
SQL Handbooks

SQL Server
Execution Plans
Second Edition

By Grant Fritchey

SQL Server Execution Plans

Second Edition

By Grant Fritchey

Published by Simple Talk Publishing September 2012

First Edition 2008

Copyright Grant Fritchey 2012

ISBN: 978-1-906434-92-2

The right of Grant Fritchey to be identified as the author of this work has been asserted by him in accordance

with the Copyright, Designs and Patents Act 1988

All rights reserved. No part of this publication may be reproduced, stored or introduced into a retrieval

system, or transmitted, in any form, or by any means (electronic, mechanical, photocopying, recording or

otherwise) without the prior written consent of the publisher. Any person who does any unauthorized act in

relation to this publication may be liable to criminal prosecution and civil claims for damages.

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold,

hired out, or otherwise circulated without the publisher's prior consent in any form other than which it is

published and without a similar condition including this condition being imposed on the subsequent

publisher.

Technical Reviewer: Brad McGehee

Editors: Tony Davis and Brad McGehee

Cover Image by Andy Martin

Typeset by Peter Woodhouse & Gower Associates

Table of Contents

Introduction ___ 13
Changes in This Second Edition ___ 15
Code Examples ___16

Chapter 1: Execution Plan Basics _________________________18
What Happens When a Query is Submitted? _______________________________19

Query parsing ___ 19
Algebrizer __ 20
The query optimizer __ 21
Query execution ___24

Estimated and Actual Execution Plans ____________________________________ 25
Execution Plan Reuse ___ 26
Clearing Plans from the Plan Cache ______________________________________28
Execution Plan Formats ___ 29

Graphical plans __29
Text plans ___29
XML plans __30

Getting Started ___ 31
Permissions required to view execution plans ____________________________ 31
Working with graphical execution plans ________________________________ 32
Working with text execution plans _____________________________________42
Working with XML execution plans ___________________________________ 46
Interpreting XML plans __47

Retrieving Plans from the Cache Using Dynamic Management Objects ________ 51
Automating Plan Capture Using SQL Server Trace Events ___________________ 53

Execution plan events ___54
Capturing a Showplan XML trace ______________________________________56
Why the actual and estimated execution plans might differ _________________59

Summary __61

Chapter 2: Graphical Execution Plans for Basic Queries _____ 62
The Language of Graphical Execution Plans ______________________________ 62
Some Single Table Queries __65

Clustered Index Scan __65
Clustered Index Seek ___ 68
NonClustered Index Seek ___ 70
Key Lookup ___ 73
Table Scan __79
RID Lookup __ 80

Table Joins ___83
Hash Match join __ 86
Nested Loops join ___ 89
Compute Scalar __92
Merge Join __93

Filtering Data ___ 96
Execution Plans with GROUP BY and ORDER BY _________________________ 99

Sort ___ 99
Hash Match (aggregate) ___ 103
Filter __104
A brief aside on rebinds and rewinds __________________________________ 105

Execution Plans for INSERT, UPDATE and DELETE Statements _____________108
INSERT statements __109
UPDATE statements ___ 112
DELETE statements ___ 114

Summary ___ 114

Chapter 3: Text and XML Execution Plans for Basic Queries __ 116
Text Execution Plans ___ 117

A text plan for a simple query __ 117
A text plan for a slightly more complex query ___________________________ 121

XML Execution Plans ___ 126
An estimated XML plan ___ 127
An actual XML plan __ 134

Querying the XML ___ 135
Summary __ 137

Chapter 4: Understanding More Complex Query Plans ______138
Stored procedures ___ 138
Using a sub-select ___ 141
Derived tables using APPLY ___ 145
Common table expressions __ 149
MERGE ___ 154
Views ___ 159
Indexes __ 164
Summary __ 176

Chapter 5: Controlling Execution Plans with Hints _________ 177
Query Hints ___ 178

HASH|ORDER GROUP __ 178
MERGE |HASH |CONCAT UNION ___________________________________ 182
LOOP|MERGE|HASH JOIN ___ 185
FAST n __190
FORCE ORDER ___ 191
MAXDOP __ 196
OPTIMIZE FOR __199
PARAMETERIZATION SIMPLE|FORCED _____________________________205
RECOMPILE ___205
ROBUST PLAN __ 208
KEEP PLAN ___ 209
KEEPFIXED PLAN ___ 210
EXPAND VIEWS __ 210
MAXRECURSION ___ 212
USE PLAN ___ 212

Join Hints ___ 212
LOOP ___ 213
MERGE ___ 216

Table Hints ___ 218
Table hint syntax __ 218
NOEXPAND ___ 219
INDEX() ___ 221
FASTFIRSTROW ___ 223

Summary ___226

Chapter 6: Cursor Operations ___________________________227
Simple cursors ___227

Logical operators __229
Physical operators ___ 237

More cursor operations ___238
Static cursor __ 238
Keyset cursor ___ 243
READ_ONLY cursor ___246

Cursors and performance ___247
Summary ___254

Chapter 7: Special Datatypes and Execution Plans _________255
XML ___ 255

FOR XML __ 257
OPENXML ___266
XQuery __ 271

Hierarchical Data __279
Spatial Data ___282
Summary __ 286

Chapter 8: Advanced Topics ___________________________ 287
Reading Large-scale Execution Plans ___________________________________ 288
Parallelism in Execution Plans ___295

Max degree of parallelism ___296
Cost threshold for parallelism __297
Are parallel plans good or bad? _______________________________________298
Examining a parallel execution plan __________________________________ 299

How Forced Parameterization Affects Execution Plans _____________________ 305
Using Plan Guides to Modify Execution Plans _____________________________ 310

Object plan guides __ 311
SQL plan guides ___ 314
Template plan guides ___ 315
Plan guide administration ___ 316
Plan forcing __ 317

Summary ___ 321

ix

About the Author

Grant Fritchey is a SQL Server MVP with over 20 years' experience in IT including time
spent in support, development, and database administration.

Grant has worked with SQL Server since version 6.0, back in 1995. He has developed in
VB, VB.Net, C#, and Java. Grant joined Red Gate as a Product Evangelist in January 2011.

He writes articles for publication at SQL Server Central, Simple-Talk, and other
community sites, and has published two books: the one you're reading now and SQL
Server 2012 Query Performance Tuning Distilled, 3rd Edition (Apress, 2012).

In the past, people have called him intimidating and scary. To which his usual reply is
"Good."

You can contact him through grant -at- scarydba dot kom (de-obfuscate as necessary).

About the Technical Reviewer

Brad M. McGehee is a MCTS, MCSE+I, MCSD, and MCT (former) with a Bachelor's
degree in Economics and a Master's in Business Administration. Currently a DBA with a
Top 10 accounting firm, Brad is an accomplished Microsoft SQL Server MVP with over 17
years' SQL Server experience, and over 8 years' training experience; he has been involved
in IT since 1982.

Brad is a frequent speaker at SQL PASS, European PASS, SQL Server Connections,
SQLTeach, devLINK, SQLBits, SQL Saturdays, TechFests, Code Camps, SQL in the City,
SQL Server user groups, webinars, and other industry seminars, where he shares his 17
years of cumulative knowledge and experience.

x

In 2009, 2010, and 2011, Brad has made 86 different public presentations to a total of
6,750 attendees in six different countries.

Brad was the founder of the popular community site, www.SQL-server-performance.
com, and operated it from 2000 through 2006, where he wrote over one million words on
SQL Server topics.

A well-respected and trusted name in SQL Server literature, Brad is the author or
co-author of more than 15 technical books and over 300 published articles. His most
recent books include How to Become an Exceptional DBA (2nd Edition), Brad's Sure Guide
to SQL Server 2008: The Top Ten New Features for DBAs, Mastering SQL Server Profiler,
and Brad's Sure Guide to SQL Server Maintenance Plans. These books are available,
free, in PDF format at: http://www.sqlservercentral.com/Books/. His blog is
at www.bradmcgehee.com.

http://www.SQL-server-performance.com
http://www.SQL-server-performance.com
http://www.sqlservercentral.com/Books/
http://www.bradmcgehee.com/

11

Foreword

I have attended many SQL Server conferences since 2000, and I have spoken with
hundreds of people attending them. One of the most significant trends I have noticed
over the past 12 years is the huge number of people who have made the transition from
IT Professional or Developer, to SQL Server Database Administrator. In some cases, the
transition has been planned and well thought-out. In other cases, it was an accidental
transition, when an organization desperately needed a DBA, and the closest warm body
was chosen for the job.

No matter the route you took to get there, all DBAs have one thing in common: we have
had to learn how to become DBAs through self-training, hard work, and trial and error. In
other words, there is no school you can attend to become a DBA; it is something you have
to learn on your own. Some of us are fortunate to attend a class or two, or to have a great
mentor to help us. However, in most cases, we DBAs become DBAs the hard way: we are
thrown into the water and we either sink or swim.

One of the biggest components of a DBA's self-learning process is reading. Fortunately,
there are many good books on the basics of being a DBA that make a good starting point
for your learning journey. Once you have read the basic books and have gotten some
experience under your belt, you will soon want to know more of the details of how SQL
Server works. While there are a few good books on the advanced use of SQL Server, there
are still many areas that aren't well covered. One of those areas of missing knowledge is a
dedicated book on SQL Server execution plans.

That's where SQL Server Execution Plans comes into play. It is the first book available
anywhere that focuses entirely on what SQL Server execution plans are, how to read
them, and how to apply the information you learn from them in order to boost the
performance of your SQL Servers.

12

This was not an easy book to write because SQL Server execution plans are not well
documented. Grant Fritchey spent a huge amount of time researching SQL Server
execution plans, and conducting original research as necessary, in order to write the
material in this book. Once you understand the fundamentals of SQL Server, this book
should be on top of your reading list, because understanding SQL Server execution plans
is a critical part of becoming an Exceptional DBA.

As you read the book, take what you have learned and apply it to your own unique set of
circumstances. Only by applying what you have read will you be able to fully understand
and grasp the power of what execution plans have to offer.

Brad M McGehee

Springfield, MO USA 2012

13

Introduction

Every day, out in the various discussion boards devoted to Microsoft SQL Server, the
same types of questions come up repeatedly:

• Why is this query running slow?

• Is SQL Server using my index?

• Why isn't SQL Server using my index?

• Why does this query run faster than this query?

• And so on (and on).

The correct response is probably different in each case, but in order to arrive at the
answer you have to ask the same return question every time: have you looked at the
execution plan?

Execution plans show you what's going on behind the scenes in SQL Server. They can
provide you with a wealth of information on how SQL Server is executing your queries,
including the points below.

• Which indexes are getting used, and where no indexes are being used at all.

• How the data is being retrieved, and joined, from the tables defined in your query.

• How aggregations in GROUP BY queries are put together.

• The anticipated load, and the estimated cost, that all these operations place upon
the system.

All this information makes the execution plan a fairly important tool in the tool belt of
database administrator, database developers, report writers, developers, and pretty much
anyone who writes T-SQL to access data in a SQL Server database.

14

Given the utility and importance of the tool, you'd think there'd be huge swathes of infor-
mation devoted to this subject. To be sure, fantastic information is available from various
sources, but there isn't one place to go for focused, practical information on how to use
and interpret execution plans.

This is where my book comes in. My goal was to gather into a single location as much
useful information on execution plans as possible. I've tried to organize this information
in such a way that it provides a clear route through the subject, right from the basics
of capturing plans, through their interpretation, and then on to how to use them to
understand how you might optimize your SQL queries, improve your indexing strategy,
and so on.

Specifically, I cover:

• How to capture execution plans in graphical, as well as text and XML formats.

• A documented method for interpreting execution plans, so that you can create these
plans from your own code and make sense of them in your own environment.

• How SQL Server represents and interprets the common SQL Server objects – indexes,
views, derived tables and so on, in execution plans.

• How to spot some common performance issues such as Bookmark Lookups or
unused/missing indexes.

• How to control execution plans with hints, plan guides and so on, and why this is a
double-edged sword.

• How XML code appears in execution plans.

• Advanced topics such as parallelism, forced parameterization and plan forcing.

Along the way, I tackle such topics as SQL Server internals, performance tuning, index
optimization and so on. However, I focus always on the details of the execution plans,
and how these issues are manifest in these plans.

15

If you are specifically looking for information on how to optimize SQL, or build efficient
indexes, then you need a book dedicated to these topics. However, if you want to under-
stand how to interpret these issues within an execution plan, then this is the place
for you.

Changes in This Second Edition

This second edition is more evolution than revolution. I spent a lot of time clarifying the
descriptions of all of the major plan operators, updating the examples that illustrated how
these operators manifest in SQL Server's execution plans, and improving the descriptions
of how to read and interpret these plans, in all their guises (graphical, text, and XML).

There is also plenty of new content in here, including coverage of topics such as:

• How to get the cached execution plan for a query, using the Dynamic Management
Views (DMVs).

• Expanded coverage of reading XML plans, including how to use XQuery to query
cached plans.

• Discussion of the MERGE statement and how it manifests in execution plans.

• Expanded coverage of complex data types, to include hierarchical and spatial data as
well as XML.

• How to read large-scale plans using XQuery.

• Additional functionality added to SQL Server 2012.

From this point forward, I plan to embark on a program of "continuous improvement,"
gradually adding new content, and updating existing content for a more complete set of
information on SQL Server 2012.

16

I'll push out updated versions of the eBook, at semi-regular intervals, for you to download
and provide your feedback.

Be sure to check out the website for this book:
 (http://www.simple-talk.com/books/sql-books/sql-server-execution-plans/),
where you can:

• Find links to download the latest versions of the eBook and buy the latest
printed book.

• Sign up to receive email notifications when I release a new eBook version.

• View the "Change Log," describing what has changed in each new version.

• Most importantly, let me know what you think! Seriously, hit me with whatever
feedback you have. Be honest, brutal…scary even, if necessary. If you provide feedback
that makes it into the next edition of the book, you'll receive an Amazon voucher to
buy yourself a copy of the latest printed version.

Enjoy the book, and I look forward to hearing from you!

Code Examples

Throughout this book, I'll be supplying T-SQL code that you're encouraged to run for
yourself, in order to generate the plans we'll be discussing. From the following URL,
you can obtain all the code you need to try out the examples in this book:

www.simple-talk.com/RedGateBooks/GrantFritchey_SQLServerExecutionPlans_
Code.zip

I wrote and tested the examples on SQL 2008 Release 2 sample database, Adventure-
Works2008R2. However, the majority of the code will run on all editions and versions of
SQL Server, starting from SQL Server 2005.

http://www.simple-talk.com/books/sql-books/sql-server-execution-plans/
http://www.simple-talk.com/RedGateBooks/GrantFritchey_SQLServerExecutionPlans_Code.zip
http://www.simple-talk.com/RedGateBooks/GrantFritchey_SQLServerExecutionPlans_Code.zip

17

Some of the code may not work within SQL Azure, but a large amount of it will. You can
get hold of get a copy of AdventureWorks from CodePlex:
http://www.codeplex.com/MSFTDBProdSamples.

If you are working with procedures and scripts other than those supplied, please
remember that encrypted stored procedures will not display an execution plan.

The initial execution plans will be simple and easy to read from the samples presented in
the text. As the queries and plans become more complicated, the book will describe the
situation but, in order to see the graphical execution plans or the complete set of XML,
it will be necessary for you to generate the plans. So, please, read this book next to your
machine, if possible, so that you can try running each query yourself!

http://www.codeplex.com/MSFTDBProdSamples

18

Chapter 1: Execution Plan Basics

An execution plan, simply put, is the result of the query optimizer's attempt to
calculate the most efficient way to implement the request represented by the T-SQL
query you submitted.

Execution plans can tell you how SQL Server may execute a query, or how it did execute
a query. They are, therefore, the primary means of troubleshooting a poorly performing
query. Rather than guess at why a given query is performing thousands of scans, putting
your I/O through the roof, you can use the execution plan to identify the exact piece of
SQL code that is causing the problem. For example, your query may be reading an entire
table-worth of data when, by removing a function in your WHERE clause, it could simply
retrieve only the rows you need. The execution plan displays all this and more.

The aim of this chapter is to teach you to capture actual and estimated execution plans,
in either graphical, text or XML format, and to understand the basics of how to interpret
these plans. In order to do this, we'll cover the following topics:

• A brief backgrounder on the query optimizer – Execution plans are a result of
the optimizer's operations so it's useful to know at least a little bit about what the
optimizer does, and how it works.

• Actual and estimated execution plans – What they are and how they differ.

• Capturing and interpreting the different visual execution plan formats – We'll
investigate graphical, text and XML execution plans.

• Retrieve execution plans directly from the cache – Accessing the plan cache
through Dynamic Management Objects (DMOs).

• Automating execution plan capture – using SQL Server Trace Event.

19

Chapter 1: Execution Plan Basics

What Happens When a Query is Submitted?

When you submit a query to SQL Server, a number of processes on the server go to work
on that query. The purpose of all these processes is to manage the system such that it will
SELECT, INSERT, UPDATE or DELETE the data.

These processes kick into action every time we submit a query to the system. While there
are many different actions occurring simultaneously within SQL Server, we're going to
focus on the processes around queries. The processes for meeting the requirements of
queries break down roughly into two stages:

1. Processes that occur in the relational engine.

2. Processes that occur in the storage engine.

In the relational engine, the query is parsed and then processed by the query optimizer,
which generates an execution plan. The plan is sent (in a binary format) to the storage
engine, which then uses that plan as a basis to retrieve or modify the underlying data. The
storage engine is where processes such as locking, index maintenance, and transactions
occur. Since execution plans are created in the relational engine, that's where we'll be
focusing the majority of our attention.

Query parsing

When we pass a T-SQL query to the SQL Server system, the first place it goes to is the
relational engine.1 As the T-SQL arrives, it passes through a process that checks that the
T-SQL is written correctly, that it's well formed. This process is query parsing. If a query
fails to parse correctly, for example, if you type SELETC instead of SELECT, then parsing

1 A T-SQL query can be an ad hoc query from a command line or a call to request data from a stored procedure, any T-SQL within a
single batch or a stored procedure, or between GO statements.

20

Chapter 1: Execution Plan Basics

stops and SQL Server returns an error to the query source. The output of the Parser
process is a parse tree, or query tree (or it's even called a sequence tree). The parse tree
represents the logical steps necessary to execute the requested query.

If the T-SQL string is not a data manipulation language (DML) statement, but instead is
a data definition language (DDL) query, it will be not be optimized because, for example,
there is only one "right way" for the SQL Server system to create a table; therefore, there
are no opportunities for improving the performance of that type of statement.

Algebrizer

If the T-SQL string is a DML statement and it has parsed correctly, the parse tree is passed
to a process called the algebrizer. The algebrizer resolves all the names of the various
objects, tables and columns, referred to within the query string. The algebrizer identifies,
at the individual column level, all the data types (varchar(50) versus datetime and so
on) for the objects being accessed. It also determines the location of aggregates (such as
GROUP BY, and MAX) within the query, a process called aggregate binding. This algebrizer
process is important because the query may have aliases or synonyms, names that don't
exist in the database, that need to be resolved, or the query may refer to objects not in
the database. When objects don't exist in the database, SQL Server returns an error from
this step, defining the invalid object name. As an example, the algebrizer would quickly
find the table Person.Person in the AdventureWorks2008R2 database. However,
the Product.Person table, which doesn't exist, would cause an error and the whole
optimization process would stop.

The algebrizer outputs a binary called the query processor tree, which is then passed
on to the query optimizer. The algebrizer's output includes a hash, a coded value repre-
senting the query. The optimizer uses the hash to determine whether there is already a
plan generated and stored in the plan cache. If there is a plan there, the process stops here
and that plan is used. This reduces all the overhead required by the query optimizer to
generate a new plan.

21

Chapter 1: Execution Plan Basics

The query optimizer

The query optimizer is essentially a piece of software that "models" the way in which
the database relational engine works. The most important pieces of data used by the
optimizer are statistics, which SQL Server generates and maintains against indexes and
columns, explicitly for use by the optimizer. Using the query processor tree and the
statistics it has about the data, the optimizer applies the model in order to work out
what it thinks will be the optimal way to execute the query – that is, it generates an
execution plan.

In other words, the optimizer figures out how best to implement the request represented
by the T-SQL query you submitted. It decides if it can access the data through indexes,
what types of joins to use and much more. The decisions made by the optimizer are based
on what it calculates to be the cost of a given execution plan, in terms of the required
CPU processing and I/O. Hence, this is a cost-based plan.

The optimizer will generate and evaluate many plans (unless there is already a cached
plan) and, generally speaking, will choose the lowest-cost plan, that is, the plan it thinks
will execute the query as fast as possible and use the least amount of resources, CPU and
I/O. The calculation of the execution cost is the most important calculation, and the
optimizer will use a process that is more CPU-intensive if it returns results that much
faster. Sometimes, the optimizer will settle for a less efficient plan if it thinks it will take
more time to evaluate many plans than to run a less efficient plan. The optimizer doesn't
find the best possible plan. The optimizer finds the plan with the least cost in the shortest
possible number of iterations, meaning the least amount of time within the processor.

If you submit a very simple query – for example, a SELECT statement against a single
table with no aggregates or calculations within the query – then, rather than spend time
trying to calculate the absolute optimal plan, the optimizer will simply apply a trivial
plan to these types of queries. For example, a query like the one in Listing 1.1 would create
a trivial plan.

22

Chapter 1: Execution Plan Basics

SELECT d.Name
FROM HumanResources.Department AS d
WHERE d.DepartmentID = 42

Listing 1.1

Adding even one more table, with a JOIN, would make the plan non-trivial. If the query is
non-trivial, the optimizer will perform a cost-based calculation to select a plan. In order
to do this, it relies on the statistics that by SQL Server maintains.

Statistics are collected on columns and indexes within the database, and describe the data
distribution and the uniqueness, or selectivity, of the data. We don't want the optimizer
to read all the data in all the tables referenced in a query each time it tries to generate a
plan, so it relies on statistics, a sample of the data that provides a mathematical construct
of the data used by the optimizer to represent the entire collection of data. The reliance
the optimizer has on statistics means that these things need to be as accurate as possible
or the optimizer could make poor choices for the execution plans it creates.

The information that makes up statistics is represented by a histogram, a tabulation
of counts of the occurrence of a particular value, taken from 200 data points evenly
distributed across the data. It's this "data about the data" that provides the information
necessary for the optimizer to make its calculations.

If statistics exist for a relevant column or index, then the optimizer will use them in its
calculations. The optimizer will examine the statistics to determine if the index supplies
a sufficient level of selectivity to act as assistance for the query in question. Selectivity is
how unique the data is across the whole set of the data. The level of selectivity required
to be of assistance for an index is quite high, usually with x% of unique values required in
most instances.

Statistics, by default, are created and updated automatically within the system for all
indexes or for any column used as a predicate, as part of a WHERE clause or JOIN ON
clause. Table variables do not ever have statistics generated on them, so the optimizer
always assumes they contain a single row, regardless of their actual size.

23

Chapter 1: Execution Plan Basics

Temporary tables do have statistics generated on them and their statistics are
stored in the same type of histogram as permanent tables, and the optimizer can
use these statistics.

The optimizer takes these statistics, along with the query processor tree, and heuristi-
cally determines the best plan. This means that it works through a series of plans, testing
different methods of accessing data, attempting different types of join, rearranging the
join order, trying different indexes, and so on, until it arrives at what it thinks will be the
least cost plan. During these calculations, the optimizer assigns a number to each of the
steps within the plan, representing its estimation of the combined amount of CPU and
disk I/O time it thinks each step will take. This number is the estimated cost for that step.
The accumulation of costs for each step is the estimated cost for the execution plan itself.

It's important to note that the estimated cost is just that – an estimate. Given an infinite
amount of time and complete, up-to-date statistics, the optimizer would find the perfect
plan for executing the query. However, it attempts to calculate the best plan it can in the
least amount of time possible, and is limited by the quality of the statistics it has available.
Therefore, these cost estimations are very useful as measures, but are unlikely to reflect
reality precisely.

Once the optimizer arrives at an execution plan, the estimated plan is created and stored
in a memory space known as the plan cache – although this is all different if a plan
already exists in cache (more on this shortly, in the section on Execution Plan Reuse).
As stated earlier, if the optimizer finds a plan in the cache that matches the currently
executing query, this whole process is short-circuited.

24

Chapter 1: Execution Plan Basics

Query execution

Once the optimizer has generated an execution plan, or retrieved one from cache, the
action switches to the storage engine, which usually executes the query according to
the plan.

We will not go into detail here, except to note that the carefully generated execution plan
may be subject to change during the actual execution process. For example, this might
happen if:

• SQL Server determines that the plan exceeds the threshold for a parallel execution
(an execution that takes advantage of multiple processors on the machine – more on
parallel execution in Chapter 3)

• the statistics used to generate the plan were out of date, or have changed since the
original execution plan was created

• processes or objects within the query, such as data inserts to a temporary table, result
in a recompilation of the execution plan.

Any one of these could change the estimated execution plan.

SQL Server returns the results of the query after the relational engine changes the format
to match that requested in the submitted T-SQL statement, assuming it was a SELECT.

25

Chapter 1: Execution Plan Basics

Estimated and Actual Execution Plans

As discussed previously, there are two distinct types of execution plan. First, there is the
plan that represents the output from the optimizer. This is an estimated execution plan.
The operators, or steps, within the plan are logical steps, because they're representative
of the optimizer's view of the plan and don't represent what physically occurs when the
query runs.

Next is the plan that represents the output from the actual query execution. This type
of plan is, funnily enough, the actual execution plan. It shows data representing what
actually happened when the query executed.

These plans represent distinctly different sets of data, but can look largely the same. Most
of the time, the same operators with the same costs will be present in both plans. There
are occasions where, usually due to recompiles, SQL Server will drop a plan from the plan
cache and recreate it, and these versions can differ greatly. The cause is usually changes
in statistics, or other changes that occur as the storage engine processes the queries. We'll
discuss this issue in more detail a little later in the chapter.

Estimated plans are the types of plans stored in the plan cache, so this means that we
can access the data available in actual execution plans only by capturing the execution of
a query. Since estimated plans never access data, they are very useful for large, complex
queries that could take a long time to run. Actual execution plans are preferred because
they show important execution statistics such as the number of rows accessed by a given
operator. In general, this additional information makes actual execution plans the one
you use the most, but estimated plans are extremely important, especially because that's
what you get from the plan cache.

26

Chapter 1: Execution Plan Basics

Execution Plan Reuse

It is expensive for the server to go through all the processes described above that are
required to generate execution plans. While SQL Server can do all this in less than a
millisecond, depending on the query it can take seconds or even minutes to create an
execution plan, so SQL Server will keep and reuse plans wherever possible in order to
reduce that overhead. As they are created, plans are stored in a section of memory called
the plan cache (prior to SQL Server 2005 this was called the procedure cache).

When we submit a query to the server, the algebrizer process creates a hash, like a coded
signature, of the query. The hash is a unique identifier; its nickname is the query finger-
print. With an identifier that is unique for any given query, including all the text that
defines the query, including spaces and carriage returns, the optimizer compares the hash
to queries in the cache. If a query exists in the cache that matches the query coming into
the engine, the entire cost of the optimization process is skipped and the execution plan
in the plan cache is reused.

This is one of the strengths of SQL Server, since it reduces the expense of creating plans.
It is a major best practice to write queries in such a way that SQL Server can reuse their
plans. To ensure this reuse, it's best to use either stored procedures or parameterized
queries. Parameterized queries are queries where the variables within the query are
identified with parameters, similar to a stored procedure, and these parameters are fed
values, again, similar to a stored procedure.

If, instead, variables are hard coded, then the smallest change to the string that defines
the query can cause a cache miss, meaning that SQL Server did not find a plan in the
cache (even though, with parameterization, there may have existed a perfectly suitable
one) and so the optimization process is fired and a new plan created. It is possible to get a
look at the query hash and use it for some investigation of performance (more on this in
the section on DMOs).

27

Chapter 1: Execution Plan Basics

SQL Server does not keep execution plans in memory forever. They are slowly aged out
of the system using an "age" formula that multiplies the estimated cost of the plan by the
number of times it has been used (e.g. a plan with an estimated cost of 10 that has been
referenced 5 times has an "age" value of 50). The lazywriter process, an internal process
that works to free all types of cache (including the plan cache), periodically scans the
objects in the cache and decreases this value by one each time.

If the following criteria are met, the plan is removed from memory:

• more memory is required by the system

• the "age" of the plan has reached zero

• the plan isn't currently being referenced by an existing connection.

Execution plans are not sacrosanct. Certain events and actions can cause a plan to be
recompiled. It is important to remember this, because recompiling execution plans can
be a very expensive operation. The following actions can lead to recompilation of an
execution plan:

• changing the structure or schema of a table referenced by the query

• changing an index used by the query

• dropping an index used by the query

• updating the statistics used by the query

• calling the function, sp_recompile

• subjecting the keys in tables referenced by the query to a large number of
Inserts or Deletes (which leads to statistics changes)

• for tables with triggers, significant growth of the inserted or deleted tables

• mixing DDL and DML within a single query, often called a deferred compile

• changing the SET options within the execution of the query

28

Chapter 1: Execution Plan Basics

• changing the structure or schema of temporary tables used by the query

• changes to dynamic views used by the query

• changes to cursor options within the query

• changes to a remote rowset, like in a distributed partitioned view

• when using client-side cursors, if the FOR BROWSE options are changed.

Clearing Plans from the Plan Cache

Since the cache plays such an important role in how execution plans operate, you need a
few tools for querying and working with the plan cache. First off, while testing, you may
want to see how long a plan takes to compile, or to investigate how minor adjustments
might create slightly different plans. To clear the cache, run this:

DBCC FREEPROCCACHE

Listing 1.2

WARNING: Clearing the cache in a production environment

Running Listing 1.2 in a production environment will clear the cache for all databases on the server. That

can result in a significant performance hit because SQL Server must then recreate every single plan stored

in the plan cache, as if the plans were never there and the queries were being run for the first time ever.

While working with an individual query, it's usually better to target that query to remove
just it from the plan cache. You can use DBCC FREEPROCCACHE and pass either the
sql_handle or plan_handle to remove just the referenced plan. The plan_handle
and sql_handle are available from various DMO objects (see the section on DMOs).

29

Chapter 1: Execution Plan Basics

Execution Plan Formats

While SQL Server produces a single execution plan for a given query, we can view it in
three different ways:

• as graphical plans

• as text plans

• as XML plans.

The one you choose will depend on the level of detail you want to see, and on the
methods used to generate or retrieve that plan.

Graphical plans

Graphical plans are the most commonly used type of execution plan. They are quick
and easy to read. We can view both estimated and actual execution plans in graphical
format and the graphical structure makes understanding most plans very easy. However,
the detailed data for the plan is hidden behind ToolTips and Property sheets, making it
somewhat more difficult to get to.

Text plans

These can be quite difficult to read, but detailed information is immediately available.
Their text format means that they we can copy or export them into text manipulation
software such as NotePad or Word, and then run searches against them. While the detail
they provide is immediately available, there is less detail overall from the execution plan
output in these types of plan, so they can be less useful than the other plan types.

30

Chapter 1: Execution Plan Basics

There are three text plan formats:

• SHOWPLAN_ALL – A reasonably complete set of data showing the estimated execution
plan for the query.

• SHOWPLAN_TEXT – Provides a very limited set of data for use with tools like osql.exe.
It, too, only shows the estimated execution plan

• STATISTICS PROFILE – Similar to SHOWPLAN_ALL except it represents the data for
the actual execution plan.

XML plans

XML plans present a complete set of data available on a plan, all on display in the
structured XML format. The XML format is great for transmitting to other data
professionals if you want help on an execution plan or need to share with co-workers.
Using XQuery, we can also query the XML data directly. Every graphical execution plan
is actually XML under the covers. XML is very hard to read, so, useful though these types
of plan are, you're more likely to use the text or graphical plans for simply browsing the
execution plan.

There are two varieties of XML plan:

• SHOWPLAN_XML – The plan generated by the optimizer prior to execution.

• STATISTICS_XML – The XML format of the actual execution plan.

31

Chapter 1: Execution Plan Basics

Getting Started

Execution plans assist us in writing efficient T-SQL code, troubleshooting existing T-SQL
behavior or monitoring and reporting on our systems. How we use them and view
them is up to us, but first we need to understand what information is contained within
the plans, and how to interpret that information. One of the best ways to learn about
execution plans is to see them in action, so let's get started.

Please note that occasionally, especially when we move on to more complex plans, the
plan that you see, if you follow along by executing the relevant script (all scripts are
available in the code download for this book) may differ slightly from the one presented
in the book. This might be because we are using different versions of SQL Server
(different SP levels and hot fixes), or we are using slightly different versions of the
AdventureWorks database, or because of how the AdventureWorks database has
been altered over time as each of us has played around in it. So, while most of the plans
you get should be very similar to what we display here, don't be too surprised if you try
the code and see something different.

Permissions required to view execution plans

In order to generate execution plans for queries you must have the correct permissions
within the database. If you are sysadmin, dbcreator or db_owner, you won't need any
other permission. If you are granting this permission to developers who will not in be one
of those privileged roles, they'll need to be granted the ShowPlan permission within the
database being tested. Run the statement in Listing 1.3.

GRANT SHOWPLAN TO [username];

Listing 1.3

32

Chapter 1: Execution Plan Basics

Substituting the username will enable the user to view execution plans for that database.
Additionally, in order to run the queries against the DMOs, either VIEW SERVER STATE
or VIEW DATABASE STATE, depending on the DMO in question, will be required.

Working with graphical execution plans

In order to focus on the basics of capturing estimated and actual execution plans, the first
query will be one of the simplest possible queries, and we'll build from there. Open up
Management Studio and in a query window, type the following:

SELECT *
FROM dbo.DatabaseLog;

Listing 1.4

Getting the estimated plan

We'll start by viewing the graphical estimated execution plan that the query optimizer
generated, so there's no need to run the query yet.

We can find out what the optimizer estimates to be the least costly plan in one of
following ways:

• Click on the Display Estimated Execution Plan icon on the tool bar.

• Right-click the query window and select the same option from the menu.

• Click on the Query option in the menu bar and select the same choice.

• Hit CTRL+L on the keyboard.

33

Chapter 1: Execution Plan Basics

I tend to click the icon more often than not but, either way, we see our very first
estimated execution plan, as in Figure 1.1.

Figure 1.1

Visually, there's no easy way to tell the difference between an estimated plan and an
actual plan. The differences are in the underlying data, which we'll be covering in some
detail throughout the book.

We'll explain what this plan represents shortly, but first, let's capture the actual
execution plan.

Getting the actual plan

Actual execution plans, unlike estimated execution plans, do not represent the calcu-
lations of the optimizer. Instead, this execution plan shows exactly how SQL Server
executed the query. The two will often be identical but will sometimes differ, due to
changes to the execution plan made by the storage engine, as we discussed earlier in
the chapter.

34

Chapter 1: Execution Plan Basics

As with estimated execution plans, there are several ways to generate our first
graphical actual execution plan:

• click on the icon on the tool bar called Include Actual Execution Plan

• right-click within the query window and choose the Include Actual Execution Plan
menu item

• choose the same option in the Query menu choice

• type CTRL+M.

Each of these methods acts as an "On" switch and SQL Server will then create an
execution plan for all queries run from that query window, until you turn it off again.

So, turn on actual execution plans by your preferred method and execute the query. You
should see an execution plan like the one in Figure 1.2.

Figure 1.2

In this simple case, the actual plan is visually identical to the estimated plan.

35

Chapter 1: Execution Plan Basics

Interpreting graphical execution plans

The icons you see in Figures 1.1 and 1.2 represent the first two of approximately 79
operators that represent various actions and decisions that potentially make up an
execution plan. On the left side of the plan is the Select operator, an operator that you'll
see quite often. Not only will you see this operator, but you'll also frequently reference it
for the important data it contains. It's the final result, and formatting, from the relational
engine. The icon on the right represents a Table Scan.2 This is one of the easiest operators
to look for when trying to track down possible causes of performance problems.

Each operator has a logical and a physical component. They are frequently the same, but
when looking at an estimated plan, you are only seeing logical operators. When looking
at an actual plan, you are only seeing physical operators, laid out in the logical processing
order in which SQL Server will retrieve the information defined by the query. This means
that, logically, we read the plans from the left to the right. In the example above, the
logical order is the definition of the SELECT criteria followed by the Scan operator.

However, you're going to find that you will generally read the execution plan the other
direction, going from right to left. This is not because the execution plans are laid out
"incorrectly." It's just because the physical order of operations is frequently easier to
understand than the logical order of operations. The basic process is to pull data, not to
push it, so the execution plan represents this pulling of the data.

You'll note that there is an arrow pointing between the two icons. This arrow represents
the data passed between the operators, as represented by the icons. In this case, if we read
the execution plan in the direction of the data flow, the physical direction, from right to
left, we have a Table Scan operator producing the result set, which passes to the Select
operator. The direction of the arrow emphasizes further the direction of data flow.

2 A Table Scan occurs when a query forces the storage engine to walk through a heap (a table without a clustered index), row by row,
either returning everything, or searching everything to identify the appropriate rows to return to the user. In our case, the scan
returns everything because we're not using a WHERE clause and we're not hitting a covering index (an index that includes all the
columns referred to in the query for a given table). As you might imagine, as the number of rows in the table grows, this operation
gets more and more expensive.

36

Chapter 1: Execution Plan Basics

The thickness of the arrow reflects the amount of data passed, a thicker arrow meaning
more rows. This is another visual clue as to where performance issues may lie. You can
hover with the mouse pointer over these arrows and it will show the number of rows that
it represents in a ToolTip.

Figure 1.3

For example, if your query returns two rows, but the execution plan shows a big thick
arrow between some of the operators early in the plan indicating many rows being
processed, only to narrow to a thin arrow at the end, right before the Select operator,
then that's something to possibly investigate.

Below each icon is displayed a number as a percentage. This number represents the
estimated relative cost to the query for that operator. That cost, returned from the
optimizer, is the estimated execution time for that operation in seconds. Understand,
though, that execution time is not a representation of your system or any other actual
system. The story related to me is that the developer tasked with creating execution plans
in SQL Server 2000 used his workstation as the basis for these numbers, and they have
never been updated. Just think about them as units of cost, only of significance to the
optimizer, rather than any type of real measure. Through the rest of the book, I will refer
to these numbers as costs because most documentation refers to them in this way. In our

37

Chapter 1: Execution Plan Basics

case, all the estimated cost is associated with the Table Scan. While a cost may be repre-
sented as 0% or 100%, remember that, as these are percentages, not actual numbers, even
an operator displaying 0% will have a small associated cost.

Above the icons is displayed as much of the query string as will fit into the window, and
a "cost (relative to batch)" of 100%. You can see this in Figure 1.3. Just as each query can
have multiple operators, and each of those operators will have a cost relative to the query,
you can also run multiple queries within a batch and get execution plans for them. They
will then show up as different costs as a part of the whole. These costs are also based
on estimates and therefore must be interpreted with an eye towards what's actually
happening within the plans represented, not simply assuming the number as valid.

ToolTips

Associated with it, each of the icons and the arrows has a pop-up window called a
ToolTip, which you can access by hovering your mouse pointer over the icon.

Using the query above, pull up the estimated execution plan as outlined previously. Hover
over the Select operator, and you should see the ToolTip window shown in Figure 1.4.

Figure 1.4

38

Chapter 1: Execution Plan Basics

Here we get the numbers generated by the optimizer on the following:

• Cached plan size – How much memory the plan generated by this query will take up
in the plan cache. This is a useful number when investigating cache performance issues
because you'll be able to see which plans are taking up more memory.

• Degree of Parallelism – Whether this plan used multiple processors. This plan uses a
single processor as shown by the value of 1.

• Estimated Operator Cost – We've already seen this as the percentage cost in Figure 1.1.

• Estimated Subtree Cost – Tells us the accumulated optimizer cost assigned to this
step and all previous steps, but remember to read from right to left. This number is
meaningless in the real world, but is a mathematical evaluation used by the query
optimizer to determine the cost of the operator in question; it represents the estimated
cost that the optimizer thinks this operator will take.

• Estimated Number of Rows – Calculated based on the statistics available to the
optimizer for the table or index in question.

In Figure 1.4, we also see the Statement that represents the entire query that SQL Server
is processing.

If we look at the ToolTip information for the next operator in the plan, the Table Scan,
we see the information in Figure 1.5. Each of the different operators will have a distinct set
of data. The operator in Figure 1.5 is performing work of a different nature than the Select
operator in Figure 1.4, and so we get a different set of details.

First are listed the Physical Operation and Logical Operation. The logical operators
are the results of the optimizer's calculations for what should happen when the query
executes. The physical operators represent what actually occurred. The logical and
physical operators are usually the same, but not always – more on that in Chapter 2.

39

Chapter 1: Execution Plan Basics

Figure 1.5

After that, we see the estimated costs for I/O, CPU, operator and subtree. Just like in the
previous ToolTip, the subtree cost is simply the section of the execution tree that we have
looked at so far, working again from right to left, and top to bottom. SQL Server bases all
estimations on the statistics available on the columns and indexes in any table.

40

Chapter 1: Execution Plan Basics

The I/O cost and CPU cost are not actual values, but rather the estimated cost numbers
assigned by the query optimizer during its calculations. These numbers can be useful
when considering whether most of the estimated cost is I/O-based (as in this case), or
if we're potentially putting a load on the CPU. A bigger number means that SQL Server
might use more resources for this operation. Again, these are not hard and absolute
measures, but rather estimated values that help to suggest where the actual cost in a given
operation may lie.

You'll note that, in this case, the operator cost and the subtree cost are the same, since
the Table Scan is the only significant operator, in terms of the work done to execute
the query. For more complex trees, with more operators, you'll see that the subtree
cost accumulates as the individual cost for each operator is added to the total. You get
the full cost of the plan from the final operation in the query plan, in this case, the
Select operator.

Again, we see the estimated number of rows. The plan displays this number for each
operation because each operation is dealing with different sets of data. When we get
to execution plans that are more complicated, we'll see the number of rows change as
various operators perform their work on the data as it passes between each operator.
Knowing how each operator adds rows, or filters out rows, will help us to understand the
execution process for that query.

Another important piece of information, when attempting to troubleshoot performance
issues, is the Boolean value displayed for Ordered; in this case, as shown in Figure 1.5,
this is False. This tells us whether the data that this operator is working with is in an
ordered state. Certain operations, for example, an ORDER BY clause in a Select statement,
may require data to be in a particular order, sorted by a particular value or set of values.
Knowing whether the data is in an Ordered state helps show where extra processing may
be occurring to get the data into that state.

Finally, Node ID is the ordinal, which simply means numbered in order, of the node
itself. When the optimizer generates a plan, it numbers the operations in the logical order
of operations.

41

Chapter 1: Execution Plan Basics

All these details are available to help us understand what's happening within the query
in question. We can walk through the various operators, observing how the subtree
cost accumulates, how the number of rows changes, and so on. With these details, we
can identify queries that are using excessive amounts of CPU or tables that need more
indexes, or identify other performance issues.

Operator properties

Even more information is available than that presented in the ToolTips. Right-click any
icon within a graphical execution plan and select the Properties menu item to get a
detailed list of information about that operation. Figure 1.6 shows the details from the
original Table Scan.

Figure 1.6

42

Chapter 1: Execution Plan Basics

Some of this information should be familiar from the ToolTip, but most of it is new. I'm
not going to detail all the properties and their meanings. However, I do want to point
out how this window works, so that you can use it to investigate your own execution
plans later. You'll note that some of the properties, such as the Object property, have a
plus sign on the left. This means that we can expand them to display further information.
Many, but not all of the properties will have a description on the bottom of the screen, as
you can see in Figure 1.6 for the Actual Number of Rows property. Other properties, not
shown in this example, have an ellipsis, which allows us to open a new window with more
details on the given property.

Working with text execution plans

The graphical execution plans are very useful because they're so easy to read. However,
much of the data about the operators is not immediately visible; we can see some of
it, in a limited form, in the ToolTip windows, and the complete set is available in the
Properties window. Wouldn't it be great if there were a way to see all that information
at once?

In the case of large queries, with incredibly complex plans or large number of batch
statements, wouldn't it be handy to be able to search through for particular bits of infor-
mation, Table Scans or the highest operator cost or something? Well, you can. Two
methods exist: Text Execution Plans and XML Execution Plans.

Getting the estimated text plan

Please note, before we start, that text plans are on the list for deprecation at some release
of SQL Server (http://msdn.microsoft.com/en-us/library/ms190233(v=SQL.105).aspx).
This section of the book is included for backwards compatibility only. Ideally, you'll use
the XML execution plans instead.

To turn on the text version of the estimated text execution plan, simply issue the
following command in Listing 1.5 at the start of a query.

http://msdn.microsoft.com/en-us/library/ms190233%28v%3DSQL.105%29.aspx

43

Chapter 1: Execution Plan Basics

SET SHOWPLAN_ALL ON;

Listing 1.5

It's important to remember that, with SHOWPLAN_ALL set to ON, SQL Server collects
execution information for all subsequent T-SQL statements, but those statements are
not actually executed. Hence, we get the estimated plan. It's very important to remember
to turn SHOWPLAN_ALL off after you have captured the information you require. If you
forget and execute any DML or DDL statements, they will not execute.

To turn SHOWPLAN_ALL off, simply issue:

SET SHOWPLAN_ALL OFF;

Listing 1.6

We can also use the equivalent commands for SHOWPLAN_TEXT. The text-only show
plan is meant for use with tools like osql.exe, where the result sets can be readily parsed
and stored by a tool dealing with text values, as opposed to actual result sets, as the
SHOWPLAN_ALL function does.

Getting the actual text plan

In order to turn the text version of the actual execution plan on or off, use the code in
Listings 1.7 and 1.8, respectively.

SET STATISTICS PROFILE ON;

Listing 1.7

SET STATISTICS PROFILE OFF;

Listing 1.8

44

Chapter 1: Execution Plan Basics

Interpreting text plans

This section provides only a brief overview of reading text plans; we'll return to this topic
in much more detail in Chapter 3. We'll stick with the same basic query we used when
discussing graphical plans, so execute the code in Listing 1.9.

SET STATISTICS PROFILE ON;
GO
SELECT *
FROM [dbo].[DatabaseLog];
GO
SET SHOWPLAN_ALL OFF;
GO

Listing 1.9

When you execute this query, the results pane shows actual plan. Figure 1.7 shows the
first columns of the results.

Figure 1.7

Figure 1.7 shows just the first three columns of the information returned, partly for
readability, and partly to show that the basic information portrayed in a graphical
plan is readily available in a text plan. The StmtText column shows the operators and,
through indentation, shows how the data logically flows up, towards the top, similar to
how the data flows to the left in a graphical plan. The first row is the submitted SELECT
statement. The rows following are the physical operations occurring within the query
plan. In our case, that means one row, i.e. the Table Scan.

45

Chapter 1: Execution Plan Basics

While reading a text plan, we can very easily see many of the operations, almost a glance.
This can make it simple to look through highly complex plans for Scan operations or
other operations that are flags for performance problems. As each row is visible and we
can scroll between the columns, it's very easy to see an operator and then look at some of
the details for that operator. However, because of how the tabs and lines work, it's much
more difficult, especially in a complex plan, to understand the neat flow of the data from
one operator to the next.

In addition to the first column, the text plan displays, in a series of columns, the details
hidden in the ToolTip or in the Properties window, for graphical plans. Most of the
information that you're used to seeing is here, plus a little more. So, while the NodeId
was available in the graphical plan, because of the nature of the graphical plan, nothing
was required to identify the parent of a given node. In the SHOWPLAN_ALL we get a
column showing the Parent NodeId. As you scan right on the full plan, assuming
you're trying these out as we go, you'll see many other familiar columns, such as the
TotalSubTreeCost, EstimateRows and so on. Some of the columns are harder to
read, such as the Defined List (the values or columns introduced by this operation to the
data stream, the output of the operator), which is displayed as just a comma-separated list
in a column in the results, but overall the information is readily available.

The advantage of working with a text plan is the ability to see an operator and then scroll
to the right to see the details for that operator. You also get to see the details for the
operators before and after that one, which can make understanding what a plan is doing
easier in some cases. In addition, with text plans, instead of outputting the data to a grid,
you can output to text using the options available in SSMS (SQL Server Management
Studio). Then, once it's text data, you can perform searches on the data as you would any
other set of text on your computer, even saving it out to a file and opening it in an editor
or even Word.

I prefer to work primarily with graphical plans and XML plans, but the text plan has its
place and uses too, so don't dismiss it from your toolbox.

46

Chapter 1: Execution Plan Basics

Working with XML execution plans

As discussed earlier, all graphical plans are XML under the covers. In addition, the
plans stored in cache are also stored as XML. Storing plans in XML opens up several
capabilities. First, it makes it very easy to make a copy of a plan in order to share it with
someone who may be helping you solve any issues evidenced within the plan. Further,
and this is the real strength of having XML available to us for execution plans, we can use
the XQuery language to run queries directly against the execution plan and against plans
in cache.

Getting the actual and estimated XML plans

In order to turn XML estimated execution plans on and off, use:

SET SHOWPLAN_XML ON
…
SET SHOWPLAN_XML OFF

Listing 1.10

As for SHOWPLAN_ALL, the SHOWPLAN_XML command is essentially an instruction not
to execute any T-SQL statements that follow, but instead to collect execution plan infor-
mation for those statements, in the form of an XML document. Again, it's important to
turn SHOWPLAN_XML off as soon as you have finished collecting plan information, so that
subsequent T-SQL executes as intended.

For the XML version of the actual plan, use:

SET STATISTICS XML ON
…
SET STATISTICS XML OFF

Listing 1.11

47

Chapter 1: Execution Plan Basics

Interpreting XML plans

Once again, let's look at the same execution plan as we evaluated with the text plan.

SET SHOWPLAN_XML ON;
GO
SELECT *
FROM [dbo].[DatabaseLog];
SET SHOWPLAN_XML OFF;
GO

Listing 1.12

Figure 1.8 shows the result, in the default grid mode.

Figure 1.8

The link is a pointer to an XML file located here:

\Microsoft SQL Server\90\Tools\Binn\schemas\sqlserver\2003\03\
showplan\showplanxml.xsd

Clicking on this link opens the execution plan as a graphical plan. In order to view the
XML directly, you must right-click on the graphical plan and select Show Execution Plan
XML from the context menu. This opens the XML format in a browser window within
the SSMS. You can view the output from SHOWPLAN_XML in text, grid or file (default is
grid). You can change the output format from the Query | Results To menu option.

A lot of information is put at your fingertips with XML plans – much of which we won't
encounter here with our simple example, but will get to in later, more complex, plans.

48

Chapter 1: Execution Plan Basics

Nevertheless, even this simple plan will give you a good feel for the XML format. You will
not need to read XML directly to learn how to read execution plans. It's just an additional
tool available to you.

The results, even for our simple query, are too large to output here. I'll go over them
by reviewing various elements and attributes. The full definition schema as defined
by Microsoft is available at: http://schemas.microsoft.com/sqlserver/2004/07/
showplan/ (this location has not changed since SQL Server 2005).

Listed first are the BatchSequence, Batch and Statements elements. In this example,
we're only looking at a single batch and a single statement, so nothing else is displayed.
Next, like all the other execution plans we've reviewed so far, we see the query in question
as part of the StmtSimple element. Within that, we receive a list of attributes of the
statement itself, and some physical attributes of the QueryPlan.

<StmtSimple StatementText="SELECT *
 FROM [dbo].[DatabaseLog];
 " StatementId="1" StatementCompId="1" StatementType="SELECT"
 StatementSubTreeCost="0.108154" StatementEstRows="389"
 StatementOptmLevel="TRIVIAL">
 <StatementSetOptions QUOTED_IDENTIFIER="false" ARITHABORT="true"
 CONCAT_NULL_YIELDS_NULL="false" ANSI_NULLS="false"
 ANSI_PADDING="false" ANSI_WARNINGS="false"
 NUMERIC_ROUNDABORT="false" />
 <QueryPlan CachedPlanSize="9" CompileTime="31" CompileCPU="19"
 CompileMemory="88">

Listing 1.13

Notice that the optimizer has chosen a trivial execution plan, as we might expect given
the simplicity of this query. Information such as the CachedPlanSize will help you to
determine the size of your query plans and can help determine which plans are causing
the most memory pressure on your system.

http://schemas.microsoft.com/sqlserver/2004/07/showplan/
http://schemas.microsoft.com/sqlserver/2004/07/showplan/

49

Chapter 1: Execution Plan Basics

After that, we have the RelOp element, which provides the information we're familiar
with, regarding a particular operation, in this case the Table Scan.

 <RelOp NodeId="0" PhysicalOp="Table Scan" LogicalOp="Table Scan"
 EstimateRows="451" EstimateIO="0.126829"
 EstimateCPU="0.0006531" AvgRowSize="8593"
 EstimatedTotalSubtreeCost="0.127482" Parallel="0"
 EstimateRebinds="0" EstimateRewinds="0">

Listing 1.14

Not only is there more information than in the text plans, but it's also much more
readily available and easier to read than in the text plans. It is possible to get at more
information quickly than in the graphical plans (although the flow through the graphical
plans is much easier to read). For example, a problematic column, like the Defined List
mentioned earlier, that is difficult to read, becomes the OutputList element with a
list of ColumnReference elements, each containing a set of attributes to describe that
column (Listing 1.15).

 <OutputList>
 <ColumnReference Database="[AdventureWorks]" Schema="[dbo]"
 Table="[DatabaseLog]" Column="DatabaseLogID" />
 <ColumnReference Database="[AdventureWorks]" Schema="[dbo]"
 Table="[DatabaseLog]" Column="PostTime" />
 <ColumnReference Database="[AdventureWorks]" Schema="[dbo]"
 Table="[DatabaseLog]" Column="DatabaseUser" />
 <ColumnReference Database="[AdventureWorks]" Schema="[dbo]"
 Table="[DatabaseLog]" Column="Event" />
 <ColumnReference Database="[AdventureWorks]" Schema="[dbo]"
 Table="[DatabaseLog]" Column="Schema" />
 <ColumnReference Database="[AdventureWorks]" Schema="[dbo]"
 Table="[DatabaseLog]" Column="Object" />
 <ColumnReference Database="[AdventureWorks]" Schema="[dbo]"
 Table="[DatabaseLog]" Column="TSQL" />
 <ColumnReference Database="[AdventureWorks]" Schema="[dbo]"
 Table="[DatabaseLog]" Column="XmlEvent" />
 </OutputList>

Listing 1.15

50

Chapter 1: Execution Plan Basics

This makes XML not only easier to read, but much more readily translated directly back
to the original query. You know what columns you selected from which table, residing on
which schema, because you defined it in the original query. Here, that information is now
in exactly the same format.

Back to the plan, after the RelOp element referenced above we have the Table Scan
element:

 <TableScan Ordered="0" ForcedIndex="0" NoExpandHint="0">

Listing 1.16

This is followed by a list of defined values that lays out the columns referenced by
the operation.

 <DefinedValues>
 <DefinedValue>
 <ColumnReference Database="[AdventureWorks]" Schema="[dbo]"
 Table="[DatabaseLog]" Column="DatabaseLogID" />
 </DefinedValue>
 <DefinedValue>
 <ColumnReference Database="[AdventureWorks]"
 … (Output Cropped)…

Listing 1.17

Simply sitting and reading XML can be extremely difficult, especially, as I already noted,
trying to understand which operation comes next in the plan. However, you can clearly
see that the information is stored in all execution plans (SQL Server 2005 and greater)
and so it's available to you to read or to query against using XQuery. This makes under-
standing what's available to you in the XML extremely valuable.

51

Chapter 1: Execution Plan Basics

Saving XML plans as graphical plans

We can save the execution plan generated with SHOWPLAN_XML without opening it, by
right-clicking within the results and selecting Save As. In SQL Server 2005, we then have
to change the filter to "*.*" and, when typing the name of the file we want to save, adding
the extension, ".sqlplan." SQL Server 2008, and later, automatically selects the .sqlplan
file type. This is how the Books Online recommends saving an XML execution plan. In
fact, what we get when we save it this way is actually a graphical execution plan file. This
can be a very useful feature. For example, we might collect multiple plans in XML format,
save them to file and then open them in easy-to-view (and to compare) graphical format.

One of the benefits of extracting an XML plan and saving it as a separate file is that we
can share it with others. For example, we can send the XML plan of a slow-running query
to a DBA friend and ask them their opinion on how to rewrite the query. Once the friend
receives the XML plan, he or she can open it up in Management Studio and review it as a
graphical execution plan.

In order to save an XML plan as XML, first we need to open the results into the XML
window. If we attempt to save to XML directly from the result window we only get what
is on display in the result window. Another option is to go to the place where the plan is
stored, as defined above, and copy it.

Retrieving Plans from the Cache Using Dynamic
Management Objects

SQL Server 2005 introduced a new area of functionality called Dynamic Management
Objects (DMOs). These are system views and functions that expose internal information
describing what SQL Server is doing and how it's working. One of the most interesting
DMOs for our purposes is sys.dm_exec_query_plan, which retrieves execution plans
from the plan cache. You're going to want to see the objects within the cache in order to

52

Chapter 1: Execution Plan Basics

see how the optimizer and storage engine created your plan. With DMVs and dynamic
management functions, we can easily put together a query to get a very complete set of
information about the execution plans on our system:

SELECT [cp].[refcounts] ,
 [cp].[usecounts] ,
 [cp].[objtype] ,
 [st].[dbid] ,
 [st].[objectid] ,
 [st].[text] ,
 [qp].[query_plan]
FROM sys.dm_exec_cached_plans cp
 CROSS APPLY sys.dm_exec_sql_text(cp.plan_handle) st
 CROSS APPLY sys.dm_exec_query_plan(cp.plan_handle) qp;

Listing 1.18

With this query, we can see the SQL and the XML plan generated by the execution of
that SQL. There are a number of different DMOs available. I used one, sys.dm_exec_
cached_plans, which shows properties about the object in the plan cache, but not the
plan, as the basis for this query. I then used the CROSS APPLY statement to access the two
dynamic management functions to retrieve the query from sys.dm_exec_sql_text
and the plan from sys.dm_exec_query_plan. The CROSS APPLY applies a function
once for every row in the result set. This query returns all queries from the cache as XML.

These plans that are stored in cache do not contain runtime information such as the
actual number of rows or actual number of executions. They are the estimated plans.
This makes them slightly less useful than the real plans (obtained from tools such as
Profiler) when you're doing detailed performance tuning because you can't see those
runtime values. However, the ability to immediately pull the plan straight out of cache is
incredibly useful, so this method is going to serve you well.

We can use the XML directly or open it as a graphical execution plan. Furthermore, infor-
mation available in the cache allows us to take more direct control over our execution
plans. For example, as was mentioned earlier, we can retrieve the plan_handle from the

53

Chapter 1: Execution Plan Basics

DMOs, as was used above, cp.plan_handle. We can then pass the value of a given plan
handle to the DBCC command FREEPROCCACHE in order to remove only that procedure
from the cache, like this:

DBCC FREEPROCCACHE(0x05000E007721DF00B8E0AF0B000000000000000000000000)

Listing 1.19

Throughout the book, we'll use DMOs to retrieve information from the cache, primarily
focusing on execution plans. For even more understanding of all that is possible using
DMOs, please refer to Louis Davidson and Tim Ford's excellent book, Performance Tuning
with SQL Server Dynamic Management Views (http://www.simple-talk.com/books/
sql-books/performance-tuning-with-sql-server-dynamic-management-views/).

Automating Plan Capture Using SQL Server Trace
Events
During development, we can capture execution plans for targeted T-SQL statements,
using one of the techniques described previously in this chapter. We can activate
execution plan capture, run the query in question, observe the behavior in the execution
plan, and then disable execution plan capture.

However, if we are troubleshooting on a test or live production server, the situation is
different. A production system may be subject to tens or hundreds of sessions executing
tens or hundreds or queries, each with varying parameter sets and varying plans. In this
situation, we need a way to automate plan capture so that we can collect targeted plans
automatically.

In SQL Server 2005 and 2008, we can use Profiler to define a server-side trace to capture
XML execution plans, as the queries are executing. We can then examine the collected
plans, looking for the queries with the highest costs, or simply searching the plans to find,
for example, Table Scan operations, that we'd like to eliminate.

http://www.simple-talk.com/books/sql-books/performance-tuning-with-sql-server-dynamic-management-views/
http://www.simple-talk.com/books/sql-books/performance-tuning-with-sql-server-dynamic-management-views/

54

Chapter 1: Execution Plan Basics

SQL Server trace events form a powerful tool, allowing us to capture data about events,
such as the execution of T-SQL or a stored procedure, occurring within SQL Server.
Trace events can be tracked manually, through the Profiler GUI interface, or traces can be
defined through T-SQL and automated to run at certain times, and periods.

We can view these traces on the screen or send them to a file or a table in a database.3

Execution plan events

The various trace events that will generate an execution plan are listed below.

• Showplan Text – This event fires with each execution of a query and will generate
the same type of estimated plan as the SHOWPLAN_TEXT T-SQL statement. Showplan
Text will work on SQL Server 2005 and SQL Server 2008 databases, but it only shows
a subset of the information available to Showplan XML. We've already discussed the
shortcomings of the text execution plans, and this is on the list for deprecation in
the future.

• Showplan Text (unencoded) – Same as above, but it shows the information as a string
instead of binary. This is also on the list for deprecation in the future.

• Showplan All – This event fires as each query executes and will generate the same type
of estimated execution plan as the SHOWPLAN_ALL statement in T-SQL. This has the
same shortcomings as Showplan Text, and is on the list for future deprecation.

• Showplan All for Query Compile – This event generates the same data as the
Showplan All event, but it only fires when a query compile event occurs. This is also on
the list for deprecation in the future.

3 Detailed coverage of Profiler is out of scope for this book, but you can find more information in Mastering SQL Profiler by
Brad McGehee.

55

Chapter 1: Execution Plan Basics

• Showplan Statistics Profile – This event generates the actual execution plan in the
same way as the T-SQL command STATISTICS PROFILE. It still has all the short-
comings of the text output, including only supplying a subset of the data available
to STATISTICS XML in T-SQL or the Showplan XML Statistics Profile event in SQL
Server Profiler. The Showplan Statistics Profile event is on the list for deprecation.

• Showplan XML – The event fires with each execution of a query and generates an
estimated execution plan in the same way as SHOWPLAN_XML. This is the event you
want in most cases. The others should be avoided because of the load they place on the
system or because they don't return data that is usable for our purposes.

• Showplan XML for Query Compile – Like Showplan XML above, but it only fires on a
compile of a given query.

• Performance Statistics – Similar to the Showplan XML For Query Compile event,
except this event captures performance metrics for the query as well as the plan. This
only captures XML output for certain event subclasses, defined with the event. It fires
the first time a plan is cached, compiled, recompiled, or removed from cache.

• Showplan XML Statistics Profile – This event will generate the actual execution plan
for each query, as it runs.

Capturing all of the execution plans, using Showplan XML or Showplan XML Statistics
Profile, inherently places a sizeable load on the server. These are not lightweight event
capture scenarios. Even the use of the less frequent Showplan XML for Query Compile
will cause a small performance hit. Use due diligence when running traces of this type
against any production machine.

56

Chapter 1: Execution Plan Basics

Capturing a Showplan XML trace

The SQL Server 2005 Profiler Showplan XML event captures the XML execution plan
used by the query optimizer to execute a query. To capture a basic Profiler trace, showing
estimated execution plans, start Profiler, create a new trace and connect to a server.4
Switch to the Events Selection tab and click on the Show all events check box. The
Showplan XML event is located within the Performance section, so click on the plus (+)
sign to expand that selection. Click on the Showplan XML event.

While you can capture the Showplan XML event by itself in Profiler, it is generally more
useful if you capture it along with some other basic events, such as:

• RPC:Completed

• SQL:BatchCompleted

Figure 1.9

4 By default, only a person logged in as SA, or a member of the SYSADMIN group can create and run a Profiler trace – for other users
to create a trace, they must be granted the ALTER TRACE permission.

57

Chapter 1: Execution Plan Basics

These extra events provide additional information to help put the XML plan into
context. For example, we can see which parameters were passed for the event in which
we are interested.

Once Showplan XML or any of the other XML events is selected, a third tab appears,
called Events Extraction Settings. On this tab, we can choose to output the XML, as it's
generated, to a separate file, for later use. Not only can we define the file, we can also
determine whether all the XML will go into a single file or a series of files, unique to each
execution plan.

Figure 1.10

Click on the Run button in order to start the trace. When we capture the above events,
we get a trace like the one shown in Figure 1.11.

Notice that I have clicked on the Showplan XML event. Under the TextData column,
you see the actual XML plan code, and this plan can be saved to an individual file.
In the second window, you can see the graphical execution plan, which is how most
people prefer to read and analyze execution plans. So, in effect, the Showplan XML
event available in Profiler not only shows you the XML plan code, but also the graphical
execution plan.

58

Chapter 1: Execution Plan Basics

Figure 1.11

At this stage, we can also save the code for this particular Showplan XML event to a
separate file. Simply right-click on the Showplan XML event you want to save, and then
select Extract Event Data.

This brings up a dialog box where we can enter the path and filename of the XML code
we want to store. Instead of storing the XML code with the typical XML extension, the
extension used is .SQLPlan. By using this extension, when we double-click on the file
from within Windows Explorer, the XML code will open up in Management Studio in the
form of a graphical execution plan.

Whether capturing estimated execution plans or actual execution plans, the trace events
operate in the same manner as when we run the T-SQL statements through the query
window within Management Studio. The main difference is that this is automated across
a large number of queries, from ad hoc to stored procedures, running against the server.
Just remember, these do place a load on the system, so regulate their use carefully.

59

Chapter 1: Execution Plan Basics

Why the actual and estimated execution plans
might differ

Generally, the estimated and actual execution plans will be the same, in terms of the
operations used. However, circumstances can arise that can cause differences between
the estimated and actual execution plans.

When statistics are stale

The main cause of a difference between the estimated and actual plans is differences
between the statistics and the actual data. This generally occurs over time, as data is
added and deleted. This causes the key values that define the index to change, or their
distribution (how many of what type) to change. The automatic update of statistics that
occurs, assuming it's on, only samples a subset of the data in order to reduce the cost
of the operation. This means that, over time, the statistics can become a less and less
accurate reflection of the actual data. Not only can this cause differences between the
plans, but you can get bad execution plans because the statistical data is not up to date.5

When the estimated plan is invalid

In some instances, the estimated plan won't work at all. For example, try generating an
estimated plan for the simple bit of code in Listing 1.20, and you will get the error shown
in Listing 1.21.

The optimizer, which is what generates estimated execution plans, doesn't execute
T-SQL. It does run the statements through the algebrizer, the process outlined earlier that
is responsible for verifying the names of database objects.

5 An example demonstrating how a drastic change in the data can affect the execution plan is given in the Statistics and indexes
section of Chapter 4.

60

Chapter 1: Execution Plan Basics

Since SQL Server has not yet executed the query, the temporary table does not yet exist.
This is the cause of the error. Running this same bit of code through the actual execution
plan will work perfectly.

CREATE TABLE TempTable
 (
 Id INT IDENTITY(1, 1) ,
 Dsc NVARCHAR(50)
);
INSERT INTO TempTable
 (Dsc
)
 SELECT [Name]
 FROM [Sales].[Store];
SELECT *
FROM TempTable;
DROP TABLE TempTable;

Listing 1.20

Msg 208, Level 16, State 1, Line 7
Invalid object name 'TempTable'.

Listing 1.21

When parallelism is requested

When a plan meets the threshold for parallelism (more about this in Chapter 8), the
query engine may alter the plan as supplied by the optimizer, to include parallel opera-
tions, in an attempt to increase the performance of the query by making more use of the
processors available. This parallel plan is only visible as an actual execution plan. The
optimizer's plan does not include parallel execution, so none will be stored in cache.

61

Chapter 1: Execution Plan Basics

Summary

In this chapter, we've approached how the optimizer and the storage engine work
together to bring data back to your query. These operations are expressed in the
estimated execution plan and the actual execution plan. I described a number of options
for obtaining either of these plans: graphically, output as text, or as XML. Either the
graphical plans or the XML plans will give us all the data we need, but it's going to be up
to you to decide which to use and when, based on the needs you're addressing and how
you hope to address them.

62

Chapter 2: Reading Graphical
Execution Plans for Basic Queries

The aim of this chapter is to enable you to interpret basic graphical execution plans, in
other words, execution plans for simple SELECT, UPDATE, INSERT or DELETE queries,
with only a few joins and no advanced functions or hints. In order to do this, we'll cover
the graphical execution plan topics below.

• Operators – Introduced in the last chapter – now you'll see more.

• Joins – What's a relational system without the joins between tables?

• WHERE clause – You need to filter your data and it does affect the execution plans.

• Aggregates – How grouping data changes execution plans.

• Execution plans for data modifications – INSERT, UPDATE and DELETE statements.

The Language of Graphical Execution Plans

In some ways, learning how to read graphical execution plans is similar to learning a new
language, except that the language is icon-based, and the number of words (icons) we
have to learn is minimal. Each icon represents a specific operator within the execution
plan. We will be using the terms "icon" and "operator" interchangeably in this chapter.

In the previous chapter, we only saw two operators (Select and Table Scan). However,
there are 78 available operators. Fortunately, for us, we don't have to memorize all 78
of them before we can read a graphical execution plan. Most queries use only a small
subset of the operators, and we'll focus on those in this chapter. If you run across an
icon not covered here, you can find more information about it on Books Online at
http://msdn2.microsoft.com/en-us/library/ms175913.aspx.

Chapter 2: Graphical
Execution Plans for Basic
Queries

http://msdn2.microsoft.com/en-us/library/ms175913.aspx

63

Chapter 2: Graphical Execution Plans for Basic Queries

A graphical execution plan displays four distinct types of operator:

• Logical and Physical Operators, also called iterators, appear as blue icons and
represent query execution or DML operations.

• Parallelism Physical Operators are also blue icons and represent parallelism opera-
tions. In a sense, they are a subset of logical and physical operators, but entail an
entirely different level of execution plan analysis.

• Cursor Operators have yellow icons and represent Transact-SQL CURSOR operations.

• Language Elements are green icons and represent Transact-SQL language elements,
such as ASSIGN, DECLARE, IF, SELECT (RESULT), WHILE, and so on.

In this chapter, we'll focus mostly on logical and physical operators, including the
parallelism physical operators, with a few dives into some of the special information
available in the language element operators. Books Online lists them in alphabetical
order, but this isn't the easiest way to learn them, so we will forgo being "alphabetically
correct" here. Instead, we will focus on the most used icons. Of course, what is considered
most used and least used will vary from DBA to DBA, but the following are what I would
consider the more common operators, listed roughly in the order of most common to
least common.

Those highlighted in bold are covered in this chapter. We cover the rest in later chapters,
when we move on to queries that are more complex.

We can learn a lot about how operators work by observing how they operate within
execution plans. The key is to learn to use the properties of the operators and drill down
on them. Each operator has a different set of characteristics. For example, they manage
memory in different ways. Some operators – primarily Sort, Hash Match (Aggregate)
and Hash Join – require a variable amount of memory in order to execute. Because of
this, a query with one of these operators may have to wait for available memory prior to
execution, possibly adversely affecting performance.

64

Chapter 2: Graphical Execution Plans for Basic Queries

1. Select (Result) 9. Sort 17. Spool

2. Clustered Index Scan 10. Key Lookup 18. Eager Spool

3. NonClustered Index Scan 11. Compute Scalar 19. Stream Aggregate

4. Clustered Index Seek 12. Constant Scan 20. Distribute Streams

5. NonClustered Index Seek 13. Table Scan 21. Repartition Streams

6. Hash Match 14. RID Lookup 22. Gather Streams

7. Nested Loops 15. Filter 23. Bitmap

8. Merge Join 16. Lazy Spool 24. Split

Most operators behave in one of two ways, non-blocking or blocking. A non-blocking
operator creates output data at the same time as it receives the input. A blocking operator
has to get all the data prior to producing its output. A blocking operator might contribute
to concurrency problems, hurting performance.

An example of a non-blocking operator would be the Merge Join, which produces data
even as it is fed the data. We know this because the data in a Merge Join must be ordered
for it to work properly, so it can produce its output as the input comes in.

An example of a blocking operator would be the Hash Match join. It has to gather all the
data prior to performing its join operations and producing output. There are variations
on some operators that may behave in other ways, but these are internals known only to
Microsoft.

Again, the key to understanding execution plans is to start to learn how to understand
what the operators do and how this affects your query.

65

Chapter 2: Graphical Execution Plans for Basic Queries

Some Single Table Queries

Let's start by looking at some very simple plans, based on single table queries.

Clustered Index Scan

One of the more common operators is the Clustered Index Scan. This operation occurs
when a Seek against the clustered index or some other index, can't satisfy the needs of the
query. In that event, SQL Server must walk through, i.e. scan, the entire data set.

Consider the following simple (but inefficient!) query against the Person.Contact table
in the AdventureWorks2008R2 database:

SELECT ct.*
FROM Person.ContactType AS ct;

Listing 2.1

Figure 2.1 shows the actual execution plan:

Figure 2.1

66

Chapter 2: Graphical Execution Plans for Basic Queries

We can see that the engine used a Clustered Index Scan operation to retrieve the
required data. Looking at only the graphic plan by itself doesn't tell us enough about the
execution plan or the operators in it. More information is available with the ToolTips and
Property sheets, as was mentioned in the Chapter 1. If you place the mouse pointer over
the icon labeled Clustered Index Scan to bring up the ToolTip window, more information
becomes immediately available, as you can see in Figure 2.2.

Figure 2.2

Looking at Figure 2.2, near the bottom of the ToolTip, you find the label, Object. This
indicates which object, if any, this operator references. In this case, the clustered index
used was PK_ContactType_ContactTypeID. Listed above this are various other

67

Chapter 2: Graphical Execution Plans for Basic Queries

properties about the index that can be useful in understanding how the operator works
and what it is doing. Some of the properties are self-explanatory, but others might bear
some information. The Estimated I/O Cost and Estimated CPU Cost are measures
assigned by the optimizer, and each operator's cost contributes to the overall cost of the
plan. I'll detail various points on these properties and others that are interesting for each
execution plan as we hit that plan and that operator. Not all the operators will be useful
in figuring out each execution plan. For example, rebinds and rewinds are only important
when dealing with Nested Loops joins, but there are none of those in this plan, so those
values are useless to you.

Indexes in SQL Server are stored in a balanced-tree, or a b-tree (a series of nodes that
point to a parent). A clustered index not only stores the key structure, like a regular index,
but also sorts and stores the data at the lowest level of the index, known as the leaf,
which is the reason why there can be only one clustered index per table. This means that
a Clustered Index Scan is very similar in concept to a Table Scan. The entire index, or a
large percentage of it, is being traversed, row by row, in order to retrieve the data needed
by the query.

An Index Scan often occurs, as in this case, when an index exists but the optimizer deter-
mines that there are so many rows to return that it is quicker to simply scan all the values
in the index rather than use the keys provided by that index. In other situations, a scan is
necessary because the index is not selective enough for the optimizer to be sure of finding
the values it needs without scanning a large percentage of the index. That can also occur
when the statistics for that index are out of date and showing incorrect information. You
can also have situations where a query applies functions to columns, which means the
optimizer can't determine what the value for that column could be so it has to scan the
entire index to find it.

An obvious question to ask, if you see an Index Scan in your execution plan, is whether
you are returning more rows than is necessary. If the number of rows returned is higher
than you expect, that's a strong indication that you need to fine-tune the WHERE clause
of your query so that only those rows that are actually needed are returned. Returning
unnecessary rows wastes SQL Server resources and hurts overall performance.

68

Chapter 2: Graphical Execution Plans for Basic Queries

Clustered Index Seek

A Clustered Index Seek operator occurs when a query uses the index to access only one
row, or a few contiguous rows. It's one of the faster ways to retrieve data from the system.
We can easily make the previous query more efficient by adding a WHERE clause. A WHERE
clause limits the amount of data being returned, which makes it more likely that indexes
will be used to return the appropriate data.

SELECT ct.*
FROM Person.ContactType AS ct
WHERE ct.ContactTypeID = 7

Listing 2.2

The plan now looks as shown in Figure 2.3.

Figure 2.3

Index seeks are completely different from scans, where the engine walks through all
the rows to find what it needs. Clustered and NonClustered Index Seeks occur when
the optimizer is able to locate an index that it can use to retrieve the required records.
Therefore, it tells the storage engine to look up the values based on the keys of the given
index by assigning the Seek operation instead of a scan.

69

Chapter 2: Graphical Execution Plans for Basic Queries

When an index is used in a Seek operation, the key values are used to look up and quickly
identify the row or rows of data needed. This is similar to looking up a word in the index
of a book to get the correct page number. The benefit of the Clustered Index Seek is that,
not only is the Index Seek usually an inexpensive operation when compared to a scan,
but no extra steps are required to get the data because it is stored in the index, at the
leaf level.

In the above example, we have a Clustered Index Seek operation carried out against the
Person.ContactType table. The ToolTip looks as shown in Figure 2.4.

Figure 2.4

70

Chapter 2: Graphical Execution Plans for Basic Queries

The index used is the same as the previous example, specifically the PK_ContactType_
ContactTypeId, which happens to be both the primary key and the clustered index for
this table. This is again identified in the lower part of the ToolTip under Object. This
time, however, the operation is a Seek. A seek has a predicate, or predicates, which are
the filters by which the values will be retrieved. Here, the predicate is the value we passed
in the query, 7, against the Person.ContactType.ContactTypeID column. However,
look at the Seek Predicates section in Figure 2.4 and you'll notice that it's showing @1
instead of the value 7. This is because this is a simple query and it qualified for simple
parameterization. Simple parameterization is SQL Server helping you by creating a
parameterized query, which is very similar to a stored procedure, so that it can reuse the
plan generated the next time this query is called with a different value. Otherwise, if this
query is called again with the value 8, or something else, you'd get a whole new plan.
Parameterization is discussed in detail later in the book.

By seeing that value change in the predicate, you can begin to understand how to use the
information available through an execution plan to understand what is occurring within
SQL Server.

Note, on the ToolTips window for the Clustered Index Seek, that the Ordered property
is now True, indicating that the data was retrieved in order by the optimizer. This can be
very useful if one of the next operators in line needed ordered data, because then no extra
sorting operation is needed, possibly making this query more efficient.

NonClustered Index Seek

A NonClustered Index Seek operation is a seek against a non-clustered index. This
operation is effectively no different than the Clustered Index Seek but the only data
available is that which is stored in the index itself.

71

Chapter 2: Graphical Execution Plans for Basic Queries

Let's run a slightly different query against the Person.ContactType table, one that
uses a non-clustered index:

SELECT ct.ContactTypeId
FROM Person.ContactType AS ct
WHERE Name LIKE 'Own%'

Listing 2.3

We get an Index Seek (NonClustered) as shown in Figure 2.5.

Figure 2.5

Like a Clustered Index Seek, a NonClustered Index Seek uses an index to look up
the required rows. Unlike a Clustered Index Seek, a NonClustered Index Seek has to
use a non-clustered index to perform the operation. Depending on the query and
index, the query optimizer might be able to find all the data in the non-clustered index.
However, a non-clustered index only stores the key values; it doesn't store the data.
The optimizer might have to look up the data in the clustered index, slightly hurting
performance due to the additional I/O required to perform the extra lookups – more on
this in the next section.

In the example in Listing 2.3, the index satisfies all the needs of the query, meaning all the
data needed is stored with the index, in the key, which makes this index, in this situation,
a covering index. This is a covering index because we are only referring to two columns,
the key column for the index itself, Name, and the key value for the clustered index,
ContactTypeId. This is possible because the Lookup operator for non-clustered
indexes to a clustered index is the key value of the clustered index.

72

Chapter 2: Graphical Execution Plans for Basic Queries

To get an idea of the amount of information available, instead of looking at the ToolTip
again, this time we'll right-click on the Index Seek operator and select Properties from
the drop-down menu. Figure 2.6 shows the properties for the operator.

Figure 2.6

73

Chapter 2: Graphical Execution Plans for Basic Queries

Reading this and comparing it to the ToolTips from Figures 2.4 and 2.2, you can see
that there are many common values between the ToolTip and the Property sheet. The
difference is that the property sheet carries even more information, as was mentioned
in Chapter 1. Some values, such as Seek Predicates, have a plus sign to the left signifying
that there is further information available. You can expand these properties to retrieve
more information about the value. While the ToolTips are very handy, and I will continue
to use them throughout the book, the best place to get the information you need is
through the Properties sheet.

Key Lookup

A Key Lookup operator (there are two, RID and Key) is required to get data from the heap
or the clustered index, respectively, when a non-clustered index is used, but is not a
covering index. Listing 2.4 shows a query that returns a few columns from one table.

SELECT p.BusinessEntityID,
 p.LastName,
 p.FirstName,
 p.NameStyle
FROM Person.Person AS p
WHERE p.LastName LIKE 'Jaf%';

Listing 2.4

You should see a plan like that shown in Figure 2.7.

74

Chapter 2: Graphical Execution Plans for Basic Queries

Figure 2.7

Finally, we get to see a plan that involves more than a single operation! Reading the plan
in the physical order from right to left and top to bottom, the first operation we see is an
Index Seek against the IX_Person_LastName_FirstName_MiddleName index. This
is a non-unique, non-clustered index and, in the case of this query, it is non-covering. A
covering index is a non-clustered index that contains all of the columns that need to be
referenced by a query, including columns in the SELECT list, JOIN criteria and the
WHERE clause.

In this case, the index on the Lastname and FirstName columns provides a quick way
to retrieve information based on the filtering criteria LIKE 'Jaf%'. However, since only
the name columns and the clustered index key are stored with the non-clustered index,
the other column being referenced, NameStyle, has to be pulled in from somewhere else.

Since this index is not a covering index, the query optimizer is forced to not only read the
non-clustered index, but also to read the clustered index to gather all the data required
to process the query. This is a Key Lookup and, essentially, it means that the optimizer
cannot retrieve the rows in a single operation, and has to use a clustered key (or a row ID
from a heap table) to return the corresponding rows from a clustered index (or from the
table itself).

75

Chapter 2: Graphical Execution Plans for Basic Queries

We can understand the operations of the Key Lookup by using the information contained
within the execution plan. If you first open the ToolTips window for the Index Seek
operator by hovering with the mouse over that operator, you will see something similar to
Figure 2.8. The pieces of information in which we're now interested are the Output List
and the Seek Predicates, down near the bottom of the window.

Figure 2.8

76

Chapter 2: Graphical Execution Plans for Basic Queries

Several of the columns are returned from the index, Person.BusinessEntityID,
Person.FirstName, and Person.LastName. In addition, you can see how the
optimizer can modify a statement. If you look at the Seek Predicates, instead of a
LIKE 'Jaf%', as was passed in the query, the optimizer has modified the statement
so that the actual predicate used is Person.LastName >= 'Jaf' and
Person.LastName < 'JaG' (minus a bit of operational code).

This information has nothing to do with the Key Lookup operation, but it's a good
chance to see the optimizer in action. This is a fundamental part of the operations
performed by the optimizer, as outlined in Chapter 1. In this case, the optimizer
rearranged the WHERE clause. However, we still need to address the issue of getting the
NameStyle column.

This means the optimizer now has to go and track down the additional information it
needs from the clustered index. SQL Server uses the clustered index key as the method
for looking up data that is stored in the clustered index from a non-clustered index,
which only contains key information, the clustered key, and any lookup columns.

To find the appropriate rows of data, SQL Server uses the key values in a Key Lookup on
the PK_Person_BusinessEntityID clustered index. Using the ToolTip window for the
Key Lookup operator, you can see the Output List containing the final column needed by
the query, Person.NameStyle, shown in Figure 2.9.

The presence of a Key Lookup is an indication that query performance might benefit
from the presence of a covering index. A covering index is created by either having all the
columns necessary as part of the key of the index, which has been explained several times
already, or by using the INCLUDE operation to store extra columns at the leaf level of the
index so that they're available for use with the index.

77

Chapter 2: Graphical Execution Plans for Basic Queries

Figure 2.9

A join operation, which combines the results of the two operations, always accompanies
a Key Lookup. In this instance, it was a Nested Loops join operation (Figure 2.10).

78

Chapter 2: Graphical Execution Plans for Basic Queries

Figure 2.10

Typically, depending on the amount of data involved, a Nested Loops join by itself does
not indicate any performance issues. In this case, because a Key Lookup operation is
required, the Nested Loops join is needed to combine the rows of the Index Seek and Key
Lookup. If the Key Lookup was not needed (because a covering index was available), then
the Nested Loops operator would not be needed in this execution plan. However, because
this operator was involved, along with the Key Lookup operator, at least two additional
operations are required for every row returned from the non-clustered index. This is what
can make a Key Lookup operation a very expensive process in terms of performance.

If this table had been a heap, a table without a clustered index, the operator would have
been a RID Lookup operator. RID stands for row identifier, the means by which rows in a
heap table are uniquely marked and stored within a table. The basics of the operation of a
RID Lookup are the same as a Key Lookup.

79

Chapter 2: Graphical Execution Plans for Basic Queries

Table Scan

This operator is self-explanatory and is one we encountered in Chapter 1. Table Scans
only occur against heap tables, tables without clustered indexes. With a clustered index,
we'd get a Clustered Index Scan, which is the equivalent of a Table Scan operation. You
can see a Table Scan operation by executing the following query:

SELECT *
FROM dbo.DatabaseLog;

Listing 2.5

Figure 2.11

A Table Scan can occur for several reasons, but it's often because there are no useful
indexes on the table, and the query optimizer has to search through every row in order
to identify the rows to return. Another common cause of a Table Scan is a query that
requests all the rows of a table, as is the case in this example.

When all (or the majority) of the rows of a table are returned then, whether an index
exists or not, it is often faster for the query optimizer to scan through each row and
return them than look up each row in an index. This commonly occurs in tables with
few rows.

80

Chapter 2: Graphical Execution Plans for Basic Queries

Assuming that the number of rows in a table is relatively small, Table Scans are generally
not a problem. On the other hand, if the table is large and many rows are returned, then
you might want to investigate ways to rewrite the query to return fewer rows, or add an
appropriate index to speed performance.

RID Lookup

RID Lookup is the heap equivalent of the Key Lookup operation. As was mentioned
before, non-clustered indexes don't always have all the data needed to satisfy a query.
When they do not, an additional operation is required to get that data. When there is a
clustered index on the table, it uses a Key Lookup operator as described above. When
there is no clustered index, the table is a heap and must look up data using an internal
identifier known as the Row ID or RID.

If we specifically filter the results of our previous DatabaseLog query using the
primary key column, we see a different plan that uses a combination of an Index Seek
and a RID Lookup.

SELECT *
FROM [dbo].[DatabaseLog]
WHERE DatabaseLogID = 1

Listing 2.6

81

Chapter 2: Graphical Execution Plans for Basic Queries

Figure 2.12

To return the results for this query, the query optimizer first performs an Index Seek on
the primary key. While this index is useful in identifying the rows that meet the WHERE
clause criteria, all the required data columns are not present in the index. How do we
know this?

Figure 2.13

82

Chapter 2: Graphical Execution Plans for Basic Queries

If you look at the ToolTip in Figure 2.13 for the Index Seek, we see the value Bmk1000
in the Output List. This Bmk1000 is an additional column, not referenced in the query.
It's the key value from the non-clustered index and it will be used in the Nested Loops
operator to join with data from the RID Lookup operation.

Next, the query optimizer performs a RID Lookup, which is a type of Bookmark Lookup
that occurs on a heap table (a table that doesn't have a clustered index), and uses a
row identifier to find the rows to return. In other words, since the table doesn't have a
clustered index (that includes all the rows), it must use a row identifier that links the
index to the heap. This adds additional disk I/O because two different operations have
to be performed instead of a single operation, which are then combined with a Nested
Loops operation.

Figure 2.14

83

Chapter 2: Graphical Execution Plans for Basic Queries

In the ToolTip for the RID Lookup, notice that Bmk1000 is used again, but this time in
the Seek Predicates section. This is the key value, which is a row identifier, or RID, from
the non-clustered index.

In this particular case, SQL Server had to look up only one row, which isn't a big deal
from a performance perspective. If a RID Lookup returns many rows, however, you may
need to consider taking a close look at the query to see how you can make it perform
better by using less disk I/O – perhaps by rewriting the query, by adding a clustered index,
or by using a covering index.

Table Joins

Up to now, we have worked with single tables. Let's spice things up a bit and introduce
joins into our query. SQL Server is a relational database engine, which means that part of
the designed operation is to combine data from different tables into single data sets. The
execution plan exposes the methods that the optimizer uses to combine data, which are,
primarily, through the different Join operators, of which you have already seen a couple.

While this section is primarily concerned with Join operators, you'll see other operators
at work. It's worth noting, that while in many (maybe even most) instances where a JOIN
command is issued in T-SQL, it will be resolved through a Join operator, that's not neces-
sarily what will happen. Further, again, as you've already seen, the optimizer can use Join
operators to perform tasks other than T-SQL JOIN commands.

The query in Listing 2.7 retrieves employee information, concatenating the FirstName
and LastName columns, in order to return the information in a more pleasing manner.

84

Chapter 2: Graphical Execution Plans for Basic Queries

SELECT e.JobTitle,
 a.City,
 p.LastName + ', ' + p.FirstName AS EmployeeName
FROM HumanResources.Employee AS e
 JOIN Person.BusinessEntityAddress AS bea
 ON e.BusinessEntityID = bea.BusinessEntityID
 JOIN Person.Address a
 ON bea.AddressID = a.AddressID
 JOIN Person.Person AS p
 ON e.BusinessEntityID = p.BusinessEntityID ;

Listing 2.7

Figure 2.15 shows the execution plan for this query.

Figure 2.15

This plan has more operators than any we've seen so far. Just as with all previous plans,
the logical flow of the operators is from the Select statement and then to the right
through the various operators, while the data flows, and the accumulation of estimated
costs occurs, as we move thorough the execution tree from right to left.

85

Chapter 2: Graphical Execution Plans for Basic Queries

Associated with each operator icon, and displayed below it, is an estimated cost, assigned
by the optimizer. From the relative estimated cost displayed, we can identify the three
most costly operations in the plan, in descending order.

1. The Index Scan against the Person.Address table (31%).

2. The Hash Match join operation between the Person.Person table and the output
from the first Hash Match (21%).

3. The other Hash Match join operator between the Person.Address table and the
output from the Nested Loop operator (20%).

There are multiple problematic operators in this query since, in general, we're better off
with Seek operations instead of Scan operations. Figure 2-16 shows the properties of the
most expensive operator, as defined by the estimated costs.

Figure 2.16

86

Chapter 2: Graphical Execution Plans for Basic Queries

The query optimizer needed to get at the AddressId and the City columns, as shown by
the Output List at the bottom of the ToolTip. The optimizer calculated, based on index
and column statistics, that the best way to arrive at that data was to scan the entire index,
row by row. Walking through those 19,614 rows took an estimated 31% of the total query
cost or an estimated operator cost of 0.158681. The estimated operator cost is the cost to
the query optimizer for executing this specific operation, which is an internally calculated
number used by the query optimizer to evaluate the relative costs of specific operations.
As noted previously, this number doesn't reflect any real-world value, but the lower the
estimated cost, the more efficient the operation, at least as determined by the optimizer.
This does not mean that you can simply use these numbers to identify the most costly
operator. However, these are the best values we have for making the determination for
which operations are likely to be the most expensive. You still need to take into account
other factors, such as the number of times a particular operator executes, to get closer to
being able to model performance accurately, based on execution plans.

Hash Match join

A Hash Match operator appears in the plan when SQL Server puts two data sets into
temporary tables, hash tables, and then uses these structures to compare data and arrive
at the matching set.

Listing 2.7 had two different Hash Match join operations. Reading the plan logically,
the first operation after the Select operator is a Hash Match join operation. This join
is combining the output of one of the Index Scans with the combined output of the
rest of the operations in the query. This Hash Match join operation is the second most
expensive operation of this execution plan, so we would be interested in what we could
do to improve its performance. Figure 2.17 shows the properties for this operator.

87

Chapter 2: Graphical Execution Plans for Basic Queries

Figure 2.17

Before we can talk about what a Hash Match join is, we need to understand two
new concepts: hashing and a hash table. Hashing is a programmatic technique where
data is converted into a symbolic form that makes searching for that data much more
efficient. For example, SQL Server programmatically converts a row of data in a table into
a unique value that represents the contents of the row. In many ways, it is like taking a
row of data and encrypting it. Like encryption, a hashed value can be converted back to
the original data.

A hash table, on the other hand, is a data structure that divides all of the elements into
equal-sized categories, or buckets, to allow quick access to the elements. The hashing
function determines into which bucket an element goes. For example, SQL Server can
take a row from a table, hash it into a hash value, and then store the hash value in a hash
table, in tempdb.

88

Chapter 2: Graphical Execution Plans for Basic Queries

Now that we understand these terms, we can discuss the Hash Match join operator.
It occurs when SQL Server has to join two large data sets, and decides to do so by first
hashing the rows from the smaller of the two data sets, and inserting them into a hash
table. It then processes the larger data set, one row at a time, against the hash table,
looking for matches, indicating the rows to be joined.

The smaller of the data sets provides the values in the hash table, so the table size is
small, and because hashed values instead of real values are used, comparisons are quick.
As long as the hash table is relatively small, this can be a quick process. On the other
hand, if both tables are very large, a Hash Match join can be very inefficient as compared
to other types of joins. All the data for the hash table is stored within tempdb, so
excessive use of Hash Joins in your queries can lead to a heavier load on tempdb.

In this example, the data from HumanResources.Employee is matched with the
Person.Person table.

Hash Match joins also work well for tables that are not sorted on JOIN columns; if they
are, then Merge Joins tend to work better. Hash Match joins can be efficient in cases
where there are no useable indexes.

While a Hash Match join may represent the current, most efficient way for the
query optimizer to join two tables, it's possible that we can tune our query to make
available to the optimizer more efficient join techniques, such as using Nested Loop
or Merge Join operators. For example, seeing a Hash Match join in an execution plan
sometimes indicates:

• a missing or unusable index

• a missing WHERE clause

• a WHERE clause with a calculation or conversion that makes it non-sargable (a
commonly used term meaning that the search argument, "sarg" can't be used). This
means it won't use an existing index.

89

Chapter 2: Graphical Execution Plans for Basic Queries

In other words, seeing a Hash Match join should be a cue for you to investigate whether
you can tune the query, or add an index, to make the join operation more efficient. If so,
then great but if not, then there is nothing else to do, and the Hash Match join might be
the best overall way to perform the join.

Worth noting in this example is the slight discrepancy between the estimated number of
rows returned, 274.988 (proving this is a calculation since you can't possibly return .988
rows), and the actual number of rows, 290. A difference this small is not worth worrying
about, but a larger discrepancy can be an indication that your statistics need updating.
Statistics being out of date or inaccurate can lead to a situation frequently referred to as
"bad parameter sniffing." Chapter 5 discusses parameter sniffing in some detail.

Nested Loops join

Looking at the same query and execution plan in Figure 2-15, you can see that
the second operation from the top right is a Clustered Index Seek against the
BusinessEntityAddress table. This is a relatively inexpensive operation
within this particular execution plan with an estimated cost of 9%. Figure 2.18
shows the ToolTip.

This seek is part of a join operation, and you can see the defined predicate, or search
criteria, being used in the Seek operation in the Seek Predicates section at the bottom of
the ToolTip. Let's explore that join in more detail.

A Nested Loops join functions by taking a set of data, referred to as the outer set, and
comparing it, one row at a time to another set of data, called the inner set. This sounds
like a cursor, and effectively, it is one but, with the appropriate data set, it can be a very
efficient operation.

90

Chapter 2: Graphical Execution Plans for Basic Queries

Figure 2.18

The data scan against the Employee table and the seek against the
BusinessEntityAddress tables is being driven by a Nested Loops
join operation, whose ToolTip is displayed in Figure 2.19.

91

Chapter 2: Graphical Execution Plans for Basic Queries

Figure 2.19

Another name for the Nested Loops join is a nested iteration. This operation takes the
input from two sets of data and joins them by scanning the outer data set (the bottom
operator in a graphical execution plan) once for each row in the inner set. The number of
rows in each of the two data sets was small, making this a very efficient operation. As long
as the inner data set is small and the outer data set, small or not, is indexed, then this is
an extremely efficient join mechanism. Except in cases of very large data sets, this is the
best type of join to see in an execution plan.

92

Chapter 2: Graphical Execution Plans for Basic Queries

Compute Scalar

This is not a type of join operation but since it appears in our plan, we'll cover it here. In
the execution plan shown in Figure 2.15, right after the final Index Scan operator, we have
a Compute Scalar operator. Figure 2.20 shows the Properties window for this operator.

Figure 2.20

This is simply a representation of an operation to produce a scalar, a single defined value,
usually from a calculation – in this case, the alias EmployeeName, which combines the
columns Contact.LastName and Contact.FirstName with a comma between them.
While this was not a zero-cost operation (0.001997), the cost is trivial enough in the
context of the query to be essentially free. You can see what this operation is doing by

93

Chapter 2: Graphical Execution Plans for Basic Queries

looking at the definition for the highlighted property, Expr1008 but, to really see what
the operation is doing, click on the ellipsis on the right side of the Property page. This
will open the expression definition as shown in Figure 2-21.

Figure 2-21

Merge Join

A Merge Join operator works from sorted data, and sorted data only. It takes the data
from two different data sets and uses the fact that the data is sorted to simply merge it
together, combining based on the matching values, which it can do very easily because
the order of the values will be identical. If the data is sorted, this can be one of the most
efficient join operations. However, the data is frequently not sorted, so sorting it for a
Merge Join requires the addition of a Sort operator to ensure it works; this can make this
join operation less efficient.

94

Chapter 2: Graphical Execution Plans for Basic Queries

To see an example of a Merge Join, we can run the following code:

SELECT c.CustomerID
FROM Sales.SalesOrderDetail od
 JOIN Sales.SalesOrderHeader oh
 ON od.SalesOrderID = oh.SalesOrderID
 JOIN Sales.Customer c ON oh.CustomerID = c.CustomerID

Listing 2.8

Figure 2.22 shows the execution plan for this query.

Figure 2.22

According to the execution plan, the query optimizer performs a Clustered Index Scan
on the Customer table and a NonClustered Index Scan on the SalesOrderHeader
table. Since the query did not specify a WHERE clause, a scan was performed on each table
to return all the rows in each table.

Next, all the rows from both the Customer and SalesOrderHeader tables are joined
using the Merge Join operator. A Merge Join occurs on tables where the join columns
are sorted. For example, in the ToolTip window for the Merge Join, shown in Figure
2.23, we see that the join columns are Sales and CustomerID. In this case, the data in

95

Chapter 2: Graphical Execution Plans for Basic Queries

the join columns, retrieved from both indexes, is ordered. A Merge Join is an efficient
way to join two tables, when the join columns are sorted, but if the join columns are
not sorted, the query optimizer has the option of a) sorting the join columns first, then
performing a Merge Join, or b) performing a less efficient Hash Match join. The query
optimizer considers its options and generally chooses the execution plan that uses the
least resources, based on the statistics available.

Figure 2.23

Once the Merge Join has joined two of the tables, the optimizer joins the third table
to the first two using a Hash Match join, as discussed earlier. Finally, the joined rows
are returned.

96

Chapter 2: Graphical Execution Plans for Basic Queries

The key to the performance of a Merge Join is that the joined columns are pre-sorted.
If they are not, and the query optimizer chooses to sort the data in a separate operation
before it performs a Merge Join, this might be an indication that a Merge Join is not
an ideal way to join the tables, or it might indicate that you need to reconsider your
indexing strategy.

Filtering Data

Only infrequently will queries run without some sort of conditional statements to limit
the results set; in other words, a WHERE clause. We'll investigate two multi-table, condi-
tional queries using graphical execution plans.

Run the following query against AdventureWorks2008R2, and look at the actual
execution plan. This query is the same as the one we saw at the start of the Table Joins
section, but now a WHERE clause has been added.

SELECT e.[Title],
 a.[City],
 c.[LastName] + ',' + c.[FirstName] AS EmployeeName
FROM [HumanResources].[Employee] e
 JOIN [HumanResources].[EmployeeAddress] ed
 ON e.[EmployeeID] = ed.[EmployeeID]
 JOIN [Person].[Address] a
 ON [ed].[AddressID] = [a].[AddressID]
 JOIN [Person].[Contact] c
 ON e.[ContactID] = c.[ContactID]
WHERE e.[Title] = 'Production Technician - WC20' ;

Listing 2.9

Figure 2.24 shows the actual execution plan for this query.

97

Chapter 2: Graphical Execution Plans for Basic Queries

Figure 2.24

Starting from the right, we see that the optimizer has used the criteria from the WHERE
clause to do a Clustered Index Scan, using the primary key. The WHERE clause limited the
number of rows to 1, which you can see by hovering your mouse pointer over the arrow
coming out of the Clustered Index Scan operator (see Figure 2.25).

Figure 2.25

Using the available statistics, the optimizer was able to determine this up front, as we see
by comparing the estimated and actual rows returned in the ToolTip.

98

Chapter 2: Graphical Execution Plans for Basic Queries

Working with a smaller data set and a good index on the Person.Person table,
the optimizer was able to use the more efficient Nested Loop join. Since the
optimizer changed where that table was joined, it also moved the scalar calculation
right next to the join. Since it's still only one row coming out of the Scalar operation,
a Clustered Index Seek and another Nested Loop were used to join the data from the
Person.BusinessEntityAddress table. This then leads to a final Clustered Index
Seek and the final Nested Loop. All these more efficient joins are possible because we
reduced the initial data set with the WHERE clause, as compared to the previous query
which did not have a WHERE clause.

Frequently, developers who are not too comfortable with T-SQL will suggest that the
"easiest" way to do things is to simply return all the rows to the application, either
without joining the data between tables, or even without adding a WHERE clause. This
was a very simple query with only a small set of data, but you can use this as an example,
when confronted with this sort of argument.

The best way to compare one query to another is by examining the execution time and
the amount of data accessed. Using SET STATISTICS TIME ON will cause SQL Server to
return the amount of time it takes to compile and run a query. To get the amount of data
returned, you can use SET STATISTICS IO ON, and SQL Server shows the number of
reads, which represent SQL Server accessing a page of information.

If you look at the execution time, scans and reads for these queries, which is the best
way to compare execution between two queries, the first query runs in about 202ms and
the second runs on 140ms on my machine. As far as scans and reads go, the first query,
without a WHERE clause…

Table 'Worktable'. Scan count 0, logical reads 0
Table 'Person'. Scan count 1, logical reads 109
Table 'Address'. Scan count 1, logical reads 216
Table 'BusinessEntityAddress'. Scan count 290
Table 'Employee'. Scan count 1, logical reads 9

…resulted in quite a high number of reads and only a few scans, while the other query…

99

Chapter 2: Graphical Execution Plans for Basic Queries

Table 'Address'. Scan count 0, logical reads 2
Table 'BusinessEntityAddress'. Scan count 1
Table 'Person'. Scan count 0, logical reads 3
Table 'Employee'. Scan count 1, logical reads 9

…had only a very few reads, which means it uses fewer resources and takes less time. So
it's clear, with a WHERE clause, you can limit the resources used by SQL Server.

Execution Plans with GROUP BY and ORDER BY

When we add other basic T-SQL clauses to a query, the resulting execution plans show
different operators.

Sort

Take a simple SELECT with an ORDER BY clause as an example:

SELECT Shelf
FROM Production.ProductInventory
ORDER BY Shelf

Listing 2.10

The execution plan is shown in Figure 2.26.

100

Chapter 2: Graphical Execution Plans for Basic Queries

Figure 2.26

The Clustered Index Scan operator outputs into the Sort operator. Compared to many
of the execution plan icons, the Sort operator is very straightforward. It shows when the
query optimizer is sorting data within the execution plan. If an ORDER BY clause does not
specify order, the default order is ascending, as you will see from the ToolTip for the Sort
icon (see Figure 2.27).

Figure 2.27

101

Chapter 2: Graphical Execution Plans for Basic Queries

Pull up the ToolTip window for the arrow leading to the Sort icon (see Figure 2.28) and
you'll see that the Clustered Index Scan passes 1069 rows to the Sort operator, which
sorts these 1069 rows and then passes them on, in sorted order.

Figure 2.28

The most interesting point to note is that the Sort operation is 76% of the cost of the
query. There is no index on this column, so SQL Server performs the Sort operation
within the query execution.

As a rule of thumb, if sorting takes more than 25% of a query's total execution time, then
you need to review it carefully and optimize it, if possible. In our case, the reason why we
are breaking this rule is straightforward: we are missing a WHERE clause. Most likely, this
query is returning far more rows than necessary, all of which SQL Server then needs to
sort. Even if a WHERE clause exists, you need to ensure that it limits the amount of rows
to only the required number of rows to be sorted, not rows that will never be used.

A good question to ask if you spot an expensive Sort operation is, "Is the Sort really
necessary?" As hinted above, SQL Server often performs the Sort operation within the
query execution due to the lack of an appropriate index. With the appropriate clustered
index, the data may come pre-sorted. It is not always possible to create the appropriate
clustered index, but if it is, you will save sorting overhead.

If an execution plan has multiple Sort operators, review the query to see if they are all
necessary, or if you can rewrite the code so that fewer sorts will accomplish the goal of
the query.

102

Chapter 2: Graphical Execution Plans for Basic Queries

If we change the query as shown in Listing 2.11, we get the execution plan shown in
Figure 2.29.

SELECT *
FROM Production.ProductInventory
ORDER BY ProductID

Listing 2.11

Figure 2.29

Although this query is almost identical to the previous query, and it includes an ORDER
BY clause, we don't see a Sort operator in the execution plan. This is because the column
we are sorting by has changed, and this new column has a clustered index on it, which
means that the returned data does not have to be sorted again, as it is already sorted as a
byproduct of being the clustered index. The query optimizer is smart enough to recognize
that the data, as retrieved through the index, is already ordered, and does not have to be
ordered again.

If you have no choice but to sort a lot of data, you should consider using trace events,
Performance:Showplan XML, to see if any Sort Warnings are generated. To boost
performance, SQL Server attempts to perform sorting in memory instead of on disk,
since sorting in RAM is much faster than sorting on disk. However, if the Sort operation
is large, SQL Server may have to write data to the tempdb database and sort on disk.
Whenever this occurs, SQL Server generates a Sort Warning event, which we can
capture using trace events. If your server is performing many Sorts, and generating many
Sort Warnings, then you may need to add more RAM to your server, or to speed up
tempdb access.

103

Chapter 2: Graphical Execution Plans for Basic Queries

Hash Match (aggregate)

Earlier in this chapter, we looked at the Hash Match operator for joins. This same Hash
Match operator can also occur when aggregations are present within a query. Let's
consider a simple aggregate query against a single table using the Count operator.

SELECT [City],
 COUNT([City]) AS CityCount
FROM [Person].[Address]
GROUP BY [City]

Listing 2.12

Figure 2.30 shows the actual execution plan.

Figure 2.30

The query execution begins with an Index Scan, because all of the rows are returned for
the query; there is no WHERE clause to filter the rows. Next, the optimizer aggregates
these rows in order to perform the requested COUNT aggregate operation. In order for
the query optimizer to count each row for each separate city, the optimizer chooses to
perform a Hash Match operation. Notice that the word "Aggregate" appears, within
parentheses, underneath Hash Match in the execution plan. This is to distinguish it from
a Hatch Match operation for a join. As with a Hash Match with a join, a Hash Match
with an aggregate causes SQL Server to create a temporary hash table in memory in order
to count the number of rows that match the GROUP BY column, which in this case is
City. With the results aggregated, they are passed back to us.

104

Chapter 2: Graphical Execution Plans for Basic Queries

Quite often, aggregations within queries can be expensive operations. About the only
way to "speed" the performance of an aggregation via code is to ensure that you have a
restrictive WHERE clause to limit the number of rows that need to be aggregated, thus
reducing the amount of aggregation that needs to be done. You can also pre-aggregate
data by using an indexed view.

Filter

If we add a simple HAVING clause to our previous query, our execution plan gets
more complex.

SELECT [City],
 COUNT([City]) AS CityCount
FROM [Person].[Address]
GROUP BY [City]
HAVING COUNT([City]) > 1

Listing 2.13

The execution plan now looks as shown in Figure 2.31.

Figure 2.31

By adding the HAVING clause, the Filter operator appears in the execution plan. The
Filter operator is applied to limit the output to those values of the column, City, that are
greater than 1, in order to satisfy the HAVING clause. One useful bit of knowledge to take
away from this plan is that the optimizer does not apply the HAVING clause until all the

105

Chapter 2: Graphical Execution Plans for Basic Queries

aggregation of the data is complete. We can see this by noting that the actual number of
rows in the Hash Match operator is 575 and in the Filter operator it's 348.

Figure 2.32

While adding a HAVING clause reduces the amount of data returned, it actually adds to
the resources needed to produce the query results, because the HAVING clause does not
come into play until after the aggregation. This hurts performance. As with the previous
example, if you want to speed the performance of a query with aggregations, the only way
to do so in code is to add a WHERE clause to the query to limit the number of rows that
need to be selected and aggregated.

A brief aside on rebinds and rewinds

While examining the ToolTips for physical operators, throughout this chapter, you may
have noticed these terms several times:

• actual rebinds or estimated rebinds

• actual rewinds or estimated rewinds.

106

Chapter 2: Graphical Execution Plans for Basic Queries

Most of the time in this chapter, the value for both the rebinds and rewinds has been
zero, but for the Sort operator example, a little earlier, we saw that there was one actual
rebind and zero actual rewinds. Figure 2.33 shows the relevant section of the Properties
page for that operator.

Figure 2.33

In order to understand what these values mean, we need some background. Whenever
a physical operator, such as the Sort operator in an execution plan occurs, three things
happen.

• First, the physical operator is initialized and any required data structures are set up.
This is called the Init() method. In all cases, this happens once for an operator,
although it is possible for it to happen many times.

• Second, the physical operator gets (or receives) the rows of data that it is to act on. This
is called the GetNext() method. Depending on the type of operator, it may receive
none, or many GetNext() calls.

• Third, once the operator has performed its function, it needs to clean itself up and
shut itself down. This is called the Close() method. A physical operator only ever
receives a single Close() call.

A rebind or rewind is a count of the number of times the Init() method is called by an
operator. A rebind and a rewind both count the number of times the Init() method is
called, but do so under different circumstances.

107

Chapter 2: Graphical Execution Plans for Basic Queries

Only certain operators record values for rebind and rewind:

• Non-Clustered Index Spool

• Remote Query

• Row Count Spool

• Sort

• Table Spool

• Table-Valued Function.

If the following operators occur, the rebind and rewind counts will only be populated
when the StartupExpression for the physical operation is set to TRUE, which can vary
depending on how the query optimizer evaluates the query. This is set by Microsoft in
code and is something over which we have no control.

• Assert

• Filter.

For all other physical operators, the counts for rebind and rewind are not populated and
will be zero.

For the operators affected, multiple rebind or rewind events only occur in relation to
a Nested Loops join operation, specifically on the inner (lower) set of data. A rebind
occurs, increasing the rebind count, when one or more of the correlated parameters of
the Nested Loops join change and the inner side must be reevaluated. A rewind occurs,
increasing the rewind count, when none of the correlated parameters change and the
prior inner result set may be reused.

So, what does it mean when you see a value for either rebind or rewind for the eight
operators where rebind and rewind may be populated?

108

Chapter 2: Graphical Execution Plans for Basic Queries

If you see an operator where rebind equals one and rewinds equals zero, this means
that an Init() method was called one time on a physical operator that is not on the
inner side of a loop join. If the physical operator is on the inner side of a loop join used
by an operator, then the sum of the rebinds and rewinds will equal the number of rows
processed on the outer side of a join used by the operator.

This query will result in a Table Spool on the inner side of a Loop Join operator.

SELECT sod.SalesOrderDetailID
FROM Sales.SalesOrderDetail AS sod
WHERE LineTotal < (SELECT AVG(dos.LineTotal)
 FROM Sales.SalesOrderDetail AS dos
 WHERE dos.ModifiedDate < sod.ModifiedDate
)

Listing 2.14

If you examine the property sheet of the operator, you will see the relationship between
the actual rows returned and the rebinds and rewinds necessary to return them.

Since this is a natural part of the Nested Loops join operator, it's not an issue when you
see these values but, depending on the number of executions of these operators, they can
be indicators of performance issues.

Execution Plans for INSERT, UPDATE and
DELETE Statements

The optimizer generates execution plans for all queries against the database, in order
for the storage engine to figure out how best to undertake the submitted request. While
the previous examples have been for Select queries, in this section we will look at the
execution plans of INSERT, UPDATE, and DELETE queries.

109

Chapter 2: Graphical Execution Plans for Basic Queries

INSERT statements

INSERT statements are always against a single table. This would lead you to believe
that execution plans will be equally simplistic. However, in order to take into account
rollbacks and data integrity checks, execution plans for insert queries can be quite
complicated.

Listing 2.15 contains a very simple INSERT statement.

INSERT INTO Person.Address
 (AddressLine1,
 AddressLine2,
 City,
 StateProvinceID,
 PostalCode,
 rowguid,
 ModifiedDate
)
VALUES (N'1313 Mockingbird Lane', -- AddressLine1 - nvarchar(60)
 N'Basement', -- AddressLine2 - nvarchar(60)
 N'Springfield', -- City - nvarchar(30)
 79, -- StateProvinceID - int
 N'02134', -- PostalCode - nvarchar(15)
 NEWID(), -- rowguid - uniqueidentifier
 GETDATE() -- ModifiedDate - datetime
)

Listing 2.15

There are two ways I could run the query above to generate the execution plan. I could
retrieve an estimated plan, which is what I did. An estimated plan is a plan that is
compiled, but not run. The other method for getting an execution plan would be to wrap
the query in a transaction and roll back that transaction after capturing the execution
plan. I chose to use the estimated plan because it was easier and still suited our needs.

110

Chapter 2: Graphical Execution Plans for Basic Queries

This plan may be a little difficult to read on the printed page. Please execute the
code on your own machine in order to see the plan clearly, and follow along with the
explanations.

Figure 2.34

The physical structures of the tables the query accesses can affect the resulting execution
plans. For example, this table has an IDENTITY column, FOREIGN KEY constraints and a
spatial data column. All these objects will affect the execution plan.

The physical operation of the execution plan starts off, reading right to left, with an
operator that is new to us: Constant Scan. This operator introduces a constant number
of rows into a query. In our case, it's building a row in order for the next two operators to
have a place to add their output. The first of these is a Compute Scalar operator to call a
function called getidentity. This is the point within the query plan when SQL Server
generates an identity value, for the data to follow. Note that this is the first operation
within the plan, which helps explain why, when an INSERT fails, you get a gap in the
identity values for a table.

The next Scalar operation creates a series of placeholders for the rest of the data and
creates the new uniqueidentifier value, and the date and time from the GETDATE
function. You can tell this is what happens by looking at the Property sheet for the
operator and then looking at the Defined Values property. There is an ellipsis next to that
property which, when clicked, will open a window showing what is being built by the
Compute Scalar operation as shown in Figure 2.35.

111

Chapter 2: Graphical Execution Plans for Basic Queries

Figure 2.35

All of this is passed to the Clustered Index Insert operator, where the majority of
the cost of this plan is realized. Note the output value from the INSERT statement,
the Person.Address.StateProvinceId. This is passed to the next operator, the
Nested Loop join, which also gets input from the Clustered Index Seek against the
Person.StateProvince table. In other words, we had a read during the INSERT to
check for referential integrity on the foreign key of StateProvinceId. The join then
outputs a new expression which is tested by the next operator, Assert. An Assert operator
verifies that a particular condition exists. This one checks that the value of Expr1004
equals zero. Or, in other words, that the data to be inserted into the Person.Address.
StateProvinceId field matched a piece of data in the Person.StateProvince table;
this was the referential check.

The subtree of operations represents the data being added to the spatial data column. I
cover some of the special data types in Chapter 7, so I won't go over those operators here.

112

Chapter 2: Graphical Execution Plans for Basic Queries

UPDATE statements

UPDATE statements are also against one table at a time. Depending on the structure of the
table, and the values to be updated, the impact on the execution plan could be as severe as
that shown above for the INSERT query. Consider the UPDATE statement in Listing 2.16.

UPDATE [Person].[Address]
SET [City] = 'Munro',
 [ModifiedDate] = GETDATE()
WHERE [City] = 'Monroe' ;

Listing 2.16

Figure 2.36 shows the estimated execution plan.

Figure 2.36

Let's begin reading this execution plan in the physical operation order, from right to
left. The first operator is a NonClustered Index Scan, which retrieves all of the necessary
rows from a non-clustered index, scanning through them, one row at a time. This is
not particularly efficient and should be a flag to you that perhaps the table needs better
indexes to speed performance. The purpose of this operator is to identify all the rows
WHERE [City] = 'Monroe', and then send them to the next operator.

The next operator is Top. In an execution plan for an UPDATE statement, the Top
operator enforces row count limits, if there are any. In this case, no limits were enforced
because the TOP clause was not used in the UPDATE query as you can see in Listing 2.16.

113

Chapter 2: Graphical Execution Plans for Basic Queries

Note

If the Top operator is found in a SELECT statement, and not an UPDATE statement, it indicates that

a specified number, or percent, of rows are being requested, based on the TOP command used in the

SELECT statement.

The next operator is an Eager Spool (a form of a Table Spool). This obscure sounding
operator essentially takes each of the rows to be updated and stores them in a hidden
temporary object stored in the tempdb database. The rewind is put in place in an
update query like this as part of prevention for the Halloween problem (for a good
definition of the Halloween Problem, read the document at http://en.wikipedia.org/
wiki/Halloween_Problem). The Eager Spool is in place in order to facilitate rollback
operations.

The next three operators are all Compute Scalar operators, which we have seen before. In
this case, they are used to evaluate expressions and to produce a computed scalar value,
such as the GETDATE() function used in the query.

Now we get to the core of the UPDATE statement, the Clustered Index Update operator.
In this case, the values being updated are part of a clustered index. So this operator
identifies the rows to be updated, and updates them.

Last of all, we see the generic T-SQL Language Element Catchall operator, which tells us
that an UPDATE operation has been completed.

From a performance perspective, one of the things to watch for is how the rows to be
updated are retrieved. In this example, a Non-Clustered Index Scan was performed,
which is not very efficient. Ideally, a Clustered or Non-Clustered Index Seek would be
preferred from a performance standpoint, as either one of them would use less I/O to
perform the requested UPDATE.

http://en.wikipedia.org/wiki/Halloween_Problem
http://en.wikipedia.org/wiki/Halloween_Problem

114

Chapter 2: Graphical Execution Plans for Basic Queries

DELETE statements

What kind of execution plan is created with a DELETE statement? For example, let's run
the following code and check out the execution plan.

BEGIN TRAN
DELETE FROM Person.EmailAddress
WHERE BusinessEntityID = 42
ROLLBACK TRAN

Listing 2.17

Figure 2.37 shows the estimated execution plan.

Figure 2.37

Not all execution plans are complicated and hard to understand. In this case, a direct
access to the clustered index was used to identify the row that needed to be removed and
it was deleted. You may still run into situations where you'll need to validate referential
integrity with DELETE operations, just as you do with INSERTs.

Summary

This chapter represents a major step in learning how to read graphical execution plans.
However, as we discussed at the beginning of the chapter, we only focused on the most
common type of operators and we only looked at simple queries. So, if you decide to
analyze a 200-line query and get a graphical execution plan that is just about as long,

115

Chapter 2: Graphical Execution Plans for Basic Queries

don't expect to be able to analyze it immediately. Learning how to read and analyze
execution plans takes time and effort. However, having gained some experience, you
will find that it becomes easier and easier to read and analyze even the most complex of
execution plans.

116

Chapter 3: Text and XML Execution
Plans for Basic Queries

Chapter 2 described how to read graphical execution plans, building your understanding
of what operators do and how the data flows from one operator to the next. Learning
how to read graphical execution plans is not wasted time, because what you learned
there also applies to reading text and XML execution plans. While these plans don't have
icons and Property sheets, they consist of the exact same operators and properties; so, by
learning how to read graphical execution plans, you also learn how to read text and XML
execution plans.

In early versions of SQL Server, only text-based execution plans were available and many
people found them hard to read, especially when dealing with complex plans. Microsoft
eventually relented and introduced graphical execution plans in SQL Server 7, in addition
to offering text execution plans. I find graphical execution plans much easier to read than
text plans, and I guess I'm not the only database professional who feels this way, as text
execution plans are on the SQL Server deprecation list and will eventually go away.

In SQL Server 2005, Microsoft modified the internal structure of execution plans. Instead
of the proprietary binary format that they were formerly, now all graphical plans are
actually XML underneath. We can access the XML in all these plans directly. Like text-
based plans, XML plans can be difficult to read and analyze if you look straight at the
raw XML code. So why did Microsoft decide to use XML for execution plans if they are
difficult to read?There are several reasons for the change. Essentially, XML is a common
file format that we can use programmatically, unlike text-based execution plans. This
means you can use XQuery to access data within XML plans. XML plans also provide
a much richer environment to store more execution plan details than ever before. In
addition, XML plans are stored in a portable format that makes them easy to share with
others. For example, I can send an XML plan to a fellow DBA, and she can use SSMS to
graphically display and analyze it or run queries directly against it. Text-based plans, on
the other hand, don't offer any of these benefits.

117

Chapter 3: Text and XML Execution Plans for Basic Queries

Text Execution Plans

So why should you even bother to learn about text execution plans if this feature is being
deprecated? That's a question only you can answer. If you are working with SQL Server
2005 or later, for the most part, I suggest you focus your efforts on learning graphical
execution plans, and understanding the benefits and uses of the XML plan file format. On
the other hand, if you are still managing older versions of SQL Server, you may want to
learn how to read text plans because they still crop up in books and articles about these
older versions, and knowing how to read them might prove useful.

A text plan for a simple query

Let's start by examining the text plan for a query we saw in the previous chapter. First, as
a reminder, we'll capture the graphical plan for the following query.

SELECT e.BusinessEntityID ,
 e.JobTitle ,
 e.LoginID
FROM HumanResources.Employee AS e
WHERE e.LoginID = 'adventure-works\marc0';

Listing 3.1

Figure 3.1

118

Chapter 3: Text and XML Execution Plans for Basic Queries

Now, we'll capture the equivalent text plan. There is no button to turn on in the GUI to
capture text plans. Instead, we'll use a T-SQL statement to output the text plan. Turning
on SHOWPLAN_ALL will allow you to collect estimated execution plans. This is a change
to the behavior of your query window. No T-SQL code submitted after this statement is
actually executed until you turn SHOWPLAN_ALL off again.

SET SHOWPLAN_ALL ON;
GO
SELECT e.BusinessEntityID ,
 e.JobTitle ,
 e.LoginID
FROM HumanResources.Employee AS e
WHERE e.LoginID = 'adventure-works\marc0';
GO
SET SHOWPLAN_ALL OFF;

Listing 3.2

By default, the text plan displays in a spreadsheet-style grid format, as shown in
Figure 3.2.1

Figure 3.2

The layout of the results of the text plan consists of rows of information where each row
is an operator. The plan displays the operators in the logical processing order from top
to bottom, similar to reading a graphical plan from left to right. In this example, Row 1 is
the parent node, the first operator in the execution plan, and the StmtText column for
this row contains the text for the T-SQL statement. Scrolling right through the results,

1 If you right-click in the query window of SSMS, you can select Results To | Results to Text, which offers a more conventional view
of the text execution plan.

119

Chapter 3: Text and XML Execution Plans for Basic Queries

you'll find additional columns, not shown in Figure 3.2, such as Type, Defined Values
and EstimateRows. The Type column (Figure 3.3) describes the node type, which is the
type of operator.

Figure 3.3

The parent node shows Select in this column, since that is the type of SQL statement
executed. All other rows define the type as PLAN_ROW. For all PLAN_ROW nodes, the
StmtText column defines the type of operator that the node represents.

A quick glance at the StmtText column for the remaining rows reveals that three opera-
tions took place: a Nested Loops inner join, an Index Seek, and a Clustered Index Seek.

While the logical order of the text plan is easy to follow, the physical order is much more
difficult to discern. In order to understand the physical flow of operations, we are helped
by the indentation of the data and the use of the pipe (|) to connect the statements, parent
to child. We can also refer to the NodeID and Parent columns, which indicate the IDs of
the current node and its parent node, respectively. You can see this in Figure 3.2 where the
first row has a NodeID of 1 and a Parent of 0 while the second row has a NodeID of 2 and
a Parent of 1. Within each indentation, or for every row that has the same Parent number,
the operators execute from top to bottom. In this example, the Index Seek occurs before
the Clustered Index Seek.

Moving to the two most indented rows, we start at Row 3 (NodeId 3) with the Index
Seek operation. By extending the StmtText column (or by examining the Argument
column), we can see that the Index Seek was against the HumanResources.Employee
table (I've imposed some additional formatting just to make it a little easier to read).

120

Chapter 3: Text and XML Execution Plans for Basic Queries

|--Index Seek
 (OBJECT:([AdventureWorks2008R2].[HumanResources].
 [Employee].[AK_Employee_LoginID] AS [e]),
 SEEK:([e].[LoginID]=CONVERT_IMPLICIT(nvarchar(4000),[@1],0)) ORDERED FORWARD)

Listing 3.3

The DefinedValues column for a given PLAN_ROW contains a comma-delimited list of the
values that the operator introduces to the data flow between operators. These values may
be present in the current query (in the SELECT or WHERE clauses), as is the case for our
Index Seek operator, where this column contains:

 [e].[BusinessEntityID], [e].[LoginID]

Listing 3.4

Alternatively, they could be internal (intermediate) values that the query processor needs
in order to process the query. Think of DefineValues as a temporary holding place for
values used by the query optimizer as the operators execute.

Finally, note from the EstimateRows column that the Index Seek operation produces an
estimated one row.

Next, Line 4 (NodeID 5), a Clustered Index Seek against HumanResources.Employee.
This immediately illustrates what I would regard as a weakness with text plan format. It is
not immediately obvious, as it was with the graphical plan, that this operation is, in fact,
a Key Lookup operation. We need to scan through the whole contents of the StmtText
column to find this out (Listing 3.5).

|--Clustered Index Seek
 (OBJECT:([AdventureWorks2008R2].[HumanResources].
 [Employee].[PK_Employee_BusinessEntityID] AS [e]),
 SEEK:([e].[BusinessEntityID]=[AdventureWorks2008R2].[HumanResources].
 [Employee].[BusinessEntityID] as [e].[BusinessEntityID])
 LOOKUP ORDERED FORWARD)

Listing 3.5

121

Chapter 3: Text and XML Execution Plans for Basic Queries

The EstimateExecutions column does not have a direct parallel in the graphical
execution plan. If you capture the graphical plan for this query and examine the
properties of the Key Lookup operator, rather than the number of executions, you will
see values for the number of rebinds and rewinds. In this case, one rebind and zero
rewinds. As you may remember from Chapter 1, a rebind or rewind occurs each time an
operator is reinitialized.

We then move up and out one Node to Row 2 (NodeID 2), where we see the Nested
Loop inner join that combines the results from the previous two operations. In this case,
DefinedValues displays Null, meaning that the operation introduces no new values, and
OutputList shows the BusinessEntityId, JobTitle and LoginId columns required
by our query.

The remainder of the columns in the results grid, such as EstimateRows, EstimateIO,
TotalSubTreeCost, and so on, mirror the information found in the ToolTips or the
properties for graphical execution plans, so we won't cover them again here.

A text plan for a slightly more complex query

The text-based plan for the previous simple query was straightforward to read. However,
with more complex queries, it quickly gets more difficult to read the text plan. Let's look
at the estimated text plan for the query in Listing 3.6, containing a couple of joins and a
WHERE clause.

SET SHOWPLAN_ALL ON;
GO

SELECT c.CustomerID ,
 a.City ,
 s.Name ,
 st.Name

122

Chapter 3: Text and XML Execution Plans for Basic Queries

FROM Sales.Customer AS c
 JOIN Sales.Store AS s ON c.StoreID = s.BusinessEntityID
 JOIN Sales.SalesTerritory AS st ON c.TerritoryId = st.TerritoryID
 JOIN Person.BusinessEntityAddress AS bea
 ON c.CustomerID = bea.BusinessEntityID
 JOIN Person.Address AS a ON bea.AddressID = a.AddressID
 JOIN Person.StateProvince AS sp
 ON a.StateProvinceID = sp.StateProvinceID
WHERE st.Name = 'Northeast'
 AND sp.Name = 'New York';
GO

SET SHOWPLAN_ALL OFF;
GO

Listing 3.6

After you execute the above query, the results pane reveals the estimated text plan.
Figure 3.4 shows the StmtText column of the results.

Figure 3.4

123

Chapter 3: Text and XML Execution Plans for Basic Queries

This is where the indentation of the data, and the use of the pipe (|) character to
connect parent to child, really starts to be useful. Tracking to the innermost set of
statements, we see an Index Seek operation against IX_Address_StateProvinceId
on the Address table.

Figure 3.5

This is how the plan displays the WHERE clause statement that limits the number of
rows returned.

--Index Seek(OBJECT:
 ([AdventureWorks2008R2].[Person].[StateProvince].[AK_StateProvince_Name]
 AS [sp]),
 SEEK:([sp].[Name]=N'New York') ORDERED FORWARD)

Listing 3.7

The output from this operator is the StateProvinceId, not a part of the Select list, but
necessary for the operators that follow. This operator starts the query with a minimum
number of rows to be used in all subsequent processing.

124

Chapter 3: Text and XML Execution Plans for Basic Queries

The Index Seek is followed by another Index Seek against the Person.Address.IX_
Address_StateProvinceID table clustered index, using the StateProvinceId from
the previous Index Seek.

Stepping out one level, the output from these two operations is joined via a Nested Loop
join (Row 7).

Figure 3.6

Following the pipes down from Row 9, the Index Seek operation, we reach Row 10, which
holds one of the estimated, costliest operations in this query, an Index Seek against the
entire CustomerAddress clustered index, another Key Lookup operation.

--Clustered Index Seek
 (OBJECT:([AdventureWorks2008R2].[Person].[Address].[PK_Address_AddressID]
 AS [a]),
 SEEK:([a].[AddressID]=[AdventureWorks2008R2].[Person].[Address].[AddressID]
 as [a].[AddressID]) LOOKUP ORDERED FORWARD)

Listing 3.8

125

Chapter 3: Text and XML Execution Plans for Basic Queries

The Clustered Index Seek produces an estimated one row in order to provide output
for the next step out, a Nested Loops join that combines the output of the previous
operations with the necessary data from the clustered index.

Figure 3.7

Following the pipe characters down from the Nested Loops operation, we arrive at
a Clustered Index Scan operation (Row 12). The scan operation's output in Row 12 is
combined with the Nested Loops in a Hash Match from Row 4.

The Hash Match in Row 4 combines its output with another Clustered Index Seek in
Row 13 (Figure 3.8).

126

Chapter 3: Text and XML Execution Plans for Basic Queries

Figure 3.8

Finally, you can see the last steps which consist of another Clustered Index Seek in
Row 14 that combines with the Loop Joins in Row 2 to put everything together for the
Select statement.

As you see, reading text-based execution plans is not easy, and we have only taken a brief
look at a couple of simple queries. Longer queries generate much more complicated plans,
sometimes running to dozens of pages. I would suggest you focus on graphical execution
plans, unless you have some special need where only text-based execution plans will meet
your needs.

XML Execution Plans

I think it's safe to say that most database professionals prefer to view execution plans in
graphical format. However, the big drawback in SQL Server 2000 and earlier, was that
there was no "file format" for graphical execution plans, so there was no easy way to pass
them around. This limitation was removed in SQL Server 2005, with the introduction of
the XML plan behind every graphical plan.

127

Chapter 3: Text and XML Execution Plans for Basic Queries

To most people, an XML plan is simply a common file format in which to store a graphical
execution plan, so that they can share it with other DBAs and developers.

I would imagine that very few people would prefer to read execution plans in the raw
XML format. Having said that, there is one over-riding reason why you will absolutely
want to use the raw XML data as a tool in your toolbox, and that is programmability. You
can run XQuery T-SQL queries against XML files and XML plans. In effect, this gives us a
direct means of querying the plans in the plan cache. This means we can display specific
details of a plan and, by performing a search on specific terms, such as "Index Scan," we
can track down specific, potentially problematic, aspects of a query. We'll see an example
of this a little later.

XML plans can also be used in plan forcing, where we essentially dictate to the query
optimizer that it should use only a specified plan to execute the query. We'll cover this
topic in detail in Chapter 8, but it's worth noting here that, contrary to what you might
hear, plan forcing does not bypass the optimization process.

In the following section, we take a brief look at the structure of XML as it exists behind
graphical plans and in the plan cache.

An estimated XML plan

This section will show the information available to you in an XML plan. Just to get a
sense of the XML structure, you'll follow through this example and "read" the XML in
the same way as you have done previously for graphical and text plans. However, this
example is not representative of how you're really going to use XML execution plans in
your day-to-day work. You won't generally be browsing through the raw XML data in an
attempt to find information.

128

Chapter 3: Text and XML Execution Plans for Basic Queries

We'll use the same execution plan that we evaluated as a text plan. Then, I'll show you
how to retrieve estimated plans from the plan cache and retrieve information out of them
directly, using XQuery, which is a much more useful exercise.

We can issue the SHOWPLAN_XML command in order to start capturing an estimated
execution plan in the XML format (remember that any statements that follow the
command will not be executed). We can then execute the required statement and then
immediately deactivate SHOWPLAN_XML so that SQL Server will execute any subsequent
statements we issue.

SET SHOWPLAN_XML ON;
GO
SELECT c.CustomerID ,
 a.City ,
 s.Name ,
 st.Name
FROM Sales.Customer AS c
 JOIN Sales.Store AS s ON c.StoreID = s.BusinessEntityID
 JOIN Sales.SalesTerritory AS st ON c.TerritoryId = st.TerritoryID
 JOIN Person.BusinessEntityAddress AS bea
 ON c.CustomerID = bea.BusinessEntityID
 JOIN Person.Address AS a ON bea.AddressID = a.AddressID
 JOIN Person.StateProvince AS sp
 ON a.StateProvinceID = sp.StateProvinceID
WHERE st.Name = 'Northeast'
 AND sp.Name = 'New York';
GO
SET SHOWPLAN_XML OFF;
GO

Listing 3.9

Being able to wrap individual statements in this manner is a great way to capture an
execution plan for an isolated statement within the larger set of statements that can make
up many of the more complex queries. When you run the query above, you won't see
results, but rather a link.

129

Chapter 3: Text and XML Execution Plans for Basic Queries

Click on the link and it will open as a graphical execution plan. In order to see the under-
lying XML, right-click on the graphical execution plan and select Show Execution Plan
XML, and you will see something that looks like Figure 3.9.

Figure 3.9

130

Chapter 3: Text and XML Execution Plans for Basic Queries

The results are far too large to display here, but Figure 3.9 shows the first portion of the
raw XML code used to create the graphical execution plan. XML data is more difficult
than the graphical execution plans to take in all at once, but with the ability to expand
and collapse elements using the "+" and "-" nodules down the left-hand side, the hierarchy
of the data being processed becomes somewhat clearer.

The main reason to use XML is that it offers a defined and published format for people to
use in programming, and to share the files. The XML has a standard structure, consisting
of elements and attributes, as defined and published by Microsoft. A review of some of
the common elements and attributes and the full schema is available at http://schemas.
microsoft.com/sqlserver/2004/07/showplan/.

After the familiar BatchSequence, Batch, Statements and StmtSimple elements
(described in Chapter 1), the first point of real interest is in the physical attributes of
the QueryPlan.

<QueryPlan CachedPlanSize ="52" CompileTime="29293" CompileCPU="6277"
 CompileMemory="520">

Listing 3.10

This describes the size of the plan in the plan cache, along with the amount of time,
CPU cycles and memory used by the plan. This information is available in graphical
execution plans; you just have to look at the ToolTips window or the Properties page
for the root operator (in this case it would be a Select operator). In SQL Server 2008 and
above, all information available in the XML plan is available in the graphical execution
plan. In 2005, certain values, such as missing index information, were only available in
the XML data.

In some cases, but not this example, we can see an element labeled MissingIndexes.
This contains information about tables and columns that do not have an index available
to the execution plan created by the optimizer. While the information about missing
indexes can sometimes be useful, it is only as good as the available statistics, and can

http://schemas.microsoft.com/sqlserver/2004/07/showplan/
http://schemas.microsoft.com/sqlserver/2004/07/showplan/

131

Chapter 3: Text and XML Execution Plans for Basic Queries

sometimes be very unreliable. You also have ability to correlate the behavior of this query
with other queries running on the system, so taking the missing index information in
isolation can be a problematic approach.

<MissingIndexes>
 <MissingIndexGroup Impact="30.8535">
 <MissingIndex Database="[AdventureWorks]" Schema="[Sales]"
 Table="[CustomerAddress]">
 <ColumnGroup Usage="EQUALITY">
 <Column Name="[AddressID]" ColumnId="2" />
 </ColumnGroup>
 <ColumnGroup Usage="INCLUDE">
 <Column Name="[CustomerID]" ColumnId="1" />
 </ColumnGroup>
 </MissingIndex>
 </MissingIndexGroup>
</MissingIndexes>

Listing 3.11

The execution plan then lists, via the RelOP nodes, the XML element name for operators,
the various physical operations that it anticipates performing, according to the data
supplied by the optimizer. The first node, with NodeId=0, refers to the first operator in
logical order, which is NestedLoops (Listing 3.12).

<RelOp NodeId="0" PhysicalOp="Nested Loops" LogicalOp="Inner Join"
EstimateRows="2.0063" EstimateIO="0" EstimateCPU="6.38809e-005" AvgRowSize="116"
EstimatedTotalSubtreeCost="1.09119" Parallel="0" EstimateRebinds="0"
EstimateRewinds="0">
<OutputList>
 <ColumnReference Database="[AdventureWorks2008R2]" Schema="[Sales]"
 Table="[Customer]" Alias="[c]" Column="CustomerID" />
 <ColumnReference Database="[AdventureWorks2008R2]" Schema="[Sales]"
 Table="[Store]" Alias="[s]" Column="Name" />
 <ColumnReference Database="[AdventureWorks2008R2]" Schema="[Sales]"
 Table="[SalesTerritory]" Alias="[st]" Column="Name" />
 <ColumnReference Database="[AdventureWorks2008R2]" Schema="[Person]"
 Table="[Address]" Alias="[a]" Column="City" />
</OutputList>

132

Chapter 3: Text and XML Execution Plans for Basic Queries

<NestedLoops Optimized="0">
 <OuterReferences>
 <ColumnReference Database="[AdventureWorks2008R2]" Schema="[Sales]"
 Table="[Customer]" Alias="[c]" Column="TerritoryID" />
 </OuterReferences>

Listing 3.12

The information within this element will be familiar to you from the ToolTip window
and Properties sheets from the graphical execution plans. Notice that, unlike text
plans, which just displayed "EstimateExecutions=0.001581," the XML plan includes the
estimated number of rebinds and rewinds. This can often give you a more accurate idea
of what occurred within the query, such as how many times the operator executed.

For example, for NodeId="20", the final Clustered Index Seek, associated with the
Nested Loops join in NodeId="0", we see:

<RelOp NodeId="20" PhysicalOp="Clustered Index Seek"
 LogicalOp="Clustered Index Seek"
 EstimateRows="1" EstimateIO="0.003125" EstimateCPU="0.0001581"
 AvgRowSize="28" EstimatedTotalSubtreeCost="0.00554117"
 TableCardinality="10" Parallel="0" EstimateRebinds="12.8482"
 EstimateRewinds="1.43427">

Listing 3.13

Returning to Node 0 at the top of the XML, the next element listed is the OutputList
element with a list of ColumnReference elements, each containing a set of attributes to
describe that column (Listing 3.14).

<OutputList>
 <ColumnReference Database="[AdventureWorks2008R2]" Schema="[Sales]"
 Table="[Customer]" Alias="[c]" Column="CustomerID" />
 <ColumnReference Database="[AdventureWorks2008R2]" Schema="[Sales]"
 Table="[Store]" Alias="[s]" Column="Name" />
 <ColumnReference Database="[AdventureWorks2008R2]" Schema="[Sales]"
 Table="[SalesTerritory]" Alias="[st]" Column="Name" />

133

Chapter 3: Text and XML Execution Plans for Basic Queries

 <ColumnReference Database="[AdventureWorks2008R2]" Schema="[Person]"
 Table="[Address]" Alias="[a]" Column="City" />
</OutputList>

Listing 3.14

This makes XML not only easier to read, but much more readily translated directly
back to the original query. The output described above is from the references to the
schema Sales and the tables Customer (aliased as "c"), Store (aliased as "s") and
SalesTerritory (aliased as "st"), as well as the schema Person and the table Address
(aliased as "a"), in order to output the required columns (CustomerID, Name, Name, and
City). The names of the operator elements are the same as the operators you would see
in the graphical execution plans, and the details within the attributes are usually those
represented in the ToolTip windows or in the Properties window.

Finally, for Node 0 in the estimated plan, in Listing 3.15 we see some more
information about the Nested Loops operation, such as the table involved, along
with the table's alias.

<NestedLoops Optimized="0">
 <OuterReferences>
 <ColumnReference Database="[AdventureWorks2008R2]" Schema="[Sales]"
 Table="[Customer]" Alias="[c]" Column="TerritoryID" />
 </OuterReferences>

Listing 3.15

As you can see, reading plans directly through the XML is not easy. Before moving on to
querying the XML directly, let's quickly examine the differences between estimated and
actual plans in an XML plan.

134

Chapter 3: Text and XML Execution Plans for Basic Queries

An actual XML plan

Now let's try executing the same query as we just did, but this time execute and collect
the actual XML plan. We won't go through the plan in detail again, just highlight the
main differences between estimated and actual XML plans.

SET STATISTICS XML ON;
GO
SELECT c.CustomerID ,
 a.City ,
 s.Name ,
 st.Name
FROM Sales.Customer AS c
 JOIN Sales.Store AS s ON c.StoreID = s.BusinessEntityID
 JOIN Sales.SalesTerritory AS st ON c.TerritoryId = st.TerritoryID
 JOIN Person.BusinessEntityAddress AS bea
 ON c.CustomerID = bea.BusinessEntityID
 JOIN Person.Address AS a ON bea.AddressID = a.AddressID
 JOIN Person.StateProvince AS sp
 ON a.StateProvinceID = sp.StateProvinceID
WHERE st.Name = 'Northeast'
 AND sp.Name = 'New York';
GO
SET STATISTICS XML OFF;
GO

Listing 3.16

We open the raw XML code for the actual plan in the same way as for the estimated
plan. Listing 3.17 shows that the QueryPlan element contains additional infor-
mation, including the DegreeOfParallelism (more on parallelism in Chapter 8) and
MemoryGrant, which is the amount of memory needed for the execution of the query.

<QueryPlan DegreeOfParallelism="0" MemoryGrant="1024" CachedPlanSize="80"
CompileTime="36" CompileCPU="35" CompileMemory="1224">

Listing 3.17

135

Chapter 3: Text and XML Execution Plans for Basic Queries

The other major difference between the actual XML execution plan and the estimated
one is that the actual plan includes an element called RunTimeInformation, showing
the thread, actual rows, and the number of executions prior to the same final Nested
Loop information.

<RunTimeInformation>
 <RunTimeCountersPerThread Thread="0" ActualRows="1" ActualEndOfScans="1"
 ActualExecutions="1" />
</RunTimeInformation>…

Listing 3.18

Querying the XML

One of the real advantages of having plans in an XML format is the ability to use XQuery
to interrogate them. We can run XQuery queries against the .sqlplan file, or against
execution plans stored in XML columns in tables, or directly against the XML that exists
in the plan cache in SQL Server.

XML querying is inherently costly, and queries against XML in the plan cache might
seriously affect performance on the server, so apply due diligence when running these
types of queries. However, certain information, such as the missing index information
mentioned previously, is only available through the XML in query plans, so you will want
to use them when appropriate.

A good practice is to apply some filtering criteria, via the DMVs that give us access to the
plan cache, and so limit the amount of data accessed. I show a simple example of that in
Listing 3.18. Better still, we could move the XML plans into a second table and then run
the XQuery against that table, in order to avoid placing too much load directly against the
plan cache.

136

Chapter 3: Text and XML Execution Plans for Basic Queries

The simple example in Listing 3.18 returns a list of operators within queries currently
stored in the plan cache. It illustrates how we can construct queries against the plan
cache, using the DMVs, but I would still hesitate before running this query on a
production system if that system was already under stress. Exercise caution using these
XML queries.

SELECT TOP 3
 RelOp.op.value('declare default element namespace "http://schemas.
microsoft.com/sqlserver/2004/07/showplan";
 @PhysicalOp', 'varchar(50)') AS PhysicalOp,
 dest.text,
 deqs.execution_count,
 RelOp.op.value('declare default element namespace "http://schemas.
microsoft.com/sqlserver/2004/07/showplan";
 @EstimatedTotalSubtreeCost', 'float') AS EstimatedCost
FROM sys.dm_exec_query_stats AS deqs
 CROSS APPLY sys.dm_exec_sql_text(deqs.sql_handle) AS dest
 CROSS APPLY sys.dm_exec_query_plan(deqs.plan_handle) AS deqp
 CROSS APPLY deqp.query_plan.nodes('declare default element namespace
"http://schemas.microsoft.com/sqlserver/2004/07/showplan";
 //RelOp') RelOp (op)
ORDER BY deqs.execution_count DESC

Listing 3.18

This query returns the first three operators from the most frequently called query in
the plan cache. The basic construct is easy enough to follow. In the FROM clause, three
DMVs are referenced, sys.dm_exec_query_stats, sys.dm_exec_sql_text, and
sys.dm_exec_query_plan, along with a reference to the query_plan column
within sys.dm_exec_query_plan and to the .nodes of the XML. Apart from that,
it's all XQuery. The results from my system look as shown in Figure 3.10.

137

Chapter 3: Text and XML Execution Plans for Basic Queries

Figure 3.10

Listed along with the physical operator is the query text, the number of executions of that
query, and the estimated cost. Any of the values stored within the XML are available for
querying. This completely opens up what is possible with XML and execution plans (see
Chapter 7 for more details).

Summary

Text plans are easier to read than XML, but the information in them is much more
limited than that provided by XML or a graphical plan. As the queries get more complex,
it also gets harder to understand the flow of data within a text plan. Since Microsoft plans
to deprecate text plans, I would only spend time working on using them if you are in an
older version of SQL Server and need to share execution plans with others.

The data provided in XML plans is complete, and the XML file is easy to share with
others. However, reading an XML plan is not an easy task and, unless you are the sort of
data professional who needs to know every internal detail, it is not one you will spend
time mastering.

Much better to read the plans in graphical form and, if necessary, spend time learning
how to use XQuery to access the data in these plans programmatically, and so begin
automating access to your plans.

138

Chapter 4: Understanding More
Complex Query Plans

As we've seen, even relatively simple queries can generate complicated execution plans.
Complex T-SQL statements generate ever-expanding execution plans that become more
and more time-consuming to decipher. However, just as a large T-SQL statement can be
broken down into a series of simple steps, large execution plans are simply extensions of
the same simple plans we have already examined, just with more, and different, operators.

In Chapters 2 and 3, we dealt with single statement T-SQL queries. In this chapter, we'll
extend that to consider stored procedures, temporary tables, table variables, MERGE
statements, and more.

Again, please bear in mind that the plans you see, if you follow along, may vary slightly
from what's shown in the text, due to different service pack levels, hot-fixes, differences in
the AdventureWorks database and so on.

Stored procedures

The best place to get started is with stored procedures. We'll create a new one for
AdventureWorks2008R2.

CREATE PROCEDURE [Sales].[spTaxRateByState]
 @CountryRegionCode NVARCHAR(3)
AS
 SET NOCOUNT ON ;

 SELECT [st].[SalesTaxRateID],
 [st].[Name],
 [st].[TaxRate],
 [st].[TaxType],
 [sp].[Name] AS StateName

139

Chapter 4: Understanding More Complex Query Plans

 FROM [Sales].[SalesTaxRate] st
 JOIN [Person].[StateProvince] sp
 ON [st].[StateProvinceID] = [sp].[StateProvinceID]
 WHERE [sp].[CountryRegionCode] = @CountryRegionCode
 ORDER BY [StateName] ;
GO

Listing 4.1

Which we can then execute:

EXEC [Sales].[spTaxRateByState] @CountryRegionCode = 'US';

Listing 4.2

The resulting actual execution plan is quite simple, as shown in Figure 4.1.

Figure 4.1

Starting from the right, we see a Clustered Index Scan operator, which gets the list of tax
rates. The query combines this data with data pulled from the States table, based on
the parameter, @CountryRegionCode, visible in the ToolTip or the Properties window,
through a Nested Loops operation.

140

Chapter 4: Understanding More Complex Query Plans

The combined data is passed to a Sort operation, which, at 51%, is the operator with the
highest estimated cost in the plan. Looking at the properties in Figure 4.2, you can see
that the optimizer feels that it has found the best possible plan.

Figure 4.2

You can see this in the Reason for Early Termination Of Statement property, where
it says Good Enough Plan Found. Another interesting point is that you can see, in
the Parameter Compiled Value property, the value that the optimizer used to compile
the plan. Below it is the Parameter Runtime Value, showing the value when this query
was called.

141

Chapter 4: Understanding More Complex Query Plans

These are useful properties to help you better understand the decisions made by the
optimizer and how the plan was compiled. The section on Statistics and indexes, later in
this chapter, provides more information about compiled values.

While this plan isn't complex, the interesting point is that we don't have a stored
procedure in sight. Instead, the optimizer treats the T-SQL within the stored procedure
in the same way as if we had written and run the SELECT statement through the
Query window.

Using a sub-select

A common but sometimes problematic approach to querying data is to select infor-
mation from other tables within the query, but not as part of a JOIN statement. Instead,
a completely different query is used in the WHERE clause, as a filtering mechanism.
Using AdventureWorks2008R2 as an example, the Production.ProductionList-
PriceHistory table maintains a running list of changes to product price. We'll use a
sub-select within the ON clause of the join to limit the data to only the latest versions of
the ListPrice.

SELECT p.Name,
 p.ProductNumber,
 ph.ListPrice
FROM Production.Product p
 INNER JOIN Production.ProductListPriceHistory ph
 ON p.ProductID = ph.ProductID
 AND ph.StartDate = (SELECT TOP (1)
 ph2.StartDate
 FROM Production.ProductListPriceHistory ph2
 WHERE ph2.ProductID = p.ProductID
 ORDER BY ph2.StartDate DESC
) ;

Listing 4.3

142

Chapter 4: Understanding More Complex Query Plans

Figure 4.3

What appears to be a somewhat complicated query turns out to have a straightforward
execution plan. Reading it in physical operator order, there are two Clustered Index
Scans against Production.Product and Production.ProductListPriceHistory.
These two data streams are combined using the Merge Join operator.

The Merge Join requires that both data inputs are ordered on the join key, in this case,
ProductId. The data resulting from a clustered index is always retrieved in an ordered
fashion, so no additional sort operation is required here.

A Merge Join takes a row each from the two ordered inputs and compares them. The
inputs are sorted, so the operation will only scan each input one time (except in the case
of a many-to-many join; more on this shortly). The operation will scan through the right
side of the operation until it reaches a row that is different from the row on the left side.
At that point, it will step the left side forward a row and begin scanning the right side
until it reaches a changed data point. This operation continues until all the rows are
processed. With the data already sorted, as in this case, it makes for a very fast operation.

Although we don't have this situation in our example, many-to-many Merge Joins create
a worktable to complete the operation. The creation of a worktable adds a great deal of
cost to the operation because it will mean writing data out to tempdb. However, the

143

Chapter 4: Understanding More Complex Query Plans

Merge Join operation will generally still be less costly than the use of a Hash Match join,
which is the other choice the query optimizer can make to solve the same type of join. We
can see that a worktable was not necessary, because the ToolTips property labeled Many
to Many (see figure below) is set to False.

Figure 4.4

144

Chapter 4: Understanding More Complex Query Plans

Next, we move down to the Clustered Index Seek operator in the lower right side of the
execution plan. Interestingly enough, this step accounts for 67% of the cost of the query
because the seek operation returned all 395 rows from the query. The data was only
limited to the TOP (1) after the rows were returned. A scan in this case, since all the rows
were returned, might have worked better. The only way to know for sure would be to add
a hint to the query to force a Table Scan and see if performance is better or worse.

The Top operator simply limits the number of returned rows to the value supplied
within the query, in this case "1." The Filter operator is then applied to limit the returned
values to only those where the dates match the main table. In other words, a join occurs
between the [Production].[Product] table and the [Production].[ProductList-
PriceHistory] table, where the column [StartDate] is equal in each. See the ToolTip
in Figure 4.5.

Figure 4.5

The two data streams are then joined through a Nested Loops operator, to produce
the final result.

145

Chapter 4: Understanding More Complex Query Plans

Derived tables using APPLY

One of the ways that we can access data through T-SQL is via a derived table. If you are
unfamiliar with them, think of a derived table as a virtual table created on the fly from
within a SELECT statement.

You create derived tables by writing a second SELECT statement within a set of paren-
theses in the FROM clause of an outer SELECT query. Once you apply an alias, this
SELECT statement is treated as a table by the T-SQL code, outside of the derived table
definition. In my own code, one place where I've come to use derived tables frequently is
when dealing with data that changes over time, for which I have to maintain history.

SQL Server 2005 introduced a new type of derived table, created using one of the two
forms of the Apply operator, Cross Apply or Outer Apply. The Apply operator allows us
to use a table-valued function, or a derived table, to compare values between the function
and each row of the table to which the function is being "applied."

If you are not familiar with the Apply operator, check out http://technet.microsoft.
com/en-us/library/ms175156.aspx.

Listing 4.4 shows the rewritten query. Remember, both this and the query in Listing 4.3
return identical data; they are just written differently.

SELECT p.Name,
 p.ProductNumber,
 ph.ListPrice
FROM Production.Product p
 CROSS APPLY (SELECT TOP (1)
 ph2.ProductID,
 ph2.ListPrice
 FROM Production.ProductListPriceHistory ph2
 WHERE ph2.ProductID = p.ProductID
 ORDER BY ph2.StartDate DESC
) ph ;

Listing 4.4

http://technet.microsoft.com/en-us/library/ms175156.aspx
http://technet.microsoft.com/en-us/library/ms175156.aspx

146

Chapter 4: Understanding More Complex Query Plans

The introduction of this new functionality changes the execution plan substantially, as
shown in Figure 4.6.

Figure 4.6

The TOP statement is now be applied row by row within the control of the APPLY
function, so the second Index Scan against the ProductListPriceHistory table,
and the Merge Join that joined the tables together, are no longer needed. Furthermore,
only the Index Seek and Top operations are required to provide data back for the
Nested Loops operation.

So, which method of writing this query do you think is the most efficient? One way
to find out is to run each query with the SET STATISTICS IO option set to ON. With
this option set, SQL Server displays I/O statistics as part of the Messages returned by
the query.

When we run the first query, which uses the sub-select, the results are:

(293 row(s) affected)
Table 'ProductListPriceHistory'. Scan count 396, logical reads 795
Table 'Product'. Scan count 1, logical reads 15, physical reads 0

If we run the query using a derived table, the results are:

(293 row(s) affected)
Table 'ProductListPriceHistory'. Scan count 504, logical reads 1008
Table 'Product'. Scan count 1, logical reads 15, physical reads 0,

147

Chapter 4: Understanding More Complex Query Plans

Although both queries returned identical result sets, the sub-select query uses fewer
logical reads (795) versus the query written using the derived table (1008 logical reads),
along with fewer scans (396 to 504). This is a result of the extra work done by the Nested
Loops compared to the Merge Join operator used in Figure 4.3.

This gets more interesting if we add the following WHERE clause in Listing 4.5 to each of
the previous queries.

WHERE [p].[ProductID] = '839'

Listing 4.5

When we reun the original query with the added WHERE clause, we get the plan shown
in Figure 4.7.

Figure 4.7

The Filter operator is gone but, more interestingly, the operators and costs have changed.
Instead of Index Scans and the inefficient (in this case) Index Seeks mixed together, we
have three, clean Clustered Index Seeks with an equal cost distribution. That can be an
indication for a well-tuned query.

If we add the WHERE clause to the derived table query, we see the plan shown
in Figure 4.8.

148

Chapter 4: Understanding More Complex Query Plans

Figure 4.8

This plan is almost identical to the one seen in Figure 4.6, with the only change being
that the Clustered Index Scan has changed to a Clustered Index Seek. This change was
possible because the inclusion of the WHERE clause allows the optimizer to take advantage
of the clustered index to identify the rows needed, rather than having to scan through
them all in order to find the correct rows to return.

Now, let's compare the I/O statistics for each of the queries, which return the same
physical row. When we run the query with the sub-select, we get:

(1 row(s) affected)
Table 'ProductListPriceHistory'. Scan count 1, logical reads 4
Table 'Product'. Scan count 0, logical reads 2, physical reads 0

When we run the query with the derived table, we get:

(1 row(s) affected)
Table 'ProductListPriceHistory'. Scan count 1, logical reads 2
Table 'Product'. Scan count 0, logical reads 2, physical reads 0

Now, with the addition of a WHERE clause, the derived query is more efficient, with only 2
logical reads, versus the sub-select query with 4 logical reads.

149

Chapter 4: Understanding More Complex Query Plans

The lesson to learn here is that in one set of circumstances a particular T-SQL method
may be exactly what you need, and yet, in another circumstance, that same syntax
negatively affects performance. The Merge Join made for a very efficient query when we
were dealing with inherent scans of the data, but was not used, nor applicable, when the
introduction of the WHERE clause reduced the data set. With the WHERE clause in place,
the sub-select became, relatively, more costly to maintain when compared to the speed
provided by APPLY. Understanding the execution plan makes a real difference in deciding
which T-SQL constructs to apply to your own code.

Common table expressions

SQL Server 2005 introduced a T-SQL construct, whose behavior appears similar to
derived tables, called a common table expression (CTE). A CTE is a "temporary result
set" that exists only within the scope of a single SQL statement. It allows access to
functionality within a single SQL statement that was previously only available through
use of functions, temporary tables, cursors, and so on. Unlike a derived table, a CTE
can be self-referential and referenced repeatedly within a single query. (For more
details on CTEs, check out this article on Simple-Talk: www.simple-talk.com/sql/
sql-server-2005/sql-server-2005-common-table-expressions/.)

One of the classic use cases for a CTE is to create a recursive query. Adventure-
Works2008R2 takes advantage of this functionality in a classic recursive exercise, listing
employees and their managers. The procedure in question, uspGetEmployeeManagers,
is as shown in Listing 4.6.

ALTER PROCEDURE [dbo].[uspGetManagerEmployees]
 @BusinessEntityID [int]
AS
 BEGIN
 SET NOCOUNT ON;
 WITH [EMP_cte] ([BusinessEntityID], [OrganizationNode],
 [FirstName], [LastName], [RecursionLevel])
 -- CTE name and columns

http://www.simple-talk.com/sql/sql-server-2005/sql-server-2005-common-table-expressions/
http://www.simple-talk.com/sql/sql-server-2005/sql-server-2005-common-table-expressions/

150

Chapter 4: Understanding More Complex Query Plans

 AS (SELECT e.[BusinessEntityID] ,
 e.[OrganizationNode] ,
 p.[FirstName] ,
 p.[LastName] ,
 0 -- Get the initial list of Employees
 -- for Manager n
 FROM [HumanResources].[Employee] e
 INNER JOIN [Person].[Person] p
 ON p.[BusinessEntityID] =e.[BusinessEntityID]
 WHERE e.[BusinessEntityID] = @BusinessEntityID
 UNION ALL
 SELECT e.[BusinessEntityID] ,
 e.[OrganizationNode] ,
 p.[FirstName] ,
 p.[LastName] ,
 [RecursionLevel] + 1 -- Join recursive
 -- member to anchor
 FROM [HumanResources].[Employee] e
 INNER JOIN [EMP_cte] ON
 e.[OrganizationNode].GetAncestor(1) =
 [EMP_cte].[OrganizationNode]
 INNER JOIN [Person].[Person] p ON
 p.[BusinessEntityID] = e.[BusinessEntityID]
)
 SELECT [EMP_cte].[RecursionLevel] ,
 [EMP_cte].[OrganizationNode].ToString()
 AS [OrganizationNode] ,
 p.[FirstName] AS 'ManagerFirstName' ,
 p.[LastName] AS 'ManagerLastName' ,
 [EMP_cte].[BusinessEntityID] ,
 [EMP_cte].[FirstName] ,
 [EMP_cte].[LastName] -- Outer select from the CTE
 FROM [EMP_cte]
 INNER JOIN [HumanResources].[Employee] e
 ON [EMP_cte].[OrganizationNode].GetAncestor(1) =
 e.[OrganizationNode]
 INNER JOIN [Person].[Person] p
 ON p.[BusinessEntityID] = e.[BusinessEntityID]
 ORDER BY [RecursionLevel] ,
 [EMP_cte].[OrganizationNode].ToString()
 OPTION (MAXRECURSION 25)
 END;

Listing 4.6

151

Chapter 4: Understanding More Complex Query Plans

Let's execute this procedure, capturing the actual XML plan.

SET STATISTICS XML ON;
GO
EXEC [dbo].[uspGetEmployeeManagers] @EmployeeID = 9;
GO
SET STATISTICS XML OFF;
GO

Listing 4.7

We get an execution plan of reasonable complexity, so let's break it down into sections in
order to evaluate it. We will examine parts of the XML plan alongside the graphical plan.

Figure 4.9 displays the top right-hand section of the graphical plan.

Figure 4.9

A Nested Loops join takes the data from two Clustered Index Seeks against
HumanResources.Employee and Person.Person. The Scalar operator puts in
the constant "0" from the original query for the derived column, RecursionLevel.
The second scalar, carried to a later operator, is an identifier used as part of the
Concatenation operation.

152

Chapter 4: Understanding More Complex Query Plans

This data is fed into a Concatenation operator, which scans multiple inputs and
produces one output. The optimizer uses it most commonly to implement the UNION
ALL operation from T-SQL.

Figure 4.10 displays the bottom right-hand section of the plan.

Figure 4.10

This is where things get interesting. SQL Server implements the recursion methods via
the Table Spool operator. This operator provides the mechanism for looping through the
records multiple times. As noted in Chapter 2, this operator takes each of the rows and
stores them in a hidden temporary object stored in the tempdb database. Later in the
execution plan, if the operator is rewound (say, due to the use of a Nested Loops operator
in the execution plan) and no rebinding is required, the spooled data can be reused,
instead of having to rescan the data again. As the operator loops through the records,
they are joined to the data from the tables as defined in the second part of the UNION ALL
definition within the CTE.

You can see the identifier for each operator in the Properties page. For our current
execution plan, the Table Spool operator has a NodeId=21. If you look up NodeId 21 in
the XML plan, you can see the RunTimeInformation element. This element contains
the actual query information, data that would not be available for an estimated plan.

153

Chapter 4: Understanding More Complex Query Plans

<RunTimeInformation>
 <RunTimeCountersPerThread Thread="0"
 ActualRebinds="1"
 ActualRewinds="0"
 ActualRows="1"
 ActualEndOfScans="1"
 ActualExecutions="1" />
</RunTimeInformation>

Listing 4.8

This shows us that one rebind of the data was needed. The rebind, a change in an internal
parameter caused by switching values as part of the Nested Loops operation, would be the
second manager, since the query returned more than one row. From the results, we know
that three rows were returned; the initial row and two others supplied by the recursion
through the management chain of the data within AdventureWorks2008R2.

Figure 4.11 shows the final section of the graphical plan.

Figure 4.11

After the Concatenation operator, we get an Index Spool operator. This operation
aggregates the rows into a worktable within tempdb. The data is sorted and then we
just have the rest of the query joining index seeks to the data put together by the
recursive operation.

154

Chapter 4: Understanding More Complex Query Plans

MERGE

With SQL Server 2008, Microsoft introduced the MERGE statement. This is a method
for updating data in your database in a single statement, instead of one statement
for INSERTs, one for UPDATEs and another for DELETEs. The nickname for this is an
"upsert." The simplest application of the MERGE statement is to perform an UPDATE if
there are existing key values in a table, or an INSERT if they don't exist. The query in
Listing 4.9 UPDATEs or INSERTs rows to the Purchasing.Vendor table.

DECLARE @BusinessEntityId INT = 42,
 @AccountNumber NVARCHAR(15) = 'SSHI',
 @Name NVARCHAR(50) = 'Shotz Beer',
 @CreditRating TINYINT = 2,
 @PreferredVendorStatus BIT = 0,
 @ActiveFlag BIT = 1,
 @PurchasingWebServiceURL NVARCHAR(1024) = 'http://shotzbeer.com',
 @ModifiedDate DATETIME = GETDATE() ;

BEGIN TRANSACTION
MERGE Purchasing.Vendor AS v
 USING
 (SELECT @BusinessEntityId,
 @AccountNumber,
 @Name,
 @CreditRating,
 @PreferredVendorStatus,
 @ActiveFlag,
 @PurchasingWebServiceURL,
 @ModifiedDate
) AS vn (BusinessEntityId, AccountNumber, Name, CreditRating,
 PreferredVendorStatus, ActiveFlag, PurchasingWebServiceURL,
 ModifiedDate)
 ON (v.AccountNumber = vn.AccountNumber)
 WHEN MATCHED
 THEN
 UPDATE
 SET Name = vn.Name,
 CreditRating = vn.CreditRating,
 PreferredVendorStatus = vn.PreferredVendorStatus,
 ActiveFlag = vn.ActiveFlag,

155

Chapter 4: Understanding More Complex Query Plans

 PurchasingWebServiceURL = vn.PurchasingWebServiceURL,
 ModifiedDate = vn.ModifiedDate
 WHEN NOT MATCHED
 THEN
 INSERT (
 BusinessEntityID,
 AccountNumber,
 Name,
 CreditRating,
 PreferredVendorStatus,
 ActiveFlag,
 PurchasingWebServiceURL,
 ModifiedDate
)
 VALUES (vn.BusinessEntityId,
 vn.AccountNumber,
 vn.Name,
 CreditRating,
 vn.PreferredVendorStatus,
 vn.ActiveFlag,
 vn.PurchasingWebServiceURL,
 vn.ModifiedDate
) ;
ROLLBACK TRANSACTION

Listing 4.9

I use a rollback on the transaction above to avoid changing the data in the
AdventureWorks2008R2 database. Despite the fact that a rollback occurs, it's
still possible to get an actual execution plan from the query because the query did
complete its operations. This query uses the alternate key that exists on the table on
the AccountNumber column. If the value matches, the query will run an UPDATE, and
if it doesn't, it will perform an INSERT. The resulting execution plan is a bit large, so I'll
break it down in physical operator order, working from the right.

156

Chapter 4: Understanding More Complex Query Plans

Figure 4.12

This first section, in essence, contains a series of steps to prepare for the main operations
to come. The Constant Scan operator creates a row into which all the Compute Scalar
operations will be able to load data. The Index Seek operation, against the Vendor.
AK_Vendor_AccountNumber index, pulls back matching rows, if any. In this case, the
ToolTip for the data flow between the Index Seek and the first Compute Scalar, reveals
zero rows.

Figure 4.13

The hard part of reading a plan like this is trying to figure out what each of the Compute
Scalar operations are doing. To find out, we have to walk through two values in
particular, the Defined Values and the Output List, both of which we can access through
the Properties window, although the Output List is also available in the operator's
ToolTip. Working from the right again, the first Compute Scalar creates a value called
TrgPrb1002 and sets it equal to "1." Via a Nested Loops operator, the plan combines this
value with the row from the Constant Scan.

157

Chapter 4: Understanding More Complex Query Plans

The next Compute Scalar operator performs a little calculation:

ForceOrder(CASE WHEN [TrgPrb1002] IS NOT NULL THEN (1) ELSE (4) END)

It creates a new value, Action1004, and since TrgPrb1002 is not null, the value is set
to "1." The next Compute Scalar operator loads all the variable values into the row, and
performs one other calculation:

Scalar Operator(CASE WHEN [Action1004]=(4) THEN [@AccountNumber] ELSE
[AdventureWorks2008R2].[Purchasing].[Vendor].[AccountNumber] as [v].[AccountNumber]
END)

Here, we can begin to understand what's happening. The first Compute Scalar output,
TrgPrb1002, determined if the row existed in the table. If it existed, then the second
scalar would have set Action1004 equal to 4, meaning that the row did exist, and this
new Compute Scalar would have used the value from the table, but instead, it's using the
variable @AccountNumber, since an INSERT is needed.

Moving to the left, the next Scalar operator validates what Action1004 is and sets a new
value, Expr1042, based on this formula:

Scalar Operator(CASE WHEN [Action1004] = (1) THEN (0) ELSE [Action1004] END)

We know that Action1004 is set to 1, so this expression will be, as well.

The final Scalar operator adds two values for later use in the execution plan. Finally, we're
ready to move on with the rest of the execution plan:

158

Chapter 4: Understanding More Complex Query Plans

Figure 4.14

The Clustered Index Merge receives all of the information added to the data stream
by the execution plan, uses it to determine if the action is an INSERT, an UPDATE,
or a DELETE, and performs that action. Appropriately, in this case, because of all
the determinations that the merge operation must perform, the optimizer estimates
that this operation will account for 75% of the cost of the execution plan. Next, an
Assert operator runs a check against a constraint in the database, validating that the
data is within a certain range. The data passes to the Nested Loops operator, which
validates that the BusinessEntityId referential integrity is intact, through the
Clustered Index Seek against the BusinessEntity table. The information gathered
by that join passes to another Assert operator, which validates the referential integrity,
and the query is completed.

As you can see, a lot of action takes place within execution plans but, with careful review,
it is possible to identify what is going on.

Prior to the MERGE statement, you may have done a query of this type dynamically. You
either had different procedures for each of the processes, or different statements within
an IF clause. Either way, you ended up with multiple execution plans in the cache, for
each process. This is no longer the case. If you were to modify the query in Listing 4.9 and
change one simple value like this…

159

Chapter 4: Understanding More Complex Query Plans

…
@AccountNumber NVARCHAR(15) = 'SPEEDCO0001',
…

Listing 4.10

…the exact same query with the exact same execution plan will now UPDATE the data
for values where the AccountNumber is equal to that passed through the parameter.
Therefore, this plan, and the Merge operator, creates a single reusable plan for all the data
manipulation operations it supports.

Views

A view is essentially just a "stored query," in other words, a logical way of representing
data as if it were in a table, without actually creating a new table. The various uses of
views are well documented (preventing certain columns from being selected, reducing
complexity for end-users, and so on). Here, we will just focus on what happens within an
execution plan when working with a view.

Standard views

The view, Sales.vIndividualCustomer, provides a summary of customer data,
displaying information such as their name, email address, physical address and
demographic information. A very simple query to get a specific customer would look
something like Listing 4.11.

SELECT *
FROM Sales.vIndividualCustomer
WHERE BusinessEntityId = 8743;

Listing 4.11

160

Chapter 4: Understanding More Complex Query Plans

Figure 4.15 shows the resulting graphical execution plan.

Figure 4.15

This is another plan that is very difficult to read on the printed page, so Figure 4.16 shows
an exploded view of just the five operators on the right-hand side of the plan.

Figure 4.16

161

Chapter 4: Understanding More Complex Query Plans

What happened to the view, vIndividualCustomer, which we referenced in this query?
Remember that, while SQL Server treats views similarly to tables, a view is just a named
construct that sits on top of the base tables from which they derive. The optimizer,
during binding, resolves all those component parts in order to arrive at an execution plan
to access the data. In effect, the query optimizer ignores the view object, and instead deals
directly with the eight tables and the seven joins defined within this view.

In short, while a view can make coding easier, it doesn't in any way change the neces-
sities of the query optimizer to perform the actions defined within the view. This is an
important point to keep in mind, since developers frequently use views to mask the
complexity of a query.

Indexed views

An indexed view, also called a materialized view, is essentially a "view plus a clustered
index." A clustered index stores the column data as well as the index data, so creating a
clustered index on a view results in a new physical table in the database. Indexed views
can often speed up the performance of many queries, as the data is directly stored in the
indexed view, negating the need to join and look up the data from multiple tables each
time the query is run.

Creating an indexed view is, to say the least, a costly operation. Fortunately, it's also a
one-time operation, which we can schedule when our server is less busy.

Maintaining an index view is a different story. If the base tables in the indexed view
are relatively static, there is little overhead associated with maintaining indexed views.
However, it's quite different if the base tables are subject to frequent modification. For
example, if one of the underlying tables is subject to a hundred INSERT statements a
minute, then each INSERT will have to be updated in the indexed view. As a DBA, you
have to decide if the overhead associated with maintaining an indexed view is worth the
gains provided by creating the indexed view in the first place.

162

Chapter 4: Understanding More Complex Query Plans

Queries that contain aggregates are good candidates for indexed views because the
creation of the aggregates only has to occur once when the index is created, and the
aggregated results can be returned with a simple SELECT query, rather than having the
added overhead of running the aggregates through a GROUP BY each time the query runs.

For example, one of the indexed views supplied with AdventureWorks2008R2 is
vStateProvinceCountryRegion. This combines the StateProvince table and the
CountryRegion table into a single entity for querying, such as the query in Listing 4.12.

SELECT *
FROM Person.vStateProvinceCountryRegion;

Listing 4.12

Figure 4.17 shows the execution plan for this query.

Figure 4.17

From our previous experience with execution plans containing views, you might have
expected to see two tables and the join in the execution plan. Instead, we see a single
Clustered Index Scan operation. Rather than execute each step of the view, the optimizer
went straight to the clustered index that makes this an indexed view.

Since the indexes that define an indexed view are available to the optimizer, they are also
available to queries that don't even refer to the view. For example, the query in Listing
4.13 gives the exact same execution plan as the one shown in Figure 4.17, because the
optimizer recognizes the index as the best way to access the data.

163

Chapter 4: Understanding More Complex Query Plans

SELECT sp.Name AS StateProvinceName,
 cr.Name AS CountryRegionName
FROM Person.StateProvince sp
 INNER JOIN Person.CountryRegion cr ON
 sp.CountryRegionCode = cr.CountryRegionCode ;

Listing 4.13

However, as the execution plan grows in complexity, this behavior is neither automatic
nor guaranteed. For example, consider the query in Listing 4.14.

SELECT a.City,
 v.StateProvinceName,
 v.CountryRegionName
FROM Person.Address a
 JOIN Person.vStateProvinceCountryRegion v
 ON a.StateProvinceID = v.StateProvinceID
WHERE a.AddressID = 22701 ;

Listing 4.14

If you expected to see a join between the indexed view and the Person.Address table,
you would be disappointed.

Figure 4.18

164

Chapter 4: Understanding More Complex Query Plans

Instead of using the clustered index that defines the materialized view, as we saw in
Figure 4.17, the optimizer performs the same type of index expansion as it did when
presented with a regular view. The query that defines the view is fully resolved, substi-
tuting the tables that make it up instead of using the clustered index provided with the
view.1 SQL Server will expand views when the optimizer determines that direct table
access will be less costly than using the indexed view.

Indexes

A big part of any tuning effort involves choosing the right indexes to include in a
database. In most people's minds, the importance of using indexes is already well
established. A frequently asked question however, is "How come some of my indexes
are used and others are not?"

The availability of a useful index can directly affect the choices made by the query
optimizer. The right index leads the optimizer to the selection of the right plan. However,
a lack of indexes or, even worse, a poor choice of indexes created on the database, can
directly lead to poor execution plans and poor query performance.

Included indexes: avoiding Bookmark Lookups

One of the more pernicious problems when tuning a query is the Bookmark Lookup.
Type "avoid bookmark lookup" into Google and you'll get quite a few hits. As we
discovered in Chapter 2, SQL Server 2005 and later no longer refers directly to
Bookmark Lookup operators, although it does use the same term for the operation
within its documentation.

1 There is a way around this, as will be explained when we encounter the NOEXPAND hint, in the Table Hints section of Chapter 5.

165

Chapter 4: Understanding More Complex Query Plans

To recap, a Bookmark Lookup occurs when a non-clustered index is used to retrieve the
row or rows of interest, but the index is not covering (does not contain all the columns
requested by the query). In this situation, the optimizer is forced to send the query to
a clustered index, if one exists (a Key Lookup), otherwise, to a heap (a RID Lookup), in
order to retrieve the data.

A Bookmark Lookup is not necessarily a bad thing, but the operation required to first
read from the index, followed by an extra read to retrieve the data from the clustered
index or heap, can lead to performance problems.

We can demonstrate this with the simple query in Listing 4.15.

SELECT sod.ProductID ,
 sod.OrderQty ,
 sod.UnitPrice
FROM Sales.SalesOrderDetail sod
WHERE sod.ProductID = 897;

Listing 4.15

This query returns the execution plan in Figure 4.19, which demonstrates the cost
of lookups.

Figure 4.19

166

Chapter 4: Understanding More Complex Query Plans

The Index Seek operator pulls back the four rows we need, quickly and efficiently.
Unfortunately, the only data available on that index is the ProductId because the
index in this case only stores the key value, ProductId, and the clustered key, so all
other data is returned from another location, the clustered index.

Figure 4.20

As you can see from Figure 4.20, the Index Seek also outputs columns that define the
clustered index, in this case SalesOrderId and SalesOrderDetailId. These values
are used to keep the index synchronized with the clustered index and the data itself.

167

Chapter 4: Understanding More Complex Query Plans

We then get the Key Lookup, whereby the optimizer retrieves the other columns required
by the query, OrderQty and UnitPrice, from the clustered index. In SQL Server
2000, the only way around this would be to modify the existing index used by this plan,
IX_SalesOrderDetail_ProductId, to use all three columns. However, in SQL Server
2005 and above, we have the additional option of using the INCLUDE attribute within a
non-clustered index.

The INCLUDE attribute was added to non-clustered indexes in SQL Server 2005 specifi-
cally to solve this type of problem. INCLUDE allows you to add columns to the index at
the leaf level for storage only. INCLUDE does not make these columns a part of the key of
the index itself. This means that the columns added do not affect the sorting or lookup
values of the index. Adding the columns needed by the query can turn the index into a
covering index, eliminating the need for the Lookup operation. This does come at the
cost of added disk space and additional overhead for the server to maintain the index.
Due consideration must be paid prior to implementing this as a solution.

In Listing 4.16, we create a new index using the INCLUDE attribute. In order to get
an execution plan in the middle of running all these statements together, we set
STATISTICS XML to ON, and turn it OFF when we are done. The code that appears after
we turn STATISTICS XML back OFF recreates the original index so that everything is in
place for any further tests down the road.

IF EXISTS (SELECT *
 FROM sys.indexes
 WHERE OBJECT_ID = OBJECT_ID(N'Sales.SalesOrderDetail')
 AND name = N'IX_SalesOrderDetail_ProductID')
 DROP INDEX IX_SalesOrderDetail_ProductID
 ON Sales.SalesOrderDetail
 WITH (ONLINE = OFF);
CREATE NONCLUSTERED INDEX IX_SalesOrderDetail_ProductID
ON Sales.SalesOrderDetail
(ProductID ASC)
INCLUDE (OrderQty, UnitPrice) WITH (PAD_INDEX = OFF,
STATISTICS_NORECOMPUTE = OFF, SORT_IN_TEMPDB = OFF, IGNORE_DUP_KEY = OFF,
DROP_EXISTING = OFF, ONLINE = OFF, ALLOW_ROW_LOCKS = ON,
ALLOW_PAGE_LOCKS = ON)
ON [PRIMARY];
GO

168

Chapter 4: Understanding More Complex Query Plans

SET STATISTICS XML ON;
GO

SELECT sod.ProductID ,
 sod.OrderQty ,
 sod.UnitPrice
FROM Sales.SalesOrderDetail sod
WHERE sod.ProductID = 897;
GO
SET STATISTICS XML OFF;
GO

--Recreate original index
IF EXISTS (SELECT *
 FROM sys.indexes
 WHERE OBJECT_ID = OBJECT_ID(N'Sales.SalesOrderDetail')
 AND name = N'IX_SalesOrderDetail_ProductID')
 DROP INDEX IX_SalesOrderDetail_ProductID
 ON Sales.SalesOrderDetail
 WITH (ONLINE = OFF);
CREATE NONCLUSTERED INDEX IX_SalesOrderDetail_ProductID
ON Sales.SalesOrderDetail
(ProductID ASC)
WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF,
SORT_IN_TEMPDB = OFF, IGNORE_DUP_KEY = OFF,
DROP_EXISTING = OFF,
ONLINE = OFF, ALLOW_ROW_LOCKS = ON,
ALLOW_PAGE_LOCKS = ON) ON [PRIMARY];
GO

EXEC sys.sp_addextendedproperty @name = N'MS_Description',
 @value = N'Nonclustered index.', @level0type = N'SCHEMA',
 @level0name = N'Sales', @level1type = N'TABLE',
 @level1name = N'SalesOrderDetail', @level2type = N'INDEX',
 @level2name = N'IX_SalesOrderDetail_ProductID';

Listing 4.16

Run this code in Management Studio with the Include Actual Execution Plan option
turned on, and you will see the plan shown in Figure 4.21.

169

Chapter 4: Understanding More Complex Query Plans

Figure 4.21

The index is now covering, so the execution plan is able to use a single operator to find
and return all the data we need.

Index selectivity

Let's now move on to the questions of which indexes the optimizer will use, and why it
sometimes avoids using available indexes.

First, let's briefly review the definition of the two kinds of indexes: clustered and
non-clustered. A clustered index stores the data along with the key values of the index
and it sorts the data, physically. A non-clustered index sorts the column, or columns, that
define the key of the index. The non-clustered index also contains the key of the clustered
index as a means of connecting the non-clustered index to the appropriate row in the
clustered index.

Clustered Index
Rows of Data

Non - Clustered
Index

Figure 4.22

170

Chapter 4: Understanding More Complex Query Plans

As described in Chapter 1, for each index the optimizer automatically generates statistics
that describe the data distribution within the index, and therefore determine its potential
utility for resolving a certain query. The key indicator of the usefulness of an index is
its selectivity.

An index's selectivity describes the distribution of the distinct values within a given data
set. To put it more simply, you count the number of rows and then you count the number
of unique values for a given column across all the rows. After that, divide the unique
values by the number of rows. This results in a ratio that is the selectivity of the index.
The higher the selectivity, the more useful the index, and the more likely it will be used by
the optimizer, because a high degree of selectivity means that the optimizer can count on
the index being very accurate.

For example, on the Sales.SalesOrderDetail table there is an index, IX_SalesOr-
derDetail_ProductID, on the ProductID column. To see the statistics for that index,
use the DBCC SHOW_STATISTICS command.

DBCC SHOW_STATISTICS('Sales.SalesOrderDetail',
 'IX_SalesOrderDetail_ProductID');

Listing 4.17

This returns three result sets with various amounts of data. For the purposes of selec-
tivity, the second result set is the most interesting:

All density Average Length Columns
------------- -------------- ---
0.003759399 4 ProductID
8.242868E-06 8 ProductID, SalesOrderID
8.242868E-06 12 ProductID, SalesOrderID, SalesOrderDetailID

The density is inverse to the selectivity, meaning that the lower the density, the higher the
selectivity. So an index like the one above, with a density of .003759399, a small number,
therefore it's inverse will be fairly high, indicating high selectivity, will very likely be used

171

Chapter 4: Understanding More Complex Query Plans

by the optimizer. The other rows refer to the key columns from the clustered index,
adding to the selectivity of this index. Non-clustered indexes have a pointer back to the
clustered index, since that's where the data is stored. If no clustered index is present, then
a pointer to the data itself, referred to as a heap, is generated. That's why the columns of
the clustered index are included as part of the selectivity of the index.

Low selectivity can cause the optimizer to shun an index. Let's create a situation where
you've taken the time to create an index on a frequently searched column, and yet you're
not seeing a performance benefit. The business represented in AdventureWorks2008R2
has decided that they're going to be giving away prizes based on the quantity of items
purchased. This means a query very similar to the one from Listing 4.18.

SELECT sod.OrderQty ,
 sod.SalesOrderID ,
 sod.SalesOrderDetailID ,
 sod.LineTotal
FROM Sales.SalesOrderDetail sod
WHERE sod.OrderQty = 10;

Listing 4.18

Figure 4.23 shows the execution plan for this query.

Figure 4.23

We see a Clustered Index Scan against the entire table, and then a simple Filter
operation to derive the final results sets, where OrderQty = 10.

172

Chapter 4: Understanding More Complex Query Plans

Let's now create an index that our query can use:

CREATE NONCLUSTERED INDEX IX_SalesOrderDetail_OrderQty
ON Sales.SalesOrderDetail (OrderQty ASC)
WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF,
SORT_IN_TEMPDB = OFF,IGNORE_DUP_KEY = OFF,
DROP_EXISTING = OFF, ONLINE = OFF,
ALLOW_ROW_LOCKS = ON,ALLOW_PAGE_LOCKS = ON)
ON [PRIMARY];

Listing 4.19

Unfortunately, if you capture the plan again, you'll see that it's identical to the one shown
in Figure 4.23; in other words, the optimizer has completely ignored our new index. Since
we know that selectivity, along with the number of pages, the type of index, and other
factors, determines when, or if, the optimizer will use an index, let's examine the new
index using DBCC SHOW_STATISTICS.

All density Average Length Columns
------------- -------------- -----------------------------
0.02439024 2 OrderQty
2.18055E-05 6 OrderQty, SalesOrderID
8.242868E-06 10 OrderQty, SalesOrderID, SalesOrderDetailID

We can see that the density of the OrderQty column is 10 times higher than for the
ProductId column, meaning that our OrderQty index is ten times less selective. To
express this in more quantifiable terms, there are 121,317 rows in the SalesOrderDetail
table on my system. There are only 41 distinct values for the OrderQty column. With so
few distinct values out of all those rows, the chances of the optimizer finding an index on
that column to be useful for most queries is exceedingly small. To make the index more
selective and more useful, there would have to be more unique values, or the addition of
more columns. This column just isn't, by itself, an adequate index to make a difference in
the query plan.

If we really had to make this query run well, the answer would be to make the index
selective enough to be useful to the optimizer. We could also try forcing the optimizer to

173

Chapter 4: Understanding More Complex Query Plans

use the index by using a query hint, but in this case, it wouldn't help the performance of
the query (I cover hints in detail in Chapter 5). Remember that adding an index, however
selective, comes at a price during INSERTs, UPDATEs and DELETEs as the data within the
index is reordered, added or removed.

If you're following along in AdventureWorks2008R2, you'll want to be sure to drop the
index we created.

DROP INDEX Sales.SalesOrderDetail.IX_SalesOrderDetail_OrderQty;

Listing 4.20

Statistics and indexes

As noted previously, for each index, the optimizer generates statistics that describe what
kind of data it stores and how that data is distributed. Without accurate and up-to-date
statistics, the optimizer may ignore even well-constructed and highly selective indexes
and so create suboptimal execution plans.

The following example is somewhat contrived, but it demonstrate how, as the data
changes, the exact same query can result in two different execution plans. Listing 4.21
creates a new table, along with an index.

IF EXISTS (SELECT *
 FROM sys.objects
 WHERE object_id = OBJECT_ID(N'[NewOrders]')
 AND type IN (N'U'))
 DROP TABLE [NewOrders]
GO
SELECT *
INTO NewOrders
FROM Sales.SalesOrderDetail
GO
CREATE INDEX IX_NewOrders_ProductID ON NewOrders (ProductID)
GO

Listing 4.21

174

Chapter 4: Understanding More Complex Query Plans

In Listing 4.22, we capture an estimated plan for a simple query against NewOrders.
Next, we start a transaction and execute an UPDATE statement where the intent is to
change significantly the distribution of data in the ProductID column, making it much
less selective. We then run the same simple query and capture the actual execution plan.

-- Estimated Plan
SET SHOWPLAN_XML ON
GO
SELECT OrderQty ,
 CarrierTrackingNumber
FROM NewOrders
WHERE ProductID = 897
GO
SET SHOWPLAN_XML OFF
GO

BEGIN TRAN
UPDATE NewOrders
SET ProductID = 897
WHERE ProductID BETWEEN 800 AND 900
GO

-- Actual Plan
SET STATISTICS XML ON
GO
SELECT OrderQty ,
 CarrierTrackingNumber
FROM NewOrders
WHERE ProductID = 897

ROLLBACK TRAN
GO
SET STATISTICS XML OFF
GO

Listing 4.22

Use of SET SHOWPLAN_XML statements and batches allows us to capture only the
execution plans for those specific batches (in this case, omitting the plan generated for
the UPDATE statement). First, the estimated plan for the query before the data update.

175

Chapter 4: Understanding More Complex Query Plans

Figure 4.24

Then the actual execution plan, after the data update.

Figure 4.25

Go to the top and right of Figure 4.24 to find the Index Seek operator. Clearly, prior to
the updates, the data and statistics within the index were selective enough that the query
could use a Seek operation. Then, because the data requested is not included in the index
itself, we see a RID Lookup operation against a heap table, using the row identifier to
bring back the data from the correct row.

However, after the update, our index is much less selective and returns much more data,
so the optimizer ignores it and instead retrieves the data by scanning the whole table, as
we can see from the Table Scan operator in Figure 4.25.

176

Chapter 4: Understanding More Complex Query Plans

What has happened is that the statistics that existed prior to the update of the data
supported one execution plan. After the data update, the optimizer updated the statistics
and, because of this, despite the same indexes and table structures being in place, a new
execution plan was necessary. This shows the importance of statistics to the optimizer
and to the plans that it generates.

Summary

This chapter demonstrated the sort of execution plans that we can expect to see when
our code uses stored procedures, views, derived tables, and CTEs. They are more complex
that the ones we've seen in earlier chapters, but all the principles are the same; there is
nothing special about larger and more complicated execution plans except that their size
and level of complexity requires more time to read them.

It's difficult to understate the impact of indexes and their supporting statistics on
the quality of the plans that the optimizer generates. Simply adding an index doesn't
necessarily mean you've solved a performance problem. You need to ensure that the
index is selective, and you have to make appropriate choices regarding the addition
or inclusion of columns in your indexes, both clustered and non-clustered. You will
also need to be sure that your statistics accurately reflect the data that is stored within
the index.

177

Chapter 5: Controlling Execution Plans
with Hints

It is possible, using various available hints, to impose your will on the optimizer and, to
some degree, control its behavior. There are three categories of hints, which include:

• Query hints tell the optimizer to apply a hint throughout the execution of the
entire query.

• Join hints tell the optimizer to use a particular join at a particular point in the query.

• Table hints control Table Scans and the use of a particular index for a table.

In this chapter, I'll describe how to use each type of hint, but I can't stress the following
enough: hints are dangerous. Hints detract from the optimizer's ability to make choices.
Appropriate use of the right hint on the right query can improve query performance. The
exact same hint used on another query can create more problems than it solves, radically
slowing your query and leading to severe blocking and timeouts in your application.

If you find yourself putting hints on a majority of your queries and stored procedures,
then you're doing something wrong. As part of describing what the hints do, I'll lay out
the problem that you're hoping to solve by applying that hint. Some of the examples
will improve performance or change the behavior in a positive manner, and some will
negatively affect performance.

178

Chapter 5: Controlling Execution Plans with Hints

Query Hints

There are many different query hints that perform many different tasks. Some are useful
occasionally, while a few are for rare circumstances. Query hints take control of an entire
query. The other types of hints, join and table hints, are for more granular control over a
particular aspect of the plan, or for controlling plans for specific objects.

We specify query hints in the OPTION clause. Listing 5.1 shows the basic syntax.

 SELECT ...
 OPTION (<hint>,<hint>...)

Listing 5.1

We can't apply query hints to INSERT statements, except as part of a SELECT operation,
and we can't use query hints in sub-select statements.

Before we proceed, let me take this opportunity to warn you, once again, that injudicious
use of these hints can cause you more problems than they solve!

HASH|ORDER GROUP

These two hints – HASH GROUP and ORDER GROUP – directly apply to a GROUP BY
aggregate operation (as well as to DISTINCT or COMPUTE clauses).They instruct the
optimizer to apply either hashing, or grouping to the aggregation, respectively.

In Listing 5.2, we have a simple GROUP BY query that returns the number of distinct
values in the Suffix column of the Person table.

179

Chapter 5: Controlling Execution Plans with Hints

SELECT p.Suffix ,
 COUNT(p.Suffix) AS SuffixUsageCount
FROM Person.Person AS p
GROUP BY p.Suffix;

Listing 5.2

As the DBA, you maintain a high-end shop where the sales force submits many queries
against an ever-changing set of data. One of the sales applications frequently calls the
query in Listing 5.2 and your job is to make this query run as fast as possible.

The first thing you'll do, of course, is look at the execution plan, as shown in Figure 5.1.

Figure 5.1

As you can see, the optimizer has chosen to use hashing for this query. The "unordered"
data from the Clustered Index Scan is grouped within the Hash Match (Aggregate)
operator. This operator builds a hash table, selecting distinct values from the data
supplied by the Clustered Index Scan. Then the counts are derived, based on the matched
values. The query ran in about 14ms and performed a single scan on the Person table,
resulting in 3,821 reads. This plan has an estimated cost of 2.99377, which you can see in
the Select operator's ToolTip in Figure 5.2.

180

Chapter 5: Controlling Execution Plans with Hints

Figure 5.2

You wonder if the best way to improve the performance of the query is to try to get the
optimizer to use the data from the Clustered Index Scan in an ordered fashion. Although
not the most expensive operation in the plan (that's the scan itself), the unordered Hash
Match aggregation is a cost that could be saved. If you get the data out in order, you don't
have to deal with the overhead of a hash table being built and populated in the tempdb.

To accomplish this, you add the ORDER GROUP hint to the query.

SELECT p.Suffix ,
 COUNT(p.Suffix) AS SuffixUsageCount
FROM Person.Person AS p
GROUP BY p.Suffix
OPTION (ORDER GROUP);

Listing 5.3

Figure 5.3 shows the new plan.

181

Chapter 5: Controlling Execution Plans with Hints

Figure 5.3

We've told the optimizer to use ordering rather than hashing, via the ORDER GROUP hint
so, instead of the hash table, it's been forced to use a Sort operator to feed rows into the
Stream Aggregate operator, which works with ordered data to arrive at an aggregation.

As per my repeated warning, this query now runs in 20ms instead of the original 14ms,
a 42% increase. You can even see it reflected in the estimated cost of the plan, which has
now jumped to 4.18041, a 39% increase, which closely matches the actual increase in
execution time. The source of the increased cost is ordering the data as it comes out of
the Clustered Index Scan.

Depending on your situation, you may find an instance where, using our example above,
the data is already ordered, yet the optimizer chooses to use the Hash Match operator
instead of the Stream Aggregate. In that case, the optimizer would recognize that the
data was ordered and accept the hint gracefully, increasing performance.

While query hints allow you to control the behavior of the optimizer, it doesn't mean
your choices are necessarily better than the optimizer's choices. To optimize this query,
you may want to consider adding a different index or modifying the clustered index. Also,
remember that a hint applied today may work well but, over time, as data and statistics
shift, the hint may no longer work as expected.

182

Chapter 5: Controlling Execution Plans with Hints

MERGE |HASH |CONCAT UNION

These hints affect how the optimizer deals with UNION operations in your queries,
instructing the optimizer to use either merging, hashing, or concatenation of the data
sets. If a UNION operation is causing performance issues, you may be tempted to use these
hints to guide the optimizer's behavior.

The example query in Listing 5.4 is not running fast enough to satisfy the demands
of the application.

SELECT [pm1].[Name] ,
 [pm1].[ModifiedDate]
FROM [Production].[ProductModel] pm1
UNION
SELECT [pm2].[Name] ,
 [pm2].[ModifiedDate]
FROM [Production].[ProductModel] pm2;

Listing 5.4

When a query has been identified as running slow, it's time to look at the execution plan,
as seen in Figure 5.4.

Figure 5.4

183

Chapter 5: Controlling Execution Plans with Hints

You can see that the Concatenation operation that the optimizer chooses to use is,
in the context of the plan, very cheap. The Sort operation that follows it is relatively
expensive. The overall estimated cost of the plan is 0.0377 and it took about 104ms to run
with 2 scans and 28 reads.

In a test to see if changing the implementation of the UNION operation will affect overall
performance, you apply the MERGE UNION hint.

SELECT pm1.Name ,
 pm1.ModifiedDate
FROM Production.ProductModel pm1
UNION
SELECT pm2.Name ,
 pm2.ModifiedDate
FROM Production.ProductModel pm2
OPTION (MERGE UNION);

Listing 5.5

Figure 5.5

You have forced the UNION operation to use the Merge Join instead of the Concatenation
operator. However, since the Merge Join only works with sorted data feeds, we've also
forced the optimizer to add two Sort operators. The estimated cost for the query has gone
from 0.0377 to 0.0548, and the execution time went up to 135ms from 100ms. Clearly, this
didn't work.

184

Chapter 5: Controlling Execution Plans with Hints

What if you tried the HASH UNION hint?

SELECT pm1.Name ,
 pm1.ModifiedDate
FROM Production.ProductModel pm1
UNION
SELECT pm2.Name ,
 pm2.ModifiedDate
FROM Production.ProductModel pm2
OPTION (HASH UNION);

Listing 5.6

Figure 5.6 shows the new execution plan.

Figure 5.6

The execution plan is simpler, with the Sort operations eliminated. The estimated cost
has gone up considerably, from 0.0377 to 0.0497, but the execution time has dropped
from 100ms to 50ms. This is a positive development.

In this situation, the hint is working to modify the behavior of the query in a positive
way. This example shows how it is possible to wring extra performance out of a query by
applying hints.

185

Chapter 5: Controlling Execution Plans with Hints

LOOP|MERGE|HASH JOIN

These hint methods make all the join operations in a particular query use the method
supplied by the hint. However, note that, if we also apply a join hint (covered later) to
a specific join, then the more granular join hint takes precedence over the general
query hint.

In this situation, we've found that our system is suffering from poor disk I/O, so we need
to reduce the number of scans and reads that our queries generate. By collecting data
from Profiler and Performance Monitor, we identify the query in Listing 5.7 as one that
needs some tuning.

SELECT pm.Name ,
 pm.CatalogDescription ,
 p.Name AS ProductName ,
 i.Diagram
FROM Production.ProductModel AS pm
 LEFT JOIN Production.Product AS p
 ON pm.ProductModelID = p.ProductModelID
 LEFT JOIN Production.ProductModelIllustration AS pmi
 ON p.ProductModelID = pmi.ProductModelID
 LEFT JOIN Production.Illustration AS i
 ON pmi.IllustrationID = i.IllustrationID
WHERE pm.Name LIKE '%Mountain%'
ORDER BY pm.Name;

Listing 5.7

186

Chapter 5: Controlling Execution Plans with Hints

Figure 5.7

As you can see, the query uses a mix of Nested Loops and Hash Match operators to put
the data together, and it runs in around 214ms. Now, let's view the I/O output of the
query. This can be done by navigating from the main menu, Query | Query Options,
selecting the Advanced tab and selecting the Set Statistics I/O check box.

Table 'Illustration'. Scan count 1, logical reads 273…
Table 'ProductModelIllustration'. Scan count 1, logical reads 183…
Table 'Worktable'. Scan count 0, logical reads 0…
Table 'ProductModel'. Scan count 1, logical reads 14…
Table 'Product'. Scan count 1, logical reads 15…

Listing 5.8

Most of the reads come from the Illustration and ProductModelIllustration
tables. It occurs to you that allowing the query to perform all those Hash Match join
operations may be slowing it down because of the reads and writes in tempdb, so you
decide to change the behavior by adding the LOOP JOIN hint to the end of the query.

OPTION (LOOP JOIN);

Listing 5.9

187

Chapter 5: Controlling Execution Plans with Hints

Figure 5.8

Now the Hash Match join is a Nested Loops join. This situation could be interesting.
If you look at the operations that underpin the query execution plan, you'll see that
the second query, with the hint, eliminates the creation of a worktable. In addition, the
estimated cost of the plan is slightly higher, and the execution time went up just a bit.
You can tell why if you look at the scans and reads.

Table 'Illustration'. Scan count 1, logical reads 273…
Table 'ProductModelIllustration'. Scan count 1, logical reads 183…
Table 'Product'. Scan count 1, logical reads 555…
Table 'ProductModel'. Scan count 1, logical reads 14…

Listing 5.10

Not only have we been unsuccessful in reducing the reads, despite the elimination of the
worktable, but we've actually increased the number of reads on the Product table. What
if we modify the query to use the MERGE JOIN hint, instead?

OPTION (MERGE JOIN);

Listing 5.11

188

Chapter 5: Controlling Execution Plans with Hints

Figure 5.9

This query executes a little faster than the original but did we solve our read problem?

Table 'Worktable'. Scan count 2, logical reads 17…
Table 'ProductModelIllustration'. Scan count 1, logical reads 2…
Table 'Product'. Scan count 1, logical reads 15…
Table 'ProductModel'. Scan count 1, logical reads 14…
Table 'Illustration'. Scan count 1, logical reads 3…

Listing 5.12

We've re-introduced a worktable, but it does appear that we've eliminated the large
number of reads. We may have a solution. However, before we conclude the experiment,
we may as well as try out the HASH JOIN hint, to see what it might do.

OPTION (HASH JOIN);

Listing 5.13

We're back to a simplified execution plan using a Hash Match join operation, as
compared to the Merge Join. The execution time is about half what the Merge Join was,
and a third of the original query and the I/O looks as shown in Listing 5.14.

189

Chapter 5: Controlling Execution Plans with Hints

Figure 5.10

Table 'Worktable'. Scan count 0, logical reads 0…
Table 'ProductModel'. Scan count 1, logical reads 14…
Table 'Product'. Scan count 1, logical reads 15…
Table 'ProductModelIllustration'. Scan count 1…
Table 'Illustration'. Scan count 1, logical reads 3…

Listing 5.14

For the example above, using the HASH JOIN hint appears to be the best bet for
reducing the I/O costs of the query. There will be the added overhead of the creation of
the worktable in tempdb but the benefit of increased speed and reduced reads seems to
offset the worktable cost.

Most of the cost savings in this case seem to come from moving the Sort operation to the
end of the data movement as opposed to earlier when the query was using Loop Joins.
Why didn't the optimizer pick this plan in the first place? It's not always possible to know.
It could be that optimizer deemed it less expensive to place the Sort operator earlier in
the plan. Remember, the optimizer tries to get a good enough plan, not a perfect plan.
This is another situation where, with careful testing, you can achieve a performance
improvement using query hints.

190

Chapter 5: Controlling Execution Plans with Hints

FAST n

Let's assume that we are not concerned about the performance of the database. This time,
we're concerned about perceived performance of the application. The users would like an
immediate return of data to the screen, even if it's not the complete result set, and even
if they have to wait longer for the complete result set. This could be a handy way to get
a little bit of information in front of people quickly, so that they can decide whether it's
important and either move on or wait for the rest of the data.

The FAST n hint provides this ability by getting the optimizer to focus on getting the
execution plan to return the first "n" rows as fast as possible, where "n" is a positive
integer value. Consider the following query and execution plan.

SELECT *
FROM Sales.SalesOrderDetail sod
 JOIN Sales.SalesOrderHeader soh
 ON sod.SalesOrderID = soh.SalesOrderID;

Listing 5.15

Figure 5.11

This query performs adequately considering the fact that it's selecting all the data from
the tables without any sort of filtering operation, but there is a delay before the end-users
see any results, so we can try to fix this by adding the FAST N hint to return the first 10
rows as quickly as possible.

191

Chapter 5: Controlling Execution Plans with Hints

OPTION (FAST 10);

Listing 5.16

Figure 5.12

Instead of the Merge Join operator for the join, the optimizer attempts to use a Nested
Loops operator. The loop join returns the first rows very fast, but the rest of the
processing was somewhat slower, which is perhaps to be expected, since the optimizer
focuses its efforts just on getting the first ten rows back as soon as possible.

The total estimated cost for the original query was 1.961. The hint reduced that cost to
0.012 (for the first 10 rows). The number of logical reads increases dramatically, from 1,238
for the un-hinted query to 101,827 for the hinted query. The actual speed of the execution
of the query increases only marginally, from around 4.6 seconds to 4.5 seconds. This slight
improvement is only going to get the first few rows back to the screen quickly. The overall
query won't run as fast once there is a load on the system and this query has to share disk
access with other queries, because of all those additional reads.

FORCE ORDER

Once again, our monitoring tools have identified a query that is performing poorly. It's
a long query with a number of tables being joined, as shown in Listing 5.17, which could
be somewhat concerning, because the more tables there are involved, the harder the
optimizer has to work.

192

Chapter 5: Controlling Execution Plans with Hints

Normally, the optimizer will determine the order in which the joins occur, rearranging
them as it sees fit. However, the optimizer can make incorrect choices when the statistics
are not up to date, when the data distribution is less than optimal, or if the query has a
high degree of complexity, with many joins. In the latter case, the optimizer may even
time out when trying to rearrange the tables because there are so many of them for it to
try to deal with.

Using the FORCE ORDER hint you can make the optimizer use the order of joins as you
have defined them in the query. This might be an option if you are fairly certain that your
join order is better than that supplied by the optimizer, or if you're experiencing timeouts.

SELECT pc.Name AS ProductCategoryName ,
 ps.Name AS ProductSubCategoryName ,
 p.Name AS ProductName ,
 pdr.Description ,
 pm.Name AS ProductModelName ,
 c.Name AS CultureName ,
 d.FileName ,
 pri.Quantity ,
 pr.Rating ,
 pr.Comments
FROM Production.Product AS p
 LEFT JOIN Production.ProductModel AS pm
 ON p.ProductModelID = pm.ProductModelID
 LEFT JOIN Production.ProductSubcategory AS ps
 ON p.ProductSubcategoryID = ps.ProductSubcategoryID
 LEFT JOIN Production.ProductInventory AS pri
 ON p.ProductID = pri.ProductID
 LEFT JOIN Production.ProductReview AS pr
 ON p.ProductID = pr.ProductID
 LEFT JOIN Production.ProductDocument AS pd
 ON p.ProductID = pd.ProductID
 LEFT JOIN Production.Document AS d
 ON pd.DocumentNode = d.DocumentNode
 LEFT JOIN Production.ProductCategory AS pc
 ON ps.ProductCategoryID = pc.ProductCategoryID
 LEFT JOIN Production.ProductModelProductDescriptionCulture AS pmpdc
 ON pm.ProductModelID = pmpdc.ProductModelID

193

Chapter 5: Controlling Execution Plans with Hints

 LEFT JOIN Production.ProductDescription AS pdr
 ON pmpdc.ProductDescriptionID = pdr.ProductDescriptionID
 LEFT JOIN Production.Culture AS c
 ON c.CultureID = pmpdc.CultureID;

Listing 5.17

Based on your knowledge of the data, you're confident that you've put the joins in the
correct order. Figure 5.13 shows the current execution plan.

Figure 5.13

Again, this plan is far too large to review on the page, but it gives you a good idea of its
overall structure. Figure 5.14 shows an exploded view of just a few of the tables and the
order in which they are being joined.

194

Chapter 5: Controlling Execution Plans with Hints

 Figure 5.14

The physical join order, based on the order of the joins in the query in Listing 5.17,
would be Product, followed by ProductModel and then ProductSubcategory
and so on. However, the optimizer actually starts right at the other end, with Culture,
then ProductDescription, then ProductModelProductDescriptionCulture
and so on.

Take the same query and apply the FORCE ORDER query hint.

OPTION (FORCE ORDER);

Listing 5.18

It results in the plan shown in Figure 5.15.

195

Chapter 5: Controlling Execution Plans with Hints

Figure 5.15

You can tell, just by comparing the shapes of the plan in Figure 5.13 to the one in Figure
5.15 that a substantial change has occurred. The optimizer is now accessing the tables in
the order specified by the query. Again, we'll zoom in on the first operators so that you
can see how the physical order has changed.

Figure 5.16

Now the order is from the Product table, followed by the ProductModel and then
ProductSubcategory and so on from there.

196

Chapter 5: Controlling Execution Plans with Hints

However, the interesting thing here is that the execution time went from 848ms in the
first query to 588ms in the second, or about a 31% improvement. It is possible to get direct
control over the optimizer in order to achieve positive results.

Why would I be able to get a better execution plan than the optimizer and thus improve
performance? If you look at the Select operator to get the basic information about
the plan, you'll find that the first plan showed that the reason the optimizer stopped
attempting to find a good plan was because it timed out before if found the least-cost
plan. By forcing the order, I was able to get a better plan than the optimizer could during
the time it allotted itself.

MAXDOP

In this example, we have one of those very nasty problems, a query that sometimes runs
just fine, but sometimes runs incredibly slowly. We have investigated the issue, using SQL
Server Profiler to capture the execution plan of this procedure, over time, with various
parameters. We finally arrive at two execution plans. Figure 5.17 shows the execution plan
that runs quickly.

Figure 5.17

Figure 5.18 shows the slow execution plan (note that I split this image in order to make it
more readable).

197

Chapter 5: Controlling Execution Plans with Hints

Figure 5.18

What we have here is an example of where parallelism (covered in more detail in
Chapter 8), which should be helping the performance of your system, is instead hurting
performance. We're probably seeing a situation where the estimated cost of executing the
plan serially exceeds the 'cost threshold for parallelism' sp_configure option
and therefore the optimizer decided to introduce parallelism, whereby the work required
to execute the query is split across multiple CPUs.

Parallelism is normally turned on and off at the server level, but let's assume that there
are a number of other queries running on the server that are benefiting from parallelism,
so you can't simply turn it off. We'll also assume that you've tuned the value of cost
threshold for parallelism, on your server, in order to be sure that only high-cost
queries are experiencing parallelism. However, having done the work of setting up the
server, you still have the occasional outlier, and it's for instances like these that the
MAXDOP hint becomes useful.

The MAXDOP query hint controls the use of parallelism within an individual query, rather
than working using the server-wide setting of max degree of parallelism.

This example is somewhat contrived in that, as part of the query, I'm going to reset the
cost threshold for parallelism for my system to a low value, in order to force this
query to be run in parallel.

198

Chapter 5: Controlling Execution Plans with Hints

sp_configure 'cost threshold for parallelism', 1;
GO

RECONFIGURE WITH OVERRIDE;
GO

SELECT wo.DueDate ,
 MIN(wo.OrderQty) MinOrderQty ,
 MIN(wo.StockedQty) MinStockedQty ,
 MIN(wo.ScrappedQty) MinScrappedQty ,
 MAX(wo.OrderQty) MaxOrderQty ,
 MAX(wo.StockedQty) MaxStockedQty ,
 MAX(wo.ScrappedQty) MaxScrappedQty
FROM Production.WorkOrder wo
GROUP BY wo.DueDate
ORDER BY wo.DueDate;
GO

sp_configure 'cost threshold for parallelism', 50;
GO

RECONFIGURE WITH OVERRIDE;
GO

Listing 5.19

This will result in an execution plan that takes full advantage of parallel processing,
as shown in Figure 5.18. You can examine the properties of the Clustered Index Scan
operator, by selecting that icon on the plan in Management Studio. The property, Actual
Number of Rows can be expanded by clicking on the plus (+) icon. Depending on your
system, you'll see multiple threads, the number of threads spawned by the parallel
operation. On my machine, it was eight separate threads.

However, we know that when our example query uses parallel processing, it runs slowly.
We have no desire to change the overall behavior of parallelism within the server itself,
so we directly affect the query that is causing problems by modifying the query to include
the MAXDOP hint.

199

Chapter 5: Controlling Execution Plans with Hints

OPTION (MAXDOP 1);

Listing 5.20

The use of the hint makes the new execution plan use a single processor, so no parallelism
occurs at all. Add the hint to the end of the query in Listing 5.19 and then rerun the code.

Figure 5.19

Comparing Figure 5.19 to Figure 5.18, we can see that limiting parallelism didn't funda-
mentally change the operations on the execution plan, since it's still using a Clustered
Index Scan to get the initial data set. The plan still puts the data set through two
Compute Scalar operators to deal with the StockedQty column, a calculated column.
We still see the same Hash Match join operator between the table and itself as part of
aggregating the data, and then, finally, a Sort operator puts the data into the correct order
before the Select operator adds the column aliases back in. The only real changes are the
removal of the operators necessary for parallel execution. The reason, in this instance,
is that the performance that was worse on the production machine was due to the extra
steps required to take the data from a single stream to a set of parallel streams, and then
bring it all back together again. While the optimizer may determine this should work
better, it's not always correct.

OPTIMIZE FOR

You have identified a query that will run at an adequate speed for hours or days, and then
it suddenly performs horribly. With a lot of investigation and experimentation, you find
that the parameters supplied by the application to run the procedure or parameterized
query result, most of the time, in an execution plan that performs very well. Sometimes,

200

Chapter 5: Controlling Execution Plans with Hints

though, a certain value, or subset of values, supplied to the parameters results in an
execution plan that performs extremely poorly. This is the parameter sniffing problem.

Parameter sniffing is a process that occurs with all stored procedures; it is normally at the
very least benign, and often very beneficial to the performance of the system. As values
are passed to a stored procedure or parameterized query, the optimizer uses those values
to evaluate how well an index will satisfy the query requirements, based on the available
statistics. In most cases, this produces more accurate execution plans.

However, situations can arise whereby the data distribution of a particular table or index
is such that most parameters will result in a good plan, but some parameters can result in
a bad one. Problems occur when the first execution of the parameterized query or stored
procedure happens to use a very non-representative parameter value. The resulting plan
will be stored in cache and reused, and often turns out to be highly inefficient for the
parameter values that are more representative. Alternatively, a "good" plan may be aged
out of the cache, or recompiled due to changes in the statistics or the code, and replaced
with a "bad" plan. As such, it becomes, to a degree, a gamble as to where and when the
problematic execution plan is the one that is created and cached.

In SQL Server 2000, only two options are available:

1. Recompile the plan every time, using the RECOMPILE hint.

2. Get a good plan and keep it, using the KEEPFIXED PLAN hint.

Both of these solutions (covered later in this chapter) could create as many problems as
they solve since, depending on its complexity and size, the RECOMPILE of the query could
be longer than the execution itself. The KEEPFIXED PLAN hint could be applied to the
problematic values as well as the useful ones.

In SQL Server 2005 and above, when you're hitting a bad parameter sniffing situation,
you can use the OPTIMIZE FOR hint. This hint allows you to instruct the optimizer to
optimize the query for the value that you supply, rather than the value passed to the

201

Chapter 5: Controlling Execution Plans with Hints

parameter of the query. OPTIMIZE FOR supplies you with one more tool in the arsenal for
dealing with bad parameter sniffing.

We can demonstrate the utility of this hint with a very simple set of queries.

SELECT *
FROM Person.Address
WHERE City = 'Mentor'

SELECT *
FROM Person.Address
WHERE City = 'London'

Listing 5.21

We'll run these at the same time, and we get two different execution plans.

Figure 5.20

202

Chapter 5: Controlling Execution Plans with Hints

Each query is returning the data from the table in a way that is optimal for the value
passed to it, based on the indexes and the statistics of the table. The first execution plan,
for the first query, where City = 'Mentor' is able to take advantage of the selectivity
of the non-clustered index, for this value, to perform a Seek operation. Next, it must
perform a Key Lookup operation to get the rest of the data. The data is joined through
the Nested Loops operation. The value of 'London' is much less selective, so the
optimizer decides to perform a scan, which you can see in the second execution plan in
Figure 5.20.

Let's see what happens if we parameterize our T-SQL, as shown in Listing 5.22.

DECLARE @City NVARCHAR(30)

SET @City = 'Mentor'
SELECT *
FROM Person.Address
WHERE City = @City

SET @City = 'London'
SELECT *
FROM Person.Address
WHERE City = @City;

Listing 5.22

Now, we get a standard execution plan for both queries.

Figure 5.21

203

Chapter 5: Controlling Execution Plans with Hints

It's using the clustered index for both queries now because the optimizer is not sure
which of the values available in the table is most likely going to be passed in as @City.
That means it samples the values in the statistics and chooses a generic plan based on an
average value, from the sampled data.

Let's make one more modification. In the second query, we instruct the optimizer to
optimize for 'Mentor'.

DECLARE @City NVARCHAR(30)

SET @City = 'London'
SELECT *
FROM Person.Address
WHERE City = @City

SET @City = 'London'
SELECT *
FROM Person.Address
WHERE City = @City
OPTION (OPTIMIZE FOR (@City = 'Mentor'));

Listing 5.23

The value 'London' has a very low level of selectivity within the index (i.e. there are a lot
of values equal to 'London'), and this is displayed by the Clustered Index Scan in the first
query. Despite the fact that the second query looks up the same value, it's now the faster
of the two queries for values other than those of 'London'. The OPTIMIZE FOR query
hint was able to trick the optimizer into creating a plan that assumed that the data was
highly selective, even though it was not. The execution plan created was one for the more
selective value 'Mentor' and helps that execution, but hurts that of 'London'.

Use of this hint requires intimate knowledge of the underlying data. Choosing the wrong
value for OPTIMIZE FOR will not only fail to help performance, but could have a very
serious negative impact. You could supply the hint for a value that doesn't represent the
most frequently referenced data set, which would mean you've hurt performance instead
of helping.

204

Chapter 5: Controlling Execution Plans with Hints

Figure 5.22

In the example above, there was only a single parameter, so there was only a single hint
needed. If you have multiple parameters, you can set as many hints as you use parameters
within the query.

SQL Server 2008 introduced a new addition to the OPTIMIZE FOR query hint, OPTIMIZE
FOR UNKNOWN, where UNKNOWN takes the place of a specified value and makes the
optimizer use sampled values from the statistics. In this situation, instead of trying to
decide which specific value generates the best plan, you decided that optimizing for the
most common value, as determined by the available statistics, is preferable. This situation
frequently arises when there is either no discernible "best" plan or when the values passed
to the query are extremely inconsistent, so you can only use a generic plan. In such cases,
OPTIMIZE FOR UNKNOWN is a good option to control a bad parameter sniffing situation.

205

Chapter 5: Controlling Execution Plans with Hints

PARAMETERIZATION SIMPLE|FORCED

The PARAMETERIZATION query hint, forced and simple, can be applied only within
a plan guide, so full explanation of this hint is deferred to the section on Plan Guides,
in Chapter 8.

RECOMPILE

You have yet another problem query, with a stored procedure, which performs slowly in
an intermittent fashion. Investigation and experimentation lead you to the realization
that this is an ad hoc query (one that uses T-SQL statements or other code to generate
SQL statements) that the optimizer could execute in completely different ways, because
each time the query is passed to SQL Server, it has slightly different parameter values, and
possibly even a different structure.

While plans are being cached for the query, many of these plans cannot be reused and
could simply bloat the cache to the point where you observe memory pressure. These
plans could even be problematic due to issues like parameter sniffing; the execution plan
that works well for one set of parameter values may work horribly for another set.

The RECOMPILE hint was introduced in SQL 2005. It instructs the optimizer to mark the
plan created so that it is not stored in cache at all. This hint might be useful in situations
such as that just described, where there is a lot of ad hoc T-SQL in the query, or the data
is relatively volatile, meaning that the plan created isn't likely to be useful to any of the
following calls.

Regardless of the cause, we've determined that the cost of recompiling the procedure
each time it executes is worth the query execution time saved by that recompile. In other
words, because problematic execution plans are being cached that cause the query perfor-
mance to degrade to the point where it's worth taking the "hit" of recompiling the query
each time it's called.

206

Chapter 5: Controlling Execution Plans with Hints

Alternatively, this determination might be based on the occurrence of memory pressure
in the procedure cache, or because you are seeing bad parameter sniffing issues.

You can also add the instruction to recompile the plan to the code that creates the stored
procedure, but the RECOMPILE query hint offers greater control, in that we can recompile
individual statements within a stored procedure or query, rather than just the whole
thing. This means that, for example, we can recompile just the single statement within
the query or procedure that uses ad hoc T-SQL, as opposed to the entire procedure.
When a statement recompiles within a procedure, all local variables are initialized and
the parameters used for the plan are those supplied to the procedure. If you use local
variables in your queries, the optimizer makes a guess as to what value may work best for
the plan, and stores this guess in the cache. Consider the pair of queries in Listing 5.24.

DECLARE @PersonId INT = 277;
SELECT soh.SalesOrderNumber ,
 soh.OrderDate ,
 soh.SubTotal ,
 soh.TotalDue
FROM Sales.SalesOrderHeader soh
WHERE soh.SalesPersonID = @PersonId;

SET @PersonId = 288;
SELECT soh.SalesOrderNumber ,
 soh.OrderDate ,
 soh.SubTotal ,
 soh.TotalDue
FROM Sales.SalesOrderHeader soh
WHERE soh.SalesPersonID = @PersonId;

Listing 5.24

These queries result in an identical pair of execution plans. The PersonId column is not
very selective for the value of 277, so we get a Clustered Index Scan to retrieve the initial
data. The two Compute Scalar operations are for the calculated columns, Subtotal
and TotalDue, and then the data is finally compared to the value of 277 in the Filter
operator, which reduces the number of rows returned. Both plans work this way, as
shown in Figure 5.23.

207

Chapter 5: Controlling Execution Plans with Hints

Figure 5.23

With a full knowledge of your system that you have from examining the indexes and
statistics on the tables, you know that the plan for the second query should be completely
different because the value passed (288) is much more selective and a useful index exists
on that column. So, you modify the queries using the RECOMPILE hint. In this instance
(Listing 5.25) I'm adding it to both queries so that you can see that the performance gain
in the second query is due to the RECOMPILE and the subsequent improved execution
plan, while the same RECOMPILE on the first query leads to the original plan.

DECLARE @PersonId INT = 277;
SELECT soh.SalesOrderNumber ,
 soh.OrderDate ,
 soh.SubTotal ,
 soh.TotalDue
FROM Sales.SalesOrderHeader soh
WHERE soh.SalesPersonID = @PersonId
OPTION (RECOMPILE);

SET @PersonId = 288;
SELECT soh.SalesOrderNumber ,
 soh.OrderDate ,
 soh.SubTotal ,
 soh.TotalDue
FROM Sales.SalesOrderHeader soh
WHERE soh.SalesPersonID = @PersonId
OPTION (RECOMPILE);

Listing 5.25

208

Chapter 5: Controlling Execution Plans with Hints

This results in the mismatched set of query plans in Figure 5.24.

Figure 5.24

Note that the second query is now using our IX_SalesOrderHeader_SalesPersonID
index, which resulted in a slightly longer execution time, but only 409 reads compared to
the 686 of the original query.

ROBUST PLAN

This query hint is used when you need to work with very wide rows. For example:

• a row that contains one or more variable length columns set to very large size or
even the MAX size introduced in 2005

• a row that contains one or more large objects (LOB) such as BINARY, XML or TEXT
data types.

Sometimes, when processing these rows, it's possible for some operators to encounter
errors, usually when creating worktables as part of the plan. The ROBUST PLAN hint
ensures that a plan that could cause errors won't be chosen by the optimizer.

209

Chapter 5: Controlling Execution Plans with Hints

While this will eliminate errors, it will almost certainly result in longer query times since
the optimizer won't be able to choose the optimal plan over the "robust" plan.

You should only ever use this hint if you have a set of wide rows that cause this rare
error condition.

KEEP PLAN

As the data in a table changes, gets inserted, or deleted, the statistics describing the
data also change. Once the volume of statistics changed passes a certain threshold, any
queries referencing those statistics are marked for recompile in the plan cache, on the
assumption that the optimizer might, based on the new statistics, be able to generate a
more efficient plan.

Setting the KEEP PLAN hint doesn't prevent recompiles, but it does cause the optimizer to
use less stringent rules when determining the need for a recompile. This means that, with
more volatile data, you can keep recompiles to a minimum. The hint causes the optimizer
to treat temporary tables within the plan in the same way as permanent tables, reducing
the number of recompiles caused by the temporary table. This reduces the time and cost
of recompiling a plan, which can be quite large, depending on the query.

However, problems may arise because the old plans may not be as efficient as newer plans
could be. This happens because of the changing data; a plan that was previously adequate
for a given data set is no longer appropriate because of the changes to that data set.

210

Chapter 5: Controlling Execution Plans with Hints

KEEPFIXED PLAN

The KEEPFIXED PLAN query hint is similar to KEEP PLAN but, instead of simply limiting
the number of recompiles, KEEPFIXED PLAN eliminates any recompile due to changes
in statistics.

Use this hint with extreme caution. The whole point of letting SQL Server maintain
statistics is to aid the performance of your queries. If you prevent the optimizer from
using the new statistics, it can lead to severe performance issues.

As with KEEP PLAN,, the plan will remain in the cache unless the schema of the tables
referenced in the query changes, or sp_recompile is run against the query, forcing
a recompile.

EXPAND VIEWS

The EXPAND VIEWS query hint eliminates the use of the index views within a query and
forces the optimizer to go directly to tables for the data. The optimizer replaces the refer-
enced indexed view with the view definition (in other words, the query used to define the
view) just like it normally does with a standard view. This behavior can be overridden on
a view-by-view basis by adding the WITH (NOEXPAND) clause to any indexed views within
the query.

In some instances, the plan generated by referencing the indexed view performs worse
than the one that uses the view definition. In most cases, the reverse is true. However,
if the data in the indexed view is not up to date, this hint can address that issue, usually
at the cost of performance. Test this hint to ensure its use doesn't negatively affect
performance.

Using one of the indexed views supplied with AdventureWorks2008R2, we can run the
simple query in Listing 5.26.

211

Chapter 5: Controlling Execution Plans with Hints

SELECT *
FROM Person.vStateProvinceCountryRegion;

Listing 5.26

Figure 5.25 shows the resulting execution plan.

Figure 5.25

An indexed view is effectively a clustered index, so this execution plan makes
perfect sense since the data needed to satisfy the query is available in the
materialized view. Things change, as we see in Figure 5.26, if we add the query
hint, OPTION (EXPAND VIEWS).

Figure 5.26

Now we're no longer scanning the indexed view. Within the optimizer, the view has
been expanded into its definition so we see the Clustered Index Scan against the
Person.CountryRegion and Person.StateProvince tables. These are then joined
using a Merge Join, after the data in the StateProvince stream is run through a Sort
operation. The first query ran in about 214ms, but the second ran in about 342ms, so we're
talking a substantial decrease in performance to use the hint in this situation.

212

Chapter 5: Controlling Execution Plans with Hints

MAXRECURSION

The addition of the Common Table Expression (see Chapter 4) to SQL Server offered
a very simple method for calling recursive queries. The MAXRECURSION hint places an
upper limit on the number of recursions within a query.

Valid values are between 0 and 32,767. Setting the value to zero allows for infinite
recursion. The default number of recursions is 100. When the number is reached, an
error is returned and the recursive loop is exited. This will cause any open transactions to
roll back. Using this option doesn't change the execution plan. However, if you do get an
error, then an actual execution plan will not be returned.

USE PLAN

This hint simply substitutes any plan the optimizer may have created with the XML plan
supplied with the hint. We cover this in detail in Chapter 8.

Join Hints

A join hint provides a means to force SQL Server to use one of the three join methods
that we've encountered previously, in a given part of a query. To recap, these join
methods are:

• Nested Loops join: compares each row from one table ("outer table") to each row in
another table ("inner table") and returns rows that satisfy the join predicate. Cost is
proportional to the product of the rows in the two tables. Very efficient for smaller
data sets.

213

Chapter 5: Controlling Execution Plans with Hints

• Merge Join: compares two sorted inputs, one row at a time. Cost is proportional to the
sum of the total number of rows. Requires an equi-join condition. Efficient for larger
data sets.

• Hash Match join: reads rows from one input, hashes the rows, based on the
equi-join condition, into an in-memory hash table. Does the same for the second
input and then returns matching rows. Most useful for very large data sets (especially
data warehouses).

By incuding one of the join hints in your T-SQL, you will potentially override the
optimizer's choice of the most efficent join method. In general, this is not a good idea,
and if you're not careful you could seriously impede performance.1

Application of the join hint applies to any query (SELECT, INSERT, or DELETE) where
joins can be applied. Join hints are specified between two tables.

LOOP

Consider a simple query that lists Product Models, Products and Illustrations
from AdventureWorks2008R2.

SELECT pm.Name ,
 pm.CatalogDescription ,
 p.Name AS ProductName ,
 i.Diagram
FROM Production.ProductModel pm
 LEFT JOIN Production.Product p
 ON pm.ProductModelID = p.ProductModelID
 LEFT JOIN Production.ProductModelIllustration pmi
 ON pm.ProductModelID = pmi.ProductModelID

1 There is a fourth join method, the Remote join, that is used when dealing with data from a remote server. It forces the join
operation from your local machine onto the remote server. This has no effect on execution plans, so we won't be drilling down
on this functionality here.

214

Chapter 5: Controlling Execution Plans with Hints

 LEFT JOIN Production.Illustration i
 ON pmi.IllustrationID = i.IllustrationID
WHERE pm.Name LIKE '%Mountain%'
ORDER BY pm.Name;

Listing 5.27

We'll get the execution plan shown in Figure 5.27.

Figure 5.27

This is a straightforward plan. WHERE pm.name LIKE '%Mountain%', the query
predicate, is non-SARGable, meaning that it can't be used by the optimizer in an Index
Seek, and so the Clustered Index Scan operators on the Product and ProductModel
table make sense. They are joined using a Hash Match operator, accounting for 46%
of the cost of the query. Once the data is joined, the Sort operator implements the
ORDER BY command. The plan continues with the Clustered Index Scan against the
ProductModelIllustration table that joins to the data stream with a Nested
Loops operator. This pattern repeats, with another Clustered Index Scan against the
Illustration table and a join to the data stream with a Nested Loops operator.
The total estimated cost for these operations comes to 0.1121and the query runs in
about 199ms.

215

Chapter 5: Controlling Execution Plans with Hints

What happens if we decide that we're smarter than the optimizer and that it really should
be using a Nested Loops join instead of that Hash Match join? We can force the issue by
adding the LOOP hint to the join condition between Product and ProductModel.

SELECT pm.Name ,
 pm.CatalogDescription ,
 p.Name AS ProductName ,
 i.Diagram
FROM Production.ProductModel pm
 LEFT LOOP JOIN Production.Product p
 ON pm.ProductModelID = p.ProductModelID
 LEFT JOIN Production.ProductModelIllustration pmi
 ON pm.ProductModelID = pmi.ProductModelID
 LEFT JOIN Production.Illustration i
 ON pmi.IllustrationID = i.IllustrationID
WHERE pm.Name LIKE '%Mountain%'
ORDER BY pm.Name;

Listing 5.28

If we execute this new query, we'll see the plan shown in Figure 5.28.

Figure 5.28

Sure enough, where previously we saw a Hash Match operator, we now see the Nested
Loops operator. Also, the Sort moved before the join in order to feed ordered data into
the Nested Loops operation, which means that the original data is sorted instead of the

216

Chapter 5: Controlling Execution Plans with Hints

joined data. This adds to the overall cost. Also, note that the Nested Loops join accounts
for 56% of the cost, whereas the original Hash Match accounted for only 46%. All this
resulted in a total, higher cost of 0.1834. The execution time was only slightly higher
at 209ms, but overall, you can see how choosing the wrong join can negatively affect
performance.

MERGE

If you replace the previous LOOP hint with the MERGE hint, you'll see the plan shown in
Figure 5.29.

Figure 5.29

The Nested Loops becomes a Merge Join operator and the overall estimated cost of the
plan drops to 0.0888, apparently offering us a performance benefit. In fact, the execution
time dropped to 176ms.

The Merge Join plus the Sort operator, which is required to make sure it uses ordered
data, turns out to cost less than the Hash Match or the Nested Loop.

In order to understand the origin of the performance increase, we can change the query
options so that it shows us the I/O costs of each query. The output of all three queries is
listed in part, here.

217

Chapter 5: Controlling Execution Plans with Hints

Original (Hash)
Table 'Illustration'. Scan count 1, logical reads 273
Table 'ProductModelIllustration'. Scan count 1, logical reads 183
Table 'Worktable'. Scan count 0, logical reads 0
Table 'ProductModel'. Scan count 1, logical reads 14
Table 'Product'. Scan count 1, logical reads 15

 Loop
Table 'Illustration'. Scan count 1, logical reads 273
Table 'ProductModelIllustration'. Scan count 1, logical reads 183
Table 'Product'. Scan count 1, logical reads 555
Table 'ProductModel'. Scan count 1, logical reads 14

 Merge
Table 'Illustration'. Scan count 1, logical reads 273
Table 'Worktable'. Scan count 0, logical reads 0
Table 'ProductModelIllustration'. Scan count 1, logical reads 2
Table 'Product'. Scan count 1, logical reads 15
Table 'ProductModel'. Scan count 1, logical reads 14

This shows us that the Hash Match and Nested Loops joins required almost exactly the
same number of reads as the Merge Join to arrive at the required data set. The differences
arise when we see that, in order to support the Nested Loops join, 555 reads were required
instead of 15 for both the Merge Join and Hash Match. The key difference is the number
of reads of the ProductModelIllustration table in the Merge Join; it's only 2, as
opposed to the 183 in the other two queries.

This illustrates the point that the optimizer does not always choose an optimal plan.
It's always best to look at the properties of the Select operator to see if full optimization
occurred and if there was a timeout. Neither was the case here; it was a full optimization
and the optimizer thought it found the best possible plan in the time allotted. Based on
the statistics in the index and the amount of time it had to calculate its results, it must
have decided that the Hash Match would perform faster.

Although we've positively influenced query performance for the time being, the downside
is that, as the data changes over time within the tables, it's possible that the Merge Join
will cease to function better. However, because we've hard coded the join, no new plan
will be generated by the optimizer as the data changes, as would normally be the case.

218

Chapter 5: Controlling Execution Plans with Hints

Table Hints

Table hints enable you to control how the optimizer "uses" a particular table when gener-
ating an execution plan for the query to which the table hint is applied. For example, you
can force the use of a Table Scan for that query, or to specify which index you want the
optimizer to use.

As with the query and join hints, using a table hint circumvents the normal optimizer
processes and can lead to serious performance issues. Further, since table hints can affect
locking strategies, they could possibly affect data integrity leading to incorrect or lost
data. Use table hints sparingly and judiciously!

Some of the table hints are primarily concerned with locking strategies. Since some of
these don't affect execution plans, we won't be covering them. The three table hints
covered below have a direct impact on the execution plans. For a full list of table hints,
please refer to the Books Online supplied with SQL Server 2005 and later.

Table hint syntax

The correct syntax in SQL Server 2005 and above is to use the WITH keyword and list the
hints within a set of parentheses, as shown in Listing 5.29.

FROM TableName WITH (hint, hint,…)

Listing 5.29

The WITH keyword is not required in all cases, nor are the commas required in all cases,
but rather than attempt to guess or remember which hints are the exceptions, all hints
can be placed within the WITH clause. As a best practice, separate hints with commas
to ensure consistent behavior and future compatibility. Even with the hints that don't
require the WITH keyword, it must be supplied if more than one hint is to be applied to a
given table.

219

Chapter 5: Controlling Execution Plans with Hints

NOEXPAND

When multiple indexed views are referenced within a query, the use of the NOEXPAND
table hint will override the EXPAND VIEWS query hint that we saw earlier. The query hint
affects all views in the query. The table hint will prevent the indexed view to which it
applies from being "expanded" into its underlying view definition. This allows for a more
granular control over which of the indexed views is forced to resolve to its base tables, and
which simply pull their data from their base clustered index.

SQL 2005 and 2008 Enterprise and Developer editions use the indexes in an indexed
view if the optimizer determines that index is best for the query. This is indexed view
matching, and it requires the following settings for the connection:

• ANSI_NULL set to On

• ANSI_WARNINGS set to On

• CONCAT_NULL_YIELDS_NULL set to On

• ANSI_PADDING set to On

• ARITHABORT set to On

• QUOTED_IDENTIFIERS set to On

• NUMERIC_ROUNDABORT set to Off.

Using the NOEXPAND hint can force the optimizer to use the index from the indexed
view. In Chapter 4, we used a query that referenced one of the Indexed Views,
vStateProvinceCountryRegion, in AdventureWorks (Listing 4.14). The optimizer
expanded the view and we saw an execution plan that featured a three-table join. Via use
of the NOEXPAND table hint, in Listing 5.30, we change that behavior.

220

Chapter 5: Controlling Execution Plans with Hints

SELECT a.City ,
 v.StateProvinceName,
 v.CountryRegionName
FROM Person.Address AS a
 JOIN Person.vStateProvinceCountryRegion AS v WITH (NOEXPAND)
 ON a.StateProvinceID = v.StateProvinceID
WHERE a.AddressID = 22701;

Listing 5.30

Now, instead of a 3-table join, we get the execution plan in Figure 5.30.

Figure 5.30

Now, not only are we using the clustered index defined on the view, but we're also seeing
a performance increase, with the execution time going from 105ms to 81ms. In this
situation, eliminating the overhead of the extra join resulted in improved performance.
That will not always be the case, so you must test the use of hints very carefully.

221

Chapter 5: Controlling Execution Plans with Hints

INDEX()

The INDEX() table hint allows you to specify the index to be used when accessing a table.
The syntax supports two methods. Firstly, numbering the index, starting at 0, which
represents a clustered index, if any, and proceeding one at a time through the rest of the
indexes on the table (Listing 5.31).

FROM TableName WITH (INDEX(0))

Listing 5.31

Or, secondly, simply referring to the index by name, which I recommend, because the
order in which indexes are applied to a table can change (although the clustered index
will always be 0). For an example, see Listing 5.32.

FROM TableName WITH (INDEX ([IndexName]))

Listing 5.32

You can only have a single INDEX() hint for a given table, but you can define multiple
indexes within that one hint. Let's take a simple query that lists department, job title, and
employee name.

SELECT de.Name ,
 e.JobTitle ,
 p.LastName + ', ' + p.FirstName
FROM HumanResources.Department de
 JOIN HumanResources.EmployeeDepartmentHistory edh
 ON de.DepartmentID = edh.DepartmentID
 JOIN HumanResources.Employee e
 ON edh.BusinessEntityID = e.BusinessEntityID
 JOIN Person.Person p
 ON e.BusinessEntityID = p.BusinessEntityID
WHERE de.Name LIKE 'P%'

Listing 5.33

222

Chapter 5: Controlling Execution Plans with Hints

We get a reasonably straightforward execution plan, as shown in Figure 5.31.

Figure 5.31

We see a series of Index Seek and Clustered Index Seek operations, joined together by
Nested Loop operations. Suppose we're convinced that we can get better performance if
we could eliminate the Index Seek on the HumanResources.Department table, and
instead use that table's clustered index, PK_Department_DepartmentID. We could
accomplish this using the INDEX() hint, as shown in Listing 5.34.

SELECT de.Name,
 e.JobTitle,
 p.LastName + ', ' + p.FirstName
FROM HumanResources.Department de WITH (INDEX (PK_Department_DepartmentID))
 JOIN HumanResources.EmployeeDepartmentHistory edh
 ON de.DepartmentID = edh.DepartmentID
 JOIN HumanResources.Employee e
 ON edh.BusinessEntityID = e.BusinessEntityID
 JOIN Person.Person p
 ON e.BusinessEntityID = p.BusinessEntityID
WHERE de.Name LIKE 'P%';

Listing 5.34

Figure 5.32 shows the resulting execution plan.

223

Chapter 5: Controlling Execution Plans with Hints

Figure 5.32

After the hint is added, we can see a Clustered Index Scan replacing the Index Seek. This
change results in a more expensive query, with the execution time coming in at 252ms as
opposed to 154ms. While the Index Seek is certainly faster than the scan, the difference at
this time is small because the scan is only hitting a few more rows than the seek, in such a
small table.

However, because the data was not as selective in the clustered index, the query resulted
in a scan of this index rather than a seek, and so the performance of the query suffered.

FASTFIRSTROW

Just like the FAST n query hint outlined earlier, FASTFIRSTROW forces the optimizer to
choose a plan that will return the first row as fast as possible for the table in question.
Functionally, FASTFIRSTROW is equivalent to the FAST n query hint, but it is more
granular. Be aware, though, that Microsoft is deprecating this hint in the next version of
SQL Server, so I suggest you avoid using it.

The intent of the query in Listing 5.35 is to get a summation of the available inventory by
product model name and product name.

224

Chapter 5: Controlling Execution Plans with Hints

SELECT pm.Name AS ProductModelName,
 p.Name AS ProductName,
 SUM(pin.Quantity)
FROM Production.ProductModel pm
 JOIN Production.Product p
 ON pm.ProductModelID = p.ProductModelID
 JOIN Production.ProductInventory pin
 ON p.ProductID = pin.ProductID
GROUP BY pm.Name,
 p.Name ;

Listing 5.35

It results in the execution plan in Figure 5.33.

Figure 5.33

As you can see, an Index Scan operation against the ProductModel database
returns the first stream of data. This is joined against a Clustered Index Scan operation
from the Product table, through a Hash Match join operator. The data from the
ProductInventory table can be retrieved through a Clustered Index Seek and this is
then joined to the other data through a Nested Loops join. Finally, the optimizer builds
the summation information through a Stream Aggregate operator.

If we decided that we thought that getting the Product information a bit quicker might
make a difference in the behavior of the query, we could add the FASTFIRSTROW table
hint to that table.

225

Chapter 5: Controlling Execution Plans with Hints

SELECT pm.Name AS ProductModelName,
 p.Name AS ProductName,
 SUM(pin.Quantity)
FROM Production.ProductModel pm
 JOIN Production.Product p WITH (FASTFIRSTROW)
 ON pm.ProductModelID = p.ProductModelID
 JOIN Production.ProductInventory pin
 ON p.ProductID = pin.ProductID
GROUP BY pm.Name,
 p.Name ;

Listing 5.36

This results in the execution plan in Figure 5.34.

Figure 5.34

This makes the optimizer choose a different path through the data. Instead of hitting the
ProductModel table first, it's now collecting the Product information first. A Nested
Loops operator loops through the smaller set of rows from the Product table and
compares them to the larger data set from the ProductModel table.

The rest of the plan is the same. The net result is that, rather than building the worktable
to support the Hash Match join, most of the work occurs in accessing the data through
the Index Scans and Seeks, with cheap Nested Loops joins replacing the Hash Joins. The
cost execution time increases from 195ms in the first query to 215ms in the second.

226

Chapter 5: Controlling Execution Plans with Hints

The performance penalty comes from the fact that there was a single scan and two reads
on the ProductModel table in the original query. Use of the Nested Loops join changed
the behavior to a single scan with 1,009 reads. Reading more data will have an impact on
the performance of queries.

Summary

While the optimizer makes very good decisions most of the time, it may sometimes make
less than optimal choices. Taking control of the queries using Table, Join and Query hints,
when appropriate, can often be the right choice. However, remember that the data in
your database is constantly changing. Any choices you force on the optimizer through
hints today, to achieve whatever improvement you're hoping for, may become a major
pain in the future.

If you decide to use hints, test them prior to applying them, and remember to document
their use in some manner so that you can come back and test them again periodically as
your database grows. As Microsoft releases patches and service packs, the behavior of the
optimizer can change. Be sure to retest any queries using hints after an upgrade to your
server. I intentionally demonstrated cases where the query hints hurt as well as help,
as this simply reflects reality. Use of these hints should be a last resort, not a standard
method of operation.

227

Chapter 6: Cursor Operations

Most operations within a SQL Server database should be set-based, rather than using
the procedural, row-by-row processing embodied by cursors. However, there may still
be occasions when a cursor is the more appropriate or more expedient way to resolve a
problem. Certainly, most query processing to support application behavior, reporting
and other uses, will be best solved by concentrating on set-based solutions. However,
certain maintenance routines will be more easily implemented using cursors (although
even these may need to be set-based in order to reduce the maintenance footprint in a
production system).

A specific set of operators, within execution plans, describe the effects of the operations
of a cursor. The operators, similar to those for data manipulation, are split between
logical (or estimated) and physical (or actual) operators. In the case of the data manipu-
lation operators, these represent the possible path and the actual path through a query.
For cursors, there are bigger differences between the logical and physical operators.
Logical operators give more information about the actions that will occur while a cursor
is created, opened, fetched, closed and de-allocated. The physical operators show the
functions that are part of the actual execution of the query, with less regard to the opera-
tions of the cursor.

As with all the previous execution plans, we can view plans containing cursors graphically,
as text, or as XML. This chapter will use only graphical plans and will describe all of the
operators that represent the action of cursors.

Simple cursors
In Listing 6.1, we declare a cursor with no options, with all defaults, and then traverse it
using the FETCH NEXT method, returning a list of all the CurrencyCodes used in the
AdventureWorks2008R2 database. I'm going to use this same basic query throughout
the section on cursors, because it returns a small number of rows, and because we

228

Chapter 6: Cursor Operations

can easily see how changes to cursor properties affect the execution plans. The data is
returned as multiple result sets, as shown in Figure 6.1.

DECLARE CurrencyList CURSOR
FOR
 SELECT CurrencyCode
 FROM Sales.Currency
 WHERE Name LIKE '%Dollar%'

OPEN CurrencyList

FETCH NEXT FROM CurrencyList

WHILE @@FETCH_STATUS = 0
 BEGIN

 -- Normally there would be operations here using data from cursor

 FETCH NEXT FROM CurrencyList
 END

CLOSE CurrencyList
DEALLOCATE CurrencyList
GO

Listing 6.1

Figure 6.1

229

Chapter 6: Cursor Operations

Logical operators

Using a graphical execution plan, we can see that the query consists of six distinct
statements and therefore six distinct plans, as shown in Figure 6.2.

Figure 6.2

230

Chapter 6: Cursor Operations

Let's look at each part of the plan individually. The top section shows the T-SQL
definition of the cursor.

DECLARE CurrencyList CURSOR
FOR
 SELECT CurrencyCode
 FROM Sales.Currency
 WHERE Name LIKE '%Dollar%'

Listing 6.2

Figure 6.3

This definition in the header includes the SELECT statement that will provide the data
that the cursor uses. This plan contains our first two cursor-specific operators but, as
usual, we'll read this execution plan, starting from the right. First, there is a Clustered
Index Scan against the Sales.Currency table.

231

Chapter 6: Cursor Operations

Figure 6.4

The Clustered Index Scan retrieves an estimated 14 rows. Following, is a Compute Scalar
operator, which creates a unique identifier to identify the data returned by the query,
independent of any unique keys on the table or tables from which the data was selected
(see Figure 6.5).

232

Chapter 6: Cursor Operations

Figure 6.5

With a new key value, these rows are inserted into a temporary clustered index, created
in tempdb. This clustered index, commonly referred to as a worktable, is the "cursor"
mechanism by which the server is able to walk through a set of data (Figure 6.6).

Figure 6.6

233

Chapter 6: Cursor Operations

After that, we get our first cursor operator, Fetch Query.

Fetch Query

The Fetch Query operator retrieves the rows from the cursor, the clustered index created
above, when the FETCH command is issued. The ToolTip in Figure 6.7 displays the
familiar information (which doesn't provide much that's immediately useful).

Figure 6.7

Finally, instead of yet another Select operator, we finish with a Dynamic operator.

Dynamic

 The Dynamic operator contains the definition of the cursor. In this case, the default
cursor type is a dynamic cursor, which means that it sees data changes made by others to
the underlying data, including inserts, as they occur. This means that the data within

234

Chapter 6: Cursor Operations

the cursor can change over the life of the cursor. For example, if data in the table is
modified before it has been passed through the cursor, the modified data will be picked up
by the cursor. This time, the ToolTip shows some slightly different, more detailed and
useful information.

Figure 6.8

We see a view of the direct T-SQL that defines the cursor.

Cursor Catchall

The next five sections of our execution plan, from Figure 6.2, all feature a generic icon
known as the Cursor Catchall. In general, a catchall icon covers for operations that
Microsoft determined didn't need their own special graphic.

In Query 2 and Query 3, we see catchall icons for the Open Cursor operation and the
Fetch Cursor operation.

235

Chapter 6: Cursor Operations

OPEN CurrencyList

FETCH NEXT FROM CurrencyList

Listing 6.3

Figure 6.9

Query 4 shows the next time within the T-SQL that the FETCH CURSOR command
was used, and it shows a language element icon, for the WHILE loop, as a Cond or
Conditional operator. This Conditional operator is performing a check against the
information returned from the Fetch operation.

WHILE @@FETCH_STATUS = 0
 BEGIN
 --Normally there would be operations here using data from cursor
 FETCH NEXT FROM CurrencyList
 END

Listing 6.4

236

Chapter 6: Cursor Operations

Figure 6.10

Finally, Query 5 closes the cursor and Query 6 de-allocates it, removing the cursor from
the tempdb.

CLOSE CurrencyList
DEALLOCATE CurrencyList

Listing 6.5

Figure 6.11

237

Chapter 6: Cursor Operations

Physical operators

When we execute the same script, using the actual execution plan, we find that it doesn't
mirror the estimated plan. Instead, we see the plan shown in Figure 6.12.

Figure 6.12

This simple plan is repeated 15 times, once for each row of data added to the cursor.
The slight discrepancy between the actual number of rows, 15, and the estimated 14
rows you'll see in the ToolTip is caused by a minor disparity between the actual data
and the statistics.

One interesting thing to note is that no cursor icons are present in the plan. Instead, the
one cursor command immediately visible, FETCH CURSOR, is represented by the generic
T-SQL operator icon. This is because all the physical operations that occur with a cursor
are represented by the actual operations being performed, and the FETCH is roughly
equivalent to the SELECT statement.

Hopefully, this execution plan demonstrates why a dynamic cursor may be costly to the
system. It's performing a Clustered Index Insert, as well as the reads necessary to return
the data to the cursor. It performs these actions as each of the 15 separate FETCH state-
ments are called. The same query, outside a cursor, would return a very simple, one-step
execution plan, as shown in Figure 6.13.

Figure 6.13

238

Chapter 6: Cursor Operations

More cursor operations

Changing the settings and operations of the cursor result in differences in the plans
generated. We've already seen the dynamic cursor; so let's now look at the three other
types of cursor.

Static cursor

Unlike the DYNAMIC cursor outlined above, a STATIC cursor is a temporary copy of the
data, created when the cursor is called. This means that it doesn't see any underlying
changes to the data over the life of the cursor. To see this in action, change the cursor
declaration as shown in Listing 6.6.

DECLARE CurrencyList CURSOR STATIC FOR

Listing 6.6

Logical operators

Let's first look at the estimated execution plan. You will see six distinct plans, just as with
a DYNAMIC cursor. Figure 6.14 shows the plan for the first query, which represents the
cursor definition. The remaining queries in the estimated plan look just like the DYNAMIC
cursor in Figure 6.2.

239

Chapter 6: Cursor Operations

Figure 6.14

Reading the query in the direction of the physical operations, from the top right-hand
side, we see an Index Scan to retrieve the data from the Sales.Currency table. This
data passes to the Segment operator, which divides the input into segments, based on a
particular column, or columns. In this case, as you can see in the ToolTip in Figure 6.15,
it's based on a derived column called Segment1006. The derived column splits the data
up in order to pass it to the next operation, which will assign the unique key.

Figure 6.15

240

Chapter 6: Cursor Operations

Cursors require worktables and, to make them efficient, SQL Server creates them as a
clustered index with a unique key. With a STATIC cursor, the key is generated after the
segments are defined. The segments are passed on to the Compute Scalar operator,
which adds a string valued "1" for the next operation, Sequence Project. This logical
operator represents a physical task that results in a Compute Scalar operation. It's adding
a new column as part of computations across the set of data. In this case, it's creating row
numbers through an internal function called i4_row_number. These row numbers are
used as the identifiers within the clustered index.

Figure 6.16

The data, along with the new identifiers, is then passed to the Clustered Index Insert
operator and then on to the Population Query Cursor operator.

241

Chapter 6: Cursor Operations

Population Query

The Population Query Cursor operator, as stated in the description of the operator on
the Properties sheet says, "populates the work table for a cursor when the cursor is opened"
or, in other words, from a logical standpoint, this is when the data that has been
marshaled by all the other operations is loaded into the worktable.

The Fetch Query operation retrieves the rows from the cursor via an Index Seek on the
index in tempdb, the worktable created to manage the cursor. Notice that, in this case,
the Fetch Query operation is defined in a separate sequence, independent from the
Population Query. This is because this cursor is static, unlike the dynamic cursor, which
reads its data each time it's accessed.

Snapshot

Finally, we see the Snapshot cursor operator, which represents a cursor that does not see
changes made to the data by separate data modifications.

Clearly, with a single INSERT operation, and then a simple Clustered Index Seek to
retrieve the data, this cursor will operate much faster than the dynamic cursor. The Index
Seek and the Fetch operations show how the data will be retrieved from the cursor.

Physical operators

If we execute the query and display the actual execution plan, we get two distinct plans.
The first plan is the query that loads the data into the cursor worktable, as represented by
the clustered index. The second plan is repeated, and we see a series of plans identical to

242

Chapter 6: Cursor Operations

the one shown for Query 2, below, which demonstrates how the cursor is looped through
by the WHILE statement.

Figure 6.17

These execution plans accurately reflect what the estimated plan intended. Note that
the cursor was loaded when the OPEN CURSOR statement was called. We can even look
at the Clustered Index Seek operator to see it using the row identifier created during the
population of the cursor.

243

Chapter 6: Cursor Operations

Figure 6.18

Keyset cursor

The KEYSET cursor retrieves a defined set of keys as the data defined within the cursor.
This means that it doesn't retrieve the actual data but, instead, a set of identifiers for
finding that data later. The KEYSET cursor allows for the fact that data may be updated
during the life of the cursor. This behavior leads to yet another execution plan, different
from the previous two examples.

244

Chapter 6: Cursor Operations

Let's change the cursor definition again.

DECLARE CurrencyList CURSOR KEYSET FOR

Listing 6.7

Logical operators

Figure 6.19 shows the estimated execution plan.

Figure 6.19

Now that we've worked with cursors a bit, it's easy to recognize the two paths defined
in the estimated plan: one for populating the cursor and one for fetching the data from
the cursor.

The top line of the plan, containing the Population Query operation, is almost exactly
the same as that defined for a Static cursor. The second Scalar operation is added as a
status check for the row. It ends with the Keyset operator, indicating that the cursor can
see updates, but not inserts.

245

Chapter 6: Cursor Operations

The major difference is evident in how the Fetch Query works, in order to support the
updating of data after the cursor was built. Figure 6.20 shows that portion of the plan in
more detail.

Figure 6.20

Going to the right and top of the Fetch Query definition, we find that it first retrieves the
key from the index created in the Population Query. Then, to retrieve the data, it joins it
through a Nested Loop operation to the Sales.Currency table. This is how the Keyset
cursor manages to get updated data into the set returned while the cursor is active.

The Constant Scan operator scans an internal table of constants; basically, it's just a
place for adding data later in the plan. The data from the Constant Scan feeds into the
Clustered Index Update operator in order to be able to change the data stored inside
the cursor, if necessary. This data is joined to the first set of data through a Nested Loop
operation and finishes with a Compute Scalar, which represents the row number.

Physical operators

When the cursor is executed, we get the plan shown in Figure 6.21.

246

Chapter 6: Cursor Operations

Figure 6.21

Query 1 contains the Open Cursor operator, and populates the key set exactly as the
estimated plan envisioned.

In Query 2, the FETCH NEXT statements against the cursor activate the Fetch Cursor
operation 15 times, as the cursor walks through the data. While this can be less costly than
a dynamic cursor, it's clearly more costly than a Static cursor. The performance issues
come from the fact that the cursor queries the data twice, once to load the key set and a
second time to retrieve the row data. Depending on the number of rows retrieved into the
worktable, this can be a costly operation.

READ_ONLY cursor

Each of the preceding cursors, except for Static, allowed the data within the cursor to
be updated. If we define the cursor as READ_ONLY and look at the execution plan, we
sacrifice the ability to capture changes in the data, but we create what is known as a
Fast Forward cursor.

247

Chapter 6: Cursor Operations

DECLARE CurrencyList CURSOR READ_ONLY FOR

Listing 6.8

Figure 6.22

Clearly, this represents the simplest cursor definition plan that we've examined so far.
Unlike for other types of cursor, there is no branch of operations within the estimated
plan. It simply reads what it needs directly from the data. In our case, an Index Scan
operation against the CurrencyName index shows how this is accomplished. The
amount of I/O, compared to any of the other execution plans, is reduced since there
is not a requirement to populate any worktables. Instead, there is a single step: get the
data. The actual execution plan is identical except that it doesn't have to display the Fast
Forward logical operator.

Cursors and performance

Cursors are notorious for their ability to cause performance problems within SQL Server.
The following example shows, for each of the cursors, how you can tweak their perfor-
mance. The example also demonstrates how to get rid of the cursor and use a set-based
operation that performs even better.

Let's assume that, in order to satisfy a business requirement, we need a report that lists
the number of sales by store, assigning an order to them, and then, depending on the
amount sold, displays how good a sale it is considered. Here's a query, using a dynamic
cursor, which might do the trick.

248

Chapter 6: Cursor Operations

DECLARE @WorkTable TABLE
 (
 DateOrderNumber INT IDENTITY(1, 1) ,
 Name VARCHAR(50) ,
 OrderDate DATETIME ,
 TotalDue MONEY ,
 SaleType VARCHAR(50)
)

DECLARE @DateOrderNumber INT ,
 @TotalDue MONEY

INSERT INTO @WorkTable
 (Name ,
 OrderDate ,
 TotalDue
)
 SELECT s.Name ,
 soh.OrderDate ,
 soh.TotalDue
 FROM Sales.SalesOrderHeader AS soh
 JOIN Sales.Store AS s
 ON soh.SalesPersonID = s.SalesPersonID
 WHERE soh.CustomerID = 29731
 ORDER BY soh.OrderDate

DECLARE ChangeData CURSOR
FOR
 SELECT DateOrderNumber ,
 TotalDue
 FROM @WorkTable

OPEN ChangeData

FETCH NEXT FROM ChangeData INTO @DateOrderNumber, @TotalDue

WHILE @@FETCH_STATUS = 0
 BEGIN
 -- Normally there would be operations here using data from cursor
 IF @TotalDue < 1000
 UPDATE @WorkTable
 SET SaleType = 'Poor'
 WHERE DateOrderNumber = @DateOrderNumber
 ELSE

249

Chapter 6: Cursor Operations

 IF @TotalDue > 1000
 AND @TotalDue < 10000
 UPDATE @WorkTable
 SET SaleType = 'OK'
 WHERE DateOrderNumber = @DateOrderNumber
 ELSE
 IF @TotalDue > 10000
 AND @TotalDue < 30000
 UPDATE @WorkTable
 SET SaleType = 'Good'
 WHERE DateOrderNumber = @DateOrderNumber
 ELSE
 UPDATE @WorkTable
 SET SaleType = 'Great'
 WHERE DateOrderNumber = @DateOrderNumber
 FETCH NEXT FROM ChangeData INTO @DateOrderNumber, @TotalDue
 END

CLOSE ChangeData
DEALLOCATE ChangeData

SELECT *
FROM @WorkTable

Listing 6.9

Whether or not you've written a query like this, I imagine that you've certainly seen one.
The data returned from the query looks something like this:

Number Name OrderDate TotalDue SaleType
1 Trusted Catalog Store 2001-07-01 18830.1112 Good
2 Trusted Catalog Store 2001-10-01 13559.0006 Good
3 Trusted Catalog Store 2002-01-01 51251.2959 Great
4 Trusted Catalog Store 2002-04-01 78356.9835 Great
5 Trusted Catalog Store 2002-07-01 9712.8886 OK
6 Trusted Catalog Store 2002-10-01 2184.4578 OK
7 Trusted Catalog Store 2003-01-01 1684.8351 OK
8 Trusted Catalog Store 2003-04-01 1973.4799 OK
9 Trusted Catalog Store 2003-07-01 8897.326 OK
10 Trusted Catalog Store 2003-10-01 10745.818 Good
11 Trusted Catalog Store 2004-01-01 2026.9753 OK
12 Trusted Catalog Store 2004-04-01 702.9363 Poor

250

Chapter 6: Cursor Operations

The estimated execution plan (not shown here) displays the plan for populating the
temporary table, and updating the temporary table, as well as the plan for the execution
of the cursor. The cost to execute this script, as a dynamic cursor, includes, not only
the query against the database tables, Sales.OrderHeader and Sales.Store, but
also the INSERT into the temporary table, all the UPDATEs of the temporary table, and
the final SELECT from the temporary table. The result is about 27 different scans and
about 113 reads.

Let's take a look at a subsection of the actual execution plan, which shows the FETCH
from the cursor and one of the updates.

Figure 6.23

Simply counting scans and reads through the STATISTICS I/O output is not possible
because the cursor repeats hundreds of times. Each iteration through this query, to return
a row, invokes 2 scans and 105 reads on the tables involved. This repeats for each of the
hundreds of rows that make up the cursor. The total execution time was about 185ms.

To see which cursor might perform better, let's change this Dynamic cursor to a
Static cursor.

251

Chapter 6: Cursor Operations

DECLARE ChangeData CURSOR STATIC

Listing 6.10

With this modification in place, execution time dropped to about 100ms, with less work
being required to attempt to maintain data.

Next, let's see how the Keyset Cursor fares.

DECLARE ChangeData CURSOR KEYSET

Listing 6.11

This time execution time decreased as less work was required for maintaining the cursor.
Execution time went down to 78ms. Let's change the cursor again so that it uses the read
only option.

DECLARE ChangeData CURSOR READ_ONLY

Listing 6.12

Execution time held about the same. In some tests, it was even slightly longer, at 83ms.

The tests so far show that the Keyset Cursor is the fastest. Let's see if we can't make it a
bit faster by changing the cursor declaration again.

DECLARE ChangeData CURSOR FAST_FORWARD

Listing 6.13

This FAST_FORWARD setting creates a FORWARD_ONLY cursor, which also results in a
READ_ONLY cursor.

252

Chapter 6: Cursor Operations

In many cases, setting the cursor to FORWARD_ONLY and READ_ONLY, through the FAST_
FORWARD setting, results in the fastest performance. However, in this case, performance
was unaffected for all the tests using this approach.

Let's see if we have any more luck by making the key set cursor to FORWARD_ONLY.

DECLARE ChangeData CURSOR FORWARD_ONLY KEYSET

Listing 6.14

The resulting execution plan is the same, and the performance hasn't really changed. So,
short of tuning other parts of the procedure, the simple KEYSET is probably the quickest
way to access this data.

However, what if we eliminate the cursor entirely? We can rewrite the script so that it
looks as shown in Listing 6.15.

SELECT ROW_NUMBER() OVER (ORDER BY soh.OrderDate) ,
 s.Name ,
 soh.OrderDate ,
 soh.TotalDue ,
 CASE WHEN soh.TotalDue < 1000 THEN 'Poor'
 WHEN soh.TotalDue BETWEEN 1000 AND 10000 THEN 'OK'
 WHEN soh.TotalDue BETWEEN 10000 AND 30000 THEN 'Good'
 ELSE 'Great'
 END AS SaleType
FROM Sales.SalesOrderHeader AS soh
 JOIN Sales.Store AS s ON soh.SalesPersonID = s.SalesPersonID
WHERE soh.CustomerID = 29731
ORDER BY soh.OrderDate

Listing 6.15

This query returns exactly the same data, but the performance is radically different. It
performs a single scan on the SalesOrderHeader table, and about 40 reads between
the two tables. The execution time is recorded as 0 ms, which isn't true, but gives you an

253

Chapter 6: Cursor Operations

indication of how much faster it is than the cursor. Instead of a stack of small execution
plans, we have a single-step execution plan.

Figure 6.24

The plan is actually a bit too large to see clearly here but the key take-away is that the
main cost for this query, accounting for 54% of the cost of the plan, is the Key Lookup
operator in the lower right. That's a tuning opportunity, as we saw in a previous chapter.
Eliminating the Lookup will make this query run faster.

This example was simple, the amount of data was relatively small, and most of the cursors
operated well enough to be within the performance margins of most large-scale systems.
However, even with a small data set it was possible to see differences among the types of
cursors. Most significantly, it was possible to achieve a major performance increase with
the elimination of the cursor.

It shouldn't be too difficult to see how, when working with 12,000 rows instead
of 12, the cursor operations would be very costly, and just how much time and
resource usage changing from cursors to set-based operations will save your
production systems resources.

254

Chapter 6: Cursor Operations

Summary

More often than not, we should avoid cursors in order to take advantage of the set-based
nature of T-SQL and SQL Server. Set-based operations just work better. However,
when faced with the necessity of a cursor, understanding what you're likely to see in the
execution plans, estimated and actual, will assist you in using cursors appropriately.

Don't forget that the estimated plan shows both how the cursor will be created, in the
top part of the plan, and how the data in the cursor will be accessed, in the bottom part
of the plan. The primary differences between a plan generated from a cursor and one
from a set-based operation are in the estimated execution plans. Other than that, as you
have seen, reading these plans is no different than reading the plans from a set-based
operation: start at the right and top and work your way to the left. There are just a lot
more plans generated, because of the way in which cursors work.

255

Chapter 7: Special Datatypes and
Execution Plans

The introduction of the Common Language Runtime (CLR), and with it the ability to
run .NET code within SQL Server, may not have taken the database world by storm, but
Microsoft has certainly started to put it to work. It has exploited the capabilities intro-
duced with CLR to add a lot more functionality to SQL Server, through the addition of
special data types.

In addition to the special functionality around XML, available since SQL Server 2005,
SQL Server 2008 saw the introduction of the spatial data type and the hierarchy data
type, to name just a couple, and more will be coming with new releases of SQL Server.

Some of these data types have no effect on execution plans, while others have a major
effect. This chapter examines three of the more commonly used special data types now
available within SQL Server. First, we'll go over XML in some detail. Then we'll cover the
hierarchy data type. Finally, we'll look at spatial data and have a very short introduction to
spatial indexes.

XML

XML plays an ever greater role in a large numbers of applications, and the use of XML
within stored procedures affects the execution plans generated.

You can break down XML operations within SQL Server into four broad categories:

• Storing XML – The XML datatype is used to store XML, as well as to provide a
mechanism for XQuery queries and XML indexes.

256

Chapter 7: Special Datatypes and Execution Plans

• Output relational data to XML – The FOR XML clause can be used to output XML from
a query.

• Inserting XML into tables – OPENXML accepts XML as a parameter and opens it within
a query for storage or manipulation, as structured data.

• Querying XML documents using XQuery.

Storing XML within the database is largely outside the scope of this chapter, but we will
cover getting XML out of the database, and we can do it in a number of different ways.
We will cover the various types of XML output, using the FOR XML commands. Each form
of the FOR XML command requires different T-SQL, and will result in different execution
plans, as well as differences in performance.

Getting XML into a format you can use within your T-SQL code requires special calls. You
can read XML within SQL Server using either OPENXML or XQuery. OPENXML provides
a rowset view of an XML document. We will explore its use via some execution plans
for a basic OPENXML query, and will outline some potential performance implications.
However, the true strength of querying XML within SQL Server is through XQuery. We'll
examine a few simple XQuery examples, via execution plans, but this is a huge topic and
we will barely scratch its surface here. In fact, to cover it in any depth at all would require
an entire book of its own.

While all these methods of accessing and manipulating XML are very useful, they do
come at a cost. XML can cause performance issues in one of two ways. Firstly, the XML
parser, which is required to manipulate XML, uses memory and CPU cycles that you
would normally have available only for T-SQL. In addition, the manner in which you use
the XML, input or output, will affect the plans generated by SQL Server and can lead to
performance issues.

Secondly, manipulating XML data uses good, old-fashioned T-SQL statements, and
poorly written XML queries can impact performance just as any other query can, and we
must tune them in the same manner as any other query.

257

Chapter 7: Special Datatypes and Execution Plans

FOR XML

If you want to output the result of a query in XML format, you use the FOR XML clause.
You can use the FOR XML clause in any of the following four modes:

• AUTO – Returns results as nested XML elements in a simple hierarchy (think: table =
XML element).

• RAW – Transforms each row in the results into an XML element, with a generic <row
/> identifier as the element tag.

• EXPLICIT – Allows you to define explicitly, in the query itself, the shape of the
resulting XML tree.

• PATH – A simpler alternative to EXPLICIT for controlling elements, attributes, and the
overall shape of the XML tree.

Each of these methods requires different T-SQL in order to arrive at the same output, and
each is associated with different performance and maintenance issues. We will explore all
four options and I'll point out where each has strengths and weaknesses.

Just to introduce the capabilities that are possible with FOR XML, you can see that the
first example, in Listing 7.1, produces a list of employees and their addresses. There is
no requirement for any type of direct manipulation of the XML output, and the query is
simple and straightforward, so we'll use XML AUTO mode.

SELECT p.FirstName ,
 p.LastName ,
 e.Gender ,
 a.AddressLine1 ,
 a.AddressLine2 ,
 a.City ,
 a.StateProvinceID ,
 a.PostalCode
FROM Person.Person p
 INNER JOIN HumanResources.Employee e

258

Chapter 7: Special Datatypes and Execution Plans

 ON p.BusinessEntityID = e.BusinessEntityID
 INNER JOIN Person.BusinessEntityAddress AS bea
 ON e.BusinessEntityID = bea.BusinessEntityID
 INNER JOIN Person.Address a
 ON bea.AddressID = a.AddressID
FOR XML AUTO;

Listing 7.1

This generates the actual execution plan shown in Figure 7.1.

Figure 7.1

The difference between this execution plan and that for any "normal" query may be
hard to spot. It's at the very beginning of the logical processing order. Instead of a
T-SQL Select operation, we see an XML Select operation. That is the only change.
Otherwise, it's simply a query.

To see all the various methods at work, instead of the slightly complicated example above,
consider the second, somewhat simpler, query in Listing 7.2. We'll compare the output of
this query using the various FOR XML modes, starting over again with AUTO mode.

259

Chapter 7: Special Datatypes and Execution Plans

SELECT s.Name AS StoreName ,
 bec.PersonID ,
 bec.ContactTypeID
FROM Sales.Store s
 JOIN Person.BusinessEntityContact AS bec
 ON s.BusinessEntityID = bec.BusinessEntityID
ORDER BY s.Name
FOR XML AUTO;

Listing 7.2

Figure 7.2

The execution plan is not terribly complicated. Following the logical processing, the XML
Select operator requests data from the Sort operation, which is satisfying the ORDER BY
clause in Listing 7.2. This data stream feeds into the Sort from the Merge Join operator,
which puts together the output from the two different Clustered Index Scan operators.
These operators, if you examine their Properties page, have an ordered output, which
explains why the optimizer can use the Merge operator. The estimated cost of the plan is
0.12. The query runs in about 89ms and has 111 reads. Listing 7.3 shows the XML output.

<s StoreName="A Bicycle Association">
 <bec PersonID="2050" ContactTypeID="11" />
</s>
<s StoreName="A Bike Store">
 <bec PersonID="933" ContactTypeID="11" />
</s>

Listing 7.3

260

Chapter 7: Special Datatypes and Execution Plans

The same results are seen, in this case, if we use XML RAW mode.

XML EXPLICIT mode allows you to exert some control over the format of the XML
generated by the query – for example, if the application or business requirements may
need a very specific XML definition, rather than the generic one supplied by XML AUTO.

Without getting into a tutorial on XML EXPLICIT, you write the query in a way that
dictates the structure of the XML output. Listing 7.4 shows a simple example.

SELECT 1 AS Tag ,
 NULL AS Parent ,
 s.Name AS [Store!1!StoreName] ,
 NULL AS [BECContact!2!PersonID] ,
 NULL AS [BECContact!2!ContactTypeID]
FROM Sales.Store s
 JOIN Person.BusinessEntityContact AS bec
 ON s.BusinessEntityID = bec.BusinessEntityID
UNION ALL
SELECT 2 AS Tag ,
 1 AS Parent ,
 s.Name AS StoreName ,
 bec.PersonID ,
 bec.ContactTypeID
FROM Sales.Store s
 JOIN Person.BusinessEntityContact AS bec
 ON s.BusinessEntityID = bec.BusinessEntityID
ORDER BY [Store!1!StoreName] ,
 [BECContact!2!PersonID]
FOR XML EXPLICIT;

Listing 7.4

Figure 7.3 shows the actual execution plan for this query, which is somewhat
more complex.

261

Chapter 7: Special Datatypes and Execution Plans

Figure 7.3

In order to build the hierarchy of XML, it's necessary to use the UNION clause in T-SQL.
Reading this execution plan, again, in logical processing order, from left to right, you see
the same XML Select and Sort operators as you did in the plan in Figure 7.3. However,
this time, the next operation is the Concatenation operator, which combines the two
different streams of data, as defined by the UNION clause. Each of the two branches of
the plan are the same after that, which is not surprising, considering the query accesses
the two tables in the same way, in both branches of the T-SQL statement. The Compute
Scalar operator in each branch fills in the Tag and Parent columns. These columns are
added to the output of a Hash Match operator that the optimizer, in this case, thought
was more efficient than the Merge Join shown in Figure 7.2. The Clustered Index Scan
operations for each branch are the same, and satisfy the definition of the UNION clause.

The estimated cost of the plan is much higher at 0.29. The execution time shoots up to
119ms and there are 214 reads. Listing 7.5 shows the XML output.

<store StoreName="A Bicycle Association">
 <BECContact PersonID="2050" ContactTypeID="11" />
</store>
<store StoreName="A Bike Store">
 <BECContact PersonID="933" ContactTypeID="11" />
</store>

Listing 7.5

262

Chapter 7: Special Datatypes and Execution Plans

Remove the FOR XML EXPLICIT clause, rerun the query and look at the new execution
plan, and you'll see that, apart from seeing the Select instead of XML Select operator, the
plans are the same, up to and including the cost of each of the operations. The difference
isn't in the execution plan, but rather in the results. With FOR XML EXPLICIT you get
XML; without it, you get an oddly-formatted result set, since the structure you defined in
the UNION query is not naturally nested, as the XML makes it.

Even with this relatively simple example, you can see how, because of the multiple queries
joined together via a UNION, while you get more control over the XML output, it comes at
the cost of increased maintenance, due to the need for the UNION clause and the explicit
naming standards. This leads to decreased performance due to the increased number of
queries required to put the data together.

An extension of the XML AUTO mode allows you to specify the TYPE directive in order to
better control the output of the results of the query as the XML datatype. The query in
Listing 7.6 is essentially the same as the previous one, but expressed using this simpler
syntax, available in SQL Server 2005 and later.

SELECT s.Name AS StoreName ,
 (SELECT bec.BusinessEntityID ,
 bec.ContactTypeID
 FROM Person.BusinessEntityContact bec
 WHERE bec.BusinessEntityID = s.BusinessEntityID
 FOR
 XML AUTO ,
 TYPE ,
 ELEMENTS
)
FROM Sales.Store s
ORDER BY s.Name
FOR XML AUTO ,
 TYPE;

Listing 7.6

263

Chapter 7: Special Datatypes and Execution Plans

The ELEMENTS directive specifies that the columns within the sub-select appear as
sub-elements within the outer SELECT statement, as part of the structure of the XML.

<s StoreName="A Bicycle Association">
 <bec>
 <BusinessEntityID>2051</BusinessEntityID>
 <ContactTypeID>11</ContactTypeID>
 </bec>
</s>

Listing 7.7

Figure 7.4 shows the resulting execution plan, which does look a little different.

Figure 7.4

The estimated cost of the plan is 0.23, the execution time is now 99ms and there are a
shocking 701 scans on BusinessEntityContact. The first thing to note is that the
optimizer has introduced two UDX operators. The UDX operator is an extended operator
used by XPATH and XQUERY operations. XPATH and XQUERY are two different ways to
querying XML data directly. In our case, by examining the Properties window, we can see
that the UDX operator on the lower right of the plan is creating the XML data.

264

Chapter 7: Special Datatypes and Execution Plans

Figure 7.5

The output is Expr1004, which consists of the two columns from the BusinessEntity-
Contact table: BusinessEntityID and ContactTypeID. The optimizer uses a Nested
Loops operator to join this data with the sorted data from the Clustered Index Scan on
the Stores table. It then applies a Compute Scalar operator, probably some of the XML
definitions or a checksum (calculation value). It then feeds this to the next UDX operator
for the final output as fully-fledged XML.

265

Chapter 7: Special Datatypes and Execution Plans

Finally, the XML PATH mode simply outputs the XML data type, and makes it much
easier to output mixed elements and attributes. Using this mode, the query we've already
walked through twice now looks as shown in Listing 7.8.

SELECT s.Name AS "@StoreName" ,
 bec.PersonID AS "BECContact/@PersonId" ,
 bec.ContactTypeID AS "BECContact/@ContactTypeID"
FROM Sales.Store s
 JOIN Person.BusinessEntityContact AS bec
 ON s.BusinessEntityID = bec.BusinessEntityID
ORDER BY s.Name
FOR XML PATH;

Listing 7.8

This results in the same execution plan as shown in Figure 7.2, as well as the same
estimated cost (0.12) and approximately the same execution time at 78ms. Listing 7.9
shows the XML output.

<row StoreName="A Bicycle Association">
 <BusinessEntityContact BusinessEntityID="2051" ContactTypeID="11" />
</row>
<row StoreName="A Bike Store">
 <BusinessEntityContact BusinessEntityID="934" ContactTypeID="11" />
</row>

Listing 7.9

Of the various methods of arriving at the same XML output, XML PATH clearly results
in the simplest execution plan as well as the most straightforward T-SQL. These factors
make XML PATH probably the easiest code to maintain, while still exercising control over
the format of the XML output. The optimizer transforms the output to XML only at the
end of the process, using the familiar XML Select operator. This requires less overhead
and processing power throughout the query.

266

Chapter 7: Special Datatypes and Execution Plans

From a performance standpoint, to get XML out of a query in the fastest way possible,
you should use fewer XQuery or XPath operations. With that in mind, the least costly
operations above, based on reads and scans, are the final XML PATH and the original XML
AUTO, which both behaved more or less identically.

Table 'BusinessEntityContact'. Scan count 1, logical reads 8 …
Table 'Store'. Scan count 1, logical reads 103 …

However, more often than not, the XML created in the AUTO won't meet with the appli-
cation design, so you'll probably end up using XML PATH most often.

XML EXPLICIT performance was poor, with more scans and reads than the previous
two options:

Table 'Worktable'. Scan count 0, logical reads 0 …
Table 'BusinessEntityContact'. Scan count 2, logical reads 8 …
Table 'Store'. Scan count 2, logical reads 206 …

XML AUTO with TYPE was truly horrendous due to the inclusion of the UDX operations,
causing a large number of reads and scans:

Table 'BusinessEntityContact'. Scan count 701, logical reads 1410 …
Table 'Store'. Scan count 1, logical reads 103, physical reads 0 …

OPENXML

We can use OPENXML to read XML within SQL Server or XQuery. OPENXML takes
in-memory XML data and converts it into a format that, for viewing purposes, can
be treated as if it were a normal table. This allows us to use it within regular T-SQL
operations. Most often, we use it to take data from the XML format and change it into
structured storage within a normalized database. In order to test this, we need an XML
document (I've had to break elements across lines in order to present the document in a
readable form).

267

Chapter 7: Special Datatypes and Execution Plans

<ROOT>
 <Currency CurrencyCode="UTE" CurrencyName="Universal Transactional
 Exchange">
 <CurrencyRate FromCurrencyCode="USD" ToCurrencyCode="UTE"
 CurrencyRateDate="1/1/2007" AverageRate=".553"
 EndOfDateRate= ".558" />
 <CurrencyRate FromCurrencyCode="USD" ToCurrencyCode="UTE"
 CurrencyRateDate="6/1/2007" AverageRate=".928"
 EndOfDateRate= "1.057" />
 </Currency>
</ROOT>

Listing 7.10

In this example, we're creating a new currency, the Universal Transactional Exchange,
otherwise known as the UTE. We need exchange rates for converting the UTE to USD.
We're going to take all this data and insert it, in a batch, into our database, straight from
XML. Listing 7.11 shows the script.

BEGIN TRAN
DECLARE @iDoc AS INTEGER
DECLARE @Xml AS NVARCHAR(MAX)

SET @Xml = '<ROOT>
<Currency CurrencyCode="UTE" CurrencyName="Universal
 Transactional Exchange">
 <CurrencyRate FromCurrencyCode="USD" ToCurrencyCode="UTE"
 CurrencyRateDate="1/1/2007" AverageRate=".553"
 EndOfDayRate= ".558" />
 <CurrencyRate FromCurrencyCode="USD" ToCurrencyCode="UTE"
 CurrencyRateDate="6/1/2007" AverageRate=".928"
 EndOfDayRate= "1.057" />
</Currency>
</ROOT>'

EXEC sp_xml_preparedocument @iDoc OUTPUT, @Xml

INSERT INTO Sales.Currency
 (CurrencyCode ,
 Name ,
 ModifiedDate
)

268

Chapter 7: Special Datatypes and Execution Plans

 SELECT CurrencyCode ,
 CurrencyName ,
 GETDATE()
 FROM OPENXML (@iDoc, 'ROOT/Currency',1)
 WITH (CurrencyCode NCHAR(3), CurrencyName NVARCHAR(50))

INSERT INTO Sales.CurrencyRate
 (CurrencyRateDate ,
 FromCurrencyCode ,
 ToCurrencyCode ,
 AverageRate ,
 EndOfDayRate ,
 ModifiedDate
)
 SELECT CurrencyRateDate ,
 FromCurrencyCode ,
 ToCurrencyCode ,
 AverageRate ,
 EndOfDayRate ,
 GETDATE()
 FROM OPENXML(@iDoc , 'ROOT/Currency/CurrencyRate',2)
 WITH (CurrencyRateDate DATETIME '@CurrencyRateDate',
 FromCurrencyCode NCHAR(3) '@FromCurrencyCode',
 ToCurrencyCode NCHAR(3) '@ToCurrencyCode',
 AverageRate MONEY '@AverageRate',
 EndOfDayRate MONEY '@EndOfDayRate')

EXEC sp_xml_removedocument @iDoc
ROLLBACK TRAN

Listing 7.11

From this query, we get two actual execution plans, one for each INSERT. The first
INSERT is against the Currency table, as shown in Figure 7.6

269

Chapter 7: Special Datatypes and Execution Plans

Figure 7.6

The physical flow starts on the top right of the plan, which is the bottom right portion of
Figure 7.6 (to see the whole plan, I've graphically split it in half). A quick scan of the plan
reveals no new XML icons. All the OPENXML statement processing is handled within the
Remote Scan icon. This operator represents the opening of a remote object, meaning
a DLL or some external process such as CLR object, within SQL Server, which will take
the XML and convert it into a format within memory that looks to the query engine like
a table of data. Since the Remote Scan is not actually part of the query engine itself, the
optimizer represents the call, in the plan, as a single icon.

Examining the estimated plan reveals none of the extensive XML statements that are
present in this query: even the XML stored procedures sp_xml_preparedocument and
sp_xml_remove document are referenced by simple logical T-SQL icons, as you can see
in Figure 7.7.

Figure 7.7

270

Chapter 7: Special Datatypes and Execution Plans

The only place where we can really see the evidence of the XML is in the Output List for
the Remote Scan. In Figure 7.8, we can see the OPENXML statement referred to as a table,
and the properties selected from the XML data listed as columns.

Figure 7.8

From there, it's a straightforward query with the data first being sorted for insertion
into the clustered index, and then sorted a second time for addition to the other index
on the table.

The second execution plan describes the INSERT against the CurrencyRate table.

Figure 7.9

This query is the more complicated of the two because of the extra steps required for
the maintenance of referential integrity between the Currency and CurrencyRate
tables. Yet still, we see no XML-specific icons, since all the XML work is hidden behind
the Remote Scan operation. In this case, we see two comparisons against the parent table,
through the Merge Join operations. The data is sorted, first by FromCurrencyCode
and then by ToCurrencyCode, in order for the data to be used in a Merge Join, the
operation picked by the optimizer in this instance.

271

Chapter 7: Special Datatypes and Execution Plans

As you can see, it's easy to bring XML data into the database for use within your queries,
or for inclusion within your database. As discussed previously, OPENXML is a useful
tool for importing the semi-structured data within the XML documents into the well-
maintained relational database structure. It can also allow you to pass in data for other
uses. For example, you can pass in a list of variables to be used as a join in a SELECT
statement. The main point to take away is that once the OPENXML has been formatted,
you get to use it as if it were just another table within your queries.

One caveat worth mentioning is that parsing XML uses a lot of memory. You should
plan on opening the XML, getting the data out, and then closing and de-allocating the
XML parser as soon as possible. This will reduce the amount of time that the memory is
allocated within your system.

XQuery

Along with the introduction of the XML data type in SQL Server 2005, came the intro-
duction of XQuery as a method for querying XML data. Effectively, the inclusion of
XQuery means a completely new query language to learn in addition to T-SQL. The XML
data type is the mechanism used to provide the XQuery functionality through the SQL
Server system. When you want to query from the XML data type, there are five basic
methods, each of which is reflected in execution plans in different ways.

• .query() – Used to query the XML data type and return the XML data type.

• .value() – Used to query the XML data type and return a non-XML scalar value.

• .nodes() – A method for pivoting XML data into rows.

• .exist() – Queries the XML data type and returns a Bool to indicate whether or not
the result set is empty, just like the EXISTS keyword in T-SQL.

• .modify() – A method for inserting, updating and deleting XML snippets within the
XML dataset.

272

Chapter 7: Special Datatypes and Execution Plans

The various options for running a query against XML, including the use of FLWOR
(For, Let, Where, Order By and Return) statements within the queries, all affect the
execution plans. I'm going to cover just two examples, to acquaint you with the concepts
and introduce you to the sort of execution plans you can expect to see. It's outside the
scope of this book to cover this topic in the depth that would be required to demonstrate
all aspects of this new language.

Using the .exist method

You are likely to use the .exist method quite frequently when working with XML data.
In Listing 7.12, we query the résumés of all employees to find out which of the people
hired were once sales managers.

SELECT p.LastName ,
 p.FirstName ,
 e.HireDate ,
 e.JobTitle
FROM Person.Person p
 INNER JOIN HumanResources.Employee e
 ON p.BusinessEntityID = e.BusinessEntityID
 INNER JOIN HumanResources.JobCandidate jc
 ON e.BusinessEntityID = jc.BusinessEntityID
 AND jc.Resume.exist(' declare namespace
 res="http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/
Resume";
 /res:Resume/res:Employment/res:Emp.JobTitle[contains
 (.,"Sales Manager")]') = 1;

Listing 7.12

Figure 7.10 shows the actual execution plan for this query.

273

Chapter 7: Special Datatypes and Execution Plans

Figure 7.10

Starting at the beginning of physical operations, top and right, we see a normal execution
plan. A Clustered Index Scan operation against the JobCandidate table followed by
a Filter operation that ensures that the Resume field is not null. A Nested Loops join
combines this data from the filtered JobCandidate table with data returned from the
Employee table, filtering us down to two rows.

Then, another Nested Loops operator is used to combine data from a new operator, a
Table Valued Function. This Table Valued Function, subtitled "XML Reader with XPath
filter" operator represents as relational data the output from the XQuery. The role it
plays is not dissimilar to that of the Remote Scan operation from the OPENXML query.
However, the Table Valued Function, unlike the Remote Scan in the example, is actually
a part of the query engine and is represented by a distinct icon.

The ToolTip for the Table Valued Function shows that four rows were found.

274

Chapter 7: Special Datatypes and Execution Plans

Figure 7.11

These rows are passed to a Filter operator that determines if the XPath query we defined
equals 1. This results in a single row for output to the Nested Loops operator. From there,
it's a typical execution plan, retrieving data from the Contact table and combining it
with the rest of the data already put together.

275

Chapter 7: Special Datatypes and Execution Plans

Using the .query method

The .query method returns XML. In our example, we'll query demographics data to
find stores that are greater than 20,000 square feet in size. We have to define the XML
structure to be returned and, to this end, the query uses XQuery's FLWOR expressions.
These constructs greatly extend the versatility of XQuery, making it comparable to
T-SQL.

• For – Used to iterate XML nodes. The For expression binds some number of iterator
variables, in this case, one, to input sequences, our ss:StoreSurvey. It works a lot
like a For/Each loop.

• Let – This allows you to name and use repeating expressions within an XML-like
variable.

• Where – You can limit the results using the Where expression. It works just like a
WHERE clause in T-SQL.

• Order – Sorts the results, just like ORDER BY in T-SQL (not covered here).

• Return – Simply defines the results coming back, kind of like the Select clause in
T-SQL except it includes all kinds of XML commands for formatting.

In this example, we need to generate a list of stores managed by a particular salesperson.
Specifically, we want to look at any of the demographics for stores managed by this sales-
person that have more than 20,000 square feet. The demographics information is semi-
structured data, so it is stored within XML in the database. To filter the XML directly,
we'll be using the .query method.

Listing 7.13 shows our example query and execution plan.

276

Chapter 7: Special Datatypes and Execution Plans

SELECT s.Demographics.query('
 declare namespace ss="http://schemas.microsoft.com/sqlserver/2004/07/adventure-
works/StoreSurvey";
 for $s in /ss:StoreSurvey
 where ss:StoreSurvey/ss:SquareFeet > 20000
 return $s
') AS Demographics
FROM Sales.Store s
WHERE s.SalesPersonID = 279;

Listing 7.13

Figure 7.12

The query actually consisted of two simple queries:

• a regular T-SQL query against the Store table to return the rows where the
SalesPersonId = 279

• a query that uses the .query method to return the data where the store's square
footage was over 20,000.

Stated that way, it sounds simple, but a lot more work is necessary around those two
queries to arrive at a result set.

As always, start at the top and right of Figure 7.12. The first operator is a Clustered Index
Scan against the Sales table, filtered by the SalesPersonId. The data returned is fed
into the top half of a Nested Loops, left outer join. Going over to the right to find the
second stream of data for the join, we find a familiar operation: a Clustered Index Seek.

277

Chapter 7: Special Datatypes and Execution Plans

This time though, it's going against an XML clustered index. Figure 7.13 shows a blow-up
of that part of the plan.

Figure 7.13

The data in the XML data type is stored separately from the rest of the table, and the
Clustered Index Seek operations you see are the retrieval of that data.

You can see, in Figure 7.14, that the Index Seek is occurring on PXML_Store_
Demographics, returning the 80 rows from the index that match the CustomerId
field from the store. Below this, another Clustered Index Seek gathers data matching the
CustomerId, but adds SquareFeet as part of the output. This data is filtered and then
the outputs are combined through a left join.

From there, it feeds on out, joining against all the rest of the XML data, before going
through a UDX operator that outputs the formatted XML data. This is combined with
the original rows returned from the Store table. Of note is the fact that the XQuery
information is being treated almost as if it were T-SQL. The data above is retrieved from
an XML index, which stores all the data with multiple rows for each node, sacrificing
disk space for speed of recovery. SQL Server creates an internal table to store this XML
index. XML is stored as a binary large object (BLOB). The internal table is created from
the definition of the index by shredding the XML (i.e., breaking it up into its component
parts) ahead of time, as data is modified. These indexes can then speed access, but come
at the cost of disk storage and processing time when data is stored.

278

Chapter 7: Special Datatypes and Execution Plans

Figure 7.14

These examples don't begin to cover the depth of what's available within XQuery. It really
is a whole new language and syntax that you'll have to learn in order to take complete
advantage of what it has to offer.

279

Chapter 7: Special Datatypes and Execution Plans

For an even more thorough introduction, read this white paper offered from Microsoft at
http://msdn2.microsoft.com/en-us/library/ms345122.aspx.

XQuery can take the place of FOR XML, but you might see some performance degradation.
You can also use XQuery in place of OPENXML. The functionality provided by XQuery
goes beyond what's possible within OPENXML. Combining that with T-SQL will make for
a powerful combination when you have to manipulate XML data within SQL Server. As
with everything else, please test the solution with all possible tools to ensure that you're
using the optimal one for your situation.

Hierarchical Data

SQL Server can store hierarchical data using HIERARCHYID, a native CLR introduced in
SQL Server 2008. It doesn't automatically store hierarchical data; you must define that
storage from your applications and T-SQL code, as you make use of the data type. As a
CLR data type, it comes with multiple functions for retrieving and manipulating the data.
Again, this section simply demonstrates how hierarchical data operations appear in an
execution plan; it is not an exhaustive overview of the data type.

Listing 7.14 shows a simple listing of employees that are assigned to a given manager.
I've intentionally kept the query simple so that we can concentrate on the activity of
the HIERARCHYID within the execution plan and not have to worry about other issues
surrounding the query.

DECLARE @ManagerId HIERARCHYID;
DECLARE @BEId INT;

SET @BEId = 2;

SELECT @ManagerID = e.OrganizationNode
FROM HumanResources.Employee AS e
WHERE e.BusinessEntityID = @BEId;

http://msdn2.microsoft.com/en-us/library/ms345122.aspx

280

Chapter 7: Special Datatypes and Execution Plans

SELECT e.BusinessEntityID ,
 p.LastName
FROM HumanResources.Employee AS e
 JOIN Person.Person AS p
 ON e.BusinessEntityId = p.BusinessEntityId
WHERE e.OrganizationNode.IsDescendantOf(@ManagerId) = 1

Listing 7.14

This query returns fourteen rows and runs in about 214ms with 48 reads on the
Person.Person table and three on the HumanResources.Employee table.
Figure 7.15 shows the execution plan.

Figure 7.15

As you can see, it's a very simple and clean plan. The optimizer is able to make use of
an index on the HIERARCHYID column, OrganizationNode, in order to perform an
Index Seek. The data then flows out to the Nested Loops operator, which retrieves data
as needed through a series of Clustered Index Seek commands on the Person.Person
table, which results in all the additional reads on that table. The interesting aspect of
this plan is the Seek Predicate of the Index Seek operation, as shown in the ToolTip in
Figure 7.16.

281

Chapter 7: Special Datatypes and Execution Plans

Figure 7.16

282

Chapter 7: Special Datatypes and Execution Plans

Now you can see some of the internal operations performed by the CLR data type. The
predicate supplies Start and End parameters, both working from mechanisms within
the HIERARCHYID operation. These indexes are similar to other indexes, in that they
contain key values, in this case, the OrganizationNode, and a lookup to the clustered
index, but not other columns. If I had run the query and selected a different column,
such as JobTitle from the HumanResources.Employee table, the query would have
changed to a Clustered Index Scan since the index on OrganizationNode would no
longer be a covering index.

We could explore a number of other functions with the HIERARCHYID data type, but
this gives a reasonable idea of how it manifests in execution plans, so let's move on to a
discussion about another one of the CLR data types, spatial data.

Spatial Data

The spatial data type introduces two different types of information storage. First is the
concept of geometric shapes, and the second is data mapped to a projection of the surface
of the Earth. There are a huge number of functions and methods associated with spatial
data types and we simply don't have the room to cover all this in detail in this book. For a
detailed introduction to spatial data, I recommend Introduction to SQL Server 2008 Spatial
Data (Apress) by Alastair Aitchison.

Like the HIERARCHYID data type, there are indexes associated with spatial data, but
these indexes are extremely complex in nature. Unlike a clustered or non-clustered
index in SQL Server, these indexes can, and do, work with functions, but not all
functions. Listing 7.15 shows a query that could result in the use of an index on a
SQL Server 2008 R2 database.

283

Chapter 7: Special Datatypes and Execution Plans

DECLARE @MyLocation GEOGRAPHY = GEOGRAPHY::STPointFromText
 ('POINT(-122.33383 47.61066)',
 4326)
SELECT p.LastName + ', ' + p.FirstName ,
 a.AddressLine1 ,
 a.City ,
 a.PostalCode ,
 sp.Name AS StateName ,
 a.SpatialLocation
FROM Person.Address AS a
 JOIN Person.BusinessEntityAddress AS bea
 ON a.AddressID = bea.AddressID
 JOIN Person.Person AS p
 ON bea.BusinessEntityID = p.BusinessEntityID
 JOIN Person.StateProvince AS sp
 ON a.StateProvinceID = sp.StateProvinceID
WHERE @MyLocation.STDistance(a.spatiallocation) < 1000

Listing 7.15

This query creates a point, which coincides with the Seattle Sheraton, near where, most
years, PASS hosts its annual summit. It then uses the STDistance calculation on that
point to find all addresses in the database that are within a kilometer (1,000 meters) of
that location. Unfortunately, there's no index on the Address table for our spatial query
to use so, to see a spatial index in action, we can create the one shown in Listing 7.16.

CREATE SPATIAL INDEX [ix_Spatial] ON [Person].[Address]
(
[SpatialLocation]
)USING GEOGRAPHY_GRID
WITH (
 GRIDS =(LEVEL_1 = MEDIUM,LEVEL_2 = MEDIUM,LEVEL_3 = MEDIUM,
 LEVEL_4 = MEDIUM),
 CELLS_PER_OBJECT = 16,
 PAD_INDEX = OFF, SORT_IN_TEMPDB = OFF, DROP_EXISTING = OFF,
 ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON
)
ON [PRIMARY]

Listing 7.16

284

Chapter 7: Special Datatypes and Execution Plans

After running the query, we get an execution plan that is rather large and involved when
you consider the number of tables in the query. Figure 7.18 focuses in on the operators
directly applicable to the spatial index.

Figure 7.17

The operation on the index itself is at the bottom of Figure 7.18. You can see that the
estimated cost for the operation is 5% of the overall cost of the plan, but you also have
to take into account that the data is going to require other operations. The Table Valued
Function is the creation of the spatial point, @MyLocation. This data is compared to the
spatial data stored in the clustered index through the banal Nested Loops operator and
a join.

You can see the complexity of the operations by drilling into the properties of the
operators. The output of the Nested Loops operator is visible in Figure 7.19. You can
see that multiple expressions are passed on and values that are not a part of the query
itself, but are necessary for all the operations required to consume the data from the
spatial index.

285

Chapter 7: Special Datatypes and Execution Plans

Figure 7.18

286

Chapter 7: Special Datatypes and Execution Plans

The number of operators involved does make this plan more complicated. It's worth
noting that the query without an index ran in about 2.2 seconds and in only 87ms with
a spatial index.

While these functions are complex and require a lot more knowledge to implement, you
can see that the execution plans still use the same tools to understand these operations.
That's the point I'm trying to get across here, not specifically how spatial indexing works
in all regards.

Summary

The introduction of these complex data types, XML, Hierarchical and Spatial, radically
expands the sort of data that we can store in SQL Server and the sort of operations that
we can perform on this data.

XML provides mechanisms for storage and retrieval of XML data and, as we covered
earlier in the book, with XQuery we can retrieve information from execution plans
directly from the procedure cache. The other data types don't have as profound an impact
on what you should expect to see in execution plans, but their use does introduce some
additional issues and concerns that you need to learn to keep an eye out for within
execution plans. However, as you can see, generating and interpreting the plan still uses
the same mechanisms and methods we've been working with throughout the book.

287

Chapter 8: Advanced Topics

In the previous chapters, we have discussed how the optimizer generates execution plans
and how to interpret them, and we have examined plans for some moderately complex
queries, including most of the common SQL Server objects, such as stored procedures,
views, indexes, cursors, and so on. In our discussion of hints, we even walked through
some ways in which we could exercise a measure of control over how the optimizer
generates an execution plan.

In this chapter, we will take a tour of some of the more advanced topics related to the
interpretation and manipulation of execution plans, covering the points below.

• Large-scale execution plans – How to interpret them.

• Parallelism – Why you might want to use parallelism, how to control it in your query
execution and how to interpret parallel plans.

• Forced parameterization – Used to replace hard-coded literals with parameters
and maximize the possibility of plan reuse; used mainly in systems subject to a large
amount of ad hoc, or client-generated T-SQL.

• Using plan guides – To exercise control over a query through hints without changing
the actual code; an invaluable tool when dealing with third-party applications.

• Using plan forcing – To capture and reuse an execution plan, the final word in
controlling many of the decisions made by the optimizer.

288

Chapter 8: Advanced Topics

Reading Large-scale Execution Plans

The most important thing to remember when dealing with execution plans that cover
large numbers of tables and large numbers of individual plans is that the rules don't
change. The optimizer uses the same criteria to determine the optimal type of join, type
of index to use, and so on, whether you're dealing with two tables or two hundred.

However, the nature of the optimizer is such that, when faced with a truly large and
complex plan, it's unlikely to spend too much time trying to find the perfect execution
plan. This means, as execution plans become more complex, the need to understand
what decisions the optimizer made, why, and how to change them, becomes much
more important.

Let's look at what I'd consider a reasonably large-scale execution plan (although I've
seen much larger). The stored procedure in Listing 8.1 returns the appropriate dataset,
based on whether or not a particular individual used any special offers. In addition, if a
particular special offer is requested, then the stored procedure executes a different query
and returns a second, different result set.

DROP PROCEDURE Sales.uspGetDiscountRates;
GO
CREATE PROCEDURE Sales.uspGetDiscountRates
 (
 @BusinessEntityId INT ,
 @SpecialOfferId INT
)
AS
 BEGIN TRY
 -- determine if sale using special offer exists
 IF EXISTS (SELECT *
 FROM Person.Person AS p
 INNER JOIN Sales.Customer AS c
 ON p.BusinessEntityID = c.PersonID
 INNER JOIN Sales.SalesOrderHeader AS soh
 ON soh.CustomerID = c.CustomerID
 INNER JOIN Sales.SalesOrderDetail AS sod

289

Chapter 8: Advanced Topics

 ON soh.SalesOrderID = sod.SalesOrderID
 INNER JOIN Sales.SpecialOffer AS spo
 ON sod.SpecialOfferID = spo.SpecialOfferID
 WHERE p.BusinessEntityID = @BusinessEntityId
 AND spo.[SpecialOfferID] = @SpecialOfferId)
 BEGIN
 SELECT p.LastName + ', ' + p.FirstName ,
 ea.EmailAddress ,
 p.Demographics ,
 spo.Description ,
 spo.DiscountPct ,
 sod.LineTotal ,
 pr.Name ,
 pr.ListPrice ,
 sod.UnitPriceDiscount
 FROM Person.Person AS p
 INNER JOIN Person.EmailAddress AS ea
 ON p.BusinessEntityID = ea.BusinessEntityID
 INNER JOIN Sales.Customer AS c
 ON p.BusinessEntityID = c.PersonID
 INNER JOIN Sales.SalesOrderHeader AS soh
 ON c.CustomerID = soh.CustomerID
 INNER JOIN Sales.SalesOrderDetail AS sod
 ON soh.SalesOrderID = sod.SalesOrderID
 INNER JOIN Sales.SpecialOffer AS spo
 ON sod.SpecialOfferID = spo.SpecialOfferID
 INNER JOIN Production.Product pr
 ON sod.ProductID = pr.ProductID
 WHERE p.BusinessEntityID = @BusinessEntityId
 AND sod.[SpecialOfferID] = @SpecialOfferId;
 END
-- use different query to return other data set
 ELSE
 BEGIN
 SELECT p.LastName + ', ' + p.FirstName ,
 ea.EmailAddress ,
 p.Demographics ,
 soh.SalesOrderNumber ,
 sod.LineTotal ,
 pr.Name ,
 pr.ListPrice ,
 sod.UnitPrice ,
 st.Name AS StoreName ,
 ec.LastName + ', ' + ec.FirstName

290

Chapter 8: Advanced Topics

 AS SalesPersonName
 FROM Person.Person AS p
 INNER JOIN Person.EmailAddress AS ea
 ON p.BusinessEntityID = ea.BusinessEntityID
 INNER JOIN Sales.Customer AS c
 ON p.BusinessEntityID = c.PersonID
 INNER JOIN Sales.SalesOrderHeader AS soh
 ON c.CustomerID = soh.CustomerID
 INNER JOIN Sales.SalesOrderDetail AS sod
 ON soh.SalesOrderID = sod.SalesOrderID
 INNER JOIN Production.Product AS pr
 ON sod.ProductID = pr.ProductID
 LEFT JOIN Sales.SalesPerson AS sp
 ON soh.SalesPersonID = sp.BusinessEntityID
 LEFT JOIN Sales.Store AS st
 ON sp.BusinessEntityID = st.SalesPersonID
 LEFT JOIN HumanResources.Employee AS e
 ON st.BusinessEntityID = e.BusinessEntityID
 LEFT JOIN Person.Person AS ec
 ON e.BusinessEntityID = ec.BusinessEntityID
 WHERE p.BusinessEntityID = @BusinessEntityId;
 END

 --second result SET
 IF @SpecialOfferId = 16
 BEGIN
 SELECT p.Name ,
 p.ProductLine
 FROM Sales.SpecialOfferProduct sop
 INNER JOIN Production.Product p
 ON sop.ProductID = p.ProductID
 WHERE sop.SpecialOfferID = 16;
 END

 END TRY
 BEGIN CATCH
 SELECT ERROR_NUMBER() AS ErrorNumber ,
 ERROR_MESSAGE() AS ErrorMessage;
 RETURN ERROR_NUMBER();
 END CATCH
 RETURN 0;

Listing 8.1

291

Chapter 8: Advanced Topics

This type of procedure does not represent an optimal way of accessing the required
data. The first time we run the query, the optimizer creates a plan based on the initial
parameters supplied. Because of the IF statement, the second and subsequent runs of
the procedure can result in different statements within the query being run, using a very
suboptimal plan.

Unfortunately, most DBAs are going to run into things like this at some point in their
career. We'll execute the procedure with the parameters shown in Listing 8.2.

EXEC [Sales].[uspGetDiscountRates]
 @BusinessEntityId = 1423, -- int
 @SpecialOfferId = 16 -- int

Listing 8.2

This query returns multiple datasets, depending on the values passed to it. Figure 8.1
shows the estimated execution plan.

Obviously, this plan is unreadable without drilling down. However, even from this high-
level view, you can still see the logical steps of the query. The first grouping of operators,
labeled "1," describes the first conditional query that checks for the existence of the
special offer. The second group of operators, labeled "2," shows the first query in the IF
statement. The third group of operators, labeled "3," contains the second query in the
IF statement. Finally, the fourth group of operators describes the last query, which runs
when the script receives the SpecialOfferID = 16.

While this execution plan may look intimidating, it is not doing anything that we haven't
seen elsewhere. It's just doing a lot more of it. The key to investigating plans of this type is
to be undaunted by their size and remember the basic methods for walking the plan. Start
at the top and on the right, and work your way through.

292

Chapter 8: Advanced Topics

Figure 8.1

You have at least one tool that can help you when working with a large graphical plan.
In the lower right of the results pane in the query window, when you're looking at an
execution plan, you'll see a little plus sign, as shown in Figure 8.2.

293

Chapter 8: Advanced Topics

Figure 8.2

Click on the plus sign to open a little window, showing a representation of the entire
execution plan. Keep your mouse button depressed, and drag the cursor across the
window. You'll see that this moves a small "viewing rectangle" around the plan, as shown
in Figure 8.3.

Figure 8.3

As you drag the viewable area, you'll notice that the main display in the results pane
tracks your mouse movements. In this way, you can navigate around a large execution
plan and keep track of where you are within the larger context of the plan, as well as view
the individual operators that you're investigating.

You can scroll around each of the individual queries outlined above and identify which
operators are likely to be problematic or in need of tuning. You can look at the estimated
costs on the operators and the width of the pipes that are moving data between the
various operators. You'll be able to look for operators which might be extraneous to the
plan and which you could remove, by rewriting the query. You can even possibly identify

294

Chapter 8: Advanced Topics

operators that could benefit from modification or the addition of indexes. For example,
the first query has a single operator, a Clustered Index Scan on Sales.Customer, which
takes 73% of the estimated cost of the query. That might be a good place to start tuning
this query.

Another way to deal with extremely large execution plans, and one that is likely to be
easier to use than simply scrolling around on the screen, is to take advantage of the fact
that every execution plan is stored as XML. You can use XQuery to query the plan directly,
as demonstrated in Listing 8.3.

WITH XMLNAMESPACES(DEFAULT N'http://schemas.microsoft.com/sqlserver/2004/07/
showplan'),
QueryPlans AS
(
SELECT RelOp.pln.value(N'@PhysicalOp', N'varchar(50)') AS OperatorName,
RelOp.pln.value(N'@NodeId',N'varchar(50)') AS NodeId,
RelOp.pln.value(N'@EstimateCPU', N'varchar(50)') AS CPUCost,
RelOp.pln.value(N'@EstimateIO', N'varchar(50)') AS IOCost,
dest.text
FROM sys.dm_exec_query_stats AS deqs
CROSS APPLY sys.dm_exec_sql_text(deqs.sql_handle) AS dest
CROSS APPLY sys.dm_exec_query_plan(deqs.plan_handle) AS deqp
CROSS APPLY deqp.query_plan.nodes(N'//RelOp') RelOp (pln)
)

SELECT qp.OperatorName,
 qp.NodeId,
 qp.CPUCost,
 qp.IOCost,
 qp.CPUCost + qp.IOCost AS EstimatedCost
FROM QueryPlans AS qp
WHERE qp.text LIKE 'CREATE PROCEDURE Sales.uspGetDiscountRates%'
ORDER BY EstimatedCost DESC

Listing 8.3

This query accesses the plan cache directly by querying against the Dynamic Management
Object (DMO), sys.dm_exec_query_plan. It joins against the XML that defines the
plan so that you can pull out properties such as the EstimatedCPU or EstimatedIO.

295

Chapter 8: Advanced Topics

This becomes incredibly useful for looking at large plans because it allows you to access
the information programmatically rather than scrolling around on a screen. You can put
together your own XQuery operation with this data in order to programmatically explore
your large execution plans any way you need to.

In summary, the operations for a large-scale execution plan are no different from any
other you have seen in this book; there are just more of them. Don't be intimidated by
them. Just start at the top right, in the normal fashion, and work your way through in
stages, using the scrolling window to navigate around, if necessary.

Parallelism in Execution Plans

SQL Server can take advantage of a server's multiple processors. It's able to take some
operations and to spread the processing across the processors available to it, with the goal
of dividing the work into smaller chunks so that the overall operation performs quicker.
There are a couple of instance-wide settings that determine if, or when, the optimizer
might generate "parallel execution plans."

• Max degree of parallelism, which determines the maximum number of processors
that SQL Server can use when executing a parallel query; by default this is set to "0,"
which means that all available processors can potentially be used to execute a query.

• Cost threshold for parallelism, which specifies the threshold, or minimum cost, at
which SQL Server creates and runs parallel plans; this cost is an estimated number of
seconds in which the query will run, and the default value is "5." In other words, if the
query optimizer determines that a query will take less than 5 seconds to execute, then
it won't consider using parallelism.

296

Chapter 8: Advanced Topics

Max degree of parallelism

SQL Server determines the optimal number of processors to execute a given parallel
query (assuming that multiple processors are available). By default, SQL Server will use
all available processors. If you wish to suppress parallel execution, you set this option to a
value of "1." If you wish to specify the number of processors to use for a query execution,
then you can set a value of greater than 1, and up to 64.1 Before you modify these values,
you need to be sure you have a complete understanding of how parallelism benefits or
damages your system and your queries. Without this knowledge, I recommend leaving
parallelism on for most systems.

You can configure this option via the sp_configure system stored procedure, as shown
in Listing 8.4.

sp_configure 'show advanced options', 1;
GO
RECONFIGURE WITH OVERRIDE;
GO
sp_configure 'max degree of parallelism', 3;
GO
RECONFIGURE WITH OVERRIDE;
GO

Listing 8.4

The first statement turns on the advanced options, necessary to access the degree of
parallelism. The system is then reconfigured and we change the value of the max degree
of parallelism setting to 3 from whatever it might have been previously, and then
again reconfigure the system.

1 In addition to these system settings, you can also affect the number of processors used by a query, by supplying the MAXDOP
query hint, as described in Chapter 5.

297

Chapter 8: Advanced Topics

Cost threshold for parallelism

The optimizer assigns costs to operations within the execution plan. These costs
represent an estimation of the number of seconds each operation will take. If that
estimated cost is greater than the cost threshold for parallelism, then that operation may
be executed as a parallel operation.

The actual decision process used by the optimizer is outlined below.

• Does the server have multiple processors? Parallel processing requires the server to
have more than one processor.

• Are sufficient threads available? Threads are an operating system construct that allow
multiple concurrent operations, and SQL Server must check with the OS to determine
if threads are available for use prior to launching a parallel process.

• What type of query or index operation is being performed? Queries that cost more,
such as those that sort large amounts of data or do joins between large tables, and so
on, lead to a higher estimated cost for the operation. It's this cost that is compared
against the cost threshold.

• Are there a sufficient number of rows to process? The number of rows being
processed directly affects the cost of each operation, which can lead to the process
meeting or not meeting the cost threshold.

• Are the statistics current? Depending on the operation, if the statistics are not
current, the optimizer may choose either to avoid parallelism, or to use a lower degree
of parallelism.

When the optimizer determines that a query will benefit from parallel execution, it adds
marshaling, meaning gathering, and control operators, called Exchange operators. These
operators act to split the work done into multiple streams of data, pass it through the
various parallel operators, and bring it all back together again.

298

Chapter 8: Advanced Topics

When the optimizer creates an execution plan that uses parallelism, this plan is stored
in cache twice: once for a plan that doesn't use parallelism and once for a plan that does.
When a plan is reused, it is examined for the number of threads it used the last time. The
query engine, at execution time, then determines whether that same number will be used,
based on the current system load and the number of threads available.

Are parallel plans good or bad?

The one thing to remember about parallelism is that it comes at a cost. It takes processing
time and power to divide an operation into various threads and marshall them back
together. For long-running, processor-intensive, large-volume queries, parallelism makes
a lot of sense. You'll see this type of activity mainly in reporting, warehouse, or business
intelligence systems. In an OLTP system, where the majority of the transactions are small
and fast, parallelism can sometimes cause a query to run more slowly. In other words, a
query can actually run slower with a parallel execution plan than without one.

There is no hard and fast rule for determining when parallelism may be useful, or when
it will be more costly. The best approach is to observe the execution times and wait states
of queries that use parallelism, and where necessary, either change the system settings to
increase the cost threshold, or use the MAXDOP query hint in individual cases.

It all comes down to testing to see if you are gaining a benefit from the parallel processes,
and query execution times are usually the surest indicator of this. If the time goes down
with MAXDOP set to 1 during a test, that's an indication that the parallel plan is hurting
you. If the times go down after you set the cost threshold to 3, then you're seeing a real
benefit from parallel executions.

299

Chapter 8: Advanced Topics

Examining a parallel execution plan

If you're performing these tests on a machine with a single processor, then you won't be
able to see any parallel plans. Kalen Delaney supplied a method for simulating multiple
processors in SQL Server Magazine, InstantDoc #95497 (available only to subscribers).
In the SQL Server Configuration Manager, right-click the appropriate SQL Server service
and edit the startup properties. Add a property "-Pn" which represents the number of
processors that you want to simulate. You must then restart the service. This simulates
parallel execution plans, but it does not actually give you parallel execution on a single
processor machine.

For more detail, read the article. However, I'll repeat the warning from the article: Never
do this on a production system.

We'll start with an aggregation query, of the sort that you might find in a data mart. If
the dataset this query operates against is very large, it might benefit from parallelism.

SELECT so.ProductID ,
 COUNT(*) AS Order_Count
FROM Sales.SalesOrderDetail so
WHERE so.ModifiedDate >= '2003/02/01'
 AND so.ModifiedDate < DATEADD(mm, 3, '2003/02/01')
GROUP BY so.ProductID
ORDER BY so.ProductID

Listing 8.5

Figure 8.4 shows the estimated execution plan, which seems straightforward.

Figure 8.4

300

Chapter 8: Advanced Topics

There is nothing in this plan that we haven't seen before, so we'll move on to see what
would happen to this plan if it were executed with the use of multiple processors. In order
to force the optimizer to use a parallel plan, we change the parallelism threshold to 1 from
whatever value it is now (5, by default). Then, we can run this query and obtain a parallel
execution plan.

EXEC sp_configure 'cost threshold for parallelism', 1;
GO
RECONFIGURE WITH OVERRIDE;
GO
SELECT so.ProductID ,
 COUNT(*) AS Order_Count
FROM Sales.SalesOrderDetail so
WHERE so.ModifiedDate >= '2003/02/01'
 AND so.ModifiedDate < DATEADD(mm, 3, '2003/02/01')
GROUP BY so.ProductID
ORDER BY so.ProductID
GO
EXEC sp_configure 'cost threshold for parallelism', 5;
GO

Listing 8.6

Figure 8.5 shows the graphical execution.

Figure 8.5

The first thing that will probably jump out at you, in addition to the new operators that
support parallelism, is the small yellow icon with two arrows, attached to the otherwise
familiar operators. This icon designates that the optimizer is using these operators within
a parallel processing stream. If you look at the Property sheet (see Figure 8.6) for the
Select operator, you can see whether the given query is using parallelism.

301

Chapter 8: Advanced Topics

Figure 8.6

I've drawn a box around the degree of parallelism property so that it stands out. The
value of 8, assigned to that property, indicates that the execution of this query will be
split between each of the eight available processors. Looking at the graphical execution
plan, we'll start from the right to look at the physical order of operations. First, we find a
Clustered Index Scan operator.

Figure 8.7 shows the Properties sheet for that operator.

302

Chapter 8: Advanced Topics

Figure 8.7

You can see in the Properties screen that the Parallel property is set to True, just like
in the Select operator above. More interesting is that this operator, a Clustered Index
Scan, was called 8 times, which you can see in the Number of Executions property. At
the very top of the sheet, you can how the threads were split to retrieve the various rows
needed for this operation, so you can see how the parallelism actually worked within
this operator.

303

Chapter 8: Advanced Topics

The data passes on to a Parallelism operator, which is the Repartition Streams operator.
This operator is responsible for balancing the streams, trying to make sure that a roughly
equal amount of work is performed by each stream. As you can see in Figure 8.7, the rows
that were retrieved by the streams running in the Clustered Index Scan were retrieved
at different rates by the various streams. This gets rebalanced by the Repartition Streams
operator. It's also possible for this operator to reduce the number of rows, but that's
not the case here. You can see this rebalancing in the operator ToolTip on display in
Figure 8.8.

Look at the top of Figure 8.8, at the Actual Number of Rows property. Note how the
threads have been better balanced out with a roughly even distribution of rows among
them. The idea here is to make each thread do an equal amount of work so that no thread
is waiting too long on the others. You begin to see where the added overhead of paral-
lelism comes to play. You have to be dealing with quite large volumes of data for this to be
beneficial. The amount of work that it takes to split the streams, balance the streams, and
then bring them all back together can be quite costly. If only a few rows are involved, then
that cost can far outweigh the benefits of putting multiple CPUs to work on the query.

The next several operators after the Repartition Streams operator in Figure 8.5 are
quite common and we covered them in previous chapters. Each one, in this instance,
is operating as a Parallel operator as designated by the yellow icon. Each of these
operators shows how it's processing the data through a set of streams in its output l
isting. The next interesting operator is the final one, right before the Select operator,
the Parallelism Gather Streams operator. This operator is self-explanatory. It pulls the
streams back together in order to present the data gathered by the process as a single
dataset to the query or operator calling it. The output from this operator is now a single
thread of information.

304

Chapter 8: Advanced Topics

Figure 8.8

305

Chapter 8: Advanced Topics

Once you're done experimenting with parallelism, be sure to reset the parallelism
threshold to where it was on your system (the default is 5).

sp_configure 'cost threshold for parallelism', 5;
GO
RECONFIGURE WITH OVERRIDE;
GO

Listing 8.7

How Forced Parameterization Affects Execution
Plans

The goal of using forced parameterization is to reduce recompiles as much as possible.
Even when taking this more direct control over how the optimizer behaves, you have no
control over the parameter name, nor can you count on the same name being used every
time the execution plan is generated. The order in which parameters are created is also
arbitrary. Crucially, you can't control the data types picked for parameterization, either.
This means that, if the optimizer picks a particular data type that requires a CAST for
comparisons to a given column, then it may as a result avoid using applicable indexes. In
other words, using forced parameterization can result in suboptimal execution plans.

One example we saw in Chapter 2 was a simple DELETE statement, as shown in
Listing 8.8.

DELETE FROM Person.EmailAddress
WHERE BusinessEntityID = 42;

Listing 8.8

306

Chapter 8: Advanced Topics

The search predicate in the Clustered Index Delete operation from this plan used a
parameter instead of the hard-coded value 42, as you can see in the parameters listing of
the Properties sheet from the Delete operator below.

Figure 8.9

The optimizer performs this action in an effort to create plans that are more likely to
be reused. The optimizer is only able to perform simple parameterization on relatively
simple queries. The parameters created are as close to the correct data type as the
optimizer can get, but since it's just estimation, it could be wrong.

The optimizer arbitrarily provides the names for these parameters as part of the process.
It may or may not generate the same parameter names, in the same order, from one
generation of the execution plan of the query in question to the next. As queries get more
complex, the optimizer may be unable to determine whether or not a hard-coded value
should be parameterized.

307

Chapter 8: Advanced Topics

This is where forced parameterization comes into play. Instead of the occasional
parameter replacing of a literal value, based on a simple set of rules, SQL Server attempts
to replace all literal values with a parameter, with the following important exceptions:

• literals in the select list of any SELECT statement are not replaced

• parameterization does not occur within individual T-SQL statements inside stored
procedures, triggers and UDFs, which get execution plans of their own

• XQuery literals are not replaced with parameters.

Books Online details a very long list of other explicit exceptions.

With all these exceptions, why would you want to use forced parameterization? An
application developed using stored procedures, with good parameters of appropriate
data types, is very unlikely to benefit from forced parameterization. However, a system
developed with most of the T-SQL being ad hoc or client-generated may contain nothing
but hard-coded values. This type of system could benefit greatly from forced parameteri-
zation. As with any other attempts to force control out of the hands of the optimizer and
the query engine, testing is necessary.

Normally, forced parameterization is set at the database level. You also have the option
of choosing to set it on for a single query using the query hint, PARAMETERIZATION
FORCED, but this hint is only available as a plan guide, which we cover in the next section.

In this example, we have several literals used as part of the query, which is a search to find
email addresses that start with the literal, "david".

SELECT 42 AS TheAnswer ,
 em.EmailAddress ,
 e.BirthDate ,
 a.City
FROM Person.Person AS p
 JOIN HumanResources.Employee e
 ON p.BusinessEntityID = e.BusinessEntityID
 JOIN Person.BusinessEntityAddress AS bea

308

Chapter 8: Advanced Topics

 ON p.BusinessEntityID = bea.BusinessEntityID
 JOIN Person.Address a ON bea.AddressID = a.AddressID
 JOIN Person.StateProvince AS sp
 ON a.StateProvinceID = sp.StateProvinceID
 JOIN Person.EmailAddress AS em
 ON e.BusinessEntityID = em.BusinessEntityID
WHERE em.EmailAddress LIKE 'david%'
 AND sp.StateProvinceCode = 'WA';

Listing 8.9

Run the query, and then let's examine the actual execution plan, shown in Figure 8.10.
You can see the query in the Select operator is identical to what was written. In other
words, no parameterization occurred.

Figure 8.10

Let's now enable forced parameterization and clean out the buffer cache, so that we're
sure to see a new execution plan.

ALTER DATABASE AdventureWorks2008R2
SET PARAMETERIZATION FORCED
GO
DBCC freeproccache
GO

Listing 8.10

309

Chapter 8: Advanced Topics

If you rerun Listing 8.9, you'll see that the execution plan is the same as that shown in
Figure 8.10. However, the query stored in the Select operator is not the same. It now
looks as shown in Listing 8.11.

SELECT 42 AS TheAnswer ,
 em.EmailAddress ,
 e.BirthDate ,
 a.City
FROM Person.Person AS p
 JOIN HumanResources.Employee e
 ON p.BusinessEntityID = e.BusinessEntityID
 JOIN Person.BusinessEntityAddress AS bea
 ON p.BusinessEntityID = bea.BusinessEntityID
 JOIN Person.Address a ON bea.AddressID = a.AddressID
 JOIN Person.StateProvince AS sp
 ON a.StateProvinceID = sp.StateProvinceID
 JOIN Person.EmailAddress AS em
 ON e.BusinessEntityID = em.BusinessEntityID
WHERE em.EmailAddress LIKE 'david%'
 AND sp.StateProvinceCode = @0

Listing 8.11

Instead of the two-character string we supplied in the original query definition, the
parameter, @0, is used in the comparison to the StateProvinceCode field. This could
seriously affect performance, either positively or negatively. However, this does increase
the likelihood that, if this query is called again with a different two- or three-character
state code, the plan will be reused.

Before proceeding, be sure to reset the parameterization of the AdventureWorks2008R2
database.

ALTER DATABASE AdventureWorks2008R2
SET PARAMETERIZATION SIMPLE
GO

Listing 8.12

310

Chapter 8: Advanced Topics

Using Plan Guides to Modify Execution Plans

Through most of the work we've been doing so far, if we wanted to change the behavior
of a query, we could edit the T-SQL code, add or modify an index, add some hints to the
query, or all of the above.

What do you do, however, when you're dealing with a third-party application where
you cannot edit the T-SQL code, or where the structure and indexes are not under
your control? This is where plan guides come in handy. Plan guides are simply a way of
applying valid query hints to a query without actually editing the T-SQL code in any way.
Plan guides can be created for stored procedures and other database objects, or for SQL
statements that are not part of a database object.

The same caveat that applies to query hints obviously has to apply here: exercise
due caution when implementing plan guides, because changing how the optimizer
deals with a query can seriously impact its performance in a negative way if they are
used incorrectly.

You create a plan guide by executing the procedure, sp_create_plan_guide.
There are three available types of plan guide.

• Object plan guides – Applied to a stored procedure, function or DML trigger.

• SQL plan guides – Applied to strings in T-SQL statements and batches, which are
outside the context of a database object.

• Template plan guides – Used specifically to control how a query is parameterized.

311

Chapter 8: Advanced Topics

Object plan guides

Let's assume for a moment that we've noticed that the AdventureWorks procedure,
dbo.uspGetManagerEmployees, is generating poor plans part of the time. Testing has
led you to the conclusion that, ideally, you need to add a RECOMPILE hint to the stored
procedure in order to get the best possible execution plan most of the time. However, this
isn't a procedure you can edit. So, you decide to create a plan guide that will apply the
recompile hint without editing the stored procedure.

Let's look at the plan guide and then I'll describe it in detail (I've modified the code for
readability within the book, but if you do that with your actual code, it will prevent the
guide from being used).

EXEC sp_create_plan_guide @name = N'MyFirstPlanGuide',
 @stmt = N'WITH [EMP_cte]([BusinessEntityID], [OrganizationNode],
 [FirstName], [LastName], [RecursionLevel])
 -- CTE name and columns
AS (
SELECT e.[BusinessEntityID], e.[OrganizationNode], p.[FirstName],
 p.[LastName], 0 -- Get initial list of Employees for Manager n
FROM [HumanResources].[Employee] e
 INNER JOIN [Person].[Person] p
 ON p.[BusinessEntityID] = e.[BusinessEntityID]
WHERE e.[BusinessEntityID] = @BusinessEntityID
UNION ALL
SELECT e.[BusinessEntityID], e.[OrganizationNode], p.[FirstName],
 p.[LastName], [RecursionLevel] + 1
-- Join recursive member to anchor
FROM [HumanResources].[Employee] e
 INNER JOIN [EMP_cte]
 ON e.[OrganizationNode].GetAncestor(1) =
 [EMP_cte].[OrganizationNode]
 INNER JOIN [Person].[Person] p
 ON p.[BusinessEntityID] = e.[BusinessEntityID]
)
SELECT [EMP_cte].[RecursionLevel],
 [EMP_cte].[OrganizationNode].ToString() as [OrganizationNode],
 p.[FirstName] AS ''ManagerFirstName'',

312

Chapter 8: Advanced Topics

 p.[LastName] AS ''ManagerLastName'',
 [EMP_cte].[BusinessEntityID], [EMP_cte].[FirstName],
 [EMP_cte].[LastName] -- Outer select from the CTE
FROM [EMP_cte]
 INNER JOIN [HumanResources].[Employee] e
 ON [EMP_cte].[OrganizationNode].GetAncestor(1) =
 e.[OrganizationNode]
 INNER JOIN [Person].[Person] p
 ON p.[BusinessEntityID] = e.[BusinessEntityID]
ORDER BY [RecursionLevel], [EMP_cte].[OrganizationNode].ToString()
OPTION (MAXRECURSION 25) ', @type = N'OBJECT',
 @module_or_batch = N'dbo.uspGetManagerEmployees', @params = NULL,
 @hints = N'OPTION(RECOMPILE,MAXRECURSION 25)'

Listing 8.13

First, we use the @name parameter to give our plan guide a name, in this case
MyFirstPlanGuide. Note that plan guide names operate within the context of
the database, not the server.

The @stmt parameter has to be an exact match to the query that the query optimizer
will be called on to match. White space and carriage returns don't matter but, in order
to create the above, I had to include the CTE. Without it, I was getting errors. When the
optimizer finds code that matches, it will look up and apply the correct plan guide.

The @type parameter is going to be a database object, so this is an object plan guide.

In the @module_or_batch parameter, we specify the name of the target object if we're
creating an object plan guide, as in this case. We supply null otherwise.

We use @params only if we're using a template plan guide and forced parameterization.
Since we're not, it's null in this case. If we were creating a template, this would be a
comma-separated list of parameter names and data types.

Finally, the @hints parameter specifies any hints that need to be applied. We apply
the RECOMPILE hint, but notice that this query already had a hint, MAX RECURSION.
That hint had also to be part of my @stmt in order to match what was inside the stored
procedure. The plan guide replaces the existing OPTION; so if, like in this case, we need
the existing OPTION to be carried forward, we need to add it to the plan guide.

313

Chapter 8: Advanced Topics

From this point forward, without making a single change to the actual definition of
the stored procedure, each execution of this procedure will be followed by a recompile.
You can identify that a guide has been used by looking at the Select operator of the
resulting execution plan. If we were to execute the query as shown in Listing 8.14, it
would result in the information shown in Figure 8.11 being on display in the execution
plan's Select operator.

EXEC dbo.uspGetManagerEmployees @BusinessEntityID = 42 -- int

Listing 8.14

Figure 8.11

So, you can see if a plan guide was applied to a stored procedure.

314

Chapter 8: Advanced Topics

SQL plan guides

Let's look at another example. Let's assume that we have an application that submits
primarily ad hoc T-SQL to a database. Once again, we're concerned about performance,
and we've found that if only we can apply an OPTIMIZE FOR hint to the query, we'll get
the execution plan that we want to see.

The simple query in Listing 8.15, where we look up addresses based on a city, should be
familiar from Chapter 5.

SELECT *
FROM Person.Address
WHERE City = 'LONDON';

Listing 8.15

From Listing 5.23, we already know that we can improve the performance of the above
query by applying the (OPTIMIZE FOR (@City = 'Mentor')) query hint, so let's
enforce that behavior via a SQL plan guide.

In order to be sure of the formatting of the query with parameters as the optimizer will
see it, you'll need to run the query through sp_get_query_template. This system
procedure generates parameterized query output that we can use to verify that what
we've done is the same as how the query will look when it has been parameterized by
the system.

EXEC sp_create_plan_guide @name = N'MySecondPlanGuide',
 @stmt = N'SELECT * FROM Person.Address WHERE City
 = @0', @type = N'SQL', @module_or_batch = NULL,
 @params = N'@0 VARCHAR(8000)',
 @hints = N'OPTION(OPTIMIZE FOR (@0 = ''Mentor''))'

Listing 8.16

315

Chapter 8: Advanced Topics

This returns two strings:

select * from Person . Address where City = @0

and

@0 varchar(8000)

You can see where we used these in the query above.

Now, when we run the query, with the plan guide created and enforced by the query
engine, we get the execution plan we want, as shown in Figure 8.12.

Figure 8.12

Template plan guides

As a final example, consider the query we used previously to demonstrate forced param-
eterization. If we determine that a procedure we cannot edit must have its PARAMETERI-
ZATION set to FORCED, we can simply create a template plan guide rather than changing
the settings on the entire database. A template plan guide will override parameterization
settings in queries.

316

Chapter 8: Advanced Topics

To get started, you have to have the query for which you're going to create a template. You
will need to use sp_get_query_template again, in order to see the structure of the
query, when parameterized. This will show you where SQL Server places the parameters.

You can then create the template guide, as shown in Listing 8.17.

EXEC sp_create_plan_guide @name = N'MyThirdPlanGuide',
 @stmt = N'SELECT 42 AS TheAnswer
 ,em.EmailAddress
 ,e.BirthDate
 ,a.City
FROM Person.Person AS p
 JOIN HumanResources.Employee e
 ON p.BusinessEntityID = e.BusinessEntityID
 JOIN Person.BusinessEntityAddress AS bea
 ON p.BusinessEntityID = bea.BusinessEntityID
 JOIN Person.Address a
 ON bea.AddressID = a.AddressID
 JOIN Person.StateProvince AS sp
 ON a.StateProvinceID = sp.StateProvinceID
 JOIN Person.EmailAddress AS em
 ON e.BusinessEntityID = em.BusinessEntityID
WHERE em.EmailAddress LIKE ''david%''
 AND sp.StateProvinceCode = ''WA'' ;', @type = N'TEMPLATE',
 @module_or_batch = NULL, @params = N'@0 VARCHAR(8000)',
 @hints = N'OPTION(PARAMETERIZATION FORCED)'

Listing 8.17

Plan guide administration

To see a list of plan guides within the database, just SELECT from the dynamic
management view, sys.plan_guides.

SELECT *
FROM sys.plan_guides

Listing 8.18

317

Chapter 8: Advanced Topics

Aside from the procedure to create plan guides, a second one, sp_control_plan_
guide, allows you to drop, disable, or enable a specific plan guide; or drop, disable, or
enable all plan guides in the database.

Simply run execute the sp_control_plan_guide procedure, changing the @
operation parameter appropriately.

EXEC sp_control_plan_guide @operation = N'DROP',
 @name = N'MyFourthPlanGuide'

Listing 8.19

Plan forcing

The USE PLAN query hint, introduced in SQL Server 2005, allows you to come as close
as you can to gaining total control over a query execution plan. This hint allows you to
take an execution plan, captured as XML, and store it "on the side," for example, inside a
plan guide, and then to use that plan on the query from that point forward. This doesn't
stop the optimizer from doing its job. You'll still get full optimization depending on the
query, but then whatever plan the optimizer produces is not used. Instead, it uses the
plan you're "forcing."

You cannot force a plan on:

• INSERT, UPDATE or DELETE queries

• queries that use cursors other than static and fast_forward

• distributed queries and full text queries.

Forcing a plan, just like all the other possible query hints, can result in poor performance.
Proper testing and due diligence must be observed prior to applying USE PLAN.

318

Chapter 8: Advanced Topics

Plan forcing can come in very handy if you have a poorly performing query and T-SQL
code that you can't modify. This is frequently the case when working with third-party
software. Plan forcing gives you the opportunity to get a preferred plan to work on the
query. This can be a huge benefit for performance but, as code, structures, or the data
changes, the "forced" plan may become suboptimal, hurting performance, or even inappli-
cable, at which point the optimizer can ignore the plan. As with hints, plan forcing should
be a last resort, not a standard tactic.

While you can simply attach an XML plan directly to the query in question, XML
execution plans are very large. If your attached plan exceeds 8k in size, then SQL Server
can no longer cache the query, because it exceeds the 8k string literal cache limit. For this
reason, you should employ USE PLAN, within a plan guide, so that the query in question
will be cached appropriately, enhancing performance. Further, you avoid having to deploy
and redeploy the query to your production system, if you want to add or remove a plan.

Following is an example of a simple query, encapsulated within a stored procedure, for
reporting some information from the SalesOrderHeader table.

ALTER PROCEDURE Sales.uspGetCreditInfo (@SalesPersonID INT)
AS
 SELECT soh.AccountNumber ,
 soh.CreditCardApprovalCode ,
 soh.CreditCardID ,
 soh.OnlineOrderFlag
 FROM Sales.SalesOrderHeader AS soh
 WHERE soh.SalesPersonID = @SalesPersonId;

Listing 8.20

When the procedure is run using the value for @SalesPersonID = 277, a Clustered
Index Scan results, and the plan is quite costly.

319

Chapter 8: Advanced Topics

Figure 8.13

If we change the value to 288, we see an Index Seek with a Bookmark Lookup.

Figure 8.14

This is much faster than the Clustered Index Scan. If the execution plan for the
procedure takes the first value for its plan, then the later values still use the Clustered
Index Scan. While we could simply add a plan guide that uses the OPTIMIZE FOR hint,
we're going to try USE PLAN instead.

First, we need to create an XML plan that behaves the way we want. We do this by taking
the SELECT criteria out of the stored procedure and modifying it to behave the correct
way. This results in the correct plan. In order to capture this plan, we'll wrap it with
STATISTICS XML, which will generate an actual execution plan in XML.

320

Chapter 8: Advanced Topics

SET STATISTICS XML ON
GO
SELECT soh.AccountNumber ,
 soh.CreditCardApprovalCode ,
 soh.CreditCardID ,
 soh.OnlineOrderFlag
FROM Sales.SalesOrderHeader AS soh
WHERE soh.SalesPersonID = 288;
GO
SET STATISTICS XML OFF
GO

Listing 8.21

This simple query generates a 107-line XML plan, which I won't show here. With the XML
plan in hand, we'll create a plan guide to apply it to the stored procedure.

EXEC sp_create_plan_guide
 @name = N'UsePlanPlanGuide',
 @stmt = N'SELECT soh.AccountNumber
 ,soh.CreditCardApprovalCode
 ,soh.CreditCardID
 ,soh.OnlineOrderFlag]
FROM Sales.SalesOrderHeader soh
WHERE soh.SalesPersonID = @SalesPersonID --288 --277',
 @type = N'OBJECT',
 @module_or_batch = N'Sales.uspGetCreditInfo',
 @params = NULL,
 @hints = N'OPTION(USE PLAN N''<ShowPlanXML…

Listing 8.22

Now, when we execute the query using the values that generate a bad plan...

EXEC [Sales].uspGetCreditInfo @SalesPersonID = 277

Listing 8.23

...we still get the execution plan we want, as shown in Figure 8.15.

321

Chapter 8: Advanced Topics

Figure 8.15

As a final reminder: using a plan guide, especially one that involves USE PLAN, should
be a final attempt at solving an otherwise unsolvable problem. As the data and statistics
change, or new indexes are added, plan guides can become outdated and the exact thing
that saved you so much processing time yesterday will be costing you more and more
tomorrow.

Summary

All the methods outlined in this final chapter of the book come with some degree of risk.
You can manage large execution plans using XQuery, but running large-scale, processor-
and memory-intensive queries against a production server carries as many risks as it does
benefits. Using plan guides and plan forcing, you can take direct control of the optimizer
and attempt to achieve better performance for your queries. However, by taking control
of the optimizer you can introduce problems as big as those you're attempting to solve. Be
very judicious in the use of the methods outlined in this chapter. Take your time and test
everything you do to your systems. Use the information you've gleaned from the other
chapters in the book, in order to be sure the choices you're making are the right ones.

	Introduction
	Changes in This Second Edition
	Code Examples

	Chapter 1: Execution Plan Basics
	What Happens When a Query is Submitted?
	Query parsing
	Algebrizer
	The query optimizer
	Query execution

	Estimated and Actual Execution Plans
	Execution Plan Reuse
	Clearing Plans from the Plan Cache
	Execution Plan Formats
	Graphical plans
	Text plans
	XML plans

	Getting Started
	Permissions required to view execution plans
	Working with graphical execution plans
	Working with text execution plans
	Working with XML execution plans
	Interpreting XML plans

	Retrieving Plans from the Cache Using Dynamic Management Objects
	Automating Plan Capture Using SQL Server Trace Events
	Execution plan events
	Capturing a Showplan XML trace
	Why the actual and estimated execution plans might differ

	Summary

	Chapter 2: Graphical Execution Plans for Basic Queries
	The Language of Graphical Execution Plans
	Some Single Table Queries
	Clustered Index Scan
	Clustered Index Seek
	NonClustered Index Seek
	Key Lookup
	Table Scan
	RID Lookup

	Table Joins
	Hash Match join
	Nested Loops join
	Compute Scalar
	Merge Join

	Filtering Data
	Execution Plans with GROUP BY and ORDER BY
	Sort
	Hash Match (aggregate)
	Filter
	A brief aside on rebinds and rewinds

	Execution Plans for INSERT, UPDATE and DELETE Statements
	INSERT statements
	UPDATE statements
	DELETE statements

	Summary

	Chapter 3: Text and XML Execution Plans for Basic Queries
	Text Execution Plans
	A text plan for a simple query
	A text plan for a slightly more complex query

	XML Execution Plans
	An estimated XML plan
	An actual XML plan
	Querying the XML
	Summary

	Chapter 4: Understanding More Complex Query Plans
	Stored procedures
	Using a sub-select
	Derived tables using APPLY
	Common table expressions
	MERGE
	Views
	Indexes
	Summary

	Chapter 5: Controlling Execution Plans with Hints
	Query Hints
	HASH|ORDER GROUP
	MERGE |HASH |CONCAT UNION
	LOOP|MERGE|HASH JOIN
	FAST n
	FORCE ORDER
	MAXDOP
	OPTIMIZE FOR
	PARAMETERIZATION SIMPLE|FORCED
	RECOMPILE
	ROBUST PLAN
	KEEP PLAN
	KEEPFIXED PLAN
	EXPAND VIEWS
	MAXRECURSION
	USE PLAN

	Join Hints
	LOOP
	MERGE

	Table Hints
	Table hint syntax
	NOEXPAND
	INDEX()
	FASTFIRSTROW

	Summary

	Chapter 6: Cursor Operations
	Simple cursors
	Logical operators
	Physical operators

	More cursor operations
	Static cursor
	Keyset cursor
	READ_ONLY cursor

	Cursors and performance
	Summary

	Chapter 7: Special Datatypes and Execution Plans
	XML
	FOR XML
	OPENXML
	XQuery

	Hierarchical Data
	Spatial Data
	Summary

	Chapter 8: Advanced Topics
	Reading Large-scale Execution Plans
	Parallelism in Execution Plans
	Max degree of parallelism
	Cost threshold for parallelism
	Are parallel plans good or bad?
	Examining a parallel execution plan

	How Forced Parameterization Affects Execution Plans
	Using Plan Guides to Modify Execution Plans
	Object plan guides
	SQL plan guides
	Template plan guides
	Plan guide administration
	Plan forcing

	Summary

	OLE_LINK2
	latest
	_GoBack
	OLE_LINK3
	OLE_LINK4
	_GoBack
	_GoBack
	Next
	Farthest
	Index
	_GoBack
	_GoBack
	sectionToggle0
	_GoBack
	_GoBack

