2. The fact that we can implement the calculation of the weighted sums for an entire
layer of neurons as one matrix multiplication operation can be generalized to imple-
menting an entire network as a sequence of matrix multiplications (one per layer of the
network). This means that if we represent a set of input vectors as a matrix of inputs,
we can get the network to process all the inputs in parallel. This parallelization of the
processing of a number of examples by the network is particularly useful because the
standard practice to train a network is to present batches of examples to the network,
rather than to present examples one at a time.

In order to explain how matrix multiplications are used in a neural network, we need to
introduce some notation and then define the order of the matrices in the multiplication. We
use the convention of a bold capital letter to denote a matrix and a superscript in parentheses
to list the relevant layer. Using this notation and taking the second layer of neurons in a
network as an example, if we name the matrix containing the weights on the edges into
Layer 2 as Wp2q, the column vector of activations coming from the neurons in Layer 1 as
ap1q, and the column vector of weighted sums for the neurons in Layer 2 as zp2q, then the
order of the matrices in the multiplication operation that we use in this explanation is

zp2q � Wp2qap1q (8.6)

In the matrix multiplication, each element in a row in the matrix on the left is multiplied by
the corresponding element in each column in the matrix on the right, and then the results
of these multiplications are summed. This means that each element in zp2q is the result of
multiplying each element in a row in Wp2q by the corresponding element in the column
vector ap1q and summing the results. This is why the indices on weights in Figure 8.4[390]

were reversed: if we store all the weights for each neuron in a layer in a row in the weight
matrix for the layer, then the weights are in the correct position when the weight matrix is
multiplied by a column vector of activations from the previous layer.

Figure 8.5[392] illustrates how a neural network can be defined as a sequence of matrix
multiplication operations, with an elementwise application of an activation function to the
results of each multiplication. The left side of Figure 8.5[392] presents a graph-based rep-
resentation of a neural network; this network has a single hidden layer containing three
neurons and an output layer with a single neuron in it. The right side of Figure 8.5[392]

illustrates the sequence of matrix operations that this network would carry out to process
a single input vector. Figure 8.5[392] highlights how bias terms are introduced into the ac-
tivation vectors in such a way that they are aligned with the bias term weights during the
matrix multiplication. The first column of each weight matrix (filled in black) contains the
bias term weights for each neuron in the layer. Each activation vector is augmented with
a new first row (filled in black) containing the dummy descriptive feature dr0s � 1. This
ensures that the dummy descriptive feature (row 0) will be multiplied by the bias terms
weights (column 0) in the multiplication operation.
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Figure 8.5
An illustration of the correspondence between graphical and matrix representations of a neural net-
work. This figure is inspired by Figure 3.9 of Kelleher (2019).

Stepping through the processing of the network in Figure 8.5[392], the sequence of calcula-
tions necessary to generate the activations for the neurons in the hidden layer is illustrated
in the top row of the figure. The first operation in this sequence is the multiplication of
the matrix containing the weights on the connections into the neurons in the hidden layer
by the outputs of the input layer. The weight matrix is organized so that each row con-
tains the weights for a single neuron. The leftmost element in each row (filled in black)
is the bias term weight. The input vector has been augmented with the dummy feature
dr0s � 1, which is stored in the top row of the vector. Multiplying the weight matrix
by the augmented input vector generates the vector of weighted sums for the hidden layer
neurons, zp1q. The activation function, ’, is then applied to each of the elements in zp1q to
generate the activations for each of the neurons in the hidden layer. Because this vector of
activations from the hidden layer is passed on to another layer for processing, it has to be
augmented with the dummy feature dr0s � 1; this is represented by the label on the arrow
linking the top row of operations with the bottom row.

The bottom row illustrates the operations carried out in the output layer of the network.
As with the hidden layer, the first operation is the multiplication of the layer’s weight
matrix by the (augmented) vector of activations from the previous layer. The weight matrix
is again organized with one row of weights per neuron and with the bias term weight as the
first element in the row (shown in black). There is only one neuron in the output layer, and
so there is only one row in this weight matrix. The multiplication operation calculates the
weighted sum for the output neuron zp2q, and this is passed through the neuron’s activation
function ’ to generate the output of the network.
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Figure 8.6
An illustration of how a batch of examples can be processed in parallel using matrix operations.

The fact that we can use a sequence of matrix operations to implement how a neural
network processes a single example can be generalized to processing a number of examples
in parallel. Figure 8.6[393] illustrates how the same sequence of operations shown in Figure
8.5[392] to process one example can be used to enable the same network to process four
examples in parallel. This is achieved by replacing the input vector containing a single
example with an input matrix containing multiple examples. This input matrix is organized
so that each column contains the feature vector for a single example. The gray columns in
each of the activation and z matrices trace the processing of the second example through
the sequence of operations. Notice that the weight matrices do not change shape, nor does
the sequence of operations, and the activation functions ’ are still applied elementwise to
all the elements in z matrices. The main difference in processing examples in parallel is
that instead of augmenting the input and activation matrices with a single dummy feature
value, they are now augmented with a row of dummy features values, one per example.

The representation of a network as a sequence of matrix operations provides a transparent
view on the depth of the network: a network depth is equal to the number of layers that
have a weight matrix associated with them. This is why the input layer is not counted as
part of the depth of the network.

Deep neural networks can contain millions of neurons. Also, as subsequently discussed
(and similar to the training regime used for regression models in Chapter 7[311]), neural
networks are trained by iteratively running the network on examples sampled from large
datasets. Consequently, unless care is taken, training a network can take an inordinately
long time, compared with other machine learning models. The computational speedups
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achieved by using matrix multiplications address the computational challenge of iterating
through both a large number of neurons and a large number of examples. Implementing a
network as a sequence of matrix multiplications (1) speeds up the calculation of a weighted
sum across each layer in the network, and (2) enables the network to parallelize the pro-
cessing of examples. Both these speedups enable us to remove expensive for loops from
the implementation and training of a network: the first removes a for loop over the neurons
in a layer, and the second removes a for loop over the examples in a dataset. A further ben-
efit of implementing a neural network using matrix operations is that it enables the use of
specialized hardware known as graphical processing units (GPUs). GPUs are designed to
carry out matrix operations very quickly. Implementing a neural network as a sequence of
matrix operations and then running the network on GPUs is now standard in deep learning.

8.2.4 Why Are Non-Linear Activation Functions Necessary?
A multi-layer feedforward neural network that uses only linear neurons (i.e., neurons that
do not include a non-linear activation function) is equivalent to a single-layer network with
linear neurons; in other words, it can represent only a linear mapping on the inputs. This
equivalence is true no matter how many hidden layers we introduce into the network. We
explain subsequently why this is the case, but first we note that for ease of exposition
in this discussion, we will ignore the bias terms in the weights of a neuron. This does
not affect the generality of the discussion because, as we discussed earlier, a weighted
sum that includes a bias term as a weight implements an affine transformation composed
of first applying a linear function to the inputs and then translating the result by a bias.
Therefore, the inclusion of the translation by the bias term allows the weighted sum to
define a linear function on its inputs that does not pass through the origin. However, in this
section, we focus on showing how a sequence of linear layers can be replaced by a single
linear function (as distinct from an affine transformation). Furthermore, the combination
of the translations that would be applied by including bias terms in each layer can be
replaced by applying a single translation (or single bias term) at the end of the processing.
Consequently, here we assume that the weight matrices do not include bias terms.

With that caveat regarding bias terms stated, we return to the question of why non-linear
activation functions are necessary in a neural network. It turns out that understanding that
a neural network can be implemented as a sequence of matrix multiplications with the non-
linearity of the activation functions introduced between the matrix multiplications can help
answer this question.

Imagine a very simple two layer network (one hidden layer and an output layer) with lin-
ear neurons (neurons that don’t include an activation function, so that the output activation
is just the weighted sum of the inputs).3 The calculation of the activations for the neurons

3. This explanation is inspired by the discussion in Reagen et al. (2017, p. 14).
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in the first layer can be expressed as follows:

Ap1q � Wp1qAp0q (8.7)

Similarly, the calculations of the activations for the second layer can be expressed

Ap2q � Wp2qAp1q (8.8)

If we replace Ap1q in Equation (8.8)[395] with the right-hand side of Equation (8.7)[395] we get

Ap2q � Wp2q
�

Wp1qAp0q
	

(8.9)

However, matrix multiplication is associative (i.e., X pYZq is equal to pXYqZ); this means
that we can rewrite Equation (8.9)[395]

Ap2q �
�

Wp2qWp1q
	

Ap0q (8.10)

Also, Wp2q and Wp1q can be replaced by the matrix that is generated by their product;
letting W1 � Wp2qWp1q we get

Ap2q � W1Ap0q (8.11)

Furthermore, the transformation implemented by the single weight matrix, generated by
the product of weight matrices of the linear layers, will also implement a linear transfor-
mation on the input data. Therefore, this rewriting shows that the output of this two-layer
network with linear neurons is equivalent to a single-layer network with linear neurons.
This reduction of a network to a single weight matrix by using a matrix product can be
done no matter how many layers there are in a network, so long as none of the network
layers includes non-linear activation functions.

This analysis shows that adding layers to a network without including a non-linear acti-
vation function between the layers appears to add complexity to the network, but in reality
the network remains equivalent to a single-layer linear network. The conclusion is that in
order to create networks that can represent complex non-linear functions, it is not enough
to add layers; we must also include non-linearities between these layers. Fortunately, we
do not need to add complex non-linearities between the layers; introducing simple non-
linearities, such as the logistic or rectifier functions, between each layer is sufficient to
enable neural networks to represent arbitrarily complex functions, as long as the network
contains enough layers; in other words, as long as the networks are deep enough.

8.2.5 Why Is Network Depth Important?
Given that the preceding analysis in Section 8.2.4[394] showed that a network with multiple
layers of linear neurons is equivalent to a single-layer network of linear functions, a natural
question is, why is adding extra layers to a network (even with non-linearities) a useful
thing to do? This is a particularly pertinent question, considering that the adoption of the
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term deep learning in the mid-2000s to describe modern neural networks was to emphasize
that these modern networks are deeper than most of the networks that were developed
between the 1940s and the early 2000s.

The fundamental reason to add layers to a network is to increase the representational
capacity of the network. The representational capacity of a network is the set of functions
(or mappings from inputs to outputs) that the network can implement as its weights are
varied (Reed and Marks, 1999). A network can represent a function if a set of weights
exist for that network for which the network implements the function. Understanding, at
least in principle, whether a particular network architecture is capable of representing a
function, or not, is very important, because the fundamental task in predictive modeling is
to learn functions from data, and if the network cannot represent a function, then it cannot
learn it, no matter how much data we provide to the training algorithm.

One way to understand why depth is important to the representational capacity of a neural
network is to consider what types of functions a network that has only a single layer of
processing neurons, such as the one shown in Figure 8.7[397], is capable of representing.
Notice that each of the neurons in the output layer (Neurons 3, 4, and 5) are independent
of each other; they receive no information from each other. In fact, this figure could be
reconfigured as three separate neurons, each receiving the same input vector. For ease of
explanation, we will assume that each of these three neurons uses a threshold activation
function. This means that each of the neurons in the output layer is equivalent to the
McCulloch and Pitts neuron described in Section 8.2.1[384]. These thresholded units are
also known as perceptron networks (Rosenblatt, 1958); we introduce this terminology
here because it is useful in the following discussion.

Equation (8.3)[386] defines how the McCulloch and Pitts neuron, or perceptron network,
maps an input vector to an output activation. If we compare this equation with Equation
(7.24)[341], it is apparent that a perceptron network is identical to a multivariate linear re-
gression model with a threshold applied to it. This means that, similar to the thresholded
multivariate linear regression models, a perceptron is able to represent a function that dis-
tinguishes between two classes of inputs if these two classes are linearly separable. Figure
7.10[340] illustrates a linearly separable dataset; in that case the two classes of inputs were
good generators and faulty generators. These two classes are linearly separable because as
Figure 7.10[340](b) shows, it is possible to draw a single straight line that separates one class
from the other. This line is known as a decision boundary.

The fact that our single-layer network in Figure 8.7[397] contains three independent neu-
rons means that the network has the potential to represent three separate linear decision
boundaries. However, none of the neurons in the output layer are capable of representing
a non-linear decision boundary on the inputs, and therefore the network as a whole cannot
represent a non-linear function.
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Figure 8.7
A single-layer network.

Figure 8.8[398] illustrates the distinction between linearly separable and non-linearly sep-
arable functions, using examples from Boolean logic: AND, OR, and XOR functions.
These three functions have the same structure; they all take two inputs that can be either
TRUE or FALSE, and they return either TRUE or FALSE. The AND function returns TRUE
if both inputs are TRUE and FALSE otherwise. The plot on the left of Figure 8.8[398] shows
the input space for the AND with the convention that FALSE has been mapped to 0 and
TRUE has been mapped to 1.4 In the plot each of the four possible input combinations is
labeled as either triggering a TRUE response (shown in the figure by a clear dot) or FALSE
(shown in the figure by a black dot). As the figure shows, it is possible to draw a straight
line between these two classes of inputs. The middle plot shows a similar plot for the OR
function, and again it is possible to draw a single straight line to separate the two classes
of inputs. The XOR function returns TRUE if either but not both of its inputs are TRUE.
The plot on the right of Figure 8.8[398] shows the input space for the XOR and labels the in-
put combinations as resulting in TRUE responses or FALSE responses. It is apparent from
this figure that it is not possible to separate the inputs that generate TRUE from those that

4. The axes in Figure 8.8[398] are slightly offset for ease of reading.
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Figure 8.8
The logical AND and OR functions are linearly separable, but the XOR is not. This figure is Figure
4.2 of Kelleher (2019) and is used here with permission.

generate FALSE with a single straight line. This is why the XOR function is not linearly
separable.

It may be somewhat surprising, but although the XOR function is very simple, a per-
ceptron cannot represent it because it is not linearly separable. This finding is notorious in
the history of neural networks. Through the 1950s and 1960s there was a lot of interest in
neural networks. However, in 1969 Marvin Minsky and Seymour Papert published a book
entitled Perceptrons that was highly critical of neural networks and in particular focused
on the fact that single-layer networks (perceptrons) were not able to represent non-linearly
separable functions (Minsky and Papert, 1969). This book had a major impact and is
attributed with killing interest in neural networks for nearly a decade. In hindsight, the
general criticisms of neural networks made by Minsky and Papert have not stood the test
of time; however, their criticism of the representational capacity of single-layer networks
is valid.

The representational limitation of single-layer networks can be overcome by adding a
single hidden layer to the network. Indeed, it is possible to represent the XOR function
using a very simple two-layer network. Figure 8.9[399] illustrates such a network: the left
uses a directed graph representation to show the topology of the network, and the weights
on the connections; the right uses the matrix representation of the network to illustrate it
processing the four possible input combinations to the XOR function in parallel. All the
neurons in this network use the following threshold activation function:

Mwpdq �

#
1 if z ¥ 1

0 otherwise
(8.12)

Vertically aligning the columns in the input matrix with the columns in the output matrix
shows that the network correctly maps all four inputs combinations to XOR outputs:  
0; 0 ¡Ñ 0,   0; 1 ¡Ñ 1,   1; 0 ¡Ñ 1, and   1; 1 ¡Ñ 0.
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The XOR example shows that a network with a single hidden layer can represent a
non-linearly separable function. There are, in fact, mathematical proofs that show that
neural networks with a single hidden layer are universal approximators; i.e., they can
exactly represent any continuous function of multiple inputs. These proofs can be broadly
categorized into (1) proofs that bound the number of neurons required in the network but
assume that the neurons in the network use complex activation functions (more complex
than the smooth functions, such as the logistic function, used in most neural networks) as
part of their internal mapping of inputs to an output activation; and (2) proofs that assume
that the neurons use smooth functions (such as the logistic, sigmoid, or rectifier) but this
simplicity is at the cost of having an exponential number (with respect to the dimensions
of the inputs to the network) of neurons in the hidden layer of the network.

The first category of proofs that assume the use of complex functions within the neu-
rons is based on the foundational mathematical theorems from Kolmogorov (1963) and
Spercher (1965). Hecht-Nielsen (1987) showed how these proofs could be applied to neu-
ral networks. However, as previously noted, these proofs assume that the neurons in the
network include functions that are much more complex (or rougher) than the smooth acti-
vation functions used in most networks (such as the logistic functions). In fact, these proofs
fail if the neurons are restricted to using smooth functions. This assumption is important
because these internal activation functions may be as complex as, or even more complex
than, the target function that the network is attempting to represent. Consequently, these
theorems are not relevant to the practical task of training a network to learn a function be-
cause the inclusion of these complex functions within the neurons of the network shifts the
learning burden from approximating the target function to finding these complex internal
functions (Reed and Marks, 1999).

The second category of proofs assumes the use of smooth functions within neurons.
The universal approximation theorem (Hornik et al., 1989; Cybenko, 1989) proved that
neural networks with a single hidden layer of neurons using smooth functions (such as sig-
moids or logistic functions) can approximate any bounded continuous function, provided
there are sufficient neurons in the hidden layer of the network. For many functions the re-
quirement of sufficient neurons turns out to be exponential with respect to the dimensions
of the network inputs. More recently, Leshno et al. (1993) extended the universal ap-
proximation theorem to include networks with neurons using rectifier activation functions;
however, Montúfar (2014) has shown that these networks can also require an exponential
number of neurons in the hidden layer. The requirement that networks with a single hid-
den layer and using smooth activation functions have very wide hidden layers is a serious
shortcoming: it may result in the requirement that the network has at least one hidden unit
for each input configuration that is being distinguished (Goodfellow et al., 2016). Such a
network configuration is likely to result in the network overfitting the training data (i.e.,
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memorizing all the training examples, including the noise, rather than learning the general
patterns in the data).

There are two points worth highlighting:

1. Many computational models have the ability of universal approximation of bounded
continuous functions; this property is not unique to neural networks (Reed and Marks,
1999). However, these results are still important because they show that neural net-
works with at least one hidden layer do have the representational capacity to approxi-
mate most functions that we would like them to. If neural networks were not capable
of universal approximation, then they would be much less useful for prediction.

2. The fact that a neural network can represent a function does not guarantee that we
will be able to train it to learn the function: the training algorithm may not be able
to find the correct set of weights, or it may choose weights that overfit the data (i.e.,
choose the wrong function) (Goodfellow et al., 2016). For these reasons, the inclusion
of more complex functions with the neurons of the network or the inclusion of more
neurons within the hidden layer of the network makes the learning task more difficult.

The learning challenges raised by the second point in the preceding list highlight the main
motivation for using networks with more than one hidden layer. It is often (but not always)
the case that using a deeper network can drastically reduce the number of neurons required
to enable the network to represent a target function. For example, some functions can be
implemented exactly using a small neural network with two layers but require an infinite
number of nodes to approximate with a single hidden layer (Makhoul et al., 1989; Reed
and Marks, 1999). Furthermore, Cybenko (1988) proved that a network with at least three
layers (two hidden and one output) using sigmoid activation functions can approximate
any function (not just bounded continuous functions) with arbitrary accuracy. This does
assume that the width of the layers is sufficient to permit the network to represent the
function; however, for a given function the number of neurons required in each of the
hidden layers is not known, in general.

Figure 8.10 shows how the representational capacity of a neural network increases as
more layers are added to the network. The neurons in this network use a simple threshold
activation function, but the intuition holds for logistic functions and the rectifier function
because these functions also divide the input space of a neuron into two half-spaces: one
in which the neuron activates and one in which it doesn’t activate. Each subsequent layer
in the network is able to use the functions learned by the previous layer to construct a more
complex function; this process of using the outputs from one or more functions and inputs
to another function to create a new function is known as function composition. The term
representation learning is sometimes used to describe what the neurons in the hidden
layers of a network are doing; in a sense, each subsequent layer in the network projects the
inputs it receives into a new representation, and the output layer of the network then learns
a mapping from a learned representation to the final output. When this representation
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Figure 8.10
An illustration of how the representational capacity of a network increases as more layers are added
to the network. The squares overlaying connections coming out of a neuron illustrate the regions of
the input space that the neurons activate on: neurons output high activations in response to inputs
patterns from the white region in the corresponding square, and low (or no activations) in response to
input patterns from the gray regions in the corresponding square. This figure was inspired by Figure
4.2 in (Reed and Marks, 1999) and Figure 3.10 in (Marsland, 2011).

learning is successful, the mapping from the representation the output layer receives to
the target output is simpler than the mapping from the original input features to the target
feature, and this can result in the model’s being more accurate. The ability to automatically
learn useful representations (features) from data is one of the reasons why deep networks
have proven to be so successful on so many tasks. Figure 8.10 illustrates how using just
three layers and threshold activation functions, a network is able to represent a function
that maps to a convex region. With the addition of more neurons in each layer, the network
could represent a function that maps to multiple disconnected convex regions and refines
the shapes of these regions. Any function can be approximated by combining disconnected
regions.

If a three-layer network can represent any function with arbitrary accuracy, is it helpful to
go deeper, or is it better to make the layers wider? There is growing empirical evidence that
creating deeper networks improves the generalization ability of models across a number of
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tasks.5 However, adding depth to a network comes with a cost. As we see when we discuss
the vanishing gradient problem, adding depth to a network can slow down the rate at
which a network learns. Therefore, when we wish to increase the representational power
of a network, there is often a trade-off between making a network deeper and making the
layers wider. Finding a good equilibrium for a given prediction task involves experimenting
with different architectures to see which performs best.

In summary, neural networks with no hidden layer (i.e., perceptrons) cannot represent
non-linearly separable functions. Neural networks with a single hidden layer have been
proven to be capable of universal approximation of (bounded) continuous functions as
long as either (1) complex functions are integrated into the structure of the neurons, or
(2) the hidden layer of the network is sufficiently (potentially exponentially) wide. Neural
networks with two hidden layers and using smooth activation functions can represent any
function and generally can do so using fewer neurons than networks with only a single
hidden layer. Also, as Figure 8.10 illustrates, as layers are added to a network, neurons
in subsequent layers are able to use the representations learned by the preceding layer
as building blocks to construct more complex functions. Overall there is a general trend
that deeper networks have better performance than shallower networks, and that deeper
networks are often more efficient in terms of the number of neurons they require. How-
ever, as networks become deeper they can become more difficult to train. The next section
describes how we can train networks with multiple layers of neurons using the backprop-
agation algorithm and explains how the vanishing gradient problem can negatively affect
the training of deep networks.

8.3 Standard Approach: Backpropagation and Gradient Descent

A neuron is structurally equivalent to a logistic regression model: comparing Equation
(8.5)[387] and Equation (7.26)[342] makes it apparent that both models calculate a weighted
sum over an input vector and then pass the weighted sum value through a non-linear func-
tion. Indeed, when a neuron uses the logistic function as an activation function, then these
two models are identical. One consequence of this is that if a neuron uses a logistic acti-
vation function, then we can train the neuron in the same way that we train a logistic re-
gression function: using the gradient descent algorithm (introduced in Chapter 7[311]) and
with the weight update rule defined in Equation (7.33)[346]. And, if the neuron implements
a different activation function, then so long as the function is differentiable, we modify the
weight update rule (Equation (7.33)[346]) by replacing the derivative of the logistic function
with the derivative of the new activation function, and apply the gradient descent algorithm

5. See Goodfellow et al. (2016, p. 195) for relevant references.
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as before.6 Training a neuron by initializing its weights and then iteratively updating these
weights to reduce the error of the neuron on training examples fits with Hebb’s Postulate
(introduced in Section 8.1[382]) that learning occurs in the brain through a process involving
changes in the connections between neurons.

We can, in fact, use the gradient descent algorithm to train a single-layer network (or
perceptron), such as the one shown in Figure 8.7[397]. However, once we introduce one or
more hidden layers into a network, it becomes more difficult to use the gradient descent
algorithm to train the network. The reason for this is that the gradient descent algorithm
uses the error gradient of a model (neuron or regression model) to update the weights on
the inputs into the model. Although in a neural network it is relatively straightforward to
calculate the gradient of the error for neurons in the output layer by directly comparing the
activations of these neurons with the expected outputs, it is not possible to directly compare
the activation of a hidden neuron with the expected activation for that neuron, and so we
cannot directly calculate an error gradient for hidden neurons.

Consequently, before we can use the gradient descent algorithm to update the weights
of a neuron in a hidden layer of the network, we must calculate a measure of how the
neuron contributed to the overall error of the network at the output layer. Calculating this
measure for each neuron in a network is known as the blame assignment problem. The
backpropagation algorithm solves the blame assignment problem. Once we have used the
backpropagation algorithm to solve the blame assignment problem for all the neurons in
the network, we can then use the weight update rule from the gradient descent algorithm to
update the weights for each of the neurons in the network. The following sections explain
(1) the general structure of the backpropagation algorithm, including the concept of a �
(pronounced delta) term that describes the rate of change of the error of a network with
respect to changes in the weighted sum of a neuron; (2) the process used to calculate a
� term for each neuron in the network (this process involves backpropagating the error
gradients of the network and is the process that gave the algorithm its name); and (3) how
the � terms are used in conjunction with the gradient descent weight update rule to update
the weights of the network. Following these explanations we present a worked example to
show how the backpropagation and gradient descent algorithm can be used in partnership
to train a neural network with hidden layers.

8.3.1 Backpropagation: The General Structure of the Algorithm
The backpropagation algorithm begins by initializing the weights of the network. For the
purposes of this explanation we assume that the weights are initialized to random values
close to zero (e.g., by sampling from a normal distribution with mean � � 0:0 and � �

6. Subsequently, in this chapter we illustrate how this can be done for ReLU, neurons using rectifier activation
functions.
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0:1). Obviously, a network with random weights is unlikely to implement a useful function.
However, it will implement a function, and once the network has been initialized we can
now train the network to implement a useful function by iteratively presenting examples to
the network and using the error of the network on the examples to update the weights so
that the network converges on a set of weights that implement a useful function relative to
the patterns in the training data.

The key step in this iterative weight update process is solving the blame assignment
problem. The general structure of the backpropagation algorithm is a two-step process
that results in an assignment of blame (or an error gradient) to each of the neurons in the
network:

1. Forward Pass An input pattern is presented to the network, and the activations flow
forward through the network until an output is generated.

2. Backward Pass The error of the network is calculated by comparing the output gen-
erated by the forward pass with the target output specified in the dataset. This error is
shared back (backpropagated) through the network on a layer-by-layer basis until the
input layer is reached. During this backward pass, an error gradient for each neuron is
calculated. These error gradients can then be used by the gradient descent weight up-
date rule to update the weights for each neuron. This backward pass gives the network
its name: backpropagation.

Figure 8.11[406] illustrates the forward pass in a little more detail. This figure highlights
the calculation of the weighted sum at each neuron (e.g., z3 represents the weighted sum
calculation at Neuron 3), and the activations for each neuron (e.g., a3 represents the ac-
tivation generated by Neuron 3). The motivation for highlighting the calculation of the
weighted sum and activations during the forward pass of the algorithm is that these values
are stored in memory after they are calculated and then used as part of the calculations
involved in the backpropagation of the error gradients during the backward pass of the
algorithm.

Figure 8.12[407] illustrates the backward pass of the algorithm. Before describing the
backward pass of the algorithm, we will distinguish between two types of error gradients
that are calculated when we are training a neural network using backpropagation:

1. The first type of error gradient is the rate of change of the network error with respect
to changes in the weighted sum calculation of a neuron. One of these error gradients
is calculated for each neuron in the network. These error gradients are often denoted
using the � symbol with a subscript indicating the relevant neuron. For example,
� k would denote the error gradient for neuron k. It is these � error gradients that
are calculated and backpropagated during the backward pass of the backpropagation
algorithm.
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Figure 8.11
The calculation of the z values and activations of each neuron during the forward pass of the back-
propagation algorithm. This figure is based on Figure 6.5 of Kelleher (2019).

2. The second error gradient is the rate of change of the network error with respect to
changes in the weights of the network. There is one of these error gradients for each
weight in the network. These error gradients are used to update the weights of the
network. However, the calculation of these error gradients involves the � terms. So,
we must use the backpropagation algorithm to calculate the � terms, and once this is
done we can calculate the error gradients for each weight. Note that there is only a
single � per neuron, but typically there are many weights associated with each neuron,
and so the � for a neuron will often be used in the calculation of multiple weight error
gradients, once for the weight on each connection into the neuron.

Returning to the backward pass of the backpropagation algorithm, Figure 8.12[407] shows
that the backward pass begins by calculating the � for each of the neurons in the output
layer of the network. In the simplest case, this might be calculated by subtracting the
activation of each neuron in the output layer from the target output specified in the dataset.
The � s for the output neurons are then shared back to the neurons in the last hidden layer.
This is done by assigning a portion of the � of each output neuron to each of the hidden
neurons connecting to it. This assignment of blame back to the neurons connecting into a
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Figure 8.12
The backpropagation of the � values during the backward pass of the backpropagation algorithm.
This figure is based on Figure 6.6 of Kelleher (2019).

neuron is dependent on the weight on the connection between the neurons and also on the
activation of the hidden neuron during the forward pass. This is why the activations of all
neurons are recorded during the forward pass. The � for a neuron in the last hidden layer
is calculated by summing the portions of the � s backpropagated to it from all the neurons
in the output layer that it connects to. Once the � s for all the neurons in the last hidden
layer is calculated, the process is repeated in order to calculate � s for the neurons in the
preceding hidden layer. This process of apportioning blame for the � s in one layer back
to the neurons in the preceding layer and then summing the blame for each neuron in the
preceding layer to calculate its � is repeated until all the neurons in the first hidden layer
of the network have a � term. At the end of this process, a � has been calculated for every
neuron in the network.

8.3.2 Backpropagation: Backpropagating the Error Gradients
The � term for a neuron describes the rate of change of the error (i.e., the error gradient) of
the network with respect to changes in the weighted sum calculated by the neuron. Using
E to represent the error of the network at the output layer, and zk to denote the weighted
sum calculation in neuron k, the � for a neuron k can be mathematically defined
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� k �
BE
Bzk

(8.13)

In other words, the � term for a neuron is the partial derivative of the error of the network
with respect to the weighted sum (z) of the neuron. The � s for all neurons in a network
(irrespective of whether they are in the output layer or a hidden layer) are calculated as the
product of two terms:

1. the rate of change of the error of the network with respect to changes in the activation
of the neuron: BE{Bak; and

2. the rate of change of the activation of the neuron with respect to changes in the
weighted sum calculated at the neuron: Bak{Bzk.

� k �
Bak

Bzk
�
BE
Bak

(8.14)

The process used to calculate the term BE{Bak for a neuron k is dependent on whether the
neuron is in the output layer or in one of the hidden layers of the network. The difference
in how BE{Bak is calculated for output and hidden neurons is how Equation (8.14)[408] gen-
eralizes over all the neurons in the network. However, the same process is used to calculate
the term Bak{Bzk in the product irrespective of whether the neuron is an output neuron or
a hidden neuron. Because the same process is used to calculate Bak{Bzk for all neurons
we describe this process first, and then we describe how the BE{Bak term is calculated for
output neurons and then for hidden neurons.

The term Bak{Bzk represents the rate of change of the neuron’s activation function with
respect to changes in the weighted sum z (i.e., with respect to the input to the activation
function). Because this Bak{Bzk term is required in order to calculate the � for a neuron,
the backpropagation algorithm assumes that the neurons in the network use differentiable
activation functions. The logistic function (see Equation (7.25)[342]) has a very well-known
and relatively simple derivative7

d
dz

logisticpzq � logisticpzq � p1� logisticpzqq (8.15)

The derivative of a function can be understood as the slope of the graph of the function at
each point on the graph. Figure 8.13[410] illustrates this relationship between the slope of the
graph of a function and its derivative. The graph of the logistic function is relatively flat for
large (positive or negative) values. We describe these regions as saturated: in economics

7. We have already discussed the derivative of the logistic function in Chapter 7[311] (see Equation (7.28)[345]);
we rewrite it here using z in place of x for convenience.
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when a market becomes saturated with a product, the growth in the consumption of the
product flattens out; by analogy, regions of curves that are flat are said to be saturated. In
these saturated regions the derivative of the logistic function is approximately 0. The plot
of the derivative of the logistic function in Figure 8.13[410] illustrates that as the value of z
approaches 0 (from either side), the slope of the logistic graph increases until it reaches
its maximum value at z � 0:0; consequently, we can calculate the maximum value of the
derivative of the logistic function using Equation (8.15)[408] by setting z � 0:08

d
dz

logisticpz � 0q � logisticp0q � p1� logisticp0qq

� 0:5� p1� 0:5q
� 0:25

(8.16)

As this example shows, if a neuron k uses the logistic function as its activation function,
then we can calculate the term Bak{Bzk by simply inputting the weighted sum for the neuron
zk into Equation (8.15)[408]. This is why, as Figure 8.11[406] highlights, the weighted sum for
each neuron is stored in the forward pass of the algorithm: it is used to calculate the Bak{Bzk

term during the backpropagation process. The simplicity of the derivative of the logistic
function is one of the reasons why the logistic function was such a popular activation
function in neural networks: using logistic activation functions made it relatively easy to
implement the backpropagation algorithm.

If, however, a neuron used a different activation function, then we would use the deriva-
tive of that function when we are calculating Bak{Bzk; however, we would do so in the same
way, by plugging the zk value into the derivative.

Once the Bak{Bzk term has been calculated for a neuron, the other term needed to cal-
culate the � for a neuron k using Equation (8.14)[408] is the rate of change of the error of
the network with respect to changes in the activation of the neuron: BE{Bak. As noted
previously, the calculation of this term is different for output neurons and hidden neurons.

The calculation of BE{Bak for output neurons is dependent on the error function9 that is
used during training. We have already introduced the sum of squared errors, or L2, error
function (see Equation 7.4[316]), repeated here for convenience

L2pMw;Dq �
1
2

n‚

i�1

pti �Mw pdiqq2 (8.17)

8. As Figure 8.13[410] illustrates, logisticp0q � 0:5

9. Also known as the loss function or cost function.
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Figure 8.13
Plots of the logistic function and its derivative. This figure is Figure 4.6 of Kelleher (2019) and is
used here with permission.

Equations (7.11)[324] to (7.14)[324] step through the derivation of the rate of change of the
error of a model (in that case, a linear regression model) for a single input example d with
respect to changes in one of the model’s weights BL2 pMw;dq {Bw r js, resulting in

B
Bw r js

L2 pMw;dq � pt �Mwpdqq � �d r js (8.18)

This derivation was based on the chain rule and is the product of the rate of change of
the error of the model with respect to its output—the term pt �Mwpdqq—and the rate of
change of the output of the linear regression model with respect to a change in the weight
j, the term �d r js.

The term we want to define is the rate of change of the error of a neuron (a model) with
respect to its activation (output): BE{Bak. For this we need only the first term from the
product in Equation (8.18)[410]10

BE
Bak

�
BL2 pMw;dq
BMwpdqq

� t �Mwpdq � tk � ak (8.19)

10. We introduce the subscript k on the target tk into this equation to allow for situations in which the network
has multiple neurons in the output layer, and the target output then defines a separate target tk for each of these
neurons.
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The reason why this difference is considered a rate of change is that the larger the difference
between ak and tk, the faster the error of the network can be changed by changing the
activation. However, the direction of the calculated gradient is toward the highest value
on the error surface, and therefore to move down the error surface we should multiply it
by �1.11 Hence, using the sum of squared errors error function, the error gradient for a
single output neuron k on a single example is

BE
Bak

� �ptk � akq (8.20)

The sum of squared errors is a particularly convenient error function to use because the
model errors on different examples and also the errors on different outputs (e.g., consider
a network that has multiple neurons in the output layer) are independent and therefore the
overall error is just the sum of the individual errors. Consequently, if we wish to calculate
the error gradient of a network with multiple outputs over multiple examples, we simply
sum the error gradients for each output over the examples.

Equation (8.21)[411] illustrates the calculation of � k for neuron k in the output layer. This
equation expands Equation (8.14)[408] using the difference �ptk � akq as the value for
BE{Bak. Working from the right of the equation, first we calculate BE{Bak by subtracting
ak from tk and multiplying the result by �1. Next, BE{Bak is multiplied by Bak{Bzk (which
is calculated as previously described, by inputting the zk for the neuron into the derivative
of its activation function). For illustrative purposes, in this instance we assume that the
output neuron uses a logistic activation function and expand the definition of Bak{Bzk ac-
cordingly in the last two lines of the equation. The result of this product is the � k for the
neuron.

� k �
Bak

Bzk
�

BE
Bak

�
Bak

Bzk
��ptk � akq

�
d
dz

logisticpzq
loooooomoooooon

Assuming a logistic activation function

��ptk � akq

�plogisticpzq � p1� logisticpzqqqloooooooooooooooooomoooooooooooooooooon
Assuming a logistic activation function

��ptk � akq (8.21)

Switching the focus to the calculation of � s for hidden neurons, the calculation of BE{Bak

for a hidden neuron k requires that the � s for all downstream neurons be calculated first

11. In Chapter 7[311] we discussed dropping the minus sign from the front of�d r js; compare Equation (7.15)[326]

with Equation (7.16)[327].
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(i.e., all the neurons that the activation ak is directly propagated to during the forward
pass). The reason for this is that the term BE{Bak connects the activation of the neuron
ak to the output error of the network E. Specifically, it represents how sensitive the error
of the network E is to changes in ak. However, for a hidden neuron k, ak only indirectly
affects E, via the effect it has on the activations of downstream neurons that the ak is
directly propagated to (and the chain reaction that these subsequent activations have on
still later neuron activations). Consequently, to connect the activation of a hidden neuron
ak to the network error E, we have to create a chain of connection via the activations of the
downstream neurons. The � s for the downstream neurons are the links in this chain, and
therefore we must calculate these downstream � s prior to calculating BE{Bak.

For example, for each neuron i that neuron k connects forward to

k Ñ i

the � for neuron i connects the zi value for i to the error of the network E. Furthermore,
the rate of change of zi with respect to the activation of neuron k (ak) is the weight on the
connection from neuron k to neuron i: wi;k. As a result, we can calculate the rate of change
of the error of the network E with respect to the changes in the activation ak by taking the
product: wi;k � � i. However, the activation ak may be propagated to many downstream
neurons, and therefore to calculate the total sensitivity of the network error E to changes in
ak, we must sum this product for all n neurons that ak is directly propagated to

BE
Bak

�
n‚

i�1

wi;k � � i (8.22)

Equation (8.23)[412] illustrates how the term BE{Bak is calculated for a hidden neuron and
how this term is then used to calculate the � for a hidden neuron by multiplying it by the
term Bak{Bzk (which, as previously described, is calculated by plugging the zk into the
derivative of the activation function).

� k �
Bak

Bzk
�

BE
Bak

�
Bak

Bzk
�

�
n‚

i�1

wi;k � � i

�

�
d
dz

logisticpzq
loooooomoooooon

Assuming a logistic activation function

�

�
n‚

i�1

wi;k � � i

�

�plogisticpzq � p1� logisticpzqqqloooooooooooooooooomoooooooooooooooooon
Assuming a logistic activation function

�

�
n‚

i�1

wi;k � � i

�

(8.23)
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To summarize, the backward pass of the backpropagation algorithm propagates the �
error gradients back through the network. These � s are the rate of change of the network
error with respect to the weighted sum of a neuron. The backward pass starts by using the
calculation illustrated by Equation (8.21)[411] to calculate a � for each neuron in the output
layer. Then working backward in a layer-by-layer manner, the � for the hidden neurons
are calculated using Equation (8.23)[412]. This process, working backward from the output
to the input layer, constructs for each neuron in the network a chain of connections linking
the weighted sum of the neuron to the error of the network. This backward process builds
these chains in an efficient manner because the linking of a new neuron to the chain can
be done by extending the chains created for the neurons downstream of it. Once a � has
been calculated for every neuron in the network, the backward pass has completed (and in
a sense so has the backpropagation algorithm, at least insofar as the algorithm is a solution
to the blame assignment problem), and we are now ready to update the weights of the
network using the � s as part of the gradient descent weight update rule.

8.3.3 Backpropagation: Updating the Weights in a Network
The basic principle informing how weights in a neural network should be adjusted is that a
weight should be updated in proportion to the sensitivity of the network error to changes in
the weight. The rationale is that if the network error is not sensitive to changes in a weight
(i.e., the error does not change when the weight changes), then the error is independent of
the weight, or to put it another way, the weight did not contribute to the error. However,
if the error is sensitive to changes in the weight, then the error is dependent on the weight
and accordingly the current weight is to blame for some portion of the error.

The rate of change of the network error with respect to changes in a weight is written
mathematically as BE{Bwi;k for the weight on the connection from neuron k to neuron i.
Using the chain rule12 we can rewrite this term as a product of three terms

BE
Bwi;k

�
BE
Bai

�
Bai

Bzi
�
Bzi

Bwi;k
(8.24)

Each link in this chain of products is the rate of change of the output of a function (loss
function, activation function, or weighted sum function) with respect to one of its inputs.
Working from a network weight wi;k forward toward the network error, we have

 the rate of change of the weighted sum function with respect to changes in one of the
weights (Bzi{Bwi;k);

 the rate of change of the activation function with respect to changes in the weighted sum
(Bai{Bzi); and

12. See Appendix C[765].
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 the rate of change of the error of the network with respect to changes in the activation
function (BE{Bai).

Using the equivalence defined in Equation (8.14)[408], this product of three terms can be
simplified

BE
Bwi;k

�
BE
Bai
�
Bai

Bzi
�
Bzi

Bwi;k

� � i �
Bzi

Bwi;k

(8.25)

This rewriting shows that (1) the backpropagation algorithm is in fact an implementation
of the chain rule from calculus and the product used to calculate the � terms follows the
chain rule; and (2) that we can calculate BE{Bwi;k (the term we need to update a weight wi;k)
by multiplying the � for a neuron i by the rate of change of the weighted sum calculation
for neuron i with respect to changes in the weight wi;k. In calculus, when we take the partial
derivative of a function with respect to a particular input, all the terms in the function that
are not involved in the input disappear, because they are constants when the input changes.
This means that the partial derivative of a weighted sum function with respect to a weight
simplifies to the derivative of the product of the weight by its input that is equal to the input
the weight is applied to

Bzi

Bwi;k
� ak (8.26)

The implication of this is that once we have calculated the � for a neuron, all we need to
do to calculate the sensitivity of the network error with respect to a weight on a connection
coming into the neuron is to multiply the neuron’s � by the activation that was propagated
forward on that connection. Equation (8.27)[414] shows how the chain rule product is even-
tually simplified to the simple product of a � by an activation

BE
Bwi;k

�
BE
Bai
�
Bai

Bzi
�
Bzi

Bwi;k

� � i �
Bzi

Bwi;k

� � i � ak (8.27)

This is why, as Figure 8.11[406] shows, the activation for each neuron is stored during
the forward pass of the algorithm; these activations are used to update the weights on
the connections along which they are propagated. We now know how to calculate the
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sensitivity of the network error with respect to changes in a weight: BE{Bwi;k. How do we
use this term to update a weight?

We can get an insight into how we should use this term to update weights by considering
the case of a weight wi;k between an output neuron i that uses a logistic activation function
and a hidden neuron k. If the output of the neuron i is too high (ai ¡ ti), then � i will be
positive because it will be the product of two positive terms:

1. BE{Bai is positive when ai ¡ ti (see Equation (8.20)[411]); and
2. Bai{Bzi is always ¥ 0 for a logistic function.

Furthermore, if ai ¡ ti, we know that we should decrease the output ai. Therefore,

1. if ak, the activation from neuron k that the weight wi;k was applied to, is positive, we
should decrease the weight wi;k. In this case BE{Bwi;k � � i � ak will be positive,
because both terms in the product are positive, and so to decrease the weight wi;k we
should subtract BE{Bwi;k from wi;k.

2. if ak, is negative, we should increase the weight wi;k. However, in this case BE{Bwi;k �
� i � ak will be negative, because the product involves a positive and a negative term.
And, so to increase wi;k, we should again subtract BE{Bwi;k from wi;k.

In both these cases we should subtract BE{Bwi;k from wi;k. The same conclusion can be
reached via similar reasoning for the case ai   ti. Hence we update the weights as follows:

wi;k — wi;k � �� � i � ak (8.28)

where � is the learning rate hyper-parameter and has the same function as the learning
rate in gradient descent.13 This equation states that the updated weight after processing a
training example is equal to the weight used to process the training example minus � times
the sensitivity of the error of the network with respect to changes in the weight.

Equation (8.28)[415] illustrates how a weight in a network is updated after a single train-
ing example has been processed. Updating weights after each training example is known
as on-line, sequential, or stochastic gradient descent. One problem with updating the
weights of a network after each example is that the error gradient calculated on a single
example sampled from the training set is likely to be a noisy approximation of the true
gradient over the entire dataset; in other words, the error gradient calculated on a single
example may not point in the same direction as the steepest gradient when we average the
gradients over the entire dataset. Typically, stochastic gradient descent still works because
generally descending the error gradient on an individual example will move the weight in a
similar direction as descending the gradient over the entire dataset. However, this may not

13. See Section 7.3.3[328] for further discussions on the role of the learning rate, and Section 7.4.2[334] for a dis-
cussion on different approaches to setting the learning rate.
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always be the case, because some weight updates may move in an orthogonal direction to
the true gradient or even cause the error to increase; this can slow down the training of the
network. Ideally, we want to descend the true error gradient for the entire dataset. Batch
gradient descent14 involves calculating the error gradients for each weight for all the ex-
amples in a dataset and summing the gradients for each weight, and only then updating the
weights using the summed error gradients calculated over the entire dataset. Apart from
the advantage of descending the true error gradient for the entire dataset, batch gradient
descent is also able to take advantage of the fact that a neural network, implemented as a
sequence of matrix operations, can process multiple examples in parallel (as illustrated by
Figure 8.6[393] and Figure 8.9[399]). Furthermore, calculating a direction of descent by taking
an average over a set of noisy examples can make the descent of the error surface smoother,
which often means that we can use a larger learning rate �with batch gradient descent (i.e.,
we can take larger steps between weight updates because we are more confident of the di-
rection we are moving). This combination of multiple examples processed in parallel and
a larger learning rate can result in much faster training times using batch gradient descent.

However, in order to use batch gradient descent, we must update Equation (8.28)[415] to
accommodate updating a weight using the sum of the error gradients. To do this, we first
introduce the term �wi;k to denote the sum of the error gradients for the weight wi;k over one
complete pass through all the examples in the training dataset. Equation (8.29)[416] defines
how �wi;k is calculated for a training dataset containing m examples. In this equation
the subscript j indexes over the examples in the dataset and subscripts i and k index over
neurons in the network. Hence � i; j is the � value for neuron i for example j. We then
rewrite Equation (8.28)[415] as Equation (8.30)[416] to use this new term

�wi;k �
m‚

j�1

� i; j � ak; j (8.29)

wi;k — wi;k � �� �wi;k (8.30)

The distinction between stochastic gradient descent and batch gradient descent can be
used to clarify the meanings of two related terms often used in neural network training:
epoch and iteration. An epoch is a single pass through all the examples in the training
dataset. Therefore, �wi;k is the error gradient for weight wi;k for one epoch. The term
iteration is used to refer to a single forward and backward pass plus weight update of the
backpropagation algorithm. So if we have a training dataset of m examples in stochastic
gradient descent, it would take m iterations to complete a single epoch, and this epoch
would involve m weight updates. Conversely, in batch gradient descent, assuming we

14. This is the same as the batch gradient descent discussed in Chapter 7[311].
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process all the training examples in parallel, we complete a single epoch in each iteration
of the algorithm and so there is a single weight update per epoch.

The drawback of batch gradient descent is that the entire dataset must be processed be-
tween each weight update. This can be problematic because modern datasets can be very
large—it is quite possible to have datasets containing millions or even billions of examples.
In these scenarios we need to process millions of examples and to calculate and accumulate
millions of error gradients for each weight update. Even with modern computational power
and with processing examples in parallel, this can take a long time and ultimately result in
network training taking a long time. Consequently, the standard practice in deep learning
is to use mini-batch gradient descent. In mini-batch gradient descent, the dataset is split
into multiple subsets called mini-batches or batches.15

Ideally, each mini-batch should be created by random sampling from the dataset. How-
ever, randomly sampling each mini-batch from a very large dataset may be impractical. So,
frequently, at the start of training the dataset is shuffled and then split into a sequence of
mini-batches. The first iteration of training is done on the first mini-batch in the sequence,
the second iteration on the second mini-batch, and so on until the epoch is completed.
At the start of the second epoch, the sequence of mini-batches is shuffled and the train-
ing iterations are carried out on this new sequence of mini-batches. Equation (8.29)[416]

and Equation (8.30)[416] work for mini-batch training in much the same way as they do for
batch training; the only difference is that the summation in Equation (8.29)[416] is over the
examples in the mini-batch rather than the entire dataset.

Typically mini-batches are all of the same size. There are a number of factors to con-
sider in the choice of the batch size, including16 (1) larger batches provide a more accurate
estimate of the true gradient for the entire dataset, but (2) hardware constraints may neces-
sitate the use of smaller batches; for example, if all the examples in a mini-batch are to be
processed in parallel, then the larger the batch size, the larger is the memory requirement.
Popular batch sizes include 32, 64, 128, and even 256 examples. We noted previously that
we can often increase the learning rate � when using batch gradient descent. Generally,
finding a good combination of values for the batch size and learning rate hyper-parameters
involves trial-and-error experimentation.

15. The reuse of the term batch in mini-batch learning can lead to confusion. To clarify the distinctive meanings:
the terms batch learning or batch gradient descent typically indicate that the entire training set is processed
between each weight update, whereas the term batch can also be used to indicate a set of examples in a mini-
batch training regime (as in a batch of examples), and the term batch size describes the number of examples in
each batch (or mini-batch).

16. See Goodfellow et al. (2016, p. 272) and references therein for further discussion on the trade-offs in batch
size.
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8.3.4 Backpropagation: The Algorithm
Algorithm 5[420] brings together the different topics covered in the preceding sections. The
algorithm assumes a dataset D is available; it also requires that values for the learning rate
� and the batch size B hyper-parameters have been selected. Finally, the model assumes
that a convergence criterion has been specified.17 Early stopping is the most popular
strategy used to define a convergence criterion; we explain the early stopping algorithm in
Section 8.4.4[472]. However, the general idea of a convergence criterion is that as the training
progresses, the error of the network should generally decrease. However, the rate of error
reduction after each weight update will also decrease. Consequently, there is a diminishing
return on the improvement of the network relative to the time spent on training. At a certain
point in training, further adjustments to the weights will not result in significant changes to
the network error, and the convergence criterion specifies a decision process whereby we
decide when to stop training.

In Line 1[420] the data is split into mini-batches where Xpiq is a matrix that contains the
descriptive features for each of the examples in mini-batch i, with one column per example,
and Ypiq is a matrix (or vector) containing the corresponding labels for the examples in
mini-batch i. The network’s weight matrices are initialized in Line 2[420]. There are L layers
in this network and so there are L weight matrices, where Wpiq represents the weight matrix
for layer i. The weight matrices are arranged so that there is one row per set of weights per
neuron in the layer.

Each loop of the repeat loop from Line 3[420] to Line 33[420] involves an epoch of training
(i.e., a full traversal of the training data completed via a single pass through all the mini-
batches). Each iteration of the for loop (Lines 4[420] to 31[420]) involves the processing of
a single mini-batch, including both a forward and backward pass of the algorithm and a
single set of weight updates. In Line 5[420] the matrix of descriptive features for the examples
in the mini-batch that is about to be processed is presented to the input layer of the network.

The forward pass of the algorithm occurs in the for loop Lines 6[420] to 11[420]. This forward
pass follows the set of operations illustrated in Figure 8.6[393]. Each iteration of this for loop
propagates the activations for the mini-batch forward through the next layer of the network.
The vector v, created on Line 7[420], is the vector of bias inputs, and it is as wide as the
number of neurons in the layer (we use the subscript m here as shorthand for the number of
neurons in the layer). On Line 8[420] the bias inputs vector and the matrix of activations from
the previous layer Al�1 are vertically concatenated so that the bias inputs are now stored
in the first row of Al�1; we use the notation rv; As to represent the vertical concatenation
of the vector/matrix v and A. This vertical concatenation operation is illustrated in Figure
8.6[393] with dr0s added to the activation matrix as it is propagated forward from one layer to

17. The concept of a convergence criterion is also used in the gradient decent algorithm discussed in Chapter
7[311]; see Algorithm 4[326].
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the next. Line 9[420] is the matrix multiplication of the layer’s weights by the activations from
the preceding layer. This matrix multiplication generates the weighted sums for all neurons
in the layer for all the examples in the mini-batch and stores the results in the matrix Zplq.
Next, on Line 10[420], the activation function ’ is applied in turn to each element of Zplq to
generate the activations for each neuron in the layer for each example in the mini-batch.
These activations are stored in the matrix Aplq. When the algorithm exits the for loop on
Line 11[420], the mini-batch examples will have been propagated through all L layers of the
network, and ApLq will store the activations for all the neurons in the output layer for all
the examples in the mini-batch; as per Figure 8.6[393] the activations are arranged so that the
output layer activations for each example will be stored as a column in ApLq.

This version of the algorithm is for mini-batch training, and so we know that we will
need to sum the error gradients for each weight across the examples in the mini-batch.
The for loop on Lines 12[420] to 14[420] is where the variables used to store these totals are
initialized. The backpropagation of the �s and the summation of the error gradients across
the examples in the mini-batch are done in the for loop from Line 15[420] to Line 27[420].
This for loop iterates through the examples in the batch, and for each example the �s for
the neurons are calculated and backpropagated. Recall that we use different equations to
calculate the � value for a neuron, depending on whether the neuron is an output neuron
or a neuron in a hidden layer. We highlight this distinction by using different for loops
for each of these conditions. The for loop on lines 16[420] to 18[420] contains the calculations
of the �s for neurons in the output layer, and the for loop on lines 19[420] to 23[420] is the
calculation of the �s for neurons in the hidden layers. Once the �s for all the neurons in
the network for an example have been calculated, then for each weight in the network the
error gradients are accumulated (Lines 24[420] to 26[420]). Consequently, at the end of the
processing of the mini-batch (i.e., when the algorithm exits the for loop from Line 15[420]

to Line 27[420]), �wi;k will contain the weight updates for weight wi;k summed across all
the examples in the mini-batch. The final for loop in each epoch is where the weights of
the network are updated (Lines 28[420] to 30[420]). On Line 32[420] the mini-batch sequence is
shuffled between epochs.
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Algorithm 5 The backpropagation algorithm for a feedforward network with L layers

Require: set of training instances D
Require: a learning rate � that controls how quickly the algorithm converges
Require: a batch size B specifying the number of examples in each batch
Require: a convergence criterion

1: Shuffle D and create the mini-batches: rpXp1q;Yp1qq; : : : ; pXk;Ykqs
2: Initialize the weight matrices for each layer: Wp1q; : : : ;WpLq

3: repeat � Each repeat loop is one epoch
4: for t=1 to number of mini-batches do � Each for loop is one iteration
5: Ap0q — Xptq

� Forward propagation
6: for l=1 to L do
7: v — r10; : : : 1ms � Create v the vector of bias terms
8: Apl�1q — rv; Apl�1qs � Insert v into the activation matrix
9: Zplq — WlApl�1q

10: Aplq — ’pZplqq � Elementwise application of ’ to Zplq

11: end for
12: for each weight wi;k in the network do
13: �wi;k � 0
14: end for
15: for each example in the mini-batch do � Backpropagate the �s
16: for each neuron i in the output layer do
17: �i � BE

Bai
� Bai
Bzi

� See Equation (8.21)[411]

18: end for
19: for l = L-1 to 1 do
20: for each neuron i in the layer l do
21: �i � BE

Bai
� Bai
Bzi

� See Equation (8.23)[412]

22: end for
23: end for

� For each weight wi;k accumulate �wi;k across the mini-batch
24: for each weight wi;k in the network do
25: �wi;k � �wi;k � p�i � akq � Equation (8.29)[416]

26: end for
27: end for

� Update the weights
28: for each weight wi;k in the network do
29: wi;k — wi;k � �� �wi;k � Equation (8.30)[416]

30: end for
31: end for
32: shuffle(rpXp1q;Yp1qq; : : : ; pXk;Ykqs)
33: until convergence occurs



8.3 Standard Approach: Backpropagation and Gradient Descent 421

8.3.5 A Worked Example: Using Backpropagation to Train a Feedforward Network
for a Regression Task

The electrical power output from a combined cycle power plant is influenced by a number
of ambient parameters, such as temperature and humidity; being able to accurately predict
the output of the power plant working a full load with respect to these parameters can
significantly reduce the cost of energy production (Tüfekci, 2014). Table 8.1[422] lists the
hourly averages for the AMBIENT TEMPERATURE and the RELATIVE HUMIDITY when
a power plant is working at full load and the net hourly ELECTRICAL OUTPUT for the
plant under these conditions. We use this dataset to illustrate training a deep feedforward
network. The ELECTRICAL OUTPUT feature is the target feature for this example. The
four examples in Table 8.1[422] are only a sample from a larger dataset;18 however, for
this example, for ease of illustration we treat these four examples as if they were our full
dataset. Furthermore, we use batch gradient descent for training and treat Table 8.1[422] as a
batch. Consequently, in each iteration of the training algorithm we will complete a single
epoch (a single pass through our four examples and hence through the full dataset), and
there will be a single weight update per epoch.

A standard data preprocessing practice for neural networks is to normalize the descrip-
tive features. Consequently, we begin the worked example by explaining why normaliza-
tion is important for neural networks and normalizing the data in Table 8.1[422]. During
normalization, the values of the descriptive features are mapped to a standard range, for
example r�1;�1s or r0; 1s, using range normalization (see Equation (3.7)[87]), or stan-
dardized in order to have a mean of 0 and a standard deviation of 1 (see Equation (3.8)[88]).
The reason is that to ensure that the weight updates for all the weights on the network are
on a similar scale. Recall that the update applied to a weight wi;k is always scaled by the
ak term (both in the stochastic setting, Equation (8.28)[415], and the batch setting, Equation
(8.29)[416]). Now consider what happens to the weights on connections from the input layer
to the first hidden layer if there are large differences in the values taken by different de-
scriptive features. For example, consider an input feature recording salaries in dollars; this
feature could have a spread of values in the range of millions or more. Contrast this with
a feature that measures age in years; this feature is likely to have a spread of values with
a maximum of just over 100. In this scenario, everything else being equal, the weight up-
dates for the salary feature will generally be larger than those for the age feature because
the weight updates are scaled by the feature values. A similar dynamic emerges between
weight updates for the bias inputs, which are always equal to 1 (a0 � 1), and weights
on inputs with values much larger than 1. Furthermore, large weight updates can result

18. This example and dataset is based on the Combined Cycle Power Plant dataset available from the UCI reposi-
tory at https://archive.ics.uci.edu/ml/datasets/combined+cycle+power+plant and originally collected for the work
reported in Tüfekci (2014)

https://archive.ics.uci.edu/ml/datasets/combined+cycle+power+plant
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Table 8.1
Hourly samples of ambient factors and full load electrical power output of a combined cycle power
plant.

ID AMBIENT TEMPERATURE RELATIVE HUMIDITY ELECTRICAL OUTPUT
�C % MW

1 03.21 86.34 491.35
2 31.41 68.50 430.37
3 19.31 30.59 463.00
4 20.64 99.97 447.14

in instability in model training. Indeed, controlling the size of weight updates in order to
stabilize convergence during training is one of the reasons why the learning rate hyper-
parameter � is included in the weight update rules.19 In addition, having a large variance
on the weight updates applied to input connections can result in the network’s having rel-
atively large weights for some features. If a model has a relatively large weight on one
input feature, then the output of the model can be very sensitive to small changes in the
value of the feature and hence the outputs of the model can be very different for similar
input vectors. In summary, non-normalized descriptive features can result in unstable or
slow learning and a more unstable model in relation to generalization. If the values of a
descriptive feature are normally distributed, then standardizing the feature is appropriate;
however, this is relatively rare, and the default is to use range normalization into either
r�1;�1s or r0; 1s for preprocessing.

In a regression problem, in which the target is continuous, normalization is often applied
to both the descriptive features and the target feature. One reason why this makes sense
is that many activation functions have a small output range (e.g., the output of the logis-
tic function has the range r0; 1s) and it is appropriate that the range of the target feature
matches the output range of the activation function. Once the target feature has been nor-
malized, then during training the error of the network on an example can be calculated
by directly comparing the output of the network with the normalized target feature value.
Doing this does necessitate that in order to retrieve the predicted value of the target in the
original range of the target feature, the output from the network must be mapped back to
the original scale for the target feature, but generally, this is not a difficult thing to do. For
example, if the target feature originally had the range rmin;maxs and range normalization
has been applied to map this to the range of r0; 1s, then the activation of a logistic unit in
the output layer of the network ai can be mapped to the corresponding value in the original
range of the target feature by max � ai. An alternative strategy for using neural networks
for regression is to use linear units in the output layer (i.e., units that do not use an ac-

19. See Section 7.4.2[334].
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Table 8.2
The minimum and maximum values for the AMBIENT TEMPERATURE, RELATIVE HUMIDITY, and
ELECTRICAL OUTPUT features in the power plant dataset.

AMBIENT TEMPERATURE RELATIVE HUMIDITY ELECTRICAL OUTPUT

Min 1:81�C 25.56% 420.26MW
Max 37:11�C 100.16% 495.76MW

Table 8.3
The range-normalized hourly samples of ambient factors and full load electrical power output of a
combined cycle power plant, rounded to two decimal places.

ID AMBIENT TEMPERATURE RELATIVE HUMIDITY ELECTRICAL OUTPUT
�C % MW

1 0.04 0.81 0.94
2 0.84 0.58 0.13
3 0.50 0.07 0.57
4 0.53 1.00 0.36

tivation function and simply output the weighted sum z as their activation). Using linear
units in the output layer means that the output of the network can have the same range as
the non-normalized target feature. This has the advantage that the outputs of the network
do not have to be transformed back into the original target feature range. However, the
downside to not normalizing the target feature in a regression problem is that if the target
feature has a large range, then during training the error of the network on an example can
be very large, resulting in very large error gradients, which in turn can result in large weight
updates and an unstable learning process (similar to the instability that can arise with large
inputs, but in this case the instability arises from large errors).

For our example we apply range normalization to both the descriptive features and the
target feature. Note that for range normalization of the features we need the minimum and
maximum values for each feature. Table 8.2[423] lists these values for the original complete
dataset20 (as distinct from our sample of four examples). Table 8.3[423] lists the examples
after the features have been range-normalized into the range r0; 1s.

We use the network architecture illustrated in Figure 8.4[390] as the structure for the model
we train. We also assume that all the neurons use a logistic activation function. Figure
8.14[425] illustrates the forward pass for the examples in Table 8.3[423] through the network in
Figure 8.4[390]. This network has a depth of three, and so it has three weight matrices. These
weight matrices are organized so that each row contains the weights for the connections
coming into one neuron. To help align the elements of the weight matrices shown in Figure

20. Available from the UCI repository at https://archive.ics.uci.edu/ml/datasets/combined+cycle+power+plant.

https://archive.ics.uci.edu/ml/datasets/combined+cycle+power+plant
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8.14[425] with the connections in the graph representation of the network in Figure 8.4[390],
the rows and columns of the weight matrices are labeled using the neuron identifiers from
Figure 8.4[390] (the labels are the numbers inside circles). For example, the top row of the
matrix shown in Figure 8.4[390] labeled Hidden layer 1 Weight Matrix contains the weights
on the connections coming into Neuron 3 in Figure 8.4[390]; hence this row has the label 3.
The middle column in this weight matrix represents the weights on the connections from
Neuron 1 to each of the neurons in hidden layer 1: Neurons 3, 4 and 5, respectively. The
first column in each weight matrix contains the weights for the bias terms, and so these
columns have no label. For this example, the weight matrices were randomly initialized
from the range r�0:5;�0:5s

The matrix labeled Input Layer contains the inputs for the examples, augmented with the
bias inputs for each neuron. Each column in this matrix contains the descriptive features
for one of the examples in Table 8.3[423]. We have used the convention of a gray background
to track the flow of the second example (d2) through the network: the input vector for d2

is   bias � 1;AMBIENT TEMPERATURE � 0:84;RELATIVE HUMIDITY � 0:58 ¡. The
gray column in the matrix Zp1q contains the weighted sums for the neurons 3, 4, and 5 for
this input vector; e.g., for Neuron 3 the weighted sum for d2 is z3 � �0:0042. Tracing
d2 through the logistic activation function, the activation for Neuron 3 for d2 is a3 �
0:4990. Note that in order to keep the number of decimal points required to represent the
calculations through this forward pass manageable for presentation purposes, the outputs
of the logistic functions for each layer have been rounded to four decimal places, and these
rounded activations were the activations used in the subsequent calculations. Note also
that the weight matrix labels on the left of the figure are also the correct neuron labels for
the weighted sum Z and activation matrix rows on that line. For example, the first row in
Zp1q contains the weighted sum for Neuron 3 (i.e., z3) for d1, d2, d3, and d4, respectively.
Similarly, the first row in the Activations Hidden Layer 1 matrix contains the activations for
Neuron 3 (a3) for the d1, d2, d3, and d4, respectively. Following the flow of d2 through all
three layers of the network, the prediction output by the model for this example is 0:4718
(see Cell 2, the gray cell, in the Activations Output Layer matrix). Table 8.4[426] shows the
calculation of the per example error for the four examples and the sum of squared errors
for the model.
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Table 8.4
The per example error after the forward pass illustrated in Figure 8.14[425], the per example BE{Ba8,
and the sum of squared errors for the model over the dataset of four examples.

d1 d2 d3 d4

Target 0.9400 0.1300 0.5700 0.3600
Prediction 0.4715 0.4718 0.4717 0.4716
Error 0.4685 -0.3418 0.0983 -0.1116
BE{Ba8: Error ��1 -0.4685 0.3418 -0.0983 0.1116
Error2 0.21949225 0.11682724 0.00966289 0.01245456
SSE: 0.17921847

The next stage is to backpropagate the �s for the neurons in the network. When we
are processing a batch of examples, we need to do the backpropagation of the �s for each
example. However, for the sake of space, here we illustrate the backpropagation process for
a single example. We use d2 because the processing of this example has been highlighted
in Figure 8.14[425], and so it will be easier to identify the relevant zk and ak values for each
neuron for this example. Figure 8.15[427] illustrates the forward pass of d2 through the
network. This figure shows the weights on each connection and for each neuron shows
the weighted sum z calculated by that neuron (the number on the left of the neuron) and
the activation z for the neuron (the number on the right of the neuron). Cross-referencing
Figure 8.14[425], these z and a values are found in the corresponding gray boxes in that
figure.

The first � we calculate is for Neuron 8: �8. Neuron 8 is an output neuron and so we
use the process illustrated in Equation (8.21)[411]. As shown by Equation (8.21)[411] and
following Equation (8.20)[411], the term BE{Ba is the error of the neuron multiplied by �1,
and so from Table 8.4[426] we see that for d2

BE
Ba
� 0:3418 (8.31)

The second term we need in order to calculate �8 is the rate of change of the activation
function with respect to the changes in the weighted sum z: Ba{Bz. This is calculated by
plugging the z for the neuron into the derivative of the activation function. The neurons in
this network all use the logistic function as their activation function, and so the derivative of
this function is given by Equation (8.15)[408]. As we proceed through the steps of calculating
the �s for each of the neurons, we will need to calculate the Ba{Bz term for each neuron,
and so for ease of reference, Table 8.5[428] lists this value for each neuron; for space and
convenience considerations we have rounded these values to four decimal places and used
the rounded values in our calculations. From Table 8.5[428], for Neuron 8, Ba{Bz � 0:2492.
We now have the two terms we need to calculate �8, and Equation 8.32[427] steps through
the calculation of �8 for d2. Note that for space considerations we have rounded �8 to four



8.3 Standard Approach: Backpropagation and Gradient Descent 427

Figure 8.15
An illustration of the forward propagation of d2 through the network showing the weights on each
connection, and the weighted sum z and activation a value for each neuron in the network.

decimal places, and we will round the �s for other neurons similarly and use the rounded
values in our calculations so that the results of the calculations match the numbers that are
presented on the page.

�8 �
BE
Ba8

�
Ba8

Bz8

�0:3418� 0:2492

�0:0852 (8.32)

Neuron 8 is the only output neuron in the network, and so once �8 has been calculated,
we can then proceed to backpropagate the error gradient of the network for d2 and calculate
the �s for Neurons 6 and 7. These are hidden neurons, so we use the Equation (8.23)[412]

to calculate �6 and �7; Equation (8.33)[428] steps through the calculation of �6 and Equation
(8.34)[428] steps through the calculation for �7



428 Chapter 8 Deep Learning

Table 8.5
The Ba{Bz for each neuron for Example 2 rounded to four decimal places.

NEURON z Ba{Bz
3 -0.004200 0.2500
4 -0.189800 0.2478
5 0.120800 0.2491
6 0.207122 0.2473
7 0.235460 0.2466
8 -0.113108 0.2492

�6 �
BE
Ba6

�
Ba6

Bz6

�
�‚

�i � wi;6

	
�
Ba6

Bz6

� p�8 � w8;6q �
Ba6

Bz6

�p0:0852� 0:12q � 0:2473

� 0:0025 (8.33)

�7 �
BE
Ba7

�
Ba7

Bz7

�
�‚

�i � wi;7

	
�
Ba7

Bz7

� p�8 � w8;7q �
Ba6

Bz6

�p0:0852��0:50q � 0:2466

� �0:0105 (8.34)

Once the �s for Neurons 6 and 7 have been calculated, we are ready to propagate the error
gradients back to the first hidden layer. The process used to calculate the �s for Neurons 3,
4, and 5 is the same as that used to calculate �6 and �7. Equation (8.35)[429] steps through this
calculation for �3, Equation (8.36)[429] shows the calculation of �4, and Equation (8.37)[429]

lists the calculations of �5
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�3 �
BE
Ba3

�
Ba3

Bz3

�
�‚

�i � wi;3

	
�
Ba3

Bz3

� pp�6 � w6;3q � p�7 � w7;3qq �
Ba3

Bz3

�pp0:0025��0:04q � p�0:0105� 0:20qq � 0:2500

� �0:0006 (8.35)

�4 �
BE
Ba4

�
Ba4

Bz4

�
�‚

�i � wi;4

	
�
Ba4

Bz4

� pp�6 � w6;4q � p�7 � w7;4qq �
Ba4

Bz4

�pp0:0025� 0:10q � p�0:0105� 0:14qq � 0:2478

� �0:0003 (8.36)

�5 �
BE
Ba5

�
Ba5

Bz5

�
�‚

�i � wi;5

	
�
Ba5

Bz5

� pp�6 � w6;5q � p�7 � w7;5qq �
Ba5

Bz5

�pp0:0025� 0:06q � p�0:0105��0:09qq � 0:2491

� 0:0003 (8.37)

We have now calculated the �s for all the neurons in the network for d2. Figure 8.16[430]

shows the network with each neuron labeled with its corresponding �. Each � expresses
the rate of change (or sensitivity) of the error of the network with respect to changes in
the weighted sum calculation of a specific neuron. In order to update the weights on the
connections coming into a neuron, we must connect the rate of change of the error of the
network to changes in each weight. Equation (8.27)[414] defined how the rate of change of
the error of a network with respect to a weight in the network BE{Bwi;k can be calculated
using the chain rule. This calculation reduces to multiplying the � for the neuron that
uses the weight in its weighted sum by the activation that the weight was applied to in
the weighted sum. Table 8.6[431] lists the calculations of BE{Bwi;k for each weight in the
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Figure 8.16
The �s for each of the neurons in the network for Example 2.

network for d2. This table is ordered so that the weights for inputs to Neuron 8 are at the
top, and then as we move down the table, we move back through the network.

If we are using stochastic gradient descent, in which we update the weights after each
example has been presented to the network, then to update a weight in the network we
first calculate a BE{Bwi;k term for the weight similarly to the calculations shown in Table
8.6[431] for d2 and then plug the BE{Bwi;k value for the weight into Equation (8.28)[415]. For
example, if we assume that d2 was the first example processed21 and that we have set the
learning rate hyper-parameter to � � 0:2, then we would update weight w7;5 as follows:

21. This assumption of treating d2 as the first example permits us to use the original w7;5 � �0:09 in our example
calculation rather than the updated value for the weight that would be used if d1 had already been processed and
the weights updated accordingly.
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Table 8.6
The BE{Bwi;k calculations for d2 for every weight in the network. We use the neuron index 0 to
denote the bias input for each neuron.

NEURONi NEURONk wi;k �i ak BE{Bwi;k

8 0 w8;0 0:0852 1 0:0852� 1 � 0:0852
8 6 w8;6 0:0852 0:5516 0:0852� 0:5516 � 0:04699632
8 7 w8;7 0:0852 0:5586 0:0852� 0:5586 � 0:04759272
7 0 w7;0 �0:0105 1 �0:0105� 1 � �0:0105
7 3 w7;3 �0:0105 0:4990 �0:0105� 0:4527 � �0:0052395
7 4 w7;4 �0:0105 0:4527 �0:0105� 0:4527 � �0:00475335
7 5 w7;5 �0:0105 0:5302 �0:0105� 0:5302 � �0:0055671
6 0 w6;0 0:0025 1 0:0025� 1 � 0:0025
6 3 w6;3 0:0025 0:4990 0:0025� 0:4527 � 0:0012475
6 4 w6;4 0:0025 0:4527 0:0025� 0:4527 � 0:00113175
6 5 w6;5 0:0025 0:5302 0:0025� 0:5302 � 0:0013255
5 0 w5;0 0:0003 1 0:0003� 1 � 0:0003
5 1 w5;1 0:0003 0:84 0:0003� 0:84 � 0:000252
5 2 w5;2 0:0003 0:58 0:0003� 0:58 � 0:000174
4 0 w4;0 �0:0003 1 �0:0003� 1 � �0:0003
4 1 w4;1 �0:0003 0:84 �0:0003� 0:84 � �0:000252
4 2 w4;2 �0:0003 0:58 �0:0003� 0:58 � �0:000174
3 0 w3;0 �0:0006 1 �0:0006� 1 � �0:0006
3 1 w3;1 �0:0006 0:84 �0:0006� 0:84 � �0:000504
3 2 w3;2 �0:0006 0:58 �0:0006� 0:58 � �0:000348

w7;5 � w7;5 � � � � 7 � a5

� w7;5 � � �
BE
Bwi;k

� �0:09 � 0:2 � �0:0055671

� �0:08888658 (8.38)

However, in this example we use batch gradient descent training, and so for each weight
update we must first calculate a table equivalent to Table 8.6[431] for each example. Once
these tables have been created, for each weight we sum the BE{Bwi;k for that weight across
the tables. This summation gives us the �wi;k term in Equation (8.30)[416]. Table 8.7[432]

illustrates this calculation for weight w7;5, and Equation 8.39[432] shows how the �w7;5 is
used as part of Equation 8.30[416] to update the weight after the batch of four examples has
been processed; again, in this weight update we assume that � � 0:2.
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Table 8.7
The calculation of �w7;5 across our four examples.

MINI-BATCH BE
Bw7;5EXAMPLE

d1 0:00730080
d2 �0:00556710
d3 0:00157020
d4 �0:00176664

�w7;5= 0:00153726

w7;5 � w7;5 � �� �wi;k

� �0:09� 0:2� 0:00153726

� �0:0903074520 (8.39)

If we update all the weights in the network using the process illustrated in Equation
8.39[432] for weight w7;5 and then run the same examples through a forward pass of the
network, we reduce the error of the model by a small amount; Table 8.8[433] lists the per ex-
ample error and sum of squared errors for the four examples after all the weights have been
updated. Comparing Table 8.8[433] with Table 8.4[426], we see that the model made a slightly
different prediction for each example; the prediction for d2 is now 0:4741 whereas the
original prediction was 0:4718. Also, the total error of the model on the dataset, measured
here by the sum of squared errors, has dropped slightly from 0:17921847 to 0:17896823,
an error reduction of 0:00025024. Admittedly, this drop in error is tiny, but it is a reduction
in error, and this reduction was achieved by updating randomly initialized weights once.
In a full network training scenario there would be many such weight updates as the train-
ing progressed through multiple epochs and, for each epoch, multiple mini-batches; the
reduction of the network error would accumulate over these weight updates. For exam-
ple, assuming that we continue to train the network on just our small sample dataset with
� � 0:2 and updating the weights after each pass through our data, then the training of
the network would converge to an S S E   0:0001 after 7,656 epochs.22 Table 8.9[433] lists
the model predictions for each of the examples and the calculation of the sum of squared

22. The most popular strategy to define a convergence criterion to stop training a neural network is early stopping.
Early stopping is designed to avoid a model overfitting the training data. We explain the early stopping algorithm
in Section 8.4.4[472]. However, for ease of explanation in this section, we have simply used a threshold of S S E  
0:0001 as our convergence criterion. Using a threshold on the error of the model error on the training set as a
convergence criterion—as we are doing here—is very likely to result in the model overfitting the training data.
Hence it is worth emphasizing that we are using this convergence criterion only for ease of explanation, and in
general we recommend that you use early stopping when you are training a neural network.
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Table 8.8
The per example error after each weight has been updated once, the per example BE{Ba8, and the
sum of squared errors for the model.

d1 d2 d3 d4

Target 0.9400 0.1300 0.5700 0.3600
Prediction 0.4738 0.4741 0.4740 0.4739
Error 0.4662 -0.3441 0.0960 -0.1139
BE{Ba8: Error ��1 -0.4662 0.3441 -0.0960 0.1139
Error2 0.21734244 0.11840481 0.009216 0.01297321
SSE: 0.17896823

Table 8.9
The per example prediction, error, and the sum of squared errors after training has converged to an
S S E   0:0001.

d1 d2 d2 d2

Target 0.9400 0.1300 0.5700 0.3600
Prediction 0.9266 0.1342 0.5700 0.3608
Error 0.0134 -0.0042 0.0000 -0.0008
Error2 0.00017956 0.00001764 0.00000000 0.00000064
SSE: 0.00009892

errors once training has converged. Figure 8.17[434] illustrates how the sum of squared er-
rors of the network changes during the training. This plot shows that the reduction in the
error achieved by each weight update (one per epoch) is initially quite small. However,
after approximately 5,000 epochs, the rate of decrease of the error increases dramatically
until it flattens out again around 6,000 epochs. From then on, the sum of squared errors
of the network continues to slowly reduce until it reaches the convergence criterion of
S S E   0:0001. As with the regression examples in Chapter 7[311], the profile of this error
reduction over the course of the training is sensitive to a number of factors, for example,
the learning rate � and how it is updated throughout the training (see Section 7.3.3[328]).
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Figure 8.17
A plot showing how the sum of squared errors of the network changed during training.

8.4 Extensions and Variations

One of the biggest challenges in training a deep neural network is to ensure that the flow
of error gradients back through the layers of a network is stable during training. Con-
sequently, in Sections 8.4.1[434] and 8.4.2[447] we explain and motivate the current standard
approaches to deciding on two of the most important hyper-parameter decisions for keep-
ing error gradients stable: the selection of the activation function, and the initialization
of the weights. Then in Section 8.4.3[463] we explain how to adapt the design of a neural
network to classification problems by using a softmax output layer and the cross-entropy
loss function. Whether deep learning is applied to regression or classification, the size and
complexity of deep learning models make them susceptible to overfitting, and so in Sec-
tion 8.4.4[472] we cover the two most popular extensions to backpropagation that are used to
try to avoid overfitting: early stopping and dropout. We then conclude the extensions and
variations of deep learning by introducing two of the most popular network architectures
used in deep learning: convolutional neural networks (Section 8.4.5[477]) and recurrent
neural networks (Section 8.4.6[499]).

8.4.1 Vanishing Gradients and ReLUs
Figure 8.16[430] shows the network from the worked example in a graph form with each of
the neurons labeled with the � for the neuron. These �s were calculated by backpropagating
the error on Example 2. If we compare the � for Neuron 8 (the output neuron) with the
�s for the neurons in the first hidden layer (Neurons 3, 4, and 5), it becomes clear that
the � values become smaller as they are propagated back from the output layer to the
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earlier layers in the network: �8 � 0:0851, whereas �3 � �0:0006, �4 � �0:0003, and
�5 � 0:0003 are all smaller in magnitude. This phenomenon is known as the vanishing
gradient problem, because in deep networks the � terms tend toward zero and vanish as
we propagate the �s back to the early layers.

Vanishing gradients are a serious challenge for training deep networks because the �s
are the learning signal that tells each neuron how it should update its weights in order to
improve the network’s performance on an example. In other words, the updates applied to
a weight are a function of the � for the neuron that uses the weight in its weighted sum.
However, as the �s vanish, the learning signal attenuates, and this can slow down the rate
at which the early layers of the network learn. Concretely, this means that in each weight
update, the weights in the earlier layers in the network are updated by smaller amounts
than the neurons in the later layers. This differential in the weight updates is apparent in
Table 8.6[431], which is arranged so that BE{Bwi;k terms for the weights on inputs to output
layer (Neuron 8) are at the top of the table, and then as we move down the table, we move
back through the network. Inspecting the right-hand column of this table and comparing
the magnitude of the BE{Bwi;k terms, the most significant digit in the BE{Bwi;k terms for
weights on inputs to Neuron 8 are at 10�2; by comparison the most significant digit for the
BE{Bwi;k terms for the weights on inputs to Neurons 3, 4, and 5 (the first hidden layer) are
at 10�4. This differential means that the neurons in the first hidden layer will learn more
slowly than the neurons output layer. Furthermore, the deeper the network becomes, the
slower the earlier layers learn (because the learning signal, the error gradient, attenuates as
it is backpropagated through the layers).

This is a serious problem because the ability of a deep neural network to learn a useful
representation of the inputs works by the earlier layers of the network extracting low-level
features from the raw data and then the later layers learning to combine these features
in useful ways (see Figure 8.10[402] for an illustration of this for a three-layer network).
However, if the neurons in the early layers of the network take a long time to train, then the
neurons in the later layers cannot efficiently build upon the outputs of these early neurons.
The net result is that the vanishing gradient problem can cause deep networks to take a
very long time to train. The vanishing gradient problem is a direct consequence of the fact
that the backpropagation algorithm is based on the chain rule. Using backpropagation, the
error gradient at any point in the network is a product of the gradients up to that point; for
convenience, we repeat Equation (8.25)[414] here

BE
Bwi;k

�
BE
Bai
�
Bai

Bzi
�
Bzi

Bwi;k

� � i �
Bzi

Bwi;k

(8.40)
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Reading from left to right, the first term in this product is the rate of change of the error
gradient of the network with respect to changes in the activation (or output) of a neuron i;
the second term is the rate of change of the activation of neuron i with respect to changes
in zi (the weighted sum for neuron i); and the third term is the rate of change of zi with
respect to changes in the weight wi;k.

The earlier in the network a weight occurs, the more terms there are in the product. This
expansion in the number of terms arises from the fact that for all hidden neurons the � term
is calculated by a product of (1) BE{Bai, which itself is a product of the weighted sum
of the �s backpropagated to the neuron; and (2) the derivative of the neuron’s activation
function, that is, a term of the form Bak{Bzk (see Equation (8.23)[412]). However, if these
backpropagated �s came from hidden neurons, then they were also calculated as a product
of the weighted sum of the �s backpropagated to those hidden neurons and the Bak{Bzk

term for those neurons. To illustrate this growth in the number of terms in the chain of
products as we move back through a network, imagine a simple feedforward network with
just three neurons, i, j, and k, arranged so that i feeds forward into j and j into k

i Ñ j Ñ k

Equation 8.41[436] illustrates the expansion of the chain of products as the error gradient is
propagated back through the network. By the time the original error gradient term BE{Bak

is propagated back to �i it is multiplied by two weights, w j;i and wk; j, and three times by
the derivative of the activation function of a neuron with respect to the weighted sum of
the neuron: Bak{Bzk, Ba j{Bz j, Bai{Bzi. We return to the discussion of weights in the next
section, Section 8.4.2[447]; our focus in this section is on the effect of repeatedly multiplying
the error gradient by the derivative of an activation function

�i �
BE
Bai

�
Bai

Bzi

�
hkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkj
w j;i � � j �

Bai

Bzi

�w j;i �

hkkkkkkkkkkkkkikkkkkkkkkkkkkj

wk; j � �k �
Ba j

Bz j
�
Bai

Bzi

�w j;i � wk; j �

hkkkkkikkkkkj
BE
Bak

�
Bak

Bzk
�
Ba j

Bz j
�
Bai

Bzi

(8.41)

Multiplying a number by a number less than 1 makes the number smaller. With this in
mind, it is instructive to refer to Figure 8.13[410], which plots the logistic function and the
derivative of the logistic function. Figure 8.13[410] shows that the maximum value of the
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derivative of the logistic function is 0:25. The figure also shows that the derivative is 0 (or
near 0) for the saturated regions of the function: the logistic function saturates for large
negative (� z   �2) or positive values (z ¡ �2); this means that the rate of change of
the output of the logistic function with respect to small changes in z, when z has a large
negative or positive value, is 0 (or near 0).

Equation 8.41[436] shows that during backpropagation the error gradient is repeatedly mul-
tiplied by a derivative of activation functions, one multiplication for each neuron that the
error gradient is backpropagated through. When a neuron uses a logistic function as its
activation function, then the maximum value the derivative can take is 0:25. Consequently,
backpropagating the error gradient through the neuron that uses a logistic activation func-
tion involves multiplying the error term by a value ⁄ 0:25 and that is � 0 for z values in
the saturated regions of the logistic function. If all the neurons in a network use a logistic
activation function or another activation function whose derivative has a small range less
than 1, then the error gradient will get smaller and smaller as it is backpropagated through
the networks layers, and the scaling down of the gradient is particularly severe for neurons
whose z value is in the saturated region of the activation function.

Given that the vanishing gradient problem arises from repeatedly multiplying the error
gradients by the derivative of the activation functions, one way to address the vanishing
gradient problem is to use a different activation function. At the start of the chapter we
introduced the rectified linear function:23

recti f ierpzq � maxp0; zq �

#
z if z ¡ 0

0 otherwise
(8.42)

The derivative of the rectifier function is:

d
dz

recti f ierpzq �

#
1 if z ¡ 0

0 otherwise
(8.43)

The fact that the derivative of the rectifier function takes either a 0 or a 1 value means that
during backpropagation for some neurons in a network, the � value will be pushed to zero.
However, this is not necessarily a problem: if we consider the backpropagation process
as error gradients, �s, flowing through a layer of neurons then, although for some neurons
in the layer the �s will go to zero, for others the gradients will pass through unscaled.
In particular, in any neuron where the input to the rectifier function is greater than zero
(z ¡ 0) then the neuron will activate during the forward pass and the partial derivative
of the activation function will be 1 during the backward pass. In these cases the error
gradients are able to be backpropagated through the neuron without scaling. Consequently,
the error gradients in the backward pass can propagate along the paths of active neurons

23. See Equation (8.4)[386] and Figure 8.2[387].
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in the network, and because Bak{Bzk � 1 along these paths, the gradients can flow back
through a deeper network (Glorot et al., 2011). Note that neurons that use a rectified linear
activation function are known as ReLUs (short for rectified linear units).

Technically, the derivative of the rectifier function is undefined when zk � 0, so strictly,
the rectifier function is not an appropriate choice for gradient descent and backpropagation,
which assume differentiable functions. However, a common practice in neural networks
is to choose a derivative value for zk � 0 of zero, and we have integrated this convention
into the definition of Equation (8.43)[437]. This convention has been found generally to work
well.

Figure 8.18[440] shows the forward propagation of the examples in Table 8.3[423] through
the same network that we used in the worked example, with the single difference that all
the neurons in the network are now ReLUs.24 Table 8.10[441] lists the per example error of
this ReLU network resulting from the forward pass in Figure 8.18[440]. This table also lists
the sum of squared errors for the ReLU model.25

To illustrate the effect that switching to a rectified linear activation function has on a
network, we step through the forward and backward pass of the backpropagation algorithm
for d2. Figure 8.19[441] illustrates the forward pass for d2 through the ReLU network. This
figure shows the weights on each connection and for each neuron shows the weighted sum
z calculated by that neuron (the number on the left of the neuron) and the activation a for
the neuron (the number on the right of the neuron). These z and a values will be found
in the corresponding gray boxes in Figure 8.18[440]. Notice that both Neurons 3 and 4 have
an activation of zero for d2. The reason is that both these neurons happen to have large
negative weights on at least one of their inputs. However, the forward propagation through
the network still occurs along an active path through Neuron 5.

In order to calculate and backpropagate the �s for d2 through the network, we need the
Ba{Bz for each neuron in the network for this example, Table 8.11[442] lists these values;
because all the neurons use a rectified linear activation function, the Ba{Bz are either 0 or
1 (as per derivative of the rectified linear function given in Equation 8.43[437]). From these
values we can see that the error gradient will be able to flow backward through Neurons 8,
7, and 6 without being scaled down by the multiplication by Ba{Bz in the � calculations.
Equation 8.44[442] lists the calculations of the �s for d2 for all the neurons in the ReLU
network. Comparing the �s for the ReLU network with those calculated for the logistic
network for the same example (see Figure 8.16[430]) shows that, where the derivative of the

24. Note that as with the worked example, to keep the number of decimal points required to represent the calcu-
lations through this forward pass manageable, the outputs of the activation function (in this instance the rectified
linear function) for each layer have been rounded to four decimal places, and these rounded activations were the
activations used in the subsequent calculations.

25. Note that comparing the sum of squared errors for the logistic network in Table 8.4[426] with the sum of squared
errors for the ReLU model in Table 8.10[441] is not useful, because both of these are errors for random networks.
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ReLU has not pushed the � to 0, the drop in the magnitude of the �s as we move back
through the network is not as severe; for example, in Figure 8.16[430] there is a consistent
reduction in the magnitude of the � values from 10�2 in the output layer to 10�4 in the first
hidden layer, and in the ReLU network the drop is from 10�2 in the output layer to 10�3 in
the first hidden layer. The fact that both Neurons 3 and 4 had an activation of 0 in response
to d2 resulted in both of these neurons having a � � 0. This means that weights for these
neurons will not be updated for this example.

We can illustrate the speed up in training that can be achieved by switching a network
from using the logistic activation function to a rectified linear activation function if we
compare the number of epochs required for the network from the worked example to con-
verge to an S S E   0:0001 when it uses ReLUs instead of logistic units. If we initialize
the network with the same initial set of weights that we used in Section 8.3.5[421] and use
the same data, training regime, and learning rate (� � 0:2), then the ReLU version of the
network converges to an S S E   0:0001 in just 424 epochs, as compared with the 7,656
epochs required to train the logistic network. Table 8.12[443] lists the predictions of the
trained ReLU network for each of the examples and the calculation of the sum of squared
errors once training has converged. Figure 8.20[443] illustrates how the sum of squared errors
of the ReLU network changes during the training of the network. The plot shows that the
initial sum of squared errors of the network is just under 0:6, and this drops to   0:2 after
the first epoch. After approximately 150 epochs the rate of decrease of the sum of squared
errors increases, but training also becomes a bit unstable with the sum of squared errors of
the network sometimes increasing and decreasing dramatically. This type of instability can
be indicative that the learning rate � is too high. In fact, because the rectifier linear function
is unbounded,26 it is often the case that smaller learning rates are necessary in training a
ReLU network than in training a network with logistic units. Figure 8.21[444] plots the SSE
of the ReLU network across the training epochs when we use a smaller learning rate, in
this case � � 0:1. Not only is the learning more stable (i.e., smoother) but the training of
the network actually converges on the stop criterion of S S E   0:0001 in fewer epochs,
412 instead of 424. This illustrates how sensitive the training of a deep neural network can
be to a range of hyper-parameters, such as the learning rate and activation function.

26. By unbounded, we mean that, unlike the logistic function where the maximum value it will return is 1, the
rectifier linear function may return any value up to �8.
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Figure 8.19
An illustration of the forward propagation of d2 through the ReLU network showing the weights on
each connection, and the weighted sum z and activation a value for each neuron in the network.

Table 8.10
The per example error of the ReLU network after the forward pass illustrated in Figure 8.18[440], the
per example BE{Ba8, and the sum of squared errors for the ReLU model.

d1 d2 d3 d4

Target 0.9400 0.1300 0.5700 0.3600
Prediction 0.0405 0.0643 0.0621 0.0512
Error 0.8995 0.0657 0.5079 0.3088
BE{Ba8: Error ��1 �0:8995 �0:0657 �0:5079 �0:3088
Error2 0.80910025 0.00431649 0.25796241 0.09535744
SSE: 0.58336829
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Table 8.11
The Ba{Bz for each neuron for d2 rounded to four decimal places.

NEURON z Ba{Bz
3 -0.004200 0
4 -0.189800 0
5 0.120800 1
6 0.157248 1
7 0.109128 1
8 0.064314 1

�k �
BE
Bak

�
Bak

Bzi

�8 � �0:0657� 1:0

� �0:0657

�7 � p�8 � w8;7q �
Ba7

Bz7

� p�0:0657��0:50q � 1

� 0:0329

�6 � p�8 � w8;6q �
Ba6

Bz6

� p�0:0657� 0:12q � 1

� �0:0079

�5 � pp�6 � w6;5q � p�7 � w7;5qq �
Ba5

Bz5

�pp�0:0079� 0:06q � p0:0329��0:09qq � 1

� �0:0034

�4 � pp�6 � w6;4q � p�7 � w7;4qq �
Ba4

Bz4

� pp�0:0079� 0:10q � p0:0329� 0:14qq � 0

� 0

�3 � pp�6 � w6;3q � p�7 � w7;3qq �
Ba3

Bz3

�pp�0:0079��0:04q � p0:0329� 0:20qq � 0

� 0

(8.44)
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Table 8.12
The ReLU network’s per example prediction, error, and the sum of squared errors after training has
converged to an S S E   0:0001.

d1 d2 d3 d4

Target 0.9400 0.1300 0.5700 0.3600
Prediction 0.9487 0.1328 0.5772 0.3679
Error -0.0087 -0.0028 -0.0072 -0.0079
Error2 0.00007569 0.00000784 0.00005184 0.00006241
SSE: 0.00009889

Figure 8.20
A plot showing how the sum of squared errors of the ReLU network changed during training when
� � 0:2.

We have seen that switching a network from a logistic activation function to a rectified
linear activation function can speed up training; however, a less obvious effect of this
switch is that it also tends to make the representations learned by a network sparse. What
this means is that for any given input vector, only a subset of the neurons in the network will
activate (i.e., ai ¡ 0). This is because the rectified linear function has a zero output value
for half its domain (i.e., for all z ⁄ 0). For example, consider a feedforward network that
has been initialized with weights randomly sampled with uniform probability from a range
such as r�0:5;�0:5s. In such a network, immediately after initialization, approximately
half the hidden neurons in the network will have activations equal to zero; in a sense, in
a network with a sparse representation, each input vector flows through a subset of active
pathways in the network (Glorot et al., 2011). By contrast in a network using logistic
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Figure 8.21
A plot showing how the sum of squared errors of the ReLU network changed during training when
� � 0:1.

activation functions, the vast majority of neurons will be active for all inputs. Using a
sparse representation can reduce the energy consumed by a network (Reagen et al., 2017)
and is also more biologically plausible (Glorot et al., 2011). However, if the representations
become too sparse, then the performance of the network may deteriorate.

For example, consider Neuron 4 in our example network. This neuron has two large
negative weights (w4;0 � �0:19 and w4;2 � �0:13). The effect of these negative weights
is apparent in the Zp1q matrix in forward pass of the mini-batch through the ReLU network
in Figure 8.18[440]: for all four examples of the mini-batch z4   0, and hence a4 � 0.
The fact that the ReLU activation function for Neuron 4 is saturated for all four examples
means that Neuron 4 is essentially dead during the forward pass of the algorithm (it does
not activate for any example) and this reduces the representational capacity of the network.
Furthermore, during the backward pass of the algorithm the derivative of the rectified linear
function for Neuron 4 is zero for all four examples, causing the error gradient to be pushed
to zero for all four examples, and so the weights on connections into Neuron 4 receive no
updates. Consequently, no matter how long we train the network, Neuron 4 will remain in
this dead state. This dynamic of a ReLU being in a state where it is inactive for all (or nearly
all) inputs and consequently it never updated and so never becomes active is known as the
dying ReLU problem. If too many neurons in a network are dead, then the network will
not converge during training. For example, in our example network, if Neuron 8 is dead,
the network will never converge on the training stop criterion, because no error gradients
will be backpropagated to the earlier layers and so no training will occur. Similarly, if
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Neurons 6 and 7 are dead, then no error gradients will be backpropagated past this layer
of neurons and the network is essentially reduced to a perceptron network composed of
just Neuron 8, as none of the other neurons will have their input weights updated during
training.

A simple heuristic that is sometimes used to try to avoid dead ReLUs is to initialize all
the bias weights of a network to small positive values, such as 0.1, because this increases
the likelihood that most of the neurons will initially be active for most of the training
examples and so these neurons can learn from these examples (Goodfellow et al., 2016,
p. 187). However, this heuristic is not guaranteed to avoid dead ReLUs: returning to the
forward propagation of d2 through the ReLU network (see Figure 8.19[441]), in this network
Neuron 3 already has a bias of w3;0 � 0:1, but this positive bias is dominated by the
large negative weight w3;1 � �0:20. Therefore, Neuron 3 illustrates that even with the
heuristic of setting the bias weights to 0.1, a ReLU may still not activate to every (or in
extreme cases any) input pattern. We return to the topic of weight initialization strategies
in Section 8.4.2[447]. Another approach to avoiding dead ReLUs is to modify the rectified
linear function so that it does not saturate for z   0. Two popular variants of ReLU that
adopt this strategy are the Leaky ReLU (Maas et al., 2013) and the Parametric ReLU
(He et al., 2015).

The leaky rectified linear function has a small (predefined) non-zero gradient when z  
0. Maas et al. (2013) set the non-zero gradient for z   0 to 0:01, giving the following
definition of this function:

recti f ierleakypzq �

#
z if z ¡ 0

0:01� z otherwise
(8.45)

The derivative we use to backpropagate a � through the recti f ierleaky function is

d
dz

recti f ierleakypzq �

#
1 if z ¡ 0

0:01 otherwise
(8.46)

Not surprisingly, neurons that use the leaky rectified linear function as their activation
function are known as Leaky ReLUs. When we switch a network from ReLUs to Leaky
ReLUs, we sacrifice the potential benefits in terms of energy efficiency of sparse represen-
tations for a gradient that may potentially be more robust during training. Leaky ReLUs
always activate to some extent for every input; however, given that for z ⁄ 0 the derivative
of the recti f ierleaky function is very small (0:01), a leaky ReLU with large negative weight
will still learn very slowly.

He et al. (2015) introduced the Parametric ReLU (PReLU) for which the main distinc-
tion from the Leaky ReLU was that rather than using a fixed predefined gradient for z ⁄ 0,
this gradient can be learned as a parameter for each neuron in the network. In other words,
each neuron in the network learns a separate gradient for its activation function for the re-
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gion z ⁄ 0. As a result, when we define the activation function for a PReLU, we introduce
a subscript on the terms to identify the neuron and the corresponding gradient being used.
Hence for a PReLU i, the activation function is defined as

recti f ierparametricpziq �

#
zi if zi ¡ 0

�i � zi otherwise
(8.47)

The derivative used to backpropagate �s through the recti f ierparametric function is then
defined as

d
dz

recti f ierparametricpziq �

#
1 if zi ¡ 0

�i otherwise
(8.48)

The parameter � is learned in tandem with the weights of the network. Similar to the
weights of the network, the � parameter is initialized to a value and is then iteratively
updated as training progresses. In their experiments He et al. (2015) initialized the � pa-
rameters in their networks to 0:25. Also similar to the weights in a network, the updating
of a � is proportional to the error gradient of the network with respect to changes in that
parameter

BE
B�i

�
BE
Bai
�
Bai

B�i
(8.49)

The first term in this product, BE{Bai, is the rate of change of the error of the network
with respect to changes in the activation function and is calculated as it would be for the
weights in the network; for neurons in the output layer, it is calculated using Equation
8.20[411], and for neurons in the hidden layer, it is calculated as the weighted sum of the
�s backpropagated to the neuron, per Equation 8.22[412]. The second term in the product,
Bai{B�i, is the gradient of the activation function with respect to changes in �i. This gradi-
ent is given by

Bai

B�i
�

#
0 if zi ¡ 0

zi otherwise
(8.50)

Once we have calculated the BE{B�i term, we update �i using the following update rule:27

�i — �i � ��
BE
B�i

(8.51)

where � is a learning rate.

27. The similarity of this update rule to the standard weight update rule is apparent if we compare this equation
with Equation 8.28[415].
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To summarize, although the inclusion of a non-linear activation function within neurons
in a network enables the network to represent non-linear mappings from inputs to out-
puts, the selection of which non-linear function we use can have a significant effect on the
training speed of a deep network. For many years the logistic function was the default
activation function used in neural networks. The primary reason was that it had such a
simple derivative. However, although its derivative is simple, that it has a max value of
0:25 contributes to the vanishing gradient problem in neural networks. This is why in re-
cent years most researchers have switched to using the rectifier function (or variants) as the
default activation function. Similar to the logistic function, the rectifier function saturates
in part of its domain, and this can lead to a dying ReLU dynamic in which a unit does
not activate for any of the training instances, and consequently the neuron is stuck in a
dead non-active state. The leaky ReLU and parametric ReLU were developed to address
this potential problem. However, the particular choice of which variant of ReLU to use is
network- and task-dependent, and, similarly to most hyper-parameters, needs to be decided
upon through experimentation. We noted in this section that a heuristic that is used to help
avoid saturating the rectifier function is to initialize the bias weights in the network to 0:1.
This heuristic highlights the interaction between how we choose to initialize the weights
in the network and how the error gradients flow during backpropagation. The next section
discusses this interaction in more detail and introduces some popular weight initialization
schemes for deep networks.

8.4.2 Weight Initialization and Unstable Gradients
So far in this chapter we have been initializing the bias terms and weights in our worked
examples by sampling from a uniform distribution with a range of r�0:5;�0:5s. The main
advantage of this initialization regime is its simplicity. However, using this regime also
allowed us to highlight some of the problems that arise when weights are set naively, such
as the problem of vanishing gradients, and dead neurons. If we wish to train a deep net-
work, we want the behavior of the network, in terms of the variance of the layer’s z values,
activations, and error gradients, to be similar across all the layers of the network. The
reason why keeping the behavior of a network across its layers similar is useful in creating
deep networks is that it allows us to add more layers to the network. However, naively ini-
tializing weights can result in unstable behavior within the dynamics of a network during
training, resulting in saturated activation functions (as a consequence of z values becoming
too large or small) or unstable error gradients.

The first way that a naive weight initialization can result in instability during training is
that the weights on the connections into a neuron are too large. Then the z value for the
neuron will be large, which can result in the activation function for the neuron becoming
saturated. For example, a large negative z value (� z   �2) or a large positive z value (�
z ¡ �2) will cause the logistic function to saturate, and a large negative z   0 will cause
the rectified linear function to saturate. The derivative of a saturated activation function is
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0 (or near 0). Consequently, saturated activation functions are problematic for gradient-
descent–based algorithms (such as backpropagation) because these algorithms work by
iteratively adjusting the weights using small increments that are scaled by the derivative
of the activation function. This means that neurons with saturated activation functions can
get stuck: their weights never change substantially during training because the incremental
updates are either 0 or are tiny. For example, recall Neuron 4 in the ReLU network in
Section 8.4.1[434]; this neuron was inactive for all the input examples and so the weights of
the neuron would never be updated, and it was therefore stuck in this dead state. A general
principle that we can derive from this is that neurons with saturated activation functions
learn slowly (or not at all), and so we should take care when initializing weights to avoid
saturating neurons. For most activation functions, avoiding saturation at initialization is
achieved by avoiding large (positive or negative) z values, which in turn are avoided by
initializing the weights to be close to 0.

The second way that a naive weight initialization can lead to instability during training is
that very small or large weights can result in unstable gradients. Equation 8.41[436] showed
how the chain of products used to backpropagate an error gradient through a network of
three neurons (i, j, and k) expands. Equation 8.52[449] shows the last line from Equation
8.41[436] and is annotated to explain how extreme weights can make gradients unstable. No-
tice that the error term BE{Bak is multiplied by two weights: w j;i and wk; j. If both these
weights are ¡ 1, then the error gradient term will get larger each time it is multiplied;
conversely, if both these weights are   1, then the error gradient term will get smaller
each time it is multiplied. The problem of gradients becoming too large is known as ex-
ploding gradients. Extreme cases of exploding gradients can result in numerical overflow
generating NaN (not-a-number) gradients. However, even when the gradients are defined,
very large gradients are a problem. The calculation of an error derivative with respect to a
weight is valid only for small changes in that weight. If the error gradient (the derivative)
becomes too large, then the weights will be updated by a large amount, and the resulting
changes in the output of a neuron, from one iteration to the next, will be so large that the
training will become unstable.28 Conversely, if weights are very small (too close to 0),
then the error gradient will tend to vanish, and the weight updates will be so small that
training the network will take an inordinate amount of time. The complementary problems

28. This is why we use a learning rate � to scale the weight updates. Scaling a weight update using a learning rate
works because the error derivative defines only the direction the weight update should take and not the update
size; and, scaling by the learning rate changes only the step size and not the direction of the update. However,
even when we use a learning rate to scale updates, large weights can still result in exploding gradients, which in
turn result in inappropriately large weight updates. We discussed the problem of large weight updates in Chapter
7[311] Section 7.4.2[334], in which we compared the effect of different learning rates and introduced the idea of
using learning rate decay. A relevant point from that discussion was that large weight updates could result in the
error actually increasing (see Figure 7.9[336]).
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of exploding and vanishing gradients can be understood as examples of the more general
challenge of unstable gradients

�i �w j;i � wk; j�looooomooooon
extreme weights

Ñ
unstable gradients

BE
Bak

�
Bak

Bzk
�
Ba j

Bz j
�
Bai

Bziloooooooooomoooooooooon
extreme weights

Ñ
saturated activations

Ñ
vanishing gradients

(8.52)

The third way in which naive weights initialization can cause unstable gradients arises
from the fact that the variance of the output of a weighted sum is a function of three factors:
the number of inputs to the weighted sum, the variance of the inputs, and the variance of
the weights. Consequently, if the relationship between the number of inputs to a weighted
sum and the variance of the weights is incorrect, then the result of a weighted sum can
have either a larger variance than the variance of its inputs or a smaller variance than the
variance of its inputs. This property of weighted sum calculations can result in unstable
dynamics in both the forward and backward pass of the backpropagation algorithm because
weighted sum calculations are used in both these phases; in the forward pass the calcula-
tion of the z value for each neuron is done using a weighted sum, and in the backward pass
the calculation of a � for a neuron includes the calculation of the term BE{Bak which is a
weighted sum of the �s backpropagated to that neuron (see Equation 8.22[412]). Later in this
section we return to the question of how to counteract this property of weighted sum cal-
culations. First, we will empirically show how different variations of weight initialization
can interact with this property of weighted sum calculations in order to introduce different
types instability into the internal training dynamics within a network.

To illustrate how adjusting the variance of the sample distribution used to initialize the
weights of a network affects the dynamics of the network during training, we will scale up
our example network so that the effects become apparent. Our new network is designed to
work with our scenario of predicting the electrical output of a combined cycle power plant:
the network has two neurons in the input layer for the inputs AMBIENT TEMPERATURE

and the RELATIVE HUMIDITY, and one neuron in the output layer for the target ELEC-
TRICAL OUTPUT. However, the network now has five fully connected hidden layers with
100 neurons in each layer. Figure 8.22[450] illustrates this new network architecture. Fur-
thermore, in order to isolate the effect of weight initialization on training dynamics from
the problem of saturated activation functions, the neurons in this network use a linear acti-
vation function that outputs the same value that it receives as input: ai � zi. The derivative
of this activation function with respect to z is always 1: each unit change in the value of
zi results in a unit change in the value of ai. Consequently, the gradients in this network
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Figure 8.22
The architecture of the neural network used in the weight initialization experiments. Note that the
neurons in this network use a linear activation function: ai � zi.

will not be affected by saturated activation functions.29 Apart from adjusting the network
architecture, we also increase the size of the training data to a sample of 100 examples, and
we standardize30 all the features to have a mean of 0 and a standard deviation of 1.31

With this extended network architecture, the question arises of how we will initialize the
weights. Although weight initialization is clearly important, at present relatively little is
known in principle about how to select a good set of initial weights. Most weight initial-
ization processes are based on heuristics that try to ensure that the weights are neither too
big nor too small. Different heuristics are often used for the bias terms and the weights.
Typically, bias terms are initialized to 0. However, in some instances we may wish to set
bias terms to non-zero values; for example, ReLUs saturate when z   0, and so to avoid
dead ReLUs, the heuristic of initializing the bias terms for ReLU units to a small positive

29. Note that using linear activation functions in this way means that the network as a whole implements a
linear function. However, in this instance, this simplification is appropriate because the purpose of this network
architecture design is to illustrate the effect of different weight initialization regimes rather than to be accurate on
the task.

30. For more on the standardization of inputs, see the discussion on data preprocessing at the start of the worked
example in Section 8.3.5[421].

31. In this case, we chose to standardize the features in the data rather than range-normalize them, in order to align
the data configurations used to generate the plots in this section with the assumptions made in the accompanying
mathematical analysis.
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number (such as 0:1) is sometimes used (Goodfellow et al., 2016, pp. 296–297). For the
discussion in this section, however, we assume that biases are initialized to 0.

Traditionally, the most frequent heuristic used to initialize the weights of a neural net-
work was randomly sampling values from a normal or uniform distribution with a mean
of 0. For example, we might sample the weights from a normal distribution with mean
� � 0:0 and � � 0:01. When weights are initialized in this way, we can control the
initial scale of the weights by controlling the variance of the normal distribution. Figure
8.23[453] illustrates the internal dynamics of the network shown in Figure 8.22[450] during the
first iteration of training if we initialize the weights of the network by sampling from a
normal distribution with � � 0:0 and � � 0:01 and pass our 100 examples through the
network as a single mini-batch. Each of the four figures in Figure 8.23[453] uses side-by-
side violin plots32 to illustrate the distribution of a network property (weights, weighted
sums, activations, or �s) across the five hidden layers in the architecture during the first
training iteration. Figure 8.23(a)[453] illustrates the distribution of weight values across each
of the five hidden laters immediately after initialization. The difference in the distribution
between hidden layer 1 (HL1) and the other hidden layers is caused by the fact that there
are only two inputs into each of the neurons in HL1 whereas there are 100 inputs into
each of the neurons in the other hidden layers. Consequently, the plot of values for HL1 is
generated from a much smaller sample of weight values than the plots for the other hidden
layers. Figure 8.23(b)[453] illustrates how the z values vary across the layers of the network
during the forward pass of the algorithm. It is clear that the variance of the distribution of
z values dramatically reduces as we move forward through the network, and this reduction
in the variance together with the fact that the median of the z values is 0 across all the
layers indicates that the z values are consistently getting smaller. This vanishing z values
dynamic is a result of the fact that the z values are calculated using a weighted sum, and in
this network configuration the relationship between the number of inputs to each weighted
sum and the variances of the weights is such that the variance of the z values is scaled down
at each layer in the network. We return subsequently to this vanishing z dynamic to explain
in more detail how it arises. The plot of activation values directly mirrors the plot of the z
values because the neurons are using a linear activation function. Figure 8.23(d)[453] clearly
illustrates vanishing gradients across layers in the network; that the � values are tending
toward 0 is indicated by the fact that the median of the � values across the layers is 0 but
the variance of � values rapidly shrinks as we move backward from the last hidden layer
(HL5) to the first layer (HL1). Remember that the neurons in this network all use a linear
activation function that has a derivative value of 1. This removes the scaling of the �s by

32. A violin plot is a box plot that has been augmented to show the probability density of a data at different
values in the range. The use of violin plots to illustrate the variance across layers within a network was inspired
by a blog post by Daniel Godoy (see https://towardsdatascience.com/hyper-parameters-in-action-part-ii-weight-
initializers-35aee1a28404).

https://towardsdatascience.com/hyper-parameters-in-action-part-ii-weight-initializers-35aee1a28404
https://towardsdatascience.com/hyper-parameters-in-action-part-ii-weight-initializers-35aee1a28404
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the derivative of the activation function, and so in this instance these vanishing gradients
are caused by both the repeated multiplication by small weights during backpropagation
and the fact that the calculation of a � for a neuron involves a weighted sum calculation33

that in this network configuration results in the variance of the �s shrinking as they are
backpropagated through the layers.

Given that the vanishing gradients exhibited in Figure 8.23(d)[453] are partly caused by the
repeated multiplication by small weights, we can try to avoid this problem by making the
network weights larger. Figure 8.24[454] illustrates what happens in the internal dynamics of
the network if we increase the standard deviation of the distribution from which we sample,
in this instance a normal distribution with � � 0:0 and � � 0:2. The impact of this larger
standard deviation on the weights in the network is evident if we compare Figure 8.23(a)[453]

with Figure 8.24(a)[454]: although the distribution of weights within each layer looks similar
in the two figures, the scales on the weights axes show that the weights plotted in Figure
8.24(a)[454] have a larger variance from the median 0, indicating that the weights tend to
be larger. It turns out that these slightly larger weight values can dramatically affect the
internal dynamics of the network during training. First, Figure 8.24(b)[454] shows that now
the z values consistently become larger as we move forward through the network; this is
a complete reversal of the vanishing z value dynamic shown in Figure 8.23(b)[453]. This
exploding z value dynamic is a problem because if we wish to avoid saturated activation
functions, we need to stop the z values in neurons taking an extreme value (where the con-
cept of extreme is dependent on the activation function). We subsequently explain what is
causing both these vanishing and exploding z values. Second, Figure 8.24(d)[454] shows that
the network now has an exploding gradient dynamic during backpropagation, with the
variance of � values rapidly increasing as they are backpropagated through the network.
As in the previous analysis, in this network the instability in gradient propagation (in this
instance exploding gradients) is not due to a scaling of the gradients by the derivative of the
activation function; the linear activation function used by the neurons in this network has a
derivative of 1, and so the gradients are not changed by this derivative during backpropaga-
tion. Instead, the exploding exploding gradients exhibited in Figure 8.24(d)[454] is caused by
a similar process to the vanishing z values plotted in Figure 8.23(b)[453] and the exploding
z values plotted in Figure 8.24(b)[454]; the connection between these three processes is that
they all involve a weighted sum.

To explain the relationship between the weighted sum calculation and the phenomena
of vanishing and exploding z and � values, we will analyze the relationship between the
variance of z for a single neuron in the first hidden layer of a network and the variance
of the weights used in calculating that z. This neuron receives nin inputs d1; : : : ; dnin (note
that for this discussion we ignore the bias input and weight, and we drop the layer pkq

33. Specifically, the calculation of the term BE{Bak (see Equation 8.22[412]).



(a) Weights by Layer

(b) Weighted Sum (z) by Layer

(c) Activations by Layer

(d) �s by Layer

Figure 8.23
The internal dynamics of the network in Figure 8.22[450] during the first training iteration when the
weights were initialized using a normal distribution with ��0:0; ��0:01.



(a) Weights by Layer

(b) Weighted Sum (z) by Layer

(c) Activations by Layer

(d) �s by Layer

Figure 8.24
The internal dynamics of the network in Figure 8.22[450] during the first training iteration when the
weights were initialized using a normal distribution with � � 0:0 and � � 0:2.
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superscript when we are discussing a single neuron). Consequently, this neuron will use
nin weights in its weighted sum w �  w1; : : :wnin ¡

z � pw1 � d1q � pw2 � d2q � � � � � pwnin � dninq (8.53)

The starting point for our explanation of the relationship between weighted sum calcula-
tions and vanishing and exploding z and � values is the Bienaymé formula from statistics,
which states that the variance of the sum of uncorrelated random variables is the sum of
their variance

var

�
n‚

i�1

Xi

�

�
n‚

i�1

var pXiq (8.54)

Assuming that all the weights and the inputs are independent and identically distributed,34

then the products in the weighted sum can be considered uncorrelated and we can state the
variance of z as follows:

varpzq � var ppw1 � d1q � pw2 � d2q � : : : pwnin � dninqq

�
nin‚

i�1

varpwi � diq (8.55)

Also assuming that each weight wi is independent of the corresponding input di, then
variance of each of these products is given:35

varpw� dq � rEpWqs2 varpdq � rEpdqs2 varpWq � varpWq varpdq (8.56)

Note that we have dropped the subscript on w because every wi is sampled from the
same distribution and hence has the same expected value and variance: EpWq is the ex-
pected value of a weight (i.e., the probabilistic average, or mean value, of the weights),
and varpWq is the shared scaler variance of all the weights. Similarly, we have dropped
the subscript from d because we are assuming that the inputs have been standardized to
have a mean of 0 and a standard deviation of 1, and so all the inputs have the same mean
and variance: Epdq is the mean value of an input, and varpdq is the shared scaler variance
of all the inputs. If we have sampled our weights from a distribution with mean 0, then
EpWq � 0, and if the inputs have been standardized, then Epdq � 0, and so the Equation
(8.56)[455] simplifies to

34. This is a naive assumption because we are making it to simplify the discussion irrespective of whether or not
it is true.

35. The variance of the product of two independent random variables X and Y is given by varpX � Yq �
rEpXqs2varpYq � rEpYqs2varpXq � varpXqvarpYq.



456 Chapter 8 Deep Learning

varpw� dq � varpWqvarpdq (8.57)

This identity permits us to rewrite the variance of z in our case study neuron

varpzq �
nin‚

i�1

varpwi � diq � nin varpWq varpdq (8.58)

Equation 8.58[456] states that the variance of z is equal to the variance of the inputs (varpdq)
scaled by nin varpWq. On one hand, this analysis reveals that the variance of z is dependent
on the number of inputs the neuron receives, nin; in general, the larger the number of
inputs, the larger the variance. However, it also tells us that the scaling of the variance of
z is dependent on the product nin varpWq. Consequently, we can counteract this scaling
by the number of inputs by setting varpWq � 1{nin; that is, by setting the variance of the
distribution that the weights for a neuron are sampled from to 1{nin. When varpWq � 1{nin

then nin varpWq � 1 and the variance of z for the neuron is solely dependent on the variance
of the inputs, which if standardized will have a variance of 1. In a fully connected network
nin is the same for all the neurons in a layer, and so for these networks we can set the
variance of the distribution from which the weights are sampled on a layer-by-layer basis.

This analysis explains the vanishing z values plotted in Figure 8.23(b)[453]. Recall that
this plot was generated using input data that had been standardized, and so varpdq � 1.
In this network, for the neurons in the first hidden layer npHL1q

in � 2 and for neurons in all
the other hidden layers nin � 100. Furthermore, the weights in the network were sampled
from a normal distribution with � � 0:0 and � � 0:01, and therefore the weights in each
layer have a variance of varpWq � �2 � 0:012 � 0:0001. This configuration means that
variance of z values across the neurons in layer HL1 is

varpZpHL1qq � npHL1q
in � varpWpHL1qq � varpdpHL1qq (8.59)

� 2� 0:0001� 1

� 0:0002

where varpZHL1q denotes the shared scalar variance of all the z values across the neu-
rons in layer HL1; nHL1

in is the number of inputs coming into each neuron in layer HL1;
varpWpHL1qq denotes the shared scalar variance of all the weights across the neurons in
layer HL1; and varpdpHL1q denotes the shared scalar variance of all the inputs to layer
HL1. When checking this against Figure 8.23(b)[453], note that a variance of �2 � 0:0002
is equivalent to a standard deviation of � � 0:014. That the neurons in this network use
a linear activation function means that varpZpHL1qq is also the variance of the activations
propagated forward to the next hidden layer, and so it is also the variance of the inputs
to the next layer: varpZpHL1qq � varpApHL1qq � varpdpHL2qq. For HL2 we know that
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npHL2q
in � 100 and varpWpHL2qq � 0:0001, and so we can now calculate the variance of z

across the neurons in layer HL2 as follows:

varpZpHL2qq � npHL2q
in � varpWpHL2qq � varpdpHL2qq (8.60)

� 100� 0:0001� 0:0002

� 0:000002

Essentially, in this network, because of the use of linear activations, the variance of z for
layer k in the network is the variance of z in the preceding layer, varpzpk�1qq, scaled by
npkqin � varpWpkqq. For all the remaining hidden layers in this network nin � 100, and so
this process of scaling the variance of z by 100 � 0:0001 � 0:01 will continue through
each of the subsequent hidden layers in this network. This is why the variance of z rapidly
decreases for each layer as we move forward through the network as shown in Figure
8.23(b)[453].

This analysis also explains the exploding z values plotted in Figure 8.24[454]. In this
instance the weights in the network were sampled from a normal distribution with � � 0:0
and � � 0:2, which means that for all k: varpWpkqq � �2 � 0:22 � 0:04. As a result, the
variance of the z values across the neurons in HL1 is varpZpHL1qq � 2� 0:04 � 0:08 (i.e.,
� � 0:283), and this is then scaled by 100� 0:04 � 4 at each of the other hidden layers in
the network. This is why the variance of the z values rapidly increases as we move forward
through the network as shown in Figure 8.24(b)[454].

A similar analysis also explains the exploding � values plotted in Figure 8.24(d)[454]. In
this case, however, the number of inputs to the weighted sum calculation within a neuron
during the backpropagation process is the number of neurons that the neuron propagated
its activation to during the forward pass (see Equation 8.22[412]). If we use nout to denote
this number, then for the neurons in the last hidden layer npHL5q

out � 1 because there is only a
single neuron in the output layer, and for the neurons in all the other layers in the network
nout � 100. As with the analysis of the scaling of the variances for z in the forward pass,
the scaling of the variance of the � values as they are backpropagated through each layer
k is a function of number of inputs to each neuron in the layer (here npkqout ) multiplied by
the variance of the weights for that layer varpWpkqq. The same weights are used during
the forward and backward passes of a single iteration of backpropagation. Consequently,
the weights used during the backpropagation of the �s plotted in Figure 8.24(d)[454] are
sampled from a normal distribution with � � 0:0 and � � 0:2, which means that for all
the layers varpWpkqq � �2 � 0:22 � 0:04. If for the purposes of this discussion we
naively assume that the variance of the � values backpropagated to the neurons in HL5 is
equal to 1, then we can expect the variance of the �s backpropagated to HL4 to be equal to
100�0:04�1 � 4. Furthermore, for each subsequent layer that the �s are backpropagated
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through, the variance will increase by a factor of 4, and it is this scaling that causes the
exploding gradients evident in Figure 8.24(d)[454].

We noted at the start of this section that in order to train a deep network, it is important to
keep the internal behavior of the network (i.e., the variance of the z values, activations, and
�s) similar across all the layers during training, because doing so allows us to add more
layers to the network while avoiding saturated units (by avoiding extreme z values) and
exploding or vanishing �s. The preceding analysis highlighted that the variance of output of
a weighted sum is dependent on the number of inputs to the weighted sum (be it nin during
forward propagation or nout during backward propagation). This observation is the basis for
a number of weight initialization regimes that adjust the variance of the distribution used to
sample the weights for a neuron based on its connections to other neurons in the network.
For example, we noted previously that in a fully connected feedforward network, if we set
varpWpkqq � 1{npkqin , then the variance of the z values in layer k is dependent solely on the
variance of the inputs to that layer; and if the inputs are standardized, then the variance
of the z values will not be scaled for that layer. If we do this when sampling the weights
for each of the layers in the network, then the variance of the z values across all the layers
will be stable. The different weight initialization regimes that have been developed vary,
depending on whether they take both nin and nout into account and the activation functions
with which they work best.

One of the best known of these weight initialization regimes is called Xavier initializa-
tion.36 There are a number of variants of Xavier initialization used in practice, but the
original version of Xavier initialization was designed for fully connected feedforward net-
works and worked on a layer-by-layer basis. The original version of Xavier initialization
considered both the forward activation through the network and the backward propaga-
tion of gradients, and so the calculation of the variance of the distribution from which the
weights for a layer are sampled takes both the inputs to a layer npkqin and the number of
outputs from a layer npkqout into account; it is calculated as follows:

varpWpkqq �
2

npkqin � npkqout

(8.61)

where varpWpkqq is the variance of all the weights in layer k; npkqin is the number of neurons
that feed inputs to layer k; and npkqout is the number of neurons that neurons in layer k connect
forward to (in a fully connected feedforward network npkqin is equal to the number of neurons

36. Xavier initialization is named after the first author (Xavier Glorot) of the paper that introduced this layer-
wise approach to weight initialization, Glorot and Bengio (2010). However, in some places the author’s second
name is used instead of his first name to describe the same initialization algorithm, so that it is sometimes called
Glorot initialization.
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in layer k� 1 and npkqout is the number of neurons in layer k� 1). Often in practice, however,
a simpler variant of Xavier initialization is used that just considers npkqin

varpWpkqq �
1

npkqin

(8.62)

Figure 8.25[460] illustrates the internal dynamics of the network in Figure 8.22[450] during
the first training iteration when the weights of each layer in the network are sampled from
a normal distribution with a mean of 0 and a variance calculated using Equation (8.62)[459].
Notice that the z values, activations, and �s have a relatively similar distribution across
each of the layers of the network; that is, the training of the network is not suffering from
either exploding z values (which would saturate activation functions if they were used) or
exploding or vanishing �s.



(a) Weights by Layer

(b) Weighted Sum (z) by Layer

(c) Activations by Layer

(d) �s by Layer

Figure 8.25
The internal dynamics of the network in Figure 8.22[450] during the first training iteration when the
weights were initialized using Xavier initialization.
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Xavier initialization has empirically been shown to often lead to faster training and is one
of the most popular weight initialization approaches in deep learning. It is generally used
when networks use logistic or tanh activation functions. However, a modified version of
this weight initialization heuristic is recommended when the network uses rectified linear
units (He et al., 2015). This weight initialization heuristic is known as He initialization
(or sometimes it is called Kaiming initialization) and is defined as follows:

varpWpkqq �
2

npkqin

(8.63)

Sometimes a blend of Xavier and He initialization is used. For example, in a network
using ReLUs, Xavier initialization (Equation (8.62)[459]) could be used to define the variance
for the weights in the first layer, because the rectified function has not been applied to the
inputs, and then He initialization (Equation (8.63)[461]) could then be used for the later layers
in the network (He et al., 2015). Following this strategy, for a fully connected three-layer
ReLU network with 100 inputs, 80 neurons in the first hidden layer, 50 neurons in the
second hidden layer, and 5 neurons in the output layer, the weight matrix for each layer
would be initialized as shown in Equation (8.64)[461], where the notation Wpkq s N p�; �q
indicates that the values in the weight matrix for layer k should be sampled from a normal
distribution with mean � and standard deviation �.

Wp1q sN

�

0;

c
1

100

�

Wp2q s N

�

0;

c
2
80

�

Wp3q s N

�

0;

c
2
50

�

(8.64)

Figure 8.26[462] illustrates the internal dynamics of the network in Figure 8.22[450] during
the first training iteration when ReLUs are used and the weights for neurons in HL1 are
sampled using Xavier initialization and the weights for the neurons in the later layers are
sampled using He initialization. The effect of the rectified linear activation function is
evident in Figure 8.26(c)[462], where the activations are all positive. Notice as well that the
distribution of the z and � values is relatively stable across the layers (see Figure 8.26(b)[462]

and Figure 8.26(d)[462]). This stability in the internal dynamics of the network, particularly
with respect to the gradients, is likely to result in the network learning much faster than
networks affected by vanishing or exploding gradients, and it is a result of careful weight
initialization.



(a) Weights by Layer

(b) Weighted Sum (z) by Layer

(c) Activations by Layer

(d) �s by Layer

Figure 8.26
The internal dynamics of the network in Figure 8.22[450], using ReLUs, during the first training itera-
tion when the weights were initialized using He initialization.
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8.4.3 Handling Categorical Target Features: Softmax Output Layers and Cross-
Entropy Loss Functions

All the examples that we have looked at so far have been regression problems. To create
a neural network that can predict a multi-level categorical feature, we make three adjust-
ments:

1. we represent the target feature using one-hot encoding;
2. we change the output layer of the network to be a softmax layer; and
3. we change the error (or loss) function we use for training to be the cross-entropy

function.

A one-hot encoding is a vector-based representation of a categorial feature value.37 A
one-hot vector has one element per level of the categorical feature. For example, if a feature
can take three levels (e.g., low, medium, high), then the vector would have three elements.
It is known as a one-hot representation because at most one element in the vector will have
the value 1 and all the other elements will be 0, with the value of the feature indicated
by whichever element is 1. For our three-level categorical feature we might decide that
x1; 0; 0y indicates low, x0; 1; 0y indicates medium, and x0; 0; 1y indicates high. When we
are representing the target feature in a dataset using a one-hot encoding, then for each
instance in the dataset there is a one-hot vector encoding the level of the target for that
instance. Table 8.13[464] lists the power plant dataset after the target feature ELECTRICAL

OUTPUT has been converted to a three-level categorical feature, by applying binning to
the range-normalized values (low⁄ 0:33, medium⁄ 0:66, high¡ 0:66), and then encoded
using one-hot encoding.

In a softmax output layer there is a single neuron for each level of the target feature.
For example, if the prediction task is to predict the level of a categorical feature that can
take three levels (e.g., low, medium, high), then the output layer of the network would
have three neurons. The activation function used by the neurons in a softmax layer is the
softmax function; for an output layer with m neurons, the softmax activation function is
defined as follows:

’sm pziq �
ezi

°m
j�1 ezm

(8.65)

The softmax activation function normalizes the z scores for a layer of neurons so that the
sum of the activations of the neurons is 1. Hence using the softmax function, the activation
of each neuron is dependent on the size of its z value relative to the z values of the other
neurons in the output layer. The softmax function will always return a positive value for
every neuron because ez is always positive, even if z is negative. Another useful property

37. We can also use one-hot encodings to represent categorical descriptive features (see Section 7.4.3[336]).
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Table 8.13
The range-normalized hourly samples of ambient factors and full load electrical power output of a
combined cycle power plant, rounded to two decimal places, and with the (binned) target feature
represented using one-hot encoding.

ID AMBIENT TEMPERATURE RELATIVE HUMIDITY Electrical Output
�C % low medium high

1 0.04 0.81 0 0 1
2 0.84 0.58 1 0 0
3 0.50 0.07 0 1 0
4 0.53 1.00 0 1 0

Table 8.14
The calculation of the softmax activation function ’sm over a vector of three logits l.

l0 l1 l2
l 1.5 -0.9 0.6
eli 4.48168907 0.40656966 1.8221188°

i eli 6.71037753
’smpliq 0.667874356 0.060588195 0.27153745

of ez is that e0 is 1; as a result, even in the unlikely event that all the zs are 0, we avoid the
problem of a division by 0, and each neuron will have an activation of 1{m.

In the context of a softmax layer, the non-normalized z values are often referred to as
logits. Therefore, to align with this general terminology, for this discussion we switch
from discussing z values for a neuron to discussing the logit of the neuron. We use the
notation l to denote a vector of logits for a layer of neurons, and li to indicate the logit
for the ith neuron in the layer. Using the notation ’sm to denote the softmax activation
function, ’smplq denotes applying the softmax function to the vector of logits l, and ’smpliq
refers to the calculation of the softmax value for the ith logit, that is, the output activation
of the i neuron in the layer. Note that ’smpliq can be understood as equivalent to ’sm pziq
in Equation (8.65)[463]; the notational differences arise because we are now specifying the
parameter as an index of a logit rather than specifying the z score directly. Table 8.14[464]

illustrates the calculation of the softmax function for a vector of three logits (i.e., three z
values),

The fact that the softmax function returns a normalized set of positive values across
the layer allows us to interpret the activation of each neuron in the layer as a probability.
There is one neuron in an output softmax layer per target feature level, and so the softmax
function returns one probability per level. The natural consequence of this is that using
a softmax layer, each neuron is trained to predict the probability of one of the levels of
the categorical target feature. The final prediction is then made by taking the feature level
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Figure 8.27
A schematic of a feedforward artificial neural network with a three-neuron softmax output layer.

whose neuron predicts the highest probability. Figure 8.27[465] illustrates a fully connected
feedforward neural network with a softmax output layer with three neurons for our three-
level (low, medium and high) target feature; the dotted rectangle around the softmax layer
highlights that the activation function ’ normalizes the logit values across the neurons in
the layer.

The cross-entropy error (or loss) function is generally used in contexts in which the
output of a network can be interpreted as a probability distribution over a set of exclu-
sive categories. In the general scenario of a model predicting a distribution over a set of
categories, the cross-entropy loss function is defined as

LCE
�
t; P̂

�
� �

‚

j

t j ln
�
P̂ j
�

(8.66)

where LCE is the cross-entropy loss; t is the target feature represented using one-hot encod-
ing (the target distribution over the categories); P̂ is the distribution over the categories that
the model has predicted; ln is the natural logarithm function; and j is an index over both
the target distribution t and the predicted distribution P̂. This loss function is called cross-
entropy because in information theory cross-entropy is used to describe a measure of the
difference in nats between two probability distributions over the same set of events. The
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information theory basis for this function can be seen in the similarity between Equation
(8.66)[465] and the equation for Shannon’s entropy, Equation (4.1)[125].

The cross-entropy loss measures the dissimilarity between the true distribution t and the
predicted distribution P̂. In situations where the true distribution t is encoded as a one-hot
vector, the cross-entropy loss function can be simplified to:

LCE
�
t; P̂

�
� � ln

�
P̂�

�
(8.67)

P̂� indicates the predicted probability for the true category (i.e., the category encoded as a
1 in the one-hot encoded vector t). To illustrate this simplification with a case study, we
assume that our distribution is over three categories, and the target distribution is encoded
as a one-hot vector. Now if the target distribution over a particular instance is t � r0; 1; 0s
(i.e., the second category is the correct category), then the cross-entropy summation in
Equation (8.66)[465] expands as follows:

LCE
�
t; P̂

�
� �

‚

j

t j ln
�
P̂ j
�

� �
��

t0 ln
�
P̂0
��
�
�
t1 ln

�
P̂1
��
�
�
t2 ln

�
P̂2
���

� �
��

0 ln
�
P̂0
��
�
�
1 ln

�
P̂1
��
�
�
0 ln

�
P̂2
���

� �1 ln
�
P̂1
�

(8.68)

Equation (8.68)[466] shows that all the terms that involve a 0 element from t disappear, and
the loss simplifies to the negative log of the predicted probability for the true class.

To understand why Equation (8.67)[466] is an appropriate measure to use as the loss func-
tion for categorical training, we should first remember that the loss function is the function
that we wish to minimize during training, and so we wish the loss function to return a large
value when there is a large difference between the true and predicted probability distribu-
tions, and a small value when t and P̂ are similar or identical. For this discussion it may
be useful to quickly refer to Figure (4.6)[125] to see a plot of how the negative log of a prob-
ability changes as the probability changes (Figure (4.6)[125] shows this plot for binary logs,
but the general shape of the plot is similar for natural logs). For probabilities near 0, the
negative log returns a large number, and for probabilities near 1 the negative log returns a
value near 0. Now, imagine a scenario in which the model makes a correct prediction and
the maximum probability in P̂ is assigned to the correct category. In this scenario, then P̂�
will be relatively close to 1 (and the better the model’s prediction the closer to one P̂� will
be). As P̂� approaches 1, then the negative log of this probability approaches 0. In other
words, the loss of the model reduces as the model’s predictions improve. In the comple-
mentary scenario, the model makes an incorrect prediction and the maximum probability
in P̂ is assigned to the incorrect category. Because a probability distribution must sum to 1,
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an increase in one probability results in a decrease in one or more of the other probabilities
in the distribution. Hence if the model assigns the maximum probability mass to an incor-
rect category, this will reduce P̂� and, as Figure (4.6)[125] illustrates, this will result in the
negative log of the P̂� rapidly increasing. This is exactly the behavior we desire from a loss
function: small values for correct predictions and large values for incorrect predictions.

Using Equation (8.67)[466] we can now calculate a loss for the network’s predictions over
a set of exclusive categories. However, to train the network we must backpropagate this
loss through the network. To do this we must adjust the derivatives used in the calculation
of the �s for the output neurons because we have changed the activation function used by
these neurons. However, we do not need to change anything with regard to the calculation
of the �s for the hidden neurons; once we have updated the calculation of the �s for the
output neurons, then the error gradients can flow back through the network as previously.

Equations (8.69)[467] to (8.72)[467] step through the definition of the � k for a neuron in a
softmax output layer when a cross-entropy loss function is used. Equation (8.69)[467] is
a restatement of Equation (8.13)[408], which provides the general definition of the � for a
neuron k as the partial derivative for the error (or loss) of the network with respect to the
weighted sum of neuron k: BE{Bzk. Equation (8.70)[467] restates this definition in terms
of the error of the network as calculated using the cross-entropy loss function and also
taking the partial derivative with respect to a change in the logit for neuron k in the output
layer. Equation (8.71)[467] specifies that the cross-entropy loss for the network is dependent
solely on the negative natural log of the probability of the correct prediction, per Equation
(8.67)[466]. The logit for an output neuron k, lk, can only indirectly affect the loss in terms of
how it changes the predicted probability for the true category: P̂�. Equation (8.72)[467] uses
the chain rule to make this explicit by defining � k as the product of the rate of change of the
negative natural log of the predicted probability of the true category with respect to changes
in that probability and the rate of change of the predicted probability of the true category
with respect to changes in the logit (we encountered this expansion step previously in a
different guise; recall that BE{Bzk � BE{Bak � Bak{Bzk).

� k �
BE
Bzk

(8.69)

�
BLCE

�
t; P̂

�

Blk
(8.70)

�
B � ln

�
P̂�

�

Blk
(8.71)

�
B � ln

�
P̂�

�

B
�
P̂�

� �
B
�
P̂�

�

Blk
(8.72)
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From calculus, the derivative of the natural log is

d ln x
dx

�
1
x

(8.73)

Using this identity, we can define the first term in the product in Equation (8.72)[467]

B � ln
�
P̂�

�

B
�
P̂�

� � �
1

P̂�
(8.74)

This is simply 1 divided by the model’s predicted probability for the correct category.
The second term in the product in Equation (8.72)[467] is the rate of change of the predicted

probability for the true category with respect to the logit for one of the neurons in the
softmax layer. In other words, this is the rate of change of the softmax calculation for the
activation of the output neuron for the true class with respect to the logits of a neuron in
the output layer. There are two cases that we need to handle with this derivative (1) when
lk is the logit for the neuron whose activation is the probability of the correct category (i.e.,
k � �), and (2) when lk is the logit for a neuron whose activation is the probability for one
of the incorrect categories (i.e., k � �).

The reason why we need two different derivatives for the softmax function to handle
these two cases is that when we are taking the derivative with respect to changes in the
logit for the neuron whose activation is P̂� (i.e. k � �), then adjusting logit k changes
both the numerator and the denominator in the softmax for the calculation of P̂�, whereas
in the case that the logit with respect to which we are taking the derivative is for a neuron
corresponding to another category, changing the logit changes only the denominator of the
softmax. We do not derive the derivatives of the softmax for each of these cases, as that
is relatively convoluted, involving in quotient rule from calculus; instead, we simply state
them

B
�
P̂�

�

Blk
�

#
P̂�

�
1� P̂k

�
if k � �

�P̂�P̂k otherwise
(8.75)

We can now define the calculation of the � for a neuron in a softmax output layer using
a cross-entropy loss function as follows:
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� k �
B � ln

�
P̂�

�

B
�
P̂�

� �
B
�
P̂�

�

Blk
(8.76)

� �
1

P̂�
�
B
�
P̂�

�

Blk
(8.77)

� �
1

P̂�
�

#
P̂�

�
1� P̂k

�
if k � �

�P̂�P̂k otherwise
(8.78)

�

#
�
�
1� P̂k

�
if k � �

P̂k otherwise
(8.79)

Equation (8.76)[469] is taken from Equation (8.72)[467]; the step to Equation (8.77)[469] uses
Equation (8.74)[468]; the rewrite in Equation (8.78)[469] uses Equation (8.75)[468]; and finally
Equation (8.79)[469] is the simplification we get when the terms cancel out after the product.
Equation (8.79)[469] states that � for the neuron in the softmax output layer whose activa-
tion is the predicted probability for the correct category as specified by a 1 in the one-hot
encoded target vector using the cross-entropy loss function is

� k�� � �
�
1� P̂k

�
(8.80)

For each of the other neurons in the softmax output layer, their � is simply their activation

� k�� � P̂k (8.81)

We illustrate the calculation of �s for neurons in a softmax output layer using the mini-
batch of examples listed in Table 8.13[464] and the network architecture shown in Figure
8.27[465]. Figure 8.28[470] illustrates the forward pass for this mini-batch through this net-
work. Note that we are assuming the neurons in the hidden layers are ReLUs and that the
final layer is a softmax layer. To highlight this change in activation functions between the
layers, we have labeled the ’ symbol in the figure with the name of the activation function
it represents. The weights in this network have been initialized so that all the bias terms
are equal to �1:0 and the other weights are listed in the weight matrices shown in Figure
8.28[470]. Further, to aid in presentation we have rounded the activations for each layer to
four decimal places and used these rounded activations as inputs to the later calculations.
Focusing on the softmax activations for the output layer for all four examples, all three
neurons output similar values; this is not surprising given that this is a randomly initialized
network. However, for the purpose of illustration it is worth noting that the model would
return the class label with the highest probability for each example; hence the model would
return a prediction of low for all four examples in the mini-batch.
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Table 8.15
The calculation of the softmax activations for each of the neurons in the output layer for each example
in the mini-batch, and the calculation of the � for each neuron in the output layer for each example
in the mini-batch.

d1 d2 d3 d4

Per Neuron Per Example logits
Neuron 8 0.107653 0.106456 0.106093 0.107395
Neuron 9 0.099377 0.098249 0.098227 0.098955
Neuron 10 0.103000 0.104083 0.1040060 0.103460
Per Neuron Per Example eli

Neuron 8 1.113661238 1.112328983 1.111925281 1.11337395
Neuron 9 1.104482611 1.103237457 1.103213186 1.104016618
Neuron 10 1.108491409 1.109692556 1.109607113 1.109001432°

i eli 3.326635258 3.325258996 3.324745579 3.326392
Per Neuron Per Example Softmax Activations
Neuron 8 0.3348 0.3345 0.3344 0.3347
Neuron 9 0.3320 0.3318 0.3318 0.3319
Neuron 10 0.3332 0.3337 0.3337 0.3334
Per Neuron Target One-Hot Encodings
Neuron 8 0 1 0 0
Neuron 9 0 0 1 1
Neuron 10 1 0 0 0
Per Neuron Per Example �s
Neuron 8 0.3348 -0.6655 0.3344 0.3347
Neuron 9 0.3320 0.3318 -0.6682 -0.6681
Neuron 10 -0.6668 0.3337 0.3337 0.3334

Table 8.15[471] steps through the calculations that bring us from the logits for each of the
neurons for each example to the corresponding softmax activations and then to the �s for
each neuron for each example. Table 8.15[471] is split into five segments with each segment
containing information on Neurons 8, 9, and 10, and the calculations flow from the top of
the table to the bottom. The top segment of Table 8.15[471] lists the logit values for Neurons
8, 9, and 10 for each of the examples in the mini-batch (these logits are taken directly from
Figure 8.28[470]). The second segment in Table 8.15[471] lists e raised to the power of the
corresponding logit (eli ) and also the per example sum of these values (

°
i eli ). The third

segment lists the per neuron and per example softmax activations; these values are calcu-
lated by dividing the eli value in the corresponding cell in the second segment by the sum
for that column

°
i eli . For example, the calculation of the softmax activation for Neuron

8 and example d1 is 1:113661238{3:326635258 � 0:3348. These softmax activations are
also shown in Figure 8.28[470]. The bottom two segments of the table illustrate the calcula-
tion of the �s for each neuron for each example. The fourth segment of the table lists the
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per example one-hot encoding of the target for each example in the mini-batch. These 0
and 1 values tell us which equation to use in order to calculate the corresponding � (be-
low) based on the corresponding softmax activation (above). Whenever the target one-hot
encoding is a 0, we use Equation (8.81)[469] to calculate the �; and whenever it is a 1, we
use Equation (8.80)[469] to calculate the �. For example, for d1 the target one-hot encoding
for Neuron 8 is 0, and as a result we use Equation (8.81)[469] to calculate the �; this entails
simply copying the softmax activation. However, for the same example, the target one-hot
encoding for Neuron 10 is 1, and so we use Equation (8.80)[469] to calculate the � for neuron
10 in this example. The result of this calculation is �0:6668.

Once the �s for the output neurons have been calculated, the backpropagation of the �s
through the network and the updating of the weights progresses as in the previous exam-
ples. For example, to update weight w9;6 we would first calculate �w9;6 using Equation
(8.29)[416]. Equation (8.82)[472] shows this calculation with the per example �s for neuron 9
taken from Table 8.15[471], and the activations for Neuron 6 are from Figure 8.28[470]

�w9;6 �
4‚

j�1

� 9; j � a6; j

� p0:3320� 0:1145q � p0:3318� 0:1211q

� p�0:6682� 0:1167q � p�0:6681� 0:1195q

� 0:038014� 0:04018098��0:07797894��0:07983795

� �0:07962191 (8.82)

The weight can then be updated using the batch weight update rule (see Equation (8.30)[416]),
where we assume a learning rate of � � 0:01, as shown in Equation (8.83)[472]

w9;6 � w9;6 � �� �w9;6

� �0:07� 0:01��0:07962191

� �0:07� p�0:000796219q

� �0:069203781 (8.83)

8.4.4 Early Stopping and Dropout: Preventing Overfitting
Deep learning models can have millions of parameters, and this complexity makes them
prone to overfitting. Two of the most commonly used methods to avoid overfitting in
neural networks are early stopping and dropout (Srivastava et al., 2014).

The fundamental idea underpinning early stopping is that we can identify the point
during an iterative training algorithm (such as backpropagation) when a model begins to
overfit the training data as being the point when the error of the model on a validation
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dataset begins to increase. This idea of using a validation set to identify when overfitting
occurs is illustrated in Figure 9.3[542] in Chapter 9[533] in which we discuss the use of a
validation set in the general setting of designing a model evaluation experiment. Building
on this idea, the early stopping algorithm uses the performance of the model on a validation
dataset to determine when to stop training the model. To apply early stopping, we first set
aside a portion of the training data as a validation set. Then during training after each
iteration (or number of iterations), the current model is run on the validation set and its
error is recorded. If the error on the validation starts to increase, then we should stop
training. One slight complication of this approach is that during training, the error of a
model can fluctuate even without the occurrence of overfitting, for example if the learning
rate is too high; therefore, applying a strict rule of stopping training immediately after the
first time the validation error increases can be too conservative a criterion for stopping.
Consequently, it is standard to use a patience parameter to control early stopping. The
patience parameter is a predefined threshold (i.e., it is a hyper-parameter) that specifies the
number of times in a row we will permit the error on the validation set to be higher than the
lowest recorded so far before we stop training. For example, if the patience parameter is set
to 10 and we test the model on the validation set after every iteration, then we would allow
training to continue until we observe 10 successive validation errors higher than the lowest
recorded so far at which point our patience would run out and we stop training. Note that
each time we observe a decrease in the best validation error, we reset the patience count
to zero. Using a patience parameter allows the validation error to fluctuate a bit during
training while still allow training to progress; it is only when we have observed a clear
trend over multiple iterations of a relatively high validation error that we stop training.
Naturally, when our patience runs out, we roll back training to the version of the model
that produced the lowest validation set error. Doing this requires us to store the parameters
of the model each time we observe a drop in the validation error. Algorithm 6[474] lists the
early stopping algorithm. We recommend using early stopping as the default strategy to
control when to stop training a neural network.

Another simple and very effective technique to stop overfitting is called dropout. When
we use dropout, each time we load a training example we choose a random set of neurons
from the input and hidden layers and drop (or delete) them from the network for that
training instance. We then do the forward and backward pass of the backpropagation and
the weight update as usual for that example; the distinction is just that these processes
will be run on the smaller network that remains after the selected neurons were dropped.
For example, the weights connected to neurons that are dropped for an example do not
receive updates on that example. Then for the next example we randomly choose a new
set of nodes to drop and then do backpropagation as usual for this new example, but this
time on the new reduced version of the network. In fact, not only is a different randomly
selected set of neurons dropped for each training example, but a different set of neurons is
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Algorithm 6 The early stopping algorithm

Require: p the patience parameter
Require: D� a validation set

1: bestValidationError � 8
2: tmpValidationError � 0
3: � � initial model parameters
4: �best � 0
5: patienceCount = 0
6: while patienceCount   p do
7: � � new model parameters after most recent weight update
8: tmpValidationError = calculateValidationError(�, D�)
9: if bestValidationError ¥ tmpValidationError then

10: bestValidationError = tmpValidationError
11: �best � �

12: patienceCount = 0
13: else
14: patienceCount = patienceCount + 1
15: end if
16: end while
17: return Best Model Parameters �best

randomly selected for each presentation of a training example. Consequently, for a given
example, a different set of neurons is dropped each time it is presented to the network (i.e.,
for each epoch). Figure 8.29[475] illustrates how different small networks are generated for
each training example by randomly dropping neurons from the original large network.

The most popular method for implementing dropout is known as inverted dropout.38

When we use inverted dropout we drop a neuron by multiplying the activation of the neuron
during the forward pass by zero. This means that its activation does not flow forward
through the network, and hence it has no effect on the output of the model. Also, during
backpropagation no error gradients flow back through the dropped neurons; their �s are
set to 0. This makes sense because their activation will not have been used to generate
the output of the model and so will not have contributed to the error of the model. As a
consequence, the weights on a dropped neuron won’t receive any weight updates for that
example.

Algorithm 7[476] provides a pseudocode definition of how the forward and backward
passes of the backpropagation algorithm are modified to include inverted dropout. This

38. This explanation of inverted dropout is inspired by a description given in Andrew Ng’s Coursera course; the
video is available at https://www.youtube.com/watch?v=D8PJAL-MZv8&feature=youtu.be.

https://www.youtube.com/watch?v=D8PJAL-MZv8&feature=youtu.be
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Figure 8.29
An illustration of how different small networks are generated for different training examples by
applying dropout to the original large network. The gray nodes mark the neurons that have been
dropped from the network for the training example.

implementation works on a layer-by-layer basis. During the forward pass for each input
and hidden layer in the network a vector DropMask of 0 or 1 values is sampled from a
Bernoulli distribution with probability � that a sampled value will be 1. The length of
DropMask should be equal to the number of neurons in the layer (see Line 2[476]). In Line
3[476] the elementwise multiplication of the vector containing the activations of the neurons
in the layer and the DropMask vector is performed (we use the notation d to denote an
elementwise product).39 In the updated activation vector aplq1 generated by this multiplica-
tion, the activations for all the neurons whose position in the activation vector correspond
with a 0 value in DropMask will be 0. Next, in Line 4[476] each element in new activation
vector aplq1 is divided by the parameter �. The name inverted dropout comes from this
division of the non-zeroed activations by the � parameter. The reason we perform this
division by � is to scale up the non-zero activations in the new activation vector so that
the weighted sum calculations in the next layer are of a similar magnitude to what they
would have been if none of the activations had been set to 0. The benefit of this is that the
z values for the neurons in the next layer will be of a similar magnitude during training,
when we are using dropout, as they will be during testing/inference (when we do not use
dropout). The activation vector created by this division aplq2 is the activation vector prop-
agated forward to the next layer. During the backward pass, once we have calculated the
�s for the neurons in a layer, we multiply each neuron’s � by the corresponding element
the DropMask vector that was created for that layer during the forward pass (Line 7[476]).
As a result of this multiplication for any neuron whose activation in the forward pass was
set to 0 by the multiplication with DropMask, the � value of the neuron will also be set to

39. This operation is sometimes called the Hadamard product (see Appendix D[771]).
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0. This ensures that no error gradients flow back through the neurons that were dropped
for this example. We then use the updated �s to backpropagate the error gradients to the
preceding layer and also for the weight update calculations.

Algorithm 7 Extensions to Backpropagation to Use Inverted Dropout

Require: � probability that a neuron in a layer will not be dropped
� Forward Pass

1: for each input or hidden layer l do
2: DropMaskplq � pm1; : : : ;msizeplqq � Bernoullip�q
3: aplq1 � aplq d DropMaxplq

4: aplq2 � 1
�
aplq1

5: end for
� Backward Pass

6: for each layer l in backward pass do
7: �plq � �plq d DropMaxplq

8: end for

Once the model has been trained we do not use dropout. Using dropout during inference
would introduce random noise to the inference process. Dropout is both simple and very
effective, and applying dropout is standard practice in most deep learning research today.
The � parameter is a hyper-parameter that is preset before training. Typical values for �
are 0:8 for the input layer, and 0:5 for hidden layers (Goodfellow et al., 2016, p. 253).

Randomly dropping neurons from a network during training may seem like a surprising
way to improve the performance of the model. There are a number of perspectives on un-
derstanding how dropout helps with overfitting. One way to understand how dropout helps
is to recognize that because we use a different network on each training example, we are in
effect training an ensemble of a very large number of smaller networks rather than training
a single large model, and these smaller networks are less complex and so are less likely
to overfit. Another way to understand how dropout helps is to notice that the training data
looks different at every epoch because each time an example is presented to a network a
different set of input neurons is set to 0. This variation in the data stops the model from
memorizing the training data and forces it to learn patterns that generalize over sets of fea-
tures rather than relying on a particular feature (or small subset of features). The fact that
more features contribute to the predictions made by the model has the effect that the weight
updates get spread out across more weights because more weights will have been involved
in the prediction and hence will have contributed to the error. Spreading out the weight
updates means that the weight will in general remain smaller. Keeping all the weights in
a network small helps to keep a model’s predictions relatively stable with respect to small
changes in the input: if a model has some relatively large weights, then the model can be
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very sensitive to small changes in features to which these weights are applied. Models
whose output changes drastically in response to small changes in the input are likely over-
fitting the data, because a small amount of noise in the input data can have a large effect
on the outputs generated by the model. The approach of avoiding overfitting by modifying
the learning algorithm in order to generate models that are stable with respect to changes
in the input is generally known as regularization. Hence dropout can be understood as a
regularization technique that improves the stability of the resulting model. Indeed, early
stopping can also be understood as a regularization technique because it limits the number
of updates to the weights in a model and by so doing keeps individual weights from getting
too large.

8.4.5 Convolutional Neural Networks
An artificial neural network is built up by connecting lots of simple processing units, and
therefore neural networks have a very flexible structure. This flexibility in the network
design space can be exploited to tailor a network to process different types of data. For
example, rather than using full connectivity between layers (as we have done so far), we
might decide to constrain the connectivity between layers so that each neuron in one layer
connects only to a subset of the neurons in the next layer. Done correctly, tailoring the
architecture of a network can help the network to learn a particular task by guiding the
network to learn useful functions for the target task.

In this section we motivate and explain the key architectural characteristics of convolu-
tional neural networks (or CNNs) which are primarily tailored to process grid like data,
such as image data. The CNN architecture was originally applied to handwritten digit
recognition, and much of the early work on CNNs was based on the MNIST (pronounced
em-nist) dataset40 (Le Cun et al., 1998). The dataset contains 60,000 training and 10,000
test images of handwritten digits from approximately 250 writers. Each image contains a
single digit that has been size-normalized and centered. Figure 8.30[478] shows some exam-
ples of the images from the dataset. Each image is labeled with the digit it contains, and
the prediction task is to return the correct label for each image. Each image is grayscale
and can be represented as a grid of 28 by 28 integers in the range r0; 255s where a 0 value
indicates a white pixel, a value of 255 indicates a black pixel, and numbers between 0 and
255 indicate shades of gray. We use this handwritten digit recognition task as the basis for
our examples in this section. In particular, we use the 6-by-6 matrix grayscale encoding of
a 4, shown in Equation (8.84)[478] as the input pattern for our examples

40. NIST is the acronym for the institute that collected the data, the National Institute for Standards and Technol-
ogy, and M indicates that the original data has been modified to make it easier to use for machine learning. The
MNIST dataset is available at http://yann.lecun.com/exdb/mnist/.

http://yann.lecun.com/exdb/mnist/
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Figure 8.30
Samples of the handwritten digit images from the MNIST dataset. Image attribution: Josef Step-
pan, used here under the Creative Commons Attribution-Share Alike 4.0 International license
https://creativecommons.org/licenses/by-sa/4.0) and was sourced via Wikimedia Commons https:
//commons.wikimedia.org/wiki/File:MnistExamples.png.
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Convolutional neural networks have three distinctive characteristics:

1. local receptive fields;
2. weight sharing; and
3. sub-sampling (pooling).

https://creativecommons.org/licenses/by-sa/4.0)
https://commons.wikimedia.org/wiki/File:MnistExamples.png
https://commons.wikimedia.org/wiki/File:MnistExamples.png


8.4 Extensions and Variations 479

8.4.5.1 Local receptive fields and filters The concept of local receptive field comes
from research on visual perception in cats. In the early 1960s Hubel and Wiesel carried
out a series of experiments in which they used probes to track the neural activity in the
brains of sedated cats while simple visual features such as horizontal or vertical lines of
light were projected onto different locations on a dark screen (Hubel and Wiesel, 1962).
They discovered neurons in the brains of cats that activated only when a visual feature
appeared at specific locations in the visual field. For a given neuron to react, a specific
visual feature had to occur at a particular location in the visual field; if the feature was
moved to a different location in the visual field, then the neuron did not activate, nor did
it activate if a different feature occurred at its target location. Furthermore, some groups
of neurons reacted to the same visual feature, but each neuron in the group reacted when
the feature occurred at different locations; for example, one neuron would react to the
feature if it occurred in the bottom-right of the screen whereas a different neuron would
react if the feature occurred in the top-left of the screen. Together this set of neurons
could determine whether the visual feature occurred anywhere in the screen. By having
multiple such groups of neurons, in which each group contained neurons that specialized
in identifying a particular visual feature and that as a whole inspected the entire visual field
for the target feature, the cat was able to perceive multiple different features occurring at
different locations at the same time. However, each of the neurons in each group only
inspected a local region of the visual field for a single feature, and these local regions
became known as local receptive fields. The advantage of a local receptive field is that
for a given neuron, the learning task is simplified to learning whether a particular feature
occurs in a specific local region rather than learning to activate when one or more features
occur anywhere in the visual field.

Inspired by these results, neural network research started to design networks in which
neurons in one layer received input only from a localized subset of neurons in the preceding
layer, that is, each neuron had a local receptive field in the preceding layer. Using local
receptive fields, neurons can learn to extract low-level features in the input (such as a
segment or an oriented edge in an image), and these features can be passed on to neurons
in later layers that combine these low-level features into more complex features. Figure
8.31[480] illustrates the concept of a local receptive field in a neural network. In this figure,
the input to the network is a 6-by-6 matrix of grayscale values to represent a 6-by-6 image41

of a 4; the 4 is shown in the matrix by 255 values. The neuron in the figure takes 9 inputs,
arranged in a two-dimensional 3-by-3 grid, mirroring the two-dimensional nature of the
image. Apart from the grid nature of the inputs, the rest of the processing within the
neuron is the same as previously described in this chapter: the result of a weighted sum of

41. We are using this smaller 6-by-6 image rather than the full 28-by-28 MNIST digit image dimensions to
simplify the illustration.
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Figure 8.31
A 6-by-6 matrix representation of a grayscale image of a 4, and a neuron with a receptive field that
covers the top-left corner of the image. This figure was inspired by Figure 2 of Kelleher and Dobnik
(2017).

inputs is passed through a non-linear activation function. It is relatively standard in image
processing to use ReLUs for the network, and so we assume throughout this section that the
neurons use the rectified linear function as their activation function. Furthermore, for the
purpose of simplifying the discussion and examples in this section, we drop the bias term
in this figure and throughout most of this section. However, it is important to remember
that neurons in a convolutional network do have bias terms and that they are learned in
the same way, as they are feedforward networks. As previously, the bias term is simply an
extra weight that is multiplied by the dummy input value 1, and the result of this product is
included in the weighted sum of the neuron. The bias term is also updated in the same way
that any other weight would be updated. In Figure 8.31[480], the key thing to note about this
figure is that the neuron receives inputs only from a small predefined region of the input;
in other words, the neuron receives inputs only from the pixels in its local receptive field.

For the purpose of illustration, let us assume that the neuron shown in Figure 8.31[480]

uses the set of weights listed in Equation (8.85)[480]

�

��
0 0 0
1 1 1
0 0 0

�

�� (8.85)

Equation (8.86)[481] lists the calculation of the activation for this neuron for this set of
inputs.
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Figure 8.32
A 6-by-6 matrix representation of a grayscale image of a 4, and a neuron with a different receptive
field from the neuron in Figure 8.31[480]. This figure was inspired by Figure 2 of Kelleher and Dobnik
(2017).

ai � recti f ierppw1 � 000q � pw2 � 000q � pw3 � 000q
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� recti f ierpp0� 000q � p0� 000q � p0� 000q

� p1� 000q � p1� 255q � p1� 000q

� p0� 000q � p0� 255q � p0� 000qq
� 255 (8.86)

This calculation shows that if a neuron uses the set of weights in Equation (8.85)[480],
then the activation of the neuron is solely dependent on the values along the middle row
of inputs. All the other input values are ignored because they are given a weight of 0.
Consequently, neurons using this set of weights can be thought of as rudimentary detectors
for horizontal edges because they will have maximum activation if there is a horizontal line
across the middle row of their inputs. For example, Figure 8.32[481] shows a second neuron
with a different local receptive field, and Equation (8.87)[482] shows the calculation of the
activation of this neuron if it uses the same set of weights. In this case, there are maximum
grayscale values (255) across the middle row of the neurons receptive field, and as a result
of the interaction between this input pattern and the weights in Equation (8.85)[480], this
neuron has a very large activation for this input.
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Equation (8.88)[482] shows some other sets of weights that our example neurons could use.
It is relatively straightforward to see that neurons using the weight matrix on the left will
have a high activation if their local receptive field contains high values down the central
column of the field, neurons using the weight matrix in the middle will respond if there
are high values down the left-right diagonal of the receptive field, neurons using the third
weight matrix will have a high activation if there are more high values down the central
column of the receptive field than there are in the other pixels in the input, and similarly the
distribution of positive and negative values in the matrix on the right means that neurons
using this set of weights will have a high activation if there are more high values across
the middle row of the receptive field than in other places in the input. There are, of course,
many different weight matrices that could be defined, each of which would cause a neuron
to activate in response to a different visual pattern in the neuron’s local receptive field. In
fact, given that the weights are real numbers, there are infinitely many combinations of
weights, and we are using only integer values in the examples for the sake of clarity in
presentation.

The set of weights used by a neuron determine the type of visual feature to which the
neuron activates in response; consequently, these weight matrices are called filters because
they filter the input by returning high activations for certain patterns of inputs and low acti-
vations for others. In this discussion on local receptive fields, the filters we have presented
are hand designed for the purpose of illustration. In reality, these filters are learned by the
convolutional network in the same way that weights are learned in a fully connected feed-
forward network. Allowing the network to learn the filter weights means that the network
is able to learn which visual patterns are useful to extract from the visual input in order to
be successful at the prediction task on which it is being trained.

�
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8.4.5.2 Weight sharing and translation equivariant feature detection When a neuron
applies a filter to its local receptive field, it is a local visual feature detector for which
the visual feature is a pattern of input values. If the feature occurs in the neuron’s local
receptive field, then the neuron will have a high activation. However, an image processing
system should be able to detect whether a visual feature occurs in an image irrespective of
where in the image it occurs. Technically, this property is described as the model being
equivariant to the translation of features.

Convolutional neural networks achieve translation equivariant feature detection through
weight sharing. This is done by organizing neurons into groups in which all the neurons
in the group apply the same filter to their inputs. In other words, in a convolutional neural
network, when two neurons share weights, they share all their weights, because they use
the same filter. When two or more neurons share a filter, then each weight in the filter is
used multiple times during the forward pass of the training algorithm to process a given
input (once by each neuron that uses the filter). During the backward pass of the algorithm,
we calculate a separate weight update for each neuron that uses the weight, and then the
final weight update that is applied is the sum of these separate weight updates. By summing
the weight updates across the neurons that use it, we retain a single consistent weight for
all the neurons. This is similar to the way we summed the weight updates for a weight
during batch training (see Equation (8.30)[416]); the difference here is that for each training
example we sum over the weight updates for each neuron that uses the weight (as opposed
to weight updates for different training examples). So, if a weight is shared by m different
neurons, then the weight update after processing a single example is defined as follows:

�wi;� �
m‚

i�1

� i � a�

wi;� — wi;� � �� �wi;� (8.89)

where i iterates over the neurons that share the weight; and � is a wildcard placeholder for
the index of the appropriate input neuron to each neuron that uses the weight. When we
are using batch gradient descent, this summation can be extended to include a summation
over the examples in the batch.
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The way that a convolutional neural network uses weight sharing to achieve translation
equivariant feature detection is by organizing the local receptive fields of a set of neurons
that share a filter (and hence share their weights) so that (1) each neuron’s receptive field
covers a slightly different region of the visual field compared with the other neurons in the
set; and (2) together the receptive fields of the neurons in the set cover the entire visual
field. Figure 8.33[484] illustrates how the local receptive fields of a set of neurons can be
organized so that together they cover the entirety of the input. This figure contains 16
subfigures, with each subfigure containing a matrix of input data (on the left) representing
the input image and a grid of 16 circles (on the right) in which each circle represents a
neuron. Each subfigure highlights the local receptive field in the input of the highlighted
neuron in the set of neurons.

The name convolutional neural network comes from the fact that it is possible to im-
plement the processing of an image by a set of neurons that share a filter with a single
neuron that applies the filter to each region of the image in sequence and stores the result
for each region. In mathematics, the process of passing a function over a sequence of val-
ues is known as convolving a function, and by analogy a set of neurons that share a filter
(and thereby each implements the same function) and that are organized such that together
their receptive fields cover the input are convolving a function over the input.42

The fact that the joint receptive fields of the neurons in each set cover the entire input
means that if the relevant visual feature (where relevance is defined by the filter used by
a set of neurons) occurs anywhere in the input, then at least one of the neurons in the
set will have a high activation. Indeed, the activations of the neurons in a set provide a
map of where in the input the relevant visual feature occurred, and for this reason the set
of activations for a set of neurons that share a filter is called a feature map. Equation
(8.90)[486] and Equation (8.91)[486] illustrate how the feature map generated by the neurons
in Figure 8.33[484] changes if the filter used by the neurons to process the example input
is changed. Note that in generating the feature map for each of these equations, we have
applied the rectified linear activation function to the results of the weighted sum of each
receptive field and the filter.43

42. Technically, what a convolution network is actually calculating should be called a cross-correlation (Char-
niak, 2019, p. 52), but we ignore this technicality for the purposes of this discussion.

43. In some texts, such as Goodfellow et al. (2016), the application of the activation function is treated as a
separate step after the feature map has been generated by the application of the filter. Here we include the
application function as part of the generation of the feature map.
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8.4.5.3 Filter hyper-parameters: Dimension, stride, and padding The dimensional-
ity of a feature map generated by applying a filter to an input is determined by the number
of neurons used to process the input (each element in a feature map corresponds to the out-
put of one neuron). We can see this if we compare the dimensionality of the features maps
in Equation (8.90)[486] and Equation (8.91)[486] with the number of neurons shown in Figure
8.33[484]. There are three hyper-parameters that affect the number of neurons required to
cover the entirety of an input and hence the dimensionality of the resulting feature map;
these are filter dimensions, the stride, and the padding.

The filter dimension hyper-parameter specifies the size of the filter in each dimension.
The illustration in Figure 8.33[484] assumes that the neurons are using a two-dimensional 3-
by-3 (height by width) filter. However, larger and smaller filters are possible, and as filters
become larger the number of neurons required to cover the input naturally gets smaller and
vice versa. For example, if we decreased the dimension of our filter to a 2-by-2 dimension
then we would need to increase the set of neurons to a 5-by-5 layer in order to cover
the input, and this would result in a 5-by-5 feature map. Conversely, if we increased the
dimension of our filter to a 4-by-4 filter, then we could cover the input with a 3-by-3 layer
of neurons generating a 3-by-3 feature map. Choosing a good filter size for a given dataset
often involves a trial-and-error process of experimenting with different options. Also, all
our filter examples so far have been two-dimensional filters. The reason is that we have
been focusing on processing a grayscale image that is a two-dimensional input. However, it
is quite possible to use one-dimensional filters or filters with three or more dimensions. For
now we continue with using two-dimensional filters, but we return to this topic in Section
8.4.5.5[492].

The stride parameter specifies the distance between the center of the local receptive
field of one neuron and the center of the local receptive fields of its horizontal or vertical
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neighbor in the set of neurons sharing the filter. The configuration of receptive fields in
Figure 8.33[484] uses a horizontal and vertical stride of 1; this means that as we move from
one neuron to the next horizontally, the corresponding receptive fields also move by one
column in the input space. Similarly, as we move from one neuron to the next vertically,
the receptive fields also move by one row in the input space. Using a horizontal and vertical
stride of 1 means that there is a relatively large overlap in the receptive fields between a
neuron and its neighbors. Other strides are possible, and it is possible to use different
horizontal and vertical strides. For example, if we used a horizontal and vertical stride of 3
in Figure 8.33[484], then there would be no overlap between the receptive fields of different
neurons, and this would also reduce the number of neurons required to cover the input.
Similar to the filter dimensions, finding the appropriate stride for a given dataset involves
trial-and-error experimentation.

There are two related phenomena in Figure 8.33[484] that, in some instances, maybe un-
desirable consequences of how the receptive fields for the neurons have been defined. The
first is that if we use a 4-by-4 layer of neurons, to cover a 6-by-6 input matrix, the dimen-
sionality of the resulting feature map is also 4-by-4. In some cases we may wish to avoid
this reduction in dimensionality between the input and the feature map. The second phe-
nomenon is that there is a difference in the number of times that each pixel in the image is
used as an input to a neuron in the grid. This differential is largest between the pixels at the
corners of the image versus the pixels in the middle of the image; only one of the receptive
fields covers the top-left pixel in the image, whereas nine receptive fields cover the pixel
at coordinate p3; 3q. Both of these phenomena are a consequence of the fact that we are
applying the filter only to valid pixels in the image. We are using the term valid here to
distinguish the pixels that occur in the image from imaginary (or padding) pixels that we
might invent around the border of an image. Figure 8.34[488] illustrates what happens if we
pad the boundary of an image with imaginary pixels. In this figure, the imaginary pixels
are shown in gray, and the valid (real) pixels are in the center of the matrix, shown in black.
The boundary between imaginary and valid pixels is highlighted by a thickly outlined rect-
angle enclosing the valid pixels. All the imaginary pixels have been given a value of 000.
The figure also illustrates the local receptive field of the first neuron in the grid; note that
this receptive field includes imaginary pixels. Adding this padding to the image increases
the number of neurons required to cover the image, assuming that the filter size and hor-
izontal and vertical strides are maintained. In fact, there are now as many neurons in the
grid as there are valid pixels in the image. Furthermore, although there is still a differen-
tial between some of the valid pixels in terms of the number of neurons that take them as
input, this differential has been decreased; each of the valid corner pixels is now present in
four receptive fields, as opposed to one as previously, whereas the count of receptive fields
covering a pixel in the center of the image is not affected by the padding. When padding
is applied it is generally added to all edges as equally as is possible. As with filter size and
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Figure 8.34
A grayscale image of a 4 after padding has been applied to the original 6-by-6 matrix representation,
and the local receptive field of a neuron that includes both valid and padded pixels.

stride length, the selection of whether to use padding or not is task dependent and is often
based on trial and error.

The particular choices of filter size, stride length, and padding is task dependent. How-
ever, a popular combination is to use a stride length of 1 and to pad the image with imagi-
nary pixels (Charniak, 2019, p. 56). This combination ensures that the output from a layer
of neurons applying a filter across an image has the same dimensions as the input image.
Maintaining the dimensionality between input and output becomes important in convolu-
tional neural networks when we use multiple layers of neurons, the output for one layer
being interpreted as the image input to the next layer. In these cases, unless the dimension-
ality is maintained by using imaginary pixels, then the dimensionality of the input to each
layer reduces for each subsequent layer. Equation (8.92)[489] and Equation (8.93)[489] each
list a filter weight matrix and the feature map generated by using a set of neurons to process
our example input in Equation (8.84)[478] after the input has had padding applied and using
a stride length of 1. The generated feature maps have the same 6-by-6 dimensionality as
the input image (before padding was applied). As a comparator, the filters used in these
two equations are the same as those used in Equation (8.90)[486] and Equation (8.91)[486]; the
difference now is that the generated feature maps are larger, and indeed some of the new
cells have positive values.
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8.4.5.4 Pooling The precise location of a visual feature in an image may not be rele-
vant for an image-processing task. For example, knowing that there is an eye in the top-left
region of an image is useful for face recognition, but the extra precision of knowing that it
is centered at pixel (998,742) may not be useful. Indeed, in training an image processing
model we typically want the model to generalize over the precise locations of features in
training images so that it can still use these features when they occur in offset configura-
tions in new images. The most straightforward way to make a model abstract away from
the precise location of visual features is to sub-sample the feature maps. In convolutional
neural networks, sub-sampling is done using sub-sampling layers. Each neuron in a sub-
sampling layer has a local receptive field in a feature map generated by the previous layer,
which will have convolved a filter over the input to that layer. However, typically the local
receptive fields of neurons in a sub-sampling layer do not overlap (in contrast with the over-
lapping receptive fields used when we arrange neurons to convolve a filter). Consequently,
there are fewer output activations from a sub-sampling layer than there are inputs: one
output per local receptive field and multiple inputs per field. The amount of sub-sampling
applied is dependent on the dimensions of the receptive fields of the neurons; for example,
using non-overlapping 2-by-2 receptive fields, the output from a sub-sampling layer will
have half the number of rows and columns as the feature map input to the layer. In early
convolution networks, the activation of sub-sampling neurons was often the average of the
values in the feature map covered by the local receptive field of the neuron. Many modern
convolutional networks use a max function that simply returns the maximum value in the
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region of the feature map covered by the local receptive field. Applying a max function
to a local receptive field is often referred to as max pooling. Equation (8.94)[490] illus-
trates the result of applying max pooling to the feature map from Equation (8.93)[489] using
non-overlapping local receptive fields with a dimensionality of 2-by-2.
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Using a max function requires that the backward pass in the backpropagation algorithm

be updated slightly. The reason is that a max function allows through only the maximum
value from its inputs, and so the non-max values did not affect the output (and hence the
error) of the network. As a result, there is no error gradient with respect to the non-max
values that the max function received. Furthermore, the gradient for the max function
(Ba{Bz) for the max value is 1, because the output of the activation function will be linear
for small changes in the input value that achieved the max (i.e., it will change by the same
amount as that input value is changed). Consequently, in backpropagating through a max
function, the entire error gradient is backpropagated to the neuron that propagated forward
the max value, and the other neurons receive an error gradient of zero.

To illustrate the backpropagation process through a convolutional layer, we need to shift
our focus from the flow of data through the layer to the neural architecture of the layer.
Equation (8.95)[491] illustrates an extended version of the convolutional network that would
implement the data processing illustrated in Equation (8.94)[490]. Note that in Equation
(8.95)[491] each symbol in a matrix represents a neuron in a layer, rather than a data point.
The matrix on the left of Equation (8.95)[491] represents the 6-by-6 layer of neurons that
share the filter listed in Equation (8.94)[490]. It is the output of this layer of neurons that
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generates the feature map in Equation (8.94)[490]. The matrix in the middle of Equation
(8.95)[491] represents the 3-by-3 sub-sampling layer. Each neuron in this layer has a local
receptive field of dimensions 2-by-2, and there is no overlap between the receptive fields
of the neurons in this layer. The matrix on the right of Equation (8.95)[491] represents an
extension to the architecture that we have discussed. This matrix contains two neurons that
are fully connected to the sub-sampling layer; that is, each neuron in this layer receives
inputs from all the neurons in the sub-sampling layer. For ease of reference, we have
explicitly labeled a number of neurons in this architecture A, B, C, D, and E
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���������

O O O O O O
O O O O O O
A O O O O O
O B O O O O
O O O O O O
O O O O O O
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Fully Connected Layer

(8.95)

To begin the backpropagation process through the convolutional layer, we assume that
the �s for the neurons D and E have already been calculated. We can now calculate the �
for Neuron C

�C �
BE
BaC

�
BaC

BzC

� pp�D � wD;Cq � p�E � wE;Cqq� 1

(8.96)

This is the standard calculation we would use to calculate the � for any hidden neuron,
see Equation (8.23)[412], with the slight simplification that, as mentioned previously, the
gradient of the activation function Bac{BzC � 1. We calculate the �s for the other neurons
in the sub-sampling layer in a similar fashion.

Once we have calculated a � for each of the neurons in the sub-sampling layer, we can
then backpropagate these �s to the layer of neurons that convolve the filter. Recall that
the receptive fields of the neurons in the sub-sampling layer do not overlap. Consequently,
each of the neurons in the first layer connects only to a single neuron in the sub-sampling
layer. For example, neurons A and B are both in the receptive field of Neuron C, but neither
A nor B feeds forward into any of the other neurons in the sub-sampling layer. From the
feature map in Equation (8.94)[490] we can ascertain that aA � 0 and aB � 255. In fact,
Neuron B has the highest activation for any of the neurons in the local receptive field of
Neuron C. This means that �A � 0 because Neuron A did not have the maximum value in
the local receptive field of the sub-sampling neuron to which it is connected. The activation
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for Neuron B, however, was the maximum value for the local receptive field the neuron is
in, and so the � value for Neuron B is calculated as shown in Equation (8.97)[492]. Notice
that wC;B � 1. The reason is that the max function does not apply weights to its inputs or,
to put it another way, all the inputs have a weight of 1. Also, Neuron B is a ReLU and so
BaB{BzB � 1 because aB ¡ 0

�B �
BE
BaB

�
BaB

BzB

� p�D � wC;Bq�
BaB

BzB

� p�D � 1q � 1

(8.97)

The �s for the other neurons in the first layer will either be 0 (if they, like Neuron A,
did not produce the maximum value in the local receptive field of the sub-sampling neuron
to which they connect) or can be calculated in a similar way to Neuron B. Once the � for
each of the neurons in this layer has been calculated, the weight updates for each weight in
the filter can be calculated by summing weight updates across the neuron in the layer, per
Equation (8.89)[483].

8.4.5.5 Handling color images and multiple filters All the example filters that we
previously presented were two-dimensional. The reason is that the MNIST handwriting
recognition case study we are using in this section involves grayscale images. Conse-
quently we require only a two-dimensional filter because all pixel information for an im-
age can be represented in a two-dimensional matrix indexing over the height and width of
the grayscale image. However, color images typically encode three types of information
for each pixel—the red, green and blue information, with other colors generated via the
combination of these three primary colors. Encoding the red, green, and blue (RGB) infor-
mation is normally done using a separate two-dimensional matrix for each color, with the
dimensions of each of these two-dimensional matrices equal to the pixel resolution of the
image. The term channel is used to describe the number of matrices used to encode the in-
formation in an image. An RGB image has three channels, and a grayscale image will have
one channel. If we were processing RGB images, then we would use three-dimensional
filters: height by width by channel.

Typically, the third dimension of a filter is referred to as the depth of the filter, with the
term channel specifically used to describe the depth of the data representation of a color
image. The depth of a filter must match the depth of the input. Consequently, if we are
designing a filter to process a color image, with three color channels (red, green, and blue),
we can vary the height and width dimensions of the filter, but the depth dimension must be
3. For example, we could experiment with using a 2-by-2-by-3 filter (height by width by
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depth). Equation (8.98)[493] illustrates the structure of such a three-dimensional filter. We
have included the bias term w0 in this filter in order to highlight that although the filter
now has three dimensions, there is still only one bias term.

�

� w0loomoon
bias

�
w1 w2

w3 w4

��
w5 w6

w7 w8

��
w9 w10

w11 w12

��

� (8.98)

Adding depth to a filter does not involve a major change in the way a neuron applies a
filter to its local receptive field. For example, if a neuron is applying a 2-by-2-by-3 filter,
then its local receptive field will have the same dimensions (this is why the depth of the
filter must match the depth of the input). If the input happens to be a color image, then
we can distinguish the different layers of depth by the color channels. In this context, the
neuron will apply a different 2-by-2 filter to each color channel: one 2-by-2 filter is applied
to the red values of the pixels in the receptive field; another 2-by-2 filter is applied to the
green values of the pixels in the receptive field; and the third 2-by-2 filter is applied to the
blue values of the pixels in the receptive field. Then the results of these three calculations
are summed together along with the bias, to generate a single scalar value that is pushed
through the activation function and then stored in the feature map.44 Equation (8.99)[493]

lists a 2-by-2-by-3 filter that has been annotated to indicate which parts of the filter are
applied to which channel
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(8.99)
For the purposes of illustration, imagine that we are using this filter to process the fol-

lowing 3-by-3 RGB image (the pixel values here are not real; they have been selected to
ease the calculations in the example):
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(8.100)

44. As noted previously, in some texts, such as Goodfellow et al. (2016), the application of the activation function
is treated as a separate step after the feature map has been generated by the application of the filter. In these
scenarios, the raw scalar value would be stored in the feature map.
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Assuming a stride length of 1 and no padding on the input, we would require a 2-by-2
layer of neurons to convolve the filter over this image. The top-left neuron in this layer
would have a local receptive field covering the 2-by-2 square in the top-left of each of the
channels. Equation 8.101[494] lists the values from the image that are inside this neuron’s
local receptive field
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����
(8.101)

The output activation for this neuron would be calculated as follows:

z � ppw0 � 1q
� pw1 � 1q � pw2 � 1q � pw3 � 0q � pw4 � 0q
� pw5 � 0q � pw6 � 0q � pw7 � 0q � pw8 � 0q
� pw9 � 3q � pw10 � 0q � pw11 � 0q � pw12 � 3qq

� 0:5� 1� 1� 0� 0� 0� 0� 0� 0� 3� 0� 0� 3

� 8:5

a � recti f ierpzq
� recti f ierp8:5q
� 8:5 (8.102)

The activations for the other three neurons using this filter would be calculated in a similar
way, resulting in the following feature map being generated by this 2-by-2 layer of neurons:

�
8:5 6:5
0:5 10:5

�

(8.103)

Adding depth to a filter not only enables a convolutional neural network to process color
images that contain multiple channels; it also enables a convolutional network to have a
sequence of multi-filter convolutional layers. The reason is that although a convolutional
layer that runs multiple filters in parallel over its input will generate multiple feature maps,
the next convolutional layer can treat these multiple feature maps as if they were a single
multi-channel input. In this case, the number of channels in the input to this layer would
be equal to the number of filters in the preceding convolutional layer. This is done by
stacking the feature maps together. In these stacked feature map inputs, each channel then
encodes the information from a particular filter spectrum (for example, the information
from the horizontal edge detector filter spectrum) instead of encoding the information in a
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particular color spectrum (Charniak, 2019). Consequently, adding depth to filters not only
enables convolutional neural networks to process multi-dimensional input; it also enables
the networks to apply multiple filters in parallel to the same input and for later layers in
the network to integrate information from across these layers. As a result, convolutional
networks can learn to identify, extract, and use multiple different features in the input.

The sequence of convolving a filter over an input, then applying a non-linear activation
function, and finally sub-sampling the resulting feature maps is relatively standard in most
modern convolutional networks, and often this sequence of operations is taken as defining
a convolutional layer. As we discussed previously, a network may have multiple convo-
lutional layers in sequence because the outputs from a sub-sampling layer may be passed
as an input to another filter convolution, and so this sequence of operations may be re-
peated multiple times. Padding may be applied to retain dimensionality, and in some cases
the non-linearity activation or sub-sampling may be dropped in some convolutional layers.
Generally, the later layers of a convolutional network will include one or more fully con-
nected layers (such as those shown in previous examples) with a softmax output layer if
the model is being used for classification. Figure 8.35[497] presents a schematic of how two
convolutional layers might be sequenced in a simple convolutional neural network. Figure
8.35[497] also shows that there may be multiple filters applied in parallel in a convolutional
layer. In this network, Convolutional layer 1 includes Filters 1 and 2 and so generates two
feature maps. These two feature maps are then stacked together and fed forward as input to
the second convolutional layer. Convolutional layer 2 includes Filters 3 and 4, and it does
not include a sub-sampling layer.45 Filters 3 and 4 will both have a depth of 2 because
the input to the second convolutional layer is the two stacked features maps generated by
Convolutional layer 1. The last two layers of the network are typical of the types of layers
that are used near the output of a convolutional network when it is used for image classi-
fication. The second-to-last layer is a dense fully connected layer (i.e., each neuron in this
layer receives the complete feature maps generated by Filters 3 and 4 as input) that feeds
forward to the softmax output layer.

Figure 8.36[498] provides a worked example of data processing and flow through a convo-
lutional network similar in structure to the architecture blueprint shown in Figure 8.35[497].
The main structural difference is that the network in Figure 8.36[498] does not include a soft-
max output layer. For ease of presentation we have reduced the input image to be a single
column of 7 color pixels. We have also simplified the RGB values to be only 1s or 0s,
and similarly we have selected values for the filter weight that, hopefully, make it easier to
follow the flow of the data processing (rather than filter values that encode meaningful fea-
ture detectors). These simplifications aside, the processing and flow of data through Figure
8.36[498] is representative of the flow through a multi-layer, multi-filter convolutional neural

45. This omission of the sub-sampling layer is done simply to illustrate that it is optional.
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network. Starting on the left of the figure, the column of 7 three-channel (RGB) pixels is
fed into the first convolutional layer. This first convolutional layer contains two layers of 6
neurons. The 6 neurons in the top layer share the weights in Filter 1, and the 6 neurons in
the bottom layer share the weights in Filter 2. Both Filters 1 and 2 have a dimensionality
of 2-by-1-by-3. There are 6 neurons in each of these layers because we are assuming a step
size of 1, and so it requires six neurons to convolve one of these filters over the 7-by-1-by-3
input. Feature map 1 contains the 6 activations for the 6 neurons that applied Filter 1 to the
input, and Feature map 2 contains the 6 activations for the 6 neurons that applied Filter 2
to the input. Note that all the neurons in this network are ReLU, so each of these activa-
tions was calculated in each neuron by passing the result of the weighted sum calculation
through a rectified linear activation function (similar to the calculation listed in Equation
(8.102)[494]). The first convolutional layer uses a max pooling layer to sub-sample each of
the feature maps. The neurons in these max pooling layers have non-overlapping local re-
ceptive fields, and each local receptive field covers two cells in a feature map. The results
of each of the max pooling layers are then stacked together to create a multi-channel input
for the second layer. The dimensions of this input are 3-by-2-by-2, and so all the filters in
the second layer have a depth of 2. The second convolutional layer uses two filters (Filters
3 and 4) and so contains two layers of neurons that share weights. The top layer of neurons
share the weights in Filter 3, and the bottom layer share the weights in Filter 4. There are
two neurons in each of these layers because we are assuming a step size of 1, and so it
requires two neurons to convolve a 2-by-1-by-2 filter over the 3-by-2-by-2 input. Feature
map 3 and Feature map 4 contain the activations of the neurons in each of these two layers.
The final output of the network is generated by a single ReLU that is fully connected to
both Feature map 3 and Feature map 4. The weights used by this ReLU are shown on the
edges feeding into the unit.

The data, filter weights, and scale of the network shown in Figure 8.36[498] have been sim-
plified for the purposes of illustration. Consequently, the overall network output of 1:7 has
no particular meaning. A more realistic example of the complexity and scale of a modern
convolutional network is the AlexNet network (Krizhevsky et al., 2012). AlexNet is one
of the most famous convolutional networks in the history of deep learning. The reason
for its fame is that its victory in the ImageNet LargeScale Visual Recognition Challenges
(ILSVRC) in 2012 was a watershed moment for deep learning that reinvigorated a lot of
interest in the field of neural networks. The AlexNet architecture included five convo-
lutional layers, followed by three fully connected (dense) layers. The first convolutional
layer had 96 different filters and used a ReLU non-linearity and max pooling. The second
convolutional layer had 256 filters, and also used a ReLU non-linearity and max pooling.
The third, fourth, and fifth convolutional layers had 384, 384, and 256 filters, respectively,
and none of these layers included a non-linearity or a max pooling operation. The final
three dense layers had 4096 neurons each. In total, AlexNet had 60 million weights and
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650,000 neurons. Since 2012, however, several larger convolutional networks have been
developed, and new and larger models continue to be announced.

Figure 8.35
Schematic of the typical sequences of layers found in a convolutional neural network.
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8.4.6 Sequential Models: Recurrent Neural Networks and Long Short-Term Memory
Networks

The convolutional neural networks discussed in Section 8.4.5[477] are ideally suited to pro-
cessing data that have a fixed-size grid-like structure and where the basic features have a
local extent, such as images. There are, however, many domains in which the data has
a sequential varying-length structure and in which interactions between data points may
span long distances in the sequence. Natural language is an example of this type of data:
it is naturally sequential, one word follows the other, each sentence may have a different
number of words (varying length), and it contains long-distance dependencies between el-
ements. For example, in English, the subject and verb of a sentence should agree. Compare
the sentences “The dog in that house is aggressive” with “The dogs in that house are ag-
gressive.” In the first sentence, the subject of the sentence is singular, dog, and so we use
the singular form of the verb is; in the second sentence, the subject is plural, dogs, and so
we use the plural form of the verb are.46 Processing data of this type requires a model that
has the capacity to remember relevant information from earlier in the sequence. Recurrent
neural networks (RNN) are designed to process this type of data.

A recurrent neural network works in discrete time. In processing a sequence, the network
takes one input from the sequence at each time point. The defining characteristic of a
recurrent neural network is that it contains feedback connections, and so, unlike a feed-
forward network, which is a directed acyclic graph, a recurrent neural network is a directed
cyclic graph. These cycles, or recurrent links, are the reason these networks are called
recurrent networks. That a recurrent network contains cycles means that the output from
a neuron at one time point may be fed back into the same neuron at another time point.
A consequence of this is that the network has a memory over past activations (and hence
past inputs that contributed to these activations). This is why these networks are useful
for processing sequential data that exhibit long-distance dependencies. There are a variety
of different recurrent neural network architectures; in this section we introduce two of the
most popular: simple recurrent networks (also known as Elman networks (Elman, 1990)),
and long short-term memory (LSTM) networks (Hochreiter and Schmidhuber, 1997).

8.4.6.1 Simple recurrent neural networks A simple recurrent neural network archi-
tecture is a feedforward architecture with one hidden layer that has been extended with a
memory buffer that is used to store the activations from the hidden layer for one time-step.
On each time-step, the information stored in the memory buffer is concatenated with the
next input to each neuron. This process of storing activations in the memory buffer at one

46. This example is taken from (Mahalunkar and Kelleher, 2018), which reports on experiments that use for-
mal grammars to understand the representational capacity of recurrent neural networks to model long-distance
dependencies.
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time-step and reading from the buffer at the next time-step is how the recurrent connections
are implemented.

Figure 8.37[502] illustrates the architecture of a simple recurrent network. Note that for
ease of presentation the network schematics in this figure have been rotated so that the
forward flow of information through each network is from the input layer at the bottom to
the output layer at the top. Furthermore, to align with most explanations of recurrent neural
networks, in the subsequent discussion we adopt the following conventions: x denotes an
input; h denotes a hidden layer; and y denotes the output from the network. The goal of the
network schematic on the left of Figure 8.37[502] is to provide a high-level overview of the
template structure of a simple recurrent neural network. Consequently, in this schematic
we have abstracted away from some of the details of a network architecture: for example,
the layers of neurons are represented by rectangles with rounded corners; and the (multiple)
connections between neurons in different layers are represented by single arrows labeled
with the name of the weight matrix for the weights on those connections. The labels on
the rectangles indicate whether the rectangle represents the input layer xt, the hidden layer
ht, the output layer yt, or the activation buffer that stores the activations of the hidden layer
from the previous time-step ht�1.

Although there are four sets of connections in this network (input to hidden, hidden to
output, hidden to buffer, and buffer to hidden), there are only three weight matrices in the
network. There are no weights on the connections between the output of the hidden layer
and the memory buffer. The reason is that the transfer of hidden neuron activations to the
memory buffer is a simple copy operation. That there are no weights on these connections
is indicated in Figure 8.37[502] by a dashed arrow that represents these connections. There
are, however, weights on the connections from the memory buffer to each of the neurons.
These weights are necessary because the information read from the memory buffer is pro-
cessed by the hidden neurons in the same way that each of the inputs is. The three weight
matrices are

1. Whx containing the weights for the connections between the input layer (x) and the
hidden layer (h);

2. Wyh containing the weights for the connections between the hidden layer (h) and the
output layer (y); and

3. Whh containing the weights for the connections between the memory buffer and the
hidden layer. This matrix has the subscript hh because in actuality these weights are
applied to recurrent connections from the hidden layer back to the hidden layer.

The network schematic on the right of Figure 8.37[502] illustrates the details of how neu-
rons within the different layers of a specific example simple recurrent network are con-
nected. This example network has two neurons in the input layer (Neurons 1 and 2), three
neurons in the hidden layer (Neurons 3, 4, and 5), and two neurons in the output layer
(Neurons 6 and 7). In this example we assume that the hidden neurons and the output
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layer are ReLUs. At each time-step a new input vector is presented to the network; this
flows forward to the hidden layer. Each of the hidden layer neurons receives both the
input vector and a vector containing the information stored in the memory buffer at the
same time. Processing these inputs, the hidden neurons generate activations that are then
propagated forward to the output layer and also written to the activation memory buffer
(overwriting whatever information was in the memory buffer). At the next time-step, these
new activations are then fed back to the hidden neurons in parallel with the new input.

The forward propagation of the activations through a simple recurrent network is defined
as follows (where the subscript t denotes the time-step of the system; and there is one input
per time-step—although this input may be a vector of values—and so the subscript t also
defines the index in the input sequence of the current input):

ht � ’ ppWhh � ht�1q � pWhx � xtq � w0q (8.104)

yt � ’ pWyh � htq (8.105)

Equation (8.104)[501] defines how the activations for the hidden layer for input t are gen-
erated. This is done in the same way as the previous examples (a weighted summation of
inputs followed by the application of a non-linear activation function). The reason why
Equation 8.104[501] has a more complicated form then previously is that the neuron has two
sets of inputs (from the input layer and the activation buffer), and so it has two separate
weight matrices; also, to be as transparent as possible, we have explicitly represented the
bias terms for the weights in a separate vector w0. Stepping through Equation 8.104[501] we
have the following four operations:

1. a dot product between the information stored in the memory buffer (the hidden layer
activations from the previous time-step encoded as vector ht�1) and the weight matrix
for the weights on the connections from the memory buffer to the hidden neurons;

2. a dot product between the input vector for this time-step xt and the weight matrix for
the weights on the connections between the input layer and the hidden layer Whx;

3. the summation of the results of these two dot products with the bias terms for the
hidden layer neurons; and finally,

4. the weighted sum calculated in Step (3) is passed through a non-linear activation func-
tion ’.

As noted, the activation vector ht of the hidden layer for input t is propagated forward
to the output layer, and also to the memory buffer where it is stored for one time-step.
Equation (8.105)[501] specifies how the output activations yt for input t are then generated:
a weighted sum is calculated via a dot product operation between the weight matrix Wyh

and the activations vector from the hidden layer ht, and this is passed through a non-linear
activation function ’.
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Figure 8.37
Schematic of the simple recurrent neural architecture.

8.4.6.2 Backpropagation through time The fact that a recurrent neural network is
fundamentally an augmented feedforward network means that training a network using
backpropagation is quite similar to training a normal feedforward network. For example, if
the network shown on the right of Figure 8.37[502] was applied only to a single input, then we
would calculate the �s for the neurons in the output layer.47 and then backpropagate these
�s to the hidden layer neurons. The main novelty in this scenario is that the neurons in the
hidden layer of a simple recurrent neural network have two weight matrices associated with
them: Whx and Whh. However, for the purposes of updating the weights on the connections
into a hidden layer neuron, this distinction is irrelevant and the same � is used to update all
the weights on the connections into a neuron.

Things become a little more complex when a recurrent network is applied to a sequence
of inputs. The variant of backpropagation used to train a recurrent neural network is called
backpropagation through time. A recurrent neural network is deliberately designed so
that when the network processes an input at time t in a sequence, the output generated
is dependent not only on input t but also on the previous inputs in the sequence. This
means that the error for the output at time t is also dependent on the states of the network
for all the previous inputs in the sequence (t�1, t�2, and so on) back to the start of the
sequence. Backpropagation works by using the chain rule to assign blame to each of

47. The details of how this is done depend on how the output layer is organized. For networks trained using the
sum of squared errors loss function, the � for output neurons is calculated using Equation (8.21)[411]; for neurons
in a softmax output layer the � is calculated using Equation 8.72[467].
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the model’s parameters (weights) in proportion to the sensitivity of the network’s error to
changes in those weights. This means that we must backpropagate the error at time t to
all the parameters that contributed to the error. In other words we must backpropagate the
error back through the previous states of the network. Hence the name backpropagation
through time: as we backpropagate through the previous states of the network, we are in
effect going back through time.

Figure 8.38[504] provides a graphical representation of a recurrent neural network unrolled
through three time-steps.48 The subscripts on the x, h, and y layer labels indicate that these
layers have a different state at each time-step. The box labeled h0 represents that state
of the activation memory buffer when the model is initialized. The activation memory
buffer is not shown in this figure because the feedback loop of storing the hidden state
activations from one time-step in the buffer and reading from the buffer at the next time-
step is represented by the horizontal arrows between each ht layer. Notice that unlike
the layers, the weight matrices do not have a time subscript on them. The reason is that
the network uses the same weights to process Input 1 as it does to process Input 3. This
means that even though the network is unrolled through three time-steps, it still has only
3 weight matrices (not 9). In a sense, the unrolled recurrent neural network is similar to
a convolutional neural network in that weights are shared between different neurons: the
neurons in the hidden layer at time t � 1 use exactly the same weights as the neurons in the
hidden layer at time t � 2 and t � 3, and so on. Understanding that we are dealing with
shared weights is important because the standard process for updating a shared weight is
(a) to calculate the weight update for the weight at each location in the network where it is
used; (b) to sum these weight updates together; and (c) finally to update the weight once
using this summed weight update. This is exactly what we do to update the weights in our
recurrent neural network.

To train a recurrent neural network using backpropagation through time, we first do a
forward pass by presenting each input in the sequence in turn and unrolling the network
through time (as shown in Figure 8.38[504]). The unrolling of the network through time dur-
ing the forward pass means that some neurons49 will occur multiple times in the unrolled
network, and we store the weighted sum z value and activation value a of each neuron at
each time-step. This is the same process that we use for the forward pass of a standard

48. Figure 8.38[504] is based on a figure from Kelleher (2016). As with the schematic on the left of Figure 8.37[502],
this figure abstracts over some of the details of the network. For example, the layers of neurons are here repre-
sented by rectangles with rounded corners with the labels on the rectangles indicating whether the rectangle
represents the input layer xt , the hidden layer ht , the output layer yt , or the hidden layer from the previous time-
step ht�1; and the (multiple) connections between neurons in different layers are here represented by a single
arrow labeled with the name of the weight matrix for the weights on those connections.

49. For this discussion we treat all neurons in an unrolled network that use the same set of weights as instances
of the same neuron; for example, for a neuron in the hidden layer, a different instance of that neuron will occur
in each time-step.
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Figure 8.38
A simple RNN model unrolled through time (in this instance, three time-steps).

feedforward network (see Figure 8.11[406]); the slightly complicating factor here is that in
an unrolled recurrent network a neuron may occur multiple times (for example, neurons
in the hidden layer will occur once for each time-step), and so for each neuron we have a
time-stamped sequence of z and a values.

Once the forward pass is complete, we calculate an error term for each of the outputs
of the network. The total error of the network is then the sum of these individual errors.
For the network in Figure 8.38[504] we would calculate three errors: one for y1, one for y2,
and one for y3. Each of these errors is then backpropagated through the unrolled network.
Figure 8.39[506] illustrates the path taken by the error gradients as each error for each time-
step is backpropagated through the network. Figure 8.39[506] also shows how often each
weight matrix was used in the generation of each output. For example, Wyh was involved
once in the generation of y3 whereas Whh and Whx were involved three times. The fact
that a weight matrix may be involved multiple times in the generation of an output means
that backpropagating the error for an output can result in multiple error gradients being
calculated for a weight: one error gradient for each time the weight was involved in gen-
erating the output. For example, if we examine Figure 8.39[506] we see that when Et�3 is
backpropagated through the network, a single error gradient is calculated for each weight
in Wyh because this matrix occurs only once in the unrolled network, but three separate
error gradients are calculated for each weight in Whh and Whx. This is why during the
forward pass we unrolled the network and stored a separate weighted sum z and activation
a for each occurrence of a neuron in the unrolled network. As we backpropagate through
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each time-step in the unrolled network, we use the corresponding weighted sum z and acti-
vation a for a neuron at that time-step to backpropagate the error gradient for that neuron.
In backpropagating the error Et�2 we will calculate a single error gradient for each weight
in Wyh and two error gradients for each weight in Whh and Whx; when we backpropagated
the error for y1 we calculated one error gradient for each weight in each of the three weight
matrices. Once we have calculated all these error gradients for a sequence, we then update
each weight by summing all the error gradients for that weight and then using the summed
error gradient to update the weight. This means that for the example in Figure 8.39[506] we
would sum three error gradients for each weight in Wyh and six error gradients for each
weight in Whh and each weight in Wyx. As we mentioned previously, this is similar to the
way the error gradients for shared weights in a convolutional neural network are summed,
and then the weight is updated once using this summed gradient.

Note that in Figure 8.38[504] we have shown the network generating an output for each
input it receives. However, recurrent networks are quite flexible and can be deployed in
different scenarios. For example, it may be that the network outputs only a single value
once it has processed the whole sequence; this scenario might hold if we were training a
network to process a sentence and then return a label describing the sentiment—positive
or negative—expressed in the sentence. In this case we would calculate an error (or loss)
only at the output at the end of the sequence. This error is then backpropagated through the
unrolled network, in the same way that Et�3 is backpropagated in Figure 8.39[506] resulting
in a single error gradient for each weight in Wyh and three separate error gradients for each
weight in Whh and Whx. Again, the error gradients for a weight are summed and then the
weight is updated once.

For long sequences of inputs it can become cumbersome and also computationally ex-
pensive to keep track of all the error gradients for all the different weights in the unrolled
network. Consequently, a common practice when training a recurrent neural network to
process a long sequence is to break the sequence up into subsequences. A typical size for
a subsequence might be 20 inputs. The forward and backward pass is then carried out on
each subsequence in turn: in the forward pass the network is unrolled over a subsequence,
and in the backward pass the error gradients are backpropagated only through this trun-
cated unrolled network. Information can flow forward from one subsequence to the next
by using the hidden state of the network at the end of processing one subsequence to ini-
tialize the activation buffer at the start of the next subsequence. Algorithm 8[507] provides a
pseudocode definition of the backpropagation through time algorithm for a single sequence
of input-output pairs of length n.
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Figure 8.39
An illustration of the different iterations of backpropagation during backpropagation through time.
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Algorithm 8 The Backpropagation Through Time Algorithm

Require: h0 initialized hidden state
Require: x a sequence of inputs
Require: y a sequence of target outputs
Require: n length of the input sequence
Require: Initialized weight matrices (with associated biases)
Require: �w a data structure to accumulate the summed weight updates for each weight

across time-steps
1: for t � 1 to n do
2: Inputs � rx0; : : : ; xts
3: htmp � h0

4: for i � 0 to t do � Unroll the network through t steps
5: htmp � ForwardPropagatepInputsris; htmpq
6: end for
7: ŷt � OutputLayerphtmpq � Generate the output for time-step t
8: Et � yrts � ŷt � Calculate the error at time-step t
9: BackpropagatepEtq � Backpropagate Et through t steps

10: For each weight, sum the weight updates across the unrolled network and update
�w

11: end for
12: Update the network weights using �w

In Section 8.4.4[472] we introduced dropout as one of the standard methods used to stop
a deep learning network from overfitting. Using dropout during the training of a recurrent
neural network can be problematic because dropping different neurons from the network
at different time-steps across a sequence can stop the network from propagating important
information forward through the sequence. The standard technique for applying dropout
to a recurrent neural network during training is known as variational RNN (Goldberg,
2017). In variational RNN, the dropout mask is selected once per sequence (rather than at
each input), and so the same neurons are dropped across all time-steps in the sequence; for
more details see Gal and Ghahramani (2016).

8.4.6.3 Long short-term memory networks Recurrent neural networks are particu-
larly susceptible to the exploding gradients and vanishing gradients problems we dis-
cussed in Section 8.4.1[434] and Section 8.4.2[447]. The reason is that during the backward
pass, error gradients will be multiplied by the Whh matrix multiple times—once for each
time-step through which we backpropagate. This repeated multiplication of the error gra-
dient can rapidly scale up the size of the gradient if a weight in Whh is ¡ 1 (causing
our weight updates to become too large and our training to become unstable) or cause the
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gradient to vanish if the weight is very small. As a result, although in principle a recurrent
neural network has the ability to propagate information across the spans of long-distance
dependencies in input sequences, the vanishing and exploding gradient problems limit the
ability of these networks to learn these dependencies.

Long short-term memory (LSTM) networks are specifically designed to improve the
ability of a recurrent network to model dependencies over long distances in a sequence
(Hochreiter and Schmidhuber, 1997). They achieve this goal by removing the repeated
multiplication by the Whh matrix during backpropagation. Figure 8.40[509] illustrates the
internal structure of an LSTM unit. Note that each line in Figure 8.40[509] represents a
vector of activations, and the � symbol represents an elementwise vector addition and d
represents an elementwise vector product. The fundamental element in an LSTM network
is the cell. In Figure 8.40[509] the cell is depicted by the line extending from ct�1 to ct across
the top of the diagram. The cell provides a path that carries the activations of the network
forward through the time-steps as the network processes a sequence. The activations in the
cell can take values in the range r�1;�1s. The propagation of activations along the cell is
controlled by three gates: the forget gate, the input gate, and the output gate. The forget
gate removes information from the cell, the input gate adds information to the cell, and
the output gate decides which information should be output by the network at the current
time-step.

The input to all three of these gates is the vector of hidden state activations propagated
forward from the previous time-step ht�1 concatenated with the current input vector xt. In
Figure 8.40[509] this concatenation is depicted by the intersection of the ht�1 and xt lines
in the bottom-left corner of the figure. We use the term hxt to write the vector that is the
result of concatenating ht�1 with xt. For example, if ht�1 � ra; bs and xt � rc; ds, then
hxt � ra; b; c; ds.

The flow of information in Figure 8.40[509] is from left to right. The forget gate is the
leftmost gate in Figure 8.40[509], and it is the first gate to process the inputs to the time-
step. The forget gate works by passing hxt through a layer of neurons that use sigmoid
activation functions. This layer of neurons is the same width as the LSTM cell, and so
there is one activation in the output of the sigmoid layer for each activation in the cell
state. Next, an elementwise product of the vector of activations in the cell state ct�1 with
the vector of activations from the sigmoid layer is performed. This elementwise product
is depicted in Figure 8.40[509] by the d symbol at the intersection of the cell state and the
output of the forget gate sigmoid layer in the top-left of the figure. The sigmoid activation
function outputs values in the range 0 to 1 so that the multiplication of the cell state by
the sigmoid layer activations has the effect of pushing all the cell state activations that
have a corresponding sigmoid activation near 0 to 0 (i.e., these activations are forgotten)
and all the cell state activations that have a corresponding sigmoid activation near 1 to
be maintained (i.e., they are remembered) and propagated forward. Equation (8.106)[509]
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Figure 8.40
A schematic of the internal structure of a long short-term memory unit. In this figure a � represents
a layer of neurons that use a sigmoid activation function, a T represents a layer of neurons that
use a tanh activation function, the d symbols represent elementwise vector multiplication (i.e., the
Hadamard product), and� represents an elementwise vector addition operation. This figure is based
on Figure 5.4 of Kelleher (2019), which in turn was inspired by an image by Christopher Olah
(available at: http://colah.github.io/posts/2015-08-Understanding-LSTMs/).

defines the calculation of the forget mask for time-step t, and Equation (8.107)[509] defines
the filtering of the cell state by the forget mask. Note that we use the notation c; to represent
the vector of activations in the cell state in the interval between the update by the forget
gate and the subsequent update by the input gate

ft � ’sigmoidpWp f q � hxtq (8.106)

c; � ct�1 d ft (8.107)

where hxt is the concatenation of ht�1 and xt; and Wp f q is the forget gate matrix of weights.
For example, imagine an LSTM unit with the inputs and Wp f q matrix (the zeros are the bias
terms) as listed in Equation (8.108)[510]

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Given this context, the processing of the forget gate would be as follows (note that in this
calculation hxt is augmented with a bias input 1):
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(8.109)

Notice that because of the way that the sigmoid activation function operates, large posi-
tive values in the Zp f q

t vector (i.e., �6) are mapped to values close to 1 in ft: 0:002472623,
whereas large negative values in Zp f q

t (such as �6) are mapped to values near 0; and Zp f q
t

values near 0 are mapped to values around 0.5. Comparing each term in ct�1 with the cor-
responding term in c; illustrates how the elementwise product of ft updates the cell state.
For example, the first value in ct�1 is 1, and this is multiplied by an ft value near 1 resulting
in a c; value of 0:997527377. This c; value is very close to the original ct�1, which shows
that the forget gate has largely retained the value in the cell state (or in other words, the cell
state has largely remembered this value). However, the second value in ct�1 is also 1 but
this is multiplied by an ft value near zero resulting in a c; value of 0:002472623. In this
case, the forget gate has largely erased the original cell value from the cell state (i.e., the cell
state has now forgotten the original value). Finally, the third term in ct�1 is multiplied by
an ft of 0:5, which results in the value of 0:5 in c;. This last term illustrates an intermediate
behavior in the forget gate in which the original cell state is half-forgotten/half-retained.
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The fundamental information processing pattern within the forget gate can be character-
ized as passing the concatenated hxt vector through a layer of sigmoid neurons in order
to generate a vector mask, and then using an elementwise product of this mask with the
cell state to update (or filter) the cell’s activations. This information processing pattern
of creating a vector mask and then using it in an elementwise product to update another
activation vector is present in both of the other gates in an LSTM.

The task of the input gate is to decide, on the basis of the current input and the propa-
gated hidden state (hxt), which elements of the cell state, c;, should be updated and how
these elements should be updated. The input gate uses separate paths of information pro-
cessing to make each of these decisions and then merges the results of these decisions
using an elementwise product. The first path of information processing in the input gate
decides which elements of the cell state should be updated. In this first path of processing
hxt is passed through a layer of sigmoid units that is the same width as the cell state. The
output of this layer of neurons is a vector mask, in which each element in the vector is in
the range r0; 1s. A value near 1 indicates that the corresponding element of the cell state
should be updated, and a value near 0 indicates that the corresponding element of the cell
state should be preserved as is. This first path of information processing in the input gate
is similar to the process used in the forget gate; however, in this case the generate vector
mask is not applied directly to the cell state but rather is used to filter the vector of output
activations generated by the second path of processing in the input gate. In this second path
of processing hxt is passed through a layer of tanh units. The layer of tanh units is as wide
as the cell state and so there is one tanh activation per activation in the cell state. The tanh
activation function outputs values in the range r�1;�1s. The fact that the tanh function
has a range of r�1;�1s means that activations in the cell state can be both increased and
decreased at each time-step. If the LSTM used only sigmoid units, then the activations in
the cell would monotonically increase across time and this would have the unwanted con-
sequence of the cell state tending to saturate with maximum activations as the sequence
of time-steps increases, irrespective of the inputs. These two paths of processing are then
merged using an elementwise product operation between the tanh activations and the sig-
moid activations (i.e., the vector mask). The cell state is then updated by adding the vector
generated by the elementwise produce of the tanh and sigmoid activations. The state of the
cell after the update gate is the cell state that is propagated forward to the next time-step,
and so after this update the cell state is now ct (rather than c;). The calculations in the
input gate are defined by the following equations:

i:t � ’sigmoidpWpi:q � hxtq (8.110)

i;t � ’tanhpWpi;q � hxtq (8.111)

it � i:t d i;t (8.112)

ct � c; � it (8.113)
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The fact that the input gate has two paths of processing means that it uses two separate
weight matrices to process the input, one on each processing path. In these equations
we distinguish between these two paths of data processing and the weight matrices using
the : and ;. The : symbol marks the path of processing that generates the vector mask
that controls which activations in the cell state are updated (see Equation (8.110)[511]). The
; symbol marks the path of processing that generates the candidate cell update, prior to
the filtering by the vector mask (see Equation (8.111)[511]). This distinction between the
processing paths is why the weight matrix in Equation (8.110)[511] has a : in the superscript
(i.e., Wpi:q) whereas the weight matrix in Equation (8.111)[511] has a ;. Equation (8.112)[511]

defines how these the two paths of processing are merged using an elementwise product,
denoted by the d term. Finally, Equation (8.113)[511] specifies how the cell state, post the
forget gate, is updated by the input gate to generate the cell state for this time-step ct.

The task of the output gate is to decide which parts of the ct should be passed to the
output layer of the network and on to the next time-step as the propagated hidden state.
Similar to the input gate, the output gate has two paths of processing, one involving a
sigmoid layer and the other involving a tanh layer. The functioning of the output gate has
a similar interpretation as the input gate: the tanh layer decides what information might be
relevant to output from the current cell state, and the sigmoid layer uses the hxt vector to
decide which activations are most relevant to output at this time-step. The output gate uses
a three-step process:

1. the vector of cell activations ct is passed through a layer of tanh units to create a vector
of candidate output activations;

2. the hxt vector is passed through a layer of sigmoid units to generate a vector mask that
in this instance will control which of the activations within the candidate output vector
will actually be propagated to the output layer; and

3. the two vectors of activations generated by Steps 1 and 2 are merged using an ele-
mentwise product, and the result of this operation is the vector of activations that is
propagated to the output layer.

These processing steps are described mathematically in the following equations:

o:t � ’sigmoidpWpo:q � hxtq (8.114)

o;t � ’tanhpWpo;q � ctq (8.115)

ot � o:t d o;t (8.116)

ht�1 � ot (8.117)

Similar to the equations for the input gate, we use the symbols : and ; to distinguish the
different paths of information processing in the output gate. Equation (8.114)[512] describes
how the output gate uses the hxt vector to generate the vector mask o:t that filters what
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activations are sent to the output layer and also propagated forward as the next hidden
state; Equation (8.115)[512] specifies how the current cell state ct is passed through a layer
of tanh units to generate a candidate output vector o;t; and Equation (8.116)[512] describes
how the actual output vector that is propagated to the output layer ot is generated using an
elementwise product of the vector mask o:t and the candidate output vector o;t. Finally,
Equation (8.117)[512] ensures that the vector of activations that is propagated to the output
layer is the same vector that is propagated to the next time-step as the LSTM hidden state.

Bringing all the LSTM equations together specifies the sequence of calculations that
occur in the forward pass of an LSTM

ft � ’sigmoidpWp f q � hxtq
c; � ct�1 d ft

i:t � ’sigmoidpWpi:q � hxtq

i;t � ’tanhpWpi;q � hxtq
it � i:t d i;t

ct � c; � it
o:t � ’sigmoidpWpo:q � hxtq

o;t � ’tanhpWpo;q � ctq
ot � o:t d o;t

ht�1 � ot

LSTMs have a complex internal structure containing multiple layers of neurons, and
they can be considered networks in their own right. However, they can also be used as the
building block of a recurrent neural network. This is achieved by replacing the hidden layer
in a recurrent neural network with an LSTM unit. LSTMs have proven very successful at
processing language; for example, they are currently the standard network used for speech
recognition on mobile phones.

Figure 8.41[514] presents a worked example of the forward propagation of activations
through an LSTM unit. In this example, the cell state propagated forward from the previ-
ous time-step is ct�1 � r0:3; 0:6s; the hidden state propagated forward from the previous
time-step is ht � r0:1; 0:8s; and the input at the xt � r0:9s. In this instance, the weights for
the different matrices in the LSTM unit are randomly sampled from a normal distribution
� � 0; � � 0:1, and the bias terms have been initialized to 0. In this figure, the activation
flow through the gates is ordered vertically: the top row of the figure illustrates the flow
through the forget gate; the next two rows illustrate the flow through the two paths of the
input gate; and the bottom two rows illustrate the flow through the two paths of the output
gate. The vector of activations that the unit would propagate forward as the cell state for
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Figure 8.41
The flow of activations through a long short-term memory unit during forward propagation when
ct�1 � r0:3; 0:6s, ht � r0:1; 0:8s, and xt � r0:9s.

the next time (ct) step is shown on the top right of the figure, and the vector of activations
ot that the unit would propagate both to the output layer for this time-step and on to the
next time-step as the hidden state is shown in the bottom-right of the figure.

It is standard that hidden state h and the cell state c have the same size. The larger
the size of the hidden state, the larger the representational capacity of the LSTM. In this
example, the hidden state has a size of 2; however, typically the size of the hidden state is
much larger. For example, it is not uncommon to see sizes of 128, 256, 512, and 1,024.
The dimensions of the weight matrices are determined by the size of the hidden state. If
H is the size of the hidden state, and the input x has a dimension of n (in this example
n � 1), then the dimensions of the weight matrices in the forget gate and input gate (Wp f q,
Wpi:q, and Wpi;q) and the sigmoid layer in the output gate (Wpo:q), including bias terms is:
H � p1 � n � Hq. This ensures that there are H neurons in the layers in these gates. As
a result, irrespective of the width of the input x, the activation vectors for these layers will
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be the same size as the cell state c, and so the dimensions of the vectors in the elementwise
operations that update the cell state will match. Figure 8.41[514] shows the dimensions of
the different weight matrices in the unit where H � 2 and n � 1. In this unit each of
these weight matrices has dimensions 2 � 4. The weight matrix for the tanh layer in the
output gate (Wpo;q, including bias terms, has dimensions H � p1 � Hq. This ensures that
the output vector from this layer o;t is the same size as H and so is the correct dimensions
for the elementwise product with the o:t vector, and also that the vector resulting from this
operation will have a size of H. This is important because it ensures that ht�1 and ht are
the same size.

8.4.6.4 Backpropagating through an LSTM cell Figure 8.42[516] illustrates the flow of
error gradients through an LSTM during backpropagation. In this figure the error gradients
flow from right to left. The backpropagation process within an LSTM begins with three
vectors of error gradients

1. BEt{Bot: the rate of change of the error of the network at time-step t with respect to
changes in the activation vector ot that was propagated to the output layer during the
forward pass;

2. BEt�1{Bht: the rate of change of the error of the network at time-step t�1 with respect
to changes in the activation vector ht that was propagated forward to the next time-step
during the forward pass; and

3. BEt�1{Bct: the rate of change of the error of the network at time-step t�1 with respect
to changes in the cell state ct that was propagated forward to the next time-step during
the forward pass.

During the forward pass of an LSTM unit, there are three operations on activation vectors
that are novel with respect to the other network architectures we have examined: forks in
computational flow, elementwise products of vectors, and elementwise addition of vectors.
To be able to backpropagate error gradients through an LSTM, we need to understand how
the novel operations in the forward pass are handled in the backward pass.

A fork in computational flow during forward propagation results in the same activation
vector flowing in two directions, with each path generating error gradients that must be
merged in the backpropagation stage. This occurs twice in an LSTM: (1) the cell state
ct vector flows forward into the next time-step and is also passed through a tanh layer
as part of the output layer; and (2) the vector of output activations ot flows forward to
both the output layer and the next time-step (as the propagated hidden state ht). Forks in
the forward computation flow are handled in backpropagation by summing the derivatives
that are flowing back along each of the fork branches. For example, in Figure 8.42[516] the
vector of error gradients BE{Bot is calculated using an elementwise addition of BEt{Bot

and BEt�1{Bht
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Figure 8.42
The flow of error gradients through a long short-term memory unit during backpropagation.
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All three gates in an LSTM involve an elementwise product of two activation vectors
(see Equations (8.107)[509], (8.112)[511], and (8.116)[512]). For each of these cases, what we
wish to calculate during backpropagation is the rate of change of the error with respect to
changes in each of the inputs to the product. This means that we will generate two sets
of error gradients when we backpropagate through an elementwise vector product, one for
each branch of data that flows into the product. In backpropagation, the error gradient with
respect to an input to a product of two terms is the error gradient with respect to the result
of the product multiplied by the other input to the product. In dealing with an elementwise
vector product, this is applied to each of the separate products in turn. So, for example,
backpropagating the error gradient BE{Bot through the elementwise vector product in the
output gate (see Equation (8.116)[512]) produces the following two error gradient vectors:

BE
Bo;

�
BE
Bot

d o: (8.119)

BE
Bo:

�
BE
Bot

d o; (8.120)
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where d is an elementwise vector product, o: was calculated in the forward pass using
Equation (8.114)[512]; and o; was calculated in the forward pass using Equation (8.115)[512].
Figure 8.42[516] indicates the flow of error gradients back through the elementwise product
in the output gate by labeling each path emerging from the operation with its respective
error gradient vector: BE{Bo; and BE{Bo;, respectively. We backpropagate through the
other elementwise products that occur in the forward pass within the LSTM using a similar
strategy: in order to calculate the backpropagated error gradient for one input to a product,
we multiply the error gradient for the result of the product by the other input to the product.

The forward computational flow through the LSTM input gates include an elementwise
addition of two activation vectors. This operation is used in the input gate to update the
cell state (see Equation (8.113)[511]). The term BE{Bct describes the vector of error gradients
that are backpropagated through this operation. The same error gradient vector flows back
along both paths that feed into the elementwise summation in the forward path. The is why
in Figure 8.42[516] both of the paths emerging from the elementwise summation are labeled
with the same term as the input arrow: BE{Bct.

Having covered how we backpropagate through branches, elementwise products, and
elementwise additions in the forward pass, we are now able to backpropagate the error
gradients through the LSTM. Starting on the right, we calculate BE{Bot per Equation
(8.118)[516] and then backpropagate this through the output gate elementwise product to
calculate BE{Bo; (Equation (8.119)[516]) and BE{Bo; (Equation (8.120)[516]). Next we cal-
culate BE{Bct. To calculate these error gradients we must backpropagate BE{Bo; through
a tanh layer and then merge the resulting gradients with the error gradients from the next
time-step with respect to the current cell state. This is done as follows:

�o; �
BE
Bo;

d
Bo;t

Bct;
�
BE
Bo;

d
�
1� tanh2pc;tq

�
loooooooomoooooooon
Derivate of tanh, i.e.: Ba

Bz

(8.121)

BE
Bct

� �o; �
BEt�1

Bct
(8.122)

In Equation (8.121)[517] we calculate a vector containing � values for the neurons in the
output gate tanh layer by backpropagating the error gradients BE{Bo; back through that
tanh activation function. Then in Equation (8.122)[517] we merge the two sets of gradients
that arise from the fork in the forward propagation of ct to both the next time-step (as the
cell state) and the output layer for this time-step.



518 Chapter 8 Deep Learning

Focusing on the input gate, the gradients for each of the inputs to the elementwise product
can now be calculated as follows:

BE
Bi;

�
BE
Bct

d i: (8.123)

BE
Bi:

�
BE
Bct

d i; (8.124)

Similarly, the gradients for the inputs to the elementwise product in the forget gate are
calculated

BE
Bct�1

�
BE
Bct

d ft (8.125)

BE
Bf
�
BE
Bct

d ct�1 (8.126)

Each of the terms BE{Bf (Equation (8.126)[518]), BE{Bi: (Equation (8.124)[518]), BE{Bi;
(Equation (8.123)[518]), and BE{Bo: (Equation (8.120)[516]) describes a vector of error gradi-
ents with respect to the output activations of the neurons in one of the sigmoid and tanh
layers in the LSTM. In order to calculate the �s for the neurons in each of these layers, we
must multiply these error gradients by the derivative of the activation function for the layer
with respect to the inputs to the activation function (i.e., Ba{Bz). Recall that we are dealing
with vectors of gradients, and so for each layer we will do an elementwise product with
a vector of activation function derivatives; also, the derivatives of the activation functions
are dependent on whether the neurons in the layer are using a sigmoid or tanh function.
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Once we have calculated the �s for the neurons in these layers, we have two further sets of
calculations to perform in order to complete the backpropagation through the LSTM. First,
we need to calculate the updates for each weight in each of these layers; and second, we
need to calculate the vector of gradients BEt{Bht�1 that are backpropagated to the previous
time-step.

Assuming that we are training the LSTM network using backpropagation through
time, then for each time-step, we calculate the update for each weight by multiplying
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the � for the neuron that uses the weight by the input value that weight was applied to,
and then we sum these weight updates across the time-steps. The weight is then updated
using the summed weight update. For example, the update for the weights in Wp f q would
be calculated as follows:

�Wp f q � � f � hx| (8.131)

Note that here we use the notation hx| to write the transpose of the vector hx; we use
transpose of the vector to ensure that this matrix and vector product is defined. We can
illustrate the process of calculating a weight update for the weights in Wp f q by using the
context provided by the forward pass example shown in Figure 8.41[514]. For the purposes
of this example, we assume that the following error gradients are already calculated:
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Given these terms we calculate the update for the weights in Wp f q using the sequence of
calculations listed in Equations (8.132)[519] to (8.138)[520]
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To calculate the vector of gradients BEt{Bht�1, we first need to calculate the error gra-
dient with respect to changes in hxt for each of the four layers of neurons that receive hxt

as input: the forget gate sigmoid layer, the input gate sigmoid layer, the input gate tanh
layer, and the output gate sigmoid layer. For each of these layers we calculate the error
gradient with respect to the layer’s input (hxt) by multiplying the � values for the neurons
in the layer by the weights the neuron uses. This is similar to the way we calculate the
error gradients with respect to the weights of a neuron, the difference here being that we
want the error gradient with respect to the input hxt, and so in this case we multiply the �
by the weights rather than the inputs. Once the vector of error gradients with respect to hxt

has been calculated for each of the layers, BE{Bhx is calculated using an elementwise sum
of these vectors of gradients
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�
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�
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�
�
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�
�
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(8.139)

The vector of gradients BE{Bhx includes error gradients for each element of ht�1 and
xt. This is because ht�1 and xt were concatenated together in the forward pass. Hence the
vector of gradients BEt{Bht�1 is extracted from BE{Bhx by splitting the vector at the index
that joined ht�1 and xt when they were concatenated.

LSTMs were specifically designed to be able to model long-distance dependencies in
a sequence. The fundamental element in the design of these networks was to remove
the repeated multiplication of error gradients by weight matrices during backpropagation
through time. Equation (8.139)[520] may appear to undermine this design goal, because
the calculation of the backpropagated error gradients in the vector BEt{Bht�1 involves a
multiplication by weight matrices. However, this is not the only vector of error gradients
that are backpropagated; recall, the BEt{Bct�1 is also backpropagated to the previous time-
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step. Equation (8.140)[521] expands out the full set of operations and terms that are used
in the calculation of BEt{Bct�1. The point to note in this equation is that the calculation
does not involve a weight term. Consequently, error gradients with respect to the cell state,
c, are not repeatedly multiplied by a (weight) term that is shared across time-steps, and
so these gradients are relatively stable as they flow backward along the cell state path. It
is primarily this path of error gradients flow (rather than the backpropagated hidden state
BEt{Bht�1 gradients) that enable LSTMs to learn long-distance dependencies
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8.5 Summary

The distinctive characteristic of deep learning models is that they are deeper and larger
than older neural networks. The depth of a network is measured by the number of layers
of neurons within the network. The reason why depth is important is that by introducing
multiple layers into a network, the network is able to learn a hierarchy of features with later
layers in the network building on the features that previous layers have learned to extract
from the raw input. A consequence of this layer-wise transformation of the input data into
new representations is that as the network becomes deeper, the ability of the network to
represent more complex relationships between descriptive and target features is increased.

The standard algorithm for training a deep neural network combines the backpropagation
algorithm (which solves the blame assignment problem) with stochastic gradient descent
(which we use to update the weights in the network after blame has been assigned to each
neuron). A difficulty with training a deep network with backpropagation and gradient de-
scent is unstable gradients (either vanishing or exploding gradients). Two key innovations
that helped with the unstable gradient problem were the adoption of the rectified linear
activation function and the development of new techniques for weight initialization.

The ability of deep neural networks to learn and represent complex mappings from inputs
to outputs is why these networks have been so successful at so many complex tasks. How-
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ever, this representational capacity also means that deep networks are likely to suffer from
overfitting. Dropout is a very simple and effective method that helps to stop overfitting.

Finally, the fact that deep learning models are combined by connecting artificial neurons
together means that we can tailor the structure of a network toward the characteristics of
the data on which we are planning to run the network. Convolutional neural networks are
a network architecture that have been very successful at image processing tasks. Convo-
lutional neural networks combine local receptive fields, weight sharing, and sub-sampling.
They generally work very well on data that has a grid-like structure and in which the
low-level features in the data have a local extent. By contrast, recurrent neural networks
are designed to process sequential data that may have long distances between dependent
features in the input sequence. These recurrent models use a feedback loop to maintain,
evolve, and propagate a representation of the pertinent information within the sequence
history. Recurrent networks also use weight sharing with the same weight matrices being
reused at each time-step in a sequence. The fact that the same weights are applied on the
feedback loop within a recurrent network means that these networks are very susceptible
to unstable gradients, as the repeated multiplication by the same weight of the gradient as
it is propagated back through the unrolled network can cause the gradient to explode or
vanish. Long short-term memory (LSTM) networks have addressed instability in the prop-
agation of weights through a sequential model by removing this repeated multiplication by
the shared weights.

In terms of using deep learning for a machine learning task, the first question to ask
is whether deep learning is really necessary or appropriate. Deep learning works best in
complex domains with lots of features and large datasets. Further, deep learning generally
requires relatively powerful computer hardware. If the domain is not complex, or if the
available data is small, or if the available hardware is not powerful enough for deep learn-
ing, then it is likely that you will have more success by exploring whether an alternative
machine learning model can be used to develop a viable solution for the task. Once the
decision to use deep learning has been made, the next decision is to choose the network
architecture to use. We have covered three architectures in this chapter: feedforward net-
works are appropriate if the descriptive features are in a fixed-sized vector; if the input
data has a grid-like structure, then consider a convolutional neural network; and if the in-
put may be a variable length sequence, then a recurrent neural network or LSTM network
will be most appropriate. As mentioned in the chapter, ReLUs (or variants) are now the
default activation function to use, although if a network architecture specifies a particular
activation function, then follow the specification (e.g., LSTMs specify the use of sigmoid
and tanh activations). With regard to the network training, take care with the weight ini-
tialization process, and it is generally a good idea to include dropout. Finally, as discussed
in the Information Based Learning chapter, in which we discussed tree pruning to avoid
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overfitting, using the performance of the model on the validation set to decide when to stop
the training and weight updates is nearly always the case in training a neural network.

8.6 Further Reading

Deep learning has grown out of research on neural networks. Consequently, many books
on neural networks cover the fundamentals of deep learning. Neural network texts that we
would recommend include Bishop (1996) and Reed and Marks (1999). Kelleher (2019)
provides an overview of the history of deep learning that highlights the major developments
in the field and the trends that are driving its adoption across a broad range of domains, and
it discusses likely future developments in the field. The explanation of the backpropagation
algorithm presented in this chapter is based on Chapter 6 of Kelleher (2019). Goodfellow
et al. (2016) provides a comprehensive overview of the field. From a programming per-
spective, we would recommend Charniak (2019) as an introduction to programming deep
learning models using TensorFlow, and Trask (2019) provides a great introduction to im-
plementing neural networks using Numpy. Finally, we also recommend Goldberg (2017)
for an accessible introduction to the use of deep learning for natural language processing
and Reagen et al. (2017) for a computer architecture perspective on deep learning.

Deep learning is currently attracting a huge amount of attention within the machine learn-
ing community. Consequently, there is rapid progress within the field, with new techniques
and network architectures being published every month. As a result, it is not possible in
a single chapter to cover all possible deep learning topics. Some of the topics that, space
permitting, we would have included are batch normalization (Ioffe and Szegedy, 2015),
which can speed up the training of very deep networks; algorithms that adaptively adjust
the learning rate parameter such as Adam (Kingma and Ba, 2014); and more recent neu-
ral network architectures such as Generative Adversarial Networks (Goodfellow et al.,
2014), and attention-based architectures, such as the Transformer (Vaswani et al., 2017).
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8.7 Exercises

1. The following image shows an artificial neuron that takes three inputs

(a) Calculate the weighted sum for this neuron for the input vector

d � r0:2; 0:5; 0:7s

(b) What would be the output from this neuron if the activation function ’ is a thresh-
old activation with � � 1?

(c) What would be the output from this neuron if the activation function ’ is the
logistic function?

(d) What would be the output from this neuron if the activation function ’ is the
rectified linear function?

2. The following image shows an artificial neural network with two sensing neurons
(Neurons 1 and 2) and 3 processing neurons (Neurons 3, 4, and 5)
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(a) Assuming that the processing neurons in this network use a logistic activation
function, what would be the output of Neuron 5 if the network received the input
vector: Neuron 1 = 0.7 and Neuron 2 = 0.3?

(b) Assuming that the processing neurons in this network use a ReLU activation func-
tion, what would be the output of Neuron 5 if the network received the input vec-
tor: Neuron 1 = 0.7 and Neuron 2 = 0.3?

(c) The following image provides a template diagram for the sequence of matrix op-
erations that our neural network would use to process the input vector Neuron 1 =
0.7 and Neuron 2 = 0.3. Assuming that the processing neurons in the network use
a ReLU activation function, fill in the diagram with the appropriate weights, bias
terms, weighted sum values, and activations.

3. The following image shows an artificial network with two layers of linear neurons
(i.e., neurons that have no activation function and whose output is simply the result of
the weighted sum of their inputs). Furthermore, these neurons have no bias terms.

(a) Calculate the output for Neuron 5 for the input vector: Neuron 1 = 0.9, Neuron 2
= 0.5.
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(b) Calculate the weight matrix for the single layer network that would implement the
equivalent mapping that this two-layer network implements.

(c) Show that the single-layer network using the weight matrix you calculated in Part
2 generates the same output as the network for the input vector: Neuron 1 = 0.9,
Neuron 2 = 0.5.

4. The following image illustrates the topology of a simple feedforward neural network
that has a single sensing neuron (Neuron 1), a single hidden processing neuron (Neu-
ron 2), and a single processing output neuron (Neuron 3).

(a) Assuming that the processing neurons use logistic activation functions, that the
input to the network is Neuron 1 = 0.2 and that the desired output for this input is
0:7:

i. Calculate the output generated by the network in response to this input.
ii. Calculate the � values for each of the neurons in the network (i.e., �3, �2).

iii. Using the � values you calculated above, calculate the sensitivity of the error
of the network to changes in each of the weights of the network (i.e., BE{Bw3;2,
BE{Bw3;0, BE{Bw2;1, BE{Bw2;0).

iv. Assuming a learning rate of � � 0:1, calculate the updated values for each of
the weights in the network (w3;2;w3;0;;w2;1;w2;0;) after the processing of this
single training example.

v. Calculate the reduction in the error of the network for this example using the
new weights, compared with using the original weights.

(b) Assuming that the processing neurons are ReLUs, that the input to the network is
Neuron 1 = 0.2, and that the desired output for this input is 0:7:

i. Calculate the output generated by the network in response to this input.
ii. Calculate the � values for each of the neurons in the network (i.e., �3, �2).

iii. Using the � values you have calculated in the preceding, calculate the sensitivity
of the error of the network to changes in each of the weights of the network (i.e.,
BE{Bw3;2, BE{Bw3;0, BE{Bw2;1, BE{Bw2;0).

iv. Assuming a learning rate of � � 0:1, calculate the updated values for each
of the weights in the network (w3;2;w3;0;;w2;1;w2;0) after the processing of this
single training example.
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v. Calculate the reduction in the error for this example using the new weights for
the network, compared with using the original weights.

5. The following image illustrates the topology of a simple feedforward neural network
that has a single sensing neuron (Neuron 1), three hidden processing neuron (Neurons
2, 3, and 4), and a single processing output neuron (Neuron 5).

(a) Assuming that the processing neurons use logistic activation functions, that the
input to the network is Neuron 1 = 0.5 and that the desired output for this input is
0:9:

i. Calculate the output generated by the network in response to this input.
ii. Calculate the � values for each of the processing neurons in the network (i.e.,

�5, �4, �3, �2).
iii. Using the � values you have calculated, calculate the sensitivity of the error of

the network to changes in each of the weights of the network (i.e., BE{Bw5;4;

BE{Bw5;3; BE{Bw5;0; BE{Bw4;2; BE{Bw4;0; BE{Bw3;2; BE{Bw3;0; BE{Bw2;1;

BE{Bw2;0).
iv. Assuming a learning rate of � � 0:1, calculate the updated values for each of

the weights in the network (w5;4, w5;3, w5;0, w4;2, w4;0, w3;2, w3;0;, w2;1, w2;0;)
after the processing of this single training example.

v. Calculate the reduction in the error of the network for this example using the
new weights, compared with using the original weights.

(b) Assuming that the processing neurons are ReLUs, that the input to the network is
Neuron 1 = 0.5 and that the desired output for this input is 0:9

i. Calculate the output generated by the network in response to this input.
ii. Calculate the � values for each of the processing neurons in the network (i.e.,

�5, �4, �3, �2).
iii. Using the � values you have calculated, calculate the sensitivity of the error of

the network to changes in each of the weights of the network (i.e., BE{Bw5;4;

BE{Bw5;3; BE{Bw5;0; BE{Bw4;2; BE{Bw4;0; BE{Bw3;2; BE{Bw3;0; BE{Bw2;1; BE{Bw2;0).
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iv. Assuming a learning rate of � � 0:1, calculate the updated values for each of
the weights in the network (w5;4, w5;3, w5;0, w4;2, w4;0, w3;2, w3;0;, w2;1, w2;0;)
after the processing of this single training example.

v. Calculate the reduction in the error of the network for this example using the
new weights, compared with using the original weights.

6. The following image illustrates the topology of a feedforward neural network that has
two sensing neurons (Neurons 1 and 2), two hidden processing neuron (Neurons 3,
and 4), and two processing output neurons (Neurons 5 and 6).

(a) Assuming that the processing neurons use logistic activation functions, that the
input to the network is Neuron 1 = 0.3 and Neuron 2 = 0.6, and that the desired
output for this input is Neuron 5 = 0.7 and Neuron 6 = 0.4:

i. Calculate the output generated by the network in response to this input.
ii. Calculate the sum of squared errors for this network for this example.

iii. Calculate the � values for each of the processing neurons in the network (i.e.,
�6, �5, �4, �3).

iv. Using the � values you calculated above, calculate the sensitivity of the error
of the network to changes in each of the weights of the network (i.e., BE{Bw6;4,
BE{Bw6;3, BE{Bw6;0, BE{Bw5;4, BE{Bw5;3, BE{Bw5;0, BE{Bw4;2, BE{Bw4;1,
BE{Bw4;0, BE{Bw3;2, BE{Bw3;1, BE{Bw3;0).

v. Assuming a learning rate of � � 0:1, calculate the updated values for each of
the weights in the network (w6;4,w6;3,w6;0,w5;4, w5;3, w5;0, w4;2,w4;1,w4;0, w3;2,
w3;1, w3;0;) after the processing of this single training example.

vi. Calculate the reduction in the sum of squared error of the network for this
example using the new weights, compared with using the original weights.

(b) Assuming that the processing neurons use a rectifier activation functions, that the
input to the network is Neuron 1 = 0.3 and Neuron 2 = 0.6 and that the desired
output for this input is Neuron 5 = 0.7 and Neuron 6 = 0.4:
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i. Calculate the output generated by the network in response to this input.
ii. Calculate the sum of squared errors for this network on this example.

iii. Calculate the � values for each of the processing neurons in the network (i.e.,
�6, �5, �4, �3).

iv. Using the � values you calculated above, calculate the sensitivity of the error
of the network to changes in each of the weights of the network (i.e., BE{Bw6;4,
BE{Bw6;3, BE{Bw6;0, BE{Bw5;4, BE{Bw5;3, BE{Bw5;0, BE{Bw4;2, BE{Bw4;1,
BE{Bw4;0, BE{Bw3;2, BE{Bw3;1, BE{Bw3;0).

v. Assuming a learning rate of � � 0:1, calculate the updated values for each of
the weights in the network (w6;4,w6;3,w6;0,w5;4, w5;3, w5;0, w4;2,w4;1,w4;0, w3;2,
w3;1, w3;0;) after the processing of this single training example.

vi. Calculate the reduction in the sum of squared error of the network for this
example using the new weights, compared with using the original weights.

7. Assuming a fully connected feedforward network where all the neurons uses a linear
activation function (i.e., ai � zi) and with the following topology:

(a) 100 neurons in the input layer

(b) 5 hidden layers with 2,000 neurons in each layer

(c) 10 neurons in the output layer

If all the inputs to the network have been standardized to have a mean value of 0 and
a standard deviation of 1, and the initial weights for the network are sampled from a
normal distribution with mean 0.0 and standard deviation of � � 0:01; then:

(a) Calculate the variance of the z values across for the neurons in the first hidden
layer in the first iteration of training.

(b) Calculate the variance of the z values across for the neurons in the last hidden layer
in the first iteration of training.

Assuming that the variance of the �s for the output layer is equal to 1:

(a) Calculate the variance of the �s across for the neurons in the last hidden layer in
the first iteration of training.

(b) Calculate the variance of the �s values across for the neurons in the first hidden
layer in the first iteration of training.

(c) Is the training dynamic of this network stable, or is it suffering from vanishing or
exploding gradients?

� 8. Assuming a network architecture that has four neurons in a softmax output layer. If
the one-hot encoding of the target for the current training example is t � r0; 0; 1; 0s
and the logits for the four neurons in the softmax output layer for this example are
r0; 0:5; 0:25; 0:75s, then what is the � value for each of the four neurons?
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� 9. Assuming a feedforward neural network that has 4 neurons in hidden layer k and that
we are training this network using inverted dropout with � � 0:5. If the activations
for the neurons in layer k are as follows: r0:2; 0; 4; 0; 3; 0:1s and the DropMask for
layer k is r1; 0; 1; 0s, calculate the activation vector that is actually propagated to layer
k � 1 after inverted dropout has been applied.

� 10. The figure below illustrates a layer of a convolutional neural network that is process-
ing a one-dimensional input. For ease of reference each of the neurons in the network
has been labeled: 1; 2; 3; 4; 5; 6; 7. The architecture of the network consists of ReLUs
that share a filter (Neurons 1; 2; 3; 4), followed by a sub-sampling layer containing two
max pooling units (Neurons 5; 6), and then a fully connected layer containing a single
ReLU (Neuron 7). The ReLU in the first layer has a 3-by-1 receptive field, and there is
a stride of 1 used in this layer. The max pooling units have a receptive field of 2-by-1,
and there is no overlap between the receptive fields of the max pooling units.

(a) What value will this network output?
(b) Assuming the target output for this input is 1, calculate the � for each neuron in

the network.
(c) Calculate the weight update for each weight in the filter: w0;w1;w2;w3.

� 11. Assume a simple recurrent neural network architecture matching the one shown in the
detailed schematic on the left of Figure 8.37[502]. This network has two input neurons,
three ReLUs in the hidden layer, and two ReLUs in the output layer. Also, all the
bias terms in the network are equal to 0:1, and the weight matrices of the network
(excluding bias terms) are listed in Equation (8.141)[530].

�

��
�0:07 0:05
�0:04 0:1
�0:05 �0:05

�

��

looooooooooomooooooooooon
Whx

�

��
�0:22 �0:1 0:05
�0:04 �0:09 �0:06
�0:09 0 �0:08

�

��

looooooooooooooooomooooooooooooooooon
Whh

�
0:06 �0:01 �0:18
�0:06 0:13 0:14

�

looooooooooooooooomooooooooooooooooon
Wyh

(8.141)
(a) If xt � r1; 0:5s and ht�1 � r0:05; 0:2; 0:15s, calculate the value of yt.
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(b) Assuming that the target output for time tt � r0; 1s, calculate the � value for each
neuron in the network.

� 12. Assuming that the LSTM cell state propagated forward from the last time-step is

ct�1 �

�
�0:5
�0:5

�

(a) What will be the value of ct if

ft �

�
�1:00
�1:00

�

i:t �

�
�1:00
�1:00

�

i;t �

�
�0:25
�0:25

�

(b) What will be the value of ct if

ft �

�
�1:00
�1:00

�

i:t �

�
0:00
0:00

�

i;t �

�
�0:25
�0:25

�

(c) What will be the value of ct if

ft �

�
0:00
0:00

�

i:t �

�
�1:00
�1:00

�

i;t �

�
�0:25
�0:25

�

(d) What will be the value of ct if

ft �

�
0:00
0:00

�

i:t �

�
0:00
0:00

�

i;t �

�
�0:25
�0:25

�

� 13. Equations (8.132)[519] to (8.138)[520] step through the calculation of the weight update
for Wp f q in the context of the forward pass presented in Figure 8.41[514] and under the
assumption that the following error gradients are already calculated:

BEt�1

Bct
�

�
0:35
0:50

�
BEt�1

Bht
�

�
0:75
0:25

�
BEt

Bot
�

�
0:15
0:60

�

(a) Given this context, calculate Et
Bct�1

.

(b) Given this context, calculate the vector of error gradients with respect to the input
hxt for the forget gate sigmoid layer.





9 Evaluation

“Essentially, all models are wrong, but some are useful.”
—George E. P. Box

In this chapter we describe how to evaluate machine learning models built for predictive
data analytics tasks. We start by outlining the fundamental goals of evaluation before de-
scribing the standard approach of measuring the misclassification rate for a model on a
hold-out test set. We then present extensions and variations of this approach that describe
different performance measures for models predicting categorical, continuous, and multi-
nomial targets; how to design effective evaluation experiments; and how to continually
measure the performance of models after deployment.

9.1 Big Idea

The year is 1904, and you are a research assistant working in the lab of physicist Professor
René Blondlot, at the University of Nancy, in France. Until recently, spirits have been very
high in the lab due to the discovery earlier the previous year of a new form of electromag-
netic radiation called N rays (Blondlot, 1903). The existence of N rays was first hinted
at in an experiment performed at the lab that was designed to answer questions about the
exact nature of the recently discovered X-ray radiation. This experiment showed behavior
uncharacteristic of X-rays, which Professor Blondlot interpreted to mean that another, dif-
ferent type of electromagnetic radiation must exist. This new type of radiation was named
the N ray (after the University of Nancy), and experiments were designed to demonstrate
its existence. These experiments were performed in Nancy and confirmed, to the satis-
faction of everyone involved, that N rays did indeed exist. This new discovery caused
ripples of great excitement in the international physics community and greatly enhanced
the reputations of the lab at Nancy and Professor Blondlot.

Doubt has begun to surround the phenomenon of N rays, however, as a number of in-
ternational physicists have not been able to reproduce the results of the experiments that
demonstrate their existence. You are currently preparing for a visit by the American physi-
cist Professor Robert W. Wood to whom Professor Blondlot has agreed to demonstrate the
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experiments that show the effects of N rays. In one of these experiments, the brightening
of a small spark that occurs when an object that supposedly emits N rays is brought close
to it is measured. In a second experiment, the refractive effect of passing N rays through a
prism (something that does not happen to X-rays) is demonstrated. You carefully prepare
the apparatus for these experiments, and on the 21st of September 1904, you spend three
hours assisting Professor Blondlot in demonstrating them to Professor Wood.

Just over a week later, you are very disappointed to read an article published by Wood
in the journal Nature (Wood, 1904) that completely refutes the existence of N rays. He
dismisses the experimental setup for the experiments you demonstrated as entirely inap-
propriate. Even more dramatically, he reports that he actually interfered with the second
experiment by removing the prism from the apparatus during the demonstration (because
the experiment was completed in darkness, Wood was able to do this without anybody
noticing), which made no difference to the results that you measured and reported, so it
completely undermines them. Within a few years of the publication of this article, the
consensus within the physics research community is that N rays do not exist.

The story of Professor Blondlot and N rays is true,1 and it is one of the most famous
examples in all of science of how badly designed experiments can lead to completely in-
appropriate conclusions. There was no fraud involved in the work at the Nancy lab. The
experiments designed to show the existence of N rays simply relied too much on subjective
measurements (the changes in the brightness of the spark was measured by simple human
observation) and did not account for all the reasons other than the presence of N rays that
could have created the phenomena observed.

The big idea to take from this example to predictive data analytics projects is that when
we evaluate predictive models, we must ensure that the evaluation experiments are de-
signed so that they give an accurate estimate of how the models will perform when de-
ployed. The most important part of the design of an evaluation experiment for a predictive
model is ensuring that the data used to evaluate the model is not the same as the data used
to train the model.

9.2 Fundamentals

Over the last four chapters, we have discussed a range of approaches to building machine
learning models that make various kinds of predictions. The question that we must answer
in the Evaluation phase of the CRISP-DM process (recall Section 1.6[15]) is Can the model
generated do the job that it has been built for? The purpose of evaluation is threefold:

 to determine which of the models that we have built for a particular task is most suited
to that task

1. Detailed descriptions of the story of Professor Blondlot and N rays are available in Klotz (1980) and Ashmore
(1993).



9.3 Standard Approach: Misclassification Rate on a Hold-Out Test Set 535

 to estimate how the model will perform when deployed
 to convince the business for whom a model is being developed that the model will meet

their needs

The first two items in this list focus on measuring and comparing the performance of
a group of models to determine which model best performs the prediction task that the
models have been built to address. The definition of best is important here. No model will
ever be perfect, so some fraction of the predictions made by every model will be incorrect.
There are, though, a range of ways in which models can be incorrect, and different analytics
projects will emphasize some over others. For example, in a medical diagnosis scenario, we
would require that a prediction model be very accurate in its diagnoses and, in particular,
never incorrectly predict that a sick patient is healthy, as that patient will then leave the
health-care system and could subsequently develop serious complications. On the other
hand, a model built to predict which customers would be most likely to respond to an
online ad only needs to do a slightly better than random job of selecting those customers
that will actually respond in order to make a profit for the company. To address these
different project requirements, there is a spectrum of different approaches to measuring
the performance of a model, and it is important to align the correct approach with a given
modeling task. The bulk of this chapter discusses these different approaches and the kinds
of modeling tasks that they best suit.

As indicated by the third item in the list above, there is more to evaluation than measuring
model performance. For a model to be successfully deployed, we must consider issues
like how quickly the model makes predictions, how easy it easy for human analysts to
understand the predictions made by a model, and how easy it is to retrain a model should
it go stale over time. We return to these issues in the final section of this chapter.

9.3 Standard Approach: Misclassification Rate on a Hold-Out Test Set

The basic process for evaluating the effectiveness of predictive models is simple. We take a
dataset for which we know the predictions that we expect the model to make, referred to as
a test set, present the instances in this dataset to a trained model, and record the predictions
that the model makes. These predictions can then be compared to the predictions we
expected the model to make. Based on this comparison, a performance measure can be
used to capture, numerically, how well the predictions made by the model match those that
were expected.

There are different ways in which a test set can be constructed from a dataset, but the
simplest is to use what is referred to as a hold-out test set. A hold-out test set is created by
randomly sampling a portion of the data in the ABT we created in the Data Preparation
phase. This random sample is never used in the training process but reserved until after
the model has been trained, when we would like to evaluate its performance. Figure 9.1[536]

illustrates this process.
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Figure 9.1
The process of building and evaluating a model using a hold-out test set.

Using a hold-out test set avoids the issue of peeking, which arises when the performance
of a model is evaluated on the same data used to train it; because the data was used in
the training process, the model has already seen this data, so it is probable that it will
perform very well when evaluated on this data. An extreme case of this problem happens
when k nearest neighbor models are used. If the model is asked to make a prediction about
an instance that was used to train it, the model will find as the nearest neighbor, for this
instance, the instance itself. Therefore, if the entire training set is presented to this model,
its performance will appear to be perfect. Using a hold-out test set avoids this problem,
because none of the instances in the test set will have been used in the training process.
Consequently, the performance of the model on the test set is a better measure of how
the model is likely to perform when actually deployed and shows how well the model can
generalize beyond the instances used to train it. The most important rule in evaluating
models is not to use the same data sample both to evaluate the performance of a predictive
model and to train it.

For a first example of how to evaluate the performance of a predictive model, let us
assume that we are dealing with an email classification problem with a binary categorical
target feature distinguishing between spam and ham emails. When making predictions
about categorical targets, we need performance measures that capture how often the model
makes correct predictions and the severity of the mistakes that the model makes when it is
incorrect. Table 9.1[537] shows the expected targets for a small sample test set and a set of
predictions made by a model trained for this prediction problem (the FP and FN comments
in the Outcome column will be explained shortly).

The simplest performance measure we can use to assess how well this model has per-
formed for this problem is the misclassification rate. The misclassification rate is the
number of incorrect predictions made by the model divided by the total number of predic-
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tions made:

misclassi f ication rate �
number incorrect predictions

total predictions
(9.1)

In the example in Table 9.1[537], 20 predictions are made in total, and out of these, 5
are incorrect (instances d1, d2, d12, d17, and d20). Therefore, the misclassification rate is
calculated as 5

20 � 0:25, which is usually expressed as a percentage: 25%. This tells us
that the model is incorrect about a quarter of the time. Misclassification rate can assume
values in the range r0; 1s, and lower values indicate better performance.

Table 9.1
A sample test set with model predictions.

ID Target Pred. Outcome
1 spam ham FN
2 spam ham FN
3 ham ham TN
4 spam spam TP
5 ham ham TN
6 spam spam TP
7 ham ham TN
8 spam spam TP
9 spam spam TP
10 spam spam TP

ID Target Pred. Outcome
11 ham ham TN
12 spam ham FN
13 ham ham TN
14 ham ham TN
15 ham ham TN
16 ham ham TN
17 ham spam FP
18 spam spam TP
19 ham ham TN
20 ham spam FP

The confusion matrix is a very useful analysis tool to capture what has happened in an
evaluation test in a little more detail and is the basis for calculating many other performance
measures. The confusion matrix calculates the frequencies of each possible outcome of the
predictions made by a model for a test dataset in order to show, in detail, how the model is
performing. For a prediction problem with a binary target feature (where, by convention,
we refer to the two levels as positive and negative), there are just four outcomes when the
model makes a prediction:

 True Positive (TP): an instance in the test set that had a positive target feature value and
that was predicted to have a positive target feature value

 True Negative (TN): an instance in the test set that had a negative target feature value
and that was predicted to have a negative target feature value

 False Positive (FP): an instance in the test set that had a negative target feature value but
that was predicted to have a positive target feature value

 False Negative (FN): an instance in the test set that had a positive target feature value
but that was predicted to have a negative target feature value



538 Chapter 9 Evaluation

Table 9.2
The structure of a confusion matrix.

Prediction
positive negative

Target
positive T P FN
negative FP T N

The Outcome column of Table 9.1[537] shows the category to which each prediction made
by the model belongs. One thing worth keeping in mind is that there are two ways in which
the prediction made by a model can be correct—true positive or true negative—and two
ways in which the prediction made by a model can be incorrect—false positive or false
negative.2 The confusion matrix allows us to capture these different types of correct and
incorrect predictions made by the model.

Each cell in a confusion matrix represents one of these outcomes (TP, TN, FP, FN) and
counts the number of times this outcome occurred when the test dataset was presented to
the model. The structure of a confusion matrix for a simple prediction task with two target
levels is shown in Table 9.2[538]. The columns in the table are labeled Prediction-positive
and Prediction-negative and represent the predictions generated by a model, which is either
positive or negative. The rows in the table are labeled Target-positive and Target-negative
and represent the target feature values that were expected. The top left cell in the confusion
matrix, labeled TP, shows the number of instances in a test set that have a positive target
feature value that were also predicted by the model to have a positive target feature value.
Similarly, the bottom left cell in the matrix, labeled FP, shows the number of instances in a
test set that have a negative target feature value that were in fact predicted by the model to
have a positive target feature value. TN and FN are defined similarly.

At a glance, the confusion matrix can show us that a model is performing well if the
numbers on its diagonal, representing the true positives and true negatives, are high. Look-
ing at the other cells within the confusion matrix can show us what kind of mistakes the
model is making. Table 9.3[539] shows the confusion matrix for the set of predictions shown
in Table 9.1[537] (in this case, we refer to the spam target level as the positive level and ham
as the negative level).3

2. Statisticians will often refer to false positives as type I errors and false negatives as type II errors. Similarly,
false positives are often also referred to as false alarms, true positives as hits, and false negatives as misses.

3. Typically, the level that is of most interest is referred to as the positive level. In email classification, identi-
fying spam emails is the most important issue, so the spam level is referred to as the positive level. Similarly,
in fraud detection, the fraud events would most likely be the positive level; in credit scoring, the default events
would most likely be the positive level; and in disease diagnosis, a confirmation that a patient has the disease
would most likely be the positive level. The choice, however, is arbitrary.
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Table 9.3
A confusion matrix for the set of predictions shown in Table 9.1[537].

Prediction
spam ham

Target
spam 6 3
ham 2 9

It is clear from the values along the diagonal, the true positives and true negatives, that
the model is doing a reasonably good job of making accurate predictions. We can actually
calculate the misclassification rate directly from the confusion matrix as follows:

misclassi f ication rate �
pFP� FNq

pT P� T N � FP� FNq
(9.2)

In the email classification example we have been following, the misclassification rate
would be

misclassi f ication rate �
p2� 3q

p6� 9� 2� 3q
� 0:25

For completeness, it is worth noting that classification accuracy is the opposite of mis-
classification rate. Again, using the confusion matrix, classification accuracy is defined
as

classi f ication accuracy �
pT P� T Nq

pT P� T N � FP� FNq
(9.3)

Classification accuracy can assume values in the range r0; 1s, and higher values indicate
better performance. For the email classification task, classification accuracy would be

classi f ication accuracy �
p6� 9q

p6� 9� 2� 3q
� 0:75

We can also use the confusion matrix to begin to investigate the kinds of mistakes that the
prediction model is making. For example, the model makes a prediction of ham incorrectly
3 times out of the 9 times that the correct prediction should be spam (33:333% of the time),
while it makes a prediction of spam incorrectly just 2 times out the 11 times that the correct
prediction should be ham (18:182% of the time). This suggests that when the model makes
mistakes, it more commonly incorrectly predicts the spam level than the ham level. This
kind of insight that we can get from the confusion matrix can help in trying to improve a
model, as it can suggest to us where we should focus our work.

This section has presented a basic approach to evaluating prediction models. The most
important things to take away from this example are:

1. It is crucial to use data to evaluate a model that has not been used to train the model.
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2. The overall performance of a model can be captured in a single performance measure,
for example, misclassification rate.

3. To fully understand how a model is performing, it can often be useful to look beyond
a single performance measure.

There are, however, a range of variations to this standard approach to evaluating predic-
tion model performance, and the remainder of this chapter covers the most important of
these.

9.4 Extensions and Variations

When evaluating the performance of prediction models, there is always a tension between
the need to fully understand the performance of the model and the need to reduce model
performance to a single measure that can be used to rank models by performance. For
example, a set of confusion matrices gives a detailed description of how a set of models
trained on a categorical prediction problem performed and can be used for a detailed com-
parison of performances. Confusion matrices, however, cannot be ordered and so cannot
be used to rank the performance of the set of models. To perform this ranking, we need to
reduce the information contained in the confusion matrix to a single measure, for example,
misclassification rate. Any information reduction process will result in some information
loss, and a single measure of model performance will be designed to emphasize some as-
pects of model performance and de-emphasize, or lose, others. For this reason, there are
a variety of different performance measures and no single approach that is appropriate for
all scenarios.

This section covers a selection of the most important performance measures. We also de-
scribe different experimental designs for evaluating prediction models and ways to monitor
model performance after a model has been deployed.

9.4.1 Designing Evaluation Experiments
As well as being required to select appropriate performance measures to use when evalu-
ating trained models, we also need to ensure that we are using the appropriate evaluation
experiment design. The goal here is to ensure that we calculate the best estimate of how a
prediction model will perform when actually deployed in the wild. In this section we will
describe the most important evaluation experiment designs and indicate when each is most
appropriate.

9.4.1.1 Hold-out sampling In Section 9.3[535] we used a hold-out test set to evaluate
the performance of a model. The important characteristic of this test set was that it was not
used in the process of training the model. Therefore, the performance measured on this test
set should be a good indicator of how well the model will perform on future unseen data
for which it will be used to make predictions after deployment. This is an example of using
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a sampling method to evaluate the performance of a model, as we take distinct, random,
non-overlapping samples from a larger dataset and use these for training and testing a
prediction model. When we use a hold-out test set, we take one sample from the overall
dataset to use to train a model and another separate sample to test the model.

Hold-out sampling is probably the simplest form of sampling that we can use and is
most appropriate when we have very large datasets from which we can take samples. This
ensures that the training set and test set are sufficiently large to train an accurate model and
fully evaluate the performance of that model. Hold-out sampling is sometimes extended
to include a third sample, the validation set. The validation set is used when data outside
the training set is required in order to tune particular aspects of a model. For example,
when wrapper-based feature selection techniques are used, a validation set is required
in order to evaluate the performance of the different feature subsets on data not used in
training. It is important that after the feature selection process is complete, a separate test
set still exists that can be used to evaluate the expected performance of the model on future
unseen data after deployment. Figure 9.2[541] illustrates how a large ABT can be divided
into a training set, a validation set, and a test set. There are no fixed recommendations
for how large the different datasets should be when hold-out sampling is used, although
training:validation:test splits of 50:20:30 or 40:20:40 are common.

(a) A 50:20:30 split

(b) A 40:20:40 split

Figure 9.2
Hold-out sampling can divide the full data into training, validation, and test sets.

One of the most common uses of a validation set is to avoid overfitting when using ma-
chine learning algorithms that iteratively build more and more complex models. The ID3
algorithm for building decision trees and the gradient descent algorithm for building re-
gression models are two examples of this type of approach. As the algorithm proceeds, the
model that it is building will become more and more fitted to the nuances of the training
data. We can see this in the solid line in Figure 9.3[542]. This shows how the misclassifi-
cation rate made by a model on a set of training instances changes as the training process
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continues. This will continue almost indefinitely as the model becomes more and more
tuned to the instances in the training set. At some point in this process, however, over-
fitting will begin to occur, and the ability of the model to generalize well to new query
instances will diminish.

Figure 9.3
Using a validation set to avoid overfitting in iterative machine learning algorithms.

We can find the point at which overfitting begins to happen by comparing the perfor-
mance of a model at making predictions for instances in the training dataset used to build
it versus its ability to make predictions for instances in a validation dataset as the training
process continues. The dashed line in Figure 9.3[542] shows the performance of the model
being trained on a validation dataset. We can see that, initially, the performance of the
model on the validation set falls almost in line with the performance of the model on the
training dataset (we usually expect the model to perform slightly better on the training set).
About halfway through the training process, however, the performance of the model on the
validation set begins to disimprove. This is the point at which we say overfitting has begun
to occur (this is shown by the vertical dashed line, at Training Iteration = 100, in Figure
9.3[542]). To combat overfitting, we allow algorithms to train models beyond this point but
save the model generated at each iteration. After the training process has completed, we
find the point at which performance on the validation set began to disimprove and revert
back to the model trained at that point. This process is essentially the same as the decision
tree post-pruning process described in Section 4.4.4[153].
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Two issues arise when using hold-out sampling. First, using hold-out sampling requires
that we have enough data available to make suitably large training, test, and if required,
validation sets. This is not always the case, and making any of these partitions too small can
result in a poor evaluation. Second, performance measured using hold-out sampling can be
misleading if we happen to make a lucky split of the data that places the difficult instances
into the training set and the easy ones into the test set. This will make the model appear
much more accurate than it will actually be when deployed. An example of a commonly
used sampling method that attempts to address these two issues is k-fold cross validation.

9.4.1.2 k-Fold cross validation When k-fold cross validation is used, the available
data is divided into k equal-sized folds (or partitions), and k separate evaluation experi-
ments are performed. In the first evaluation experiment, the data in the 1st fold is used as
the test set, and the data in the remaining k � 1 folds is used as the training set. A model
is trained using the training set, and the relevant performance measures on the test set are
recorded. A second evaluation experiment is then performed using the data in the 2nd fold
as the test set and the data in the remaining k�1 folds as the training set. Again the relevant
performance measures are calculated on the test set and recorded. This process continues
until k evaluation experiments have been conducted and k sets of performance measures
have been recorded. Finally, the k sets of performance measures are aggregated to give one
overall set of performance measures. Although k can be set to any value, 10-fold cross val-
idation is probably the most common variant used in practice. Figure 9.4[543] illustrates how
the available data is split during the k-fold cross validation process. Each row represents a
fold in the process, in which the black rectangles indicate the data used for testing while
the white spaces indicate the data used for training.

Figure 9.4
The division of data during the k-fold cross validation process. Black rectangles indicate test data,
and white spaces indicate training data.
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Table 9.4
The performance measures from the five individual evaluation experiments and an overall aggregate
from the 5-fold cross validation performed on the chest X-ray classification dataset.

Classification

Fold Confusion Matrix Accuracy

1

Prediction

lateral frontal

Target
lateral 43 9

frontal 10 38

81%

2

Prediction

lateral frontal

Target
lateral 46 9

frontal 3 42

88%

3

Prediction

lateral frontal

Target
lateral 51 10

frontal 8 31

82%

4

Prediction

lateral frontal

Target
lateral 51 8

frontal 7 34

85%

5

Prediction

lateral frontal

Target
lateral 46 9

frontal 7 38

84%

Overall

Prediction

lateral frontal

Target
lateral 237 45

frontal 35 183

84%
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Let’s consider an example. As part of a medical decision making system, a prediction
system that can automatically determine the orientation of chest X-rays (the orientations
can be lateral or frontal) is built.4 Based on a full dataset of 1;000 instances, we decide
to evaluate the performance of this system with classification accuracy using 5-fold cross
validation. So, the full dataset is divided into 5 folds (each containing 200 instances), and
five evaluation experiments are performed using 1 fold as the test set and the remaining
folds as the training set. The confusion matrices and class accuracy measures arising from
each fold are shown in Table 9.4[544].

The performance measures for each fold (in this case, a confusion matrix and a class
accuracy measure) can be aggregated into summary performance measures that capture
the overall performance across the 5 folds. The aggregate confusion matrix, generated by
summing together the corresponding cells in the individual confusion matrices for each
fold, is shown at the bottom of Table 9.4[544]. The aggregate class accuracy measure can
then be calculated from this combined confusion matrix and, in this case, turns out to be
84%. When different performance measures are used, the aggregates can be calculated in
the same way.

There is a slight shift in emphasis here from evaluating the performance of one model, to
evaluating the performance of a set of k models. Our goal, however, is still to estimate the
performance of a model after deployment. When we have a small dataset (introducing the
possibility of a lucky split), measuring aggregate performance using a set of models gives
a better estimate of post-deployment performance than measuring performance using a
single model. After estimating the performance of a deployed model using k-fold cross
validation, we typically train the model that will be deployed using all of the available
data. This contrasts with the hold-out sampling design, in which we simply deploy the
model that has been evaluated.

9.4.1.3 Leave-one-out cross validation Leave-one-out cross validation, also known
as jackknifing, is an extreme form of k-fold cross validation in which the number of folds
is the same as the number of training instances. This means that each fold of the test
set contains only one instance, and the training set contains the remainder of the data.
Leave-one-out cross validation is useful when the amount of data available is too small
to allow big enough training sets in a k-fold cross validation. Figure 9.5[546] illustrates
how the available data is split during the leave-one-out cross validation process. Each row
represents a fold in the process, in which the black rectangles indicate the instance that is
used for testing while the white spaces indicate the data used for training.

At the conclusion of the leave-one-out cross validation process, a performance measure
will have been calculated for every instance in the dataset. In the same way as we saw in

4. Lehmann et al. (2003) discusses building prediction models to perform this task.
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Figure 9.5
The division of data during the leave-one-out cross validation process. Black rectangles indicate
instances in the test set, and white spaces indicate training data.

Table 9.4[544] for k-fold cross validation, these performance measures are aggregated across
all the folds to arrive at an overall measure of model performance.

9.4.1.4 Bootstrapping The next sampling method we will look at is bootstrapping,
and in particular the �0 bootstrap. Bootstrapping approaches are preferred over cross
validation approaches in contexts with very small datasets (approximately fewer than 300
instances). Similar to k-fold cross validation, the �0 bootstrap iteratively performs multiple
evaluation experiments using sightly different training and test sets each time to evaluate
the expected performance of a model. To generate these partitions for an iteration of the
�0 bootstrap, a random selection of m instances is taken from the full dataset to generate
a test set, and the remaining instances are used as the training set. Using the training set
to train a model and the test set to evaluate it, a performance measure (or measures) is
calculated for this iteration. This process is repeated for k iterations, and the average of
the individual performance measures, the titular �0, gives the overall performance of the
model. Typically, in the �0 bootstrap, k is set to values greater than or equal to 200, much
larger values than when k-fold cross validation is used. Figure 9.6[547] illustrates how the
data is divided during the �0 bootstrap process. Each row represents an iteration of the
process, in which the black rectangles indicate the data used for testing while the white
spaces indicate the data used for training.

9.4.1.5 Out-of-time sampling The sampling methods discussed in the previous section
all rely on random sampling from a large dataset in order to create test sets. In some
applications there is a natural structure in the data that we can take advantage of to form
test sets. In scenarios that include a time dimension, this can be particularly effective and
is often referred to as out-of-time sampling, because we use data from one period to build
a training set and data out of another period to build a test set. For example, in a customer
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Figure 9.6
The division of data during the �0 bootstrap process. Black rectangles indicate test data, and white
spaces indicate training data.

churn scenario, we might use details of customer behavior from one year to build a training
set and details of customer behavior from a subsequent year to build a test set. Figure 9.7[547]

illustrates the process of out-of-time sampling.

Figure 9.7
The out-of-time sampling process.

Out-of-time sampling is essentially a form of hold-out sampling in which the sampling
is done in a targeted rather than a random fashion. When using out-of-time sampling, we
should be careful to ensure that the times from which the training and test sets are taken
do not introduce a bias into the evaluation process, because the two different time samples
are not really representative. For example, imagine we wished to evaluate the performance
of a prediction model built to estimate the daily energy demand in a residential building
based on features describing the family that lives in the house, the weather on a given
day, and the time of the year. If the training sample covered a period in the summer and
the testing sample covered a period in the winter, the results of any evaluation would not
provide a reliable measure of how likely the model might actually perform when deployed.
It is important when choosing the periods for out-of-time sampling that the time spans are
large enough to take into account any cyclical behavioral patterns or that other approaches
are used to account for these.

9.4.2 Performance Measures: Categorical Targets
This section describes the most important performance measures for evaluating the perfor-
mance of models with categorical target features.
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9.4.2.1 Confusion matrix-based performance measures Confusion matrices are a
convenient way to fully describe the performance of a predictive model when applied to
a test set. They are also the basis for a whole range of different performance measures
that can highlight different aspects of the performance of a predictive model. The most
basic of these measures are true positive rate (TPR), true negative rate (TNR), false
negative rate (FNR), and false positive rate (FPR), which convert the raw numbers from
the confusion matrix into percentages.5 These measures are defined as follows:

T PR �
T P

pT P� FNq
(9.4)

T NR �
T N

pT N � FPq
(9.5)

FPR �
FP

pT N � FPq
(9.6)

FNR �
FN

pT P� FNq
(9.7)

There are strong relationships between these measures, for example: FNR � 1 � T PR,
and FPR � 1� T NR.

All these measures can have values in the range r0; 1s. Higher values of TPR and TNR
indicate better model performance, while the opposite is the case for FNR and FPR. Con-
fusion matrices are often presented containing these measures rather than the raw counts,
although we recommend using raw counts so that the number of instances with each of the
different levels of the target feature remains apparent.

For the email classification data given in Table 9.1[537], the confusion matrix-based values
can be calculated as follows:

T PR � 6
p6�3q � 0:667

T NR � 9
p9�2q � 0:818

FPR � 2
p9�2q � 0:182

FNR � 3
p6�3q � 0:333

These values immediately suggest that the model is better at predicting the ham level
(TNR) than it is at predicting the spam level (TPR).

9.4.2.2 Precision, recall, and F1 measure Precision, recall, and the F1 measure are
another frequently used set of performance measures that can be calculated directly from

5. The terms sensitivity and specificity are often used for true positive rate and true negative rate.
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the confusion matrix. Precision and recall are defined as follows:

precision �
T P

pT P� FPq
(9.8)

recall �
T P

pT P� FNq
(9.9)

Recall is equivalent to true positive rate (TPR) (compare Equations (9.4)[548] and (9.9)[549]).
Recall tells us how confident we can be that all the instances with the positive target level
have been found by the model. Precision captures how often, when a model makes a
positive prediction, this prediction turns out to be correct. Precision tells us how confident
we can be that an instance predicted to have the positive target level actually has the positive
target level. Both precision and recall can assume values in the range r0; 1s, and higher
values in both cases indicate better model performance.

Returning to the email classification example, and assuming again that spam emails are
the positive level, precision measures how often the emails marked as spam actually are
spam, whereas recall measures how often the spam messages in the test set were actually
marked as spam. The precision and recall measures for the email classification data shown
in Table 9.1[537] are

precision �
6

p6� 2q
� 0:750

recall �
6

p6� 3q
� 0:667

Email classification is a good application scenario in which the different information
provided by precision and recall is useful. The precision value tells us how likely it is
that a genuine ham email could be marked as spam and, presumably, deleted: 25% (1 �
precision). Recall, on the other hand, tells us how likely it is that a spam email will be
missed by the system and end up in our in-box: 33:333% (1 � recall). Having both of
these numbers is useful as it allows us to think about tuning the model toward one kind of
error or the other. Is it better for a genuine email to be marked as spam and deleted, or for
a spam email to end up in our in-box? The performance recorded in Table 9.1[537] shows
that this system is slightly more likely to make the second kind of mistake than the first.

Precision and recall can be collapsed to a single performance measure known as the F1

measure,6 which offers a useful alternative to the simpler misclassification rate. The F1

6. The F1 measure is often also referred to as the F measure, F score, or F1 score.
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measure is the harmonic mean of precision and recall and is defined as

F1 measure � 2�
pprecision� recallq
pprecision� recallq

(9.10)

In Section A.1[745] we talk about how measures of central tendency attempt to capture the
average value of a list of numbers. Although the arithmetic mean and median are two of
the most commonly known such measures, there are more, including the harmonic mean.
The harmonic mean tends toward the smaller values in a list of numbers and so can be
less sensitive to large outliers than the arithmetic mean, which tends toward higher values.
This characteristic is useful in the generation of performance measures like the F1 measure,
as we typically prefer measures to highlight shortcomings in our models rather than hide
them. The F1 measure can assume values in the range p0; 1s, and higher values indicate
better performance.

For the email classification dataset shown in Table 9.1[537], the F1 measure (again assum-
ing that the spam level is the positive level) is calculated as

F1 measure � 2�

�
6

p6�2q �
6

p6�3q

	

�
6

p6�2q �
6

p6�3q

	

� 0:706

Precision, recall, and the F1 measure work best in prediction problems with binary tar-
get features and place an emphasis on capturing the performance of a prediction model on
the positive, or most important, level. These measures place less emphasis on the perfor-
mance of the model on the negative target level. This is appropriate in many applications.
For example, in medical applications, a prediction that a patient has a disease is much
more important than a prediction that a patient does not. In many cases, however, it does
not make sense to consider one target level as being more important. The average class
accuracy performance measure can be effective in these cases.

9.4.2.3 Average class accuracy Classification accuracy can mask poor performance.
For example, the confusion matrices shown in Tables 9.5[551] and 9.6[551] show the perfor-
mance of two different models on a test dataset that relates to a prediction problem in
which we would like to predict whether a customer will churn or not. The accuracy for
the model associated with the confusion matrix shown in Table 9.5[551] is 91%, while for
the model associated with the confusion matrix shown in Table 9.6[551], the accuracy is just
78%. In this example the test dataset is quite imbalanced, containing 90 instances with
the non-churn level and just 10 instances with the churn level. This means that the perfor-
mance of the model on the non-churn level overwhelms the performance on the churn level
in the accuracy calculation and illustrates how classification accuracy can be a misleading
measure of model performance.
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Table 9.5
A confusion matrix for a k-NN model trained on a churn prediction problem.

Prediction
non-churn churn

Target
non-churn 90 0

churn 9 1

Table 9.6
A confusion matrix for a naive Bayes model trained on a churn prediction problem.

Prediction
non-churn churn

Target
non-churn 70 20

churn 2 8

To address this issue, we can use average class accuracy7 instead of classification accu-
racy.8 The average class accuracy is calculated as

average class accuracy �
1

|levelsptq|

‚

lPlevelsptq

recalll (9.11)

where levelsptq is the set of levels that the target feature, t, can assume; |levelsptq| is the
size of this set; and recalll refers to the recall achieved by a model for level l.9 The
average class accuracies for the model performances shown in Tables 9.5[551] and 9.6[551] are
1
2 p1� 0:1q � 55% and 1

2 p0:778� 0:8q � 78:889% respectively, which would indicate that
the second model is actually a better performer than the first. This result is contrary to the
conclusion drawn from classification accuracy but is more appropriate in this case due to
the target level imbalance present in the data.

The average class accuracy measure shown in Equation (9.11)[551] uses an arithmetic
mean and so can be more fully labeled averageclassaccuracyAM . While this is an im-
provement over raw classification accuracy, many people prefer to use a harmonic mean10

instead of an arithmetic mean when calculating average class accuracy. Arithmetic means
are susceptible to influence of large outliers, which can inflate the apparent performance of

7. Sometimes target levels in categorical prediction problems are referred to as classes, which is where this name
comes from.

8. Target level imbalance affects misclassification rate in the same way, and average misclassification rate can
also be calculated to combat this problem.

9. Whereas previously we referred to recall as something calculated only for the positive level, we can calculate
recall for any level as the accuracy of the predictions made for that level.

10. Remember that a harmonic mean is used in the F1 measure given in Equation (9.10)[550].
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a model. The harmonic mean, on the other hand, emphasizes the importance of smaller
values and so can give a slightly more realistic measure of how well a model is performing.
The harmonic mean is defined as follows:

average class accuracyHM �
1

1
|levelsptq|

‚

lPlevelsptq

1
recalll

(9.12)

where the notation meanings are the same as for Equation (9.11)[551]. The average class
accuracyHM for the model performances shown in Tables 9.5[551] and 9.6[551] are

1
1
2

�
1

1:0
�

1
0:1


 �
1

5:5
� 18:2%

and
1

1
2

�
1

0:778
�

1
0:800


 �
1

1:268
� 78:873%

The harmonic mean results in a more pessimistic view of model performance than an
arithmetic mean. To further illustrate the difference between arithmetic mean and harmonic
mean, Figure 9.8[553] shows the arithmetic mean and the harmonic mean of all combinations
of two features A and B that range from 0 to 100. The curved shape of the harmonic mean
surface shows that the harmonic mean emphasizes the contribution of smaller values more
than the arithmetic mean—note how the sides of the surface are pulled down to the base
of the graph by the harmonic mean. We recommend that, in general, when calculating
average class accuracy, the harmonic mean should be used rather than the arithmetic mean.

9.4.2.4 Measuring profit and loss One of the problems faced by all the performance
measures discussed so far is that they place the same value on all the cells within a con-
fusion matrix. For example, in the churn prediction example, correctly classifying a cus-
tomer as likely to churn is worth the same as correctly classifying a customer as not likely
to churn. It is not always correct to treat all outcomes equally. For example, if a customer
who really was not a churn risk is classified as likely to churn, the cost incurred by the
company because of this mistake is the cost of a small bonus offer that would be given to
the customer to entice the customer to stay with the company. On the other hand, misclas-
sifying a customer who really was a churn risk probably has a much larger cost associated
with it because that customer will be lost when a small bonus may have enticed the cus-
tomer to stay. When evaluating the performance of models, it would be useful to be able
to take into account the costs of different outcomes.

One way in which to do this is to calculate the profit or loss that arises from each pre-
diction we make and to use these to determine the overall performance of a model. To do
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(a) (b)

Figure 9.8
Surfaces generated by calculating (a) the arithmetic mean and (b) the harmonic mean of all combi-
nations of features A and B that range from 0 to 100.

Table 9.7
The structure of a profit matrix.

Prediction
positive negative

Target
positive T PPro f it FNPro f it

negative FPPro f it T NPro f it

this we first need to create a profit matrix that records these. Table 9.7[553]shows the struc-
ture of a profit matrix, which is the same as the structure of a confusion matrix. T PPro f it

represents the profit arising from a correct positive prediction, FNPro f it is the profit arising
from an incorrect negative prediction, and so on (note that profit can refer to a positive
or a negative value). The actual values in a profit matrix are determined through domain
expertise.

To see the use of a profit matrix in action, consider a prediction problem in which a pay-
day loan company has built a credit scoring model to predict the likelihood that a borrower
will default on a loan. Based on a set of descriptive features extracted from the loan appli-
cation (e.g., AGE, OCCUPATION, and ASSETS), the model will classify potential borrowers
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Table 9.8
The profit matrix for the payday loan credit scoring problem.

Prediction
good bad

Target
good 140 �140
bad �700 0

as belonging to one of two groups: good borrowers, who will repay their loans in full; and
bad borrowers, who will default on some portion of their loans. The company can run this
model whenever a new loan application is made and only extend credit to those borrowers
predicted to belong to the good target level. Table 9.8[554] shows the profit matrix for this
problem.

The values in this matrix are based on historical data that the company has on loans given
out in the past. The typical value of a loan is $1;000, and the interest rate charged is 14%.
So, when a loan is repaid in full, the profit made by the company is usually $140. There-
fore, the profit arising from correctly predicting the good level for a potential borrower is
$140. Incorrectly predicting the bad level for a potential borrower who would have re-
paid the loan in full will result in a negative profit (or loss) of �$140, as the company
has forgone potential interest payments. Correctly predicting the bad level for a potential
borrower results in no profit as no money is loaned.11 Incorrectly predicting the good level
for a potential borrower who goes on to default on the loan, however, results in a loan not
being repaid. Based on historical examples, the expected loss in this case, referred to as
the loss given default, is $700 (most borrowers will repay some of their loan before de-
faulting). The values in Table 9.8[554] are based on these figures. It is clear that the different
outcomes have different profit and loss associated with them. In particular, extending a
loan to a borrower who turns out to be bad is a very costly mistake.

Tables 9.9(a)[555] and 9.9(b)[555] show confusion matrices for two different prediction mod-
els, a k-NN model and a decision tree model, trained for the payday loans credit scoring
problem. The average class accuracy (using a harmonic mean) for the k-NN model is
83:824% and for the decision tree model is 80:761%, which suggests that the k-NN model
is quite a bit better than the decision tree.

We can, however, use the values in the profit matrix to calculate the overall profit as-
sociated with the predictions made by these two models. This is achieved by multiplying
the values in the confusion matrix by the corresponding values in the profit matrix and
summing the results. Tables 9.10(a)[555] and 9.10(b)[555] show this calculation for the k-NN
and the decision tree models. The overall profit for the k-NN model is $560, while it is

11. This is always an interesting category to determine a value for. Some people might argue that some profit
arises as no loss was made.
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Table 9.9
(a) The confusion matrix for a k-NN model trained on the payday loan credit scoring problem
(average class accuracyHM � 83:824%); and (b) the confusion matrix for a decision tree model
trained on the payday loan credit scoring problem (average class accuracyHM � 80:761%).

(a) k-NN model

Prediction
good bad

Target
good 57 3

bad 10 30

(b) decision tree

Prediction
good bad

Target
good 43 17

bad 3 37

Table 9.10
(a) Overall profit for the k-NN model using the profit matrix in Table 9.8[554] and the confusion matrix
in Table 9.9(a)[555]; and (b) overall profit for the decision tree model using the profit matrix in Table
9.8[554] and the confusion matrix in Table 9.9(b)[555].

(a) k-NN model

Prediction
good bad

Target
good 7;980 �420

bad �7;000 0
Profit 560

(b) decision tree

Prediction
good bad

Target
good 6;020 �2;380

bad �2;100 0
Profit 1;540

$1;540 for the decision tree model. As well as showing that it is hard to make money in
the payday loans business, this reverses the ordering implied using the average class accu-
racy. The predictions made by the decision tree model result in a higher profit than those
made by the k-NN model. This is because the k-NN makes the mistake of misclassifying a
bad borrower as good more often than the decision tree model, and this is the more costly
mistake. Ranking the models by profit, we are able to take this into account, which is
impossible using classification accuracy or average class accuracy.

It is worth mentioning that to use profit as a performance measure, we don’t need to
quantify the profit associated with each outcome as completely as we have done in this
example. The minimal amount of information we need is the relative profit associated with
each of the different outcomes (TP, TN, FP, or FN) that can arise when a model makes a
prediction. For example, in the spam filtering problem described previously, all we need
to use are the relative profits of classifying a ham email as spam, classifying a spam email
as ham, and so on.

While using profit might appear to be the ideal way to evaluate model performance for
categorical targets, unfortunately, this is not the case. It is only in very rare scenarios that
we can accurately fill in a profit matrix for a prediction problem. In many cases, although
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it may be possible to say that some outcomes are more desirable than others, it is simply
not possible to quantify this. For example, in a medical diagnosis problem, we might
confidently say that a false negative (telling a sick patient that they do not have a disease)
is worse than a false positive (telling a healthy patient that they do have a disease), but it
is unlikely that we will be able to quantify this as twice as bad, or four times as bad, or
10:75 times as bad. When a profit matrix is available, however, profit is a very effective
performance measure to use.

9.4.3 Performance Measures: Prediction Scores
Careful examination of the workings of the different classification models that we have dis-
cussed in Chapters 4[117] to 7[311] shows that none of them simply produces a target feature
level as its output. In all cases, a prediction score (or scores) is produced, and a thresh-
old process is used to convert this score into one of the levels of the target feature. For
example, the naive Bayes model produces probabilities that are converted into categorical
predictions using the maximum a posteriori probability approach, and logistic regression
models produce a probability for the positive target level that is converted into a categorical
prediction using a threshold. Even in decision trees, the prediction is based on the majority
target level at a leaf node, and the proportion of this level gives us a prediction score. In
a typical scenario with two target levels, a prediction score in the range r0; 1s is generated
by a model, and a threshold of 0:5 is used to convert this score into a categorical prediction
as follows:

thresholdpscore; 0:5q �

#
positive if score ¥ 0:5

negative otherwise
(9.13)

To illustrate this, Table 9.11[557] shows the underlying scores that the predictions shown in
Table 9.1[537] were based on, assuming a threshold of 0:5—that is, instances with a predic-
tion score greater than or equal to 0:5 were given predictions of the spam (positive) level,
and those with prediction scores less than 0:5 were given predictions of the ham (negative)
level. The instances in this table have been sorted by these scores in ascending order; as
a result, the thresholding on the scores to generate predictions is very much apparent. An
indication of the performance of the model is also evident from this ordering—the Target
column shows that the instances that actually should get predictions of the ham level gen-
erally have lower scores, and those that should get predictions of the spam level generally
have higher scores.

A range of performance measures use this ability of a model, to rank instances that should
get predictions of one target level higher than the other, to better assess how well a predic-
tion model is performing. The basis of most of these approaches is measuring how well
the distributions of scores produced by the model for different target levels are separated.
Figure 9.9[557] illustrates this: assuming that prediction scores are normally distributed, the
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Table 9.11
A sample test set with model predictions and scores.

ID Target Prediction Score Outcome
7 ham ham 0.001 TN
11 ham ham 0.003 TN
15 ham ham 0.059 TN
13 ham ham 0.064 TN
19 ham ham 0.094 TN
12 spam ham 0.160 FN
2 spam ham 0.184 FN
3 ham ham 0.226 TN
16 ham ham 0.246 TN
1 spam ham 0.293 FN

ID Target Prediction Score Outcome
5 ham ham 0.302 TN

14 ham ham 0.348 TN
17 ham spam 0.657 FP
8 spam spam 0.676 TP
6 spam spam 0.719 TP

10 spam spam 0.781 TP
18 spam spam 0.833 TP
20 ham spam 0.877 FP
9 spam spam 0.960 TP
4 spam spam 0.963 TP

distributions of the scores for the two target levels are shown for two different classifica-
tion models. The prediction score distributions shown in Figure 9.9(a)[557] are much better
separated than those in Figure 9.9(b)[557]. We can use the separation of the prediction score
distributions to construct performance measures for categorical prediction models.

(a) (b)

Figure 9.9
Prediction score distributions for two different prediction models. The distributions in (a) are much
better separated than those in (b).

If the distributions of prediction scores from predictive models perfectly followed a nor-
mal distribution, similar to those in Figure 9.9[557], calculating the degree of separation be-
tween distributions would be very simple and only involve a simple comparison of means
and standard deviations. Unfortunately, this is not the case, as the distribution of prediction
scores for a model can follow any distribution. For example, the density histograms in Fig-
ure 9.10[558] show the distributions of prediction scores for the spam and ham target levels
based on the data in Table 9.11[557]. There are a number of performance measures based on
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the idea of comparing prediction score distributions that attempt to cater to the peculiarities
of real data. This section describes some of the most important of these measures.

(a) spam (b) ham

Figure 9.10
Prediction score distributions for the (a) spam and (b) ham target levels based on the data in Table
9.11[557].

9.4.3.1 Receiver operating characteristic curves The receiver operating character-
istic index (ROC index), which is based on the receiver operating characteristic curve
(ROC curve),12 is a widely used performance measure that is calculated using prediction
scores. We saw in Section 9.4.2[547] how the true positive rate (TPR) and true negative
rate (TNR) can be calculated from a confusion matrix. These measures, however, are in-
trinsically tied to the threshold used to convert prediction scores into target levels. The
predictions shown in Table 9.11[557] and in the confusion matrix in Table 9.3[539] are based
on a prediction score threshold of 0:5. This threshold can be changed, however, which
leads to different predictions and a different confusion matrix. For example, if we changed
the threshold used to generate the predictions shown in Table 9.11[557] from 0:5 to 0:75, the
predictions for instances d17, d8, and d6 would change from spam to ham, resulting in their
outcomes changing to TN, FN, and FN respectively. This would mean that the confusion
matrix would change to that shown in Table 9.12(a)[559] and, in turn, that the TPR and TNR
measures would change to 0:5 and 0:833 respectively.

12. The slightly strange name receiver operating characteristic comes from the fact that this approach was first
used for tuning radar signals in World War II.
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Table 9.12
Confusion matrices for the set of predictions shown in Table 9.11[557] using (a) a prediction score
threshold of 0:75 and (b) a prediction score threshold of 0:25.

(a) Threshold: 0.75

Prediction
spam ham

Target
spam 4 4
ham 2 10

(b) Threshold: 0.25

Prediction
spam ham

Target
spam 7 2
ham 4 7

Similarly, if we changed the threshold from 0:5 to 0:25, the predictions for instances d14,
d5, and d1 would change from ham to spam, resulting in their outcomes changing to FP,
FP, and TP respectively. This would mean that the confusion matrix would change to that
shown in Table 9.12(b)[559] and, in turn, that the TPR and TNR measures would change to
0:777 and 0:636 respectively.

For every possible value of the threshold, in the range r0; 1s, there are corresponding
TPR and TNR values. The pattern that is evident in the two examples presented above
continues as the threshold value is modified: as the threshold increases, TPR decreases and
TNR increases, and as the threshold decreases, the opposite occurs. Table 9.13[560] shows
how the predictions made for test instances change as the threshold changes. Also shown
are the resulting TPR, TNR, FPR, and FNR values, as well as the misclassification rate for
each threshold. We can see that the misclassification rate doesn’t change that much as the
threshold changes. This is due to the trade-offs between false positives and false negatives.

Figure 9.11(a)[561] shows the changing values for TPR and TNR for the prediction scores
shown in Table 9.13[560] as the threshold is varied from 0 to 1.13 This graph shows that
changing the value of the threshold results in a trade-off between accuracy for predictions
of positive target levels and accuracy for predictions of negative target levels. Capturing
this trade-off is the basis of the ROC curve.

To plot an ROC curve, we create a chart with true positive rate on the vertical access and
false positive rate (or 1 � true negative rate) on the horizontal axis.14 The values for these
measures, when any threshold value is used on a collection of score predictions, gives a
point on this plot, or a point in receiver operating characteristic space (ROC space).
Figure 9.11(b)[561] shows three such points in ROC space and associated confusion matrices
for the email classification dataset for thresholds of 0:25, 0:5, and 0:75.

13. The staircase nature of this graph arises from the fact that there are ranges for the threshold in which no
instances occur (for example, from 0:348 to 0:657), during which the TPR and TNR values do not change. Larger
test sets cause these curves to smoothen significantly.

14. ROC curves are often plotted with sensitivity on the vertical axis and 1 � specificity on the horizontal axis.
Recall that sensitivity is equal to TPR, and specificity is equal to TNR, so these are equivalent.
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Table 9.13
A sample test set with prediction scores and resulting predictions based on different threshold values.

Pred. Pred. Pred. Pred. Pred.
ID Target Score (0.10) (0.25) (0.50) (0.75) (0.90)
7 ham 0.001 ham ham ham ham ham

11 ham 0.003 ham ham ham ham ham
15 ham 0.059 ham ham ham ham ham
13 ham 0.064 ham ham ham ham ham
19 ham 0.094 ham ham ham ham ham
12 spam 0.160 spam ham ham ham ham
2 spam 0.184 spam ham ham ham ham
3 ham 0.226 spam ham ham ham ham

16 ham 0.246 spam ham ham ham ham
1 spam 0.293 spam spam ham ham ham
5 ham 0.302 spam spam ham ham ham

14 ham 0.348 spam spam ham ham ham
17 ham 0.657 spam spam spam ham ham
8 spam 0.676 spam spam spam ham ham
6 spam 0.719 spam spam spam ham ham

10 spam 0.781 spam spam spam spam ham
18 spam 0.833 spam spam spam spam ham
20 ham 0.877 spam spam spam spam ham
9 spam 0.960 spam spam spam spam spam
4 spam 0.963 spam spam spam spam spam

Misclassification Rate 0.300 0.300 0.250 0.300 0.350
True Positive Rate (TPR) 1.000 0.778 0.667 0.444 0.222
True Negative rate (TNR) 0.455 0.636 0.818 0.909 1.000
False Positive Rate (FPR) 0.545 0.364 0.182 0.091 0.000

False Negative Rate (FNR) 0.000 0.222 0.333 0.556 0.778

The ROC curve is drawn by plotting a point for every feasible threshold value and joining
them. Figure 9.12(a)[562] shows a complete ROC curve for the email predictions in Table
9.13[560]. A line along the diagonal of ROC space from p0; 0q to p1; 0q, shown as a dotted line
in Figure 9.12(a)[562], is a reference line representing the expected performance of a model
that makes random predictions. We always expect the ROC curve for a trained model to be
above this random reference line.15 In fact, as the strength of a predictive model increases,

15. If an ROC curve appears below the diagonal random reference line, this means that the model is consistently
making predictions of the positive level for instances that should receive predictions of the negative level and vice
versa, and that it could actually be quite a powerful model. This usually arises when a transcription error of some
kind has been made and should be investigated.
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(a) (b)

Figure 9.11
(a) The changing values of TPR and TNR for the test data shown in Table 9.13[560] as the threshold is
altered; and (b) points in ROC space for thresholds of 0:25, 0:5, and 0:75.

the ROC curve moves farther away from the random line toward the top left-hand corner
of ROC space—toward a TPR of 1:0 and an FPR of 0:0. So, the ROC curve gives us an
immediate visual indication of the strength of a model—the closer the curve is to the top
left, the more predictive the model.

Often the ROC curves for multiple predictive models will be plotted on a single ROC
plot, allowing easy comparison of their performance. Figure 9.12(b)[562] shows ROC curves
for four models tested on a version of the email classification test set in Table 9.13[560],
containing many more instances than the one we have been discussing so far, which is
why the curves are so much smoother than the curve shown in Figure 9.12(a)[562]. These
smoother curves are more representative of the kind of ROC curves we typically encounter
in practice. In this example, Model 1 approaches perfect performance, Model 4 is barely
better than random guessing, and Models 2 and 3 sit somewhere in between these two
extremes.

Although it is useful to visually compare the performance of different models using an
ROC curve, it is often preferable to have a single numeric performance measure with which
models can be assessed. Fortunately, there is an easy calculation that can be made from the
ROC curve that achieves this. The ROC index or area under the curve (AUC) measures
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(a) (b)

Figure 9.12
(a) A complete ROC curve for the email classification example; and (b) a selection of ROC curves
for different models trained on the same prediction task.

the area underneath an ROC curve. Remembering that the perfect model will appear in the
very top left-hand corner of ROC space, it is fairly intuitive that curves with higher areas
will be closer to this maximum possible value. The area under an ROC curve is calculated
as the integral of the curve. Because ROC curves are discrete and stepped in nature, finding
their integrals is actually very easily done using the trapezoidal method. The ROC index
can be calculated as

ROC index �
|T|‚

i�2

pFPRpT risq � FPRpT ri� 1sqq � pT PRpT risq � T PRpT ri� 1sqq
2

(9.14)

where T is a set of thresholds, |T| is the number of thresholds tested, and T PRpT risq and
FPRpT risq are the true positive and false positive rates at threshold i respectively.

The ROC index can take values in the range r0; 1s (although values less than 0:5 are un-
likely and indicative of a target labeling error), and larger values indicate better model per-
formance. So, for example, the ROC index for the ROC curve shown in Figure 9.12(a)[562] is
0:798, and the ROC indices for Models 1 to 4 in Figure 9.12(b)[562] are 0:996, 0:887, 0:764,
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and 0:595 (as shown in the legend). While there are no hard and fast rules about what
constitutes an acceptable value for the ROC index, and this is really an application-specific
decision, a good rule of thumb is that a value above 0:7 indicates a strong model, while a
value below 0:6 indicates a weak model. The ROC index is quite robust in the presence
of imbalanced data, which makes it a common choice for practitioners, especially when
multiple modeling techniques are being compared to one another.

The ROC index can be interpreted probabilistically as the probability that a model will
assign a higher rank to a randomly selected positive instance than to a randomly selected
negative instance.16 The Gini coefficient17 is another commonly used performance mea-
sure that is just a linear rescaling of the ROC index:

Gini coefficient � p2� ROC indexq � 1 (9.15)

The Gini coefficient can take values in the range r0; 1s, and higher values indicate better
model performance. The Gini coefficient for the model shown in Figure 9.12(a)[562] is
0:596, and the Gini coefficients for the four models shown in Figure 9.12(a)[562] are 0:992,
0:774, 0:527, and 0:190. The Gini coefficient is very commonly used in financial modeling
scenarios such as credit scoring.

9.4.3.2 Kolmogorov-Smirnov statistic The Kolmogorov-Smirnov statistic (K-S statis-
tic) is another performance measure that captures the separation between the distribution of
prediction scores for the different target levels in a classification problem. To calculate the
K-S statistic, we first determine the cumulative probability distributions of the prediction
scores for the positive and negative target levels. This is done as follows:

CPppositive; psq �
num positive test instances with score ⁄ ps

num positive test instances
(9.16)

CPpnegative; psq �
num negative test instances with score ⁄ ps

num negative test instances
(9.17)

where ps is a prediction score value, CPppositive; psq is the cumulative probability distri-
bution of positive value scores, and CPpnegative; psq is the cumulative probability distri-
bution of negative value scores. These cumulative probability distributions can be plotted
on a Kolmogorov-Smirnov chart (K-S chart). Figure 9.13[564] shows the K-S chart for
the test set predictions shown in Table 9.11[557]. We can see how the cumulative likelihood
of finding a ham (or negative) instance increases much more quickly than that of finding a
spam (or positive) instance. This makes sense because if a model is performing accurately,

16. The ROC index is in fact equivalent to the Wilcoxon-Mann-Whitney statistic used in significance testing.

17. The Gini coefficient should not be confused with the Gini index described in Section 4.4.1[142]. Their only
connection is that they are both named after the Italian statistician Corrado Gini.
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we would expect negative instances to have low scores (close to 0:0) and positive instances
to have high scores (close to 1:0).

Figure 9.13
The K-S chart for the email classification predictions shown in Table 9.11[557].

The K-S statistic is calculated by determining the maximum difference between the cu-
mulative probability distributions for the positive and negative target levels. This can be
given formally as

K-S � max
ps
pCPppositive; psq �CPpnegative; psqq (9.18)

where CPppositive; psq and CPpnegative; psq are as described above. This distance is
indicated by the vertical dotted line in Figure 9.13[564], from which it is clear that the K-S
statistic is the largest distance between the positive and negative cumulative distributions.
The K-S statistic ranges from 0 to 1, and higher values indicate better model performance,
reflecting the fact that there is a clear distinction between the distributions of the scores
predicted by the model for the negative and the positive instances.

In practice, the simplest way to calculate a K-S statistic for the predictions made by a
model for a test dataset is to first tabulate the positive and negative cumulative probabil-
ities for the scores predicted for each instance in the test dataset, in ascending order by
prediction score. For the score predicted by the model for each instance in the test set, the
distance between the positive and negative cumulative probabilities at that score can then
be calculated. The K-S statistic is the maximum of these distances. Table 9.14[565] shows an
example for the email classification problem predictions given in Table 9.11[557]. We have
highlighted in bold and marked with a � the instance that results in the maximum distance
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between CPpspam; psq and CPpham; psq. This distance is 0:576, which is the K-S statistic
for this example.

Table 9.14
Tabulating the workings required to generate a K-S statistic.

Positive Negative Positive Negative
(spam) (ham) (spam) (ham)

Prediction Cumulative Cumulative Cumulative Cumulative
ID Score Count Count Probability Probability Distance

7 0.001 0 1 0.000 0.091 0.091
11 0.003 0 2 0.000 0.182 0.182
15 0.059 0 3 0.000 0.273 0.273
13 0.064 0 4 0.000 0.364 0.364
19 0.094 0 5 0.000 0.455 0.455
12 0.160 1 5 0.111 0.455 0.343

2 0.184 2 5 0.222 0.455 0.232
3 0.226 2 6 0.222 0.545 0.323

16 0.246 2 7 0.222 0.636 0.414
1 0.293 3 7 0.333 0.636 0.303
5 0.302 3 8 0.333 0.727 0.394

14 0.348 3 9 0.333 0.818 0.485
17 0.657 3 10 0.333 0.909 *0.576

8 0.676 4 10 0.444 0.909 0.465
6 0.719 5 10 0.556 0.909 0.354

10 0.781 6 10 0.667 0.909 0.242
18 0.833 7 10 0.778 0.909 0.131
20 0.877 7 11 0.778 1.000 0.222

9 0.960 8 11 0.889 1.000 0.111
4 0.963 9 11 1.000 1.000 0.000

* marks the maximum distance, which is the K-S statistic.

To illustrate how a K-S statistic and K-S chart can give insight into model performance,
Figure 9.14[566] shows a series of charts for the four different prediction models trained on
the email classification task and evaluated on a large test set. The charts are a histogram
of the spam scores predicted by the model, a histogram of the ham scores predicted by the
model, and the resulting K-S chart with the K-S statistic highlighted.

The resulting K-S statistics are 0:940, 0:631, 0:432, and 0:164. These results show that
Model 1 is doing a much better job of separating the two target levels than the other models.
We can see this in the score histograms and the K-S charts, but it is also nicely captured in
the K-S statistics.
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9.4.3.3 Measuring gain and lift In scenarios in which we have a positive target level
that we are especially interested in (for example, spam emails, fraudulent transactions, or
customers who will respond to an offer), it can often be useful to focus in on how well a
model is making predictions for just those instances, rather than how well the model is dis-
tinguishing between two target levels. This is a subtle difference but can lead to a change in
the ordering of models compared to other performance measures. Two useful performance
measures in this regard are gain and lift (we will see that the related performance measures
of cumulative gain and cumulative lift are also useful).

The basic assumption behind both gain and lift is that if we were to rank the instances in a
test set in descending order of the prediction scores assigned to them by a well-performing
model, we would expect the majority of the positive instances to be toward the top of this
ranking. The gain and lift measures attempt to measure to what extent a set of predictions
made by a model meet this assumption.

To calculate gain and lift, we first rank the predictions made for a test set in descending
order by prediction score and then divide them into deciles.18 A decile is a group contain-
ing 10% of a dataset. Table 9.15[568] shows the data from Table 9.11[557] divided into deciles.
There are 20 instances, so each decile contains just 2 instances. The first decile contains
instances 9 and 4, the second decile contains instances 18 and 20, and so on.

Gain is a measure of how many of the positive instances in the overall test set are found
in a particular decile. To find this, we count the number of positive instances (based on the
known target values) found in each decile and divide these by the total number of positive
instances in the test set. So, the gain in a given decile is calculated as

gainpdecq �
num positive test instances in decile dec

num positive test instances
(9.19)

where dec refers to a particular decile. Table 9.16[568] shows how gain is calculated for each
decile in the email classification test set. The number of positive and negative instances in
each decile is shown. Based on these numbers, the gain for each decile is calculated using
Equation (9.19)[567] (the calculation of some other measures are also included in this table,
and these will be explained shortly).

Figure 9.15(a)[569] graphs the gain for each decile to produce a gain chart. We can see
from this chart that the gain is higher for the lower deciles, which contain the instances with
the highest scores. This is indicative of the fact that the model is performing reasonably
well. Cumulative gain is calculated as the fraction of the total number of positive instances
in a test set identified up to a particular decile (i.e., in that decile and all deciles below it):

cumulative gainpdecq �
num positive test instances in all deciles up to dec

num positive test instances
(9.20)

18. Any percentiles (see Section A.1[745]) can be used, but deciles are particularly common.
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Table 9.15
The test set with model predictions and scores from Table 9.11[557] extended to include deciles.

Decile ID Target Prediction Score Outcome

1st 9 spam spam 0.960 TP
4 spam spam 0.963 TP

2nd 18 spam spam 0.833 TP
20 ham spam 0.877 FP

3rd 6 spam spam 0.719 TP
10 spam spam 0.781 TP

4th 17 ham spam 0.657 FP
8 spam spam 0.676 TP

5th 5 ham ham 0.302 TN
14 ham ham 0.348 TN

6th 16 ham ham 0.246 TN
1 spam ham 0.293 FN

7th 2 spam ham 0.184 FN
3 ham ham 0.226 TN

8th 19 ham ham 0.094 TN
12 spam ham 0.160 FN

9th 15 ham ham 0.059 TN
13 ham ham 0.064 TN

10th 7 ham ham 0.001 TN
11 ham ham 0.003 TN

Table 9.16
Tabulating the workings required to calculate gain, cumulative gain, lift, and cumulative lift for the
data given in Table 9.11[557].

Decile

Positive
(spam)
Count

Negative
(ham)
Count Gain

Cum.
Gain Lift

Cum.
Lift

1st 2 0 0.222 0.222 2.222 2.222
2nd 1 1 0.111 0.333 1.111 1.667
3rd 2 0 0.222 0.556 2.222 1.852
4th 1 1 0.111 0.667 1.111 1.667
5th 0 2 0.000 0.667 0.000 1.333
6th 1 1 0.111 0.778 1.111 1.296
7th 1 1 0.111 0.889 1.111 1.270
8th 1 1 0.111 1.000 1.111 1.250
9th 0 2 0.000 1.000 0.000 1.111
10th 0 2 0.000 1.000 0.000 1.000
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The cumulative gain for each decile of the email classification dataset is shown in Table
9.16[568]. Figure 9.15(b)[569] shows a cumulative gain chart of this data. That cumulative
gain chart allows us to understand how many of the positive instances in a complete test
set we can expect to have identified at each decile of the dataset. So, for example, Figure
9.15(b)[569] shows that by the 4th decile (40% of the test data), 66:667% of the spam emails
in the entire test set will have been identified. This is evidence of just how well the model is
performing. The dotted diagonal line on the cumulative gain chart shows the performance
we would expect from random guessing, and the closer the cumulative gain line is to the
top left-hand corner of the chart, the better the model is performing.

(a) (b)

Figure 9.15
The (a) gain and (b) cumulative gain at each decile for the email predictions given in Table 9.11[557].

The gain in a particular decile can be interpreted as a measure of how much better than
random guessing the predictions made by a model are. Lift captures this more formally.
If a model were performing no better than random guessing, we would expect that within
each decile, the percentage of positive instances should be the same as the percentage of
positive instances overall in the complete dataset. Lift tells us how much higher the actual
percentage of positive instances in a decile dec is than the rate expected. So, the lift at
decile dec is the ratio between the percentage of positive instances in that decile and the
percentage of positive instances overall in the population:

li f tpdecq �
% of positive test instances in decile dec

% of positive test instances
(9.21)

In the email classification example, the percentage of positive (spam) instances in the full
test dataset is 9

20 � 0:45. Therefore, the lift at each decile dec is the percentage of spam
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instances in that decile divided by 0:45. Table 9.16[568] shows the lift for each decile for the
predictions shown in Table 9.11[557] for the email classification problem. If we compare the
visualization of lift for these predictions shown in Figure 9.16(a)[570] to the gain chart for
the same set of predictions in Figure 9.15(a)[569], we can see that the shapes are the same.
For a well-performing model, the lift curve should start well above 1:0 and cross 1:0 at one
of the lower deciles. Lift can take values in the range r0;8s, and higher values indicate
that a model is performing well at a particular decile.

(a) (b)

Figure 9.16
The (a) lift and (b) cumulative lift at each decile for the email predictions given in Table 9.11[557].

In the same way we calculated cumulative gain, we can calculate lift cumulatively. The
cumulative lift at decile dec is defined as

cumulative li f tpdecq �
% of positive instances in all deciles up to dec

% of positive test instances
(9.22)

Table 9.16[568] shows the cumulative lift for each decile for the predictions shown in Table
9.11[557] for the email classification problem, and these values are plotted in a cumulative
lift curve in Figure 9.16(b)[570].

Figure 9.17[571] shows cumulative gain, lift, and cumulative lift charts (the gain chart is
not shown as it is essentially the same as the lift chart) for four different sets of model
predictions for the larger version of the email classification test set (these are the same
predictions for which ROC charts and K-S charts were plotted in Figures 9.12(b)[562] and
9.14[566]). Focusing on the cumulative gain charts, we can see that for Model 1, 80% of the
spam messages are identified in the top 40% of the model predictions. For Model 2, we
need to look almost as far as the top 50% of predictions to find the same percentage of



(a
)

M
od

el
1

(b
)

M
od

el
2

(c
)

M
od

el
3

(d
)

M
od

el
4

Fi
gu

re
9.

17
C

um
ul

at
iv

e
ga

in
,l

if
t,

an
d

cu
m

ul
at

iv
e

lif
tc

ha
rt

s
fo

rf
ou

rd
iff

er
en

tm
od

el
s

fo
rt

he
ex

te
nd

ed
em

ai
lc

la
ss

ifi
ca

tio
n

te
st

se
t.



572 Chapter 9 Evaluation

spam messages. For Models 3 and 4, we need to go as far as 60% and 75% respectively.
This indicates that Model 1 distinguishes between the target levels most effectively.

Cumulative gain is especially useful in customer relationship management (CRM)
applications such as cross-sell and upsell models. The cumulative gain tells us how many
customers we need to contact in order to reach a particular percentage of those who are
likely to respond to an offer, which is an incredibly useful piece of information to know
when planning customer contact budgets.

9.4.4 Performance Measures: Multinomial Targets
All the performance measures described in the previous section assumed that the prediction
problem being evaluated had only two target levels. Many of the prediction problems for
which we build models are multinomial, that is, there are multiple target levels. When
we deal with multinomial prediction problems, we need a different set of performance
measures. This section describes the most common of these. We begin by discussing how
the confusion matrix can be extended to handle multiple target levels.

If we have multiple target levels, the structure of the confusion matrix shown in Figure
9.2[538] no longer fits the data. Similarly, the notion of thinking about a positive level and
a negative level doesn’t apply any more. The confusion matrix can, however, be easily
extended to handle multiple target levels by including a row and column for each one. Table
9.17[572] shows the structure of a confusion matrix for a multinomial prediction problem in
which the target feature has l levels.

Table 9.17
The structure of a confusion matrix for a multinomial prediction problem with l target levels.

Prediction

level 1 level 2 level 3 � � � level l Recall

Target

level 1 - - - - -

level 2 - - - - -

level 3 - - - - -
:::

: : :
:::

level l - - - - -

Precision - - - � � � -

In Table 9.17[572] we have included precision and recall measures for each target level.
Precision and recall are calculated in almost exactly the same way for multinomial prob-
lems as for binary problems. Abandoning the notion of positive and negative target levels,
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we get

precisionplq �
T Pplq

T Pplq � FPplq
(9.23)

recallplq �
T Pplq

T Pplq � FNplq
(9.24)

where T Pplq refers to the number of instances correctly given a prediction of the target
level l, FPplq refers to the number of instances that are incorrectly given a prediction of
target level l, and FNplq refers to the number of instances that should have been given a
prediction of target level l but were given some other prediction.

Table 9.18
A sample test set with model predictions for a bacterial species identification problem.

ID Target Prediction
1 durionis fructosus
2 ficulneus fructosus
3 fructosus fructosus
4 ficulneus ficulneus
5 durionis durionis
6 pseudo. pseudo.
7 durionis fructosus
8 ficulneus ficulneus
9 pseudo. pseudo.
10 pseudo. fructosus
11 fructosus fructosus
12 ficulneus ficulneus
13 durionis durionis
14 fructosus fructosus
15 fructosus ficulneus

ID Target Prediction
16 ficulneus ficulneus
17 ficulneus ficulneus
18 fructosus fructosus
19 durionis durionis
20 fructosus fructosus
21 fructosus fructosus
22 durionis durionis
23 fructosus fructosus
24 pseudo. fructosus
25 durionis durionis
26 pseudo. pseudo.
27 fructosus fructosus
28 ficulneus ficulneus
29 fructosus fructosus
30 fructosus fructosus

Table 9.18[573] shows the expected targets and a set of model predictions for a multinomial
prediction problem in which the species of a bacteria present in a sample is determined us-
ing the results of spectrography performed on the sample.19 In this example, we are trying
to distinguish between four species of the bacterial genus Fructobacillus, namely, durio-
nis, ficulneus, fructosus, and pseudoficulneus (abbreviated as pseudo. in all tables). Table
9.19[574] shows the associated confusion matrix for these predictions, including measures of
precision and recall.

19. See De Bruyne et al. (2011) for an example of machine learning models being used for this task.
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Table 9.19
A confusion matrix for a model trained on the bacterial species identification problem.

Prediction

durionis ficulneus fructosus pseudo. Recall

Target

durionis 5 0 2 0 0:714

ficulneus 0 6 1 0 0:857

fructosus 0 1 10 0 0:909

pseudo. 0 0 2 3 0:600

Precision 1:000 0:857 0:667 1:000

While the overall classification accuracy for this set of predictions is 80%,20 the individ-
ual recall scores for each target level show that the performance of the model is not the
same for all four levels: the accuracy on the ficulneus and fructosus levels is quite high
(85:714% and 90:909% respectively), while for the durionis and pseudoficulneus levels,
the accuracy is considerably lower (71:429% and 60:000%). The averageclassaccuracyHM

performance measure can be applied to multinomial prediction problems and is an effective
option for measuring performance. Using Equation (9.12)[552], we can calculate the average
class accuracy for this problem:

1
1
4

�
1

0:714
�

1
0:857

�
1

0:909
�

1
0:600


 �
1

1:333
� 75:000%

It is not easy to apply the measures based on prediction scores to multinomial problems.
Although there are some examples of doing it, there is no broad consensus in the com-
munity on how it should best be done in all cases, so we do not discuss it further in this
book.

9.4.5 Performance Measures: Continuous Targets
All the performance measures that we have discussed so far focus on prediction problems
with categorical targets. When evaluating the performance of prediction models built for
continuous targets, there are fewer options to choose from. In this section we describe the
most popular performance measures used for continuous targets. The basic process is the
same as for categorical targets. We have a test set containing instances for which we know

20. It is important to remember that for a prediction problem with four target levels, uniform random guessing
will give an accuracy of just 25%.
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the correct target values, and we have a set of predictions made by a model. We would like
to measure how accurately the predicted values match the correct target values.

9.4.5.1 Basic measures of error In Section 7.2.2[315], when covering error-based learn-
ing, we discussed the basis of the most common performance measure for continuous
targets: sum of squared errors. The sum of squared errors function, L2, for a set of
predictions made by a model, M, is defined as

sum o f squared errors �
1
2

n‚

i�1

pti �Mpdiqq2 (9.25)

where t1 : : : tn is a set of n expected target values, and Mpd1q : : :Mpdnq is a set of n predic-
tions for a set of test instances, d1 : : : dn. We modify this very slightly to give us the mean
squared error performance measure, which captures the average difference between the
expected target values in the test set and the values predicted by the model. The mean
squared error (MSE) performance measure is defined as

mean squared error �

n‚

i�1

pti �Mpdiqq2

n
(9.26)

The mean squared error allows us to rank the performance of multiple models on a predic-
tion problem with a continuous target. Mean squared error values fall in the range r0;8s,
and smaller values indicate better model performance.

Table 9.20[576] shows the expected target values for a test set, the predictions made by
two different models (a multivariable linear regression model and a k-NN model), and the
resulting errors based on these predictions (the additional error measures will be explained
shortly). The prediction problem in this case is to determine the dosage of a blood-thinning
drug (in milligrams) that should be given to a patient in order to achieve a particular level of
blood-thinning. The descriptive features in this case would be the level of blood-thinning
desired, demographic details for the patient, and the results of various medical tests per-
formed on the patient. Doctors could use the outputs of such a system to help them make
better dosing decisions.21 The mean squared error for the multivariable linear regression
model is 1:905 and for the k-NN model is 4:394. This indicates that the regression model
is more accurately predicting the correct drug dosages than the nearest neighbor model.

One complaint that is often leveled against mean squared error is that, although it can
be used to effectively rank models, the actual mean squared error values themselves are
not especially meaningful in relation to the scenario that a model is being used for. For
example, in the drug dosage prediction problem, we cannot say by how many milligrams

21. A nice example of building machine learning models for drug dosage prediction can be found in Mac Namee
et al. (2002).
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Table 9.20
The expected target values for a test set, the predictions made by a model, and the resulting errors
based on these predictions for a blood-thinning drug dosage prediction problem.

Linear Regression k-NN
ID Target Prediction Error Prediction Error
1 10.502 10.730 0.228 12.240 1.738
2 18.990 17.578 -1.412 21.000 2.010
3 20.000 21.760 1.760 16.973 -3.027
4 6.883 7.001 0.118 7.543 0.660
5 5.351 5.244 -0.107 8.383 3.032
6 11.120 10.842 -0.278 10.228 -0.892
7 11.420 10.913 -0.507 12.921 1.500
8 4.836 7.401 2.565 7.588 2.752
9 8.177 8.227 0.050 9.277 1.100
10 19.009 16.667 -2.341 21.000 1.991
11 13.282 14.424 1.142 15.496 2.214
12 8.689 9.874 1.185 5.724 -2.965
13 18.050 19.503 1.453 16.449 -1.601
14 5.388 7.020 1.632 6.640 1.252
15 10.646 10.358 -0.288 5.840 -4.805
16 19.612 16.219 -3.393 18.965 -0.646
17 10.576 10.680 0.104 8.941 -1.634
18 12.934 14.337 1.403 12.484 -0.451
19 10.492 10.366 -0.126 13.021 2.529
20 13.439 14.035 0.596 10.920 -2.519
21 9.849 9.821 -0.029 9.920 0.071
22 18.045 16.639 -1.406 18.526 0.482
23 6.413 7.225 0.813 7.719 1.307
24 9.522 9.565 0.043 8.934 -0.588
25 12.083 13.048 0.965 11.241 -0.842
26 10.104 10.085 -0.020 10.010 -0.095
27 8.924 9.048 0.124 8.157 -0.767
28 10.636 10.876 0.239 13.409 2.773
29 5.457 4.080 -1.376 9.684 4.228
30 3.538 7.090 3.551 5.553 2.014

MSE 1:905 4:394
RMSE 1:380 2:096

MAE 0:975 1:750
R2 0:889 0:776
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we expect the model to be incorrect based on the mean squared error values. This is due
to the use of the squared term in the mean squared error calculation but can easily be
addressed by using root mean squared error instead. The root mean squared error
(RMSE) for a set of predictions made by a model on a test set is calculated as

root mean squared error �

gffffe

n‚

i�1

pti �Mpdiqq2

n
(9.27)

where the terms have the same meaning as before. Root mean squared error values are in
the same units as the target value and so allow us to say something more meaningful about
what the error for predictions made by the model will be. For example, for the drug dosage
prediction problem, the root mean squared error value is 1:380 for the regression model
and 2:096 for the nearest neighbor model. This means that we can expect the predictions
made by the regression model to be 1:38mg out on average, whereas those made by the
nearest neighbor model will be, on average, 2:096mg out.

Due to the inclusion of the squared term, the root mean squared error tends to overes-
timate error slightly as it overemphasizes individual large errors. An alternative measure
that addresses this problem is the mean absolute error (MAE), which does not include a
squared term.22 Mean absolute error is calculated as

mean absolute error �

n‚

i�1

abspti �Mpdiqq

n
(9.28)

where the terms in the equation have the same meaning as before, and abs refers to the
absolute value. Mean absolute error values fall in the range r0;8s, and smaller values
indicate better model performance.

For the drug dosage predictions given in Table 9.20[576], the mean absolute error is 0:975
for the regression model and 1:750 for the nearest neighbor model. Mean absolute er-
rors are in the same units as the predictions themselves, so we can say that, based on
mean absolute error, we can expect the regression model to make errors of approximately
0:9575mg in each of its predictions and the nearest neighbor model to be out by approxi-
mately 4:020mg. These are not massively different from the values calculated using root
mean squared error. As we recommended the use of harmonic mean over arithmetic mean
when calculating average class accuracy, we recommend the use of root mean squared
error over mean absolute error because it is better to be pessimistic when estimating the
performance of models.

22. This is very similar to the difference between Euclidean distance and Manhattan distance discussed in
Section 5.2.2[184].
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9.4.5.2 Domain independent measures of error The fact that root mean squared error
and mean absolute error are in the same units as the target feature itself can be attractive,
as it gives a very intuitive measure of how well a model is performing—for example, a
model is typically 1:38mg out in its dosage predictions. The disadvantage of this, however,
is that these types of measures by themselves are not sufficient to judge whether a model
is making accurate predictions without deep knowledge of a domain. For example, how
can we judge whether a drug dosage prediction model that has a root mean squared error
of 1:38mg is actually making accurate predictions without also understanding the domain
of drug dosage prediction. To make these judgments it is necessary to have a normalized,
domain independent measure of model performance.

The R2 coefficient is a domain independent measure of model performance that is fre-
quently used for prediction problems with a continuous target. The R2 coefficient compares
the performance of a model on a test set with the performance of an imaginary model that
always predicts the average values from the test set. The R2 coefficient is calculated as

R2 � 1�
sum o f squared errors
total sum o f squares

(9.29)

where the sum of squared errors is computed using Equation (9.25)[575], and the total sum
of squares is given by

total sum o f squares �
1
2

n‚

i�1

�
ti � t

�2 (9.30)

R2 coefficient values fall in the range r0; 1q and larger values indicate better model per-
formance. A useful interpretation of the R2 coefficient is as the amount of variation in the
target feature that is explained by the descriptive features in the model.

The average target value for the drug dosage prediction test set given in Table 9.20[576]

is 11:132. Using this, the R2 coefficient for the regression model can be calculated as
0:889 and for the nearest neighbor model as 0:776. This leads to the same conclusion
with regard to model ranking as the root mean squared error measures: namely, that the
regression model has better performance on this task than the nearest neighbor model. The
R2 coefficient, however, has the advantage that it allows assessment of model performance
in a domain-independent way.

9.4.6 Evaluating Models after Deployment
Predictive models are based on the assumption that the patterns learned in the training data
will be relevant to unseen instances that are presented to the model in the future. Data,
however, like everything else in the world, is not constant. People grow older, inflation
drives up salaries, the content of the spam emails changes, and the way people use tech-
nologies changes. This phenomenon is often referred to as concept drift. Concept drift
means that almost all the predictive models that we build will at some point go stale, and
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the relationships that they have learned between descriptive features and target features will
no longer apply. It is important that once a model is deployed, we put in place an ongoing
model validation scheme to monitor the model to catch the point at which it begins to go
stale. If we can catch this point, we can take appropriate action.

To monitor the ongoing performance of a model, we need a signal that indicates that
something has changed. There are three sources from which we can extract such a signal:

 The performance of the model measured using appropriate performance measures
 The distributions of the outputs of a model
 The distributions of the descriptive features in query instances presented to the model

Once a signal has identified that concept drift has occurred and that a model has indeed
gone stale, corrective action is required. The nature of this corrective action depends on
the application and the type of model being used. In most cases, however, corrective action
involves gathering a new labeled dataset and restarting the model building process using
this new dataset.

9.4.6.1 Monitoring changes in performance measures The simplest way to get a sig-
nal that concept drift has occurred is to repeatedly evaluate models with the same perfor-
mance measures used to evaluate them before deployment. We can calculate performance
measures for a deployed model and compare these to the performance achieved in eval-
uations before the model was deployed. If the performance changes significantly, this is
a strong indication that concept drift has occurred and that the model has gone stale. For
example, if we had used root mean squared error on a hold-out test set to evaluate the
performance of a model before deployment, we could collect all the query instances pre-
sented to the model for a period after deployment and, once their true target feature values
became available, calculate the root mean squared error on this new set of query instances.
A large change in the root mean squared error value would flag that the model had gone
stale. One of the drawbacks of using this method to detect that a model has gone stale is
that estimating how large this change needs to be in order to signal that the model has gone
stale is entirely domain dependent.23

Although monitoring changes in the performance of a model is the easiest way to tell
whether it has gone stale, this method makes the rather large assumption that the correct
target feature value for a query instance will be made available shortly after the query
has been presented to a deployed model. There are many scenarios in which this is the
case. For example, for churn models, customers will either churn or not churn; for credit
scoring models, customers will either repay their loans or not; and for models predicting
athlete performance, athletes will either match expectations or not. There are many more

23. Systems like the Western Electric rules (Montgomery, 2004), used widely in process engineering to detect
out-of-control processes, can be useful in this regard.
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scenarios, however, in which the correct target feature values either never become available
or do not become available early enough to be useful for ongoing model validation. In these
scenarios, this approach to ongoing model validation simply doesn’t work.

9.4.6.2 Monitoring model output distribution changes An alternative to using chang-
ing model performance is to use changes in the distribution of model outputs as a signal
for concept drift. If the distribution of model outputs changes dramatically, for example,
if a model that previously made positive predictions 80% of the time is suddenly mak-
ing positive predictions only 20% of the time, then we can assume that there is a strong
possibility that concept drift has occurred and that the model has gone stale. In order to
compare distributions, we measure the distribution of model outputs on the test set that
was used to originally evaluate a model and then repeat this measurement on new sets of
query instances collected during periods after the model has been deployed. We then use
an appropriate measure to calculate the difference between the distributions collected after
deployment and the original distribution. One of the most commonly used measures for
this is the stability index. The stability index is calculated as

stability index �
‚

lPlevelsptq
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|At�l|
|A|
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|Bt�l|
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� loge

�
|At�l|
|A|

{
|Bt�l|
|B|




(9.31)

where |A| refers to the size of the test set on which performance measures were originally
calculated, |At�l| refers to the number of instances in the original test set for which the
model made a prediction of level l for target t, |B| and |Bt�l| refer to the same measure-
ments on the newly collected dataset, and loge is the natural logarithm.24 In general,

 If the value of the stability index is less than 0:1, then the distribution of the newly
collected test set is broadly similar to the distribution in the original test set.

 If the value of the stability index is between 0:1 and 0:25, then some change has occurred
and further investigation may be useful.

 A stability index value greater than 0:25 suggests that a significant change has occurred
and corrective action is required.

Table 9.21[581] shows an example of how the stability index could be calculated for two
different sets of query instances collected at two different times after model deployment
based on the bacterial species identification problem given in Table 9.18[573]. For the origi-
nal test set and the two new test sets, referred to as New Sample 1 and New Sample 2, the
count and percentage for each target value is given (note that the tests sets do not have to be
the same size because relative distributions are used). The original baseline target frequen-
cies are based on the predictions in Table 9.18[573] and are visualized in Figure 9.18(a)[582].

24. The natural logarithm of a value a, logepaq, is the logarithm of a to the base e, where e is Euler’s number,
equal to approximately 2:718.
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Table 9.21
Calculating the stability index for the bacterial species identification problem given new test data for
two periods after model deployment.

Original New Sample 1 New Sample 2
Target Count % Count % SIt Count % SIt

durionis 7 0:233 12 0:267 0:004 12 0:200 0:005
ficulneus 7 0:233 8 0:178 0:015 9 0:150 0:037
fructosus 11 0:367 16 0:356 0:000 14 0:233 0:060

pseudo. 5 0:167 9 0:200 0:006 25 0:417 0:229
Sum 30 45 0:026 60 0:331

The frequency and percentage of each target level are shown for the original test set and for two samples collected

after deployment. The column marked SIt shows the different parts of the stability index sum based on Equation

(9.31)[580].

Figures 9.18(b)[582] and 9.18(c)[582] show the target distributions for the two points in time
after deployment for which the stability index is to be calculated. These bar plots show
that the distribution of target levels for New Sample 1 is similar to the original test set, but
that the distribution of target levels for New Sample 2 is quite different. This is reflected
in the stability index calculations in Table 9.21[581], which are determined using Equation
(9.31)[580]. For example, for New Sample 1, the stability index is
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where the counts come from Table 9.21[581]. The stability index for New Sample 2, calcu-
lated in the same way, is 0:331. This suggests that at the point in time at which New Sample
1 was collected, the outputs produced by the model followed much the same distribution
as when the model was originally evaluated, but that when New Sample 2 was collected,
the distribution of the outputs produced by the model had changed significantly.

To monitor models for the occurrence of concept drift, it is important that the stability
index be continuously tracked over time. Figure 9.18(d)[582] shows how the stability index
could be tracked for the bacterial species identification problem every month for a period
of 12 months after model deployment. The dotted line indicates a stability index value
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of 0:1, above which a model should be closely monitored, and the dashed line indicates a
stability index of 0:25, above which corrective action is recommended.

(a) Original (b) New Sample 1

(c) New Sample 2 (d) Monitoring Over Time

Figure 9.18
The distributions of predictions made by a model trained for the bacterial species identification prob-
lem for (a) the original evaluation test set, and for (b) and (c) two periods of time after model deploy-
ment; (d) shows how the stability index can be tracked over time to monitor for concept drift.

The stability index can be used for both categorical and continuous targets. When a
model predicts a continuous target, the target range is divided into bins, and the distribution
of values into these bins is used in the calculation. It is particularly common to use deciles
for this task. The same can actually be done for models that predict binary categorical
targets by dividing the prediction scores into deciles. The stability index is just one measure
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of the difference between two different distributions, and there are many other options that
can be used. For example, for categorical targets, the �2 statistic is often used, and for
continuous targets, the K-S statistic can also be used.

The advantage of using evaluation approaches based on comparing the distribution of a
model’s output, such as the stability index, is that they do not require that the true targets for
query instances become available shortly after predictions have been made. The downside,
however, is that such measures do not directly measure the performance of the model,
and consequently, a high stability index may reflect a change in the underlying population
rather than a change in model performance. So, relying solely on a stability index can lead
to models being rebuilt when it is not required.

9.4.6.3 Monitoring descriptive feature distribution changes In the same way we can
compare the distributions of model outputs between the time that the model was built and
after deployment, we can also make the same type of comparison for the distributions of the
descriptive features used by the model. We can use any appropriate measure that captures
the difference between two different distributions for this, including the stability index, the
�2 statistic, and the K-S statistic.

There is, however, a challenge here, as usually, there are a large number of descriptive
features for which measures need to be calculated and tracked. Furthermore, it is unlikely
that a change in the distribution of just one descriptive feature in a multi-feature model
will have a large impact on model performance. For this reason, unless a model uses a
very small number of descriptive features (generally fewer than 10), we do not recommend
this approach. Measuring the difference in descriptive feature distributions can be useful,
however, in understanding what has changed to make a model go stale. So, we recommend
that if a model has been flagged as having gone stale using either performance measure
monitoring or output distribution monitoring, then the distributions of the descriptive fea-
tures at the time that the model was built and the distributions of the features at the time
that the model went stale should be compared in an effort to understand what has changed.
This information should help if the model is to be rebuilt to address the fact that it has gone
stale.

9.4.6.4 Comparative experiments using a control group At the beginning of this
chapter, we emphasized that it is important that the evaluation of prediction models not
just focus on predictive power but also take into account the suitability of the model for
the task to which it will be deployed. As part of this type of broader evaluation, the use of
comparative experiments that include a control group can be quite effective. The idea
of a control group might be familiar to readers from reading about medical trials. To test a
new medicine, doctors typically assemble a group of patients who suffer from the problem
that the medicine is designed to address. During a trial period, half of the patients, the
treatment group, are given the new drug, and the other half, the control group, are given
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Table 9.22
The number of customers who left the mobile phone network operator each week during the com-
parative experiment from both the control group (random selection) and the treatment group (model
selection).

Control Group Treatment Group
Week (Random Selection) (Model Selection)

1 21 23
2 18 15
3 28 18
4 19 20
5 18 15
6 17 17
7 23 18
8 24 20
9 19 18

10 20 19
11 18 13
12 21 16

Mean 20.500 17.667
Std. Dev. 3.177 2.708

a placebo (essentially a fake drug that has no actual medical effect). Patients are not aware
which group they have been assigned to during the trial (hence the need for the placebo).
As long as both the treatment group and the control group are representative of the overall
population, at the end of the trial period, the doctors running the trial can be confident that
any improvement they see in the patients in the treatment group that they do not see in the
control group is due to the new medicine.

We can use exactly the same idea to evaluate the impact of predictive models. It is
important to note here that we use control groups not to evaluate the predictive power
of the models themselves, but rather to evaluate how good they are at helping with the
business problem when they are deployed. If we have developed a predictive model that is
used in a particular business process, we can run that business process in parallel both with
the predictive model, the treatment group, and without the predictive model, the control
group, in order to evaluate how much the use of the predictive model has improved the
business process.

For example, consider a mobile phone network operator that has built a churn prediction
model to help address a problem with customers leaving to join other networks. The com-
pany would like to evaluate how well the model is helping to address the churn problem.
Before the churn model was put in place, every week the company would randomly se-
lect 1;000 customers from their customer base and have their customer contact center call
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these customers to discuss how satisfied they were with the network’s performance and
offer assistance with any issues. This was based on the assumption that such a call made to
customers considering switching to a different network would encourage them to stay with
their current network. The churn model replaced the random selection of customers by
assigning every customer in the company’s customer base a churn risk score and selecting
the 1;000 customers with the highest churn risk scores to receive a call from the customer
contact center. Everything else about the process was the same as before.

In order to evaluate the effect this model was having on the company’s churn problem,
they performed a comparative experiment. The company’s entire customer base was di-
vided randomly into two groups, the treatment group and the control group—and each
group contained approximately 400;000 customers. For the customers in the treatment
group, the company applied the process using the predictive model to determine which
customers to contact regarding customer satisfaction. For the customers in the control
group, the random selection process was used. These two approaches ran in parallel for
12 weeks, and at the end of this period, the company measured the number of customers
within each group who had left the company to join another network. Table 9.22[584] shows
the number of customers who churned from each of these two groups during the 12 weeks
of the trial, and the associated means and standard deviations. These figures show that, on
average, fewer customers churn when the churn prediction model is used to select which
customers to call. This tells us not only something about how accurate the churn prediction
model is but, more important, that using the model actually made a difference in the busi-
ness problem that the company was trying to address.25

In order to use control groups in evaluation, we need to be able to divide a population
into two groups, run two versions of a business process in parallel, and accurately measure
the performance of the business process. Therefore, using control groups is not suitable in
all scenarios, but when it is applicable, it adds an extra dimension to our evaluations that
takes into account not just how well a model can make predictions, but also how much the
predictive model helps to address the original business problem.

9.5 Summary

This chapter covers a range of approaches for evaluating the performance of prediction
models. The choice of the correct performance measure for a particular problem depends
on a combination of the nature of the prediction problem (e.g., continuous versus categori-
cal), the characteristics of the dataset (e.g., balanced versus imbalanced), and the needs of
the application (e.g., medical diagnosis versus marketing response prediction). This last is-
sue is interesting because sometimes particular performance measures become especially
popular in certain industries, and in many cases, this dictates the choice of performance

25. A formal test for statistical significance could easily be used to reinforce this conclusion.
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measure. For example, in financial credit scoring, the Gini coefficient is almost always
used to evaluate model performance.

For those struggling to choose an appropriate performance measure, in the absence of
other information, we recommend:

 For categorical prediction problems, use average class accuracy based on a harmonic
mean.

 For continuous prediction problems, use the R2 coefficient.

There are also a number of different ways in which evaluation experiments can be per-
formed, as described in Section 9.4.1[540]. The choice of which one to use mostly depends
on how much data is available. The following rules of thumb may be useful (although
the usual caveats that all scenarios are slightly different apply). In cases with very small
datasets (approximately fewer than 300 instances), bootstrapping approaches are preferred
over cross validation approaches. Cross validation approaches are generally preferred un-
less datasets are very large, in which case the likelihood of the lucky split becomes very
low, and hold-out approaches can be used. As with everything else, there is an application-
specific component to the selection of an experimental design—for example, out-of-time
sampling is a good choice in scenarios where a time dimension is important.

9.6 Further Reading

The evaluation of machine learning models is a live research issue, and a large body of
material addresses all the questions that have been discussed in this chapter. For a detailed
discussion of the issues associated with evaluating models for categorical prediction prob-
lems (and model evaluation in general), Japkowicz and Shah (2011) is excellent. David
Hand has also written extensively on the appropriateness of different evaluation measures
and is always worth reading. For example, Hand and Anagnostopoulos (2013) discusses
issues with the use of the ROC index.

Japkowicz and Shah (2011) also discusses the issue of performing statistical significance
tests to compare the performance of multiple models. Demsar (2006) gives another ex-
cellent overview of comparing multiple modeling types and has been the basis for much
discussion in the machine learning community. This is slightly more of a concern to ma-
chine learning researchers who are interested in comparing the overall power of different
machine learning algorithms. By contrast, in most predictive analytics projects, our focus
is on determining the best model for a specific problem.

The design of model evaluation experiments is an example of the application of tech-
niques from the larger discipline of experimental design, which is used extensively in the
manufacturing industry amongst others. Montgomery (2012) is an excellent reference for
this topic and well worth reading.
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Finally, for those interested in experimenting with different evaluation measures, the
ROCR package (Sing et al., 2005) for the R programming language includes a wide range
of measures.
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9.7 Exercises

1. The table below shows the predictions made for a categorical target feature by a model
for a test dataset. Based on this test set, calculate the evaluation measures listed below.

ID Target Prediction
1 false false
2 false false
3 false false
4 false false
5 true true
6 false false
7 true true

ID Target Prediction
8 true true
9 false false

10 false false
11 false false
12 true true
13 false false
14 true true

ID Target Prediction
15 false false
16 false false
17 true false
18 true true
19 true true
20 true true

(a) A confusion matrix and the misclassification rate

(b) The average class accuracy (harmonic mean)

(c) The precision, recall, and F1 measure

2. The table below shows the predictions made for a continuous target feature by two
different prediction models for a test dataset.

Model 1 Model 2
ID Target Prediction Prediction
1 2;623 2;664 2;691
2 2;423 2;436 2;367
3 2;423 2;399 2;412
4 2;448 2;447 2;440
5 2;762 2;847 2;693
6 2;435 2;411 2;493
7 2;519 2;516 2;598
8 2;772 2;870 2;814
9 2;601 2;586 2;583

10 2;422 2;414 2;485
11 2;349 2;407 2;472
12 2;515 2;505 2;584
13 2;548 2;581 2;604
14 2;281 2;277 2;309
15 2;295 2;280 2;296

Model 1 Model 2
ID Target Prediction Prediction
16 2;570 2;577 2;612
17 2;528 2;510 2;557
18 2;342 2;381 2;421
19 2;456 2;452 2;393
20 2;451 2;437 2;479
21 2;296 2;307 2;290
22 2;405 2;355 2;490
23 2;389 2;418 2;346
24 2;629 2;582 2;647
25 2;584 2;564 2;546
26 2;658 2;662 2;759
27 2;482 2;492 2;463
28 2;471 2;478 2;403
29 2;605 2;620 2;645
30 2;442 2;445 2;478

(a) Based on these predictions, calculate the evaluation measures listed below for each
model.

i. The sum of squared errors

ii. The R2 measure

(b) Based on the evaluation measures calculated, which model do you think is per-
forming better for this dataset?
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3. A credit card issuer has built two different credit scoring models that predict the
propensity of customers to default on their loans. The outputs of the first model for a
test dataset are shown in the table below.

ID Target Score Prediction
1 bad 0.634 bad
2 bad 0.782 bad
3 good 0.464 good
4 bad 0.593 bad
5 bad 0.827 bad
6 bad 0.815 bad
7 bad 0.855 bad
8 good 0.500 good
9 bad 0.600 bad
10 bad 0.803 bad
11 bad 0.976 bad
12 good 0.504 bad
13 good 0.303 good
14 good 0.391 good
15 good 0.238 good

ID Target Score Prediction
16 good 0.072 good
17 bad 0.567 bad
18 bad 0.738 bad
19 bad 0.325 good
20 bad 0.863 bad
21 bad 0.625 bad
22 good 0.119 good
23 bad 0.995 bad
24 bad 0.958 bad
25 bad 0.726 bad
26 good 0.117 good
27 good 0.295 good
28 good 0.064 good
29 good 0.141 good
30 good 0.670 bad

The outputs of the second model for the same test dataset are shown in the table below.

ID Target Score Prediction
1 bad 0.230 bad
2 bad 0.859 good
3 good 0.154 bad
4 bad 0.325 bad
5 bad 0.952 good
6 bad 0.900 good
7 bad 0.501 good
8 good 0.650 good
9 bad 0.940 good
10 bad 0.806 good
11 bad 0.507 good
12 good 0.251 bad
13 good 0.597 good
14 good 0.376 bad
15 good 0.285 bad

ID Target Score Prediction
16 good 0.421 bad
17 bad 0.842 good
18 bad 0.891 good
19 bad 0.480 bad
20 bad 0.340 bad
21 bad 0.962 good
22 good 0.238 bad
23 bad 0.362 bad
24 bad 0.848 good
25 bad 0.915 good
26 good 0.096 bad
27 good 0.319 bad
28 good 0.740 good
29 good 0.211 bad
30 good 0.152 bad

Based on the predictions of these models, perform the following tasks to compare their
performance.

(a) The image below shows an ROC curve for each model. Each curve has a point
missing.
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Calculate the missing point in the ROC curves for Model 1 and Model 2. To
generate the point for Model 1, use a threshold value of 0:51. To generate the
point for Model 2, use a threshold value of 0:43.

(b) The area under the ROC curve (AUC) for Model 1 is 0.955 and for Model 2 is
0.851. Which model is performing best?

(c) Based on the AUC values for Model 1 and Model 2, calculate the Gini coefficient
for each model.

4. A retail supermarket chain has built a prediction model that recognizes the household
that a customer comes from as being one of single, business, or family. After deploy-
ment, the analytics team at the supermarket chain uses the stability index to monitor
the performance of this model. The table below shows the frequencies of predictions
of the three different levels made by the model for the original validation dataset at the
time the model was built, for the month after deployment, and for a monthlong period
six months after deployment.

Original 1st New 2nd New
Target Sample Sample Sample
single 123 252 561

business 157 324 221
family 163 372 827
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Bar plots of these three sets of prediction frequencies are shown in the following im-
ages.

Original Sample 1st New Sample 2nd New Sample

Calculate the stability index for the two new periods and determine whether the model
should be retrained at either of these points.

� 5. Explain the problem associated with measuring the performance of a predictive model
using a single accuracy figure.

� 6. A marketing company working for a charity has developed two different models that
predict the likelihood that donors will respond to a mailshot asking them to make a
special extra donation. The prediction scores generated for a test set for these two
models are shown in the table below.

Model 1 Model 2
ID Target Score Score
1 false 0.1026 0.2089
2 false 0.2937 0.0080
3 true 0.5120 0.8378
4 true 0.8645 0.7160
5 false 0.1987 0.1891
6 true 0.7600 0.9398
7 true 0.7519 0.9800
8 true 0.2994 0.8578
9 false 0.0552 0.1560
10 false 0.9231 0.5600
11 true 0.7563 0.9062
12 true 0.5664 0.7301
13 true 0.2872 0.8764
14 true 0.9326 0.9274
15 false 0.0651 0.2992

Model 1 Model 2
ID Target Score Score
16 true 0.7165 0.4569
17 true 0.7677 0.8086
18 false 0.4468 0.1458
19 false 0.2176 0.5809
20 false 0.9800 0.5783
21 true 0.6562 0.7843
22 true 0.9693 0.9521
23 false 0.0275 0.0377
24 true 0.7047 0.4708
25 false 0.3711 0.2846
26 false 0.4440 0.1100
27 true 0.5440 0.3562
28 true 0.5713 0.9200
29 false 0.3757 0.0895
30 true 0.8224 0.8614

(a) Using a classification threshold of 0:5, and assuming that true is the positive target
level, construct a confusion matrix for each of the models.

(b) Calculate the simple accuracy and average class accuracy (using an arithmetic
mean) for each model.
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(c) Based on the average class accuracy measures, which model appears to perform
best at this task?

(d) Generate a cumulative gain chart for each model.

(e) The charity for which the model is being built typically has only enough money
to send a mailshot to the top 20% of its contact list. Based on the cumulative gain
chart generated in the previous part, would you recommend that Model 1 or Model
2 would perform best for the charity?

� 7. A prediction model is going to be built for in-line quality assurance in a factory that
manufactures electronic components for the automotive industry. The system will be
integrated into the factory’s production line and determine whether components are of
an acceptable quality standard based on a set of test results. The prediction subject is
a component, and the descriptive features are a set of characteristics of the component
that can be gathered on the production line. The target feature is binary and labels
components as good or bad.
It is extremely important that the system not in any way slow the production line and

that the possibility of defective components being passed by the system be minimized
as much as possible. Furthermore, when the system makes a mistake, it is desirable
that the system can be retrained immediately using the instance that generated the
mistake. When mistakes are made, it would be useful for the production line operators
to be able to query the model to understand why it made the prediction that led to a
mistake. A large set of historical labeled data is available for training the system.

(a) Discuss the different issues that should be taken into account when evaluating the
suitability of different machine learning approaches for use in this system.

(b) For this task, discuss the suitability of the decision tree, k nearest neighbor, naive
Bayes, and logistic regression models. Which one do you think would be most
appropriate?

� 8. The following matrices list the confusions matrices for two models and the profit
matrix for this prediction task. Calculate the overall profit for each model.

M1 �

�
50 10
20 80

�

M2�

�
35 25
40 60

�

Pro f it �

�
�100 �20
�110 �10

�

� 9. The following table lists the scores returned by a prediction model for a test set of 12
examples. The prediction task is a binary classification task, and the instances in the
test set are labeled as belonging to the positive or negative class. For ease of reading,
the instances have been ordered in descending order of the score the model assigned
to each instance.



9.7 Exercises 593

ID Target Score
1 positive 0.75
2 positive 0.72
3 positive 0.64
4 negative 0.62
5 negative 0.55
6 positive 0.48
7 negative 0.45
8 negative 0.44
9 negative 0.38
10 negative 0.35
11 negative 0.32
12 negative 0.31

(a) Calculate the ROC index for this model using the trapezoidal method and the
following set of thresholds: 1:0, 0:5, and 0:0.

(b) The following table lists the scores returned by the same prediction model for a
new test set of 12 examples. Again, the prediction task is a binary classification
task, and the instances in the test set are labeled as belonging to the positive or
negative class. For ease of reading, the instances have been ordered in descending
order of the score the model assigned to each instance. Calculate the ROC index
for this model using the trapezoidal method and the following set of thresholds:
1:0, 0:5, and 0:0.

ID Target Score
1 positive 0.71
2 positive 0.70
3 positive 0.66
4 positive 0.65
5 positive 0.62
6 positive 0.60
7 negative 0.58
8 positive 0.48
9 positive 0.34
10 negative 0.30
11 negative 0.28
12 negative 0.25

(c) The ROC index is insensitive to changes in class distribution within the test set.
This means that if the proportion of positive to negative instances changes in a
test set, the ROC index will remain the same if the performance of the models on
each class is constant. Consequently, the ROC index is robust to class imbalance
or skew in the test set. Why do you think this is the case?26

26. We recommend Fawcett (2006) as an excellent introduction and overview to ROC analysis that covers the
topic of imbalance in the test set. Note also that in very highly imbalanced data where there is a very large
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� 10. As part of a natural language processing project, a company is creating a dictionary
of idiomatic phrases.27 The company has used an automatic process to extract a set of
50,000 candidate idioms from a large corpus and now are planning to use a machine
learning model to filter this set of candidates before presenting them to a human an-
notator who decides whether a candidate phrase should be added to the dictionary or
not. In order to evaluate which machine learning model to use as the pre-annotator
filter, the company created a test set of 10 phrases extracted at random from the set of
50,000 candidates.

(a) The following table presents the scoring by two models of the test set of candidate
idioms. Which model would be chosen to filter candidate idioms if the decision
were taken on the basis of the F1 score for each model, assuming both models use
a threshold of ¡ 0:5 for classifying a candidate as an idiom.

Model Scoring
ID Idiom M1 M2

1 true 0.70 0.80
2 true 0.56 0.80
3 true 0.55 0.70
4 true 0.54 0.45
5 true 0.45 0.44
6 false 0.73 0.55
7 false 0.72 0.54
8 false 0.35 0.40
9 false 0.34 0.38
10 false 0.33 0.30

(b) There is a cost associated with each item presented to the human annotator, and
the company wants to maximize the number of items that end up in the dictionary.
The company estimates that it has an annotation budget that will cover the human
annotation of 20,000 phrases (i.e., 40% of the set of candidate phrases). Calculate
the cumulative gain of each of the models for the 4th decile. Again, assume both
models use a threshold of ¡ 0:5 for the idiom class. Finally, on the basis of
cumulative gain scores, which model would you recommend the company use for
the pre-annotation filtering task?

number of negative examples, the false positive rate is not very sensitive to changes in the number of false
positives (because the denominator is so large) and in these contexts, if the focus of the model is on detecting the
positive class, it is probably advisable to use precision as the evaluation metric, as it focuses more on the ability to
detect the positive class, rather than on the ability to distinguish between classes (which the ROC index captures).

27. This question is inspired by the work reported in Klubička et al. (2018).
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10 Beyond Prediction: Unsupervised Learning

“Dick: I guess it looks as if you’re reorganizing your records. What is this though? Chronological?
Rob: No...
Dick: Not alphabetical...
Rob: Nope...
Dick: What?
Rob: Autobiographical.”
—Nick Hornby, High Fidelity

The examples throughout this book so far have focused on supervised machine learning
methods for building predictive models. In this chapter we shift the focus to unsuper-
vised machine learning methods. We begin by illustrating the key differences between
supervised and unsupervised machine learning before describing clustering, one of the
main applications of unsupervised learning; and the standard approach for clustering, the
k-means clustering algorithm. We then explain some variations on the standard algorithm
as well as how clustering can be evaluated and interpreted. Finally, we cover a second
use case of unsupervised learning, to generate representations that will be used in other
machine learning approaches rather than as an end result in their own right. Unsupervised
learning is a huge topic in its own right, and so the goal of this chapter is to give a flavor of
the most important approaches involved. Suggestions for further reading are given at the
end of the chapter.

10.1 Big Idea

Like lots of other families, the Murphys have a set of magnetic letters on the refrigerator in
their kitchen. Struggling to entertain his daughter one afternoon, Mr. Murphy asked little
Abigail to tidy them up. A shorter time later than Mr. Murphy would have liked, Abigail
skipped back in to her father to say that she was finished. After going along to admire her
work, Mr. Murphy congratulated his daughter on organizing the letters so well. Not long
afterward, however, Mr. Murphy’s son, Andrew, ran in to say that he had fixed the letters in
the kitchen because they had been so badly organized. Mr. Murphy walked to the kitchen
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to have a look and agreed with his son that he too had done a great job of organizing the
letters. Having encouraged his two younger children to play outside, Mr. Murphy had
just sat down to read the newspaper when his third child Amalia ran in to say that she had
fixed the letters on the fridge because they were all out of order. Once again he went to
the kitchen to inspect and agreed that Amalia had also done a great job of organizing the
letters. Not long afterward the three Murphy children came to their father together to ask
how it was that he had told each of them that they had done a great job of arranging the
letters when they had all done something different.

(a) The fridge (b) Abigail (c) Andrew (d) Amalia

Figure 10.1
The three different arrangements of the magnetic letters made by the Murphy children on the Murphy
family refrigerator.

Figure 10.1[598] shows how the three Murphy children organized the letters on the fridge.
From the disorganized letters at the beginning, Abigail divided the letters into six different-
colored groups, Andrew organized them into a lowercase group and an uppercase group,
and Sarah made a group for each letter of the alphabet. All are correct, although they
focus on different characteristics of the letter magnets—color, case, and character. This
illustrates the big idea behind unsupervised learning. In contrast with supervised learning,
there is no target feature that we build a model to predict; rather, we perform modeling to
find structure within a set of instances defined by descriptive features alone.

10.2 Fundamentals

In Chapter 1[3] of this book we described supervised machine learning techniques as auto-
matically learning a model of the relationship between a set of descriptive features and
a target feature on the basis of a set of historical instances. In contrast with this, un-
supervised machine learning techniques are used in the absence of a target feature and
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model the underlying structure within the descriptive features in a dataset. This structure
is typically captured in new generated features that can be appended to the original dataset
and so augment or enrich it. Figure 10.2[599] illustrates this.

Figure 10.2
Unsupervised machine learning as a single-step process.

There are two key use cases for unsupervised learning: clustering and representation
learning. Clustering is a technique that partitions the instances in a dataset into groups,
or clusters, that are similar to each other. The end result of clustering is a single new
generated feature that indicates the cluster that an instance belongs to, and the generation
of this new feature is typically the end goal of the clustering task. One of the most common
applications of clustering is customer segmentation with which organizations attempt to
discover meaningful groupings into which they can group their customers so that targeted
offers or treatments can be designed.

In representation learning the goal of unsupervised machine learning is to create a new
way to represent the instances in a dataset, usually with the expectation that this new repre-
sentation will be more useful for a later, usually supervised, machine learning process. The
origins of deep learning discussed in Chapter 8[381] lie in this application of unsupervised
machine learning.

The fundamentals of unsupervised learning have already largely been covered in previous
chapters. The clustering methods discussed in this chapter use the ideas of a feature space
and a distance measure discussed in Chapter 5[181], and the feature generation techniques
largely build upon the ideas of error-based learning and neural networks discussed in
Chapters 7[311] and 8[381].
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Converting business problems into solutions based on unsupervised machine learning
also relies mainly on the techniques discussed in the context of supervised learning in
Chapter 2[23]. CRISP-DM remains an appropriate process to follow, the approach to de-
signing data representations based on domain concepts is still very useful, and the project
flow presented in Section 2.5[44] is still appropriate. In all these tasks, the absence of a
target feature makes determining what descriptive features are likely to be useful in an
ABT and evaluating the performance of a proposed solution a little more challenging. For
these reasons, analysts often must rely more heavily on domain experts in projects using
unsupervised learning than in performing supervised machine learning tasks.

In the next section we discuss the standard approach to clustering, the k-means clustering
algorithm.

10.3 Standard Approach: The k-Means Clustering Algorithm

The k-means clustering algorithm is the most well-known approach to clustering. As well
as being simple to understand and computationally efficient, it is also quite effective and
often a good solution to clustering problems. The goal of k-means clustering is to take a
dataset, D, consisting of n instances, d1 to dn, where di is a set of m descriptive features,
and divide this dataset into k disjoint clusters, C1 to Ck. The number of clusters to be
found, k, is an input to the algorithm and each instance can belong to only one cluster. The
algorithm finds the division of instances into clusters by minimizing

n‚

i�1

min
c1;:::;ck

Distpdi; c jq (10.1)

where c1 to ck are the centers of the k clusters, referred to as cluster centroids; and Dist
is a distance measure used to compare instances to centroids. Algorithm 9[601] provides a
pseudocode definition of the k-means clustering algorithm.1

The algorithm begins by randomly selecting k cluster centroids, c1 to ck, where a clus-
ter centroid is composed of a value for each descriptive feature present in a dataset (these
initial cluster centroids are often referred to as seeds). The values for these cluster cen-
troids can be selected randomly following uniform distributions bounded by the minimum
and maximum values of each feature. The distance of each instance in the dataset to each
of these cluster centroids is then calculated using the distance measure Dist. It is usual

1. There are several different ways to explain the k-means clustering algorithm. For example, as k-means is
actually a special case of the expectation maximization algorithm (Moon, 1996), it is often described in a
probabilisitic context more similar to typical descriptions of that algorithm. To align with Chapter 5[181] we
present a similarity-based description of the algorithm.
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Algorithm 9 Pseudocode description of the k-means clustering algorithm.

Require: a dataset D containing n training instances, d1; : : : ;dn

Require: the number of clusters to find k
Require: a distance measure, Dist, to compare instances to cluster centroids

1: Select k random cluster centroids, c1 to ck, each defined by values for each descriptive
feature, ci �  cir1s; : : : ; cirms ¡

2: repeat
3: calculate the distance of each instance, di, to each cluster centroid, c1 to ck, using

Dist
4: assign each instance, di, to belong to the cluster, Ci, to whose cluster centroid, ci,

it is closest
5: update each cluster centroid, ci, to the average of the descriptive feature values of

the instances that belong to cluster Ci
6: until no cluster reassignments are performed during an iteration

in k-means clustering for Dist to calculate Euclidean distance.2 As discussed in Section
5.4.3[204] in relation to similarity models for predictive modeling, it is important that all
descriptive features are normalized before using k-means clustering so that distance con-
tributions across features are comparable. Each instance in the dataset is then assigned to
be a member of the cluster, Ci, to whose cluster centroid, ci, it is closest. The cluster cen-
troids are then updated to the average value of the descriptive features of the members of a
cluster. In this way the cluster centroids are moved to be representative of the members of
that cluster.

This process repeats until convergence occurs—where convergence is defined as having
occurred when no cluster memberships change on an iteration of the algorithm and there-
fore the cluster centroids are stable. Once the algorithm has completed, its two outputs are
a vector of assignments of each instance in the dataset to one of the clusters, C1 to Ck, and
the k cluster centroids, c1 to ck. This first output can be used to enrich the original dataset
with a new generated feature, the cluster memberships.

10.3.1 A Worked Example
Table 10.1[604] shows a simple dataset with just two descriptive features that describe the
average number of minutes of calls, CALL VOLUME, and average megabytes of data,
DATA USAGE, used per month by customers of a mobile phone company.3 From Fig-

2. Described in Section 5.2.2[184]. Although it is possible to use other distance measures, such as those described
in Chapter 5[181], in k-means clustering this can break the guarantees that the algorithm makes about convergence.
The k-medoids clustering algorithm (Kaufman and Rousseeuw, 1990) was developed to address these problems.

3. The example given here is based on artificial data generated for the purposes of this book. Performing cus-
tomer segmentation in this way, however, is very common (see, for example, Berry and Linoff (2004)).
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(a) (b) (c)

(d) (e) (f)

Figure 10.3
(a) A plot of the mobile phone customer dataset given in Table 10.1[604]. (b)–(f) The progress of
the k-means clustering algorithm, working on the simple customer segmentation dataset. The large
symbols represent cluster centroids, and the smaller symbols represent cluster assignments.

ure 10.3(a)[602], which illustrates this dataset, it is clear to a human viewer that three clusters
exist in this dataset, however, we require an algorithm such as k-means clustering to find
them automatically (especially in real-world datasets with many more dimensions when
we can’t create this type of data visualization).

Figure 10.3(b)[602] shows the initial randomly selected cluster centroids overlaid onto the
dataset, where c1 � h�1:1048;�0:1324i, c2 � h�0:8431;�1:2239i, and c3 � h�1:2744;
0:2187i. After selection of the initial cluster centroids, the next step step in the algorithm
is to calculate the Euclidean distance from each instance in the dataset to each cluster
centroid. In this example we use Euclidean distance as the distance measure. In Table
10.1[604] the columns labeled Cluster Distances Iter. 1 show the distances between each
instance and these initial cluster centroids. On the basis of these distances, each instance
in D is assigned to one of these clusters, as shown in the column labeled Cluster. These
memberships are illustrated in Figure 10.3(c)[602].
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Each cluster centroid is then updated by calculating the mean value of each descriptive
feature for all instances that are a member of the cluster. For example, there are nine
members of C1: td1;d2;d3;d6;d8;d11;d13;d20;d24u. So, c1 is updated to

c1rDATA USAGEs � p�0:9531��1:167��1:2329��0:8431� 0:9285

��1:005� 0:2021��0:7426��0:3414q{9
� �0:5727

c1rCALL VOLUMEs � p�0:3107��0:706��0:4188� 0:1811��0:2168

��0:0337� 0:4364� 0:0119� 0:4215q{9
� �0:0706

The other cluster centroids are updated similarly, so that c1 � h�0:5727;�0:0706i, c2 �
h0:8866;�0:7912i, and c3 � h�0:3367; 0:6123i. These are illustrated in Figure 10.3(d)[602].

The previous process is then repeated, and the distances of each instance in D to these
updated cluster centroids are given in Table 10.1[604] in the columns labeled Cluster Dis-
tances Iter. 2. The updated cluster memberships based on these distances are shown in the
rightmost column of Table 10.1[604]. Figures 10.3(e)[602] and 10.3(f)[602] show the remaining
steps of the k-means clustering process. In this simple example no cluster reassignments
are made at the third iteration, and so the process is considered to have converged.

The final results of the clustering are the cluster centroid values of c1 � h�1:012;�0:131i,
c2 � h0:8912;�0:7273i, and c3 � h�0:0491; 0:7022i; and the cluster assignments of

C1 � td1;d2;d3;d5;d6;d11;d19;d20u

C2 � td4;d8;d9;d10;d15;d17;d18;d21;d22u

C3 � td7;d12;d13;d14;d16;d23;d24u

These cluster assignments are also shown in the rightmost column of Table 10.1[604] (as
cluster assignments did not change after the second iteration of the algorithm) in context
with the original dataset. A set of cluster assignments is usually referred to as a clustering.

The sample dataset used in this section has been purposefully selected to include just
two descriptive features so that the visualizations in Figure 10.3[602] could be easily shown.
The algorithm, however, proceeds in exactly the same way for larger datasets and usually
converges after tens of iterations. Long after it was first proposed, k-means remains a
commonly used clustering algorithm; however, there have been many modifications and
alternatives proposed over the years. We explore the most important of these modifications
in the following sections.
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10.4 Extensions and Variations

The k-means clustering algorithm is simple and reasonably effective, but this simple ver-
sion leaves a number of questions unanswered—can we make the process more efficient,
how are clusterings evaluated, how is k chosen, and how are clusters interpreted?—and it
works only for clusterings of a certain underlying structure. In this section we look at ex-
tensions and modifications of the k-means clustering algorithm that answer these questions
and address these shortcomings. At the end of the chapter, unsupervised machine learning
for feature generation will be discussed.

10.4.1 Choosing Initial Cluster Centroids
In the basic form of k-means clustering, the initial cluster centroids, or seeds, are chosen
at random uniformly within the feature space. This choice of these initial seeds, unfor-
tunately, can have a big impact on the performance of the algorithm. Different randomly
selected starting points can lead to different, often sub-optimal, clusterings. Figure 10.4[606]

illustrates this, showing other clusterings that are possible given different random initial
cluster centroids for the mobile phone customer dataset presented in Table 10.1[604]. In Fig-
ures 10.4(a)[606] and 10.4(b)[606], a very different seed from that shown in Figure 10.3(b)[602]

is shown to lead to the same clustering found previously (Figure 10.3(f)[602]), whereas in
Figures 10.4(a)[606] to 10.4(h)[606], seeds that lead to very different clusterings are shown.
It is clear that the clusterings shown in Figures 10.4(d)[606], 10.4(f)[606], and 10.4(h)[606] are
quite different from the clustering found previously (shown in Figure 10.3(f)[602]) and are
sub-optimal compared with the result we would intuitively expect from looking at the vi-
sualization of this dataset. The clustering in Figure 10.4(h)[606] is particularly unlucky, as
one of the clusters has remained empty!4

These sub-optimal clusterings are rare—for this dataset the vast majority of initial cen-
troid choices will lead to the clustering in Figure 10.3(f)[602]—but they can occur. In large
multivariate datasets they are more common, and the algorithm can very easily arrive in
one—we don’t have the luxury of simply visualizing high-dimensional datasets to check
against an intuitive clustering.

An easy way to address this issue is to perform multiple runs of the k-means clustering
algorithm starting from different initial centroids and then aggregate the results. In this way
the most common clustering is chosen as the final result. There are, however, a number
of methods designed to more carefully select the initial centroids. These methods offer
two advantages over basic k-means: they can find initial centroids less likely to lead to
sub-optimal clusterings, and they can select initial centroids that allow the algorithm to
converge much more quickly than when seeds are randomly chosen. The k-means++

4. A common modification to k-means clustering in which actual instances are chosen as initial centroids, rather
than random points in the feature space, easily stops this from happening.
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(a) Seed (b) Clustering (c) Seed (d) Clustering

(e) Seed (f) Clustering (g) Seed (h) Clustering

Figure 10.4
(a)–(h) Different clusterings (all with k � 3) that can be found for the mobile phone customer dataset
given in Table 10.1[604] when different initial cluster centroids are used.

algorithm is a well-known example of this kind of algorithm and is used as the default
clustering implementation in many machine learning packages and tools.

Algorithm 10[607] shows a pseudocode description of the k-means++ algorithm. In this ap-
proach, an instance is chosen randomly (following a uniform distribution) from the dataset
as the first centroid. Subsequent centroids are then chosen randomly but following a dis-
tribution defined by the square of the distances between an instance and the nearest cluster
centroid out of those found so far. This means that instances far away from the current
set of centroids are much more likely to be selected than those close to already selected
centroids.

Figure 10.5[607] shows a selection of sets of initial centroids selected by the k-means++
process. From these it is clear that instances from the dataset are being used as cluster
centroids and that typically there is good diversity across the feature space in the centroids
shown. The k-means++ algorithm is still stochastic in the manner in which initial cluster
centroids are selected, and it does not completely remove the possibility of a poor starting
point that leads to a sub-optimal clustering. Hence, an aggregate across multiple runs
should still be used.
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Algorithm 10 Pseudocode description of the k-means++ algorithm.

Require: a dataset D containing n training instances, d1; : : : ;dn

Require: k, the number of cluster centroids to find
Require: a distance measure Dist to compare instances to cluster centroids

1: choose di randomly (following a uniform distribution) from D to be the position of the
initial centroid, c1, of the first cluster, C1

2: for cluster C j in C2 to Ck do
3: for each instance, di, in D let Distpdiq be the distance between di and its nearest

cluster centroid

4: calculate a selection weight for each instance, di, in D as
Distpdiq2°n

p�1 Distpdpq2

5: choose di as the position of cluster centroid, c j, for cluster C j randomly following
a distribution based on the selection weights

6: end for
7: proceed with k-means as normal using tc1; : : : ; cku as the initial centroids.

(a) (b) (c) (d)

Figure 10.5
(a)–(d) Initial centroids chosen using the k-means++ approach (all with k � 3) for the mobile phone
customer dataset given in Table 10.1[604].

10.4.2 Evaluating Clustering
Unsupervised learning presents us with a more complicated evaluation challenge than su-
pervised learning. All the performance measures described in Chapter 9[533] for supervised
learning relied on the existence of ground truth labels to which the predictions made by
a model can be compared to measure its performance. The essence of the unsupervised
scenario is that no ground truth exists—we don’t know what it is that we are looking for!
This means that we typically need to move beyond the performance measures described in
Chapter 9[533].
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One common approach to evaluating clustering is to use an internal criterion to evaluate
how well the clustering found by an algorithm matches some idealized notion of what
a good clustering would look like. Many of these methods make an assumption that a
good clustering is a clustering in which the instances that belong to a given cluster are
very close together, whereas the instances that belong to different clusters are far apart.
That is, a good clustering minimizes intra-cluster distances and maximizes inter-cluster
distances. Figure 10.6[608] illustrates these two types of distances along with examples of a
good and a bad clustering—according to this definition.

(a) Intra-cluster distance (b) Inter-cluster distance

(c) A good clustering (d) A bad clustering

Figure 10.6
(a) Intra-cluster distance; (b) inter-cluster distance; (c) a good clustering; and (d) a bad clustering.
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The silhouette is a well-known and widely used performance measure that assesses how
well a clustering meets these criteria.5 Calculating the silhouette for a clustering involves
a reasonable amount of computation. Algorithm 11[610] outlines the steps involved. To
calculate the silhouette for a clustering, C, over a dataset, D, we calculate a silhouette
width for each instance, di, in D and average these over all instances in the dataset.

The silhouette width for an individual instance is essentially a localized ratio of inter-
cluster and intra-cluster distances capturing how well the instance di has been clustered. If
for di the average intra-cluster distance, apiq, is much smaller than the average inter-cluster
distance to members of the nearest next cluster, bpiq, then the silhouette width, spiq, will be
close to 1 and we can be confident that di really belongs to the cluster in which it has been
placed. On the other hand, if apiq is much larger than bpiq, then di is closer on average to
members of another cluster than it is on average to the members of its own cluster, and spiq
will be close to �1. This means that di doesn’t really belong to the cluster in which it has
been placed.

Averaging across these localized values gives an overall measure of the overall quality of
the clustering. The silhouette for a clustering will always be in the range from �1 to 1. A
value near 1 suggests a good clustering, while a value near �1 suggests a poor clustering
(with the caveat that these scores are based on the assumption about desired characteristics
of a clustering described previously).

Table 10.2[611] shows an example of calculating the silhouette for the final clustering of
the mobile phone customer dataset found using the k-means algorithm (with k � 3) (Table
10.1[604]). The cluster to which each instance has been assigned, the nearest other cluster
to each instance, the values of apiq and bpiq, and the final silhouette value, spiq, are all
shown. We discuss in detail the calculation of the silhouette width for the first instance in
the dataset, d1.

In this clustering d1 is a member of C1. The first step is calculating the silhouette value
for d1 is to calculate apiq, the average distance between d1 and the other members of cluster
C1. The distance from d1 to each other member of C1 is

� d2 d3 d5 d6 d11 d19 d20

d1 0:45 0:30 0:45 0:50 0:28 0:44 0:39
�

The average distance between d1 and the other members of C1, the average intra-cluster
distance, is the average of these values, which is equal to 0:401, the apiq value for d1 given
in Table 10.2[611].

The next step in the algorithm is to calculate the average distance from d1 to each member
of the other two clusters, C2 and C3—the inter-cluster distances. The distances from d1 to

5. The silhouette (Rousseeuw, 1987) is just one example of how clusterings can be evaluated. Others include
the cubic clustering criterion (Sarle, 1983) and the Dunn index (Dunn, 1974); however, these are based on very
similar ideas to the silhouette.
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Algorithm 11 Pseudocode description of the algorithm for calculating the silhouette for
internal cluster evaluation.
Require: a dataset D containing n training instances, d1; : : : ;dn

Require: a clustering C of dataset D into k clusters, C1; : : : ;Ck

Require: a distance measure, Dist, to compare distances between instances
1: for each instance di in D do
2: let apiq be the average distance between instance di and all of the other instances

within the cluster to which di belongs, C j (average intra-cluster distance)
3: calculate the average distance between instance di and the members of each of the

other clusters C z C j

4: let bpiq be the lowest average distance between instance di and any other cluster
(average inter-cluster distance)

5: calculate the silhouette index for di as

spiq �
bpiq � apiq

maxpapiq; bpiqq
(10.2)

6: end for

7: calculate final silhouette for the clustering as s �
1
n

n‚

i�1

spiq

the members of C2 are

� d4 d8 d9 d10 d15 d17 d18 d21 d22

d1 2:03 1:88 2:09 1:94 1:83 2:11 1:95 1:80 1:74
�

which gives an average of 1:931. For C3 the distances are

� d7 d12 d13 d14 d16 d23 d24

d1 1:16 1:59 1:38 1:64 1:64 1:26 0:95
�

which gives an average of 1:3743. Based on these two average distances, C3 is the closest
other cluster to d1 and so bpiq � 1:3743, as shown in Table 10.2[611]. The silhouette width
for d1 is then calculated using Equation (10.2)[610]

1:3743� 0:401
maxp0:401; 1:374q

� 0:7081

The apiq, bpiq, and spiq values in Table 10.2[611] are calculated similarly for each other
instance, and the overall silhouette for the clustering is the average of these values, in this
case, 0:656. This suggests a reasonably good clustering.

The individual silhouette widths for the instances in a dataset can also be used to produce
a useful visual tool for inspecting a clustering. A silhouette plot shows the silhouette
width for each instance in the dataset grouped by the clusters to which they belong. Figure
10.7[612] shows the silhouette plot for the clustering of the mobile phone customer dataset.
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Table 10.2
Calculating the silhouette for the final clustering of the mobile phone customer dataset (Table
10.1[604]) found using the k-means algorithm (with k � 3). The overall silhouette index value is
0:66.

Nearest
ID Cluster Cluster apiq bpiq spiq

1 C1 C3 0.401 1.374 0.708
2 C1 C3 0.695 1.811 0.616
3 C1 C3 0.503 1.644 0.694
4 C2 C3 0.484 1.628 0.703
5 C1 C3 0.387 1.232 0.686
6 C1 C3 0.445 0.970 0.541
7 C3 C1 0.452 1.056 0.572
8 C2 C3 0.599 1.364 0.561
9 C2 C3 0.470 1.768 0.734

10 C2 C3 0.504 1.978 0.745
11 C1 C3 0.327 1.223 0.732
12 C3 C1 0.433 1.537 0.719

Nearest
ID Cluster Cluster apiq bpiq spiq
13 C3 C1 0.5136 1.3592 0.6221
14 C3 C1 0.4349 1.5738 0.7236
15 C2 C3 0.5776 1.3480 0.5715
16 C3 C1 0.4955 1.5409 0.6784
17 C2 C1 0.7369 2.2757 0.6762
18 C2 C3 0.4312 1.8473 0.7666
19 C1 C3 0.3711 1.1682 0.6823
20 C1 C3 0.4334 1.0006 0.5669
21 C2 C1 0.6520 1.9710 0.6692
22 C2 C3 0.4504 1.5457 0.7086
23 C3 C1 0.3954 1.1654 0.6607
24 C3 C1 0.5339 0.8880 0.3988

Silhouette plots show a useful overview of a clustering, including the size of each cluster
and an indication of how well each instance belongs to its cluster, which can be an easy
way to identify outliers in clusterings.

Another approach to evaluating clustering is to use external criteria in which some mea-
sure from outside the clustering is used as a proxy ground truth. For example, for the
sample mobile phone customer data used in this section, the type of tariff that customers
had (e.g. gold, silver, or bronze) could be used as a proxy ground truth, and the ability of
the clustering to separate the dataset into groups of the same tariff type could be used as a
measure of the quality of the clustering. This assumes that we should expect the clustering
to find groups with similar tariff types, an assumption that could be based only on detailed
knowledge of the domain. The performance measures used for classification problems de-
scribed in Chapter 9[533] can be used for this—for example, the F1 measure is commonly
used. There are also specific measures that are often used for this, for example normal-
ized mutual information (NMI), which is based on information-theoretic ideas including
entropy, as discussed in Chapter 4[117]; however, these are outside the scope of this chapter.

One thing about evaluating unsupervised machine learning approaches that is a little
easier than the supervised case is that we can do it without the need to divide a dataset
into training, testing, and validation partitions. Although techniques such as k-fold cross
validation can be useful in using external criteria for evaluation, in using internal crite-
ria for evaluation we typically just use all the data both for generating the clustering and
evaluating the clustering.
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Figure 10.7
The silhouette plot for the final clustering of the mobile phone customer dataset (Table 10.1[604])
found using the k-means algorithm (with k � 3).

10.4.3 Choosing the Number of Clusters
The k-means clustering algorithm, like many other clustering algorithms, requires that
the analyst choose the value for k as an input to the algorithm. The absence of ground
truth, as discussed in the previous section, makes this choice notoriously difficult. An-
alysts need to balance the needs of their application—for example, in the mobile phone
customer scenario, how many customer groups could the organization usefully make deci-
sions about?—with the ability of an algorithm to find meaningful groupings within a given
dataset. The former criterion is very domain specific, and so it is not discussed further
here. The silhouette described in the previous section, however, can be used effectively to
achieve the latter, and this approach to choosing k is described in this section.

Regardless of the dataset used, the k-means clustering algorithm will always find the
number of clusters requested from it regardless of whether these define meaningful struc-
ture within the dataset. To determine the best value for k we can repeatedly cluster the
data for all values of k within a given range, calculate a clustering performance measure
for each clustering found, and then select the value of k that gives the clustering with the
highest performance measure. When the silhouette is used in this approach, it is often re-
ferred to as the silhouette method. Figure 10.8[613] shows each of the clusterings found in
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(a) k � 2 (b) k � 3 (c) k � 4 (d) k � 5

(e) k � 6 (f) k � 7 (g) Silhouette summary

Figure 10.8
(a)–(f) Different clusterings found for the mobile phone customer dataset in Table 10.1[604] for values
of k in p2; 9q. (g) shows the silhouette for each clustering.

the mobile phone customer dataset for values of k in r2; 9s using k-means clustering, and
their corresponding silhouettes (Figure 10.8(g)[613]). This shows that the clustering with
three clusters has the highest silhouette score and could be chosen as the most appropriate
clustering given the assumptions that underlie the silhouette.

10.4.4 Understanding Clustering Results
Although internal measures such as the silhouette and external measures calculated against
a proxy ground truth are useful in measuring how well a clustering matches an ideal ex-
pectation, they do not tell analysts anything about what has been found in the clustering, or
whether or not the clustering will be useful for a particular task. Unfortunately, automated
approaches to answering this question don’t really exist, and it falls on analysts to under-
stand what a clustering result tells them about a dataset. The fundamental question that
analysts must answer is how do the members of a particular cluster differ from the overall
population—what makes the members of this cluster special?

Although fully automated approaches to answering this question do not exist, analysts
can use an approach based on the data exploration tools presented in Chapter 3[53] to un-
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Table 10.3
Summary statistics for the three clusters found in the mobile phone customer dataset in Table 10.1[604]

using k-means clustering (k � 3). Note, that the % missing and cardinality columns usually used
are omitted here for legibility as these data quality issues will not arise in this simple example. They
could be included when this approach is used on real datasets.

1st 3rd Std.
Feature Cluster Count Min. Qrt. Mean Median Qrt. Max Dev.

DATA

USAGE

C1 8 -1.2329 -1.1246 -1.0121 -1.0237 -0.9256 -0.7426 0.1639
C2 9 0.6259 0.8404 0.8912 0.8785 0.9285 1.1175 0.1471
C3 7 -0.3666 -0.3005 -0.0491 -0.0345 0.2087 0.241 0.2732

CALL

VOLUME

C1 8 -0.7060 -0.3377 -0.1310 -0.0109 0.1116 0.1811 0.3147
C2 9 -1.3601 -1.0450 -0.7273 -0.6028 -0.4560 -0.2168 0.4072
C3 7 0.4215 0.5635 0.7022 0.7360 0.7905 1.0502 0.2204

derstand the results of a clustering. The first thing that should always be done is a careful
examination of a set of summary statistics describing the members of each cluster. This
can be done by preparing a data quality report6 for each cluster that describes the in-
stances that belong to that cluster. The second useful thing that can be done is to prepare a
series of data visualizations that examine the distribution of each feature for the members
of each cluster found. This is equivalent to the approach described in Section 3.5.1[72] for
visually examining associations between descriptive features and a target feature, in which
the cluster that instances belong to are used instead of an actual target feature.

A final useful tool is to rank the importance of each descriptive feature in defining mem-
bership of each cluster. Some features are particularly important in defining membership
of certain clusters but not important for defining membership of others. This can help an-
alysts know where to focus when investigating the data quality reports and visualizations
created describing each cluster. This can easily be done by calculating the information
gain7 for each descriptive feature as a predictor of binary flags indicating membership of
each cluster and ranking features according to these information gain values.8

To illustrate this approach using a simple example, Table 10.3[614] shows a data quality
report for each cluster found using k-means clustering (with k � 3) on the mobile phone
customer dataset (see Table 10.1[604]). Figure 10.9[615] shows the distributions of each feature
for the full population and for each cluster so that the differences can be compared. Finally,
Table 10.4[616] lists the features in the mobile phone customer dataset in order of importance
in defining membership of each of the three clusters found.

6. See Section 3.1[54].

7. See Section 4.2.3[127].

8. This is much like the rank and prune approach to feature selection described in Section 5.4.6[223].
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Table 10.4
Information gain for each descriptive feature as a predictor of membership of each cluster based on
the clustering of the mobile phone customer dataset in Table 10.1[604] found using k-means clustering
(k � 3).

C1 C2 C3

Info. Info. Info.
Feature Gain Feature Gain Feature Gain
DATA.USAGE 0.9183 DATA.USAGE 0.9544 CALL.VOLUME 0.8709
CALL.VOLUME 0.2117 CALL.VOLUME 0.5488 DATA.USAGE 0.2479

Table 10.4[616] shows that membership of clusters C1 and C2 is most associated with DATA

USAGE, whereas membership of C3 is most associated with CALL VOLUME. In looking
at the summary statistics and visualizations with these priorities in mind, it is clear that the
customers in C1 are characterized most strongly by their low Data Usage, customers in C2

by their high Data Usage, and customers in C3 by their high Call Volume. Although this
example is small, the same approach can be used effectively for large multivariate datasets,
with the only difference being a need to examine summary statistics and visualizations for
many more features. The prioritization given by the information gain values is extremely
helpful for dealing with this.

10.4.5 Agglomerative Hierarchical Clustering
The k-means clustering algorithm and other algorithms like it impose an expected global
structure onto the clustering process—essentially, the k-means algorithm searches for tightly
packed spherical clusters. Sometimes this expected global structure does not match ac-
tual patterns within a dataset that we might want to take advantage of. Figure 10.10[617]

illustrates this using three well-known simple two-dimensional artificial datasets: blobs,
circles, and half-moons. In each case there is an intuitive clustering that we can observe in
the visualizations—for the blobs dataset there are three clusters, one for each blob; for the
circles dataset there are two clusters, one for each ring; and for the half-moons dataset there
are two clusters, one for each half-moon shape. The clustering returned by the k-means
clustering algorithm, however, can accurately find these intuitive clusterings only for the
blobs dataset. The reason is that the intuitive clusters in the other two datasets do not
conform to the assumption of spherical clusters that underlies the k-means clustering al-
gorithm. To find these other types of clusterings, it can be more useful to use a clustering
algorithm that is driven more by local relationships in a dataset than an expected global
structure.
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(a) Blobs Dataset (b) k-means (c) AHC

(d) Circles Dataset (e) k-means (f) AHC

(g) Half-moons Dataset (h) k-means (i) AHC

Figure 10.10
(a)–(i) A plot of the blobs, circles, and half-moons datasets and the clusterings achieved by the k-
means clustering and agglomerative hierarchical clustering algorithms (where k is set to 3, 2, and 2,
respectively).
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The agglomerative hierarchical clustering (AHC) algorithm is a simple, effective,
bottom-up clustering approach that is driven by local structure within a dataset rather than
a global expectation of what a cluster structure should be. A pseudocode description of the
AHC algorithm is given in Algorithm 9[601].

Algorithm 12 Pseudocode description of the agglomerative hierarchical clustering al-
gorithm.
Require: a dataset D containing n training instances, d1; : : : ;dn

Require: a distance measure, Dist, to compare distances between instances
Require: a linkage method, L, to compare distances between clusters

1: initialize the hierarchy level, h � 1
2: divide D into a set of n disjoint clusters, C � tC1; : : : ;Cnu, with one instance in each

cluster
3: repeat
4: using distance measure Dist and linkage method L, find the nearest pair of clusters,

Ci and C j, in the current clustering
5: merge Ci and C j to form a new cluster Cn�h

6: remove the old clusters from the clustering: C — C z tCi;C ju
7: add the new cluster to the clustering: C — CY Cn�h

8: h — h� 1
9: until all the instances join into a single cluster

The AHC algorithm begins by considering each instance in a dataset to be the only
member of a cluster, which gives n initial clusters, C1 to Cn. The two clusters that are
nearest are then merged (or agglomerated) to form a new cluster. This process repeats
over and over until a single cluster containing all instances in the dataset is formed. Figure
10.10[617] shows how AHC can be used for find the intuitive clusterings in the half-moons
and circles datasets as well as the blobs dataset.

This AHC algorithm requires two decisions to be made in order for it to be complete.
The first is the distance measure, Dist, to be used to compare instances and clusters. Any
of the distance measures discussed in this book (as well as many others not discussed in
this book) can be used for this. The second is the linkage method, L, that will be used
to allow distances between whole clusters rather than just single instances to be compared.
The challenge is if two clusters, each containing multiple instances, have been found, how
should the distance between them be calculated? Should it be based on the distance be-
tween the centroids of two clusters, or the distance between the two closest instances in
two clusters, or the average distance between all instances in two clusters, or some other
method? Several different linkage methods for AHC exist in the literature; some of the
most common are
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(a) single (b) complete

(c) centroid (d) average

Figure 10.11
(a)–(d) Different linkage methods that can be used to compare the distances between clusters in
agglomerative hierarchical clustering. (Arrows for only some indicative distances are shown in the
average linkage diagram (d).)

 single linkage: the distance between the most similar instances in two clusters is used
as the overall distance between the clusters;

 complete linkage: the distance between the most dissimilar instances in two clusters is
used as the overall distance between the clusters;

 average linkage: the average of the distances between all pairs of instances in two
clusters is used as the overall distance between the clusters; and

 centroid linkage: the distance between the centroids of two clusters is used as the overall
distance between the clusters.
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Table 10.5
Distance matrices that detail the first three iterations of the AHC algorithm applied to the reduced
version of the mobile phone customer dataset in Table 10.1[604].

(a) A distance matrix for the instances in the dataset.

d4 d15 d8 d11 d5 d19 d24 d7 d23

d4 0.00
d15 0.28 0.00
d8 0.28 0.06 0.00

d11 2.12 1.89 1.94 0.00
d5 2.25 2.02 2.06 0.18 0.00

d19 2.19 1.95 2.00 0.16 0.07 0.00
d24 1.66 1.39 1.42 0.81 0.83 0.76 0.00
d7 1.84 1.56 1.58 0.96 0.94 0.89 0.27 0.00

d23 1.79 1.51 1.53 1.08 1.06 1.00 0.33 0.12 0.00

(b) The distance matrix after one iteration of AHC.

d4 C10 d11 d5 d19 d24 d7 d23

d4 0.00
C10 0.28 0.00

d11 2.12 1.89 0.00
d5 2.25 2.02 0.18 0.00

d19 2.19 1.95 0.16 0.07 0.00
d24 1.66 1.39 0.81 0.83 0.76 0.00
d7 1.84 1.56 0.96 0.94 0.89 0.27 0.00

d23 1.79 1.51 1.08 1.06 1.00 0.33 0.12 0.00

(c) The distance matrix after two iterations of AHC.

d4 C10 d11 C11 d24 C12

d4 0.00
C10 0.28 0.00

d11 2.12 1.89 0.00
C11 2.19 1.95 0.16 0.00

d24 1.66 1.39 0.81 0.76 0.00
C12 1.79 1.51 0.97 0.89 0.27 0.00

(d) The distance matrix after three iterations of AHC.

d4 C13 C11 d24 C12

d4 0.00
C13 0.28 0.00

C11 2.19 0.16 0.00

d24 1.66 0.81 0.76 0.00
C12 1.79 0.97 0.89 0.27 0.00

Figure 10.11[619] illustrates these options. In the AHC examples shown in Figure 10.10[617],
Euclidean distance and single linkage are used. The choice of linkage method can lead
to quite different results when AHC is used. For example, using centroid linkage leads to
results very similar to a k-means clustering approach, whereas using single linkage leads
to results much more heavily reliant on local distances within a dataset.

We can illustrate how the AHC algorithm works using a reduced version of the mobile
phone customer dataset from Table 10.1[604]. This dataset contains just nine instances (the
instance labels have been kept consistent so that this example can be compared with pre-
vious ones) and is shown in Figure 10.12(a)[621]. AHC begins by considering each instance
in the dataset as a simple cluster containing just one instance. The distance between each
of these single-instance clusters is then calculated (in this example Euclidean distance is
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(a) (b) (c)

(d) (e) (f)

Figure 10.12
(a) A plot of a reduced version of the mobile phone customer dataset given in Table 10.1[604]. (b)
At the first iteration of the AHC algorithm the first pair of instances is combined into a cluster,
C10. (c) After three iterations of the AHC algorithm, three pairs of instances have been combined
into clusters, C10, C11, and C12. (d) At the fourth iteration of AHC, the first hierarchical cluster
combination is created when a single instance, d11 is combined with the cluster C10 to create a new
cluster, C13.

used). Table 10.5(a)[620] shows these distances and is referred to as a distance matrix.9 The
pair of instances in the dataset that are closest together are then selected and combined
into a cluster. In this example d15 and d8 are separated by a distance of just 0:06 and are
combined together into the cluster C10. This is illustrated in Figure 10.12(b)[621].

9. Because Euclidean distance between any two points is symmetrical (distpa; bq � distpb; aq), we show only
half of the distance matrix.
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In the next iteration of the AHC algorithm the distance between this new cluster and all
other clusters is calculated. In this example single linkage is used and so the distance be-
tween two clusters is calculated as the minimum distance between their member instances.
Table 10.5(b)[620] shows an updated distance matrix including C10. Over the next two iter-
ations, two more pairs of instances from the original dataset are combined into clusters:
d5 and d19 into C11, and d7 and d23 into C12. This is illustrated in Figure 10.12(c)[621], and
Table 10.5(b)[620] shows an updated distance matrix including these new clusters.

The next iteration of the algorithm is interesting because the smallest distance found in
the distance matrix is a distance of 0:16 between cluster C10 and instance d11. These are
merged into a new cluster, C13, as shown in Figure 10.12(d)[621]. This is the clearest indica-
tion so far of the hierarchical nature of AHC, as a cluster created at a previous iteration of
the algorithm will be merged into a larger cluster. Table 10.5(d)[620] shows the distance ma-
trix after this new cluster has been created. The algorithm then continues merging clusters
until only a single cluster containing all instances remains. This process is illustrated in
Figure 10.12(e)[621]. It is also possible to directly illustrate the hierarchical nature of AHC
using a dendrogram. In a dendrogram each instance in a dataset is represented by its ID
label at the bottom of the figure,10 and the horizontal linkages indicate where clusters have
been created. The vertical gaps between cluster linkages indicate the distance between
the two clusters that have been merged. For example, at the bottom of the hierarchy the
vertical gaps between clusterings are very small because the clusters are very close, and as
we move farther up the hierarchy, the gaps get larger as clusters that are farther apart are
merged.

One advantage of AHC is that the number of clusters to be found, k, is not a required
input for the algorithm. Rather, the algorithm finds a hierarchical agglomeration (or group-
ing) of the instances in a dataset that can then be used to cluster the instances into any num-
ber of groups. To illustrate this, Figure 10.13(a)[623] returns to the full mobile phone cus-
tomer dataset from Table 10.1[604] and shows the dendrogram capturing the result of running
the AHC algorithm on this dataset. Once this hierarchical tree structure has been found,
it can be cut to any level to give a clustering with that many clusters. Figure 10.13(b)[623]

shows the tree cut for three clusters and the resultant clustering, and Figure 10.13(c)[623]

shows the same illustrations for six clusters. The techniques described in Section 10.4.2[607]

for evaluating clusterings can be used here to set the best value for k.

10. The instances have been arranged in an order that leads to a nice dendrogram visualization, and this was also
the order used in the distance matrices to make it easy to follow the combination of instances into clusters.



(a) AHC result

(b) Clustering cut at k � 3

(c) Clustering cut at k � 6

Figure 10.13
(a) A plot of the hierarchical grouping of the instances in the mobile phone customer dataset from
Table 10.1[604] found by the AHC algorithm (using Euclidean distance and single linkage). (b) The
clustering returned when the tree is cut at k � 3. (c) The clustering returned when the tree is cut at
k � 6.
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Another advantage of AHC is that it is deterministic, and doesn’t suffer from the impact
of different seeds as k-means or k-means++ does. This means that it will give exactly
the same result every time it is run on the same dataset and that the issues around finding
seeds discussed in Section 10.4.1[605] do not arise. These two advantages are present in most
hierarchical clustering algorithms.

10.4.6 Representation Learning with Auto-Encoders
The second use case we described for unsupervised learning in Section 10.2[598] was repre-
sentation learning. Representation learning essentially tries to automatically extract new
descriptive features from a dataset. This can be an attractive alternative to the manual work
of designing features that we described in Chapter 2[23]. In this use case, unsupervised
machine learning is used as one part of a larger machine learning pipeline. Usually the
outputs from the unsupervised work are consumed in a supervised machine learning task,
or another unsupervised machine learning task. Neural network models are particularly
useful for representation learning, and this is a large part of the promise of deep learning,
as discussed in Chapter 8[381]. In this section we look at how auto-encoder models, a par-
ticular type of neural network, can be used to learn a new feature representation that can
be a useful step as part of a larger machine learning process.

An auto-encoder model is a special type of feedforward neural network that is trained
to reproduce its inputs at its output layer. This may seem like a trivial task—it is essen-
tially an identity function—but it is made more interesting by a network architecture that
transforms the data through a series of narrower and narrower layers. This has the impact
of first greatly reducing the dimensionality of the input data, before reproducing the inputs
from this lower-dimensional representation. Figure 10.14[625] shows the architecture of a
typical auto-encoder network. The first half of an auto-encoder, up to the output of the
narrowest layer in the middle, is known as an encoder, and the second half of the network
is known as a decoder. The narrow middle layer is often referred to as a bottleneck layer.

For an auto-encoder network to be able to reproduce the feature values for a query in-
stance that are presented at its input layer at its output layer, the low-dimensional repre-
sentation at the middle bottleneck layer needs to capture almost all the useful information
contained in the original input features. This is what makes auto-encoders useful for rep-
resentation learning. The outputs of the bottleneck layer in the network can be used as a
new representation of the original input features. This type of representation is often re-
ferred to as an embedding because the original features have been embedded into a new
lower-dimensional space.

An auto-encoder model can be trained like any other feedforward neural network using
the backpropagation of error algorithm.11 The only difference is that rather than having

11. See Chapter 8[381].
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Figure 10.14
The architecture of an auto-encoder network made up of an encoder and a decoder connected by a
bottleneck layer.

.

a separate target feature vector against which loss is measured, the loss functions used
to train these measure the ability of the network to reproduce the inputs for particular
instances at its output layer. For this type of network, it is common to use rectified linear
activation functions in the units in all layers except for the final output layer, at which either
sigmoid or linear activation functions are usually used.12 Loss in auto-encoder networks is
typically measured using mean squared error loss,13 rather than the loss functions more
commonly used for classification problems.

To illustrate the use of an auto-encoder network for feature generation, we use a dataset
of simple handwritten digits.14 This dataset contains a library of 1; 797 small (8 pixels by 8
pixels) grayscale images of handwritten digits (0–9). Figure 10.15(a)[626] shows a selection
of these digits. Grayscale images are stored as a matrix of pixel values in the range r0; 1s
where 0 represents a black pixel and 1 represents a white one. The pixels from an 8-by-8
pixel image can be flattened into a single vector of 64 values to give an ABT in which each

12. See Chapter 8[381] for descriptions of these different activation functions.

13. See Section 9.4.5[574].

14. This dataset is from the UCI Machine Learning repository Dua and Graff (2017) and was originally described
by Alimoglu and Alpaydin (1996).
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(a) Original images from the handwritten digits dataset

(b) Auto-encoder image reconstructions before network training

(c) Auto-encoder image reconstructions after minimal network training (10 epochs)

(d) Auto-encoder image reconstructions after complete network training (1;000 epochs)

Figure 10.15
(a) A selection of images from the handwritten digits dataset; (b) image reconstructions generated by
the auto-encoder network before training; (c) image reconstructions generated by the auto-encoder
network after minimal training (10 epochs); and (d) image reconstructions generated by the auto-
encoder network after complete training (1;000 epochs).

descriptive feature for an instance (an image) represents the grayscale value for a particular
pixel in that image. This gives a large set of low-information descriptive features.

An auto-encoder can be trained to learn a more compact representation of these images.
The architecture of the auto-encoder used in this example is shown in Figure 10.14[625]. The
units in all hidden layers use a rectified linear activation function. The units in the output
layer use a sigmoid activation function. The bottleneck layer contains six units, and this
is the dimensionality of the new representation, or embedding, generated. The network is
trained for 1; 000 epochs using mini-batch gradient descent with a batch size of 32.15

Figure 10.15(b)[626] shows examples of the reconstructions generated by the auto-encoder
network before it has been trained for the digits shown in Figure 10.15(a)[626]. The ini-
tial weights in the auto-encoder are randomly initialized, and therefore it should not be a
surprise that these reconstructions bear no resemblance to the original images and are ba-
sically noise. Figure 10.15(c)[626] shows reconstructions of the same images after just five

15. See Chapter 8[381] for a discussion of mini-batch gradient descent.
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epochs of network training. At this stage, these reconstructed images are already beginning
to resemble the originals on which they are based. Figure 10.15(d)[626] shows the final re-
constructions generated by the network after 1; 000 epochs of network training. Although
there is some blurring around the edges, these look remarkably similar to the original im-
ages.

Figure 10.16[627] shows a more detailed view of the reconstructions of the first example
from Figure 10.15(a)[626], an image of the digit 2. Reconstructed images and the underlying
pixel values from before, during, and after training are shown, as well as the correspond-
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0:00 0:15 0:60 0:35 0:54 0:58 0:07 0:00
0:00 0:09 0:49 0:57 0:68 0:46 0:11 0:00
0:00 0:08 0:31 0:57 0:68 0:48 0:13 0:01
0:00 0:05 0:31 0:37 0:41 0:51 0:19 0:00
0:00 0:02 0:49 0:59 0:59 0:63 0:21 0:01
0:00 0:01 0:45 0:85 0:74 0:39 0:09 0:01
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0:00 0:00 0:00 0:86 0:93 0:08 0:00 0:00
0:00 0:00 0:02 0:88 0:62 0:00 0:00 0:00
0:00 0:01 0:68 0:89 0:24 0:04 0:01 0:00
0:00 0:32 0:91 0:89 0:53 0:51 0:19 0:00
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0:0179

Figure 10.16
An image of the digit 2 and reconstructions of this image by the auto-encoder after various amounts
of network training. The pixel values of the reconstructed images are shown alongside the images,
as is the reconstruction error calculated by comparing these to the pixel values of the original image.
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ing reconstruction errors. It is clear from both the quality of the image shown and the
reconstruction errors that the quality of the reconstruction improves as training progresses.

After it has been trained to accurately encode its inputs into a low-dimensional space
and then decode them back into the original feature space, an auto-encoder can be used
for feature generation by focusing on the output of the first encoder part of the network.
The outputs of the final layer in the encoder, the bottleneck layer, can be used as a new
transformed representation of the original dataset. A full dataset can be passed through the
encoder network, and the outputs of the bottleneck layer can be saved as new generated
features. These new generated features can then replace the original descriptive features in
an ABT for later tasks in a pipeline, for example, training a supervised machine learning
model. This process is illustrated in Figure 10.17[628].

Figure 10.17
The process of using an unsupervised auto-encoder network to generate a feature representation used
to train a supervised model.

10.5 Summary

This chapter moved away from the supervised machine learning techniques for training
predictive models discussed in the rest of the book to focus on unsupervised machine
learning. Unsupervised machine learning techniques are used in the absence of a target
feature and model the underlying structure within the descriptive features in a dataset. We
can think of the output of most unsupervised machine learning models as new generated
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features that can be appended to the original dataset to augment or enrich it. There are
two key main use cases for unsupervised learning: clustering and representation learning.

In clustering, unsupervised algorithms are used to partition the instances in a dataset into
coherent groups. The assignment of each instance in a dataset to one of these groups is the
output of the clustering process, and a generated feature capturing these assignments can
be appended to the original dataset. Two clustering techniques were presented in detail:
k-means clustering and agglomerative hierarchical clustering (AHC). These are well-
known, reasonably effective approaches to clustering. AHC has an advantage over k-means
that it does not require k to be set before the algorithm starts. AHC is, however, much more
computationally expensive than k-means, which can be a barrier to using it on very large
datasets.

The other unsupervised machine learning use case covered in this chapter was repre-
sentation learning. Here unsupervised machine learning techniques are used to learn new
sets of generated features to represent instance in a dataset. Neural network models are
especially effective in this use case, and the chapter presented an example of using an
auto-encoder to learn a feature representation that could be used by a supervised machine
learning model. Using unsupervised learning to generate feature representations that could
be used in later supervised models (e.g., Hinton et al. (2006) and Hinton (2005)) was the
starting point for the wave of renewed interest in neural network models that began in the
early 2000s and became known as deep learning.

Applications of unsupervised learning are widespread, including customer segmenta-
tions (Berry and Linoff, 2004), anomaly detection (Chandola et al., 2009), and analyzing
people’s movement patterns (Li et al., 2015). Designing solutions based on unsupervised
machine learning techniques can be more creative than designing solutions based on super-
vised learning because the solutions tend not to follow quite so obvious a pattern. Finally,
unsupervised learning is a fascinating research area, and it is probably fair to say that it has
many more significant open research challenges than supervised learning.

10.6 Further Reading

For more detail on unsupervised machine learning algorithms (Friedman et al., 2001) has
a fairly comprehensive unsupervised learning section that gives a broader sweep of ap-
proaches than those covered in this chapter. As discussed in the introduction, the goal of
this chapter is to give a flavor of the most important unsupervised machine learning tech-
niques, and there are many more clustering algorithms not covered here. For example,
k-means is a special case of the Gaussian mixture model (Murphy, 2012) approach to
clustering (assuming spherical distributions), which in turn has been extended into model-
based clustering (Scrucca et al., 2016) algorithms, all of which can be very effective. The
expectation maximization algorithm sits behind all of these and more than warrants care-
ful study (Moon, 1996). Spectral clustering (Ng et al., 2002) is another approach worth
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investigating, and for very large spatial datasets, the DBScan (Ester et al., 1996) can be a
good approach.

Berry and Linoff (2004) provide a good specialized treatment of clustering algorithms
for customer segmentation applications. Han et al. (2011) is also very good on describing
unsupervised machine learning techniques with customer applications in mind.

The auto-encoders presented in this chapter are fairly simple, and more sophisticated
approaches have emerged, for example, convolutional auto-encoders, de-noising auto-
encoders, and variational auto-encoders. Guo et al. (2016) provide a readable, coherent
overview of these different types.
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10.7 Exercises

1. The following table shows a small dataset in which each instance describes measure-
ments taken using three sensors when a valve in an oil well was opened. The three
descriptive features, PRESSURE, TEMPERATURE, and VOLUME measure character-
istics of the oil flowing through the valve when it was opened. The k-means clus-
tering approach is to be applied to this dataset with k � 3 and using Euclidean
distance. The initial cluster centroids for the three clusters C1, C2 , and C3 are
c1 � h�0:929;�1:040;�0:831i, c2 � h�0:329;�1:099; 0:377i, and c3 � h�0:672;
�0:505; 0:110i. The following table also shows the distance to these three cluster
centers for each instance in the dataset.

Cluster Distances Iter. 1
ID PRESSURE TEMPERATURE VOLUME Distpdi; c1q Distpdi; c2q Distpdi; c3q

1 -0.392 -1.258 -0.666 0.603 1.057 1.117
2 -0.251 -1.781 -1.495 1.204 1.994 2.093
3 -0.823 -0.042 1.254 2.314 1.460 1.243
4 0.917 -0.961 0.055 2.049 1.294 1.654
5 -0.736 -1.694 -0.686 0.697 1.284 1.432
6 1.204 -0.605 0.351 2.477 1.611 1.894
7 0.778 -0.436 -0.220 1.911 1.422 1.489
8 1.075 -1.199 -0.141 2.125 1.500 1.896
9 -0.854 -0.654 0.771 1.650 0.793 0.702

10 -1.027 -0.269 0.893 1.891 1.201 0.892
11 -0.288 -2.116 -1.165 1.296 1.848 2.090
12 -0.597 -1.577 -0.618 0.666 1.136 1.298
13 -1.113 -0.271 0.930 1.930 1.267 0.960
14 -0.849 -0.430 0.612 1.569 0.879 0.538
15 1.280 -1.188 0.053 2.384 1.644 2.069

(a) Assign each instance to its nearest cluster to generate the clustering at the first
iteration of k-means on the basis of the initial cluster centroids.

(b) On the basis of the clustering calculated in Part (a), calculate a set of new cluster
centroids.
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2. The following table shows details of two different clusterings of the dataset from Ques-
tion 1—one with k � 2 and one with k � 3—and partial workings to calculate the
silhouette for the clusterings.

k � 2 clustering
Nearest

ID Cluster Cluster apiq bpiq spiq
d1 C1 C2 ?? 1.898 ??
d2 C1 C2 1.608 2.879 0.442
d3 C2 C1 0.624 2.594 0.76
d4 C1 C2 1.261 2.142 0.411
d5 C1 C2 1.452 2.098 0.308
d6 C1 ?? ?? ?? ??
d7 C1 C2 1.42 2.061 0.311
d8 C1 C2 1.272 2.432 ??
d9 C2 C1 0.496 2.067 0.76
d10 C2 C1 0.344 2.375 ??
d11 C1 C2 1.565 2.802 0.441
d12 C1 C2 1.338 ?? ??
d13 C2 C1 0.379 2.444 0.845
d14 C2 C1 ?? 2.056 ??
d15 C1 C2 1.425 2.53 0.437

k � 3 clustering
Nearest

ID Cluster Cluster apiq bpiq spiq
d1 C1 C2 0.732 1.681 0.565
d2 C1 ?? ?? ?? ??
d3 C3 C2 0.624 2.422 0.742
d4 C2 C1 0.482 1.884 ??
d5 C1 C3 0.619 2.098 0.705
d6 C2 C3 0.68 2.24 0.697
d7 C2 C1 0.777 1.935 0.598
d8 C2 C1 0.558 1.842 0.697
d9 C3 C1 0.496 2.04 0.757
d10 C3 ?? 0.344 ?? ??
d11 C1 C2 0.769 2.201 0.651
d12 C1 C2 0.592 1.935 0.694
d13 C3 C1 0.379 2.436 0.844
d14 C3 C1 0.459 2.038 ??
d15 C2 C1 0.579 2.101 0.725

(a) A number of values are missing from these workings (indicated by ??). Calculate
the missing values. The distances between each instance in the dataset from Ques-
tion 1 (using Euclidean distance) are shown in the following distance matrix, and
will be useful for this exercise.

�
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d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15

d1 0:00
d2 0:99 0:00
d3 2:31 3:30 0:00
d4 1:52 2:11 2:30 0:00
d5 0:56 0:95 2:55 1:95 0:00
d6 2:00 2:63 2:29 0:55 2:46 0:00
d7 1:50 2:12 2:21 0:61 2:02 0:73 0:00
d8 1:56 1:98 2:62 0:35 1:96 0:78 0:82 0:00
d9 1:63 2:60 0:78 1:94 1:79 2:10 1:92 2:20 0:00
d10 1:95 2:93 0:47 2:23 2:15 2:32 2:13 2:52 0:44 0:00
d11 1:00 0:47 3:23 2:07 0:78 2:61 2:20 1:94 2:49 2:86 0:00
d12 0:38 0:96 2:43 1:77 0:19 2:26 1:83 1:78 1:69 2:04 0:83 0:00
d13 2:01 2:98 0:49 2:32 2:19 2:41 2:22 2:61 0:49 0:09 2:91 2:09 0:00
d14 1:59 2:57 0:75 1:93 1:81 2:08 1:83 2:21 0:28 0:37 2:51 1:70 0:44 0:00
d15 1:82 2:26 2:68 0:43 2:21 0:66 0:94 0:28 2:31 2:62 2:19 2:03 2:71 2:33 0:00

�

��������������������������

(b) On the basis of the completed table, calculate the silhouette for each clustering.

(c) On the basis of the silhouette, would you choose 2 or 3 for the value of k for this
dataset?
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3. A city tax service has performed a clustering of individual taxpayers using k-means
clustering in order to better understand groups that might exist within their taxpayer
base. The clustering has divided the taxpayers into three clusters. Four descriptive
features have been used to describe each taxpayer:

 AGE: The age of the taxpayer.

 YEARSINCURRENTEMPLOYMENT: The number of years that the taxpayer has
been in their current job.

 TOTALINCOME: The taxpayer’s total income for the current tax year.

 EFFECTIVETAXRATE: The effective tax rate paid by the taxpayer (this is simply
tax paid divided by total income).

The following table shows summary statistics of the four descriptive features for each
of the three clusters found.

1st 3rd Std.
Feature Cluster Min. Qrt. Mean Median Qrt. Max Dev.

AGE

C1 20 28 34.6 34 40 59 7.8
C2 36 43 45.8 45 48 64 4.5
C3 20 32 34.9 36 39 52 5.8

YEARSIN
CURRENT
EMPLOYMENT

C1 0.50 2.74 7.18 5.11 10.76 27.40 5.56
C2 8.16 14.25 17.81 17.04 20.71 33.89 4.60
C3 0.50 2.44 5.73 4.38 9.32 14.12 3.73

TOTALINCOME

C1 46 247:70 57 355:06 68 843:26 64 977:64 75 967:11 175 000 16 387:77
C2 11 182:46 24 222:04 34 711:67 32 637:42 44 102:08 93 800:98 13 412:08
C3 15 505:02 29 636:07 36 370:00 36 421:53 42 912:04 64 075:62 8 744:26

EFFECTIVE
TAXRATE

C1 0.210 0.256 0.274 0.271 0.291 0.349 0.024
C2 0.167 0.183 0.204 0.192 0.220 0.321 0.030
C3 0.147 0.183 0.199 0.194 0.214 0.252 0.021

The following table shows the information gain calculated when each descriptive fea-
ture is used to predict the membership of a single cluster versus the rest of the popula-
tion.

Information Gain
Feature C1 C2 C3

AGE 0:0599 0:4106 0:1828
YEARSINCURRENTEMPLOYMENT 0:0481 0:5432 0:3073
TOTALINCOME 0:5015 0:0694 0:1830
EFFECTIVETAXRATE 0:5012 0:0542 0:2166

The following images show histograms of the values of the four descriptive features
both for the full dataset and when divided into the three clusters found.
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AGE YEARSINCURRENTEMPLOYMENT TOTALINCOME EFFECTIVETAXRATE

All

C1

C2

C3

Using the information provided, write a description of what it means for a taxpayer to
be a member of each of the clusters.
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� 4. The following table shows a customer-item matrix describing items from an online
store that customers have bought.
ID I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 I14

1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
2 1 1 1 1 0 1 1 1 0 0 0 0 0 0
3 1 1 0 1 0 1 1 1 1 0 0 0 1 0
4 1 0 1 0 1 1 1 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 1 1 1 1 1 1 1
6 0 1 0 0 0 0 0 0 1 1 1 1 1 0
7 0 0 0 1 0 0 1 1 1 1 0 1 0 1
8 0 1 0 0 0 0 0 0 0 1 0 1 1 1

The online store would like to cluster their customers to see if they could define mean-
ingful groups to whom they could target special offers. The table below shows a dis-
tance matrix calculated using the Jaccard similarity measure (see Section 5.4.5[211]).
A number of items have been left out of this matrix (indicated by ??).

�

������������

d1 d2 d3 d4 d5 d6 d7 d8

d1 0:000
d2 ?? 0:000
d3 0:600 ?? 0:000
d4 0:429 0:500 0:700 0:000
d5 1:000 0:923 0:750 1:000 0:000
d6 0:909 ?? 0:727 1:000 0:375 0:000
d7 0:917 0:727 0:636 0:909 0:444 ?? 0:000
d8 0:900 0:909 0:818 1:000 0:500 0:429 0:667 0:000

�

������������

(a) Using the Jaccard similarity index (reproduced here from Section 5.4.5[211])

distJpq;dq � 1�
CPpq;dq

CPpq;dq � PApq;dq � APpq;dq

calculate these missing distances in the preceding distance matrix (note that be-
cause this is a distance (or dissimilarity) matrix rather than a similarity matrix, the
values shown are 1� simJpq;dq).

(b) Agglomerative hierarchical clustering (AHC) can easily be applied to this dis-
tance matrix. If single linkage is used with AHC, which agglomerations will be
made in the first three iterations of the algorithm?

(c) If average linkage were used with AHC instead of single linkage, which agglom-
erations would be made in the first three iterations of the algorithm?
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� 5. The following table shows a small dataset used for human activity recognition from a
wearable accelerometer sensor.16 Each instance describes the average acceleration in
the X, Y, and Z directions within a short time window. There are no labels, so this
data is being clustered in an attempt to recognize different activity from this simple
data stream. The k-means clustering approach is to be applied to this dataset with
k � 2 and using Euclidean distance. The initial cluster centroids for the two clusters
C1 and C2 are c1 � h�0:235; 0:253; 0:438i and c2 � h0:232; 0:325;�0:159i. The
following table also shows the distance to these three cluster centers for each instance
in the dataset.

Cluster Distances Iter. 1
ID X Y Z Distpdi; c1q Distpdi; c2q

1 -0.154 0.376 0.099 0.370 0.467
2 -0.103 0.476 -0.027 0.532 0.390
3 0.228 0.036 -0.251 0.858 0.303
4 0.330 0.013 -0.263 0.932 0.343
5 -0.114 0.482 0.014 0.497 0.417
6 0.295 0.084 -0.297 0.922 0.285
7 0.262 0.042 -0.304 0.918 0.319
8 -0.051 0.416 -0.306 0.784 0.332

(a) Assign each instance to its nearest cluster to generate the clustering at the first
iteration of k-means on the basis of the initial cluster centroids.

(b) On the basis of the clustering calculated in Part (a), calculate a set of new cluster
centroids.

(c) Calculate the distances of each instance to these new cluster centers and perform
another clustering iteration.

16. The data in this question has been artificially created but is inspired by the Human Activity Recognition Us-
ing Smartphones Dataset first described by Anguita et al. (2013) and available from the UCI Machine Learning
Repository (Bache and Lichman, 2013).
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“Live. Die. Repeat.”
—Edge of Tomorrow

This chapter discusses reinforcement learning, an approach to machine learning that is
sufficiently different from supervised and unsupervised machine learning to be often con-
sidered the third leg of the machine learning stool. Although reinforcement learning can
be used for many different tasks, its most common application is in learning to control the
behaviors of autonomous systems—for example, training robots to perform tasks, or auto-
mated players to play games—and this is the application that this chapter focuses on. The
other key differentiating factor between reinforcement learning and the other approaches
we have looked at in this book is that reinforcement learning relies less on using a dataset
to drive learning and more on the ability to repeatedly attempt tasks in an environment.

This chapter begins by establishing the fundamental setup of the reinforcement learning
scenario and then describes temporal-difference learning, a common approach to rein-
forcement learning. The standard reinforcement learning approach, Q-learning, a form of
temporal-difference learning, is then described. After discussing some extensions and vari-
ations of this approach, the chapter focuses on how deep learning techniques have been
recently integrated into reinforcement learning to impressive effect. The chapter finishes
by describing the deep Q network algorithm.

11.1 Big Idea

Sarah is a young venture scout in training for her pioneering badge. One of the more
unusual challenges involved in earning this badge is to learn to cross a stream using a set
of stepping-stones while wearing an electronic blindfold. In this challenge the scout begins
at the edge of the bank on one side of the stream and has to make a series of steps to get to
the other side. The goal is to get across the river in the fewest steps possible without getting
wet. The blindfold makes this quite challenging! The blindfold, however, is electronic and
controlled by the scout leader administering the test. Before the scout attempts a step,
the blindfold is made transparent for 0.5 seconds to give the scout a quick view of their
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environment so that they make a decision about which direction they will step in and how
far.

Sarah spent days training to get better at this challenge. At first she was terrible at it, and
almost every step she took led to the disappointing sensation of wet feet. The first time that
Sarah took a step that reached a stepping-stone, however, she felt a huge rush of excitement.
As time went by, Sarah found herself feeling this excitement more and more often as she
became better and better at quickly assessing her situation when the blindfold was cleared
and making better decisions about which direction to step in. She even occasionally made
it all the way across the stream without stepping into the water and experienced the elation
of landing on the grassy bank of the far side of the river. Still, throughout her training
Sarah would occasionally still step into the water and experience the disappointing feeling
of soggy feet, which reminded her to be more careful about her decisions next time. On
other occasions she would take a series of successful steps but then experience a sinking
feeling realizing that she had turned back on herself and arrived back on the starting bank.

Sarah’s training for the stepping-stone challenge has many of the characteristics of a
reinforcement learning problem. Sarah had a task that she wanted to get better at, and so
she practiced it many times. In each practice episode, each one of the decisions Sarah made
led to immediate feedback: either splashing into the river (negative feedback), landing
successfully on the next stepping-stone (positive feedback), turning back on her tracks
(very negative feedback), or landing on the far riverbank (very positive feedback). On the
basis of this feedback, Sarah learned what constituted a good decision and and became
better and better at assessing her situation and choosing which direction to step in next
and how far. By optimizing her decisions to maximize these immediate rewards, Sarah
learned how to complete the overall task successfully. This is what we try to achieve in
reinforcement learning.

By the time her test came around, Sarah had become an expert at the river-crossing
challenge. No matter how awkwardly the scout leaders laid out the stepping-stones, she
could quickly assess the situation each time the blindfold was cleared and choose the right
direction to step in. She completed the challenge in record time and was awarded the
pioneering badge.

11.2 Fundamentals

This section introduces the fundamentals of reinforcement learning. We begin by ex-
plaining the concept of an intelligent agent and then describe the fundamental building
blocks of reinforcement learning. Markov decision processes (MDPs) are an extremely
useful mathematical tool for framing reinforcement learning problems; these are covered
next. Finally, the temporal-difference learning approach, which is the basis for the stan-
dard approach to reinforcement learning that will be discussed in the following chapter, is
explained.
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11.2.1 Intelligent Agents
The stepping-stone crossing challenge described in Section 11.1[637] nicely illustrates the
intelligent agent approach that underpins reinforcement learning. We can consider the
scout to be an intelligent agent (or simply agent) attempting to complete a task within
an environment. The goal of the agent is to complete the task as successfully as possible.
Each attempt at the task is referred to as an episode. At any point in time, t, the agent
observes the current state of its environment, ot; considers these observations to select an
action, at; and takes this action, receiving immediate feedback, rt, from the environment
about whether this was a good or bad action to take. We use rt to refer to feedback, as in
reinforcement learning feedback is more commonly referred to as reward (where reward
can be either positive or negative). This gives a series of discrete steps that make up an
episode

po1; a1; r1q; po2; a2; r2q; po3; a3; r3q; : : : ; poe; ae; req (11.1)

where the episode proceeds through time-steps t � 1; : : : ; e. At each time-step the agent
makes an observation, ot, of the environment, takes an action, at, and receives a reward, rt,
based on that action. This cycle is illustrated in Figure 11.1[639].

Figure 11.1
An agent behaving in an environment and the observation, reward, action cycle. The transition from
observations of the environment to a state is shown by the state generation function, �.

The sequence of observations, actions and rewards that precede any time-step, t, is re-
ferred to as a history, Ht. The job of the agent in the environment is to make decisions at
each time-step, t, about what action to take next on the basis of its current observations of
the environment, ot, and the history, Ht.

Maintaining long histories of actions, rewards, and observations (which are possibly only
very slightly different from one iteration to the next) is not a very efficient way to reason
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about the world, particularly as episodes might cover hundreds or thousands of time-steps.
Instead, we collapse this information into a single representation, referred to as a state.
The state at time-step t, st, should contain all the important information about the envi-
ronment at that time-step, any important information about what has been happening in
the environment at preceding time-steps, and any important information about the internal
composition of the agent. For example, for a robot deployed within a hospital to deliver
equipment to operating theaters, the state might include the robot’s position in the environ-
ment, the positions of people nearby, whether the robot is on the way to collect items or to
deliver them, and the current levels of the robot’s batteries.

In Figure 11.1[639] we show how the observations made about the environment at time-
step t are converted into a state, st, using a state generation function, �. In many cases, if
the environment is fully observable this function is a simple identity function because the
observation fully defines the state. It is also possible, however, for this function to be more
elaborate when the observations over multiple time-steps are accumulated into a state.1

Using states instead of observations, Equation (11.1)[639] can be restated2

ps1; a1; r1q; ps2; a2; r2q; ps3; a3; r3q; : : : ; pse; ae; req (11.2)

We see in subsequent examples that designing good state representations is one of the arts
of reinforcement learning.

The goal of the intelligent agent is to complete a task as successfully as possible. To
frame the reinforcement learning problem, this needs to be more formally defined—what
does it mean to successfully complete a task? The next section explores this.

11.2.2 Fundamentals of Reinforcement Learning
The fundamental idea underpinning reinforcement learning is that the only goal of an in-
telligent agent is to maximize cumulative reward across an episode.3 The cumulative
reward earned across an episode is referred to as the return from the episode and can be
defined as

1. Environments in which the state contains all information about the environment and any agents in it are known
as fully observable environments. Environments in which this is not the case are known as partially observable
environments. The use of a state generation function allows us to treat some partially observable environments
as if they were fully observable and apply the mechanics of reinforcement learning where otherwise it would not
be possible.

2. There is some argument in the reinforcement learning literature about whether the reward that follows an
action, at , taken in a state, st , should be referred to as rt or rt�1. The argument stems from a disagreement about
when a discrete moment of time ends—after the action completes or after the reward is received? From a compu-
tational point of view it makes no difference, as long as consistency is maintained in notation and computation.
Throughout this chapter we use rt to refer to the reward received after taking an action, at , at time-step t.

3. This is captured in Sutton’s reward hypothesis (Sutton and Barto, 2018): “That all of what we mean by goals
and purposes can be well thought of as maximization of the expected value of the cumulative sum of a received
scalar signal (reward).”



11.2 Fundamentals 641

G � rt � rt�1 � rt�2 � rt�3 � : : :� re (11.3)

That intelligent behavior can be driven by the singular goal of maximizing return is a
bold statement—it is often argued that it is very ambitious to expect sophisticated, long-
term behavior to emerge from simple accumulation of instantaneous rewards. Reward is
often delayed, and the real value of an action is not reflected immediately but rather by the
fact that an action takes us toward a later state that will ultimately allow an agent to earn a
reward. For example, early moves in a game of chess do not lead to large positive rewards
but set the ground for later high-reward moves. Rewards can also often be somewhat
contradictory, and an action that gives an immediate positive reward may turn out to be a
bad one in the longer term. For example, eating cake almost always seems like a good idea
in the moment, but in terms of long-term health is probably not always a strong choice. It
has been shown repeatedly, however, that it is in fact possible to learn sophisticated, long-
term behaviors using the maximization of cumulative reward alone. This introduces the
second art of reinforcement learning: the design of effective reward functions.

The key decision making component of a reinforcement learning agent is referred to as
a policy, �. A policy is simply a mapping from states to actions

at � �pstq (11.4)

that tells the agent which action, at, to take when in a given state, st. We can also define a
policy in probabilistic terms

PpAt � a | S t � sq � �pS t � sq (11.5)

where At and S t are random variables that can be assigned specific states and actions; and
the policy, �, returns a probability distribution across the possible actions that an agent can
take in a given state.

The policy can be thought of as a simple lookup table that records the action that should
be taken in every state, and reinforcement learning problems can be framed as an effort to
learn this table directly.4 Policies can also be encoded as a rule used to choose an action
from those available in a particular state, and this is the approach we focus on in this
chapter. For example, we might use a greedy action selection policy that says the agent
should always take the action that will give it this highest immediate reward. This would,
however, ignore the fact that sometimes reward is delayed and that taking an action that
gives a low immediate reward can be a good idea if it leads the agent to a state that could
give it large positive rewards later on. This suggests the need for a more sophisticated

4. Approaches taking this approach include policy gradient and evolutionary reinforcement learning ap-
proaches.
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measure of the value of taking an action in a given state and leads to the final fundamental
component of a reinforcement learning agent: a value function.

In reinforcement learning a value function returns the cumulative reward that an agent
can expect to earn if it starts from a particular state, st, and follows a specific policy, � all
the way to the end of an episode. We can write this

V�pstq � E�rrt � rt�1 � rt�2 � rt�3 � : : :� re | sts (11.6)

where E is the expectation. This value function returns the expected cumulative reward
that an agent will earn if it follows policy � starting from state st.

We can also calculate the expected value from the starting point of an agent’s taking a
specific action, at, in a given state, st. This is known as an action-value function and
returns the cumulative reward that an agent can expect to earn if it takes an action at in
state st and then continues to select actions using policy, �, all the way to the end of an
episode. We can write this5

Q�pst; atq � E�rrt � rt�1 � rt�2 � rt�3 � : : :� re | st; ats (11.7)

The output of the action-value function is referred to as the expected return of pursuing
action at in state st. We will see that the action-value function formulation of expected
return is the more useful of these two.

In the formulation given in Equation (11.7)[642] expected future rewards are considered
to be as valuable as the immediate reward that the agent will receive from taking the next
immediate action, at. Just as we might be more excited about receiving a gift of $100 today
than a promise to receive a gift of $100 in a year’s time, it is reasonable when calculating
expected return to pay more attention to the immediate reward we expect to receive from
taking the next action than to the rewards that we expect to receive in 10 or even 100
actions’ time. This is known as discounted return. We can modify Equation (11.3)[641] to
define discounted return

G � rt � rt�1 � 2rt�2 � 3rt�3 � : : :� e�tre (11.8)

where  is a discount rate and is a value in r0; 1s. This implements an exponential dis-
counting so that future expected rewards have less and less impact on the value calculated
for an action. Choosing a low value for  makes the action-value function focus heavily on
the most immediate rewards. For example, with  � 0:1

G�0:1 � rt � 0:1� rt�1 � 0:01� rt�2 � 0:001� rt�3 � : : :

5. We use Q here to be consistent with the framing of Q-learning later in this chapter.
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Choosing a high value for  gives almost equal importance to all rewards. For example,
with  � 0:9

G�0:9 � rt � 0:9� rt�1 � 0:81� rt�2 � 0:729� rt�3 � : : :

To use discounted return in the action-value function it is restated

Q�pst; atq � E�rrt � rt�1 � 2rt�2 � 3rt�3 � : : :� 3�tre | st; ats (11.9)

Discounting makes intuitive sense, makes some of the mathematics associated with rein-
forcement learning more straightforward, and avoids any issues with circular paths through
states that can arise in some scenarios. Discounted return is widely used in reinforcement
learning.

In summary, in a reinforcement learning scenario, an agent inhabiting an environment
attempts to achieve a goal by taking a sequence of actions to move it between states.
On completion of each action the agent receives an immediate scalar reward indicating
whether the outcome of the action was positive or negative, and to what degree. In re-
inforcement learning the degree to which an agent has achieved a goal is measured only
by the cumulative rewards it has received from each action taken in pursuit of that goal.
To choose which action to take in a given state the agent uses a policy. Policies rely on
being able to assess the expected return of taking an action in a particular state, and an
action-value function can be used to calculate this.6

None of this, however, yet explains how any actual learning takes place! This explana-
tion appears subsequently, but before discussing reinforcement learning algorithms we will
explain Markov decision processes, a useful mathematical framework into which we can
place the key components of reinforcement learning to allow learning to take place.

11.2.3 Markov Decision Processes
Markov decision processes (MDPs) are an attractive mathematical framework within
which to reason about decision making scenarios in which outcomes are partly under the
control of a decision maker, but also partly random. This has made them an attractive
framework for applications ranging from financial modeling, to robot control, to modeling
the flow of human conversation. This also makes them ideal for reasoning about reinforce-
ment learning.

6. We have presented this discussion on the context of episodic, model-free, policy-based reinforcement learn-
ing. There are other framings of the reinforcement learning problem under which different framings are used and
extra components are added—for example, policy-based reinforcement learning and model-based reinforce-
ment learning. For clarity of explanation, however, we have ignored these in this discussion of the fundamentals
required to understand the approaches to reinforcement learning that are discussed in this chapter. Interested read-
ers are directed to the suggestions for further reading presented in Section 11.6[677], in which these alternatives
are discussed.
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A Markov process, a more basic framework than an MDP that does not include decision
making, can be used to model a discrete random process that transitions through a finite
set of states, S . For example, we could use a Markov process to model how infection
progresses in an individual when a disease epidemic breaks out. Individuals can belong to
one of three states: SUSCEPTIBLE, INFECTED, or RECOVERED (these are often referred
to as S-I-R models). An individual can belong to only one of these states at a time and
moves between them according to a Markov process. Figure 11.2(a)[644] shows these states
and how an individual can move between them.7

S

I

R
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0.50

0.75
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(a) S-I-R Markov process

P �

�

��

S I R

S 0:98 0:02 0:00
I 0:00 0:50 0:50
R 0:75 0:05 0:20

�

��

(b) S-I-R transition matrix

Figure 11.2
A simple Markov process to model the evolution of an infectious disease in individuals during an
epidemic using the SUSCEPTIBLE-INFECTED-RECOVERED (S-I-R) model.

Markov processes are built on the Markov assumption that the probability of transition-
ing to a particular state at the next time-step relies only on the current state, and does not
require any knowledge of the history of states that came before that, or

PpS t�1 | S t; S t�1; S t�2; : : :q � PpS t�1 | S tq (11.10)

Given the Markov assumption, we can write the probability of transitioning between two
states

Pps1 Ñ s2q � PpS t�1 � s2 | S t � s1q (11.11)

7. This is a simple manufactured example for this book, but this type of model is often used in epidemiology
Hunter et al. (2018).
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where S t and S t�1 are random variables to which the states at time t and t�1 are assigned.
The full dynamics of a Markov process can be captured in a transition matrix

P �

�

�����

Pps1 Ñ s1q Pps1 Ñ s2q : : : Pps1 Ñ snq
Pps2 Ñ s1q Pps2 Ñ s2q : : : Pps2 Ñ snq

:::
:::

: : :
:::

Ppsn Ñ s1q Ppsn Ñ s2q : : : Ppsn Ñ snq

�

�����

where s1 to sn are n different states. A Markov process can be fully characterized by the
set of states, S , and the transition matrix, P.

The numbers along the arrows in Figure 11.2[644] show the probabilities of moving be-
tween the different sates in this model. The transition matrix is also shown. Most people
will remain in the SUSCEPTIBLE state indefinitely, PpS Ñ S q � 0:98, but with a small
probability, PpS Ñ Iq � 0:02, can transition to the INFECTED state. Individuals will most
likely remain in the INFECTED state for some time, PpI Ñ Iq � 0:50, but will transition
eventually to the RECOVERED state, PpI Ñ Rq � 0:50. After remaining in the RECOV-
ERED state for some time, PpR Ñ Rq � 0:20, most people will soon transition back to
the SUSCEPTIBLE state, PpR Ñ S q � 0:75, but a small part of the population will instead
relapse and return to the INFECTED state, PpR Ñ Iq � 0:05.

A Markov decision process (MDP) extends the Markov process by adding decision
making and rewards. We extend the formulation of the Markov process to include a finite
set of actions that can be taken, A, and add actions from this set to the formulation of
transition probabilities

Pps1
aÝÑ s2q � PpS t�1 � s2 | S t � s1; At � aq (11.12)

Retaining the Markov assumption that only the current time-step is required to model
what will happen next, the probability of transitioning to a particular state depends only
on the current state and the action just taken. Each transition to a new state based on a
particular action now also carries with it a reward

Rps1
aÝÑ s2q � Eprt | S t � s1; S t�1 � s2; At � aq (11.13)

To illustrate MDPs in a little more detail we develop an MDP representation for an agent
designed to play the card game TwentyTwos, a simplified version of the popular game
Blackjack, that has been invented for this example. TwentyTwos is a game played between
a single player and a dealer. In TwentyTwos the player tries to collect a hand of cards that
have a total value higher than the total value of the cards in the dealer’s hand, but not
exceeding 22—a player is said to go bust when they exceed 22. Cards are worth their
number value, with picture cards worth 10, and aces always worth 11 (this is one of the
simplifications of this version of the game). The player and dealer are initially each dealt
two cards. The player is allowed to see one of the two cards dealt to the dealer, but the
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dealer’s other card remains hidden until the player is finished taking their actions. The
player then repeatedly chooses to either be dealt another card, Twist, or to stop on their
current total, Stick.8 When the player is finished, the dealer turns over their second card
and must continue to deal themselves cards until they reach a total value of 17 or more, or
go bust by exceeding a value of 22. The dealer’s play strictly follows these rules and so
we can say that the dealer does not make any decisions during the game. We also assume
cards are dealt from an infinite deck, which simplifies some of the modeling of the game.9

The player wins if their total is less than or equal to 22 and is greater than the dealer’s
total, or if the dealer goes bust. In the rare event that the player is dealt two aces, giving
a total of 22, they are awarded a TwentyTwo and win regardless of the cards dealt to the
dealer. The game is tied if the dealer and the player have the same total, less than or equal to
22. The player loses in all other cases. The player wins $2 in the event of a TwentyTwo (two
aces), wins $1 if they beat the dealer in the normal way, neither wins nor loses anything if
the game is tied, and loses $1 if the dealer wins.10 Table 11.1[647] shows some episodes of
the TwentyTwos game being played including the the player’s hand, the dealer’s hand, the
actions the player takes, and the rewards earned by the player.

There are lots of options for the state representation that can be used to model an agent
playing the game TwentyTwos. Card suits have no impact on the game (for example, 10 W
is equivalent to 10 V) and because there is an infinite deck, tracking the actual cards that
have been dealt gives no advantage to the player. So, the only thing that needs to be taken
into account in the state representation is the total value of the cards in the player’s hand
and the value of the visible card dealt to the dealer. The total value of the initial two cards
dealt to the player can range from 4 (for example, 2 V and 2 T) to 22 (for example, A �
and A V), giving 19 unique values. There are 10 values that the dealer’s visible card can
represent: 2 to 11. This means that there are 190 different combinations of the values
of the hands held by the player and the dealer. To fully capture the game dynamics we
could represent TwentyTwos using the 190 different hand states plus five more terminal
states representing the outcomes of going bust, losing, tying, winning, and winning with a
TwentyTwo. This would give a total of 195 different states. Many of these states, however,
or not significantly different from each other and so it makes sense to discretize the hand
representation so as to have a smaller number of states. In designing state representations
the principle of parsimony applies: we should strive for the simplest representation that
gives sufficient flexibility to model the important aspects of an environment and task.

8. Advanced features of Blackjack, like doubling down, insurance, and splitting pairs, are not allowed in our
TwentyTwos game.

9. This is not as extreme an assumption as it might sound, as cards in Blackjack are usually dealt from a shoe
containing 6 to 8 standard playing card decks.

10. In this simplified version of Blackjack, the complication of the player having to choose a wager for each hand
is ignored.
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Table 11.1
Some episodes of games played by the TwentyTwos agent showing the cards dealt, as well as the
states, actions, and rewards. Note that rewards are shown on the row indicating the action that led to
them, not the state that followed that action.

Iter Player Hand Dealer Hand State Action Reward
1 2 V 7 T p9q 8 V p8q PL-DH Twist 0
2 2 V 7 T K T p19q 8 V p8q PH-DH Stick +1
3 2 V 7 T K T p19q 8 V Q W p18q WIN

1 4 � A V p15q Q V p10q PM-DH Twist -1
2 4 � A V 9 T p24q Q V p10q BUST

1 2 W 4 W p6q 3 V p3q PL-DL Twist 0
2 2 W 4 W 3 V p9q 3 V p3q PL-DL Twist 0
3 2 W 4 W 3 V 6 T p15q 3 V p3q PM-DL Twist 0
4 2 W 4 W 3 V 6 T 6 W p21q 3 V p3q PH-DL Stick 0
5 2 W 4 W 3 V 6 T 6 W p21q 3 V 7 V A � p21q TIE

1 Q W J T p20q A V p11q PH-DH Stick +1
2 Q W J T p20q A T 5 T Q � p26q WIN

1 A W A V p22q 2 V p2q PH-DL Stick +2
2 A W A V p22q 2 V p2q TWENTYTWO

To make things manageable for this example, we aggressively discretize the representa-
tion of the value of the cards in the player’s and dealer’s hands. For the player’s hand, just
three levels (low, medium, and high) are modeled

 Player Low (PL): 4� 14
 Player Medium (PM): 15� 18
 Player High (PH): 19� 22

For the value of the visible card dealt to the dealer, just two levels (low and high) are
modeled

 Dealer Low (DL): 2� 7
 Dealer High (DH): 8� 11

This gives a state representation with six states to represent all possible combinations of
the value of the cards in the player’s hand and the value of the dealer’s visible card: PL-
DL, PM-DL, PH-DL, PL-DH, PM-DH, and PH-DH. Adding the five terminal states—
BUST, LOSE, TIE, WIN, and TWENTYTWO—gives 11 states in total. Figure 11.3[648] shows
a visualization of an MDP for TwentyTwos using this representation where the circles
represent the 11 states. Note that in this diagram the BUST state has been included twice
to make the illustration a little more clear by avoiding too many overlapping arrows.

In TwentyTwos the player has two actions available to them in each non-terminal state:
Stick or Twist. Once the player enters one of the terminal states (BUST, LOSE, TIE, WIN,
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Figure 11.3
A Markov decision process representation for TwentyTwos, a simplified version of the card game
Blackjack. The eleven states are shown as the nodes in the graph with transitions based on different
actions represented by the edges (transitions for Twist actions are shown as solid lines and transitions
for Stick actions are shown as dashed lines). For clarity in the graph, rewards at non-terminal nodes
are left out and rewards are shown just once at each terminal node; the BUST state is shown twice
to avoid overlapping transition arrows; and only an illustrative selection of transition probabilities
are shown (the full set of transitions probabilities is shown in the transition matrices in Equations
(11.15)[650] and (11.14)[650]).



11.2 Fundamentals 649

or TWENTYTWO) the game is over and there are no more actions to take. Figure 11.3[648]

shows the possible transitions between states in TwentyTwos based on these actions. Tran-
sitions related to a Twist action are shown as solid lines, and transitions related to a Stick
action are shown with dashed lines. Choosing to Twist in any of the non-terminal states
will take the agent to the same non-terminal state, another non-terminal state representing
a higher player hand value, or—if they are unlucky—the BUST state. After the player
chooses to Stick, the dealer will reveal their hidden card and keep dealing more cards until
they reach a total greater than or equal to 17. Depending on how the value of the dealer’s
hand that results from this compares to the value of the player’s hand the agent will move
into one of the terminal states: LOSE, TIE, WIN, or TWENTYTWO.

Figure 11.3[648] shows a selection of the transition probabilities between states in the
TwentyTwos MDP (only a selection of probabilities are shown to make the graph less clut-
tered). The probabilities associated with each Twist transition shown in Figure 11.3[648] have
been calculated based on what can happen in a game of TwentyTwos, under the assump-
tion of an infinite deck from which cards are dealt. Consider, for example, the probability
of an agent in the PM-DH state remaining in that state after choosing the Twist action:
PpPM-DH TwistÝÝÑ PM-DHq. If the agent is in the PM-DH state, they must have a total
value in their hand of either 15, 16, 17, or 18. If the agent chooses the Twist action they
will be dealt one of the 13 types of cards in a deck with a value between 2 and 11 (remem-
ber that there are four cards in the deck with a value of 10: 10, J, Q, and K). This means
that there are 52 different scenarios that could occur if a player is in the PM-DH state and
chooses the Twist action (the player is dealt one of 13 possible cards when their hand has
one of 4 possible values, so 4� 13 � 52). Only 3 of these scenarios, however, will lead to
the agent staying in the PM-DH state. The agent can only stay in the PM-DH state if they
have a hand value of 15 and are dealt a 2 or a 3; or if they have a hand value of 16 and are
dealt a 2. So, PpPM-DH TwistÝÝÑ PM-DHq � 3

52 � 0:058. All state transition probabilities
based on the Twist action can be calculated in a similar way. For transitions based on the
Stick action a large number of games of TwentyTwos have been simulated and transition
probabilities have been calculated based on this simulation.11

11. Understanding the probabilities associated with the dynamics of card games has a history stretching back to
the origins of probability theory (Bernstein, 1996), through early applications of computing technology (Scarne,
1986), right to the modern day (Brown and Sandholm, 2017).
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We can capture the full dynamics of the TwentyTwos MDP in a pair of transition matri-
ces, one for each possible action. For the Twist action the structure of the state transition
matrix, PTwist, is

PTwist �

�

����

PpPL-DL TwistÝÝÑ PL-DLq PpPL-DL TwistÝÝÑ PM-DLq : : : PpPL-DL TwistÝÝÑ TWENTYTWOq
PpPM-DL TwistÝÝÑ PL-DLq PpPM-DL TwistÝÝÑ PM-DLq : : : PpPM-DL TwistÝÝÑ TWENTYTWOq

:
:
:

:
:
:

: : :
:
:
:

PpTWENTYTWO
TwistÝÝÑ PL-DLq PpTWENTYTWO

TwistÝÝÑ PM-DLq : : : PpTWENTYTWO
TwistÝÝÑ TWENTYTWOq

�

����

and for the Stick action the structure of the state transition matrix, PStick, is

PStick �

�

����

PpPL-DL StickÝÝÑ PL-DLq PpPL-DL StickÝÝÑ PM-DLq : : : PpPL-DL StickÝÝÑ TWENTYTWOq
PpPM-DL StickÝÝÑ PL-DLq PpPM-DL StickÝÝÑ PM-DLq : : : PpPM-DL StickÝÝÑ TWENTYTWOq

:
:
:

:
:
:

: : :
:
:
:

PpTWENTYTWO
StickÝÝÑ PL-DLq PpTWENTYTWO

StickÝÝÑ PM-DLq : : : PpTWENTYTWO
StickÝÝÑ TWENTYTWOq

�

����

The completed transition matrix for the Twist action, PTwist, is

PTwist �

�

�����������������

PL-DL PM-DL PH-DL PL-DH PM-DH PH-DH BUST LOSE TIE WIN TWENTYTWO

PL-DL 0:16 0:32 0:34 0:00 0:00 0:00 0:17 0:00 0:00 0:00 0:00
PM-DL 0:00 0:06 0:29 0:00 0:00 0:00 0:65 0:00 0:00 0:00 0:00
PH-DL 0:00 0:00 0:08 0:00 0:00 0:00 0:92 0:00 0:00 0:00 0:00
PL-DH 0:00 0:00 0:00 0:16 0:32 0:34 0:17 0:00 0:00 0:00 0:00
PM-DH 0:00 0:00 0:00 0:00 0:06 0:29 0:65 0:00 0:00 0:00 0:00
PH-DH 0:00 0:00 0:00 0:00 0:00 0:08 0:92 0:00 0:00 0:00 0:00
BUST 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00
LOSE 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00
TIE 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00
WIN 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00

TWENTYTWO 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00

�

�����������������

(11.14)

The completed transition matrix for the Stick action, PStick, is

PStick �

�

�����������������

PL-DL PM-DL PH-DL PL-DH PM-DH PH-DH BUST LOSE TIE WIN TWENTYTWO

PL-DL 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:68 0:00 0:32 0:00
PM-DL 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:58 0:06 0:36 0:00
PH-DL 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:20 0:10 0:68 0:03
PL-DH 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:81 0:00 0:19 0:00
PM-DH 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:73 0:06 0:21 0:00
PH-DH 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:22 0:15 0:60 0:03
BUST 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00
LOSE 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00
TIE 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00
WIN 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00

TWENTYTWO 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00

�

�����������������

(11.15)

Some of these probabilities are highlighted along the edges in Figure 11.3[648].
The final component of the MDP shown in Figure 11.3[648] is the reward associated with

each transition to a new state based on taking a particular action. The rewards are shown
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as the large numbers beside some states. In this model, the reward for all transitions to
non-terminal states (e.g., PL-DL or PM-DH) is 0; these are not shown in Figure 11.3[648].
The remaining rewards are based on the winnings earned within the game. Transitions
into the BUST or LOSE states return a reward of �1, transitions into the TIE state earn a
reward of 0, transitions into the WIN state return a reward of �1, and transitions into the
TWENTYTWO state return a reward of �2. Although it makes sense to do it, the rewards
do not have to be so closely tied to the winnings within the game, and different reward
structures could be designed to encourage different playing strategies—for example, more
conservative or more aggressive play.

This MDP captures the dynamics of the TwentyTwos game, and it also hints toward
some strategies for successful play. For example, choosing to Stick when the value of the
player’s hand is low and the value of the dealer’s hand is high, state PL-DH, rarely leads
to the player winning, PpPL-DH StickÝÝÑ WINq � 0:19. The MDP alone, however, is not
sufficient to describe optimal behavior for successfully playing the game. The next section
describes how an MDP can be used as the basis for reasoning about optimal behavior.

11.2.4 The Bellman Equations
Although an MDP tells us everything we need to know about how an agent can take actions
to move between states in an environment, it does not tell us anything about what actions
the agent should take to be most successful. However, the action-value function given
in Equation (11.9)[643] can be expressed in terms of the components of an MDP to do just
this. Before presenting the formal version of this, it is worth stating the intuition. We can
calculate the value of taking a particular action in a given state as the expected reward for
taking the action plus the value of the state that the agent arrives in after taking that action.

To restate Equation (11.9)[643] in terms of the components of an MDP, we modify Equa-
tion (11.9)[643] to sum to infinity rather than just the end of an episode,12 and we state the
equation a little more succinctly

Q�pst; atq � E�

�
rt � rt�1 � 2rt�2 � : : :� 3r8 | st; at

�

� E�

�
8‚

k�0

krt�k | st; at

�

(11.16)

� E�

�

rt � 
8‚

k�0

krt�k�1 | st; at

�

(11.17)

12. This is a slight departure from Equation (11.9)[643] as it sums to infinity rather than to the end of an episode.
This, however, makes no difference in the discussion that follows but is the normal formulation of the Bellman
Equations.
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This states that the expected return of taking action at in state st is the immediate expected
reward from taking that action plus the sum of discounted expected rewards that will arise
if we continue to follow policy �.

To restate Equation (11.17)[651] using the components of an MDP we must explicitly rep-
resent the uncertainty associated with state transitions. This uncertainty is one of the key
things that the MDP formulation allows us to model. We don’t know exactly what state an
agent will arrive in after taking action at from state st, but from the transition matrix, Pat ,
we do know the probability of each possible transition between states, Ppst

atÝÑ st�1q. To
calculate the expected return of taking action at from state st we can calculate a weighted
sum across the expected returns that the agent could receive in every state, st�1, that the
agent could reach after taking action at in state st. The weights in this weighted sum are
the probabilities of the state transitions13

Q�pst; atq �
‚

st�1

Ppst
atÝÑ st�1q

�

Rpst
atÝÑ st�1q � E�

�
8‚

k�0

krt�k�1 | st�1

��

(11.18)

Recall that Rpst
atÝÑ st�1q is the reward received when state st�1 is reached from state st

after taking action at.
Equation (11.18)[652] still includes the expected return that arises from taking all of the

actions after at essentially as it was stated before in Equation (11.17)[651]. In fact, the final
part of Equation (11.18)[652] is almost identical to Equation (11.16)[651] except for the explicit
reference to an action in the latter. By adding an explicit reference to action at�1, we can
arrive at a very elegant recursive definition of the action-value function. First the expected
return can be written as a sum across the expected returns of all possible actions at�1 that
could be taken in state st�1

Q�pst; atq �
‚

st�1

Ppst
atÝÑ st�1q

�

Rpst
atÝÑ st�1q � 

‚

at�1

E�

�
8‚

k�0

krt�k�1 | st�1; at�1

��

(11.19)

The calculation of expected return for actions at�1 and beyond refers to the policy, �, that
is used to select the action that will be taken in each state (as did all other calculations of
expected return). We can define the policy as a function that returns a probability distribu-
tion over the set of possible actions that can be taken from a state, as described in Equation

13. This is simply the definition of expectation as defined in probability theory for any random variable:
ErXs �

°k
i�1 x1 p1 � x2 p2 � x3 p3 � : : : � xk pk , where X is a random variable, x1 to xk are the possible

values of the random variable, and p1 to pk are the probabilities of these different values occurring.
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(11.5)[641]. Using this definition we can rewrite Equation (11.19)[652]

Q�pst; atq �
‚

st�1

Ppst
atÝÑ st�1q

�

Rpst
atÝÑ st�1q � 

‚

at�1

�pst�1; at�1qQ�pst�1; at�1q

�

(11.20)

where �pst�1; at�1q returns the likelihood of taking action at�1 from state st�1 under policy
�, and Q�pst�1; at�1q is a recursive call to the action-value function itself. This is one of
the Bellman Equations,14 which are the foundation stones of reinforcement learning. This
final formulation of the action-value function simply states that the expected return from
taking action at in state st is the expected reward for taking that action plus the expected
return from all of the subsequent actions that the agent will take as it moves between states
if it continues to follow the policy �.

Given that it is the policy, �, that determines which action an agent will take in a given
state, it is reasonable to assume that if an agent follows different policies, then the agent
can expect to earn different levels of return—some higher and some lower. It can be shown,
however, that for any MDP an optimal policy, ��, exists, where following �� will lead to
returns as good as or better than the returns that would be earned following any other policy.
Using this idea and Equation (11.19)[652] the Bellman optimality equation for action-value
functions can be written

Q�pst; atq �
‚

st�1

Ppst
atÝÑ st�1q

�
Rpst

atÝÑ st�1q � max
at�1

Q�pst�1; at�1q
�

(11.21)

which states that the maximum cumulative return following an action at taken in a state st

is earned by continuing to take the action that will return the maximum return. The Bell-
man optimality equation for action-value functions can be used to establish a non-linear
series of simultaneous equations (one for each pair of states and actions, pst; atq) which, if
solved, will give the true values of Q�pst; atq for all states and actions. After these values
have been found, a simple policy that gives a zero probability to any action that does not
give the maximum return available from a state and a non-zero probability to any action
(there might be more than one) that does lead to the maximum return available from that
state is an optimal policy to use with any MDP. Directly solving the large series of simul-
taneous equations that arise from the Bellman optimality equation for MDPs of interesting
scale, however, is computationally very expensive and requires full knowledge of the dy-
namics of an MDP for a given scenario that can be unavailable in practice. In the optimal
control domain in which the Bellman optimality equations were originally conceived, so-
lutions are calculated using dynamic programming. In modern reinforcement learning,

14. The Bellman Equations were first introduced by Richard Bellman in the 1950s (Bellman, 1957a,b) as part of
very early work on reinforcement learning.
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however, iterative approaches that calculate approximate solutions are typically used. The
next section describes one of the most important of these, temporal-difference learning.

11.2.5 Temporal-Difference Learning
Temporal-difference learning is a simple, iterative, tabular approach to learning the action-
value function, Q�pst; atq, that is quite effective. We say that temporal-difference learning
is tabular because an action-value table is used to store estimates of the expected return
from taking each available action, at, in each possible state, st—the value of Q�pst; atq.
Recall that the expected return is the cumulative reward that the agent expects to receive
if it takes action at in state st and then follows the policy � all the way to the end of the
episode. All entries in the action-value table are first initialized to random values (or some-
times zeros). Table 11.2[654] shows an example action-value table for the TwentyTwos play-
ing agent discussed in Section 11.2.3[643]. Note that there is an entry for each action-state
combination and that the terminal states always have a value of 0:000 for every action.

Table 11.2
An action-value table for an agent trained to play the card game TwentyTwos (the simplified version
of Blackjack described in Section 11.2.3[643]).

State Action Value
PL-DL Twist 0:039
PL-DL Stick �0:623
PM-DL Twist �0:597
PM-DL Stick �0:574
BUST Twist 0:000
BUST Stick 0:000
LOSE Twist 0:000
LOSE Stick 0:000

State Action Value
PH-DL Twist �0:666
PH-DL Stick 0:940
PL-DH Twist �0:159
PL-DH Stick �0:379
TIE Twist 0:000
TIE Stick 0:000

State Action Value
PM-DH Twist �0:668
PM-DH Stick �0:852
PH-DH Twist �0:883
PH-DH Stick 0:391
WIN Twist 0:000
WIN Stick 0:000
TWENTYTWO Twist 0:000
TWENTYTWO Stick 0:000

The goal in temporal-difference learning is to find the true values for each entry in this
table, and this is achieved by deploying the agent into the environment and updating the
values in the table on the basis of the performance of the agent. Over time, we can expect
the table to converge toward optimal values. In temporal-difference learning, the relevant
value in the table is updated after each action that the agent takes. When an agent in state
st takes action at, the difference between the current estimated return in the action-value
table for that action in that state, Q�pst; atq, and the actual return received after taking the
action is calculated. On the basis of this difference, the estimate for the action-value entry
Q�pst; atq is updated slightly. If the current estimate is higher than the actual return, then
the estimate is lowered slightly, and vice versa. A learning rate is used to control the size
of the changes that are made to the action-value estimates at each iteration. We can write
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this action-value table update rule

Q� pst; atq — Q� pst; atq � �pG pst; atq � Q� pst; atqloooooooooooomoooooooooooon
difference between actual

and expected returns

q (11.22)

where G pst; atq is the actual return received from the point of taking action at to the end of
the episode. By repeatedly applying this update rule, the values in the action-value table
slowly converge to good estimates of their true values.15

Careful readers might note a contradiction in the paragraph above, however. Equation
(11.22)[655] states that the action-value table is updated using the actual return received by
an agent across a full episode, whereas we also said that this update takes place after every
action. It is not possible to know the actual return that will be earned by the agent across the
entire episode until the episode is complete, and so it would not be possible to apply this
update rule after early actions in the episode. To overcome this contradiction temporal-
difference learning uses an approach known as bootstrapping. Bootstrapping uses the
existing estimates of expected returns in the action-value table to make action-value table
updates rather than waiting for an episode to finish to discover what the actual return is.

We can see bootstrapping quite clearly in the definition of the actual temporal-difference
learning update rule

Q� pst; atq — Q� pst; atq � �prt � Q� pst�1; at�1qlooooooooooomooooooooooon
actual
return

�Q� pst; atqloooomoooon
expected

return

q (11.23)

Rather than waiting for the episode to complete to find out the actual return of taking
action at in state st, the update rule uses the current estimate of the expected return,
Q� pst�1; at�1q. This formulation of temporal-difference learning that performs an action-
value table update after every action is known as TD(0). As TD(0) updates an entry in the
action-value table every time an action has been taken, it has the advantage that an agent
can start to learn very quickly; however, this approach can take a long time to converge
toward the optimal values in the action-value table.16

To allow learning to take place in temporal-difference learning, we need to revisit the
idea of a policy, and use policies that allow a balance of exploration and exploitation.
To help illustrate this, imagine Conor has gone to a small Gaeltacht town in Ireland on a
two-week business trip. In Gaeltacht towns people speak the native Irish language rather
than English (spoken in the rest of the country). It is important for Conor to have a good
meal each evening so that he is ready for work again the next day, and he is worried about

15. It is worth noting that the temporal-difference learning approach to reinforcement learning takes a very similar
approach to the gradient descent algorithm described in Section 7.3[319].

16. An alternative TD(�) uses an approach known as eligibility traces to take account of the actual rewards
received from multiple actions.
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getting things he doesn’t like in the hotel restaurant. Unfortunately, Conor doesn’t speak
any Irish and the staff in the hotel restaurant don’t speak any English. Conor does, however,
recognize the Irish word for chicken, sicı́n, on the hotel restaurant menu, and he does like
chicken. The menu is quite simple, displaying only five words: sicı́n, mairteoil, muiceoil,
muisiriún, and bradán. So what would be a reasonable policy for Conor to use to order his
dinner each evening?

Conor could take the approach of always pointing to sicı́n on the menu, as he knows
what this is and he likes chicken. This is an example of a greedy action selection policy.
Conor knows the expected reward for ordering chicken is high compared with the expected
reward for ordering the other unknown items (which he assumes to be low), and so this
policy will return a consistently high reward. A greedy policy exploits current knowledge
of the rewards that actions are expected to return. Following this policy will lead to the
best outcomes on the basis of current knowledge, but does not allow any opportunities
for learning. Perhaps one of the other items on the menu is even better than chicken, but
following a greedy policy will never allow Conor the opportunity to learn this.

Learning requires an opportunity to explore as well as to exploit. To ensure maximum
exploration Conor could randomly pick one of the menu items each evening. This would
allow him to sample every item and update his knowledge about what he likes and what he
doesn’t like. Sometimes Conor would be very happy with his choices (his reward would
be high), but sometimes he would be disappointed (his reward would be low). While this
random action selection policy is good for learning, pursuing it into the second week
of Conor’s stay would seem like a bad idea. He would have no opportunity to exploit
the knowledge he established in the first week about the rewards associated with ordering
different items.

Instead, the best policy for Conor to take for learning is to balance exploration and ex-
ploitation. Some days Conor should order the item he knows he likes best, and some days
he should choose something new. This will allow Conor to make good choices based on his
current knowledge, but also to explore new items and learn about the rewards associated
with them. The �-greedy action selection policy is a simple action selection policy that
balances exploration and exploitation. When an �-greedy policy is used, an agent chooses
the best action most of the time, but occasionally—with a probability of �—selects a ran-
dom action uniformly from those available. So, if on alternate evenings Conor swapped
between choosing his favorite menu item and choosing a menu item at random (� � 0:5),
by the end of the two weeks he will have enjoyed a whole selection of meals from the hotel
restaurant’s dishes of chicken, beef, pork, mushrooms, and salmon.17

17. If we extended this example so that the restaurant was slightly hip and prepared different dishes based on the
main ingredient chosen every night , some that Conor likes more than others (for example, chicken satay one night
and chicken pie the next), this would become an example of a multi-armed bandit problem. Multi-armed bandit
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In reinforcement learning scenarios where episodes involve long sequences of actions,
balancing exploration and exploitation is even more important. Agents need to make se-
quences of good decisions in order to get the opportunity to explore deeper into action
sequences and so need to exploit before exploring in some episodes. For example, if a
chess-playing agent never took good early moves, the agent would never have a chance
to learn how to behave in potentially game-winning situations. In talking about reinforce-
ment learning policies, it is worthwhile to distinguish between a behavior policy that an
agent uses during learning and a target policy that an agent will use when deployed into
the world after learning has taken place. After deployment it can often make sense to re-
strict an agent to greedy action selection and allow no further exploration. This will ensure
that the agent never takes potentially dangerous random actions but limits the ability of
an agent to continue to learn after being deployed, which could be useful if aspects of the
environment changed over time.18

One final thing worth noting is that temporal-difference learning is model-free. The
agent does not need to know anything about the dynamics of the environment in which
it is acting. The only knowledge an agent using temporal-difference learning requires is
a list of states that exist in the environment, a way to recognize what state it is in, and a
list of the actions that it is possible for the agent to take. With this minimal information
temporal-difference learning can be used to learn sophisticated, long-term behaviors. Note
especially that we do not need to know the full dynamics of an MDP, in particular the state
transition probabilities that are captured in a transition matrix. This is useful because often
in real-life applications it can be difficult to capture these values.

In the next section we combine the ideas of temporal-difference learning and a specific
behavior policy to define the standard approach to reinforcement learning: Q-learning.

11.3 Standard Approach: Q-Learning, Off-Policy Temporal-Difference Learning

Algorithm 13[658] shows the algorithm for the Q-learning approach to temporal-difference
learning. In this approach an agent is deployed into the world and acts sequentially, ob-
serving the state of the world and taking actions that move it to new states and generate
reward. This algorithm assumes an episodic scenario in which the agent will repeat mul-
tiple episodes of the task that is performing (for example, multiple iterations of a game or
attempts to navigate an environment). During learning, after completing an episode the
agent will return to the initial state and start again. This will repeat for some pre-specified
number of episodes after which the expectation is that the agent will have learned to per-

problems are a common framework for solving optimization problems where choices have uncertain outcomes
and can be viewed as a very simple form of reinforcement learning.

18. This is related to the idea of concept drift discussed in Section 9.4.6[578].
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form the task well. The �-greedy policy is often used together with Q-learning for choosing
actions that balance exploration and exploitation and will be used in this section.19

Algorithm 13 Pseudocode description of the Q-learning algorithm for off-policy temporal-
difference learning.
Require: a behavior policy, �, that chooses actions
Require: an action-value function Q that performs a lookup into an action-value table

with entries for every possible action, a, and state, s
Require: a learning rate, �, a discount-rate, , and a number of episodes to perform

1: initialize all entries in the action-value table to random values (except for terminal
states which receive a value of 0)

2: for each episode do
3: reset st to the initial agent state
4: repeat
5: select an action, at, based on policy, �, current state, st, and action-value func-

tion, Q

6: take action at observing reward, rt, and new state st�1

7: update the record in the action-value table for the action, at, just taken in the
last state, st, using:

Q pst; atq — Q pst; atq � �

�
rt � max

at�1
Q pst�1; at�1q � Q pst; atq



(11.24)

8: let st � st�1

9: until agent reaches a terminal state
10: end for

The learning in Q-learning takes place when an entry in the action-value table is updated
after an action has taken place using Equation (11.24)[658] at Line 7.20 The intuition behind
this update is that the value of taking a specific action in a specific state, Qpst; atq, should
increase if that action leads to an immediate positive reward and/or it takes the agent to
a state from which the agent can expect to receive a positive future return. The value of
taking the action in the state should decrease if the reward and/or future return are negative.

19. There are many other action-selection policies that can be used together with temporal-difference learning.
For example, a simple modification to the �-greedy policy is to reduce � over time so that the amount of explo-
ration that the agent performs reduces over time. Boltzmann action selection is another commonly used alterna-
tive that uses the action-value function values, Qpst ; atq, for each possible action to build a softmax probability
distribution, �pst ; atq � eQpst ;atq{

°
at

eQpst ;atq. Actions are then selected randomly following this distribution.

20. This is just a slight modification of Equation (11.23)[655].
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Q-learning is referred to as off-policy learning, as when the update to the value function
is made the behavior policy (for example, �-greedy action selection) to select the action
used to calculate the expected future return. Rather, the agent uses a greedy policy—it is
assumed that the agent will always take the best possible next action (based on the current
action-value table). This leads Q-learning to be optimistic about what will happen in the
future.

The values in Table 11.2[654] actually show the entries in the action-value table learned for
TwentyTwos after 100;000 episodes of Q-learning.21 Examining the actions with the max-
imum expected return in each state shows that the target policy learned is overwhelmingly
to Stick, with Twist being the best action only in the PL-DL, PL-DH, and PM-DH states.
Even with this cautious strategy, in an evaluation in which an agent plays a bout of 1;000
hands of TwentyTwos 100;000 times, this player will on average earn a profit of $198� 24
in 1;000 hands. This compares favorably to a random player that will expect to lose on
average $197 � 25 out of 1;000 hands. Given that the agent started with no knowledge
of the game and has learned playing strategy through maximization of cumulative reward
alone in a simple state space, this is pretty impressive.22

11.3.1 A Worked Example
Grid worlds have long been used as a good way to illustrate the operation of reinforcement
learning algorithms, and we will use this type of example in this section. In a grid world
scenario an agent must learn to navigate an environment from a start position to a goal
position, often avoiding obstacles along the way. A grid world environment is defined by
a rectangular grid in which an agent occupies a single cell and can move horizontally or
vertically, one cell at a time, across the world. The agent has no map of the environment
and begins with knowledge only of the actions that can be taken—left, right, up, or down—
and its current state. The state representation is simple, with each cell that an agent can
occupy in the grid world defining a state. Grid worlds are an excellent environment in
which to study reinforcement learning because, as we will see, it is easy to examine how
the action-value table evolves over time.

Figure 11.4[660] shows a grid world in which an agent must traverse an environment
fraught with dangers. The starting position is shown marked with an S and the goal po-
sition is marked with a G. The cells marked with an f represent fiery ground that will
damage the agent if it is crossed. The agent’s task is to navigate the environment from the
start state to the goal state as quickly as possible while avoiding damage from fiery ground.
To achieve this a reward structure has been designed. The reward for moving between any

21. Because of the random nature of state transitions in TwentyTwos, a lot of episodes are needed for learning to
converge.

22. Note that TwentyTwos is a much easier game to win than Blackjack, in which it is well known that the house
always wins!
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two normal cells is�1, the reward for arriving at the goal is 50, and the reward for entering
a fiery cell is �20. The agent always starts in the start cell marked with an S . To demon-
strate the workings of the Q-learning algorithm, we examine the process of using it to train
an agent to navigate this environment. In this example the �-greedy policy with � � 0:1 is
used throughout, and the hyper-parameters � and  are set to � � 0:2 and  � 0:9.23

Figure 11.4
A simple grid world. The start position is annotated with an S and the goal with a G. The squares
marked f denote fire, which is very damaging to an agent.

The Q-learning algorithm (Algorithm 13[658])) starts by randomly initializing the action-
value table (Line 1[658]). In this example all entries have been initialized to random numbers
in r�1; 1s. There are 196 entries in the full action-value table—one for each of the four
actions that can be taken in each of the 49 states that make up the grid world. Table 11.3[661]

shows a portion of the action-value table.
At the beginning of the first episode of the Q-learning process (Line 3[658]), the agent is

placed in the starting cell in the grid world (s0 � 0-3). From Table 11.3[661] we can see the
Q values of the actions available to the agent from the starting state: Qp0-3; upq � �0:308,
Qp0-3; downq � 0:247, Qp0-3; leftq � 0:963, and Qp0-3; rightq � 0:455. The left action
is the most attractive in this instance on the basis of its Q value. The agent chooses the
next action to take, however, using its policy (Line 5[658]), in this case �-greedy with � �
0:1. Following the �-greedy policy, the agent generates a random number (uniformly from
r0; 1s) of 0:634, which is greater than �, and the agent uses greedy action selection and

23. These values are recommended by Sutton and Barto (2018) but can be tuned through experimentation.
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Table 11.3
A portion of the action-value table for the grid world example at its first initialization.

State Action Value
0-0 up 0:933
0-0 down �0:119
0-0 left �0:985
0-0 right 0:822
0-1 up 0:879
0-1 down 0:164
0-1 left 0:343
0-1 right �0:832
0-2 up 0:223
0-2 down 0:582
0-2 left 0:672
0-2 right 0:084
0-3 up �0:308
0-3 down 0:247
0-3 left 0:963
0-3 right 0:455
0-4 up �0:634

: : :

State Action Value
: : :

2-0 left �0:691
2-0 right 0:668
2-1 up �0:918
2-1 down �0:228
2-1 left �0:301
2-1 right �0:317
2-2 up 0:633
2-2 down �0:048
2-2 left 0:566
2-2 right �0:058
2-3 up 0:635
2-3 down 0:763
2-3 left �0:121
2-3 right 0:562
2-4 up 0:629
2-4 down �0:409

: : :

State Action Value
: : :

6-2 right 0:201
6-3 up �0:588
6-3 down 0:038
6-3 left 0:859
6-3 right �0:085
6-4 up 0:000
6-4 down 0:000
6-4 left 0:000
6-4 right 0:000
6-5 up 0:321
6-5 down �0:793
6-5 left �0:267
6-5 right 0:588
6-6 up �0:870
6-6 down �0:720
6-6 left 0:811
6-6 right 0:176

chooses a0 � left. The agent performs this action (Line 6[658]), moving to the left, and
records the next state, s1 � 0-2, and the reward received, r0 � �1.

On the basis of the action it has taken, the agent now makes an update to Qp0-3; leftq
(Line 7[658]) using Equation (11.24)[658]. The Q values of the actions available to the agent
from state 0-2 are Qp0-2; upq � 0:223, Qp0-2; downq � 0:582, Qp0-2; leftq � 0:672, and
Qp0-2; rightq � 0:084 (based on Table 11.3[661]). The action with the highest Q value from
state 0-2 is therefore left and this is the one used in the update equation. It is this selection
of the best action, rather than one selected using the behavior policy, that makes Q-learning
an off-policy approach. Equation (11.24)[658] is used to perform the update as follows:

Q p0-3; leftq —Q p0-3; leftq � �� pR p0-3; leftq �  � Qp0-2; leftq � Q p0-3; leftqq

0:963� 0:2� p�1� 0:9� 0:672� 0:963q

0:691

As the experience of moving left from state 0-3 to state 0-2 has not led to a large positive
reward or opened up the potential for a new action that will give significant positive return,
the value of this action in this state has been reduced. The agent then updates its current
state (Line 8[658]), s0 � s1 � 0-2, and returns to the beginning of the algorithm to choose
the next action according to the policy. Again, following the �-greedy policy a random
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number is generated, 0:073, which this time is below �, and so a random action from those
available from state 0-2 is selected. The random action selected in this case is down. Note
that this action is different from the action used in the update equation previously (left).
This is because the action is now selected using the �-greedy policy, whereas the action
used during the update was selected off-policy.

The agent then continues to move across the environment making sequential updates to
the action-value table until eventually it reaches the goal state after making 150 moves
and accumulating a total reward of �891. Figure 11.5(a)[663] shows a representation of the
action-value table after this first episode. A grid for each action (up, down, left, and right)
is shown where the shading in the grid illustrates the current estimate of the expected return
of that action in the state corresponding to the grid cell position (darker shading indicates
higher expected return with lighter shading indicating lower expected return).

The action-value table is still fairly sparse after the first iteration with most combinations
having changed little from their randomly initialized values. There are a couple of inter-
esting things that are evident, however. At the end of the first episode the agent reached
the goal cell, state 6-4, by moving left from state 6-5. This led to a large positive reward
of 50. Before this action Qp6-5; leftq gave an expected return from the action-value table
of �0:267. Following this action it was updated as follows:

Q p6-5; leftq —Q p6-5; leftq � �� pR p6-5; leftq �  � Qp6-4; upq � Q p6-5; leftqq

�0:267� 0:2� p50� 0:9� 0��0:267q

9:786

This value can be seen in the dark shading of the cell corresponding to state 6-5 in the
right grid in Figure 11.5(a)[663]. There are also some very lightly shaded cells in Figure
11.5(a)[663]—for example, cell 1-2 in the down panel—illustrating large negative values
resulting from trips into the fiery cells and subsequent negative reward.

The reason that only the states immediately surrounding those that led to large positive or
negative rewards reflect these rewards is that Q-learning, and temporal-difference learning
in general, uses bootstrapping and updates Q values immediately after actions rather than
waiting until the end of an episode. So the large positive reward achieved when moving to
the terminal state can only impact the Q value of the state that immediately preceded it. As
learning continues, however, values start to propagate across the states in the environment
on subsequent episodes. This is clear in the visualization of the action-value table after 35
episodes of Q-learning have elapsed that is shown in Figure 11.5(b)[663]. We can see here
that the large positive Q values from actions taken in states near the goal state have started
to propagate through the environment, although there are not yet large positive values near
the start state. The emergence of knowledge about how to traverse the environment is also
reflected in the fact that the cumulative reward earned by the agent at episode 35 is �115
based on a journey taking 50 actions.
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(a) Action-value table after 1 episode

(b) Action-value table after 35 episodes

(c) Action-value table after 350 episodes

(d) Cumulative Reward (e) Policy (f) Offline Path

Figure 11.5
(a)–(c) The evolution of the entries in the action-value table over episodes of Q-learning off-policy
temporal-difference learning across the grid world. (d) The cumulative reward earned from each
episode. (e) An illustration of the target policy learned by the agent after 350 episodes. The arrows
show the direction with the highest entry in the action-value table for each state. (f) The path the
agent will take from the start state to the goal state when greedily following the target policy.
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Figure 11.5(d)[663] shows the total cumulative reward (or return) earned by the agent for
each of 350 learning episodes that the agent performs in this grid world environment (to
make it easier to see the overall trend in this graph a rolling mean across 10 episodes is
shown). This graph shows that the agent’s performance initially declined, and it started
to perform quite badly, until after about 40 episodes its performance began to improve.
Performance then became stable with a return of about 40 after the agent learned a useful
path through the environment. Figure 11.5(c)[663] visualizes the action-value table after 350
episodes have elapsed. By this time a clear optimal route through the graph has emerged
running straight down from the top to the bottom, and we can say that the agent has learned
to perform the navigation task. Table 11.4[665] shows the same portion of the action-value
table shown in Table 11.3[661] after the final episode has completed. Extracting the action
with the highest Q value in each state from the action-value table gives the greedy target
policy that the agent, now trained to complete the task, would use after deployment. This
is shown in Figure 11.5(e)[663]. The path that the agent would take from the start state to the
goal state following this policy is shown in Figure 11.5(f)[663].

It is worth reflecting for a moment that the agent has learned to navigate this grid world
without any knowledge of the overall structure of the environment or indication about
what it should do. Rather, the agent—equipped with only knowledge of the states in the
world and the actions that it can take—was able to learn a long-term strategy to complete a
somewhat sophisticated task using only the instantaneous rewards that is received for each
move that it made.

11.4 Extensions and Variations

In this section we cover two important extensions to the temporal-difference learning ap-
proach introduced in the previous section. The first is the SARSA on-policy modification
to temporal-difference learning. The second is an extension that uses a predictive machine
learning model to replace the action-value table to accommodate environments in which
the state-action space is too large for tabular methods to work. Specifically we present the
deep Q network (DQN) algorithm.

11.4.1 SARSA, On-Policy Temporal-Difference Learning
The Q-learning algorithm discussed in Section 11.3[657] is referred to as off-policy as the
behavior policy is not used to select the action to be taken in the next state when Q values
are updated (a greedy target policy is used instead). On-policy temporal-difference learning
is an alternative in which the behavior policy is used to select the next action at the update
step. SARSA24 is the most well-known on-policy temporal-difference learning algorithm,

24. The name SARSA comes from the terms st , at , rt , st�1, and at�1 used in the algorithm and the order in which
they appear.
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Table 11.4
A portion of the action-value table for the grid world example after 350 episodes of Q-learning have
elapsed.

State Action Value
0-0 up �1:627
0-0 down �1:255
0-0 left �1:655
0-0 right �1:000
0-1 up 1:302
0-1 down �1:900
0-1 left �1:900
0-1 right 15:173
0-2 up 13:299
0-2 down 12:009
0-2 left 8:858
0-2 right 18:698
0-3 up 13:921
0-3 down 21:886
0-3 left 15:900
0-3 right 13:846
0-4 up 1:637

: : :

State Action Value
: : :

2-0 left �1:583
2-0 right �1:217
2-1 up �1:493
2-1 down 4:132
2-1 left �1:643
2-1 right �36:301
2-2 up 13:247
2-2 down �46:862
2-2 left �0:858
2-2 right �1:157
2-3 up 16:973
2-3 down 29:366
2-3 left �88:492
2-3 right �77:447
2-4 up �1:016
2-4 down �20:255

: : :

State Action Value
: : :

6-2 right 40:190
6-3 up 34:375
6-3 down 40:206
6-3 left 24:784
6-3 right 50:000
6-4 up 0:000
6-4 down 0:000
6-4 left 0:000
6-4 right 0:000
6-5 up �0:353
6-5 down �0:793
6-5 left 36:823
6-5 right �0:342
6-6 up �0:870
6-6 down �0:720
6-6 left 1:008
6-6 right �0:802

and is described in Algorithm 14[666]. This algorithm is very similar to the Q-learning
algorithm in Algorithm 13[658]. The main difference is in the Q value update step, where the
next action to be taken, at�1, from the new state, st�1, is chosen using the behavior policy
(Line 7[666]) and then used in updating the value of Qpst; atq (Line 8[666]). This is in contrast
to Q-learning, which always assumes the action with the highest expected return will be
chosen when computing the update. If an �-greedy behavior policy (or any other similar
behavior policy that encourages exploration) is used, then occasionally random actions
rather than the best action will be used in this step.

The differences between SARSA and Q-learning can be illustrated by examining the
behavior of a SARSA agent in the same grid world environment used in Section 11.3.1[659]

(we assume the same sequence of random numbers are generated for easy comparison).
The algorithm starts by initializing the Q values for every action in every state to the same
values used before, shown in Table 11.3[661]. At Line 4[666] the agent selects the first action25

using the �-greedy policy. Assuming that the agent generates the same random number as
before (0:634), which is greater than �, greedy action selection will be used and, again,

25. This action selection is required here to seed the first iteration of the loop beginning on Line 5[666].
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Algorithm 14 Pseudocode description of the SARSA algorithm for on-policy temporal-
difference learning.
Require: a behavior policy, �, that chooses actions
Require: an action-value function Q that performs a lookup into an action-value table

with entries for every possible action, a, and state, s
Require: a learning rate, �, a discount-rate, , and a number of episodes to perform

1: initialize all entries in the action-value table to random values (except for terminal
states which receive a value of 0)

2: for each episode do
3: reset st to the initial agent state
4: select an action, at, based on policy, �, current state, st, and action-value function,

Q

5: repeat
6: take action at observing reward, rt, and new state, st�1

7: select the next action, at�1, based on policy, �, new state, st�1, and action-value
function, Q

8: update the record in the action-value table for the action, at, just taken in the
last state, st, using:

Q pst; atq — Q pst; atq � � prt � Q pst�1; at�1q � Q pst; atqq

9: let st � st�1 and at � at�1

10: until agent reaches terminal state
11: end for

a0 � left will be chosen as it has the highest Q value for the start state, 0-3. After taking
this action (Line 6[666]) and recording the reward, r0 � �1, and next state, s1 � 0-2,
the behavior policy is used to select the next action that the agent will take (Line 7[666]).
Assuming again that the same random number as before (0:0728) that is less than � is
generated, random action selection will be used and a1 � down will again be selected.
Now, when updating the value for Qp0-3; leftq, the Q value for this action, down, from the
next state is used rather than the Q value for the best possible action, left, that was used in
Q-learning. So, Qp0-3; leftq is updated to:

Q p0-3; leftq —Q p0-3; leftq � �� pR p0-3; leftq �  � Qp0-2; downq � Q p0-3; leftqq

0:963� 0:2� p�1� 0:9� 0:582� 0:963q

0:675
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The value calculated is not terribly different from the value calculated before. Cumula-
tively, however, these differences will lead to quite different behavior. Agents trained using
SARSA tend to learn more conservative strategies than agents trained using Q-learning.
Since agents using SARSA use a policy with some exploration in their action-value table
update equation, they will often base their estimation of expected return on next actions
with quite poor return. This is evident in Figure 11.6[667], which shows a visualization of
the final action-value table learned by an agent training using SARSA for the grid world.
Here we see that the SARSA agent favors staying away from any possibility of falling into
one of the dangerous cells rather than taking the more direct route.

(a) Action-value table after 350 episodes

(b) Cumulative Reward (c) Policy (d) Offline Path

Figure 11.6
(a) A visualization of the final action-value table for an agent trained using SARSA on-policy
temporal-difference learning across the grid world after 350 episodes. (b) The cumulative reward
earned from each episode. (c) An illustration of the target policy learned by the agent after 350
episodes. The arrows show the direction with the highest entry in the action-value table for each
state. (d) The path the agent will take from the start state to the goal state when greedily following
the target policy.

This preference for caution is often the reason for choosing between SARSA and Q-
Learning (although this can also be managed through careful design of rewards). On top
of a preference for caution in a final target policy, if training is being undertaken in the real



668 Chapter 11 Beyond Prediction: Reinforcement Learning

world with potentially expensive equipment, SARSA might be favored over Q-Learning.
There is more likelihood of Q-Learning choosing actions that do damage to equipment as
random action selections made by a behavior policy coupled with a target policy favoring
risky states could lead to the occasional disaster.

11.4.2 Deep Q Networks
In many environments to which we would like to apply reinforcement learning, it becomes
difficult to define a state representation that captures the nuances of the environment and
does not lead to so many states as to become impossible to use with the tabular approaches
described so far. Consider, for example, the version of the classic Lunar Lander video
game shown in Figure 11.7[669].26 In this game the player must land the spacecraft on the
Moon’s surface without damaging it. The player has just three controls: thrusters that turn
the spacecraft left and right, and one that pushes it up. An episode involves an attempt
to land the spaceship from a position at the top of the screen and ends when either the
spaceship successfully touches down gently on the landing pad or crashes.

Just about any state representation we could design that would accurately capture the
dynamics of this game would result in an action-value table with thousands or hundreds
of thousands of entries. For example, we could represent state using a vector storing the
position of the spaceship (in x and y coordinates), the velocity of the spaceship (again in x
and y directions), the angular velocity of the spaceship, the spaceship’s altitude above the
surface, and the slope of the line connecting the spaceship to the landing pad. Even if we
discretized each of these 7 characteristics allowing just 5 levels (very low, low, medium,
high, and very high), which would be a gross approximation, this would lead to 75 �
16; 807 possible states. Adding 4 possible actions (left, right, up, and none) to this would
give an action-value table with 67; 228 entries. Dealing with an action-value table of this
scale is computationally troublesome, but more important, such a large state space would
most likely mean that any training process would inevitably leave much of the action-value
table unexplored.

For large problems like this, instead of implementing the action-value function,Q�pst; atq,
as a table storing the value of every action in every state, it would be better to learn a
generalized version of the action-value function from observation of a small number of
state and action pairs. Approaches that do this are referred to as approximate methods.
Learning generalized functions from a small training dataset is exactly what predictive
modeling does, and we can use predictive models, trained using a combination of ideas
form supervised machine learning and reinforcement learning, for this task! A predictive

26. The implementation of Lunar Lander used in this example comes from the Gym toolkit developed by OpenAI
(Brockman et al., 2016). This is a fantastic resource for experimenting with reinforcement learning agents.
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Figure 11.7
The Lunar Lander environment. The aim of the game is to control the spaceship starting from the
top of the world and attempting to land on the landing pad.

Figure 11.8
Framing the action-value function as a prediction problem.

model can be trained to learn the action-value function

Mpst; atq t Q�pst; atq (11.25)

If a neural network (see Chapter 8[381]) is used for this task (and that is what we will use
in the approach described in this section), we can output the value of all actions in a given
state at the same time across the output layer of a network. So, the problem is reframed

Mpstq t Q�pst; atq (11.26)
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where for a given state the model outputs the value of the action-value function for every
action that could be taken in that state. To simplify notation we refer to action-value func-
tions implemented as predictive models as QM. Figure 11.8[669] illustrates this framing of
the action-value function learning problem.

Neural networks are a useful modeling approach to use for this prediction problem be-
cause, as long as a loss function can be formulated, we can use iterative approaches like the
gradient descent algorithm27 to train them. The link between temporal-difference learning
and gradient descent was already made in Section 11.2.5[654]. Temporal-difference learning
is based on calculating the error between a predicted value for the expected return from
taking an action in a given state and the actual return that is earned when the agent takes
that action (Equation (11.23)[655]). We can use exactly this idea to define a loss function that
can be used to train a neural network

LpQMWpstqq � pti � QMW pst; atqq2 (11.27)

�
�

rt � max
at�1

QMW pst�1; at�1q � QMW pst; atq

2

(11.28)

where W are the network weights; and ti, the target feature value, is defined as the actual
return earned from taking an action. We can calculate a gradient of this function

BLpQMWpst; atqq
BW

�
�

rt � max
at�1

QMW pst�1; at�1q � QMW pst; atq


BQMWpst; atq

BW
(11.29)

The naive approach to training a neural network using this loss function would be to
use the backpropagation of error algorithm with stochastic gradient descent. This would
mean that every time the agent took an action, at, to move from st to st�1, accumulating
reward rt, a loss would be calculated using Equation (11.28)[670] and the gradient of this loss
Equation (11.29)[670] would be backpropagated through the network to update the weights.
Algorithm 15[671] outlines this naive approach.

In practice, unfortunately, this doesn’t work, for a number of reasons. First, recall that
when gradient descent was discussed, the instances in the training data were shuffled at the
beginning of each epoch. Gradient-descent-like algorithms for training neural networks
assume training instances are independent from each other. In this naive approach each
instance presented to the network would be highly correlated with the previous instance
presented (similar states would follow each other on the basis of actions taken) and in-
dependence would no longer be the case. This would make the training process likely to
become stuck in something approaching a local minimum. The other problem is that the

27. See Section 7.3[319].
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Algorithm 15 Pseudocode description of the naive neural Q-learning algorithm.

1: initialize weights, W, in action-value function network, QM, to random values
2: for each episode do
3: reset st to the initial agent state
4: repeat
5: select action, at, based on policy, �, the current state, st, and action-value net-

work output, QMpst; atq

6: take action at and observing reward, rt, and new state, st�1

7: generate a target feature

t � rt � max
at�1

QM pst�1; at�1q

8: perform an iteration of stochastic gradient descent using a single training in-
stance   st; t ¡

9: until agent reaches terminal state
10: end for

network being used to generate targets is the actual network being trained. This network is
changing frequently during the training process, which can cause the training to oscillate
wildly. The deep Q network (DQN) algorithm addresses these issues using two key ideas:
experience replay and network freezing.

When experience replay is used, each time an agent uses an action-value network QMW

to select and take an action, at, in a state, st, earning a reward, rt, and moving the agent
to a new state, st�1, an instance of the form



s � st; a � at; r � rt; s1 � st�1

�
is added

to a replay memory, D. After taking the action, instead of performing a single step
of stochastic gradient descent, the agent randomly selects a random sample of b instances
from the replay memory, and performs an iteration of mini-batch gradient descent28 using
this sample as the mini-batch. The target feature values for the instances in the mini-batch
are generated as described in Algorithm 15[671]. This means that the training process is
using its experience of the environment much more efficiently because each step is used
in network training multiple times. Furthermore, the correlations between instances are
broken because mini-batches are randomly selected from the replay memory. The replay
memory is given a maximum size, N (usually greater than 10;000), and when it reaches
this the oldest instances are dropped as new ones are added. Figure 11.9[672] illustrates this
process.

In the naive approach described in Algorithm 15[671] the network being trained is also
being used to generate target feature values (Line 6). This can cause the network training

28. See Chapter 8[381].
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Figure 11.9
An illustration of the DQN algorithm including experience replay and target network freezing.

process to become unstable as small change in the outputs of the action-value network can
lead to sudden changes in the policy as a different action is suddenly favored in a type
of state. Target network freezing is used to address this. Two different networks are
used in the training process: an action-value behavior network that is used to predict the
values of actions for making decisions and an action-value target network that is used to
predict the value of taking subsequent actions in subsequent states when generating target
feature values. The action-value target network is frozen and not updated at each iteration
of the algorithm. It does, however, need to be updated occasionally because otherwise
the estimated values used in the loss function will be inaccurate. Therefore, after every C
steps the current action-value target network is replaced with a copy of the action-value
behavior network. This is also illustrated in Figure 11.9[672]. Target network freezing makes
the training process more stable and leads to faster convergence. A pseudocode description
of the deep Q network algorithm is given in Algorithm 16[673].
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Algorithm 16 Pseudocode description of the deep Q network (DQN) algorithm.

1: initialize replay memory D with N steps based on random actions
2: initialize weights, W in behavior action-value function network, QM, to random values
3: initialize weights, xW in target action-value function network, xQM to W
4: for each episode do
5: reset st to the initial agent state
6: repeat
7: select action, at, based on agent’s policy, �, the current state, st, and behavior

network output, QMpst; atq

8: take action at and observe the resulting reward, rt, and new state, st�1

9: add tuple


s � st; a � at; r � rt; s1 � st�1

�
as a new instance in D

10: randomly select a mini-batch of b instances from D to give Db

11: generate target feature values for each instance,
D
si; ai; ri; s1i

E
in Db as:

ti � ri � max
a1

xQM ps1i ; a
1q

12: perform an iteration of mini-batch gradient descent using Db

13: every C steps let xQM � QM

14: until agent reaches terminal state
15: end for

The deep Q network algorithm can be used with any state representation that can be in-
put into a neural network, and can use different neural network architectures. The simplest
version of this would be a numeric state vector input into a multi-layer perceptron feed-
forward network. The algorithm was first proposed, however, as an approach to playing
video games in which the only inputs were screenshots of the game. To best handle image
inputs a convolutional neural network29 was used. A single screenshot of a game does
not contain sufficient information about the state of an environment and an agent for the
environment to be considered fully observable, and so the Markov assumption does not
hold. For example, in the single screenshot of the Lunar Lander environment in Figure
11.7[669], it is not possible to tell at what velocity the spaceship is moving. To overcome
this, sequences of the last k screenshots stacked together can be used as the state represen-
tation. This is an example of using a state generation function as discussed in Section
11.2[638]. Usually small stacks of screenshots (e.g. k � 4) provide enough information to
capture the state.

It is difficult to provide a detailed worked example of the DQN algorithm because the
number of weights to be learned and steps required for anything interesting is too large for

29. See Chapter 8[381].
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clear presentation. Instead, to illustrate the DQN algorithm we will examine at a higher
level how an automated player of the Lunar Lander game can be trained. As mentioned
before this game has four actions available to the agent: None, Up, Left, and Right. State
can be represented as a stack of the last 4 frames in the game. This is illustrated in Figure
11.9[672]. There are two ways that an episode can end: an agent can either land successfully
or crash. The agent earns a reward of �100 for landing successfully and a reward of �100
for crashing. During landing the agent receives a reward of �10 each time one of its legs
touches the ground gently. For every step that the agent is firing one of its thrusters it
receives a reward of �0:3.

A convolutional neural network was used as the action-value network. Input images
were scaled to 84� 84 and the network contained hidden convolutional layers with 32, 64
and 64 units.30 Filter sizes were 8 � 8 (stride 4), 4 � 4 (stride 3), and 3 � 3 (stride 1).
Rectified linear activation functions were used in all hidden layer units. A final hidden
layer flattened the outputs of the previous convolutional layer and contained 512 fully
connected units with rectified linear activations. The output layer was a fully connected
layer with 4 outputs (one per action) using linear activations. Figure 11.9[672] illustrates
this architecture. The behavior policy used was � greedy, but linear annealing was also
used. Linear annealing allows the value for � used in � greedy policy to change over time.
At the beginning, a large value 0:9 is used and this slowly moves down toward a small
value 0:05. During DQN training the size of the replay memory was 50;000 and the target
action-value function network, xQM, was replaced every 10;000 steps.

Figure 11.10(c)[675] shows the changing cumulative reward for the DQN agent as it learns
to play the Lunar Lander game. The steady increase of return clearly shows that the agent
was improving its performance over time. Figure 11.10(a)[675] shows a series of screens
from an episode early in the training process in which the agent performed quite poorly.
This can be compared to the screens in Figure 11.10(b)[675] which are from an episode much
later in training at which the agent is performing quite well.

This example demonstrates that, using the DQN algorithm, it is possible to train agents to
perform very sophisticated tasks using modern deep neural networks combined with very
basic state representations—in this case just screenshots from the game. This ability led to
a resurgence of interest in reinforcement learning in the 2010s after somewhat of a quiet
period. New methods that expand on the ideas described in this section are being proposed
all the time and some of the most promising are discussed in section 11.6[677].

11.5 Summary

This chapter introduced reinforcement learning, an alternative approach to supervised
or unsupervised machine learning. Some argue that reinforcement learning is closer to

30. The architecture followed the architecture described by Mnih et al. (2013).
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(a) Poor performance in the Lunar Lander environment early in the learning process.

(b) Good performance in the Lunar Lander environment after 30;000 learning steps.

(c) Changing return during training.

Figure 11.10
(a) Frames from an episode early in the training process in which the agent performs poorly. (b)
Frames from an episode near the end of the learning process where the agent is starting to be very
effective. (c) Changing episode returns during DQN training. The gray line shows a 50-episode
moving average to better highlight the trend.

supervised learning because the reward signal is a form of supervision. The key differ-
ence, however, is that reinforcement learning does not require a labeled dataset containing
examples of correct behavior to learn from. Instead, a reinforcement learning agent can be
deployed into an environment and learn from experimenting within that environment. This
is particularly attractive for problems in which automated systems are to be trained to per-
form a control task—for example, robotics or automated game playing. To use supervised
learning for these types of tasks would require an expert controler to operate the system in
order to generate a dataset containing examples of correct behavior. This is often very time
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consuming and expensive to generate. Moreover, reinforcement learning agents can often
find exceptional solutions to problems that a human operator would not be aware of. This
has been the case in the recent deep reinforcement learning successes at games like go,
chess, and poker at which reinforcement learning agents are playing at world class level
and use play strategies that are a total surprise to human players.

In a reinforcement learning scenario an agent inhabiting an environment attempts to
achieve a goal by taking a sequence of actions to move it between states. On comple-
tion of each action the agent receives an immediate scalar reward indicating whether the
outcome of the action was positive or negative and to what degree. In reinforcement learn-
ing, the degree to which an agent has achieved a goal is measured only by the cumulative
rewards it has received from each action taken in pursuit of that goal. To choose which
action to take in a given state the agent uses a policy. Policies rely on being able to assess
the expected return of taking an action in a particular state, and an action-value function
is used to calculate this. Markov decision processes are particularly useful for formaliz-
ing this structure and provide the scaffolding for reasoning about reinforcement learning
problems.

The learning approaches described in this chapter are value-based and model-free. That
is, they optimize the action-value function and do not rely on having a model of how the
world behaves. This means that they can learn to behave effectively in an environment with
only minimal knowledge of that environment—the states that can be occupied and the ac-
tions that the agent can take are all that the agent needs to know. Temporal-difference
learning, and its Q-learning (off-policy) and SARSA (on-policy) variants, are standard
approaches to reinforcement learning and have been used effectively in a variety of en-
vironments. They take a bootstrapping approach where estimates of action-value are
iteratively improved on the basis of other estimates of action-value. The advantage of this
is that learning can happen quickly as updates are made after each action the agent takes.
The disadvantage is that these approaches can struggle to learn very long-term strategies
in which reward does not accrue until long after actions have been taken.

The SARSA and Q-learning approaches are both tabular methods which are limited in
terms of the size of state space they can handle. Approximate methods are an alternative
to tabular approaches to reinforcement learning that learn a generalized version of the
action-value function (or the value function) and can handle much larger state spaces than
tabular methods. These methods have been in existence since at least the early 1990s but
have seen a resurgence of interest in the 2010s with the emergence of deep learning. Deep
Q networks are a temporal-difference based approach that use a deep neural network to
learn a generalize action-value function. These networks have been shown to be especially
effective, particularly when states are stored in very low-level representations, such as the
arrangement of pieces on a game board or a screenshot of a game.



11.6 Further Reading 677

One overarching point about reinforcement learning that is worth mentioning is that it
comes at the cost of hugely increased computation. Training reinforcement learning agents
for sophisticated tasks in complex, dynamic environments can required large computa-
tional resources for significant amounts of time. This is especially the case when approxi-
mate methods based on deep neural networks are used.

11.6 Further Reading

Reinforcement learning is built upon the framework of an intelligent agent. The intelligent
agent view of artificial intelligence overlaps to a large extent with machine learning but is
a vibrant field in its own right. Wooldridge and Jennings (1995) remains a key introduction
to the field and the more recent Wooldridge (2009) adds useful information about systems
where multiple agents compete or cooperate is very useful. Mac Namee (2009) provides
an overview of the dominant approaches in using intelligent agent systems in games and
entertainment applications.

The ideas of reinforcement learning and Markov decision processes stem from early
work by Howard (1960) and Bellman (1957a,b). One fascinating early example is by
Michie (1961, 1963) who built an automated tic-tac-toe player based on ideas of reinforce-
ment learning. Due to a lack of access to computing resources, however, this was built
using over two hundred matchboxes filled with colored marbles rather than in software!

Sutton and Barto’s textbook has been the definitive work on reinforcement learning since
it was first published in (Sutton and Barto, 1998), and their recent 2nd edition (Sutton
and Barto, 2018) is an excellent update. This covers a deep theoretical framing of the
reinforcement learning problem, as well as a collection of approaches including dynamic
programming, Monte Carlo methods, temporal-difference learning, and other extensions.
The book is detailed, rigorous, and easy to read. Bertsekas (2017) is also an excellent and
detailed textbook that covers the fundamentals of reinforcement learning, with a leaning
toward solutions based on dynamic programming.

For a more broad discussion, Isaac Asimov’s I, Robot (Asimov, 1950), in which the
Three Laws of Robotics first appear, is a fun exploration of the challenges of defining re-
ward and utility functions. Similarly, Bostrom’s paperclip maximizer thought experiment
(Bostrom, 2003) is an interesting exploration of the potential negative consequences of a
highly functional intelligent agent pursuing cumulative reward.

Reinforcement learning approaches have been used in automated game playing since
TD-Gammon (Tesauro, 1994) was developed in the 1990s. This trend has continued and
recent, high-profile successes include Deep Q Learning for Atari video games (Mnih et al.,
2013), AlphaGo for Go (Silver et al., 2017), AlphaZero for chess (Silver et al., 2018), and
the OpenAI Five player for DOTA 2 (McCandlish et al., 2018). For more recent advances
at the junction of reinforcement learning and deep learning, Sejnowski (2018) gives a nice
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overview of some key application areas and recent developments, and again, Sutton and
Barto (2018) provides a good overview.
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11.7 Exercises

1. An agent in an environment completes an episode and receives the following rewards:

tr0 � �33; r1 � �11; r2 � �12; r3 � 27; r4 � 87; r5 � 156u

(a) Calculate the discounted return at time t � 0 on the basis of this sequence of
rewards using a discounting factor of 0:72.

(b) Calculate the discounted return at time t � 0 on the basis of this sequence of
rewards using a discount rate of 0:22.

2. To try to better understand the slightly baffling behavior of her new baby, Maria—a
scientifically minded new mother—monitored her baby girl over the course of a day
recording her activity at 20 minute intervals. The activity stream looked like this (with
time flowing down through the columns):

SLEEPING SLEEPING SLEEPING CRYING SLEEPING SLEEPING

CRYING SLEEPING HAPPY HAPPY CRYING HAPPY

SLEEPING SLEEPING CRYING HAPPY SLEEPING HAPPY

SLEEPING CRYING SLEEPING HAPPY SLEEPING HAPPY

SLEEPING CRYING SLEEPING HAPPY SLEEPING HAPPY

HAPPY SLEEPING HAPPY HAPPY SLEEPING HAPPY

HAPPY SLEEPING HAPPY SLEEPING HAPPY HAPPY

HAPPY HAPPY HAPPY SLEEPING HAPPY SLEEPING

SLEEPING SLEEPING HAPPY SLEEPING HAPPY SLEEPING

SLEEPING HAPPY HAPPY SLEEPING SLEEPING SLEEPING

SLEEPING HAPPY HAPPY SLEEPING HAPPY SLEEPING

SLEEPING CRYING CRYING SLEEPING SLEEPING SLEEPING

Maria noticed that her baby could occupy one of three states—HAPPY, CRYING, or
SLEEPING—and moved quite freely between them.

(a) On the basis of this sequence of states, calculate a transition matrix that gives the
probability of moving between each of the three states.

(b) Draw a Markov process diagram to capture the behavior of a small baby as de-
scribed.
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3. The following table shows the action-value table for a reinforcement learning agent
learning to play the TwentyTwos game after 20 episodes of training have elapsed.

State Action Value
PL-DL Twist 0:706
PL-DL Stick 0:284
PM-DL Twist �0:985
PM-DL Stick 0:589
BUST Twist 0:000
BUST Stick 0:000
LOSE Twist 0:000
LOSE Stick 0:000

State Action Value
PH-DL Twist �0:038
PH-DL Stick 0:164
PL-DH Twist 0:386
PL-DH Stick �0:832
TIE Twist 0:000
TIE Stick 0:000

State Action Value
PM-DH Twist 0:533
PM-DH Stick �0:526
PH-DH Twist 0:154
PH-DH Stick 0:103
WIN Twist 0:000
WIN Stick 0:000
TWENTYTWO Twist 0:000
TWENTYTWO Stick 0:000

In the answers to the following questions, assume that after the initial cards have been
dealt to the player and the dealer, the following cards are coming up next in the deck:
10 V, 2 T, 7 T, K V, 9 W.

(a) At the beginning of the first episode the player is dealt p2 V;K Tq, the dealer is
dealt pA W; 3 Wq, and the dealer’s visible card is the A W. Given these cards, what
state is the TwentyTwos playing agent in?

(b) Assuming that the next action that the agent will take is selected using a greedy
action selection policy, what action will the agent choose to take (Stick or Twist)?

(c) Simulate taking the action that the agent selected in Part (b) and determine the
state that the agent will move to following this action and the reward that they will
receive. (Note: If cards need to be dealt to the player or dealer, use cards from the
list given at the beginning of this question.)

(d) Assuming that Q-learning is being used with � � 0:2 and  � 0:9, update the
entry in the action-value table for the action simulated in Part (c).

(e) Assuming that a greedy action selection policy is used again and that Q-learning
is still being used with � � 0:2 and  � 0:9, select the next action that the agent
will perform, simulate this action, and update the entry in the action-value table
for the action. (Note: If cards need to be dealt to the player or dealer, continue to
use cards from the list given at the beginning of this question.)

(f) On the basis of the changes made to the TwentyTwos playing agent’s action-value
table following the two actions taken in the previous parts of this question, how
has the agent’s target policy changed?
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� 4. As part of a project to develop a self-driving taxi system, the behavior of a taxi driver
has been observed over a work day. During their shift the taxi driver can CRUISE

looking for work, wait for a fare at a taxi RANK, take a FARE and deliver a passenger
to their destination, or take a BREAK. The behavior of the taxi driver over the shift
looked like this (with time flowing down through the columns):

CRUISE RANK RANK FARE CRUISE CRUISE

FARE CRUISE BREAK FARE FARE BREAK

CRUISE CRUISE CRUISE FARE FARE RANK

CRUISE FARE CRUISE FARE FARE RANK

CRUISE FARE CRUISE FARE CRUISE RANK

FARE CRUISE FARE FARE CRUISE FARE

FARE RANK FARE CRUISE FARE FARE

FARE FARE FARE CRUISE FARE CRUISE

CRUISE CRUISE FARE CRUISE FARE CRUISE

CRUISE FARE FARE CRUISE CRUISE CRUISE

CRUISE FARE FARE CRUISE FARE CRUISE

CRUISE RANK FARE CRUISE CRUISE CRUISE

(a) On the basis of this behavior sequence, calculate a transition matrix that gives the
probability of moving between all the four states.

(b) Draw a Markov process diagram to capture the behavior of the taxi driver as
described.

� 5. The following image labeled (a) shows a simple schematic of a system used to train
a self-driving car to drive on a four-lane highway. The car has sensors on the front,
the rear, and the sides that indicate the presence of other cars or lane barriers in the
area immediately surrounding the car. The shaded cells in Image (a) below show the
region that these sensors cover. The region around the car is divided into cells that
can be empty, occupied by another car, or occupied by a barrier. Cars occupy an area
covered by two cells (one above the other as shown in Image (a)). Images (b) and (c)
show the car in other positions where other cars and barriers are sensed by the car, but
other cars and barriers are out of range of the sensors.

(a) (b) (c)
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The car can move at three speeds: stationary, slow, and fast. When moving fast,
the car moves forward two cells per time-step; when moving slowly the car moves
forward one cell per time-step; and when stationary does not move forward at all. The
actions that the car can take are to (1) maintain its current speed, (2) increase its speed
(move up one level in the speed categories stationary, slow, and fast), (3) decrease its
speed (move down one level in the speed categories), (4) move to the left, and (5)
move to the right.
When the car changes speed, the action has an immediate effect on the car’s progress

in the current time-step. If the car is stationary, taking the action to move left or right
has no effect on the car’s position. If the car is moving slowly, then moving left or
right moves the car one cell in that direction at that time-step, but not any distance
forward. If the car is moving fast, then moving left or right moves the car one cell in
that direction at that time-step and one cell forward.
The goal that the agent is being trained to achieve is to learn to drive as far as possible

in the shortest amount of time possible without crashing. The car moves forward along
an infinite highway, and an episode ends if the car crashes into a barrier or another car.

(a) Design a state representation for the car agent in this scenario. How many states
will exist in the representation?

(b) Given the state representation that you have defined in Part (a) and the actions
available to the agent, how many entries would the action-value function table for
a tabular reinforcement learning agent trained for this task have?

(c) Design a reward function for this scenario.
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12 Case Study: Customer Churn

“There is only one boss. The customer. And he can fire everybody in the company from the chairman
on down, simply by spending his money somewhere else.”
—Sam Walton

Acme Telephonica (AT) is a mobile phone operator that has customers across every state of
the USA. Like every telecommunications company, AT struggles with customer churn—
customers leaving AT for other mobile phone operators. AT is always looking for new ways
to address the churn issue and in 2008 founded a customer retention team. The customer
retention team monitors the number of calls made to the AT customer support center by
each customer and identifies the customers who make a large number of customer support
calls as churn risks. The customer retention team contacts these customers with special
offers designed to entice them to stay with AT. This approach, however, has not proved
particularly successful, and churn has been steadily increasing over the last five years.

In 2010 AT hired Ross, a predictive data analytics specialist, to take a new approach to
reducing customer churn. This case study describes the work carried out by Ross when he
took AT through the CRISP-DM process1 in order to develop a predictive data analytics
solution to this business problem. The remainder of this chapter will discuss how each
phase of the CRISP-DM process was addressed in this project.

12.1 Business Understanding

As is the case in most predictive data analytics projects, AT did not approach Ross with a
well-specified predictive analytics solution. Instead, the company approached him with a
business problem—reducing customer churn. Therefore, Ross’s first goal was to convert
this business problem into a concrete analytics solution. Before attempting this conversion,
Ross had to fully understand the business objectives of AT. This was reasonably straightfor-
ward as AT management had stated that their goal was to reduce their customer churn rates.
The only factor left unspecified was what the magnitude of that reduction was expected to

1. See Section 1.6[15].
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be. Based on previous projects he had worked on, the current approach to customer reten-
tion that AT was taking, and AT’s historical data, Ross agreed with AT management that a
target reduction from the current high of approximately 10% to approximately 7.5% was
realistic and probably achievable. Ross did stress to AT management that until he actually
examined the data, he could not know how useful a model he would be able to build.

Ross’s next task was to fully assess the current situation within AT. In particular, Ross
needed to understand the current analytics capability of the company and its readiness
to take action in response to the insights that an analytics solution would provide. AT
already had a customer retention team proactively making interventions in an effort to
reduce customer churn. Furthermore, this team was already using data from within the
organization to choose which customers to target for intervention, which suggested that
the team members were in a position to use predictive data analytics models.

Ross spent a significant amount of time meeting with Kate, the leader of the customer
retention team, in order to understand how they worked. Kate explained that at the end of
every month, a call list was generated, capturing the customers who had made more than
three calls to the AT customer support service in the previous two months. These customers
were deemed to be at risk of churning in the coming month, so the customer retention team
set about contacting them with a special offer. Typically, the offer was a reduced call rate
for the next three months, although retention team members had the freedom to make other
offers.

Ross also spoke to the chief technology officer (CTO) at AT, Grace, in order to un-
derstand the available data resources. Ross learned that AT had reasonably sophisticated
transactional systems for recording recent call activity and billing information. Historic
call and bill records as well as customer demographic information were stored in a data
warehouse. Grace had played a significant role in developing the process that had made in-
formation about customer support contacts available to the customer retention team. Ross
hoped that this would make his task a little easier because Grace was the main gatekeeper
to all the data resources at AT, and having her support for the project would be impor-
tant. Other parts of the business that Ross spent significant time interviewing included the
billing department, the sales and marketing team, and the network management.

Throughout the early stages of the project, Ross had been consciously working on de-
veloping his situational fluency. Through his discussions with the AT management team,
Kate, and Grace, he had learned a lot about the mobile phone industry. The basic structure
of the AT business was that customers had a contract for call services that AT provided.
These contracts did not have a fixed time and were essentially renewed every month when
a customer paid a fixed recurring charge for that month. Paying the recurring charge en-
titled a customer to a bundle of minutes of call time that were offered at a reduction to the
standard call rate. For different recurring fees, customers received different-sized bundles
of call time. When a customer used up all the call time in his or her bundle, subsequent
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call time was referred to as over bundle minutes. These tended to be more expensive than
the minutes included as part of a customer’s bundle. At AT, all calls were classified as
either peak time calls or off-peak time calls. Peak time was 08:00 to 18:00 from Monday
to Friday, and calls made during peak time were more expensive than calls made during
off-peak times.

Based on his assessment of the current situation within AT, Ross developed a list of
ways that predictive analytics could help address the customer churn problem at AT. These
included finding answers to the following questions:

 What is the overall lifetime value of a customer? A model could be built to predict the
overall value that AT was likely to receive from a particular customer over the person’s
entire customer lifecycle. This could be used to identify customers who currently did
not look valuable but that were likely to be valuable customers later in their customer
lifecycles (college students often fall into this category). By offering these customers
incentives now to prevent them from churning, AT would ensure that it received the full
value from these customers in the future.

 Which customers were most likely to churn in the near future? A prediction model
could be trained to identify the customers from the AT customer base who were most
likely to churn in the near future. The retention team could focus their retention efforts
on these customers. The process that the AT retention team had in place at the beginning
of the project to identify customers likely to churn took a single feature approach to
this identification—they looked only at how many calls a customer had made to the AT
customer support service. It was likely that a machine learning model that looked at
multiple features would do a better job of identifying customers likely to churn.

 What retention offer would a particular customer best respond to? A system could
be built to predict which offer, from a set of possible retention offers, a particular cus-
tomer would be most likely respond to when contacted by the AT retention team. This
could help the retention team convince more customers to stay with AT.

 Which pieces of the network infrastructure were likely to fail in the near future?
Using information about network loads, network usage, and equipment diagnostics, a
predictive model could be built to flag upcoming equipment failures so that pre-emptive
action could be taken. Network outages are a driver of customer dissatisfaction and
ultimately customer churn, so reducing these could have a positive impact on churn rates.

After discussion with the AT executive team, it was decided that the analytics solution
most appropriate to focus on was predicting which customers are most likely to churn in
the near future. There were a number of reasons this project was selected:

 Ross’s previous discussions with Grace, the AT CTO, had established that the data re-
quired to build a churn prediction model were likely to be available and reasonably easily
accessible.
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 The prediction model could be easily integrated with AT’s current business processes.
AT already had a retention team in place that was making proactive interventions to help
prevent churn, albeit using a very simple system to identify which customers to contact.
By creating a more sophisticated model to identify those customers, this existing process
would be improved.

 Building a churn prediction model was also attractive to the AT executive team, as they
hoped that as well as being useful in reducing churn rates, it would help to explain
the main drivers behind customer churn. A better understanding of the main drivers of
customer churn would be useful to many other parts of the AT business.

By contrast, the other analytics solutions developed suffered from a lack of available data
(e.g., AT had no data available on the success or otherwise of various retention offers
made); from being too significant a change in the business processes used by AT to be
considered achievable at the time (e.g., generating a prediction of the overall lifetime value
of a customer); or from not being based on sufficiently well-grounded assumptions (e.g.,
the fact that customer churn is heavily influenced by network failures).

Once the analytics solution had been defined, the next step was to agree on the expected
performance of the new analytics model. Based on a recent evaluation of historical per-
formance, AT management believed at the time of this project that their current system
for identifying likely churners had an accuracy of approximately 60%, so any newly devel-
oped system would have to perform considerably better than this to be deemed worthwhile.
In consultation with the members of the AT executive team and the retention team, Ross
agreed that his goal would be to create a churn prediction system that would achieve a
prediction accuracy in excess of 75%.

12.2 Data Understanding

During the process of determining which analytics solution was most suitable for the cur-
rent situation at AT, Ross had already begun to understand the data resources available.
His next task was to add much more depth to this understanding, following the process
described in Section 2.3[28]. This involved working very closely with Grace to understand
what data was available, the formats that the data was kept in, and where the data resided.
This understanding would form the basis of Ross’s work on designing the domain con-
cepts and descriptive features that would make up the analytics base table (ABT), which
would drive the creation of the predictive model. This was an iterative process in which
Ross moved back and forth between Kate at the AT retention team, Grace, the CTO, and
other parts of the business identified as having insight into the data associated with cus-
tomer churn. It quickly became apparent that the key data resources within AT that would
be important for this project were

 The customer demographic records from the AT data warehouse
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 The customer billing records stored in the AT billing database, where records stretch
back over a time horizon of five years

 The transactional record of calls made by individuals, stretching back over a time horizon
of 18 months

 The sales team’s transactional database, containing details of phone handsets issued to
customers

 The retention team’s simple transactional database, containing all the contacts they had
made with customers, and the outcomes of these contacts, stretching back to a time
horizon of 12 months

Before going any further, Ross had to define the prediction subject for the ABT and the
target feature. The goal was to develop a model that would predict whether a customer
would churn in the coming months. This meant that the prediction subject in this case was
a customer, so the ABT would need to be built to contain one row per customer.

Predicting churn is a form of propensity modeling,2 where the event of interest in this
case is a customer making the decision to churn. Consequently, Ross needed to agree
with the business (in particular the customer retention team) on a definition of churn. The
definition would be used to identify churn events in AT’s historical data and, consequently,
was fundamental to building the ABT for the project. The business agreed that a customer
who had been inactive for one month (i.e., had not made any calls or paid a bill) or who had
explicitly canceled or not renewed a contract would be considered to have churned. Ross
also needed to define the lengths of the observation period and the outcome period for
the model. He decided that the observation period, during which he would collect data
on customer behavior, would stretch back for 12 months. This was a decision made based
on the data available and Ross’s expectation that anything farther back than this was likely
to have little impact on predicting churn. With regard to defining the outcome period, the
company agreed that it would be most useful to make a prediction that a customer was
likely to churn three months before the churn event took place, as this gave them time to
take retention actions. Consequently, the outcome period was defined as three months.3

With the target feature suitably defined, Ross’s next task was to determine the domain
concepts that would underpin the design of the ABT. The domain concepts are those ar-
eas that the business believes have an impact on a customer’s decision to churn. The
domain concepts were developed through a series of workshops with representatives of
various parts of the AT business—in particular the retention team, but also sales and mar-
keting and billing. AT believed that the main concepts that affected churn were underlying

2. See Section 2.4.3[36].

3. Obviously, churn events will happen on different dates for different customers; therefore, to build the ABT, the
observation and outcome periods for different customers would have to be aligned. This situation is an example
of the propensity model scenario illustrated in Figure 2.6[39] in Section 2.4.3[36].
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customer demographics (e.g., perhaps younger customers were more likely to churn); cus-
tomer billing information, and in particular changes in billing patterns (e.g., perhaps cus-
tomers whose bill suddenly increased were more likely to churn); the details of a cus-
tomer’s handset (e.g., perhaps customers who have had a handset for a long time are more
likely to churn); the interactions a customer has had with AT customer care (e.g., perhaps
customers who are making a large number of calls to customer care are having difficulties
with the AT network and so are likely to churn); and the actual calls the customer is mak-
ing, in particular, changing call patterns (e.g., perhaps customers who have started making
calls to new groups of people are more likely to churn). This set of domain concepts was
felt to be extensive enough to cover all the characteristics that were likely to contribute to
a customer’s likelihood to churn and is shown in Figure 12.1[690].

Figure 12.1
The set of domain concepts for the Acme Telephonica customer churn prediction problem.

From these domain concepts, Ross worked on deriving a set of descriptive features.
Some of the descriptive features were simply copies of available raw data. For example,
the AGE, GENDER, CREDITRATING, and OCCUPATION columns from the customer demo-
graphics data warehouse could be directly included as descriptive features in the ABT to
capture the CUSTOMER DEMOGRAPHICS domain concept. The more interesting descrip-
tive features were ones that had to be derived from the raw data sources. For example, Ross
learned that the retention team believed that one of the main reasons customers churned
was the availability of new, high-end handsets at other networks. To try to capture the
HANDSET INFORMATION domain concept, Ross designed three descriptive features:

 SMARTPHONE: This feature indicated whether the customer’s current handset was a
smartphone, which was derived from the customer’s most recent handset entry.
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 NUMHANDSETS: This was a count of how many different handsets the customer had
had in the past three years. This was derived from a count of all the handset entries for a
particular customer.

 HANDSETAGE: Based on a customer’s latest handset entry, this feature captured the
number of days that the customer had had his or her current handset.

In churn analysis, and in any sort of propensity modeling, change is usually a key driver
of customer behavior. For this reason, and based on discussions with the AT team, Ross
included the BILL CHANGE and SOCIAL NETWORK CHANGE domain concepts. It was
understood by the AT retention team that customers often made a decision to churn if their
bill increased significantly due to changing call patterns, or when they began to make large
numbers of calls to new friends or colleagues on other networks. For these reasons, Ross
designed the following descriptive features:

 CALLMINUTESCHANGEPCT: Derived from the raw call data, this feature captured the
amount by which the number of minutes a customer used had changed that month com-
pared to the previous month.

 BILLAMOUNTCHANGEPCT: Derived from the raw call data, this feature captured the
amount by which a customer’s bill had changed that month compared to previous month.

 NEWFREQUENTNUMBERS: Derived from analysis of the actual numbers dialed in the
raw call data, this feature attempted to capture how many new numbers a customer has
begun calling frequently that month. A frequent number was defined as a number that
constituted more than 15% of a customer’s total calls.

Often descriptive features that are likely to be very useful cannot be implemented due to
the unavailability of data. For example, the AT team felt that a customer beginning to fre-
quently call other networks would be a good indicator of churn, but a suitable data feature
could not be extracted to capture this. In its call records, AT did not include information
about which network calls are made to, and with the free movement of numbers among
operators, numbers themselves were no longer a reliable indicator of network.

The full set of descriptive features Ross developed, along with a short description of
each, is shown in Table 12.1[692].

12.3 Data Preparation

With help from Grace to implement the actual data manipulation and data integration
scripts using the tools available at AT, Ross populated an ABT containing all the fea-
tures listed in Table 12.1[692]. Ross sampled data from the period 2008 to 2013. Using
the definition of churn as a customer who had not made any calls or paid a bill for one
month, Ross was able to identify churn events throughout this time period. To collect in-
stances of customers who had not churned, Ross randomly sampled customers who did not
match the churn definition but who also could be deemed active customers. Working with
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Table 12.1
The descriptive features in the ABT developed for the Acme Telephonica churn prediction task.

Feature Description
BILLAMOUNTCHANGEPCT The percentage by which the customer’s bill has changed from last month to

this month
CALLMINUTESCHANGEPCT The percentage by which the call minutes used by the customer has changed

from last month to this month
AVGBILL The average monthly bill amount
AVGRECURRINGCHARGE The average monthly recurring charge paid by the customer
AVGDROPPEDCALLS The average number of customer calls dropped each month
PEAKRATIOCHANGEPCT The percentage by which the customer’s peak calls to off-peak calls ratio has

changed from last month to this month
AVGRECEIVEDMINS The average number of calls received each month by the customer
AVGMINS The average number of call minutes used by the customer each month
AVGOVERBUNDLEMINS The average number of out-of-bundle minutes used by the customer each month
AVGROAMCALLS The average number of roaming calls made by the customer each month
PEAKOFFPEAKRATIO The ratio between peak and off-peak calls made by the customer this month
NEWFREQUENTNUMBERS How many new numbers the customer is frequently calling this month
CUSTOMERCARECALLS The number of customer care calls made by the customer last month
NUMRETENTIONCALLS The number of times the customer has been called by the retention team
NUMRETENTIONOFFERS The number of retention offers the customer has accepted
AGE The customer’s age
CREDITRATING The customer’s credit rating
INCOME The customer’s income level
LIFETIME The number of months the customer has been with AT
OCCUPATION The customer’s occupation
REGIONTYPE The type of region the customer lives in
HANDSETPRICE The price of the customer’s current handset
HANDSETAGE The age of the customer’s current handset
NUMHANDSETS The number of handsets the customer has had in the past 3 years
SMARTPHONE Whether the customer’s current handset is a smartphone
CHURN The target feature

Kate, Ross defined an active customer as a current customer who made at least five calls
per week and who had been a customer for at least six months.4 This definition ensured

4. The fact that active customers were defined as current customers means that they were all active on the same
date—namely, whatever day the ABT was generated. This could be problematic: a model trained on this data
might ignore seasonal effects such as Christmas. The alternative is to define active customers as any customer
in the AT data that was active at some point. Such a definition, however, has the complication that the same
customer could appear in the ABT as both an active and a churn customer, although admittedly the descriptive
features for these two instances would be calculated over different periods of time.
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that the non-churn instances in the dataset would include only customers with a relatively
normal behavior profile and for which there was a long enough data history that realistic
descriptive features could be calculated for them.

The final ABT contained 10;000 instances equally split between customers who churned
and customers who did not churn. In the raw data, customers who did not churn out-
number those who churned at a ratio of over 10 to 1. This is an example of an imbal-
anced dataset, in which the different levels of the target feature—in this case, churners
and non-churners—are not equally represented in the data. Some of the machine learning
approaches we have discussed in the preceding chapters perform better when a balanced
sample is used to train them, and this is why Ross created an ABT with equal numbers of
instances with each target level.5

Ross then developed a full data quality report for the ABT including a range of data
visualizations. The data quality report tables are shown in Table 12.2[694]. Ross first assessed
the level of missing values within the data. Within the continuous features, only AGE

stood out with 11:47% of values missing. This could be handled reasonably easily using an
imputation approach,6 but Ross held off on performing this at this stage. The REGIONTYPE

and OCCUPATION categorical features both suffered from a significant number of missing
values—74% and 47:8% respectively. Ross strongly considered removing these features
entirely.

When he considered cardinality, Ross noticed that a number of the continuous features
had very low cardinality—for example, INCOME, AGE, NUMHANDSETS, HANDSETPRICE,
and NUMRETENTIONCALLS. In most cases, Ross confirmed with Kate and Grace that
these were valid because the range of values that the features could take was naturally
low. For example, HANDSETPRICE can take only a small number of values—e.g., 59:99,
129:99, 499:99, and so on. The INCOME feature stood out as unusual with only 10 dis-
tinct values (the histogram for this feature confirmed this; see Figure 12.2(a)[695]). Grace
explained to Ross that incomes were actually recorded in bands rather than as exact values,
so this was really a categorical feature. The cardinality of the CREDITCARD and REGION-
TYPE categorical features were higher than expected (the histograms for these features are
shown in Figures 12.2(b)[695] and 12.2(c)[695]). The issue was that some levels had multiple
representations—for example, for the REGIONTYPE feature, towns were represented as
town and as t. Ross easily corrected this issue by mapping the levels of the feature to one
consistent labeling scheme.

5. We return to this discussion in Section 12.5[698] and Section 13.4.1[719].

6. See Section 3.4[69].
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Table 12.2
A data quality report for the Acme Telephonica ABT.

(a) Data quality report for continuous features

% 1st 3rd Std.
Feature Count Miss. Card. Min. Qrt. Mean Median Qrt. Max. Dev.
AGE 10,000 11.47 40 0.00 0.00 30.32 34.00 48.00 98.00 22.16
INCOME 10,000 0.00 10 0.00 0.00 4.30 5.00 7.00 9.00 3.14
NUMHANDSETS 10,000 0.00 19 1.00 1.00 1.81 1.00 2.00 21.00 1.35
HANDSETAGE 10,000 0.00 1,923 52.00 590.00 905.52 887.50 1,198.00 2,679.00 453.75
HANDSETPRICE 10,000 0.00 16 0.00 0.00 35.73 0.00 59.99 499.99 57.07
AVGBILL 10,000 0.00 5,588 0.00 33.33 58.93 49.21 71.76 584.23 43.89
AVGMINS 10,000 0.00 4,461 0.00 150.63 521.17 359.63 709.19 6,336.25 540.44
AVGRECURRINGCHARGE 10,000 0.00 1,380 0.00 30.00 46.24 44.99 59.99 337.98 23.97
AVGOVERBUNDLEMINS 10,000 0.00 2,808 0.00 0.00 40.65 0.00 37.73 513.84 81.12
AVGROAMCALLS 10,000 0.00 850 0.00 0.00 1.19 0.00 0.26 177.99 6.05
CALLMINUTESCHANGEPCT 10,000 0.00 10,000 -16.422 -1.49 0.76 0.50 2.74 19.28 3.86
BILLAMOUNTCHANGEPCT 10,000 0.00 10,000 -31.67 -2.63 2.96 1.96 7.56 42.89 8.51
AVGRECEIVEDMINS 10,000 0.00 7,103 0.00 7.69 115.27 52.54 154.38 2,006.29 169.98
AVGOUTCALLS 10,000 0.00 524 0.00 3.00 25.29 13.33 33.33 610.33 35.66
AVGINCALLS 10,000 0.00 310 0.00 0.00 8.37 2.00 9.00 304.00 17.68
PEAKOFFPEAKRATIO 10,000 0.00 8,307 0.00 0.78 2.22 1.40 2.50 160.00 3.88
PEAKRATIOCHANGEPCT 10,000 0.00 10,000 -41.32 -6.79 -0.05 0.01 6.50 37.78 9.97
AVGDROPPEDCALLS 10,000 0.00 1,479 0.00 0.00 0.50 0.00 0.00 9.89 1.41
LIFETIME 10,000 0.00 56 6.00 11.00 18.84 17.00 24.00 61.00 9.61
CUSTOMERCARECALLS 10,000 0.00 109 0.00 0.00 1.74 0.00 1.33 365.67 5.76
NUMRETENTIONCALLS 10,000 0.00 5 0.00 0.00 0.05 0.00 0.00 4.00 0.23
NUMRETENTIONOFFERS 10,000 0.00 5 0.00 0.00 0.02 0.00 0.00 4.00 0.155
NEWFREQUENTNUMBERS 10,000 0.00 4 0.00 0.00 0.20 0.00 0.00 3.00 0.64

(b) Data quality report for categorical features

2nd 2nd

% Mode Mode 2nd Mode Mode
Feature Count Miss. Card. Mode Freq. % Mode Freq. %
OCCUPATION 10,000 74.00 8 professional 1,705 65.58 crafts 274 10.54
REGIONTYPE 10,000 47.80 8 suburb 3,085 59.05 town 1,483 28.39
MARRIAGESTATUS 10,000 0.00 3 unknown 3,920 39.20 yes 3,594 35.94
CHILDREN 10,000 0.00 2 false 7,559 75.59 true 2,441 24.41
SMARTPHONE 10,000 0.00 2 true 9,015 90.15 false 985 9.85
CREDITRATING 10,000 0.00 7 b 3,785 37.85 c 1,713 17.13
HOMEOWNER 10,000 0.00 2 false 6,577 65.77 true 3,423 34.23
CREDITCARD 10,000 0.00 6 true 6,537 65.37 false 3,146 31.46
CHURN 10,000 0.00 2 false 5,000 50.00 true 5,000 50.00
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(a) INCOME (b) CREDITCARD (c) REGIONTYPE

(d) HANDSETPRICE (e) AVGMINS

(f) AVGRECEIVEDMINS (g) AVGOVERBUNDLEMINS

Figure 12.2
(a)–(c) Histograms for the features from the AT ABT with irregular cardinality; (d)–(g) histograms
for the features from the AT ABT that are potentially suffering from outliers.
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Four continuous features stood out as possibly suffering from the presence of outliers:
HANDSETPRICE, with a minimum value of 0, which seemed unusual; AVGMINS, with a
maximum of 6;336:25, which was very different from the mean and the 3rd quartile val-
ues for that feature; AVGRECEIVEDMINS, with a maximum of 2;006:29, which was also
very different from the mean and the 3rd quartile values for that feature; and AVGOVER-
BUNDLEMINS, with minimum, 1st quartile, and median values of 0 compared to a mean of
40. Figure 12.2[695] presents the histograms for these features. Ross confirmed with Grace
and Kate that these were valid outliers—for example, some handsets are given away for
free, and some customers just make a lot of calls. They did spend some time, however,
discussing the AVGOVERBUNDLEMINS. The histogram for this feature has an unusual
shape that results in the unusual minimum, 1st quartile, and median values (see Figure
12.2(g)[695]). By examining the data for this feature more closely, they eventually explained
this shape by the fact that most customers did not go over the number of minutes in their
bundle, which accounts for the large bar for 0 in this histogram. The values above zero
seem to follow something close to a wide normal distribution, and the large number of,
albeit valid, zero values account for the unusual minimum, 1st quartile, and median values.
At this point Ross just made note of these outliers as something he might have to deal with
during the modeling phase.

Ross then turned his attention to examining the data visualizations of the relationship
between each descriptive feature and the target feature. No individual feature stood out as
having a very strong relationship, but the evidence of connections between the descriptive
features and the target feature could be seen. For example, Figure 12.3(a)[697] shows a
slightly higher propensity of people in rural areas to churn. Similarly, Figure 12.3(b)[697]

shows that customers who churned tended to make more calls outside their bundle than
those who did not.

Once Ross had reviewed the full data quality report in detail, he made the following de-
cisions regarding the problematic features he had identified. First, he decided to delete the
AGE and OCCUPATION features because of the level of missing values in each of these fea-
tures. He decided to keep the REGIONTYPE feature, however, because it appeared to have
some relationship with the target. He also applied the planned mapping of the REGION-
TYPE values to a consistent labeling scheme: ts|suburbu Ñ suburb; tt|townu Ñ town;
tmissing|absentu Ñ missing.

Ross further divided this dataset into three randomly sampled partitions—a training par-
tition (50%), a validation partition (20%) and a test partition (30%). The training partition
was used as the core training data for the prediction models built. The validation partition
was used for tuning tasks, and the test partition was used for nothing other than a final test
of the model to evaluate its performance.
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(a) REGIONTYPE (b) AVGOVERBUNDLEMINS

Figure 12.3
(a) A stacked bar plot for the REGIONTYPE feature; and (b) histograms for the AVGOVER-
BUNDLEMINS feature by target feature value.

12.4 Modeling

The requirements for this model were that it be accurate, that it be capable of being in-
tegrated into the wider AT processes, and, possibly, that it act as a source of insight into
the reasons people might churn. In selecting the appropriate model type to use, all these
aspects, along with the structure of the data, should be taken into account. In this case,
the ABT was composed of a mixture of continuous and categorical descriptive features
and had a categorical target feature. The categorical target feature, in particular, makes
decision trees a suitable choice for this modeling task. Furthermore, decision tree algo-
rithms are capable of handling both categorical and continuous descriptive features as well
as handling missing values and outliers without any need to transform the data. Finally,
decision trees are relatively easy to interpret, which means that the structure of the model
can give some insight into customer behavior. All these factors taken together indicated
that decision trees were an appropriate modeling choice for this problem.

Ross used the ABT to train, tune, and test a series of decision trees to predict churn
given the set of descriptive features. The first tree that Ross built used an entropy-based
information gain as the splitting criterion, limited continuous splits to binary choices, and
no pruning. Ross had decided, again in consultation with the business, that a simple classi-
fication accuracy rate was the most appropriate evaluation measure for this task. The first
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tree constructed achieved an average class accuracy7 of 74:873% on the hold-out test set,
which was reasonably encouraging.

Figure 12.4
An unpruned decision tree built for the AT churn prediction problem (shown only to indicate its size
and complexity). The excessive complexity and depth of the tree are evidence that overfitting has
probably occurred.

This tree is shown in Figure 12.4[698], and the lack of pruning is obvious in its complexity.
This complexity and the excessive depth of the tree suggest overfitting. In the second tree
that he built, Ross employed post-pruning using reduced error pruning,8 which used the
validation partition that was created from the initial dataset. The reasonably large dataset
that Ross had to begin with, which in turn led to a reasonably large validation partition,
meant that reduced error pruning was appropriate in this case.9 Figure 12.5[699] shows the
tree resulting from this training iteration. It should be clear that this is a much simpler
tree than the previous one. The features used at the top levels of both trees, and deemed
most informative by the algorithm, were the same: AVGOVERBUNDLEMINS, BILLAM-
OUNTCHANGEPCT, and HANDSETAGE.

Using pruning, Ross was able to increase the average class accuracy on the hold-out test
set to 79:03%, a significant improvement over the previous model. Table 12.3[699] shows the
confusion matrix from this test. The confusion matrix shows that this model was slightly
more accurate when classifying instances with the non-churn target level than with the
churn target level. Based on these, results Ross was confident that this tree was a good
solution for the AT churn prediction problem.

12.5 Evaluation

The model evaluations based on misclassification rate described in the previous section are
the first step in evaluating the performance of the prediction model created. The classifi-
cation accuracy of 79:03% is well above the target agreed on with the business. This is

7. All average class accuracies used in this section use a harmonic mean.

8. See Section 4.4.4[153].

9. If data had been more scarce, pruning using a statistical test, such as �2, would have been a more sensible
route to take.
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Figure 12.5
A pruned decision tree built for the AT churn prediction problem. Gray leaf nodes indicate a churn
prediction, and clear leaf nodes indicate a non-churn prediction. For space reasons, we show only
the features tested at the top-level nodes.

Table 12.3
The confusion matrix from the test of the AT churn prediction stratified hold-out test set using the
pruned decision tree in Figure 12.5[699].

Prediction
churn non-churn Recall

Target
churn 1,058 442 70.53

non-churn 152 1,348 89.86

misleading, however. This performance is based on a stratified hold-out test set, which
contains the same number of churners and non-churners. The underlying distribution of
churners and non-churners within the larger AT customer base, however, is much different.
Rather than a 50:50 split of churners to non-churners, the actual underlying ratio is, in
fact, closer to 10:90. For this reason, it is very important to perform a second evaluation
in which the test data reflect the actual distribution of target feature values in the business
scenario.

Ross had AT generate a second data sample (which did not overlap with the sample taken
previously) that was not stratified according to the target feature values. The confusion
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Table 12.4
The confusion matrix from the test of the AT churn prediction non-stratified hold-out test set.

Prediction
churn non-churn Recall

Target
churn 1,115 458 70.88

non-churn 1,439 12,878 89.95

matrix illustrating the performance of the prediction model on this test set is shown in
Table 12.4[700].

The average class accuracy on the non-stratified hold-out test set was 79:284%. Ross
also generated cumulative gain, lift, and cumulative lift charts for the dataset.10 These
are shown in Figure 12.6[700]. The cumulative gain chart in particular shows that if AT were
to call just 40% of their customer base, they would identify approximately 80% of the
customers who are likely to churn, which is strong evidence that the model is doing a good
job of distinguishing between different customer types.

(a) Cumulative gain (b) Lift (c) Cumulative lift

Figure 12.6
(a) Cumulative gain, (b) lift, and (c) cumulative lift charts for the predictions made on the large test
data sample.

Given these good results Ross decided that it was appropriate to present the model to
other parts of the business. This was an important step in gaining credibility for the model.
The tree shown in Figure 12.5[699] is reasonably straightforward to interpret, but when taken
out to other parts of the business, it may be hard for people to deal with this much informa-

10. Cumulative gain, lift, and cumulative lift are introduced in Section 9.4.3.3[565].
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tion, so Ross decided to create a purposefully stunted version of the decision tree, with only
a small number of levels shown for the presentation of the model to the business (although
he intended to use the larger pruned tree for actual deployment). The idea behind this was
that stunting the tree made it more interpretable. The fact that the most informative features
occupy berths toward the top of a tree means that stunted trees usually capture the most
important information. Many machine learning tools will allow the maximum depth of a
tree to be specified as a parameter, which allows for the creation of such stunted trees.

Figure 12.7[701] shows the stunted tree Ross generated for the churn problem, where the
depth of the tree is limited to five layers. This tree results in a slightly lower classification
accuracy on the test partition, 78:5%, but is very easy to interpret—the key features in
determining churn are clearly AVGOVERBUNDLEMINS, BILLAMOUNTCHANGEPCT, and
HANDSETAGE. It seems, from this data, that customers are most likely to churn when their
bill changes dramatically, when they begin to exceed the bundled minutes in their call
package, or when they have had a handset for a long time and are considering changing
to something newer. This is useful information that the business can use to attempt to
devise other churn handling strategies in parallel to using this model to create call lists
for the retention team. The business was interested in the features that were selected as
important to the tree, and there was a good deal of discussion on the omission of the
features describing customers’ interactions with AT customer care (these had been the
basis of the organization’s previous model).

Figure 12.7
A pruned and stunted decision tree built for the Acme Telephonica churn prediction problem.
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To further support his model, Ross organized a control group test (see Section 9.4.6[578])
in which for two months, the AT customer base was randomly divided into two groups, and
call lists for the retention team were selected from the first group using the old approach
based on calls to customer care, and for the second group using the new decision tree
model. It was shown after two months that the churn rate within the sample for which
the retention team used the new model to build their call list was approximately 7:4%,
while for the group using the old model, it was over 10%. This experiment showed the
AT executive team that the new decision tree model could significantly reduce churn rates
within the AT customer base.

12.6 Deployment

Because AT was already using a process in which its retention team generated call lists
based on collected data, deployment of the new decision tree model was reasonably straight-
forward. The main challenge was a return to the Data Preparation phase to make the rou-
tines used to extract the data for the ABT robust and reliable enough to be used to generate
new query instances every month. This involved working with the AT IT department to
develop deployment-ready extract-transform-load (ETL) routines. Code was then writ-
ten to replace the previous simple rule about customer care contacts with the decision tree
when retention call lists were generated.

The last step in deployment was to put in place an ongoing model validation plan to
raise an alarm if evidence arose indicating that the deployed model had gone stale. In this
scenario, feedback on the performance of the model implicitly arises within a reasonably
short amount of time after predictions are made—churn predictions can be easily compared
to actual customer behavior (taking into account interventions made by the business). The
monitoring system that Ross put in place generated a report at the end of every quarter that
evaluated the performance of the model in the previous quarter by comparing how many
of the people not contacted by the retention team actually churned. If this number changed
significantly from what was seen in the data used to build the model, the model would be
deemed stale, and retraining would be required.
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“The history of astronomy is a history of receding horizons.”
—Edwin Powell Hubble

Astronomy has gone through a revolution in recent years as the reducing costs of digital
imaging has made it possible to collect orders of magnitude more data than ever before.
Large-scale sky scanning projects are being used to map the whole of the night sky in
intricate detail. This offers huge potential for new science based on this massive data
collection effort. This progress comes at a cost, however, as all this data must be labeled,
tagged, and cataloged. The old approach of doing all this manually has become obsolete
because the volume of data involved is just too large.

The Sloan Digital Sky Survey (SDSS) is a landmark project that is cataloging the night
sky in intricate detail and is facing exactly the problem described above.1 The SDSS
telescopes collect over 175GB of data every night, and for the data collected to be fully
exploited for science, each night sky object captured must be identified and cataloged
within this data in almost real time. Although the SDSS has been able to put in place
algorithmic solutions to identifying certain objects within the images collected, there have
been a number of difficulties. In particular, it has not been possible for the SDSS to develop
a solution to automatically categorize galaxies into the different morphological groups—
for example, spiral galaxies or elliptical galaxies.

This case study2 describes the work undertaken when, in 2011, the SDSS hired Jocelyn,
an analytics professional, to build a galaxy morphology classification model to include in
their data processing pipeline. The remainder of this chapter describes the work undertaken
by Jocelyn on this project within each phase of the CRISP-DM process.

1. Full details of the SDSS project, which is fascinating, are available at www.sdss.org.

2. Although this case study is based on real data downloaded from the SDSS, the case study itself is entirely
fictitious and developed only for the purposes of this book. Very similar work to that described in this section
has, however, actually been undertaken, and details of representative examples are given in Section 13.6[727].

www.sdss.org
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13.1 Business Understanding

When Jocelyn first arrived at SDSS, she was pleased to find that the business problem
she was being asked to help with was already pretty well defined in predictive analytics
terms. The SDSS pipeline takes the data captured by the SDSS instruments and processes
it, before storing the results of this processing in a centrally accessible database. At the
time Jocelyn arrived, the SDSS pipeline included rule-based systems that could classify
night sky objects into broad categories—for example, stars and galaxies. SDSS scien-
tists, however, were struggling to build rule-based systems that could accurately perform
more fine-grained classifications. In particular, the SDSS scientists wanted a system that
could reliably classify galaxies into the important morphological (i.e., shape) types: ellip-
tical galaxies and spiral galaxies. Classifying galaxies according to galaxy morphology
is standard practice in astronomy,3 and morphological categories have been shown to be
strongly correlated with other important galaxy features. So, grouping galaxies by morpho-
logical type is a fundamentally important step in analyzing the characteristics of galaxies.

This was the challenge that the SDSS had hired Jocelyn to address. The scientists at
SDSS wanted Jocelyn to build a machine learning model that could examine sky objects
that their current rule-based system had flagged as being galaxies and categorize them as
belonging to the appropriate morphological group. Although there remained some details
left to agree on, the fact that the SDSS had defined their problem in terms of analytics meant
that Jocelyn very easily completed the important step of converting a business problem
into an analytics solution. Edwin was assigned to Jocelyn as her key scientific contact
from SDSS and was eager to answer any questions Jocelyn had as he saw real value in the
model she was developing.

The first detail that Jocelyn needed to agree on with Edwin was the set of categories into
which sky objects should be categorized. The scientists at SDSS listed two key galaxy
morphologies of interest: elliptical and spiral. The spiral category further divided into
clockwise spiral and anti-clockwise spiral subcategories. Figure 13.1[705] shows illustrations
of these different galaxy types. Jocelyn suggested that she would first work on the coarse
classification of galaxies into elliptical and spiral categories, and then, depending on how
this model performed, look at classifying spirals into the more fine-grained categories.
Jocelyn also suggested that a third other category be included to take into account the fact
that all the sky objects labeled as galaxies in the previous step in the SDSS may not actually
be galaxies. Edwin agreed with both of these suggestions.

The second detail that Jocelyn needed to agree on with Edwin was the target accuracy
that would be required by the system she would build in order for it to be of use to scientists
at SDSS. It is extremely important that analytics professionals manage the expectations of
their clients during the business understanding process, and agreeing on expected levels of

3. This practice was first systematically applied by Edwin Hubble in 1936 (Hubble, 1936).
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(a) Elliptical (b) Clockwise spiral (c) Anti-clockwise spiral

Figure 13.1
Examples of the different galaxy morphology categories into which SDSS scientists categorize
galaxy objects. Credits for these images belong to the Sloan Digital Sky Survey, www.sdss3.org.

model performance is one of the easiest ways in which to do this. This avoids disappoint-
ment and difficulties at later stages in a project. After lengthy discussion, both Jocelyn
and Edwin agreed that in order for the system to be useful, a classification accuracy of
approximately 80% would be required. Jocelyn stressed that until she had looked at the
data and performed experiments, she could not make any predictions as to what classifi-
cation accuracy would be possible. She did, however, explain to Edwin that because the
categorization of galaxy morphologies is a somewhat subjective task (even human experts
don’t always fully agree on the category that a night sky object should belong to), it was
unlikely that classification accuracies beyond 90% would be achievable.

Finally, Edwin and Jocelyn discussed how fast the model built would need to be to allow
its inclusion in the existing SDSS pipeline. Fully processed data from the SDSS pipeline
is available to scientists approximately one week after images of night sky objects are
captured by the SDSS telescopes.4 The system that Jocelyn built would be added to the end
of this pipeline because it would require outputs from existing data processing steps. It was
important that the model Jocelyn deployed not add a large delay to data becoming available
to scientists. Based on the expected volumes of images that would be produced by the
SDSS pipeline, Jocelyn and Edwin agreed that the model developed should be capable of
performing approximately 1;000 classifications per second on a dedicated server of modest
specification.

4. In an interesting example of the persistence of good solutions using older technology, the data captured by
the telescopes at the SDSS site in New Mexico is recorded onto magnetic tapes that are then couriered to the
Feynman Computing Center at Fermilab in Illinois, over 1;000 miles away. This is the most effective way to
transport the massive volumes of data involved!

www.sdss3.org
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13.1.1 Situational Fluency
The notion of situational fluency5 is especially important when dealing with scientific
scenarios. It is important that analytics professionals have a basic grasp of the work their
scientific partners are undertaking so that they can converse fluently with them. The real
skill in developing situational fluency is determining how much knowledge about the ap-
plication domain the analytics professional requires in order to complete the project suc-
cessfully. It was not reasonable, nor necessary, to expect that Jocelyn would become fully
familiar with the intricacies of the SDSS and the astronomy that it performs. Instead, she
needed enough information to understand the key pieces of equipment involved, the impor-
tant aspects of the night sky objects that she would be classifying, and the key terminology
involved.

While complex scientific scenarios can make this process more difficult than is the case
for more typical business applications, there is also the advantage that scientific projects
typically produce publications clearly explaining their work. These kinds of publications
are an invaluable resource for an analytics professional trying to come to grips with a new
topic. Jocelyn read a number of publications by the SDSS team6 before spending several
sessions with Edwin discussing the work that he and his colleagues did. The following
short summary of the important things she learned illustrates the level of situational fluency
required for this kind of scenario.

The SDSS project captures two distinct kinds of data—images of night-sky objects and
spectrographs of night sky objects—using two distinct types of instrument, an imaging
camera and a spectrograph.

The SSDS imaging camera captures images in five distinct photometric bands:7 ultra-
violet (u), green (g), red (r), far-red (i), and near infrared (z). The raw imaging data
captured from the SDSS telescopes is passed through a processing pipeline that identi-
fies individual night sky objects and extracts a number of properties for each object. For
galaxy classification, the most important properties extracted from the images are bright-
ness, color, and shape. The measure of brightness used in the SDSS pipeline is referred to
as magnitude. Flux is another measure that attempts to standardize measures of bright-
ness, taking into account how far away different objects are from the telescope. Measures
of flux and magnitude are made in each of the five photometric bands used by the SDSS
imaging system. To measure the color of night sky objects, the flux measured in differ-

5. See Chapter 2[23].

6. Stoughton et al. (2002) provides an in-depth discussion of the data collected by the SDSS. A shorter overview
is provided at skyserver.sdss3.org/dr9/en/sdss/data/data.asp.

7. Most consumer digital cameras capture full-color images by capturing separate images on red, green, and
blue imaging sensors and combining these. The colors red, green, and blue are known as photometric bands.
The photometric bands captured by the SDSS imaging camera are the same as these bands; they are just defined
on different parts of the spectrum.

skyserver.sdss3.org/dr9/en/sdss/data/data.asp
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ent photometric bands is compared. The image-based measures of overall galaxy shape
are extracted from the images using morphological and moment image processing opera-
tions. These measures capture how well objects match template shapes—although none is
accurate enough to actually perform the galaxy morphology prediction itself.

A spectrograph is a device that disperses the light emitted by an object into different
wavelengths and measures the intensity of the emission of each wavelength—this set of
measures is referred to as a spectrogram. The SDSS spectrographs perform this task for
manually identified night sky objects and produce spectrograms across wavelengths from
visible blue light to near-infrared light. Spectrography data may be useful in galaxy classi-
fication because different galaxy types are likely to emit different amounts of different light
wavelengths, so spectrograms might be a good indicator for galaxy type. Spectrography
also allows measurement of redshift, which is used to determine the distance of night sky
objects from the viewer.

Once Jocelyn felt that she was suitably fluent with the SDSS situation, she proceeded
to the Data Understanding phase of the CRISP-DM process so as to better understand the
data available.

13.2 Data Understanding

Jocelyn’s first step in fully understanding the data available to her was to define the pre-
diction subject. In this case the task was to categorize galaxies according to morphology,
and therefore galaxy made sense as the prediction subject. The structure of the dataset re-
quired for this task would contain one row per galaxy, and each row would include a set of
descriptive features describing the characteristics of that galaxy object and a target feature
indicating the morphological category of the galaxy object.

Based on her understanding of the SDSS process , Jocelyn sketched out the first draft of
the domain concepts diagram for the galaxy classification problem shown in Figure 13.2[708].
Jocelyn felt that the important domain concepts were likely to be the target (galaxy type),
galaxy appearance measures (e.g., color), spectrography information (e.g., red shift), and
position information (the position of each object in the night sky was also available from the
SDSS pipeline). Data with which to implement features based on these domain concepts
would likely come from the raw camera imaging and spectrograph images themselves, or
from the results of the SDSS processing pipeline.

Jocelyn took this first domain concept draft along to a meeting with Ted, the SDSS chief
data architect, to discuss the data resources that would be available for model building.
Ted quickly made two observations. First, the spectrograph data collected by the SDSS
telescopes was not nearly as extensive as the camera imaging data collected—while there
was imaging data for millions of galaxies, there were spectrograms for only hundreds
of thousands. Collecting spectrographic information involves a much more complicated
process than capturing imaging data, so it is done for a much smaller portion of the sky.
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Figure 13.2
The first draft of the domain concepts diagram developed by Jocelyn for the galaxy classification
task.

This was likely to continue to be the case, so any solution that relied on spectrographic
data as well as imaging data to classify galaxy types would work for only a fraction of the
observations made by the SDSS telescopes.

Ted’s second observation was that, although there was a huge amount of data available
on past observations of night sky objects, only a tiny fraction of these contained manual
labels indicating the morphological category to which they belonged. This meant that the
data available at the SDSS did not contain a suitable target feature that Jocelyn could use
to train prediction models. This is a very common scenario and a real thorn in the side
of the predictive model builder—although there is often an almost endless amount of data
available for training, little or none of it is labeled with the relevant target feature, making
it effectively useless.

Jocelyn’s options at this stage were (1) to embark on a large-scale manual data labeling
project for which she would hire experts to manually label a suitably large set of historical
night sky object observations, or (2) to find some other data source that she could add to the
SDSS data to use as a target feature. While the first option is often used, Jocelyn was lucky
that another data source became available. Through conversations with Edwin, Jocelyn
became aware of a parallel project to the SDSS that offered an intriguing solution to her
problem. Galaxy Zoo8 is a crowdsourced, citizen science effort in which people can log
on to a website and categorize images of galaxies—taken from the SDSS—into different
groups. The Galaxy Zoo project started in 2007 and since then has collected millions of
classifications of hundreds of thousands of galaxies.

The galaxy types that Galaxy Zoo citizen scientists could choose from were elliptical,
clockwise spiral, anti-clockwise spiral, edge-on disk, merger, and don’t know. The first
three types are self-explanatory and match directly with the categories of interest to the
SDSS project. An edge-on disk is a spiral galaxy viewed from the edge, which makes the

8. Full details of the Galaxy Zoo project and the data released by it are described in Lintott et al. (2008, 2011).
The Galaxy Zoo (www.galaxyzoo.org) project referred to in this example is Galaxy Zoo I.

www.galaxyzoo.org
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Table 13.1
The structure of the SDSS and Galaxy Zoo combined dataset.

Name Type Description
OBJID Continuous Unique SDSS object identifier
P EL Continuous Fraction of votes for elliptical galaxy category
P CW Continuous Fraction of votes for clockwise spiral galaxy category
P ACW Continuous Fraction of votes for anti-clockwise spiral galaxy category
P EDGE Continuous Fraction of votes for edge-on disk galaxy category
P MG Continuous Fraction of votes for merger category
P DK Continuous Fraction of votes for don’t know category

direction of the spiral arms unclear. A merger is a sky object in which multiple galax-
ies appear grouped together. Examples were labeled as don’t know when a Galaxy Zoo
participant could not place the object in question into one of the other categories.

The data from the Galaxy Zoo project was publicly available and therefore easily ac-
cessible to Jocelyn. Galaxy Zoo labels were available for approximately 600;000 SDSS
galaxies, which Jocelyn felt would be more than enough to use to train and test a galaxy
morphology classification model. Conveniently, this also determined the subset of the
SDSS dataset (those galaxies used in the Galaxy Zoo project) that Jocelyn would use for
this project. With the knowledge that the Galaxy Zoo labels would provide her with a target
feature, Jocelyn returned to speak with Ted again about getting access to the SDSS data.

Accessing the results of the SDSS processing pipeline turned out to be reasonably straight-
forward, as it was already collected into a single large table in the SDSS data repository.
Ted organized a full download of the SDSS photo imaging data repository for all the ob-
jects for which Galaxy Zoo labels existed. This dataset contained 600;000 rows and 547
columns,9 with one row for each galaxy observation, containing identifiers, position infor-
mation, and measures describing the characteristics of the galaxy.

Jocelyn decided to begin her data exploration work by focusing on the target feature.
The structure of the data available from the Galaxy Zoo project is shown in Table 13.1[709].
The category of each galaxy is voted on by multiple Galaxy Zoo participants, and the data
includes the fraction of these votes for each of the categories.

The raw data did not contain a single column that could be used as a target feature, so
Jocelyn had to design one from the data sources that were present. She generated two

9. The fact that the SDSS and Galaxy Zoo make all their data available for free online is a massive con-
tribution to global science. The data used in this case study can be accessed by performing a simple SQL
query at skyserver.sdss3.org/dr9/en/tools/search/sql.asp. The query to select all the camera imaging data from
the SDSS data release for each of the objects covered by the Galaxy Zoo project along with the Galaxy
Zoo classifications is SELECT * FROM PhotoObj AS p JOIN ZooSpec AS zs ON zs.objid =
p.objid ORDER BY p.objid. Full details of all the data tables available from the SDSS are available at
skyserver.sdss3.org/dr9/en/help/docs/tabledesc.asp.

skyserver.sdss3.org/dr9/en/tools/search/sql.asp
skyserver.sdss3.org/dr9/en/help/docs/tabledesc.asp
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(a) 3-level model (b) 5-level model

Figure 13.3
Bar plots of the different galaxy types present in the full SDSS dataset for the 3-level and 5-level
target features.

possible target features from the data provided. In both cases, the target feature level was
set to the galaxy category that received the majority of the votes. In the first target feature,
just three levels were used: elliptical (P EL majority), spiral (P CW, P ACW, or P EDGE

majority), and other (P MG or P DK majority). The second target feature allowed three
levels for spiral galaxies: spiral cw (P CW majority), spiral acw (P ACW majority), and
spiral edge (P EDGE majority). Figure 13.3[710] shows bar plots of the frequencies of the
3-level and the 5-level target features. The main observation that Jocelyn made from these
is that galaxies in the dataset were not evenly distributed across the different morphology
types. Instead, the elliptical level was much more heavily represented than the others in
both cases. Using the 3-level target feature as her initial focus, Jocelyn began to look at the
different descriptive features in the data downloaded from the SDSS repository that might
be useful in building a model to predict galaxy morphology.

The SDSS download that Jocelyn had access to was a big dataset—over 600;000 rows.
Although modern predictive analytics and machine learning tools can handle data of this
size, a large dataset can be cumbersome when performing data exploration operations—
calculating summary statistics, generating visualizations, and performing correlation tests
can just take too long. For this reason, Jocelyn extracted a small sample of 10;000 rows
from the full dataset for exploratory analysis using stratified sampling.

Given that (1) the SDSS data that Jocelyn downloaded was already in a single table; (2)
the data was already at the right prediction subject level (one row per galaxy); and (3) many
of the columns in this dataset would most likely be used directly as features in the ABT that
she was building, Jocelyn decided to produce a data quality report on this dataset. Table
13.2[711] shows an extract from this data quality report. At this point Jocelyn was primarily
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Table 13.2
Analysis of a subset of the features in the SDSS dataset.

% 1st 3rd Std.
Feature Count Miss. Card. Min. Qrt. Mean Median Qrt. Max. Dev.
RUN 10,000 0.00 380 109.00 2,821.00 3,703.45 3,841.00 4,646.00 8,095.00 1,378.82
RA.1 10,000 0.00 9,964 0.03 151.38 185.26 185.02 220.56 359.99 59.12
DEC.1 10,000 0.00 9,928 -11.23 9.71 24.87 23.41 39.11 69.83 18.92
ROWC U 10,000 0.00 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ROWC G 10,000 0.00 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ROWC R 10,000 0.00 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ROWC I 10,000 0.00 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ROWC Z 10,000 0.00 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SKYIVAR U 10,000 0.00 9,986 -9,999.00 459.81 78.89 798.27 1,083.65 2,197.09 450.26
SKYIVAR G 10,000 0.00 9,989 -9,999.00 439.55 965.88 2,957.92 6,005.71 9,913.59 2,766.70
SKYIVAR R 10,000 0.00 9,988 -9,999.00 123.31 201.91 1,091.78 3,347.77 4,623.07 1,514.50
SKYIVAR I 10,000 0.00 9,986 -9,999.00 46.02 174.79 434.48 1,825.93 2,527.57 851.42
SKYIVAR Z 10,000 0.00 9,986 -9,999.00 13.60 -234.23 49.57 75.39 205.07 44.51
PSFMAG U 10,000 0.00 9,768 7.47 20.60 21.08 21.13 21.598 26.19 0.85
PSFMAG G 10,000 0.00 9,743 8.30 19.06 19.48 19.54 19.967 26.17 0.78
PSFMAG R 10,000 0.00 9,744 7.45 18.23 18.65 18.68 19.113 26.49 0.76
PSFMAG I 10,000 0.00 9,744 7.33 17.83 18.27 18.26 18.722 25.46 0.80
PSFMAG Z 10,000 0.00 9,747 7.40 17.47 17.93 17.90 18.381 23.92 0.82
DEVFLUX U 10,000 0.00 9,990 -3.68 11.64 43.05 23.07 44.31 28,616.04 194.73
DEVFLUX G 10,000 0.00 9,987 -1,278.28 48.79 143.71 77.06 133.46 614,662.80 2,401.59
DEVFLUX R 10,000 0.00 9,983 -4.37 111.04 267.74 152.75 250.65 137,413.00 993.65
DEVFLUX I 10,000 0.00 9,980 -4.06 160.42 390.98 216.57 351.21 608,862.80 3,041.20
DEVFLUX Z 10,000 0.00 9,983 -14.72 204.72 528.69 276.99 447.45 2,264,700.00 9,073.95

interested in understanding the amount of data available, any issues that might arise from
missing values, and the types of each column in the dataset.

Jocelyn was surprised that none of the columns had any missing values. Although this
is not unheard of (particularly in cases like the SDSS project in which data is generated
in a fully automated process), it is very unusual. The minimum values of �9;999 for the
SKYIVAR U/G/R/I/Z columns (and some others not shown in Table 13.2[711]), which were
so different from the means for those columns, suggested that maybe there were missing
values after all.10 There were also a number of columns, such as ROWC U/G/R/I/Z, that had
cardinality of 1 (and standard deviations of zero) indicating that every row had the same.
These features contained no actual information, so should be removed from the dataset.

10. Many systems use values like �9;999 to indicate that values are actually missing.
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Figure 13.4
The revised domain concepts diagram for the galaxy classification task.

Having performed this initial analysis, Jocelyn met again with Edwin and Ted to discuss
the data quality issues and, more generally, to review the domain concepts outlined in
Figure 13.2[708] so as to begin designing the actual descriptive features that would populate
the ABT. Edwin was broadly in agreement with the set of domain concepts that Jocelyn had
developed and was very positive about the use of Galaxy Zoo classifications as a source
for generating the target feature. He did explain, however, that Jocelyn’s suggestion of
using position information was very unlikely to be useful, so that was removed from the
set of domain concepts. Edwin also agreed that Ted was correct about the unavailability
of spectrograph data for most objects, so this was also removed. The final domain concept
diagram is shown in Figure 13.4[712]. Edwin helped Jocelyn align the columns in the raw
SDSS dataset with the different domain concepts, which generated a good set of descriptive
features within each domain concept.

Both Edwin and Ted were surprised to see missing values in the data, as it was produced
through a fully automated process. Simply through eyeballing the data, Jocelyn uncovered
the fact that, in almost all cases, when one suspect �9;999 value was present in a row
in the dataset, that row contained a number of suspect �9;999 values (this was the case
for 2% of the rows in the dataset). Although neither Edwin nor Ted could understand
exactly how this had happened, they agreed that something had obviously gone wrong in
the processing pipeline in those cases and that the �9;999 values must refer to missing
values.11 Complete case analysis was used to entirely remove any rows containing two
or more �9;999, or missing, values. Before performing this operation, however, Jocelyn
first checked that the percentage of missing values was approximately 2% in each of the 3
levels (and in each of the levels in the 5-level model) to ensure that there was no relationship

11. The co-occurrence of multiple missing values in a row is something that it is hard to find through summary
analysis of the data and one of the reasons analytics practitioners should always eyeball extracts from a dataset
during the data exploration process.
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between missing values and galaxy type. There was no obvious relationship, so Jocelyn
was confident that removing rows containing missing values would not affect one target
level more than the others.

One of the advantages of working in scientific scenarios is that there is a body of liter-
ature that discusses how other scientists have addressed similar problems. Working with
Edwin, Jocelyn reviewed the relevant literature and discovered a number of very infor-
mative articles discussing descriptive features that were likely to be useful in classifying
galaxy morphologies.12 In particular, a number of interesting features that could be derived
from the flux and magnitude measurements already in the SDSS dataset were described in
the literature. Jocelyn implemented these derived features for inclusion in the final ABT.

In many instances the SDSS dataset contained the same measurement for a night sky
object measured separately for each of the five photometric bands covered by the SDSS
telescope. Because of this, Jocelyn suspected that there would be a large amount of re-
dundancy in the data as the measurements in the different bands were likely to be highly
correlated. To investigate this idea, she generated SPLOM charts for different photometric
band versions of a selection of columns from the dataset (see Figure 13.5[714]), and these
showed significant relationships, which confirmed her suspicion. Jocelyn showed these
charts to Edwin. Edwin agreed that it was likely that correlations existed between mea-
surements in the different photometric bands but stressed, however, that differences across
these bands would exist and might be quite important in predicting galaxy morphology.
The existence of a high level of correlation between measurements indicated to Jocelyn
that feature selection would be important later during the modeling phase as it had the
potential to massively reduce the dimensionality of the dataset.

At this point the design of the ABT had fallen into place. For the most part, Jocelyn
would use descriptive features directly from the raw SDSS data. These would be aug-
mented with a small number of derived features that the literature review undertaken with
Edwin had identified. Jocelyn was now ready to move into the Data Preparation phase,
during which she would populate the ABT, analyze its contents in detail, and perform any
transformations that were required to handle data quality issues.

13.3 Data Preparation

After removing a large number of the columns from the raw SDSS dataset, introducing
a number of derived features, and generating two target features, Jocelyn generated an
ABT containing 327 descriptive features and two target features. Table 13.3[715] lists these

12. Interested readers might find Tempel et al. (2011), Ball et al. (2004) and Banerji et al. (2010) good references
on this topic.
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(a) EXPRAD (b) DEVRAD

Figure 13.5
SPLOM diagrams of (a) the EXPRAD; and (b) DEVRAD measurements from the raw SDSS dataset.
Each SPLOM shows the measure across the five different photometric bands captured by the SDSS
telescope (u, g, r, i, and z).

features (features that occur over all five photometric bands are listed as NAME U/G/R/I/Z

to save space).13

Once Jocelyn had populated the ABT, she generated a data quality report (the initial data
quality report covered the data in the raw SDSS dataset only, so a second one was required
that covered the actual ABT) and performed an in-depth analysis of the characteristics of
each descriptive feature. An extract from this data quality report is shown in Table 13.4[716].

The magnitude of the maximum values for the FIBER2FLUXIVAR U feature in compari-
son to the median and 3rd quartile value was unusual and suggested the presence of outliers.
The difference between the mean and median values for the SKYIVAR R feature also sug-
gested the presence of outliers. Similarly, the difference between the mean and median
values for the LNLSTAR R feature suggested that the distribution of this feature was heav-
ily skewed and also suggested the presence of outliers. Figure 13.6[717] shows histograms

13. We direct the interested reader to http://skyserver.sdss3.org/dr9/en/sdss/data/data.asp for a overview of what
these features represent.

http://skyserver.sdss3.org/dr9/en/sdss/data/data.asp
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Table 13.3
Features from the ABT for the SDSS galaxy classification problem.

Feature Feature Feature
SKYIVAR U/G/R/I/Z UERR U/G/R/I/Z EXPFLUX U/G/R/I/Z

PSFMAG U/G/R/I/Z ME1 U/G/R/I/Z EXPFLUXIVAR U/G/R/I/Z

PSFMAGERR U/G/R/I/Z ME2 U/G/R/I/Z MODELFLUXIVAR U/G/R/I/Z

FIBERMAG U/G/R/I/Z ME1E1ERR U/G/R/I/Z CMODELFLUX U/G/R/I/Z

FIBERMAGERR U/G/R/I/Z ME1E2ERR U/G/R/I/Z CMODELFLUXIVAR U/G/R/I/Z

FIBER2MAG U/G/R/I/Z ME2E2ERR U/G/R/I/Z APERFLUX7 U/G/R/I/Z

FIBER2MAGERR U/G/R/I/Z MRRCC U/G/R/I/Z APERFLUX7IVAR U/G/R/I/Z

PETROMAG U/G/R/I/Z MRRCCERR U/G/R/I/Z LNLSTAR U/G/R/I/Z

PETROMAGERR U/G/R/I/Z MCR4 U/G/R/I/Z LNLEXP U/G/R/I/Z

PSFFLUX U/G/R/I/Z DEVRAD U/G/R/I/Z LNLDEV U/G/R/I/Z

PSFFLUXIVAR U/G/R/I/Z DEVRADERR U/G/R/I/Z FRACDEV U/G/R/I/Z

FIBERFLUX U/G/R/I/Z DEVAB U/G/R/I/Z DERED U/G/R/I/Z

FIBERFLUXIVAR U/G/R/I/Z DEVABERR U/G/R/I/Z DEREDDIFF U G

FIBER2FLUX U/G/R/I/Z DEVMAG U/G/R/I/Z DEREDDIFF G R

FIBER2FLUXIVAR U/G/R/I/Z DEVMAGERR U/G/R/I/Z DEREDDIFF R I

PETROFLUX U/G/R/I/Z DEVFLUX U/G/R/I/Z DEREDDIFF I Z

PETROFLUXIVAR U/G/R/I/Z DEVFLUXIVAR U/G/R/I/Z PETRORATIO I

PETRORAD U/G/R/I/Z EXPRAD U/G/R/I/Z PETRORATIO R

PETRORADERR U/G/R/I/Z EXPRADERR U/G/R/I/Z AE I

PETROR50 U/G/R/I/Z EXPAB U/G/R/I/Z PETROMAGDIFF U G

PETROR50ERR U/G/R/I/Z EXPABERR U/G/R/I/Z PETROMAGDIFF G R

PETROR90 U/G/R/I/Z EXPMAG U/G/R/I/Z PETROMAGDIFF R I

PETROR90ERR U/G/R/I/Z EXPMAGERR U/G/R/I/Z PETROMAGDIFF I Z

Q U/G/R/I/Z CMODELMAG U/G/R/I/Z GALAXY CLASS 3
QERR U/G/R/I/Z CMODELMAGERR U/G/R/I/Z GALAXY CLASS 5
U U/G/R/I/Z

for these features. The problems of outliers and skewed distributions is clearly visible in
these distributions. A number of other features exhibited a similar pattern.

With Edwin’s help, Jocelyn investigated the actual data in the ABT to determine whether
the extreme values in the features displaying significant skew or the presence of outliers
were due to valid outliers or invalid outliers. In all cases the extreme values were deter-
mined to be valid outliers. Jocelyn decided to use the clamp transformation to change
the values of these outliers to something closer to the central tendency of the features. Any
values beyond the 1st quartile value plus 2:5 times the inter-quartile range were reduced to
this value. The standard value of 1:5 times the inter-quartile range was changed to 2:5 to
slightly reduce the impact of this operation.
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(a) FIBER2FLUXIVAR U (b) SKYLVAR R (c) LNLSTAR R

Figure 13.6
Histograms of a selection of features from the SDSS dataset.

Jocelyn also made the decision to normalize all the descriptive features into standard
scores.The differences in the ranges of values of the set of descriptive features in the ABT
was huge. For example, DEVAB R had a range as small as r0:05; 1:00s while APER-
FLUX7IVAR U had a range as large as r�265;862; 15;274s. Standardizing the descrip-
tive feature in this way was likely to improve the accuracy of the final predictive models.
The only drawback to standardization is that the models become less interpretable. Inter-
pretability, however, was not particularly important for the SDSS scenario (the model built
would be added to the existing SDSS pipeline and process thousands of galaxy objects per
day), so standardization was appropriate.

Jocelyn also performed a simple first-pass feature selection using the 3-level model to
see which features might stand out as predictive of galaxy morphology. Jocelyn used the
information gain measure to rank the predictiveness of the different features in the dataset
(for this analysis, missing values were simply omitted). The columns identified as being
most predictive of galaxy morphology were EXPRAD G (0:3908), EXPRAD R (0:3649),
DEVRAD G (0:3607), EXPRAD I (0:3509), DEVRAD R (0:3467), EXPRAD Z (0:3457),
and MRRCC G (0:3365). Jocelyn generated histograms for all these features compared to
the target feature—for example, Figure 13.7[718] shows the histograms for the EXPRAD R

feature. It was encouraging that in many cases distinct distributions for each galaxy type
were apparent in the histograms. Figure 13.8[718] shows small multiple box plots divided
by galaxy type for a selection of features from the ABT. The differences between the three
box plots in each plot gives an indication of the likely predictiveness of each feature. The
presence of large numbers of outliers can also be seen.
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Figure 13.7
Histograms of the EXPRAD R feature split by target feature level.

(a) AE I (b) DEVAB G (c) FIBERFLUXIVAR R

Figure 13.8
(a)–(c) Small multiple box plots (split by the target feature) of some of the features from the SDSS
ABT.
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13.4 Modeling

The descriptive features in the SDSS dataset are primarily continuous. For this reason,
Jocelyn considered trying a similarity-based model, the k nearest neighbor, and two error-
based models, the logistic regression model and the support vector machine. Jocelyn
began by constructing a simple baseline model using the 3-level target feature.

13.4.1 Baseline Models
Because of the size of the ABT, Jocelyn decided to split the dataset into a training set and
a large hold-out test set. Subsets of the training set would be also used for validation
during the model building process. The training set consisted of 30% of the data in the
ABT (approximately 200;000 instances), and the test set consisted of the remaining 70%
(approximately 450;000 instances).14 Using the training set, Jocelyn performed a 10-fold
cross validation experiment on models trained to use the full set of descriptive features to
predict the 3-level target. These would act as baseline performance scores that she would
try to improve upon. The classification accuracies achieved during the cross validation
experiment were 82:912%, 86:041%, and 85:942% by the k nearest neighbor, logistic re-
gression, and support vector machine models respectively. The confusion matrices from
the evaluation of these models are shown in Table 13.5[720].

These initial baseline results were promising; however, one key issue did emerge. It was
clear that the performance of the models trained using the SDSS data was severely affected
by the target level imbalance in the data—there were many more examples of the elliptical
target level than either the spiral or, especially, the other target level. Having a dominant
target level, like the elliptical target level in this example, means that models trained on
this data can overcompensate for the majority target level and ignore the minority ones.
For example, based on the confusion matrix in Table 13.5(c)[720], the misclassification rate
for the elliptical target level is only 8:756%, while for the spiral target level, it is higher, at
18:693%, and for the other target level, it is a fairly dire 98:230%. The single classification
accuracy performance measure hides this poor performance on the minority target levels.
An average class accuracy performance measure, however, brings this issue to the fore.
The average class accuracy scores achieved by the models were 54:663%, 62:137%, and
58:107% by the k nearest neighbor, logistic regression, and support vector machine models
respectively. Jocelyn decided to build a second set of models in which she would address
the target level imbalance issue.

14. It is more common to split an ABT in the opposite proportions (70% for the training set and 30% for the test
set). In this case, however, because the ABT was so large it was more useful to have a very large test sample, as
200;000 instances should be more than enough for the training set.
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Table 13.5
The confusion matrices for the baseline models.

(a) k nearest neighbor model (classification accuracy: 82:912%, average class accuracy: 54:663%)

Prediction
elliptical spiral other Recall

Target
elliptical 115;438 10;238 54 91:814%

spiral 19;831 50;368 18 71:731%
other 2;905 1;130 18 0:442%

(b) logistic regression model (classification accuracy: 86:041%, average class accuracy:
62:137%)

Prediction
elliptical spiral other Recall

Target
elliptical 115;169 10;310 251 91:600%

spiral 13;645 56;321 251 80:209%
other 2;098 1;363 592 14:602%

(c) support vector machine model (classification accuracy: 85:942%, average class accuracy:
58:107%)

Prediction
elliptical spiral other Recall

Target
elliptical 114;721 10;992 18 91:244%

spiral 13;089 57;092 36 81:307%
other 2;654 1;327 72 1:770%

The target level imbalance in the SDSS dataset arises through relative rarity.15 In the
large SDSS dataset, there are plenty of galaxies in the other and spiral categories; there are
just many more in the elliptical category. In this case, Jocelyn addressed the target level
imbalance problem by using under-sampling to generate a new training dataset in which
all three target levels had an equal distribution. This was referred to as the under-sampled
training set. Jocelyn performed the same baseline test on the three model types using this
new dataset. The resulting confusion matrices are shown in Table 13.6[721].

15. Target level imbalance typically arises through either absolute rarity or relative rarity of the minority target
levels. Absolute rarity refers to scenarios in which there simply do not exist many examples of the minority target
levels—for example, in automated inspection tasks on production lines, it is often the case that there are simply
very few examples of defective products that can be used for training. Relative rarity, on the other hand, refers to
scenarios in which the proportion of examples of the majority target levels in a dataset is much higher than the
proportion of examples of the minority target level, but there is actually no shortage of examples of the minority
target level.



13.4 Modeling 721

Table 13.6
The confusion matrices showing the performance of models on the under-sampled training set.

(a) k nearest neighbor model (classification accuracy: 73:965%)

Prediction
elliptical spiral other Recall

Target
elliptical 23;598 4;629 5;253 70:483%

spiral 4;955 24;734 3;422 74:700%
other 3;209 4;572 25;628 76:711%

(b) logistic regression model (classification accuracy: 78:805%)

Prediction
elliptical spiral other Recall

Target
elliptical 25;571 4;203 3;706 76:378%

spiral 3;677 26;267 3;166 79:331%
other 2;684 3;763 26;963 80:705%

(c) support vector machine model (classification accuracy: 78:226%)

Prediction
elliptical spiral other Recall

Target
elliptical 24;634 4;756 4;089 73:579%

spiral 3;763 26;310 3;038 79:460%
other 2;584 3;550 27;275 81:640%

The resulting classification accuracies (average class accuracies and classification accu-
racies are the same in this case because the dataset is balanced) from the 10-fold cross
validation experiment were 73:965%, 78:805%, and 78:226% for the k nearest neighbor,
logistic regression, and support vector machine models respectively. The overall perfor-
mance on this balanced dataset was not as good as the performance on the original dataset;
however, balancing the training set did result in the performance on each target level being
more equal. Predictions for the other target level are actually being performed this time,
whereas in the previous example, this target level was essentially being ignored. Choosing
between models in this sort of scenario is difficult as it really comes down to balancing the
needs of the application—when the system makes errors (as it inevitably will from time to
time), what error is least bad? In this example, is it better to classify a galaxy that should
be other as an elliptical galaxy or vice versa? Jocelyn discussed this issue and the re-
sults of these two baseline experiments with Edwin, and both decided that it would be best
to pursue the optimal performance measured by overall classification accuracy because,
in practice, the important thing for the SDSS system was to classify elliptical and spiral
galaxies as accurately as possible.
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With these baseline performance measures established, Jocelyn turned her attention to
feature selection in an effort to improve on these performance scores.

13.4.2 Feature Selection
In the SDSS dataset, many of the features are represented multiple times for each of the
five different photometric bands, and this made Jocelyn suspect that many of these fea-
tures might be redundant and so ripe for removal from the dataset. Feature selection
approaches that search through subsets of features (known as wrapper approaches) are
better at removing redundant features than rank and prune approaches because they con-
sider groups of features together. For this reason, Jocelyn chose to use a step-wise se-
quential search for feature selection for each of the three model types. In all cases overall
classification accuracy was used as the fitness function that drove the search. After feature
selection, the classification accuracy of the models on the test set were 85:557%, 88:829%,
and 87:188% for the k nearest neighbor, logistic regression, and support vector machine
models respectively. The resulting confusion matrices are shown in Table 13.7[723]. In all
cases performance of the models improved with feature selection. The best performing
model is the logistic regression model. For this model, just 31 out of the total 327 features
were selected.16 This was not surprising given the large amount of redundancy within the
feature set.

Based on these results, Jocelyn determined that the logistic regression model trained us-
ing the reduced set of features was the best model to use for galaxy classification. This
model gave the best prediction accuracy and offered the potential for very fast classifica-
tion times, which was attractive for integration into the SDSS pipeline. Logistic regression
models also produce confidences along with the predictions, which was attractive to Edwin
as it meant that he could build tests into the pipeline that would redirect galaxies with low
confidence classifications for manual confirmation of the predictions made by the auto-
mated system.

13.4.3 The 5-Level Model
To address the finer grained 5-level (elliptical, spiral cw, spiral acw, spiral eo, and other)
classification task, Jocelyn attempted two approaches. First, she used a 5-target-level
model to make predictions. Second, she used a two-stage model. In this case the lo-
gistic regression model used for the 3-level target feature would first be used, and then a
model trained to distinguish only between different spiral galaxy types (clockwise, anti-

16. The features selected were AE I, APERFLUX7IVAR G, APERFLUX7IVAR I, APERFLUX7 U, DERED U,
DEVAB R, DEVRADERR Z, DEVRAD U, DEREDDIFF G R, EXPRAD G, EXPRAD R, FIBER2FLUXIVAR Z,
FIBER2MAGERR G, FIBERFLUXIVAR R, FRACDEV Z, LNLDEV G, LNLDEV R, LNLDEV U, LNLDEV Z,
MCR4 Z, PETROFLUXIVAR G, PETROFLUXIVAR I, PETROR50ERR R, PETROR50 G, PETROR90 G, PETRO-
RATIO R, PSFFLUXIVAR I, PSFMAGERR R, PSFMAG R, SKYIVAR U, and SKYIVAR Z.
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Table 13.7
The confusion matrices for the models after feature selection.

(a) k nearest neighbor model (classification accuracy: 85:557%, average class accuracy:
57:617%)

Prediction
elliptical spiral other Recall

Target
elliptical 116;640 9;037 54 92:770%

spiral 15;833 54;366 18 77:426%
other 2;815 1;130 108 2:655%

(b) logistic regression model (classification accuracy: 88:829%, average class accuracy:
67:665%)

Prediction
elliptical spiral other Recall

Target
elliptical 117;339 8;302 90 93:326%

spiral 10;812 59;297 108 84:448%
other 1;757 1;273 1;022 25:221%

(c) support vector machine model (classification accuracy: 87:188%, average class accuracy:
60:868%)

Prediction
elliptical spiral other Recall

Target
elliptical 115;152 10;561 18 91:586%

spiral 11;243 58;938 36 83:938%
other 2;528 1;237 287 7:080%

clockwise, and edge-on) would be used to further classify those galaxy objects classified
as spiral by the first stage.

Based on the performance of the logistic regression model on the 3-level classification
problem, Jocelyn trained a logistic regression classifier on the 5-level dataset and evaluated
it using a 10-fold cross validation. Following the same approach as in earlier models,
Jocelyn performed feature selection using a step-wise sequential search to find the best
subset of features for this model. Just 11 features from the full set were selected.17 The
resulting classification accuracy on the best performing model that Jocelyn could build was
77:528% (with an average class accuracy of 43:018%). The confusion matrix from this
test is shown in Table 13.8[724]. The overall accuracy of this model is somewhat comparable

17. The features selected were SKYIVAR U, PETROFLUXIVAR I, PETROR50ERR G, DEVRAD G, DE-
VRADERR R, DEVRADERR I, DEVAB G, EXPFLUX Z, APERFLUX7 Z, APERFLUX7IVAR R, and MODEL-
MAGDIFF I Z.
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Table 13.8
The confusion matrix for the 5-level logistic regression model (classification accuracy: 77:528%,
average class accuracy: 43:018%).

Prediction
elliptical spiral cw spiral acw spiral eo other Recall

Target

elliptical 120;625 46 1;515 3;450 95 95:939%
spiral cw 7;986 373 4;715 2;176 30 2:443%

spiral acw 8;395 435 4;928 2;272 35 30:673%
spiral eo 8;719 75 1;018 28;981 78 74:556%

other 3;038 30 218 619 148 3:660%

Table 13.9
The confusion matrix for the logistic regression model that distinguished between only the spiral
galaxy types (classification accuracy: 68:225%, average class accuracy: 56:621%).

Prediction
spiral cw spiral acw spiral eo Recall

Target
spiral cw 5;753 6;214 3;319 37:636%

spiral acw 6;011 6;509 3;540 40:528%
spiral eo 1;143 2;084 35;643 91:698%

with the overall accuracy of the 3-level model. The classifier accurately predicts the type of
galaxies with the elliptical target level and, to a lesser extent, with the spiral eo target level.
The ability of the model to distinguish between clockwise (spiral cw) and anti-clockwise
(spiral acw) spiral galaxies, however, is extremely poor.

To test the two-stage classifier, Jocelyn extracted a small ABT containing only spiral
galaxies from the original ABT. Using this new ABT, Jocelyn trained a logistic regres-
sion model to distinguish between the three spiral galaxy types (spiral cw, spiral acw, and
spiral eo). She used step-wise sequential feature selection again, and this time 32 features
were chosen.18 This model was able to achieve a classification accuracy of 68:225% (with
an average class accuracy of 56:621%). The resulting confusion matrix is shown in Table
13.9[724]. Although it is evident from the confusion matrix that the model could distin-
guish between the edge-on spiral galaxies and the other two types, it could not accurately
distinguish between the clockwise and anti-clockwise spiral galaxies.

18. The features selected were AE I, APERFLUX7IVAR R, CMODELFLUXIVAR U, DEVABERR G, DEV-
ABERR Z, DEVAB G, DEVAB I, DEVFLUXIVAR U, DEVMAGERR U, DEVRAD G, DEVRAD U, DERED-
DIFF U G, EXPABERR U, EXPAB G, EXPMAG Z, EXPRADERR U, FIBER2FLUXIVAR R, FIBER2MAG I,
FIBERFLUXIVAR G, FIBERFLUX G, FIBERFLUX R, FIBERFLUX Z, LNLDEV R, MCR4 Z, ME1E1ERR Z,
ME1 U, MODELMAGDIFF R I, PETROMAGDIFF R I, PETROR90 R, PSFMAG U, SKYIVAR U, and U R.
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Table 13.10
The confusion matrix for the 5-level two-stage model (classification accuracy: 79:410%, average
class accuracy: 53:118%).

Prediction
elliptical spiral cw spiral acw spiral eo other Recall

Target

elliptical 117;339 76 2;510 5;716 90 93:326%
spiral cw 2;354 4;859 5;242 2;802 23 31:799%

spiral acw 2;473 5;079 5;499 2;990 25 34:229%
spiral eo 5;985 965 1;760 30;102 60 77:439%

other 1;757 98 341 834 1;022 25:222%

In spite of the model’s difficulty distinguishing between the clockwise and anti-clockwise
spiral galaxies, Jocelyn did perform an evaluation of the two-stage model. This model first
used a 3-level logistic regression model to distinguish between the elliptical, spiral, and
other target levels. Any objects classified as belonging to the spiral target level were then
presented to a model trained to distinguish between the three different spiral types. The
two-stage model achieved a classification accuracy of 79:410%. The resulting confusion
matrix is shown in Table 13.10[725].

Although the performance of the two-stage model was better than the performance of the
simpler 5-level model, it still did a very poor job of distinguishing between the different
spiral galaxy types. Jocelyn discussed this model with Edwin, and they both agreed that
the performance was not at the level required by the SDSS scientists for inclusion in the
SDSS processing pipeline. It would most likely be possible to create a model that could
distinguish between the clockwise and anti-clockwise spiral galaxies, but this would prob-
ably require the calculation of new features based on the application of image processing
techniques to the raw galaxy images. Based on the time available to the project, Jocelyn
did not pursue this avenue and, in consultation with Edwin, decided to continue with just
the 3-level model. The best-performing model was the 3-level logistic regression model
after feature selection (the performance of this model is shown in Table 13.7(b)[723]). With
this model selected as the best performing approach, Jocelyn was ready to perform the final
evaluation experiment.

13.5 Evaluation

The final evaluation that Jocelyn performed was in two parts. In the first part, she per-
formed a performance test of the final model selected—the 3-level logistic regression
model using the selected feature subset—on the large test dataset mentioned at the be-
ginning of Section 13.4[719]. This dataset had not been used in the training process, so the
performance of the model on this dataset should give a fair indication of how well the
model would perform when deployed on real, unseen data. The confusion matrix resulting
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Table 13.11
The confusion matrix for the final logistic regression model on the large hold-out test set (classifica-
tion accuracy: 87:979%, average class accuracy: 67:305%).

Prediction
elliptical spiral other Recall

Target
elliptical 251;845 19;159 213 92:857%

spiral 25;748 128;621 262 83:179%
other 4;286 2;648 2;421 25:879%

from this test is shown in Table 13.11[726]. The classification accuracy was 87:979% (with
an average class accuracy of 67:305%), which was similar to performance on the training
data and well above the target that Jocelyn and Edwin had agreed on at the beginning of
the project.

The purpose of the second part of the evaluation was to encourage confidence in the
models that Jocelyn had built among the SDSS scientists. In this evaluation, Edwin and
four of his colleagues independently examined 200 galaxy images randomly selected from
the final test set and classified them as belonging to one of the three galaxy types. A single
majority classification was calculated from the five manual classifications for each galaxy.
Jocelyn extracted two key measurements by comparing these manual classifications to the
classifications made by the model she had built. First, Jocelyn calculated an average class
accuracy by comparing the predictions made by her model for the same 200 galaxies with
the manual classifications made by the SDSS scientists. The average class accuracy was
78:278%, which was similar to the accuracies measured on the overall test set.

Second, Jocelyn calculated an inter-annotator agreement statistic for the manual clas-
sifications given by the five SDSS scientists. Using the Cohen’s kappa19 measure of
inter-annotator agreement to measure how closely the manual classifications matched
each other, Jocelyn calculated a measure of 0:6. Jocelyn showed that even the SDSS sci-
entists themselves disagreed on the types of certain galaxies. This is not uncommon in this
kind of scenario, in which the classifications have a certain amount of fuzziness around
their boundaries—e.g., the exact line between an elliptical and a spiral galaxy can be hard
to define—and led to very interesting discussions for the scientists!

Together the strong performance by the model on the large test dataset and the confidence
built through the manual annotation exercise meant that Edwin and his colleagues were
happy to integrate the 3-level model into the SDSS processing pipeline.

19. The Cohen’s kappa statistic was first described in Cohen (1960). Using the Cohen’s kappa statistic, a value of
1:0 indicates total agreement, while a value of 0:0 indicates agreement no better than chance. Values around 0:6
are typically understood to indicate an acceptable level of agreement, although the exact nature of what is and is
not acceptable is very task dependent.
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13.6 Deployment

Once Edwin had approved the models that Jocelyn had built, Jocelyn met again with Ted
to begin the process of integrating the models into the SDSS processing pipeline. This was
a reasonably straightforward process with just a few issues that needed discussion. First,
Jocelyn had put the SDSS data through a preprocessing step, standardizing all descriptive
features. The standardization parameters (the mean and standard deviation of each feature)
needed to be included in the pipeline so that the same preprocessing step could be applied
to newly arriving instances before presenting them to the models.

Second, a process was put in place that allowed manual review by SDSS experts to be
included in the galaxy classification process. One of the advantages of using a logistic
regression model is that along with classifications, it also produces probabilities. Given
that there are three target levels, a prediction probability of approximately 0:333 indicates
that the prediction made by the model is really quite unsure. A system was put in place in
the SDSS processing pipeline to flag for manual review any galaxies given low probability
predictions.

Last, a strategy needed to be put in place to monitor the performance of the models over
time so that any concept drift that might take place could be flagged. Jocelyn agreed with
Ted to put in place an alert system using the stability index. This would raise an alert
whenever the stability index went above 0:25 so that someone could consider retraining
the model.





14 The Art of Machine Learning for Predictive Data Analytics

“It is a capital mistake to theorize before one has data. Insensibly one begins to twist facts to suit
theories, instead of theories to suit facts.”
—Sherlock Holmes

Predictive data analytics projects use machine learning to build models that capture the
relationships in large datasets between descriptive features and a target feature. A spe-
cific type of learning, called inductive learning, is used, where learning entails inducing a
general rule from a set of specific instances. This observation is important because it high-
lights that machine learning has the same properties as inductive learning. One of these
properties is that a model learned by induction is not guaranteed to be correct. In other
words, the general rule that is induced from a sample may not be true for all instances in a
population.

Another important property of inductive learning is that learning cannot occur unless
the learning process is biased in some way. This means that we need to tell the learning
process what types of patterns to look for in the data. This bias is referred to as inductive
bias. The inductive bias of a learning algorithm comprises the set of assumptions that
define the search space the algorithm explores, and the search process it uses.

On top of the inductive bias encoded in a machine learning algorithm, we also bias the
outcome of a predictive data analytics project in lots of other ways. Consider the following
questions:

What is the predictive analytics target? What descriptive features will we include/exclude?
How will we handle missing values? How will we normalize our features? How will we
represent continuous features? What types of models will we create? How will we set the
parameters of the learning algorithms? What evaluation process will we follow? What
performance measures will we use?

These questions are relevant when building any prediction model, and the answer to
each one introduces a specific bias. Often we are forced to answer these questions, and
others like them, based on intuition, experience, and experimentation. This is what makes
machine learning something of an art, rather than strictly a science. But it is also what
makes machine learning such a fascinating and rewarding area in which to work.
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Table 14.1
The alignment between the phases of CRISP-DM, key questions for analytics projects, and the chap-
ters and sections of this book.

CRISP-DM Open Questions Chapter

Business
Understanding

What is the organizational problem being ad-
dressed? In what ways could a prediction model
address the organizational problem? Do we
have situational fluency? What is the capacity
of the organization to utilize the output of a pre-
diction model? What data is available?

Chapter 2[23]

Data
Understanding

What is the prediction subject? What are the do-
main concepts? What is the target feature? What
descriptive features will be used?

Chapter 2[23]

Data
Preparation

Are there data quality issues? How will we han-
dle missing values? How will we normalize our
features? What features will we include?

Chapter 3[53]

Modeling
What types of models will we use? How will we
set the parameters of the machine learning al-
gorithms? Have underfitting or overfitting oc-
curred?

Chapters 4[117], 5[181],
6[243], 7[311] and 8[381]

Evaluation
What evaluation process will we follow? What
performance measures will we use? Is the model
fit for purpose?

Chapter 9[533]

Deployment
How will we continue to evaluate the model after
deployment? How will the model be integrated
into the organization?

Section 9.4.6[578] and
Chapters 12[685] and
13[703]

En masse all the questions that must be answered to successfully complete a predic-
tive data analytics project can seem overwhelming. This is why we recommend using the
CRISP-DM process to manage a project through its lifecycle. Table 14.1[730] shows the
alignment between the phases of CRISP-DM, some of the key questions that must be an-
swered during a predictive data analytics project, and the chapters in this book dealing with
these questions.

Remember, an analytics project is often iterative, with different stages of the project
feeding back into later cycles. It is also important to remember that the purpose of an
analytics project is to solve a real-world problem and to keep focus on this rather than
being distracted by the, admittedly sometimes fascinating, technical challenges of model
building. We strongly believe that the best way to keep an analytics project focused, and to
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improve the likelihood of a successful conclusion, is to adopt a structured project lifecycle,
such as CRISP-DM, and we recommend its use.

14.1 Different Perspectives on Prediction Models

A key step in any predictive analytics project is deciding which type of predictive analytics
model to use. In this book we have presented some of the most commonly used predic-
tion models and the machine learning algorithms used to build them. We have structured
this presentation around five approaches to learning: information-based, similarity-based,
probability-based, error-based, and deep learning. The mathematical foundation of these
approaches can be described using five simple (but important) equations: Claude Shan-
non’s model of entropy (Equation (14.1)[731]), Euclidean distance (Equation (14.2)[731]),
Bayes’ Theorem (Equation (14.3)[731]), the sum of squared errors (Equation (14.4)[731]),
and the application of the chain rule to backpropagate error gradients in a neural network
(Equation (14.5)[731]).
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An understanding of these five equations is a strong basis for understanding the math-
ematical fundamentals of many areas of scientific modeling. Adding an understanding
of how these five equations are used in the machine learning algorithms we have de-
scribed (ID3, k nearest neighbor, multivariable linear regression with gradient descent,
naive Bayes, and the backpropagation of error algorithm) is a strong foundation on which
to build a career in predictive data analytics.

The taxonomy we have used to distinguish between different machine learning algo-
rithms is based on human approaches to learning that the algorithms can be said to emulate.
This is not the only set of distinctions that can be made between the algorithms and the re-
sulting models. It is useful to understand some of the other commonly used distinctions,
because this understanding can provide insight into which learning algorithm and related
model is most appropriate for a given scenario.
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The first distinction between models that we will discuss is the distinction between para-
metric and non-parametric models. This distinction is not absolute, but it generally de-
scribes whether the size of the domain representation used to define a model is solely
determined by the number of features in the domain or is affected by the number of in-
stances in the dataset. In a parametric model the size of the domain representation (i.e., the
number of parameters) is independent of the number of instances in the dataset. Examples
of parametric models include the naive Bayes and Bayesian network models in Chapter
6[243] and the simple linear and logistic regression models in Chapter 7[311]. For example, the
number of factors required by a naive Bayes model is only dependent on the number of
features in the domain and is independent of the number of instances. Likewise, the num-
ber of weights used in a linear regression model is defined by the number of descriptive
features and is independent of the number of instances in the training data.

In a non-parametric model the number of parameters used by the model increases as
the number of instances increases. Nearest neighbor models are an obvious example of
a non-parametric model. As new instances are added to the feature space, the size of the
model’s representation of the domain increases. Decision trees are also considered non-
parametric models. The reason for this is that when we train a decision tree from data, we
do not assume a fixed set of parameters prior to training that define the tree. Instead, the
tree branching and the depth of the tree are related to the complexity of the dataset it is
trained on. If new instances were added to the dataset and we rebuilt the tree, it is likely
that we would end up with a (potentially very) different tree. Support vector machines are
also non-parametric models. They retain some instances from the dataset—potentially all
of them, although in practice, relatively few—as part of the domain representation. Hence,
the size of the domain representation used by a support vector machine may change as
instances are added to the dataset.

In general, parametric models make stronger assumptions about the underlying distri-
butions of the data in a domain. A linear regression model, for example, assumes that
the relationship between the descriptive features and the target is linear (this is a strong
assumption about the distribution in the domain). Non-parametric models are more flexi-
ble but can struggle with large datasets. For example, a 1-NN model has the flexibility to
model a discontinuous decision surface; however, it runs into time and space complexity
issues as the number of instances grows.

When datasets are small, a parametric model may perform well because the strong as-
sumptions made by the model—if correct—can help the model to avoid overfitting. How-
ever, as the size of the dataset grows, particularly if the decision boundary between the
classes is very complex, it may make more sense to allow the data to inform the predic-
tions more directly. Obviously the computational costs associated with non-parametric
models and large datasets cannot be ignored. However, support vector machines are an
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example of a non-parametric model that, to a large extent, avoids this problem. As such,
support vector machines are often a good choice in complex domains with lots of data.

The other important distinction that is often made between classification models is whether
they are generative or discriminative. A model is generative if it can be used to generate
data that will have the same characteristics as the dataset from which the model was pro-
duced. In order to do this, a generative model must learn, or encode, the distribution of the
data belonging to each class. The Bayesian network models described in Chapter 6[243] are
examples of generative models.1 Indeed, Markov chain Monte Carlo methods for estimat-
ing probabilities are based on the fact that we can run these models to generate data that
approximate the distributions of the dataset from which the model was induced. Because
they explicitly model the distribution of the data for each class k nearest neighbor models
are also generative models.

In contrast, discriminative models learn the boundary between classes rather than the
characteristics of the distributions of the different classes. Support vector machines and
the other classification models described in Chapter 7[311] are examples of discriminative
prediction models. In some cases they learn a hard boundary between the classes; in other
cases—such as logistic regression—they learn a soft boundary, which takes into account
the distance from the boundary. However, all these models learn a boundary. Decision trees
are also discriminative models. Decision trees are induced by recursively partitioning the
feature space into regions belonging to the different classes, and consequently they define
a decision boundary by aggregating the neighboring regions belonging to the same class.
Decision tree model ensembles based on bagging and boosting are also discriminative
models. Most of the deep network models described in Chapter 8[381] are also discriminative
models, although the auto-encoder network described in Chapter 10[597] is a nice example
of a generative neural network.

This generative versus discriminative distinction is more than just a labeling exercise.
Generative and discriminative models learn different concepts. In probabilistic terms, us-
ing d to represent the vector of descriptive feature values and tl to represent a target level,
a generative model works by

1. learning the class conditional densities (i.e., the distribution of the data for each target
level) Ppd|tlq and the class priors Pptlq;

2. then using Bayes’ Theorem to compute the class posterior probabilities Pptl|dq;2

3. and then applying a decision rule over the class posteriors to return a target level.

1. In this discussion, when we categorize models as being generative or discriminative, we are speaking in the
general case. In fact, all models can be trained in either a generative or a discriminative manner. However, some
models lend themselves to generative training and others to discriminative training, and it is this perspective that
we use in this discussion.

2. We could also formulate the generative model as learning the joint distribution Ppd; tlq directly and then
computing the required posteriors from this distribution.
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(a) (b)

Figure 14.1
(a) The class conditional densities for two classes (l1,l2) with a single descriptive feature d. The
height of each curve reflects the density of the instances from that class for that value of d. (b) The
class posterior probabilities plotted for each class for different values of d. Notice that the class
posterior probability Ppt � l1|dq is not affected by the multimodal structure of the corresponding
class conditional density Ppd|t � l1q. This illustrates how the class posterior probabilities can be
simpler than the class conditional densities. The solid vertical line in (b) plots the decision boundary
for d that gives the minimum misclassification rate assuming uniform prior for the two target levels
(i.e., Ppt � l1q � Ppt � l2q). This figure is based on Figure 1.27 from Bishop (2006).

By contrast, a discriminative model works by

1. learning the class posterior probability Pptl|dq directly from the data,
2. and then applying a decision rule over the class posteriors to return a target level.

This distinction between what generative and discriminative models try to learn is im-
portant because the class conditional densities, Ppd|tlq, can be very complex compared to
the class posteriors, Pptl|dq (see Figure 14.1[734]). Consequently, generative models try to
learn more complex solutions to the prediction problem than discriminative models.

The potential difficulty in learning the class conditional densities, relative to the pos-
terior class probabilities, is exacerbated in situations where we have a lot of descriptive
features because, as the dimensionality of d increases, we will need more and more data
to create good estimates for Pptl|dq. So, in complex domains, discriminative models are
likely to be more accurate. However, as is so often the case in machine learning, this is
not the end of the generative versus discriminative debate. Generative models tend to have
a higher bias—they make more assumptions about the form of the distribution they are
learning. For example, as we discussed in Chapter 6[243] on probability, generative models
encode independence assumptions about the descriptive features in d. This may sound
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Table 14.2
A taxonomy of models based on the parametric versus non-parametric and generative versus dis-
criminative distinctions.

Parametric/ Generative/
Model Non-Parametric Discriminative
k Nearest Neighbor Non-Parametric Generative
Decision Trees Non-Parametric Discriminative
Bagging/Boosting Parametric* Discriminative
Naive Bayes Parametric Generative
Bayesian Network Parametric Generative
Linear Regression Parametric Discriminative
Logistic Regression Parametric Discriminative
SVM Non-Parametric Discriminative
Neural networks Parametric** Discriminative

*Although the individual models in an ensemble could be non-parametric (for example, when decision trees are

used), the ensemble model itself is considered parametric. **We have classified neural networks as parametric

models; however, it can be argued that deep networks are non-parametric because they have so many parameters

that they have a representational overcapacity.

like another problem for generative models. However, in domains where we have good
prior knowledge of the independence relationships between features, we can encode this
prior structural information into a generative model. This structural information can bias
the model in such as way as to help it avoid overfitting the data. As a result, a genera-
tive model may outperform a discriminative model when trained on a small dataset with
good prior knowledge. Conversely, however, as the amount of training data increases. the
bias imposed on a generative model can become larger than the error of the trained model.
Once this tipping point in dataset size has been surpassed, a discriminative model will
outperform a generative model.

The debate regarding the advantages and disadvantages of generative and discriminative
models can be extended beyond model accuracy to include their ability to handle missing
data, unlabeled data, and feature preprocessing, among other topics. We will not discuss
these topics here. Instead, we will simply note that the appropriate choice of generative
versus discriminative model is context-dependent, and evaluating a range of different types
of models is the safest option. Table 14.2[735] summarizes the different perspectives on the
model types that we have presented in this book.

14.2 Choosing a Machine Learning Approach

Each of the approaches to machine learning that we have presented in this book induces
distinct types of prediction models with different strengths and weaknesses. This raises the
question of when to use which machine learning approach. The first thing to understand
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is that there is not one best approach that always outperforms the others. This is known
as the No Free Lunch Theorem (Wolpert, 1996). Intuitively, this theorem makes sense
because each algorithm encodes a distinct set of assumptions (i.e., the inductive bias of
the learning algorithm), and a set of assumptions that are appropriate in one domain may
not be appropriate in another domain.

We can see the assumptions encoded in each algorithm reflected in the distinctive char-
acteristics of the decision boundaries that they learn for categorical prediction tasks. To
illustrate these characteristics, we have created three artificial datasets and trained four dif-
ferent models on each of these datasets. The top row of images in Figure 14.2[737] illustrates
how the three artificial datasets were created. Each of the images in the top row shows a
feature space defined by two continuous descriptive features, F1 and F2, partitioned into
good and bad regions by three different, artificially created decision boundaries.3 In the
subsequent images, we show the decision boundaries that are learned by four different ma-
chine learning algorithms based on training datasets generated according to the decision
boundaries shown in the top row. In order from top to bottom, we show decision trees
(without pruning), nearest neighbor models (with k = 3 and using majority voting), naive
Bayes models (using normal distributions to represent the two continuous feature values),
and logistic regression models (using a simple linear model). In these images the training
data instances are shown as symbols on the feature space (triangles for good and crosses
for bad), the decision boundaries learned by each algorithm are represented by thick black
lines, and the underlying actual decision boundaries are shown by the background shading.

These examples show two things. First, the decision boundaries learned by each algo-
rithm are characteristic of that algorithm. For example, the decision boundaries associated
with decision trees have a characteristic stepped appearance because of the way feature val-
ues are split in a decision tree, while the decision boundaries associated with k-NN models
are noticeably jagged because of their local focus. The characteristic appearance of the de-
cision boundaries is related to the representations used within the models and the inductive
biases that the algorithms used to build them encode. The second thing that is apparent
from the images in Figure 14.2[737] is that some of the models do a better job of represent-
ing the underlying decision boundaries than others. The decision boundary learned by the
logistic regression model best matches the underlying decision boundary for the dataset
in the first column, the decision tree model seems most appropriate for the dataset in the
second column, and the k-NN model appears best for the dataset in the third column.

3. This example is partly inspired by the ”machine learning classifier gallery” by Tom Fawcett at home.comcast.
net/�tom.fawcett/public html/ML-gallery/pages/

home.comcast.net/~tom.fawcett/public_html/ML-gallery/pages/
home.comcast.net/~tom.fawcett/public_html/ML-gallery/pages/
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Figure 14.2
An illustration of the decision boundaries learned by different machine learning algorithms for three
artificial datasets.
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Real predictive data analytics projects use datasets that are much more complex than
those shown in Figure 14.2[737]. For this reason selecting which type of model to use should
be informed by the specific priorities of a project and the types of the descriptive and target
features in the data. Also, in general, it is not a good idea to select just one machine
learning approach at the beginning of a project and to exclusively use that. Instead, it is
better to choose a number of different approaches and to run experiments to evaluate which
is best for the particular project. However, this still requires the selection of a set of initial
approaches. There are two questions to consider:

1. Does a machine learning approach match the requirements of the project?
2. Is the approach suitable for the type of prediction we want to make and the types of

descriptive features we are using?

14.2.1 Matching Machine Learning Approaches to Projects
In many cases the primary requirement of a project is to create an accurate prediction
model. Accuracy can often be related to the power of a machine learning algorithm to
capture the interaction between descriptive features and the target feature. Caruana and
Niculescu-Mizil (2006) and Caruana et al. (2008) report empirical evaluations of the ac-
curacy of a range of model types across a range of domains. They found that on average,
ensemble models and support vector machines were among the most accurate models.
A consistent finding in both of these experiments, however, was the fact that for some do-
mains, these more powerful models performed quite poorly, and other models, that in other
domains were quite weak, achieved the best results. The main conclusions from this, and
other similar studies, is that no machine learning approach is universally best, and exper-
imentation with different approaches is the best way to ensure that an accurate model is
built.

When evaluating models against a particular deployment scenario, model accuracy is not
the only issue we need to consider. In order to successfully address a business problem,
a model must be accurate, but it must also meet the other requirements of the business
scenario. Three issues are important to consider:

 Prediction speed: How quickly can a model make predictions? Logistic regression
models, for example, are very fast at making predictions as all that is involved is cal-
culating the regression equation and performing a thresholding operation. On the other
hand, k nearest neighbor models are very slow to make predictions as they must perform
a comparison of a query instance to every instance in a, typically large, training set. The
time differences arising from these different computational loads can have an influence
on model selection. For example, in a real-time credit card fraud prediction system, it
may be required that a model perform thousands of predictions per second. Even if sig-
nificant computational resources were to be deployed for such a problem, it may not be
possible for a k nearest neighbor model to perform fast enough to meet this requirement.
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 Capacity for retraining: In Section 9.4.6[578] we discussed approaches that can be used
to monitor the performance of a model so as to flag the occurrence of concept drift and
indicate if a model has gone stale. When this occurs, the model needs to be changed
in some way to adapt to the new scenario. For some modeling approaches this is quite
easy, while for others it is almost impossible to adapt a model, and the only option is to
discard the current model and train a new one using an updated dataset. Naive Bayes and
k nearest neighbor models are good examples of the former type, while decision trees
and regression models are good examples of the latter.

 Interpretability: In many instances a business will not be happy to simply accept the
predictions made by a model and incorporate these into their decision making. Rather,
they will require the predictions made by a model to be explained and justified. Different
models offer different levels of explanation capacity and therefore different levels of
interpretability. For example, decision trees and linear regression models are very easily
interpreted, while support vector machines, ensembles, and deep neural networks are
almost entirely uninterpretable (because of this, they are often referred to as a black
box).

In summary, ensembles, support vector machines, neural networks, and Bayesian net-
works are, in general, more powerful machine learning approaches than the others we have
presented. However, these approaches are more complex, take a longer time to train, and
are harder to interpret than the simpler approaches that we have presented. Furthermore,
the selection of a machine learning approach also depends on the aspects of an application
scenario described above (speed, capacity for retraining, interpretability), and often, these
factors are a bigger driver for the selection of a machine learning approach than prediction
accuracy.

14.2.2 Matching Machine Learning Approaches to Data
When matching machine learning approaches to the characteristics of a dataset, it is im-
portant to remember that almost every approach can be made to work for both continuous
and categorical descriptive and target features. Certain approaches, however, are a more
natural fit for some kinds of data than others, so we can make some recommendations.
The first thing to consider in regard to data is whether the target feature is continuous or
categorical. Models trained by reducing the sum of squared errors, for example, linear re-
gression, are the most natural fit for making predictions for continuous target features. Out
of the different approaches we have considered, the information-based and probability-
based approaches are least well suited in this case. If, on the other hand, the target feature
is categorical, then information-based and probability-based approaches are likely to work
very well. Models trained using error-based approaches can become overly complicated
when the number of levels of the target feature goes above two, although deep neural net-
work models handle these scenarios easily.
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If all the descriptive features in a dataset are continuous, then a similarity-based approach
is a natural fit, especially when there is also a categorical target feature. Error-based models
would be preferred if the target feature is also continuous. When there are many continuous
features, probability-based and information-based models can become complicated, but if
all the features in a dataset are categorical, then information-based and probability-based
models are appropriate. Error-based and deep learning models are less suitable in this
case as they require categorical features to be converted into sets of binary features, which
causes an increase in dimensionality. In many cases datasets will contain both categorical
and continuous descriptive features. The most naturally suited learning approaches in these
scenarios are probably those that are best suited for the majority feature type.

The last issue to consider in relation to data when selecting machine learning approaches
is the curse of dimensionality. If there are a large number of descriptive features, then we
will need a large training dataset. Feature selection is an important process in any machine
learning project and should generally be applied no matter what type of models are being
developed. That said, some models are more susceptible to the curse of dimensionality than
others. Similarity-based approaches are particularly sensitive to the curse of dimensionality
and can struggle to perform well for a dataset with large numbers of descriptive features.
Decision tree models have a feature selection mechanism built into the algorithm and so are
more robust to this issue. Also, some of the unsupervised learning approaches described
in Chapter 10[597] can be used to address the curse of dimensionality by learning new more
compact representations.

14.3 Beyond Prediction

The majority of this book is focused on building predictive models. Machine learning,
however, can be used for many other tasks. In Chapters 10[597] and 11[637] we described two
of the major uses of machine learning that go beyond prediction: unsupervised learning
and reinforcement learning.

Unsupervised machine learning techniques are used in the absence of a target feature and
model the underlying structure within the descriptive features in a dataset. Usually this is
done either to divide a dataset into clusters of similar examples, or to generate new features
that can be appended to a dataset.

In reinforcement learning an agent inhabiting an environment learns to perform a task by
pursuing actions that achieve the highest cumulative reward, where a reward is immediate
feedback that follows an action to indicate how successful it was. The main application of
reinforcement learning is to learn control strategies, for example, in robotics.

As we did with predictive modeling we can capture the mathematical foundations of
these further approaches to machine learning in two key equations: the function minimized
by the k-means clustering algorithm (Equation (14.6)[741]) and the action-value function
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update rule used in Q-learning (Equation (14.7)[741]).
n‚

i�1

min
c1;:::;ck

Distpdi; c jq (14.6)

Q pst; atq — Q pst; atq � �

�
rt � max

at�1
Q pst�1; at�1q � Q pst; atq



(14.7)

Understanding these two equations, and the core algorithms that they underpin (k-means
clustering and Q-learning), is an excellent step toward broadening your knowledge out to
the many other uses of machine learning beyond prediction. Most of the advice given in
the previous sections on choosing machine learning approaches and completing successful
projects, also equally applies to these machine learning approaches, and a good grounding
in predictive modeling makes adding these approaches to your toolkit relatively straight-
forward.

14.4 Your Next Steps

In many ways, the easy part of a predictive data analytics project is building the models.
The machine learning algorithms tell us how to do this. What makes predictive data an-
alytics difficult, but also fascinating, is figuring out how to answer all the questions that
surround the modeling phase of a project. Throughout the course of a predictive data an-
alytics project, we are forced to use our intuition and experience, and experimentation,
to steer the project toward the best solution. To ensure a successful project outcome, we
should inform the decisions that we make by

 becoming situationally fluent so that we can converse with experts in the application
domain;

 exploring the data to understand it correctly;
 spending time cleaning the data;
 thinking hard about the best ways to represent features;
 and spending time designing the evaluation process correctly.

A distinctive aspect of this book is that we have chosen to present machine learning
in context. In order to do this, we have included topics that are not covered in many
machine learning books, including discussions on business understanding, data exploration
and preparation, and case studies. We have also provided an in-depth introduction to some
of the most popular machine learning approaches with examples that illustrate how these
algorithms work. We believe that this book will provide you with an understanding of the
broader context and core techniques of machine learning that will enable you to have a
successful career in predictive data analytics.

Machine learning is a huge topic, however, and one book can only be so long. As a result,
we have had to sacrifice coverage of some aspects of machine learning in order to include
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other topics and worked examples. We believe that this book will give you the knowledge
and skills that you will need to explore these topics yourself. To help with this, we would
recommend Hastie et al. (2001), Bishop (2006), and Murphy (2012) for broad coverage
of machine learning algorithms, including more in-depth coverage of unsupervised and
reinforcement learning approaches than included in this book. These books are suitable
as reference texts for experienced practitioners and postgraduate researchers in machine
learning. Some of the other machine learning topics that you might like to explore include
semi-supervised learning (Chapelle et al., 2009), multi-label classification (Tsoumakas
et al., 2012), and graphical models (Kollar and Friedman, 2009). Finally, we hope that
you find machine learning as fascinating and rewarding a topic as we do, and we wish you
the best in your future learning.
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A Descriptive Statistics and Data Visualization for Machine Learning

In this appendix we introduce the fundamental statistical measures of central tendency and varia-
tion. We also introduce three of the most important and useful data visualization techniques that can
be used to visualize a single feature: the bar plot, the histogram, and the box plot.

A.1 Descriptive Statistics for Continuous Features

To understand the characteristics of a continuous feature, there are two things that are important to
measure: the central tendency of the feature and the variation within the feature. These are the
basic building blocks of everything else that will follow, so it is important to fully understand them.

A.1.1 Central Tendency

The central tendency of a sample refers to the value that is typical of the sample and therefore can be
used to summarize it. Measures of central tendency are an approximation of this notional value. The
arithmetic mean (or sample mean or just mean) is the best-known measure of central tendency.
The arithmetic mean of a set of n values for a feature a is denoted by the symbol a and is calculated
as

a �
1
n

n‚

i�1

ai (A.1)

Figure A.1[746] shows a group of players on a school basketball team and their heights. Using
Equation (A.1)[745] we can calculate the arithmetic mean of these players’ heights as

HEIGHT �
1
8
� p150� 163� 145� 140� 157� 151� 140� 149q

� 149:375

This mean height is shown by the dashed gray line in Figure A.1[746]. The arithmetic mean is one
measure of the central tendency of a sample (for our purposes, a sample is just a set of values for a
feature in an ABT). Because it is easy to calculate and easy to interpret, the mean is commonly used
as part of the data exploration process as a good estimate of the central tendencies of features in an
ABT.

Any measure of central tendency is, however, just an approximation, so we must be aware of the
limitations of any measure that we use. The arithmetic mean, for example, is very sensitive to very
large or very small values in a sample. For example, suppose our basketball team manages to sign
a ringer measuring in at 229cm, as shown in Figure A.2(a)[746]. The arithmetic mean for the full
group is now 158:222cm and, as shown by the dashed gray line in Figure A.2(a)[746], no longer really
represents the central tendency of the group. An unusually large or small value like this is referred
to as an outlier, and the arithmetic mean is very sensitive to the presence of outliers.

There are other statistics that we can use to measure central tendency that are not as sensitive to
outliers. The median is another very useful measure of the central tendency of a sample. The median
of a set of values can be calculated by ordering the values from lowest to highest and selecting the
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Figure A.1
The members of a school basketball team. The height of each player is listed below the player. The
dashed gray line shows the arithmetic mean of the players’ heights.

(a) Mean (b) Median

Figure A.2
The members of the school basketball team from Figure A.1[746] with one very tall ringer added: (a)
the dashed gray line shows the mean of the players’ heights; and (b) the dashed gray line shows the
median of the players’ heights, with the players ordered by height.

middle value. If there is an even number of values in the sample, then the median is obtained by
calculating the arithmetic mean of the middle two values. The median is not as sensitive to outliers
as the arithmetic mean and therefore can be a more accurate estimate of the central tendency of a set
of values if outliers exist. In fact, a large difference between the mean and median of a feature is an
indication that there may be outliers among the feature values.

Figure A.2(b)[746] shows the extended basketball team ordered from smallest to tallest, with the
height of the each player listed below the player. The median value of this set is 150 and is shown as
the dashed gray line in Figure A.2(b)[746]. In this case the median better captures the central tendency
of the set of values.

Another commonly used measure of central tendency is the mode. The mode is simply the most
commonly occurring value in a sample (determined by counting the frequency with which each value
occurs in the sample). If all values in a sample occur with equal frequency, then there is no mode.
For the heights of the players in the extended basketball team in Figure A.2[746], the mode is 140, as it
is the only value that appears twice. The mode is not particularly effective in this case at measuring
the central tendency of the values. Mode is more frequently useful for categorical features than for
continuous ones, but it can be useful for continuous features when the sample is large enough.

A.1.2 Variation

Having used the measures of central tendency to describe where our data is centered, we will now
turn our attention to the variation in our data. Figure A.3[747] shows a rival school basketball team of
that shown in Figure A.1[746]. The height of each player is listed below the player, and the dashed gray
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line shows the arithmetic mean of the players’ heights, which is 149:375, the same as for the original
team. The heights of the players in this second team vary much more than those of the first team (see
Figures A.1[746] and A.3[747]). Descriptive statistics provides us with a range of tools that we can use
to formally measure variation and so distinguish between the sets of heights in the two basketball
teams. In essence, most of statistics, and in turn, analytics, is about describing and understanding
variation.

Figure A.3
The members of a rival school basketball team. Player heights are listed below each player. The
dashed gray line shows the arithmetic mean of the players’ heights.

The most easily calculated measure of variation is range. The range of a sample of n values for a
feature a is calculated as

range � maxpaq � minpaq (A.2)

The range of the basketball player heights in Figure A.1[746] is 163 � 140 � 23 and for those in
Figure A.3[747] is 192� 102 � 90. These measures match what we intuitively see in these figures—
the heights of the second team vary much more than those of the first team. The main advantage of
using the range is the ease with which it is calculated. The major disadvantage of the range, however,
is that it is highly sensitive to outliers.

The variance of a sample is a more useful measure of variation. Variance measures the average
difference between each value in a sample and the mean of that sample. The variance of the n values
of a feature a is denoted varpaq and is calculated as

varpaq �

n‚

i�1

pai � aq2

n� 1
(A.3)

In order to allow for the fact that some of the differences between values and the mean will be positive
and some will be negative, we square each difference.1

For the players’ heights given in Figure A.1[746], the mean is 149:375, so the variance can be calcu-
lated as

varpHEIGHTq �
p150� 149:375q2 � p163� 149:375q2 � : : :� p149� 149:375q2

8� 1
� 63:125

1. We divide by n � 1 (as opposed to n) because we are calculating the variance using only a sample, and on
average, dividing by n� 1 gives a better estimate of the population variance than using n.
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For the players’ heights given in Figure A.3[747], the mean is also 149:375, so the variance can be
calculated as

varpHEIGHTq �
p192� 149:375q2 � p102� 149:375q2 � : : :� p188� 149:375q2

8� 1
� 1;011:411

This example illustrates that the variance also captures the intuition that the heights of the players
in the second team vary much more than those in the first team. It also, however, illustrates an issue
with using variance. Due to the fact that the differences are squared, variances are not in the same
units as the original values, so they are not especially informative—telling someone that the variance
of the heights on one team is 63:125 and on another is 1;011:411 doesn’t give them any particularly
useful information other than the fact that the variance of one team is bigger than that of the other.

The standard deviation, sd, of a sample is calculated by taking the square root of the variance of
the sample:

sdpaq �
b

varpaq

�

gffffe

n‚

i�1

pai � aq2

n� 1
(A.4)

This means that the standard deviation is measured in the original units of the sample, which makes it
much more interpretable than the variance. It is very common to see the mean and standard deviation
provided as a full description of a sample.

The standard deviation of the heights of the players on the first basketball team is 7:945 and for the
second team is 31:803. As these measures are in the same units as the heights, they afford us a more
intuitive understanding of the data and make comparison easier. We can say that, on average, players
on the first team vary by almost 8cm from the average of 149:375cm, while on the second team, they
vary by approximately 32cm.

Percentiles are another useful measure of the variation of the values for a feature. A proportion
of i

100 of the values in a sample take values equal to or lower than the ith percentile of that sample.
Conversely, a proportion of p100� iq{100 values in a sample take values larger than the ith percentile.
To calculate the ith percentile of the n values of a feature a, we first order the values in ascending
order and then multiply n by i

100 to determine the index. If the index is a whole number, we take the
value at that position in the ordered list of values as the ith percentile. If index is not a whole number,
then we interpolate the value for the ith percentile as

ith percentile � p1� index f q � aindex w � index f � aindex w�1 (A.5)

where index w is the whole part of index, index f is the fractional part of index, and aindex w is the
value in the ordered list at position index w.

For example, Figure A.4[749] shows the basketball team from Figure A.3[747] ordered by height. To
calculate the 25th percentile, we first calculate index as 25

100 � 8 � 2. So, the 25th percentile is the
second value in the ordered list, which is 123. To calculate the 80th percentile, we first calculate
index as 80

100 � 8 � 6:4. Because index is not a whole number, we set index w to the whole part of
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Figure A.4
The members of the rival school basketball team from Figure A.3[747] ordered by height.

index, 6, and index f to the fractional part, 0:4. Then we can calculate the 80th percentile as

p1� 0:4q � 165� 0:4� 188 � 174:2

using the 6th and 7th values in the list, 165 and 188. We have actually already come across a percentile
in the measures of central tendency. The median is the 50th percentile.

We can use percentiles to describe another measure of variation known as the inter-quartile range
(IQR). The inter-quartile range is calculated as the difference between the 25th percentile and the 75th

percentile. These percentiles are also known as the lower quartile (or 1st quartile) and the upper
quartile (or 3rd quartile), hence the name inter-quartile range. For the heights of the first basketball
team, the inter-quartile range is 151� 140 � 11, while for the second team, it is 165� 123 � 42.

A.2 Descriptive Statistics for Categorical Features

The statistics outlined in the previous section work well to describe continuous features, but they do
not work for categorical features. For categorical features we are interested primarily in frequency
counts and proportions. The frequency count of each level2 of a categorical feature is calculated
by counting the number of times that level appears in the sample. The proportion for each level is
calculated by dividing the frequency count for that level by the total sample size. Frequencies and
proportions are typically presented in a frequency table, which shows the frequency and proportion
of each level for a particular feature—usually sorted by descending frequency.

For example, Table A.1[750] lists the position that each player on a school basketball team plays
at, and the average training expenses accrued each month by each player on the team. Table A.2[750]

shows the frequencies and proportions of the positions that players in the team play at, based on
counts of the occurrences of the different levels of the POSITION feature in Table A.1[750]. We can
see from this example that the guard level is the most frequent, followed by forward and center.

Based on these frequency counts and proportions, the mode of a categorical feature can be calcu-
lated. The mode is a measure of the central tendency of a categorical feature and is simply the most
frequent level. Based on the counts in Table A.2[750], the mode of the POSITION feature is guard. We
often also calculate a second mode, which is just the second most common level of a feature. In this
example, the second mode is forward.

2. Remember, we refer to each value that a particular categorical feature can take as the levels of the categorical
feature.
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Table A.1
A dataset showing the positions and monthly training expenses of a school basketball team.

TRAINING

ID POSITION EXPENSES

1 center 56.75
2 guard 1,800.11
3 guard 1,341.03
4 forward 749.50
5 guard 1,150.00
6 forward 928.30
7 center 250.90
8 guard 806.15
9 guard 1,209.02
10 forward 405.72

TRAINING

ID POSITION EXPENSES

11 center 550.00
12 center 223.89
13 center 103.23
14 forward 758.22
15 forward 430.79
16 forward 675.11
17 guard 1,657.20
18 guard 1,405.18
19 guard 760.51
20 forward 985.41

Table A.2
A frequency table for the POSITION feature from the school basketball team dataset in Table A.1[750].

Level Count Proportion
guard 8 40%
forward 7 35%
center 5 25%

A.3 Populations and Samples

Throughout the discussion in the previous sections about central tendency and variation, we con-
sistently used the word sample to refer to the set of values in an ABT for a particular feature. In
statistics it is very important to understand the difference between a population and a sample. The
term population is used in statistics to represent all possible measurements or outcomes that are of
interest to us in a particular study or piece of analysis. The term sample refers to the subset of the
population that is selected for analysis.

For example, consider Table A.3[751], which shows a set of results for polls run shortly before the
2012 United States presidential election, in which Mitt Romney and Barack Obama were the front-
runners.3 In the first poll in the table, from Pew Research, we can see that a sample of just 2;709
likely voters4 was used. This poll put Obama ahead of Romney in the race to the White House. In this
example the actual population of interest was the voting population of the United States, which was
approximately 240;926;957 people. It would be almost impossible to ask the full voting population

3. This data is taken from the collection at Real Clear Politics: www.realclearpolitics.com/epolls/2012/president/
us/general election romney vs obama-1171.html.

4. Likely voters are the subset of registered voters who have been identified as most likely to actually vote in an
election.

www.realclearpolitics.com/epolls/2012/president/us/general_election_romney_vs_obama-1171.html
www.realclearpolitics.com/epolls/2012/president/us/general_election_romney_vs_obama-1171.html
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Table A.3
Poll results from the run-up to the 2012 U.S. presidential election.

Margin Sample
Poll Obama Romney Other Date of Error Size
Pew Research 50 47 3 04-Nov �2:2 2;709
ABC News/Wash Post 50 47 3 04-Nov �2:5 2;345
CNN/Opinion Research 49 49 2 04-Nov �3:5 963
Pew Research 50 47 3 03-Nov �2:2 2;709
ABC News/Wash Post 49 48 3 03-Nov �2:5 2;069
ABC News/Wash Post 49 49 2 30-Oct �3:0 1;288

their voting intentions before an actual election—after all, that is what the actual election is for—so
polling companies take a sample.

While the sample of 2;709 voters out of a population of 240;926;957 might appear quite small, we
can also see from the table that the margin of error for the poll is given as �2:2%. The margin of
error takes into account the fact that this is just a sample from a much larger population.5 All the
other polls in the table were conducted with similar-sized samples. You should notice, however, that,
in general, the larger the sample, the smaller the margin of error. This reflects the fact that if we use
a bigger sample, we can be more confident in our approximations of the characteristics of the full
population.

In choosing a sample, it is important that it be representative of the population. In this example
the sample should represent the voting population—for example, there should be a representative
proportion of males compared to females and of different age categories within the sample. If a
sample is not representative, we say that the sample is biased. Using a simple random sample is
the most straightforward way of avoiding biased samples. In a simple random sample, each item
in the population is equally likely to make it into the sample. Other, more sophisticated sampling
methods can be used to ensure that a sample maintains relationships that exist in a population. We
discuss sampling methods in more detail in Section 3.6.3[91].

In the context of a predictive analytics scenario, the sample is the set of values that occur in an
ABT. The population is the set of all the values that could possibly occur. For example, in an ABT
for a motor insurance claims fraud prediction problem, we may include details of 500 claims that
have happened in the past. This would be our sample. The population would be all the claims that
have ever happened.

Up to this point we have outlined descriptive statistics that we can use to describe the values in a
sample. How do we relate these values to the actual underlying population? Statistics that describe
the population are referred to as population parameters. In general we use the sample statistics,
which we have already calculated, as estimates for the population parameters. The population mean
of a feature is usually denoted by �, and in general, given a sufficiently large sample, we use the
sample mean a as a point estimate of �. The population variance of a feature is usually denoted
by �2. In general, given a sufficiently large sample, we use the sample variance, varpaq, as a point
estimate of �2. This process is known as statistical inference.

5. This size of margin of error is common for these types of election polls.
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Careful readers will have noticed that in the equation for variance given in Equation (A.3)[747], we
divided the sum of the differences between the values of the feature a and a not by n, the number of
values for a in the ABT, but by n� 1. We divide by n� 1 so that the sample variance is an unbiased
estimate of the population variance. We say that the estimate is unbiased if its variance, on average,
equals that of the population variance. If we divided by n, we would have a biased estimator that
on average underestimates the variance. It is in small differences like this that we see the impact of
working on samples rather than populations.

A.4 Data Visualization

When performing data exploration, data visualization can help enormously. In this section we
describe three important data visualization techniques that can be used to visualize the values in a
single feature: the bar plot, the histogram, and the box plot. For the examples throughout this
section, we will use the dataset in Table A.1[750], which lists the position that each player on a school
basketball team plays at and the average training expenses they accrue each month.

A.4.1 Bar Plots

The simplest form of data visualization we can use for data exploration is the bar plot. A bar plot
includes a vertical bar for each level of a categorical feature. The height of each bar indicates the
frequency of the associated level (readers will most likely already be familiar with the bar plot). In
a slight variation of the bar plot, we can show densities rather than frequencies by dividing each
frequency by the total number of values in the dataset. This makes bar plots comparable across
datasets or samples of different sizes and is referred to as a probability distribution, because the
densities actually tell us the probability that we would pick each level if we were to select one
instance at random from the dataset.

Another simple variant of the basic bar plot orders the bars in descending order.6 Typically we
use bar plots to discover the most frequent levels for a feature, and this ordering makes this more
apparent. Figure A.5[753] shows example bar plots of all three types for the POSITION feature from
the dataset in Table A.1[750]. We can see that guard is the most frequent level.

A.4.2 Histograms

Figure A.6[753] is a bar plot of the TRAINING EXPENSES feature from Table A.1[750]. The figure
illustrates why a bar plot is not an appropriate graphic to use to visualize a continuous feature: as is
generally the case with a continuous feature, there are as many distinct values as there are instances
in the dataset, and therefore there are as many bars in the histogram as there are instances, each bar
having a height of 1:0.

The way to solve this problem is to visualize intervals rather than specific values, and this is what
a histogram does. Figure A.7(a)[754] shows the frequency histogram for the TRAINING EXPENSES

feature when we define ten 200-unit intervals spanning the range that this feature can take (the fre-
quencies come from Table A.4(a)[755]). In this histogram the width of each bar indicates the extent
of the interval the bar represents, and the height of each bar is based on the number of instances
in the dataset that have a value inside the interval. This type of histogram is often referred to as a
frequency histogram. Generally, there is not an optimal set of intervals for a given feature. For

6. These charts are often referred to as Pareto charts, especially when they also include a line indicating the
cumulative total frequency or density.



A.4 Data Visualization 753

(a) (b) (c)

Figure A.5
Example bar plots for the POSITION feature in Table A.1[750]: (a) frequency bar plot, (b) density bar
plot, and (c) order density bar plot.

Figure A.6
Bar plot of the continuous TRAINING EXPENSES feature from Table A.1[750].

example, we could have used four 500-unit intervals to generate the histogram instead—see Figure
A.7(b)[754], based on frequencies from Table A.4(b)[755]—or, indeed, any other set of intervals.

We can convert a histogram to a probability distribution by dividing the count for each interval by
the total number of observations in the dataset multiplied by the width of the interval. As a result,
the area of each bar (the bar height times the bar width) gives the probability for the feature taking a
value in the interval represented by that bar. The resulting histogram is called a density histogram
because the height of each bar represents how densely the instances in the dataset that fall within the
interval are packed into the area of the bar.

Figure A.7(c)[754] illustrates the density histogram of the TRAINING EXPENSES feature using ten
200-unit intervals, and Figure A.7(d)[754] illustrates the density histogram using four 500-unit inter-
vals. Notice that the vertical axes in these histograms are labeled density, rather than frequency.
Table A.4(a)[755] shows the density and probability calculations for the TRAINING EXPENSES feature
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(a) (b)

(c) (d)

Figure A.7
(a) and (b) frequency histograms and (c) and (d) density histograms for the continuous TRAINING

EXPENSES feature from Table A.1[750], illustrating how using intervals overcomes the problem seen
in Figure A.6[753] and the effect of varying interval sizes.

when we use ten 200-unit intervals, and Table A.4(b)[755] shows the same calculations when we use
four 500-unit intervals.7 Recall that we compute the density for each interval by dividing the number

7. When defining intervals, a square bracket, r or s, indicates that the boundary value is included in the interval,
and a parenthesis, p or q, indicates that it is excluded from the interval.
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Table A.4
The density calculation for the TRAINING EXPENSES feature from Table A.1[750] using (a) ten 200-
unit intervals and (b) four 500-unit intervals.

(a) 200-unit intervals

Interval Count Density Prob
r0; 200q 2 0:00050 0:1
r200; 400q 2 0:00050 0:1
r400; 600q 3 0:00075 0:15
r600; 800q 4 0:00100 0:2
r800; 1000q 3 0:00075 0:15
r1000; 1200q 1 0:00025 0:05
r1200; 1400q 2 0:00050 0:1
r1400; 1600q 1 0:00025 0:05
r1600; 1800q 1 0:00025 0:05
r1800; 2000q 1 0:00025 0:02

(b) 500-unit intervals

Interval Count Density Prob
r0; 500q 6 0:0006 0:3
r500; 1000q 8 0:0008 0:4
r1000; 1500q 4 0:0004 0:2
r1500; 2000q 2 0:0002 0:1

of observations in the interval by the width of the interval multiplied by the total number of observa-
tions. Notice that the sum of the probabilities (the bar areas in the histograms) in both of these tables
is 1:0, which is what we would expect with a probability distribution—all probability distributions
sum to 1:0.

A.4.3 Box Plots

The last data visualization technique we will discuss for visualizing the values of a single feature
is the box plot.8 A box plot is a visual representation of the five key descriptive statistics for a
continuous feature: minimum, 1st quartile, median, 3rd quartile, and maximum. Figure A.8(a)[756]

shows the structure of a box plot. In a box plot the vertical axis shows the range of values that a
feature can take. The extent of the rectangular box in the middle of the plot is determined by the 3rd

quartile at the top and the 1st quartile at the bottom. The height of this rectangle, then, also shows
the inter-quartile range. The strong black line across the middle of the rectangle shows the median.

The whiskers that emerge from the top and bottom of the main rectangle in a box plot are designed
to show the range of the data. The top whisker extends to whichever is lower of the maximum value
of the feature or the upper quartile plus 1:5 times the IQR. Similarly, the bottom whisker extends to
whichever is higher of the minimum value of the feature or the lower quartile minus 1:5 times the
IQR. Values that fall outside the whiskers are referred to as outliers and are shown as small circles.

Figure A.8(b)[756] shows a box plot for the TRAINING EXPENSES feature from the dataset in Table
A.1[750]. From this plot we can get a concise, but detailed, description of the feature and notice the
inclusion of an outlier value. In comparison with a box plot, an individual histogram provides more
information; for example, histograms show the distribution of the values of a feature. Box plots,

8. Box plots are one of the collection of visual data exploration techniques first presented in Tukey’s influential
1977 book Exploratory Data Analysis (Tukey, 1977).
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(a) The structure of a box plot (b) Box plot example

Figure A.8
(a) The structure of a box plot; and (b) a box plot for the TRAINING EXPENSES feature from the
basketball team dataset in Table A.1[750].

however, can be placed side by side, and in Section 3.5.1.2[74] we see that the ability to place multiple
box plots side by side is the main advantage box plots have over histograms.



B Introduction to Probability for Machine Learning

In this appendix we introduce the fundamental concepts of probability theory that are used in
probability-based machine learning algorithms. Specifically, we present the basics of calculating
probabilities based on relative frequencies, calculating conditional probabilities, the probability
product rule, the probability chain rule, and the Theorem of Total Probability.

B.1 Probability Basics

Probability is the branch of mathematics that deals with measuring the likelihood (or uncertainty)
around events. The roots of probability are in gambling, where, understandably, gamblers wanted
to be able to predict future events based on their likelihood. There are two ways of computing
the likelihood of a future event: (1) use the relative frequency of the event in the past, or (2) use
a subjective estimate (ideally from an expert!). In the predictive analytics context, the standard
approach is to use relative frequency, and we focus on this approach in this chapter.

Probability has a longer history, and broader applicability, than predictive analytics. Consequently,
the standard language of probability has developed some esoteric terminology, including terms such
as sample space, experiment, outcome, event, and random variable. So we will begin by first
explaining this terminology and aligning it with the more familiar terminology of predictive analytics.

In probability a domain of interest is represented by a set of random variables. For example,
if we want to model the behavior of a die using probability, we would begin by creating a random
variable, let us call it X, that has a domain equal to the set of possible outcomes when we roll the die,
namely, the set t ; ; ; ; ; u. Extending this example, if we wanted to study the behavior of
two dice, we would create two random variables, we might call them Dice1 and Dice2, each having
the domain t ; ; ; ; ; u. In this extended context, an experiment involves rolling the two
dice, and the sample space defines the set of all possible outcomes for this experiment (see Figure

Figure B.1
The sample space for the domain of two dice.
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B.1[757]). An event is then an experiment whose outcome fixes the values of the random variables.
For example, an event in this domain would be represented as Dice1 � ;Dice2 � .

Table B.1[758] lists a small dataset of instances from the sample space shown in Figure B.1[757]. We
will use this example dataset to illustrate how to map the terminology of probability into the language
of predictive analytics:
 The set of random variables in a domain maps to the set of features in a dataset (both descriptive

and target). DICE1 and DICE2 are the equivalent of random variables.
 The sample space for a domain is the set of all possible combinations of assignments of values to

features.
 An experiment whose outcome has been already been recorded is a row in the dataset. Each row

in Table B.1[757] records the outcome of a previous experiment.
 An experiment whose outcome we do not yet know but would like to predict is the prediction task

for which we are building a model.
 An event is any subset of an experiment. An event may describe an assignment of values to all the

features in the domain (e.g., a full row in the dataset) or an assignment to one or more features in
the domain. DICE1 = is an example of an event. DICE1 = , DICE2 = is also an event.
So that we are consistent with the terminology throughout this book, in the rest of this chapter, we

use the predictive analytics terms (feature, dataset, prediction, and event) rather than the traditional
terms from probability.

A feature can take one or more values from a domain, and we can find out the likelihood of
a feature taking any particular value using a probability function, Ppq. A probability function
is a function that takes an event (an assignment of values to features) as a parameter and returns
the likelihood of that event. For example, PpDICE1 � q will return the likelihood of the event
DICE1 � , and PpDICE1 � ;DICE2 � q will return the likelihood of the event where
DICE1 � and DICE2 � . If we are defining the probability function for a categorical feature,
then the function is known as a probability mass function because it can be understood as returning
a discrete probability mass for each level in the domain of the feature. The probability mass is
simply the probability of an event. Conversely, if the feature we are dealing with is a continuous
feature, the probability function is known as a probability density function. For this introduction,
we focus on categorical features and probability mass functions.

Probability mass functions have two properties: (1) they always return a value between 0:0 and
1:0; and (2) the sum of the probabilities over the set of events covering all the possible assignments
of values to features must equal 1:0. Formally these properties are defined as follows:

0 ⁄ Pp f � levelq ⁄ 1

Table B.1
A dataset of instances from the sample space in Figure B.1[757].

ID DICE1 DICE2
1
2
3
4
5
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‚

lPlevelsp f q

Pp f � lq � 1:0

where levelsp f q returns the set of levels in the domain of the feature f .
Probability functions are the basic building blocks of probability theory, and they are very easy to

create from a dataset. The value returned by a probability function for an event is simply the relative
frequency of that event in the dataset. The relative frequency of an event is calculated as how often
the event happened divided by how often it could have happened. For example, the relative frequency
of the event DICE1 � is simply the count of all the rows in the dataset where DICE1 has a value
of divided by the number of rows in the dataset. Based on Table B.1[758], the probability of the
event DICE1 � is1

PpDICE1 � q �
|td1;d4u|

|td1;d2;d3;d4;d5u|
�

2
5
� 0:4

So far we have focused on calculating the probability of an individual event. In a predictive an-
alytics task, we will often be interested in calculating the probability of more than one event. For
example, we might want to know the probability of the target feature taking a particular value and
one of the descriptive features taking a particular value at the same time. Technically, if an event in-
volves more than one feature, it can be considered to be composed of several simple events. In these
cases the probability calculated is known as a joint probability. The probability of a joint event is
simply the relative frequency of the joint event within the dataset. In terms of rows in a dataset, this
computation is simply the number of rows where the set of assignments listed in the joint event holds
divided by the total number of rows in the dataset. For example, the probability of the joint event2

DICE1 � ;DICE2 � would be calculated as

PpDICE1 � ;DICE2 � q �
|td3u|

|td1;d2;d3;d4;d5u|
�

1
5
� 0:2

The type of probabilities we have calculated so far are known as prior probabilities or uncon-
ditional probabilities. Often, however, we want to know the probability of an event in the context
where one or more other events are known to have happened. This type of probability, where we
take one or more events to already hold, is known as a posterior probability, because it is calculated
after other events have happened. It is also commonly known as a conditional probability, because
the probability calculated is valid conditional on the given events (or evidence).When we want to
express this type of probability, formally we use a vertical bar, |, to separate the events we want the
probability for (listed on the left-hand side of the bar) from the events that we know have already
happened. The vertical bar symbol can be read as given that. So the probability of DICE1 �
given that DICE2 � would be written as

PpDICE1 � | DICE2 � q

The conditional probability for an event given that we know another event is true is calculated
by dividing the number of rows in the dataset where both events are true by the number of rows in
the dataset where just the given event is true. For example, the conditional probability for the event

1. In the notation used in this book, d1 refers to the instance in a dataset with an ID of 1, and so on.

2. When listing a joint event, we use a comma ; to denote logical and.
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Table B.2
A simple dataset for MENINGITIS with three common symptoms of the disease listed as descriptive
features: HEADACHE, FEVER, and VOMITING.

ID HEADACHE FEVER VOMITING MENINGITIS

11 true true false false
37 false true false false
42 true false true false
49 true false true false
54 false true false true
57 true false true false
73 true false true false
75 true false true true
89 false true false false
92 true false true true

DICE1 � given that DICE2 � would be calculated as

PpDICE1 � | DICE2 � q �
|td3u|

|td2;d3u|
�

1
2
� 0:5

We now understand the theory of how to calculate a simple unconditional probability, a joint prob-
ability, and a conditional probability using a dataset. Now is a good point to ground this knowledge
in a more interesting example focused on predictive data analytics. We will use the dataset in Table
B.2[760] for this.3 The target being predicted in this dataset is whether or not a patient is suffering
from meningitis, and the descriptive features are common symptoms associated with meningitis.

A quick comment on our notation. Throughout this chapter, named features will be denoted by the
uppercase initial letters of their names—for example, a feature named MENINGITIS will be denoted
by M. Also, where a named feature is binary, we will use the lowercase initial letter of the feature
name to denote the event where the feature is true and the lowercase initial letter preceded by the  
symbol to denote the event where it is false. So, m will denote the event MENINGITIS � true and
 m will denote MENINGITIS � false. Given the dataset in Table B.2[760], the probability of a patient
having a headache is

Pphq �
|td11;d42;d49;d57;d73;d75;d92u|

|td11;d37;d42;d49;d54;d57;d73;d75;d89;d92u|
�

7
10
� 0:7 (B.1)

the probability of a patient having a headache and meningitis is

Ppm; hq �
|td75;d92u|

|td11;d37;d42;d49;d54;d57;d73;d75;d89;d92u|
�

2
10
� 0:2 (B.2)

3. This data has been artificially generated for this example.
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and the probability of a patient having meningitis given that we know that the patient has a headache
is

Ppm | hq �
|td75;d92u|

|td11;d42;d49;d57;d73;d75;d92u|
�

2
7
� 0:2857 (B.3)

B.2 Probability Distributions and Summing Out

Sometimes it is useful to talk about the probabilities for all the possible assignments to a feature. To
do this we use the concept of a probability distribution. A probability distribution is a data structure
that describes the probability of a feature taking a value for all the possible values the feature can take.
The probability distribution for a categorical feature is a vector that lists the probabilities associated
with each of the values in the domain of the feature. A vector is an ordered list, so the mechanism
for matching a probability in the vector with a particular value in the domain is just to look up the
position of the probability within the vector. We use bold notation Ppq to distinguish between a
probability distribution and a probability function Ppq. For example, the probability distribution for
the binary feature MENINGITIS from Table B.2[760], with a probability of 0:3 of being true and using
the convention of the first element in the vector being the probability for a true value, would be
written as PpMq � h0:3; 0:7i.

The concept of a probability distribution also applies to joint probabilities, which gives us the
concept of a joint probability distribution. A joint probability distribution is a multidimensional
matrix where each cell in the matrix lists the probability for one of the events in the sample space
defined by the combination of feature values. The dimensions of the matrix are dependent on the
number of features and the number of values in the domains of the features. The joint probability
distribution for the four binary features from Table B.2[760] (HEADACHE, FEVER, VOMITING, and
MENINGITIS) would be written as

PpH; F;V;Mq �

�

������������

Pph; f ; v;mq; Pp h; f ; v;mq
Pph; f ; v; mq; Pp h; f ; v; mq
Pph; f ; v;mq; Pp h; f ; v;mq
Pph; f ; v; mq; Pp h; f ; v; mq
Pph; f ; v;mq; Pp h; f ; v;mq
Pph; f ; v; mq; Pp h; f ; v; mq
Pph; f ; v;mq; Pp h; f ; v;mq
Pph; f ; v; mq; Pp h; f ; v; mq

�

������������

Remember that the sum of all the elements in a probability distribution must be 1:0. Consequently,
the sum of all the cells in a joint probability distribution must be 1:0. A full joint probability distri-
bution is simply a joint probability distribution over all the features in a domain. Given a full joint
probability distribution, we can compute the probability of any event in a domain by summing over
the cells in the distribution where that event is true. For example, imagine we want to compute the
probability of Pphq in the domain specified by the joint probability distribution PpH; F;V;Mq. To do
this we simply sum the values in the cells containing h, in other words, the cells in the first column of
the distribution. Calculating probabilities in this way is known as summing out or marginalization.4

4. Summing out is sometimes referred to as marginalization because statisticians used to carry out these calcu-
lations in the margins of the probability tables they were working with!
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We can also use summing out to compute conditional probabilities from a joint probability distribu-
tion. For example, imagine we wish to calculate the probability of h given f when we don’t care what
values V or M take. In this context, V and M are examples of hidden features. A hidden feature is a
feature whose value is not specified as part of the evidence. We can calculate Pph;V � ?; M � ? | f q
from PpH; F;V;Mq by summing the values in all the cells where h and f are the case (the top four
cells in the first column).

The process of summing out is a key concept in probability-based prediction. In order to make a
prediction, a model must compute the probability for a target event in the context where some other
events are known (the evidence) and where there are potentially one or more hidden features. As
we have seen, using a joint probability distribution, a model can carry out this calculation by simply
conditioning on the evidence features and summing out the hidden features. Unfortunately, the size
of a joint probability distribution grows exponentially as the number of features and the number of
values in the domains of the features grow. Consequently, they are difficult to generate because of the
curse of dimensionality: computing the probability for each cell in a joint probability table requires a
set of instances and, because the number of cells grows exponentially as features and feature values
are added, so does the size of the dataset required to generate the joint probability distribution. As a
result, for any domain of reasonable complexity, it is not tractable to define the full joint probability
distribution, and therefore probability-based prediction models build more compact representations
of full joint probability distributions instead.

B.3 Some Useful Probability Rules

Several important rules in probability theory allow us to compute new probabilities in terms of pre-
viously computed probabilities. Note that throughout the rest of the chapter, we use uppercase letters
to denote generic events where an unspecified feature (or set of features) is assigned a value (or set
of values). Typically we will use letters from the end of the alphabet (e.g., X, Y , Z) for this pur-
pose. Also, we will use subscripts on uppercase letters to iterate over events. So,

°
i PpXiq should be

interpreted as summing over all the possible combinations of value assignments to the features in X.
The first rule we will introduce defines conditional probability in terms of joint probability:

PpX | Yq �
PpX;Yq
PpYq

(B.4)

We have already calculated the conditional probability of the event m given h directly from the
dataset in Table B.2[760] as Ppm | hq � 0:2857 (see Equation (B.3)[761]). We will now recalculate this
probability using our rule-based definition of conditional probability. From our previous calculations,
we already know that Pphq � 0:7 (see Equation (B.1)[760]) and Ppm; hq � 0:2 (see Equation (B.2)[760]).
So our calculation for Ppm | hq is

Ppm | hq �
Ppm; hq

Pphq
�

0:2
0:7

� 0:2857

Using Equation (B.4)[762], we can provide a second definition for the probability of a joint event,
which is known as the product rule:

PpX;Yq � PpX | Yq � PpYq (B.5)
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We can demonstrate the product rule by recalculating the probability Ppm; hq using previously com-
puted probabilities:

Ppm; hq � Ppm | hq � Pphq � 0:2857� 0:7 � 0:2

Again, the result of the calculation matches the probability computed directly from the dataset (see
Equation (B.2)[760]).

There are a few points worth noting about the product rule. First, it defines the probability of a
joint event PpX;Yq in terms of a conditional (or posterior) probability PpX | Yq multiplied by an
unconditional (or prior) probability PpYq. Second, the order of the events in the product rule is not
important, and we can condition the calculation on any of the events listed in the and (in logic, the
and operation is symmetric):

PpX;Yq � PpX | YqPpYq � PpY | XqPpXq

We can also extend the product rule to define the joint probability of more than two events. When
we generalize the rule in this way, it is known as the probability chain rule:

PpA; B;C; : : : ;Zq � PpZq � PpY | Zq � PpX | Y;Zq � � � � � PpA | B; : : : ; X;Y;Zq (B.6)

As with the simple two-event version, the order of events in the chain rule is not important.
Finally, the Theorem of Total Probability defines the unconditional probability for any event X

as
PpXq �

‚

i

PpX | YiqPpYiq (B.7)

where each Yi is one of a set of events Y1 to Yk that cover all the possible outcomes in a domain
and have no overlap between them. Because an event defines a partition of a dataset (the rows from
the dataset that match the event), then each Yi defines a set of rows from a dataset, and the set of
data partitions defined by Y1 to Yk must cover the full dataset and not overlap with each other. The
Theorem of Total Probability is a formal specification of the summing out process we introduced
earlier in Section B.2[761].

To illustrate how the Theorem of Total Probability can be used to calculate probabilities, we will
compute Pphq by summing out M (note: earlier, in Equation (B.1)[760], we computed Pphq � 0:7):

Pphq � pPph | mq � Ppmqq � pPph |  mq � Pp mqq

� p0:6666� 0:3q � p0:7143� 0:7q � 0:7

We can, if we wish, sum out more than one feature. For example, we could compute Pphq by
summing out all the other features in the dataset:

Pphq �
‚

iPlevelpMq

‚

jPlevelpFq

‚

kPlevelpVq

Pph | Mi; F j;Vkq � PpMi; F j;Vkq

We will, however, leave this calculation to the interested reader (the result should still be 0:7).

B.4 Summary

Probability theory underpins a great deal of machine learning. This section has provided an overview
of the aspects of probability that readers need to understand in order to follow the other sections in
this book. One thing to note is that many of the rules and techniques we presented were different ways
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of achieving the same thing—for example, we can calculate Pphq by simple counting, by summing
out from a full joint probability distribution, or by using the Theorem of Total Probability. This is
an aspect of probability theory with which beginners sometimes struggle. The important thing to
remember, though, is that the different approaches exist because in different scenarios it will often
be easier to apply one approach over the others. Just like the proverbial cat, there is more than one
way to skin a probability problem!



C Differentiation Techniques for Machine Learning

In this appendix we present the basic differentiation techniques that are required to understand how
linear regression can be used to build predictive analytics models. In particular we explain what a
derivative is, how to calculate derivatives for continuous functions, the chain rule for differentiation,
and what a partial derivative is.

(a) (b)

Figure C.1
(a) The speed of a car during a journey along a minor road before joining a highway and finally
coming to a sudden halt; and (b) the acceleration, the derivative of speed with respect to time, for
this journey.

To begin, imagine a car journey where we start out driving on a minor road at about 30mph and
then move onto a highway, where we drive at about 80mph before noticing an accident and braking
suddenly. Figure C.1(a)[765] shows a profile of the speed during this journey measured at different
points in time. Figure C.1(b)[765] shows a profile of the acceleration during this journey. We can see
that when the car is driving at a constant speed, on the minor road or the highway, acceleration is zero
as the speed is not changing. In contrast, acceleration has modest positive values when we are taking
off initially and slightly larger positive values when we increase speed on reaching the highway. The
sudden braking at the end of the journey results in large negative values that slowly taper off to match
the speed profile in Figure C.1(a)[765].

Acceleration is a measure of the rate of change of speed over time. We can say more formally that
acceleration is, in fact, the derivative of speed with respect to time. Differentiation is the set of
techniques from calculus (the branch of mathematics that deals with how things change) that allows
us to calculate derivatives. In an example like the car journey just described, where we have a set
of discrete measurements, calculating the derivative is simply a matter of determining the difference
between subsequent pairs of measurements. For example, the derivative of speed with respect to
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time at time index 21 is the speed at time index 21 minus the speed at time index 20, which is
44:28�51:42 � 7:14. These values are marked in Figure C.1[765]. All the values of acceleration have
been calculated in this way.

C.1 Derivatives of Continuous Functions

While it is interesting to see how derivatives can be calculated for discrete examples, it is much more
common that we need to calculate the derivative of a continuous function. A continuous function,
f pxq, generates an output for every value of a variable x based on some expression involving x. For
example:

f pxq � 2x� 3

f pxq � x2

f pxq � 3x3 � 2x2 � x� 2

are continuous functions with a single variable x. Graphs of these functions are shown in Figure
C.2[767]. Each graph also shows the derivative of the function. We will return to these shortly.

The function f pxq � 2x� 3 is known as a linear function because the output is a combination of
only additions and multiplications1 involving x. The other two functions are known as polynomial
functions as they include addition, multiplication, and raising to exponents. Of those, f pxq � x2

is an example of a second order polynomial function, also known as a quadratic function, as its
highest exponent is 2, and f pxq � 3x3 � 2x2 � x � 2 is a third order polynomial function, also
known as a cubic function, as its highest exponent is 3.

Looking first at Figure C.2(a)[767], the function here is very simple, f pxq � 2x � 3, which results
in a straight diagonal line. A straight diagonal line gives us a constant rate of change (in this case an
increase of 2 in the value of the function for every change of 1 in x), so the derivative of this function
with respect to x is just a constant. This is represented by the horizontal dashed line.

We can intuitively see from Figure C.2(b)[767] for f pxq � x2 that the rate of change of the value of
this function is likely to be high at the steep edges of the curve and low at the bottom (imagine a ball
rolling around inside this shape!). This intuition is mirrored in the derivative of the function with
respect to x. We can see that on the left-hand side of the graph (for large negative values of x), the
rate of change has a high negative value, while on the right-hand side of the graph (for large positive
values of x), the rate of change has a large positive value. In the middle of the graph, at the bottom
of the curve, the rate of change is zero. It should be no surprise to learn that the derivative of the
function with respect to x also gives us the slope of the function at that value of x. The shape of the
derivative in Figure C.2(c)[767] can be understood similarly.

To actually calculate the derivative, referred to as d
dx f pxq, of a simple continuous function, f pxq,

we use a small number of differentiation rules:

1. Note that subtraction is viewed as addition of negative numbers, and division is seen as multiplication by
reciprocals, so both are also allowed.
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(a) f pxq � 2x� 3 (b) f pxq � x2

(c) f pxq � 3x3 � 2x2 � x� 2 (d) f pxq � px2 � 1q2

Figure C.2
Examples of continuous functions (shown as solid lines) and their derivatives (shown as dashed
lines).

1.
d
dx
� � 0 (where � is any constant)

2.
d
dx
�xn � �� n� xn�1

3.
d
dx

a� b �
d
dx

a�
d
dx

b
(where a and b are expressions that
may or may not contain x)

4. d
dx�� c � ��

d
dx

c
(where � is any constant and c is an
expression containing x)

Applying these rules to the first of our previous examples, f pxq � 2x � 3 (Figure C.2(a)[767]), we
first apply Rule 3 to split this function into two parts, 2x and 3, and then apply differentiation rules
to each. By Rule 2 we can differentiate 2x to 2 (remember that x is really x1). The 3 is a constant, so
by Rule 1 differentiates to zero. The derivative of the function, then, is d

dx f pxq � 2.
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For the last function, f pxq � 3x3 � 2x2 � x� 2 (Figure C.2(c)[767]), we first apply Rule 3 to divide
this into four parts: 3x3, 2x2, x, and 2. Applying Rule 2 to each of the first three parts gives 9x2, 4x,
and �1. The final part, 2, is a constant and so differentiates to zero. The derivative of this function
then is d

dx f pxq � 9x2 � 4x� 1.
We can see from these examples that calculating derivatives of simple functions is a matter of,

fairly mechanically, applying these four simple rules. Calculating the derivatives of the other two
functions are left as exercises for the reader. Some of the functions that we will encounter later on
in this chapter will be a little more complex, and we need two more differentiation rules to handle
these.

C.2 The Chain Rule

The function f pxq � px2 � 1q2 (shown in Figure C.2(d)[767]) cannot be differentiated using the rules
just described because it is a composite function—it is a function of a function. We can rewrite f pxq
as f pxq � pg pxqq2 where gpxq � x2 � 1. The differentiation chain rule allows us to differentiate
functions of this kind.2 The chain rule is

d
dx

f pg pxqq �
d

d gpxq
f pg pxqq �

d
dx

g pxq (C.1)

The differentiation is performed in two steps. First, treating gpxq as a unit, we differentiate f pgpxqq
with respect to gpxq, and then we differentiate gpxq with respect to x, in both cases using the differ-
entiation rules from the previous section. The derivative of f pgpxqq with respect to x is the product
of these two pieces.

Applying this to the example f pxq � px2 � 1q2 we get

d
dx
px2 � 1q2 �

d
d px2 � 1q

px2 � 1q2 �
d
dx
px2 � 1q

�
�
2� px2 � 1q

�
� p2xq

� 4x3 � 4x

Figure C.2(d)[767] shows this example function and its derivative calculated using the chain rule.

C.3 Partial Derivatives

Some functions are not defined in terms of just one variable. For example, f px; yq � x2 � y2 � 2x�
4y � xy � 2 is a function defined in terms of two variables, x and y. Rather than defining a curve
(as was the case for all the previous examples), this function defines a surface, as shown in Figure
C.3(a)[769]. Using partial derivatives offers us an easy way to calculate the derivative of a function
like this. A partial derivative (denoted by the symbol B) of a function of more than one variable is its
derivative with respect to one of those variables with the other variables held constant.

For the example function f px; yq � x2 � y2 � 2x� 4y� xy� 2, we get two partial derivatives:

B

Bx
px2 � y2 � 2x� 4y� xy� 2q � 2x� 2� y

2. This is not to be confused with the probability chain rule discussed in Section B.3[762]. These are two com-
pletely different operations.
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where the terms y2 and 4y are treated as constants as they do not include x, and

B

By
px2 � y2 � 2x� 4y� xy� 2q � �2y� 4� x

where the terms x2 and 2x are treated as constants as they do not include y. Figures C.3(b)[769] and
C.3(c)[769] show these partial derivatives.

(a) f px; yq � x2 � y2 � 2x� 4y� xy� 2

(b)
B
Bx

f px; yq � 2x� 2� y (c)
B
By

f px; yq � �2y� 4� x

Figure C.3
(a) A continuous function in two variables, x and y; (b) the partial derivative of this function with
respect to x; and (c) the partial derivative of this function with respect to y.





D Introduction to Linear Algebra

In this appendix we introduce some of the fundamental operations in linear algebra. In particular,
we introduce the vector and matrix operations that we use in the book.

D.1 Basic Types

There are a number of fundamental mathematical types that are the building blocks of linear algebra.
These include

 A scalar is a single number.

 A matrix is a 2-dimensional (n� m) array of numbers.

C �

�

����

c1;1 c1;2 : : : c1;m

c2;1 c2;2 : : : c2;m

: : : : : : : : : : : :

cn;1 c1;2 : : : cn;m

�

����

Each element in a matrix is identified by two indices, the row index and then the column index.
For example,

Cr2; 2s � c2;2

 A vector is an array of numbers, organized in a specific order. A vector can be either a column
vector or a row vector. For example, a is a column vector, and b is a row vector.

a �

�

����

a1

a2

: : :

an

�

����

b �
�
b1 b2 : : : bm

�

Each element in a vector is identified by a single index. For example:

ar2s � a2

br2s � b2

Vectors are often treated as special cases of matrices. For example, a column vector can be thought
of as a matrix with just one column, and a row vector can be thought of as a matrix with a single
row.
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D.2 Transpose

A basic operation on vectors and matrices to the transpose. The transpose of a vector converts a
column vector to a row vector, and vice versa. If a is a vector, then we write a| for the transpose of
a. For example:

a �

�

����

a1

a2

: : :

an

�

����

a| �

�
a1 a2 : : : an

�

The transpose of a matrix flips the matrix on its main diagonal (the main diagonal of a matrix
contain all the elements whose indices are equal, e.g., c1;1; c2;2; and so on). To create the transpose of
a matrix, take the first row of the matrix and write it as the first column; then write the second row of
the matrix and write it as the second column; and so on. For example:

C �

�

��
c1;1 c1;2 c1;3 c1;4

c2;1 c2;2 c2;3 c2;4

c3;1 c3;2 c3;3 c3;4

�

��

C| �

�

����

c1;1 c2;1 c3;1

c1;2 c2;2 c3;2

c1;3 c2;3 c3;3

c1;4 c2;4 c3;4

�

����

D.3 Multiplication

In general, there is no special symbol used to denote a matrix product. Instead, we write the matrix
product by writing the names of the two matrices side by side. For example, DE is the way we write
the product for two matrices D and E, although sometimes a dot may be inserted between the two
matrices (a � is frequently used to highlight that one or both of the matrices is a vector):

DE � D � E

In order to multiply one matrix by another, the number of columns in the matrix on the left of the
product must equal the number of rows in the matrix on the right. If this condition does not hold,
then the product of the two matrices is not defined. For example, if D is a 2� 3 matrix (i.e., a matrix
with 2 rows and 3 columns) and E is a 3 � 3 matrix, then the product of these two matrices DE is
defined, because the number of columns in D (3) equals the number of rows in E (3). However, the
matrix product ED is not defined because the number of columns in E (3) is not equal to the number
of rows in D (2). The product ED| is however defined because D| is a 3� 2 matrix and the number
of columns is E (3) equals the number of rows in D| (3).

The result of multiplying two matrices is another matrix whose dimensions are equal to the number
of rows in the left matrix and the number of columns in the right matrix. For example, multiplying a
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2� 3 matrix by a 3� 3 matrix results in a 2� 3. Each value in the resulting matrix is calculated as
follows, where i iterates over the columns in the first matrix (D) and the rows in the second matrix
(E)

DEr;c �
‚

i

Drr; is � Eri; cs

For example:

D �

�
d1;1 d1;2 d1;3

d2;1 d2;2 d2;3

�

E�

�

��
e1;1 e1;2 e1;3

e2;1 e2;2 e2;3

e3;1 e3;2 e3;3

�

��

DE �
�
pd1;1e1;1q�pd1;2e2;1q�pd1;3e3;1q pd1;1e1;2q�pd1;2e2;2q�pd1;3e3;2q pd1;1e1;3q�pd1;2e2;3q�pd1;3e3;3q

pd2;1e1;1q�pd2;2e2;1q�pd2;3e3;1q pd2;1e1;2q�pd2;2e2;2q�pd2;3e3;2q pd2;1e1;3q�pd2;2e2;3q�pd2;3e3;3q

�

The product of two vectors of the same dimensions is known as the dot product. For example,
given two row vectors F and G, both of which have dimensions 1� 3

F �
�

f1 f2 f3
�

G�
�
g1 g2 g3

�

The dot product of F and G, written F � G (and thus named) is equivalent to the matrix product
FG|

F �
�

f1 f2 f3
�

G| �

�

��
g1

g2

g3

�

��

F �G � p f1g1q � p f2g2q � p f3g3q

Following the rules of standard matrix multiplication, the result of multiplying a 1� 3 matrix by a
3� 1 matrix is a 1� 1 matrix (a matrix with a single value, i.e., a scalar).

Frequently, in discussing deep learning we use an elementwise product of two matrices, known as
the Hadamard product. The symbol d denotes the Hadamard product, and the Hadamard product
of two matrices D and E is written Dd E. The Hadamard product assumes that both matrices have
the same dimensions, and it produces a matrix with the same dimensions as the two inputs. Each
value in the resulting matrix is the product of the corresponding cells in the two input matrices:

DEr;c � Drr; cs � Err; cs
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For example

D �

�
d1;1 d1;2

d2;1 d2;2

�

E�

�
e1;1 e1;2

e2;1 e2;2

�

Dd E �

�
pd1;1e1;1q pd1;2e1;2q

pd2;1e2;1q pd2;2e2;2q

�

D.4 Summary

Linear algebra is an important topic in machine learning. What we have presented here is a very
short introduction to some of the most basic operations. This introduction is focused primarily on
supporting your understanding of the content in this book, in particular the chapter on deep learning,
rather than on providing a comprehensive introduction to linear algebra. There are many excellent
books on linear algebra; one of the standard textbooks on the topic is (Strang, 2016). Another
relevant textbook by the same author is (Strang, 2019), which specifically focuses on introducing
linear algebra from the perspective of understanding deep learning.
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Lehmann, Thomas Martin, Mark Oliver Güld, Daniel Keysers, Henning Schubert, Michael Kohnen,
and Berthold B. Wein. 2003. Determining the view of chest radiographs. Journal of Digital Imaging
16 (3): 280–291.

Leshno, Moshe, Vladimir Ya Lin, Allan Pinkus, and Shimon Schocken. 1993. Multilayer feedfor-
ward networks with a nonpolynomial activation function can approximate any function. Neural Net-
works 6: 861–867.



782 Bibliography

Levitt, Steven D., and Stephen J. Dubner. 2005. Freakonomics: A rogue economist explores the
hidden side of everything. Penguin.

Lewis, Michael. 2004. Moneyball: The art of winning an unfair game. Norton.

Li, Deren, Shuliang Wang, and Deyi Li. 2015. Spatial data mining. Springer.

Lintott, C. J., K. Schawinski, A. Slosar, K. Land, S. Bamford, D. Thomas, M. J. Raddick, R. C.
Nichol, A. Szalay, D. Andreescu, P. Murray, and J. Vandenberg. 2008. Galaxy Zoo: Morphologies
derived from visual inspection of galaxies from the Sloan Digital Sky Survey. Monthly Notices of the
Royal Astronomical Society 389: 1179–1189. doi:10.1111/j.1365-2966.2008.13689.x.

Lintott, C., K. Schawinski, S. Bamford, A. Slosar, K. Land, D. Thomas, E. Edmondson, K. Masters,
R. C. Nichol, M. J. Raddick, A. Szalay, D. Andreescu, P. Murray, and J. Vandenberg. 2011. Galaxy
Zoo 1: Data release of morphological classifications for nearly 900 000 galaxies. Monthly Notices of
the Royal Astronomical Society 410: 166–178. doi:10.1111/j.1365-2966.2010.17432.x.

Loh, Wei-Yin. 2011. Classification and regression trees. Wiley Interdisciplinary Reviews: Data Min-
ing and Knowledge Discovery 1 (1): 14–23.

Maas, Andrew L., Awni Y. Hannun, and Andrew Y. Ng. 2013. Rectifier nonlinearities improve neural
network acoustic models. In Proceedings of thirtieth international conference on machine learning
(ICML 13), Vol. 30. JMLR.

Mac Namee, B., P. Cunningham, S. Byrne, and O. I. Corrigan. 2002. The problem of bias in training
data in regression problems in medical decision support. Artificial Intelligence in Medicine 24 (1):
51–70.

Mac Namee, Brian. 2009. Agent based modeling in computer graphics and games. In Encyclopedia
of complexity andsystems science, ed. R. A. Meyers. Dublin Institute of Technology.

MacKay, David J. C. 2003. Information theory, inference and learning algorithms. Cambridge Uni-
versity Press.

Mahalunkar, Abhijit, and John D Kelleher. 2018. Using regular languages to explore the represen-
tational capacity of recurrent neural architectures. In International conference on artificial neural
networks, 189–198. Springer.

Makhoul, John, Amro El-Jaroudi, and Richard Schwartz. 1989. Formation of disconnected decision
regions with a single hidden layer. In Proceedings of the international joint conference on neural
networks, Vol. 1, 455–460. IEEE.

Mangasarian, Olvi L., and William H. Wolberg. 1990. Cancer diagnosis via linear programming.
SIAM News 23 (5): 1–18.

Marsland, Stephen. 2011. Machine learning: An algorithmic perspective. CRC Press.

McCandlish, Sam, Jared Kaplan, Dario Amodei, and OpenAI Dota Team. 2018. An empirical model
of large-batch training. CoRR abs/1812.06162. http://arxiv.org/abs/1812.06162.

McCulloch, Warren S., and Walter Pitts. 1943. A logical calculus of the ideas immanent in the
nervous system. Bulletin of Mathematical Biophysics 5: 115–133.

McGrayne, Sharon Bertsch. 2011. The theory that would not die: How Bayes’ rule cracked the
enigma code, hunted down Russian submarines, and emerged triumphant from two centuries of con-
troversy. Yale University Press.

Michie, D. 1961. Trial and error. In Science survey, part 2, eds. S. A. Barnett and A. McLaren,
129–145. Penguin.

http://arxiv.org/abs/1812.06162


Bibliography 783

Michie, D. 1963. Experiments on the mechanisation of game learning. Computer Journal 1: 232–
263.

Mingers, John. 1987. Expert systems - rule induction with statistical data. Journal of the Operational
Research Society 38: 39–47.

Mingers, John. 1989. An empirical comparison of selection measures for decision-tree induction.
Machine Learning 3 (4): 319–342.

Minsky, Marvin, and Seymour Papert. 1969. Perceptrons. MIT Press.

Mishne, Gilad, and Natalie S. Glance. 2006. Predicting movie sales from blogger sentiment. In AAAI
spring symposium: Computational approaches to analyzing weblogs, 155–158.

Mitchell, T. 1997. Machine learning. McGraw Hill.

Mitchell, Tom M., Svetlana V. Shinkareva, Andrew Carlson, Kai-Min Chang, Vicente L. Malave,
Robert A. Mason, and Marcel A. Just. 2008. Predicting human brain activity associated with the
meanings of nouns. Science 320 (5880): 1191–1195. doi:10.1126/science.1152876.

Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. 2013. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602.

Montgomery, Douglas C. 2004. Introduction to statistical quality control. Wiley.

Montgomery, Douglas C. 2012. Design and analysis of experiments. Wiley.

Montgomery, Douglas C., and George C. Runger. 2010. Applied statistics and probability for engi-
neers. Wiley.
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Wirth, Rüdiger, and Jochen Hipp. 2000. CRISP-DM: Towards a standard process model for data
mining. In Proceedings of the 4th international conference on the practical applications of knowledge
discovery and data mining, 29–39. Citeseer.

Wolpert David, H. 1996. The lack of a priori distinctions between learning algorithms. Neural Com-
putation 8 (7): 1341–1390.

Wood, Robert W. 1904. The n-rays. Nature 70: 530–531.

Wooldridge, Michael. 2009. An introduction to multiagent systems. Wiley.

Wooldridge, Michael, and Nicholas R. Jennings. 1995. Intelligent agents: Theory and practice. The
Knowledge Engineering Review 10 (2): 115–152.

Woolery, L., J. Grzymala-Busse, S. Summers, and A. Budihardjo. 1991. The use of machine learning
program LERS-LB 2.5 in knowledge acquisition for expert system development in nursing. Comput-
ers in Nursing 9: 227–234.

Zadnik, Karla, Lisa A. Jones, Brett C. Irvin, Robert N. Kleinstein, Ruth E. Manny, Julie A. Shin,
and Donald O. Mutti. 2000. Vision: Myopia and ambient night-time lighting. Nature 404 (6774):
143–144. http://dx.doi.org/10.1038/35004661.

Zhang, Nevin Lianwen, and David Poole. 1994. A simple approach to bayesian network computa-
tions. In Proceedings of the tenth biennial Canadian artificial intelligence conference, 171–178.

Zhou, Zhi-Hua. 2012. Ensemble methods: Foundations and algorithms. CRC Press.

http://dx.doi.org/10.1038/35004661.


Index

68�95�99:7 rule, 62, 71
�, xx
�2 pruning, 155
�2 statistic, 583
�-greedy action selection policy, 656, 658, 674
�0 bootstrap, 546

absence-presence, 214
absolute rarity, 720
ABT, see analytics base table
action, 643, 676
action-value behavior network, 672
action-value function, 642, 643, 651, 676
action-value table, 654
action-value target network, 672
activation function, 386
AdaBoost, 171
Adaboost.R2, 161
Adam, 523
additive models, 165
affine function, 385
agent, see intelligent agent
agglomerative hierarchical clustering, 618, 618,

629, 635
aggregate features, 35
AHC, see agglomerative hierarchical clustering
AlphaGo, 677
AlphaZero, 677
analytics base table, 17, 23, 28, 28, 45, 49, 50,

52, 53, 94, 97, 600, 625, 688
analytics solution, 23, 24
ANOVA test, 86, 95
Anscombe’s quartet, 84

anti-discrimination legislation, 40
approximate methods, 668, 676
area under the curve, 561, 590
arithmetic mean, 550, 551, 577, 591, 745, 745
artificial intelligence, 304, 677
artificial neural network, see neural network
artificial neuron, 383
astronomy, 703
AUC, see area under the curve
augment data, 599, 629
auto-encoder, 624, 624, 629, 733
average class accuracy, 550, 551, 554, 577, 586,

591, 698
average linkage, 619, 635

backpropagation of error, 387, 403, 404, 624,
731

backpropagation through time, 502, 518
backward sequential selection, 229
bag-of-words, 223, 236
bagging, 159, 159, 171, 179, 733, 735
balanced sample, 693
bar plot, 54, 745, 752
basis functions, 351, 365, 368
batch, 327, 417
batch gradient descent, 327, 416, 417
batch learning, 417
batch normalization, 523
batch size, 417
batches, 391, 417
Bayes’ Theorem, 243, 245, 248, 731
Bayes, Thomas, 248
Bayesian information criterion, 292



788 Index

Bayesian MAP prediction model, 254
Bayesian network, 243, 265, 285, 304, 732,

733, 735
Bayesian optimal classifier, 254
Bayesian score, 293
behavior policy, 657, 659, 664
Bellman Equations, 653
Bellman optimality equation, 653
bias, 91, 385, 751
bias term, 480, 493
BIC, see Bayesian information criterion
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complete linkage, 619
component, 274
composite function, 768
composition, 401
concept drift, 232, 578, 579, 657, 727
condensed nearest neighbor, 233
conditional independence, 256, 256, 261, 302
conditional maximum entropy model, 357
conditional probability, 245, 246, 251, 757, 759,

759, 762
conditional probability table, 286
conditionally independent, 285, 288
confidence factor, 161, 178
confounding feature, 85
confusion matrix, 537, 553, 572, 591
connectionism, 382
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consistent model, 6, 7, 121, 141
constrained quadratic optimization problem,

363
constraints, 363
continuous data, 34
continuous function, 766
control group, 583
convergence, 323
convergence criterion, 418
convex surface, 318
convolutional auto-encoders, 630
convolutional neural network, 434, 477, 485,

673, 674
convolving a function, 485
coordinate system, 183
correlation, 81, 82, 94, 103, 223
correlation matrix, 83
Corruption Perception Index, 237, 294
cosine, 216
cosine similarity, 216, 223, 231, 237
cost function, 409
covariance, 81, 218
covariance matrix, 83, 219
CPI, see Corruption Perception Index
CPT, see conditional probability table
credit scoring, 538, 553, 563
CRISP-DM, see Cross Industry Standard

Process for Data Mining
critical value pruning, 155
CRM, see customer relationship management
Cross Industry Standard Process for Data

Mining, 16, 22, 28, 46, 53, 94, 534, 600,
730

cross-correlation, 485
cross-entropy, 434, 463, 465
cross-sell model, 572
crowdsourcing, 708
cubic clustering criterion, 609
cubic function, 766
cumulative gain, 567, 567, 594, 700
cumulative gain chart, 569, 570, 592
cumulative lift, 567, 570, 700
cumulative lift chart, 570
cumulative lift curve, 570
cumulative reward, 640, 643, 676
curse of dimensionality, 225, 232, 255, 262,

740, 762

customer churn, 48
customer relationship management, 572
customer segmentation, 599
cut a hierarchical agglomeration, 622

d-separation, 289
data, 3
data analytics, 3
data availability, 33
data exploration, 34, 53, 94
data fragmentation, 255, 262
data management tools, 42
data manipulation, 42
data manipulation tools, 42
data mining, 16
Data Preparation, 17, 19, 28, 46, 53, 87, 94, 95,

535, 691, 713, 730
data preprocessing, 421
data protection legislation, 40
data quality issues, 53, 63, 94
data quality plan, 64, 94
data quality report, 53, 54, 94, 98, 105, 110,

614, 693, 710
data subject, 40
Data Understanding, 17, 19, 28, 46, 53, 94, 688,

707, 730
data visualization, 99, 752
data-driven decisions, 19
database management systems, 42
dataset, 5, 758
DBScan, 630
de Fermat, Pierre, 243
de-noising auto-encoders, 630
deciles, 567, 582
decision boundary, 189, 338, 359, 396, 736
decision stumps, 165
decision surface, 341
decision tree, 117, 121, 121, 169, 541, 554, 556,

732, 733, 735, 736
decisions, 3
decoder, 624
deep learning, xvi, 19, 381, 396, 599, 624, 629,

637, 676, 773
deep Q learning, 677
deep Q network, 637, 664, 671, 673, 676
degrees of freedom, 272
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delta value, 323
dendrogram, 622
density, 752, 753
density curve, 61
density histogram, 753
Deployment, 17, 20, 702, 727, 730
depth of a filter, 492
depth of a neural network, 389
derivative, 765
derived features, 34, 41, 45
descriptive features, 5, 19, 23, 28, 598, 688
diabetes, 51
diagnosis, 4
differentiation, 370, 765
directed acyclic graph, 499
directed cyclic graph, 499
discontinuous function, 341
discount rate, 642
discounted return, 642
discriminative model, 733
disease diagnosis, 538
distance matrix, 620, 621
distance measure, 599, 601, 618
distance metric, 184, 231
distance weighted k nearest neighbor, 194
distributions, 102
document classification, 4, 223
domain, 34, 757
domain concept, 23, 30, 45, 688, 689, 707
domain representation, 732
domain subconcept, 32
dosage prediction, 3
dot product, 216, 320, 342, 385, 773
DQN, see deep Q network
DropMask, 530
dropout, 434, 472, 473, 507
Dunn index, 609
dying ReLU, 444
dynamic programming, 653, 677

eager learner, 232
early stopping, 418, 432, 434, 472, 472, 477
early stopping criteria, 152, 155
ecological modeling, 135
edges, 286
EEG, see electroencephalography pattern

recognition

electroencephalography pattern recognition, 353
eligibility traces, 655
email classification, 536
embedding, 624, 626
encoder, 624
enrich data, 599, 629
ensemble, see model ensemble
entropy, 43, 117, 120, 125, 149, 172, 173, 611,

731
environment, 643, 676
episode, 639
epoch, 416, 418
equal-frequency binning, 89, 91, 102, 280, 294,

307
equal-width binning, 89, 90, 102, 280
equation of a line, 313, 385
equivariant, 483
ergodic Markov chain, 299
error function, 312, 315, 315, 367, 409
error rate, 155
error surface, 311, 317
error-based learning, 19, 311, 599
ethics, 47
ETL, see extract-transform-load
Euclidean coordinate space, 185
Euclidean distance, 185, 200, 231, 237, 577,

601, 602, 620, 631, 632, 636, 731
Euclidean norm, 364
Euler’s number, 342, 580
Evaluation, 17, 19, 534, 698, 725, 730
event, 246, 757, 758, 758
evolutionary reinforcement learning, 641
expectation, 652
expectation maximization algorithm, 600, 629
expected return, 642, 643, 676
expected reward, 651
experience replay, 671
experiment, 246, 757, 758
experimental design, 586
exploding gradients, 448, 452, 507
exploitation, 655, 656
exploration, 655, 656
exponential distribution, 60, 72, 270, 274
external criteria, 611
extract-transform-load, 42, 702

F measure, see F1 measure
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F score, see F1 measure
F1 measure, 548, 549, 549–551, 611
F1 score, see F1 measure
factorization, 256, 302
factors, 258
false alarms, 538
false negative, 537, 556
false negative rate, 548
false positive, 254, 537, 556
false positive rate, 548
fat tails, 272
feature, 45, 758
feature map, 485
feature selection, 94, 181, 227, 227, 232, 614,

722, 740
feature space, 181, 183, 184, 231, 599
feature subset space, 228
feedforward network, 389
filter dimension, 486
filters, 227, 482
fit, 315, 367
flag features, 35
FN, see false negative
FNR, see false negative rate
folds, 543
forget gate, 508
forward reasoning, 248
forward sequential selection, 229
FP, see false positive
FPR, see false positive rate
fraud detection, 262, 538
frequency counts, 749
frequency histogram, 752
frequency table, 749
full joint probability distribution, 284, 302, 761
fully connected network, 389
fully observable environment, 640, 640, 673

Gaeltacht, 655
gain, 567, 569
gain chart, 567, 570
galaxy morphology, 704
Galaxy Zoo, 708
gamma function, 271
Gapminder, 237
gates, 508

Gauss, Carl Friedrich, 317
Gauss-Jordan elimination, 220
Gaussian distribution, 61
Gaussian mixture model, 629
Gaussian radial basis kernel, 366
generalization, 11, 14, 536
Generalized Bayes’ Theorem, 251
Generative Adversarial Networks, 523
generative model, 733
Gibbs sampling, 298
Gini coefficient, 294, 563, 586, 590
Gini index, 145, 169, 174, 563
global minimum, 318, 319
Glorot initialization, 458
goal, 639, 643, 676
Goldilocks model, 14
GPUs, 394
gradient, 321, 368
gradient boosting, xvi, 159, 164
gradient descent, 168, 272, 274, 275, 319, 321,

368, 403, 541, 655
graphical models, 304, 742
greedy action selection policy, 641, 656, 680
greedy local search problem, 228
grid world, 659
ground truth, 607
group think, 158
guided search, 274, 319, 321

Hadamard product, xxvii, 475, 773
hamming distance, 240
Hand, David, 586
harmonic mean, 550, 551, 552, 554, 577, 586,

698
He initialization, 461
heating load prediction, 371
Hebb’s Postulate, 404
heterogeneity, 126
hidden features, 762
hidden layers, 389
histogram, 54, 745, 752, 752
history, 639
hits, 538
hold-out sampling, 541, 547
hold-out test set, 533, 535, 540, 579, 719
Human Activity Recognition Using

Smartphones Dataset, 636
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hypercube, 224
hyperplane, 197, 197, 362
hypersphere, 201, 217

ID3, see Iterative Dichotomizer 3
identity criterion, 184, 211
identity function, 624
identity matrix, 219
ill-posed problem, 7, 10, 19, 21, 22, 145
imbalanced data, 193, 550, 693
imputation, 69, 296
incremental shrinkage, 168
independence, 256, 302
independent features, 83
index, 211, 212
inductive bias, 11, 11, 19, 22, 123, 141, 328,

357, 362, 729, 736
inductive learning, 11, 729
information, 120
information gain, 117, 120, 129, 130, 133, 135,

172, 174, 227, 614, 717
information gain ratio, 142, 174
information theory, 117, 126
information-based learning, 19, 117
input gate, 508, 511
insights, 3
instance, 5, 28
integration, 276
intelligent agent, 638, 639, 643, 676, 677
inter-annotator agreement, 726
inter-cluster distance, 608
inter-quartile range, 70, 749, 755
interacting features, 227
interaction effect, 169
interaction term, 355
interior nodes, 121
interpolate, 748
interpretability of models, 739
interval data, 34
interval size, 276
intra-cluster distance, 608
invalid data, 63, 94
invalid outliers, 65, 68, 715
invariant distribution, 299
inverse covariance matrix, 219, 242
inverse reasoning, 248

inverted dropout, 474, 475, 530
IQR, see inter-quartile range
irregular cardinality, 63, 65, 94
irrelevant features, 227
iteration, 416
Iterative Dichotomizer 3, 11, 117, 133, 133,

169, 173, 176, 541, 731

J48, 169
Jaccard index, 215, 231
Jaccard similarity measure, 635
jackknifing, 545
joint probability, 246, 251, 759
joint probability distribution, 247, 761

k nearest neighbor, 181, 192, 231, 536, 554,
575, 719, 731, 733, 735

k-d tree, 181, 196, 212, 232, 241
k-fold cross validation, 543, 611
k-means clustering, 597, 600, 601, 624, 629,

631, 636, 740
k-means++, 605, 607, 624
k-medoids clustering, 601
k-NN, see k nearest neighbor
K-S chart, see Kolmogorov-Smirnov chart
K-S statistic, see Kolmogorov-Smirnov statistic
K2 score, 293
Kaiming initialization, 461
kernel function, 366, 373
kernel trick, 366, 373
knowledge elicitation, 31
Kolmogorov-Smirnov chart, 563
Kolmogorov-Smirnov statistic, 563, 583
Kolmogorov-Smirnov test, 272
Kronecker delta, 192, 195

L2 loss, 168
labeled dataset, 9
Lagrange multipliers, 363
Laplace smoothing, 267, 308
lazy learner, 232
leaf nodes, 121
leaky ReLU, 445
learning rate, 168, 323, 332, 379, 422, 654
learning rate decay, 334
least squares optimization, 318
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leave-one-out cross validation, 545
left skew, 59
levels, 34
lift, 567, 569, 700
lift chart, 570
light tails, 272
linear, 386, 625
linear activations, 674
linear algebra, xvi, 771
linear annealing, 674
linear function, 766
linear kernel, 366
linear relationship, 312, 351, 368
linear separator, 339
linearly separable, 338, 354, 365, 396
linkage method, 618
local models, 189
local receptive field, 479
locality sensitive hashing, 233
location parameter, 271
location-scale family of distributions, 271
logarithm, 124
logistic function, 342, 386, 461
logistic regression, 311, 338, 342, 368, 556,

719, 732, 733, 735, 736
logistic unit, 386
logit, xxvii, 464
LogitBoost, 171
long short-term memory, 508
long tails, 59
longevity, 33
loss, 168, 625
loss function, 168, 315, 409, 670
loss given default, 554
lower quartile, 749, 755
LSTM, see long short-term memory
LU decomposition, 220
lucky split, 543, 586
Lunar Lander, 668

machine learning, 4, 5
machine learning algorithm, 6, 19
MAE, see mean absolute error
Mahalanobis distance, 217, 223, 231, 242
Manhattan distance, 185, 185, 231, 237, 577
MAP, see maximum a posteriori

mapping features, 36, 65
margin, 361
margin extents, 361, 364
margin of error, 751
marginalization, 761
Markov assumption, 644
Markov blanket, 288
Markov chain, 298
Markov chain Monte Carlo, 298, 733
Markov decision process, 638, 643, 645
Markov process, 644, 679, 681
matrix, 771
matrix product, 385
max, 489
max pooling, 490
MaxEnt model, 357
maximum a posteriori, 254, 261, 556
maximum entropy model, 357
maximum likelihood, 301
MCMC, see Markov chain Monte Carlo
MDP, see Markov decision process
mean, 54, 69, 745, 746
mean absolute error, 577, 578
mean imputation, 374
mean squared error, 575
mean squared error loss, 625
measures of similarity, 181
median, 54, 69, 550, 745, 746, 749, 755
metric, 184, 211
mini-batch gradient descent, 417, 671
mini-batches, 417
minimum description length principle, 292
Minkowski distance, 185, 186
misclassification rate, 179, 533, 536, 539, 540,

549, 551
misses, 538
missing indicator feature, 69
missing values, 63, 64, 94, 231, 693
mixing time, 300
mixture of Gaussians distribution, 270, 274
MNIST, 477
mode, 54, 69, 746, 749
mode imputation, 374
model ensemble, xvi, 158, 170, 178, 476, 733
model parameters, 314
model residuals, 164
model-based clustering, 629
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model-based reinforcement learning, 643
model-free reinforcement learning, 657, 676
Modeling, 17, 19, 20, 87, 697, 719, 730
Monte Carlo methods, 298, 677
MSE, see mean squared error
multi-armed bandit problem, 656
multi-feature, 319
multi-label classification, 742
multi-layer perceptron, 673
multimodal distribution, 60, 274
multinomial logistic regression, 357, 376
multinomial model, 311, 369, 572
multivariable, 319
multivariable linear regression, 319, 319, 575
multivariable linear regression with gradient

descent, 11, 311, 731

N rays, 533
naive Bayes model, 243, 261, 284, 308, 309,

556, 731, 732, 735, 736
naive neural Q-learning, 671
natural language processing, 234
natural logarithm, 580
nearest neighbor, 303, 732, 736
nearest neighbor algorithm, 181, 187, 231
negative level, 537
negatively covariant, 74
network freezing, 671
neural network, 369, 381, 383, 599, 624, 629,

669, 735
next-best-offer model, 37
No Free Lunch Theorem, 13, 736
nodes, 286
noise, 7, 66, 69, 191
noise dampening mechanism, 157
non-linear model, 311
non-linear relationship, 368
non-negativity criterion, 184, 211
non-parametric model, 732
normal distribution, 59, 61, 71, 78, 269, 270,

557
normalization, 87, 181, 206, 231, 329, 332, 346,

421
normalization constant, 251
normalized mutual information, 611
null hypothesis, 333

numeric data, 34

observation period, 37, 689
Occam’s razor, 123, 292
off-policy reinforcement learning, 659, 676
on-line gradient descent, 415
on-policy reinforcement learning, 664, 676
one-class classification, 235
one-hot encoding, 463
one-row-per-subject, 29
one-versus-all model, 357, 357, 358, 367, 369
ongoing model validation, 579, 702
OpenAI, 668
OpenAI Gym, 668
optimal control domain, 653
ordinal data, 34
other features, 36
out-of-time sampling, 546, 586
outcome, 757, 758
outcome period, 37, 689
outlier detection, 235
outliers, 63, 65, 87, 91, 94, 696, 745, 755
output gate, 508, 512
over-sampling, 93
overfitting, 14, 153, 157, 193, 256, 265, 432,

434, 472, 541
overlap metric, 240

p-value, 333
padding, 487
paperclip maximizer, 677
paradox of the false positive, 254
parameterized model, 311, 312, 314
parametric model, 732
Parametric ReLU, 445
parent node, 286
Pareto charts, 752
parsimony, 646
partial derivative, 312, 318, 381, 765, 768
partially observable environments, 640
Pascal, Blaise, 243
patience, 473
PDF, see probability density function
Pearson correlation, 82, 223
Pearson, Karl, 82
peeking, 536
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percentiles, 54, 91, 567, 748
perceptron, 396
perceptron learning rule, 342
performance measure, 535, 540
personal data, 40
placebo, 584
policy, 641, 643, 676
policy gradient, 641
policy-based reinforcement learning, 643
polynomial functions, 766
polynomial kernel, 366
polynomial relationship, 352
population, 750
population mean, 61
population parameters, 751
population standard deviation, 61
positive level, 537, 538
positively covariant, 74
post-pruning, 155, 698
posterior probability, 759
posterior probability distribution, 250
pre-pruning, 155, 169
precision, 548, 549, 572
prediction, 4, 758
prediction model, 3, 19
prediction score, 556, 574
prediction speed, 738
prediction subject, 23, 29, 689, 707
predictive data analytics, 3, 3, 21
predictive features, 227
preference bias, 11
presence-absence, 214
price prediction, 3
prior probability, 251, 759
probability density function, 61, 246, 269, 758
probability distribution, 59, 94, 247, 752, 761
probability function, 246, 758
probability mass, 266, 758
probability mass function, 246, 758
probability theory, 243, 757
probability-based learning, 19, 243
product rule, 245, 249, 757, 762
profit matrix, 553, 592
propensity modeling, 4, 36, 689
proportions, 749
proxy features, 33, 36
pruning, 117, 170

pruning dataset, 155
purpose specification principle, 41

Q-learning, 637, 657, 657, 676, 680, 741
quadratic function, 352, 766

R, 222, 276
R2, 578, 586
r-trees, 233
random action selection policy, 656
random forest, 159, 159, 171, 175
random sampling, 92
random sampling with replacement, 93
random sampling without replacement, 94
random variable, 246, 652, 757, 758
range, 747
range normalization, 87, 87, 101, 206, 322, 340,

342, 374, 375, 421, 422
rank and prune, 227, 614
rate parameter, 274
ratio features, 35
raw features, 34, 41, 45
recall, 548, 549, 551, 572
receiver operating characteristic curve, 558, 589
receiver operating characteristic index, 558,

561, 586, 593
receiver operating characteristic space, 559
rectified linear activation function, 386, 625,

626, 674
rectified linear unit, 386
rectifier, 386
recurrent neural network, 434, 499
reduced error pruning, 155, 174, 698
redundant features, 227
regression task, 149
regression tree, 149, 165
regularization, 477
reinforcement learning, xvi, 5, 20, 637, 638,

674, 740
relative frequency, 245, 757, 759
relative rarity, 720
ReLU, see rectified linear unit
replay memory, 671
replicated training set, 160
representation learning, 401, 599, 624, 629
representational capacity, 396
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residual, 315
restriction bias, 11, 357
return, 640
reward, 639, 643, 676
reward hypothesis, 640
right skew, 59
risk assessment, 3
RMSE, see root mean squared error
RNN, see recurrent neural network
ROC curve, see receiver operating characteristic

curve
ROC index, see receiver operating characteristic

index
ROC space, see receiver operating characteristic

space
root mean squared error, 577, 578
root node, 121
Russel-Rao index, 214, 231

S-I-R models, 644
sabremetrics, 183
sample, 541, 745, 750, 751
sample covariance, 81
sample mean, 745
sample space, 246, 757, 758
sampling, 87, 91
sampling bias, 12
sampling density, 224
sampling method, 541, 546
sampling variance, 153
sampling with replacement, 159
sampling without replacement, 159
SARSA, 664, 664, 666, 676
saturated, 437, 447
scalar, 771
scale parameter, 271
scatter plot, 73, 183
scatter plot matrix, 74, 84, 103
SDSS, see Sloan Digital Sky Survey
second mode, 749
second order polynomial function, 352, 766
seeds, 600
selection bias, 12
semi-supervised learning, 5, 742
sensitivity, 548, 559
separating hyperplane, 362

sequential gradient descent, 415
Shannon, Claude, 731
sigmoid, 625, 626
silhouette, 609, 610
silhouette method, 612
silhouette plot, 610
silhouette width, 609
similarity index, 212, 231
similarity measure, 181
similarity-based learning, 19, 181
simple linear regression, 314, 732, 735
simple multivariable linear regression, 367
simple random sample, 751
single linkage, 619, 620, 635
situational fluency, 24, 48, 686, 706
skew, 59
Sloan Digital Sky Survey, 703
slope of a line, 313, 766
small multiples, 75, 77
smoothing, 243, 265, 266, 282
social science, 293
soft margin, 366
softmax function, 463, 658
softmax output layer, 434, 463, 463, 495
Sokal-Michener index, 214, 231
spam filtering, 262
sparse, 443
sparse data, 215, 223, 225, 237, 262
specificity, 548, 559
spectral clustering, 629
SPLOM, see scatter plot matrix
squared error, 378
stability index, 580, 590, 591, 727
stacked bar plot, 77
stale model, 578, 580, 583, 702
standard deviation, 54, 748
standard error, 333
standard normal distribution, 62
standard scores, 87, 717
standardization, 87, 101, 421, 450, 455
state, 640, 643, 676
state generation function, 640, 673
stationarity assumption, 234
stationary distribution, 299
statistical inference, 751
statistical significance, 585
statistical significance test, 333
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statistics, 369
step-wise sequential search, 722, 723
stochastic, 415
stochastic gradient descent, 327, 415
stratification feature, 93
stratified sampling, 93, 710
stride, 486
student-t distribution, 271, 272
stunted trees, 701
sub-sampling layers, 489
subagging, 159
subjective estimate, 757
subset generation, 228
subset selection, 228
subspace sampling, 159
sum of squared errors, 315, 367, 409, 411, 424,

426, 433, 441, 575, 578, 731
summary statistics, 96
summing out, 247, 761–763
supervised learning, 5, 21, 597, 598, 674
support vector machine, 311, 332, 361, 369,

373, 719, 732, 733, 735
support vectors, 362
SVM, see support vector machine
symmetry criterion, 184, 211

t-test, 333
tanh, 387, 461
Tanimoto similarity, 223
target feature, 5, 19, 28, 598
target hypersphere, 201
target level imbalance, 719
target network freezing, 672
target policy, 657, 664, 680
taxi-cab distance, 185
TD(0), 655
TD-Gammon, 677
temporal-difference learning, 637, 638, 654,

654, 676
termination condition, 229
test set, 535, 541
test statistic, 333
text analytics, 262
textual data, 34
Theorem of Total Probability, 245, 249–251,

757, 763, 764

thinning, 299
third order polynomial function, 766
Three Laws of Robotics, 677
timing, 33
TN, see true negative
TNR, see true negative rate
tolerance, 323
top sampling, 92
total sum of squares, 578
TP, see true positive
TPR, see true positive rate
training instance, 6
training set, 6, 541, 719
Transformer, 523
Transparency International, 237
transpose, 772
trapezoidal method, 562, 593
treatment group, 583
tree pruning, 154, 169
triangular inequality criterion, 184, 211
true negative, 537
true negative rate, 548, 558
true positive, 537
true positive rate, 548, 549, 558
TwentyTwos, 645, 647, 680
two-stage model, 722, 725
type I errors, 538
type II errors, 538

unbiased estimate, 752
unconditional probability, 759
under-sampled training set, 720
under-sampling, 93, 720
underfitting, 14, 193
uniform distribution, 59
unimodal distribution, 59, 272
unit hypercube, 224
units, 386
universal approximation theorem, 400
universal approximators, 400
unstable gradients, 449
unsupervised learning, xvi, 5, 20, 597, 598, 628,

674, 740
upper quartile, 749, 755
upsell model, 213, 572
use limitation principle, 41
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valid data, 63, 94
valid outliers, 65, 68, 715
valid pixels, 487
validation dataset, 155, 473, 541, 541, 719
value function, 642
value-based reinforcement learning, 676
vanishing gradients, 387, 403, 435, 451, 507
variable elimination, 298
variable selection, 227
variance, 149, 206, 220, 747, 747, 748, 752
variation, 54, 745, 746
variational auto-encoders, 630
variational RNN, 507
vector, 216, 771
violin plot, 451
Voronoi region, 189
Voronoi tessellation, 189, 231

weak learners, 165
weight sharing, 483
weight space, 317, 321, 338, 369
weight update rule, 327, 403
weighted dataset, 160
weighted k nearest neighbor, 194, 209, 237, 238
weighted sum, 524
weighted variance, 149
weights, 314
Western Electric rules, 579
whiskers, 755
Wilcoxon-Mann-Whitney statistic, 563
Wisconsin breast cancer dataset, 109, 377
wrapper-based feature selection, 228, 541, 722

Xavier initialization, 458, 458, 459, 461
XGBoost, 171

z-score, 87
z-transform, 87
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