
M A N N I N G

Dan Bergh Johnsson
Daniel Deogun
Daniel Sawano
Foreword by Daniel Terhorst-North



MANN I NG
Shelter ISland

Secure by Design

DAN BERGH JOHNSSON
DANIEL DEOGUN
DANIEL SAWANO

Foreword by Daniel Terhorst-North



For online information and ordering of this and other Manning books, please visit www.manning.com. 
The publisher offers discounts on this book when ordered in quantity.

For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2019 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form 
or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the 
publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed 
as trademarks. Where those designations appear in the book, and Manning Publications was aware of a 
trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books 
we publish printed on acid- free paper, and we exert our best efforts to that end. Recognizing also our 
responsibility to conserve the resources of our planet, Manning books are printed on paper that is at 
least 15 percent recycled and processed without the use of elemental chlorine.

∞

Manning Publications Co. 
20 Baldwin Road
PO Box 761 
Shelter Island, NY 11964

ISBN 9781617294358

Printed in the United States of America

Development editor: Jennifer Stout
Technical development editor: Luis Atencio

Review editor: Aleks Dragosavljević
Production editor: David Novak

Copy editor: Frances Buran
Proofreader: Carl Quesnel

Technical proofreader: John Guthrie
Typesetter: Happenstance Type-O-Rama

Cover designer: Marija Tudor



To our families
—Dan Bergh Johnsson, Daniel Deogun, and Daniel Sawano





v

brief contents

Part 1 Introduction. .............................................................. 1
1 ■	 Why design matters for security 3
2 ■	 Intermission: The anti-Hamlet 31

Part 2 Fundamentals .............................................................47
3 ■	 Core concepts of Domain-Driven Design 49
4 ■	 Code constructs promoting security 87
5 ■	 Domain primitives 113
6 ■	 Ensuring integrity of state 137
7 ■	 Reducing complexity of state 164
8 ■	 Leveraging your delivery pipeline for security 189
9 ■	 Handling failures securely 223

10 ■	 Benefits of cloud thinking 251
11 ■	 Intermission: An insurance policy for free 278

Part 3 Applying the fundamentals ....................................293
12 ■	 Guidance in legacy code 295
13 ■	 Guidance on microservices 322
14 ■	 A final word: Don’t forget about security! 343





vii

contents
foreword xv
preface xix
acknowledgments xxi
about this book xxiii
about the authors xxvii
about the cover illustration xxix

Part 1 Introduction .................................................1

1 Why design matters for security 3
1.1 Security is a concern, not a feature 5

The robbery of Öst-Götha Bank, 1854 5 ■ Security features and 
concerns 6 ■ Categorizing security concerns: CIA-T 8

1.2 Defining design 9

1.3 The traditional approach to software security and its 
shortcomings 11
Explicitly thinking about security 14 ■ Everyone is a security 
expert 14 ■ Knowing all and the unknowable 14

1.4 Driving security through design 14
Making the user secure by design 15 ■ The advantages of the 
design approach 18 ■ Staying eclectic 21



viii contentsviii

1.5 Dealing with strings, XML, and a billion laughs 21
Extensible Markup Language (XML) 22 ■ Internal XML entities 
in a nutshell 22 ■ The Billion Laughs attack 23 ■ Configuring 
the XML parser 23 ■ Applying a design mindset 25 ■ Applying 
operational constraints 28 ■ Achieving security in depth 28

2 Intermission: The anti-Hamlet 31
2.1 An online bookstore with business integrity issues 33

The inner workings of the accounts receivable ledger 35 ■ How 
the inventory system tracks books in the store 36 ■ Shipping anti-
books 37 ■ Systems living the same lie 38 ■ A do-it-yourself 
discount voucher 38

2.2 Shallow modeling 39
How shallow models emerge 41 ■ The dangers of implicit 
concepts 42

2.3 Deep modeling 43
How deep models emerge 43 ■ Make the implicit explicit 45

Part 2 Fundamentals..............................................47

3 Core concepts of Domain-Driven Design 49
3.1 Models as tools for deeper insight 51

Models are simplifications 53 ■ Models are strict 56 ■ Models 
capture deep understanding 59 ■ Making a model means choosing 
one 61 ■ The model forms the ubiquitous language 63

3.2 Building blocks for your model 65
Entities 66 ■ Value objects 70 ■ Aggregates 73

3.3 Bounded contexts 77
Semantics of the ubiquitous language 77 ■ The relationship 
between language, model, and bounded context 78 ■ Identifying 
the bounded context 78

3.4 Interactions between contexts 81
Sharing a model in two contexts 82 ■ Drawing a context map 83

4 Code constructs promoting security 87
4.1 Immutability 88

An ordinary webshop 88 ■ Failing fast using contracts 95 
Checking preconditions for method arguments 97 ■ Upholding 
invariants in constructors 99 ■ Failing for bad state 101



ixcontents ix

4.3 Validation 102
Checking the origin of data 103 ■ Checking the size of data 105 
Checking lexical content of data 107 ■ Checking the data 
syntax 109 ■ Checking the data semantics 110

5 Domain primitives 113
5.1 Domain primitives and invariants 114

Domain primitives as the smallest building blocks 114 ■ Context 
boundaries define meaning 116 ■ Building your domain primitive 
library 118 ■ Hardening APIs with your domain primitive 
library 119 ■ Avoid exposing your domain publicly 120

5.2 Read-once objects 121
Detecting unintentional use 123 ■ Avoiding leaks caused by 
evolving code 125

5.3 Standing on the shoulders of domain primitives 127
The risk with overcluttered entity methods 127 ■ Decluttering 
entities 129 ■ When to use domain primitives in entities 132

5.4 Taint analysis 133

6 Ensuring integrity of state 137
6.1 Managing state using entities 138

6.2 Consistent on creation 140
The perils of no-arg constructors 140 ■ ORM frameworks and  
no-arg constructors 142 ■ All mandatory fields as constructor  
arguments 143 ■ Construction with a fluent interface 147 
Catching advanced constraints in code 149 ■ The builder pattern 
for upholding advanced constraints 151 ■ ORM frameworks 
and advanced constraints 155 ■ Which construction to use 
when 155

6.3 Integrity of entities 156
Getter and setter methods 156 ■ Avoid sharing mutable 
objects 158 ■ Securing the integrity of collections 160

7 Reducing complexity of state 164
7.1 Partially immutable entities 166

7.2 Entity state objects 168
Upholding entity state rules 168 ■ Implementing entity state as a 
separate object 172



x contentsx

7.3 Entity snapshots 174
Entities represented with immutable objects 175 ■ Changing the 
state of the underlying entity 177 ■ When to use snapshots 180

7.4 Entity relay 181
Splitting the state graph into phases 183 ■ When to form an entity 
relay 186

8 Leveraging your delivery pipeline for security 189
8.1 Using a delivery pipeline 190

8.2 Securing your design using unit tests 191
Understanding the domain rules 192 ■ Testing normal 
behavior 193 ■ Testing boundary behavior 194 ■ Testing with 
invalid input 197 ■ Testing the extreme 200

8.3 Verifying feature toggles 201
The perils of slippery toggles 201 ■ Feature toggling as a 
development tool 202 ■ Taming the toggles 205 ■ Dealing 
with combinatory complexity 209 ■ Toggles are subject to 
auditing 209

8.4 Automated security tests 210
Security tests are only tests 210 ■ Working with security 
tests 211 ■ Leveraging infrastructure as code 212 ■ Putting it 
into practice 212

8.5 Testing for availability 213
Estimating the headroom 213 ■ Exploiting domain rules 215

8.6 Validating configuration 216
Causes for configuration-related security flaws 216 ■ Automated 
tests as your safety net 218 ■ Knowing your defaults and verifying 
them 219

9 Handling failures securely 223
9.1 Using exceptions to deal with failure 224

Throwing exceptions 225 ■ Handling exceptions 227 ■ Dealing 
with exception payload 231

9.2 Handling failures without exceptions 232
Failures aren’t exceptional 232 ■ Designing for failures 234

9.3 Designing for availability 237
Resilience 237 ■ Responsiveness 238 ■ Circuit breakers and 
timeouts 238 ■ Bulkheads 241



xicontents xi

9.4 Handling bad data 244
Don’t repair data before validation 245 ■ Never echo input 
verbatim 247

10 Benefits of cloud thinking 251
10.1 The twelve-factor app and cloud-native concepts 252

10.2 Storing configuration in the environment 253
Don’t put environment configuration in code 254 ■ Never 
store secrets in resource files 255 ■ Placing configuration in the 
environment 256

10.3 Separate processes 258
Deploying and running are separate things 258 ■ Processing 
instances don’t hold state 259 ■ Security benefits 261

10.4 Avoid logging to file 261
Confidentiality 262 ■ Integrity 262 ■ Availability 263 
Logging as a service 263

10.5 Admin processes 266
The security risk of overlooked admin tasks 267 ■ Admin tasks as 
first-class citizens 267

10.6 Service discovery and load balancing 269
Centralized load balancing 269 ■ Client-side load 
balancing 270 ■ Embracing change 271

10.7 The three R’s of enterprise security 271
Increase change to reduce risk 272 ■ Rotate 273 ■ Repave 274 
Repair 276

11 Intermission: An insurance policy for free 278
11.1 Over-the-counter insurance policies 279

11.2 Separating services 280

11.3 A new payment type 281

11.4 A crashed car, a late payment, and a court case 285

11.5 Understanding what went wrong 287

11.6 Seeing the entire picture 287

11.7 A note on microservices architecture 292



xii contentsxii

Part 3 Applying the fundamentals .................... 293

12 Guidance in legacy code 295
12.1 Determining where to apply domain primitives in  

legacy code 296

12.2 Ambiguous parameter lists 297
The direct approach 299 ■ The discovery approach 300 	

The new API approach 302

12.3 Logging unchecked strings 303
Identifying logging of unchecked strings 303 ■ Identifying implicit 
data leakage 304

12.4 Defensive code constructs 305
Code that doesn’t trust itself 306 ■ Contracts and domain 
primitives to the rescue 308 ■ Overlenient use of Optional 309

12.5 DRY misapplied—not focusing on ideas, but on text 310
A false positive that shouldn’t be DRY’d away 311 ■ The 
problem of collecting repeated pieces of code 311 ■ The good 
DRY 312 ■ A false negative 312

12.6 Insufficient validation in domain types 313

12.7 Only testing the good enough 315

12.8 Partial domain primitives 316
Implicit, contextual currency 317 ■ A U.S. dollar is not a 
Slovenian tolar 318 ■ Encompassing a conceptual whole 319

13 Guidance on microservices 322
13.1 What’s a microservice? 323

Independent runtimes 324 ■ Independent 
updates 324 ■ Designed for down 324

13.2 Each service is a bounded context 325
The importance of designing your API 326 ■ Splitting 
monoliths 328 ■ Semantics and evolving services 329

13.3 Sensitive data across services 329
CIA-T in a microservice architecture 330 ■ Thinking 
“sensitive” 331

13.4 Logging in microservices 332
Integrity of aggregated log data 333 ■ Traceability in log data 334 
Confidentiality through a domain-oriented logger API 337



xiiicontents xiii

14 A final word: Don’t forget about security! 343
14.1 Conduct code security reviews 344

What to include in a code security review 345 ■ Whom to include 
in a code security review 346

14.2 Keep track of your stack 346
Aggregating information 346 ■ Prioritizing work 347

14.3 Run security penetration tests 347
Challenging your design 348 ■ Learning from your 
mistakes 349 ■ How often should you run a pen test? 349 
Using bug bounty programs as continuous pen testing 350

14.4 Study the field of security 351
Everyone needs a basic understanding about security 351 
Making security a source of inspiration 352

14.5 Develop a security incident mechanism 353
Incident handling 354 ■ Problem resolution 354 ■ Resilience, 
Wolff’s law, and antifragility 356

  index 361





xv

foreword
In the early 1990s I was in my first graduate job in the middle of a recession, and 
they were having a tough round of layoffs. Someone noticed that each victim’s UNIX 
account was being locked out just before the friendly HR person came to tap them on 
the shoulder and escort them from the building. They wrote a small script to monitor 
differences in the user password file and display the names of users whose accounts 
were being locked. We suddenly had a magic tool that would identify the next target 
just before the hatchet fell...and an enormous security and privacy breach.

In my second job, as a programmer at a marketing firm, there were lots of pass-
word-protected Microsoft Word documents flying around, often with sensitive commer-
cial information in them. I pointed out how weak the encryption was on these files, and 
how easy it was to read them using a freely available tool that was making the rounds on 
Usenet (your grandparents’ Google Groups). No one listened until I started emailing 
the files back to the senders with the encryption removed.

Then I figured most people’s login passwords were probably too weak as well. I got 
the same lack of response until I wrote a script that ran a simple password-cracking tool 
on a regular basis, and emailed people their login passwords. There was a pretty high hit 
rate. At that stage I didn’t know anything about information theory, Shannon entropy, 
attack surface areas, asymmetric cryptography—I was just a kid with a password-crack-
ing tool. But I became the company’s de facto InfoSec Officer. Those were simpler times!

Over a decade later, as a developer at ThoughtWorks building a large-scale energy 
trading platform, I received what is still my favorite ever bug report. One of our testers 
noticed that a password field didn’t have a check for password length, which should 
have been 30 characters. However, she didn’t log the bug as “30 character password 
limit isn’t being checked.” Instead, she thought “I wonder how much text I could shove 



xvi forewordxvi

into that password field?” By a process of trial and error, the final bug report was “If you 
enter more than 32,000 characters in the password field, then the application crashes.” She 
had turned a simple validation error into a denial-of-service security exploit, crashing 
the entire application server just by entering a suitably crafted password. (Some years 
later I was at a software testing conference where they decided to use iPads for confer-
ence registration, using an app they had written themselves. I learned you should never 
do this with software testers, when a tester friend tried registering as “Julie undefined” 
and brought the whole system to its knees. Testers are evil.)

Fast-forward another decade or so to the present day, and I watch in dismay as nearly 
every week yet another data security breach of a high-profile company appears in the 
news. I could cite some recent ones, but they will be ancient history by the time you read 
this, and newer, bigger, more worrying data hauls of passwords, phone numbers, credit 
card details, social security numbers, and other sensitive personal and financial data 
will have appeared on the dark web, only to be discovered and reported months or years 
later to an increasingly desensitized and vulnerable public.

Why is this picture so bleak? In a world of free multifactor authentication, biomet-
ric security, physical tokens, password suites like 1Password (https://1password.com/) 
and LastPass (https://www.lastpass.com/), and notification services like Have I Been 
Pwned (https://haveibeenpwned.com), you could be forgiven for thinking we’ve got 
security covered. But as Dan, Daniel, and Daniel point out in the introduction (I felt 
obliged to write this foreword on the basis there weren’t enough people called Daniel 
involved), there is no point having strong locks and heavy doors if a malicious actor can 
just lift the doors off their metaphorical hinges and walk off with the prize.

There is no such thing as a secure system, at least not in absolute terms. All security is 
relative to a perceived threat model, and all systems are more or less secure with respect 
to that model. The goal of this book, and the reason its content has never been more 
urgent or relevant, is to demonstrate that security is first and foremost a design consideration. 
It isn’t something you can graft on at the end, however well-intentioned you are.

Security is in the data types you choose, and how you represent them in code. Secu-
rity is in the domain terms you use, and how faithfully you model domain concepts 
and business rules. Security is in reducing the cognitive distance between the business 
domain and the tools you build to address customer needs in that domain.

As the authors demonstrate again and again throughout this book, reducing this 
cognitive distance eliminates entire classes of security risk. The easier we can make it 
for domain experts to recognize concepts and processes in the way we model a solu-
tion, and in the corresponding code, tests, and other technical artifacts, the more likely 
they are to spot problems. They can call out the discrepancies, inconsistencies, assump-
tions, and all the other myriad ways we build systems that don’t reflect the real world: 
online bookstores where you can buy a negative number of books, password fields that 
allow you to submit a decent-sized sonnet, and sensitive account information that can 
be viewed by casual snoopers.

Secure by Design is my favorite kind of book for two reasons. First, it weaves together 
two of my favorite fields: Application and Information Security—in which I am an 



xviiforeword xvii

enthusiastic amateur—and Domain-Driven Design—in which I hope I can claim some 
kind of proficiency. Second, it is a practical, actionable handbook. It isn’t just a call to 
arms about treating security seriously as a design activity, which would be a worthy goal 
in its own right, it also provides a raft of real examples, worked through from design 
considerations to actual code listings, that put meat on the bones of security by design.

I want to note a couple of standout examples, though there are many. One is the 
treatment of “shallow design,” exemplified by using primitive types like integers and 
strings to represent rich business concepts. This exposes you to risks like the password 
exploit (a Password type would be self-validating for length, say, in a way a string isn’t), 
or the negative books (a BookCount type wouldn’t allow negative values like an integer 
does). Reading this section, as someone who has been writing software professionally 
for over 30 years, I wanted to reach back through time and hit my younger program-
ming self on the head with this book, or at least leave it mysteriously on his desk with an 
Alice in Wonderland-style Read Me label on it.

Another exemplar is the topic of poor error handling, which is a huge source of 
potential security violations. Most modern programming languages have two types 
of code paths: the ones where things go OK, and the ones where bad things happen. 
The latter mostly live in a twilight zone of catch-blocks and exception handlers, or half-
hearted guard clauses. As programmers, our cognitive biases conspire to convince us 
we have covered all the cases. We even have the hubris to write comments like // this 
can’t happen. We are wrong again and again.

The late Joe Armstrong, an amazing systems engineer and inventor of the Erlang 
language, used to say that the only reliable way to handle an error is to “Let it crash!” 
The contortions we go through to avoid “letting it crash” range from the “billion-dollar 
mistake” of null pointers and their tricksy exceptions, through nested if-else stacks and 
the will-they-won’t-they fall-through logic of switch blocks, to leaning on our IDEs to 
generate the arcane boilerplate code for interpolating strings or evaluating equality.

We know smaller components are easier to test than larger ones. They have exponen-
tially fewer places for bugs to hide, and it is therefore easier to reason about their secu-
rity. However, we are only beginning to understand the security implications of running 
a system of hundreds or thousands of small components—microservices or serverless 
architectures—and the fledgling domains of Observability and Chaos Engineering are 
starting to gain mindshare in a way DevOps and Continuous Delivery did before them.

I see Secure by Design as an important contribution to this trajectory, but focusing on 
the very heart of the development cycle, in the domain-modeling activities that DDD 
folks refer to as knowledge crunching, and leveraging the ideas of ubiquitous language and 
bounded contexts to bring security to the fore in programming, testing, deployment, and 
runtime. Shallow modeling and post hoc security audits don’t cut it anymore.

We can’t all be security experts. We can all be mindful of good Domain-Driven Design 
and its consequent impact on security.

Daniel Terhorst-North, Security Amateur, London, July 2019





xix

preface
As developers, good design feels natural to us. Even before we met, all three of us 
enjoyed good code: code that speaks its intention, that captures the ideas of its creators 
in ways that are easy to understand, and that’s intuitive to work with. We assume you 
also like good code. We also share a common interest in security, realizing both how 
important and how hard that work is. The digitization of our world is a marvelous 
thing, but bad security is one of the things that can undermine it.

Over the years, we’ve met and worked with lots of people. We’ve discussed code and 
design in general, and security in particular. The idea that high-quality programming 
practices can reduce the number of security-related mistakes gradually took hold and 
grew. If programmers could have that kind of support at their fingertips, it could have a 
tremendous impact, making our world a little bit more stable. This is the idea that later 
became secure by design and this book. Independently, we’ve tried and tested that idea 
in various forms, most of which never got a name, and we’ve met and exchanged ideas 
with many people. Some of these exchanges have left a somewhat bigger imprint and 
deserve mentioning—at the risk of not mentioning other important exchanges.

Some important influences came from Eric Evans. His ideas about Domain-Driven 
Design (DDD) provided a terminology to talk about how code should capture meaning. 
In 2008, security researcher John Wilander and DDD enthusiast Dan Bergh Johnsson 
began to work together, and security entered the mix. The ideas from DDD came to form 
the platform for their discussions about security and code. Together, they coined the 
phrase Domain-Driven Security in 2009, which was one of the first-named front-runners 
to secure by design. Upon presenting at the OWASP European conference in 2010, they 
realized that Erlend Oftedal in Oslo had been playing with similar ideas, and the discus-
sion broadened. These discussions led to a deeper understanding of how to mitigate risks 



xx prefacexx

such as injection flaws and cross-site scripting (XSS). In 2011, Daniel Deogun and Daniel 
Sawano joined the team, which started an era of increased industry practice. We evolved 
ideas on using design for improved security and tried them out in practice on a large 
scale, and, to our delight, they worked surprisingly well. For example, a client of ours 
secretly ordered a security audit to test one of our projects, and it came out with only one 
solitary security remark, where a comparable project received a list of 3,000 remarks!

Spreading our thoughts and findings through projects, blog posts, and conference 
presentations, we put more and more ideas under the umbrella of using design to 
avoid security weaknesses, until Daniel Deogun was approached by Manning in 2015 
with a proposal to put these kinds of ideas into the form of a book. At the time of writ-
ing these lines in 2019, we’ve covered a lot of ground, and the book has become both 
thicker and denser than we had intended. But we’ve tried to only include material we 
think is important for security. We’ve also taken care to ensure that the book isn’t too 
dependent on specific languages or frameworks. We hope that the ideas of secure by 
design transcend languages and frameworks and won’t be outdated soon. We’re glad 
you picked up a copy of this book, and hope you’ll find it useful to make this wonderful 
digital world somewhat better, somewhat more stable, and somewhat more secure—to 
make it secure by design.



xxi

acknowledgments
We want to thank the wonderful community of software professionals that we have the 
honor to be part of. Thanks for all the conference discussions, thanks for all the blog 
posts, thanks for all the code. Without you, all our professional lives would be much duller.

We also want to thank those who have brought this book to life. Thanks to our patient 
editors—Cynthia Kane, Toni Arritola, and Jennifer Stout—who have given us excellent 
feedback on content and style. Thanks to our wonderful copy editor, Rachel Head, 
who has polished our rough, nonnative English to the shiny phrasings you read on 
these pages. And thanks to the Manning production team, who helped turn the manu-
script into the book you’re reading. Much appreciation goes to Daniel Terhorst-North 
for contributing the foreword and for his helpful feedback while writing it. Thanks to 
Gojko Adzic, Erlend Oftedal, Peter Magnusson, Jimmy Nilsson, Luis Atencio, and John 
Guthrie for technical reviews and feedback. To all the reviewers: Adrian Citu, Alex-
ander Zenger, Andrea Barisone, Arnaldo Gabriel Ayala Meyer, Christoffer Fink, Daut 
Morina, David Raymond, Doug Sparling, Eros Pedrini, Henrik Gering, Jan Goyvaerts, 
Jeremy Lange, Jim Amrhein, John Kasiewicz, Jonathan Sharley, Joseph Preston, Pietro 
Maffi, Richard Vaughan, Robert Kielty, Steve Eckmann, and Zorodzayi Mukuya, your 
suggestions helped make this a better book. Thanks to the publisher, who believed in 
us and the book’s topic. We also want to thank everyone else involved in creating this 
book, but whom we’ve not interacted with directly. It’s amazing how much goes into 
creating a book like this.

Dan Bergh Johnsson: First, and above all, I want to thank my lovely wife, Fia, and my 
wonderful sons, Karl and Anton. Thanks for all the tea and support. You are the light 
of my eyes. On a more professional note, I’d like to thank Cons Åhs, who taught me 



xxii acknowledgmentsxxii

programming; Eric Evans, for showing me the rigor of Domain-Driven Design; and 
John Wilander, who helped me understand the connection between good program-
ming and good security. Thanks to the security professionals who can’t be named. And 
finally, thanks to the spirit that lives in the computer.

Daniel Deogun: I’d like to thank my beautiful wife, Ida, and my beloved children, Lucas 
and Isac. Thank you for all your support, love, and understanding during the so-often 
stressful times while writing this book. This wouldn’t have been possible without you—
thank you. I’d also like to thank everyone who’s challenged my ideas over the years; 
all the questions, comments, and interesting discussions have truly been helpful while 
working on this book.

Daniel Sawano: I want to thank my wonderful wife, Elin, and my beloved children, Alvin 
and Oliver, for the patience with all the late nights and long hours spent on writing this 
book—thank you for all your love and support. I also want to thank everyone I’ve had 
the opportunity to work with during my career (none mentioned, none forgotten). 
Thank you for the inspiring discussions, debates, and knowledge-sharing. You’ve all 
played a part in shaping the ideas that are expressed in this book.



xxiii

about this book
Secure by Design is a book about security that comes with a different twist than regu-
lar security books. Instead of taking the classical approach, where security is the main 
focus, it makes software design its primary concern. This might sound a bit odd at 
first, but when you realize that security flaws are often caused by poor design, then the 
approach of looking at security from a design perspective becomes much more appeal-
ing. Because, what if a fair amount of security vulnerabilities could be avoided using 
good design and best practices? Then it would certainly revolutionize how we look at 
software development and justify why you need to make certain design choices.

Exploring how software design relates to software security is therefore the main 
objective of this book. This, in turn, means that you won’t find discussions about clas-
sical security topics like buffer overflows, weaknesses in cryptographic hash functions, 
or which authentication method to use. Instead, you’ll learn why certain design choices 
matter for security and how to use them to craft secure software from the inside out.

Who should read this book
Secure by Design is a book primarily written for software developers, but it can be read by 
anyone with a technical background and interest in security. What’s important when 
reading this book is that you feel comfortable reading C-like syntax and have basic 
programming skills in a language such as Java or C#. Examples and best practices are 
all presented in a way that makes them relevant, regardless of your experience level, 
because learning how to design secure code is important to everyone, no matter if 
you’re a junior developer or an experienced architect. Reading Secure by Design is there-
fore a good idea if you want to improve your overall programming skills or need to 



xxiv about this bookxxiv

make an existing codebase more secure. The book is also suitable as lecture material at 
universities or to be read in study groups.

How this book is organized: A roadmap
This book is divided into three parts and 14 chapters. The first two parts end with an 
intermission that tells a story about security flaws that could have been avoided using 
the concepts in this book. The intermissions are based on real cases we’ve worked on 
during our careers and serve as mini-case studies, as well as being a good read.

Part 1 introduces you to the concepts of this book and why we believe they are an 
effective approach to creating secure software.

¡	Chapter 1—Teaches you how design can drive software security and how it can 
enable you to create secure software with ease. It also contains an appetizing 
example of how a security flaw can be prevented through a secure by design 
mindset.

¡	Chapter 2—Is an intermission about how a weak software design caused signifi-
cant economic loss. The security weaknesses in this case study could have been 
avoided if the concepts presented in part 2 had been utilized.

Part 2 is about the fundamental concepts that makes up the foundation of secure by 
design. The chapters are roughly laid out so that they start with concepts close to the 
code and then move up to higher abstraction levels. Some chapters build on previous 
ones, so it makes sense to read them in the order presented. You’re free to read these 
in any order you want, of course, but if you run into concepts or terms you don’t really 
understand, you might want to go back to previous chapters to read up on them.

¡	Chapter 3—Teaches you some of the core concepts of Domain-Driven Design 
(DDD). The concepts discussed are essential for understanding many of the 
ideas of secure by design. The ideas and the terminology you learn in this chap-
ter are used extensively throughout the book, so if you’re not well-versed in DDD, 
we recommend you start with this chapter.

¡	Chapter 4—Introduces you to some code constructs that are important for secu-
rity. It talks about the benefits of immutability and failing fast and how you can 
perform data validation in a secure way.

¡	Chapter 5—Discusses domain primitives and how they form the foundation of 
secure code. It also teaches you about the benefits of read-once objects and how 
domain primitives are the foundation for creating secure entities.

¡	Chapter 6—Talks about the basics of creating secure entities: how you can ensure 
that entities are consistent upon creation and how to protect the integrity of enti-
ties during their life cycle.

¡	Chapter 7—Continues with the topic of entities and teaches you different 
approaches to handle the inherent complexity that comes with them.



xxvabout this book xxv

¡	Chapter 8—Shows you how you can use your delivery pipeline to enhance and 
verify the security of software. It also discusses some of the challenges when auto-
mating security testing.

¡	Chapter 9—Teaches you how to deal with failures and errors without compromis-
ing security. In addition to that, you’ll also explore some ways to mitigate failures 
through design.

¡	Chapter 10—Describes how popular design principles used in cloud environ-
ments can be used to increase the security of your systems, even though the 
design principles were originally developed for other purposes.

¡	Chapter 11—Another intermission, relating how a system built with a service- 
oriented architecture ended up being broken even though none of the individual 
services were. The story is a real-life example of the unique security challenges 
that you’ll face when building a system of systems. These challenges are discussed 
further in part 3 of the book.

Part 3 discusses how to apply what you’ve learned in part 2. You’ll learn how to spot 
common security issues and how you can use secure by design concepts to address 
them.

¡	Chapter 12—Looks at design patterns and code constructs that are problematic 
from a security perspective and that are common in legacy code. You’ll learn how 
to spot them and how to fix them.

¡	Chapter 13—Goes into the (sometimes subtle) challenges that come with micro-
service architectures and how they can be addressed using secure software design.

¡	Chapter 14—Discusses the importance of explicitly thinking about security every 
now and then. It also gives you some hints about important areas to address when 
creating secure software systems.

About the code
The concepts in this book are language agnostic, but we’ve chosen to use Java as the 
programming language for all code examples, partly because it’s one of the most com-
monly used programming languages, but also because its C-style syntax should be read-
able by any developer. The purpose of the code is to showcase certain concepts, not to 
be fully runnable examples. We’ve tried to make the code look as close as possible to 
what you’d write in real life. At the same time, there’s always a need to remove any dis-
tractions that could interfere with the teaching. This means we’ve sometimes omitted 
parts of methods and classes to improve clarity.

Another convention used in this book is that names of test methods (as in JUnit   
@Test annotated methods) are always written in snake case. The reason for this is read-
ability. When using a behavior-driven development (BDD) style to express tests (as we 
often like to do), the names of the test methods tend to become long sentences—using 
proper grammar and being understandable by others than just developers. Very long 
method names become almost unreadable when using camel case. Snake case solves 



xxvi about this bookxxvi

that problem. All other method and class names use camel case, which is the standard 
naming convention in Java.

This book contains many examples of source code, both in numbered listings and in 
line with normal text. In both cases, source code is formatted in a fixed-width font 
like this to separate it from ordinary text.

In many cases, the original source code has been reformatted; we’ve added line 
breaks and reworked indentation to accommodate the available page space in the 
book. Additionally, comments in the source code have often been removed from the 
listings when the code is described in the text. Code annotations accompany many of 
the listings, highlighting important concepts.

The code for the examples in this book is available for download from the Manning 
website at https://www.manning.com/books/secure-by-design.

liveBook discussion forum
Purchase of Secure by Design includes free access to a private web forum run by Manning 
Publications where you can make comments about the book, ask technical questions, 
and receive help from the authors and from other users. To access the forum, go to 
https://livebook.manning.com/#!/book/secure-by-design/discussion. You can also 
learn more about Manning’s forums and the rules of conduct at https://livebook.man-
ning.com/#!/discussion.

Manning’s commitment to our readers is to provide a venue where a meaningful 
dialogue between individual readers and between readers and the authors can take 
place. It is not a commitment to any specific amount of participation on the part of the 
authors, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the authors some challenging questions lest their interest stray! The 
forum and the archives of previous discussions will be accessible from the publisher’s 
website as long as the book is in print.



xxvii

about the authors

The authors from left to right: Dan Bergh Johnsson, Daniel Deogun, and Daniel Sawano

Dan Bergh Johnsson, Daniel Deogun, and Daniel Sawano have collectively been work-
ing with security and development for several decades. They are developers at heart, 
and understand that security is often a side-concern. They’ve also evolved work habits 
that enable them to develop systems in a way that promotes security while focusing 
on high-quality design habits—something that’s easier for developers to keep in mind 
during their daily work. All three are established international speakers and often pres-
ent at conferences on topics regarding high-quality development, as well as security.





xxix

about the cover illustration
Typically, the cover of a software security book signals values such as strength, defense, 
armor, or other signs of war. Even the terminology in the software security field is a 
bit like that, with terms like attackers and attack vectors. Because Secure by Design is about 
creating, rather than destroying, and about building instead of breaking software, it 
is appropriate that the illustration we’ve chosen conveys values such as creativity and 
nurturing.

The figure on the cover of Secure by Design is a “Sultana, or Kaddin,” which means 
“wife” in Turkish. The illustration is taken from a collection of costumes of the Ottoman 
Empire published on January 1, 1802, by William Miller of Old Bond Street, London. 
The title page is missing from the collection and we have been unable to track it down 
to date. The book’s table of contents identifies the figures in both English and French, 
and each illustration bears the names of two artists who worked on it, both of whom 
would no doubt be surprised to find their art gracing the front cover of a computer pro-
gramming book...two hundred years later.

The collection was purchased by a Manning editor at an antiquarian flea market 
in the “Garage” on West 26th Street in Manhattan. The seller was an American based 
in Ankara, Turkey, and the transaction took place just as he was packing up his stand 
for the day. The Manning editor didn’t have on his person the substantial amount of 
cash that was required for the purchase, and a credit card and check were both politely 
turned down. With the seller flying back to Ankara that evening, the situation was get-
ting hopeless. What was the solution? It turned out to be nothing more than an old-fash-
ioned verbal agreement sealed with a handshake. The seller simply proposed that the 
money be transferred to him by wire, and the editor walked out with the bank infor-
mation on a piece of paper and the portfolio of images under his arm. Needless to say, 



xxx about the cover illustrationxxx

we transferred the funds the next day, and we remain grateful and impressed by this 
unknown person’s trust in one of us. It recalls something that might have happened a 
long time ago.

The pictures from the Ottoman collection, like the other illustrations that appear on 
our covers, bring to life the richness and variety of dress customs of two centuries ago. 
They recall the sense of isolation and distance of that period—and of every other his-
toric period except our own hyperkinetic present. Dress codes have changed since then 
and the diversity by region, so rich at the time, has faded away. It is now often hard to tell 
the inhabitant of one continent from another. Perhaps, trying to view it optimistically, 
we have traded a cultural and visual diversity for a more varied personal life. Or a more 
varied and interesting intellectual and technical life.

We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the 
computer business with book covers based on the rich diversity of regional life of two 
centuries ago‚ brought back to life by the pictures from this collection.



Part 1

Introduction

In this first part, we set the stage for this book. We present how we think about 
security, development, and how they fit together. We analyze where problems 
tend to occur and what we think can be done about it. The opening chapter cov-
ers these aspects, together with an example of what we mean by secure by design.

We finish this part with an intermission chapter that is more of a light read. 
Here, we introduce some of the ideas of the next part through a case study from a 
client we’ve worked with. So, let’s get started with how security and development 
fit together, and the basic ideas behind secure by design.





3

1Why design   
matters for security

This chapter covers
¡	Viewing security as concerns, not features

¡	Design and why it’s important for security

¡	Building in lots of security by focusing on good 
design

¡	Addressing the Billion Laughs attack

Imagine yourself setting up a typical software project. You assemble a team of devel-
opers, testers, and domain experts and start outlining the key requirements. With 
input from stakeholders, you come up with a list of important attributes: perfor-
mance, security, maintainability, and usability. As with many software projects, qual-
ity takes top priority, time to market is of the essence, and you need to stay within 
budget. You decide to be proactive and add security features to your backlog, and 
some of the other team members come up with a good list of security libraries you 
can use in your code. After the initial planning, you get the project up and running 
and start implementing features and business functionality. The team is motivated 
and delivers features at a good pace.

Although you know you should think security all the time, it gets in the way of other 
tasks you’re focused on. In addition to that, most of the time you aren’t working on 
internet-facing code anyway, so those web security libraries you thought about using 



4 chapter 1 Why design matters for security 

don’t really fit. Plus, the security-related tasks in the backlog keep getting lower priority 
compared to the business functionality. After all, time is tight, and it doesn’t matter if 
the system is secure if the features the users need aren’t there. Business functionality is 
where the money is, and no user is going to thank you for putting CSRF tokens in your 
login form.1 Besides, you can always go back and deal with lower priority tasks later.

As a developer, you feel the responsibility of security is a burden you’d rather not 
have on your shoulders. You think it’d be better if the company brought in a security 
expert on a permanent basis as part of the development team. Developers are experts at 
crafting good code, building scalable architectures, and using continuous delivery, not 
waving magic wands to cast spells that can defend against evil hackers in black hoodies. 
You have never understood why security has to be so secretive in the first place, and it’s 
much more fulfilling to create than it is to destroy. The project must move forward, so 
you keep your focus on the top of the backlog and implementing features.

After some time, your software is ready to go into production. Your project’s future 
can now play out in a couple of different ways. One way is that you conduct a security 
audit and a penetration test.2 But the security review report finds vulnerabilities that are 
considered to be severe enough that you must address them before deploying to pro-
duction. This sets your project back a couple of weeks, or maybe even months, with lost 
revenue as a consequence. If you’re unlucky, solving the issues involves rewriting the 
entire program from scratch, so the stakeholders decide to scrap the project, and it 
never makes it into production.

Another scenario is that a security review is never conducted, and you deploy into pro-
duction. Users start to use your service, and all is well, until one day you find your service has 
made it into the news after being hacked and having all its user data leaked. Those hard-
earned users are now abandoning your service quicker than rats leaving a sinking ship.

Although this is a fictional story, it’s not that far from reality. During our careers, 
we’ve seen similar scenarios play out more than once. A couple of interesting things are 
at play here, and some questions arise:

¡	Why is it that security tasks always get lower priority compared to other tasks?
¡	Why are developers in general so seemingly uninterested in security?
¡	Experts keep telling developers to think more about security, so why isn’t every-

one doing it?
¡	Why don’t managers realize they need to include security experts in the team just 

as they put testers in the team?

Literature and experts have been telling us to focus more on security for a long time. 
Alas, we keep seeing news about systems being hacked every so often. Something is 
clearly not working.

IMPORTANT  In order to efficiently and effortlessly create secure software, you 
need to have a mindset different from what you might be used to.

1 For more about CSRF tokens, see https://en.wikipedia.org/wiki/Cross-site_request_forgery.
2 A penetration test is a test performed on a system to uncover possible security weaknesses.



5Security is a concern, not a feature

What if there were a different way to approach software security that allowed you to 
avoid many of the problems we see in our industry today? We believe that in order 
to efficiently and effortlessly create secure software, you need to have a mindset that 
might be different from what you’re used to—a mindset where you focus more on 
design rather than on security.

This might sound counterintuitive at first, but in this chapter, we’ll explain what we 
mean by the word design and why it’s important for security. We’ll discuss some of the 
shortcomings of the traditional approach to software security and show you how you 
can use design to overcome those issues. We’ll also provide a couple of examples of how 
to apply these ideas in the real world in order to give you a first taste of some of the con-
cepts covered in the upcoming chapters.

1.1 Security is a concern, not a feature
A productive way to view security is as a concern—as in, “we’re concerned about secu-
rity.” But it’s not uncommon to come across situations where security is described as 
a set of features. The difference is that even when security features address a specific 
security problem, your concern about security may not have been met. To illustrate how 
security is a concern rather than a feature, let’s start with a historical example. Let’s go 
back in time to one of the first recorded bank robberies in history to see how security 
features like high-quality locks don’t matter if hinges are weak. In the example, the fea-
tures implemented didn’t prevent the robbery, so the concern for security wasn’t met.

1.1.1 The robbery of Öst-Götha Bank, 1854

It is the night of March 25, 1854, and the Swedish Öst-Götha Bank is soon to be robbed. 
A military corporal and former farmer, Nils Strid, walks silently up to the bank with 
his companion, the blacksmith, Lars Ekström. The outer door to the bank office is 
locked, but the key hangs outside on a nail if you know where to look. The bank has 
also invested in high-quality locks for the vault—more or less impossible to pick. But 
for blacksmith Lars, it’s not a big job to splinter the hinges and open the vault door 
backward. The two perpetrators walk away with the entire treasury of the bank: 900,000 
riksdaler, the official Swedish currency at the time.3

For years, this was one of the largest heists in history. Not until the great train robbery 
in Buckinghamshire, England, at Bridego Railway Bridge in 1963, would the loot be of 
a similar size. In Sweden, the burglars left behind a single three-riksdaler banknote,4

together with a message with a silly rhyming verse:

Vi länsat haver Östgötha Bank och mången rik knös torde blivit pank. Vi lämna dock en 
tredaler kvar ty hundar pissar på den som inget har. 

We now have plundered Östgötha Bank, and many moneybags will become broke. However, 
we leave a three-daler behind, because dogs piss on those who have naught.

3 Comparing this to the value of money nowadays is hard, but a comparable sum would be in the range 
of 5 to 10 million dollars.

4 Yes, there actually were notes with the denomination of three.



6 chapter 1 Why design matters for security 

Apart from being an interesting historical event, the robbery is also interesting from a 
security point of view in two different ways: one legal and one technical. From a legal 
perspective, the robbery resulted in new laws mandating a certain level of bank secu-
rity. These laws forced the banks at that time to adhere to some level of security aware-
ness and practices. The first, passed in the following year, 1855, was one of the earliest 
examples of regulatory security. From a technical perspective, the robbers consistently 
attacked the bank’s weak spots: the office door was locked, but the key was poorly hid-
den; the vault locks were of high quality, but the hinges could be broken.

What this story spotlights is how security can be viewed as a set of features—locks and 
hinges. In our example, using high-quality locks gave the perception of security, but secu-
rity wasn’t implemented by that feature as such. Having high-quality locks isn’t sufficient 
if the key hangs on a nail or if the vault door hinges are weak. Rather than treating security 
as a set of features, it’s more fruitful to understand it as a concern that should be met.

Had the bank viewed security as a concern, it would have asked, “How do we stop 
people from walking away with the bank’s money?” The answer wouldn’t have been with 
a lock; it should have included keeping the office key elsewhere or checking if there 
were other ways to force the vault door. The bank’s owners might have come up with 
novel ideas about alarms. They might have invented some of the theft-deterring mech-
anisms that emerged during the coming century, but they wouldn’t have relied on just 
having a lock on the door.

Now let’s return from nineteenth-century banking to the contemporary world of 
software development. It’s time to see how the idea of security as a feature or a concern 
applies to your projects today. In the next section, we’ll show you how you can turn from 
specifying security as a feature to identifying security as a concern.

1.1.2 Security features and concerns

Software is often described in the language of features (or what you can do with the 
product). For example, this is an app that lets you share a shopping list; this is a site 
where you can upload photos for others to see and comment on; this is a program for 
creating presentation slideware. Software is also described in this way in formal contexts.

Many methodologies have their primary focus on what the system should do—the 
functional side. The Rational Unified Process (RUP), which still influences a lot of soft-
ware development, puts the major focus on the functionality in the form of use cases. 
Other considerations like response time or capacity required are put in a peripheral 
section called supplementary specifications. In the agile community, the dominating 
format for describing what’s to be done in the next sprint (or comparable) is a user story
in a format along the lines of “As a such-and-such user, I’d like this feature so that I reap 
this benefit.” With this focus on features (what the system does), it’s no surprise that 
often security is described in the same way: we need a login page; we must have a fraud 
detection module; there should be logging.

Security experts John Wilander and Jens Gustavsson researched how security was 
described and specified. They studied a selection of major software initiatives that were 



7Security is a concern, not a feature

financed through public funding. When security was mentioned, they found that 78% 
could be directly classified as security features.5

Of course, there exist security features that add value, both visible and invisible. A 
visible example can be a high-quality authentication mechanism that allows customers 
to trust that their access and communications are safe.6 The problem is that describing 
security through features often misses the point. Let’s try to phrase a security story to 
see how you can turn from a feature focus to a concern focus.

Let’s look at an example of user authentication at a photo-storing website. If you try to 
squeeze this into the format of a function-focused user story, you might end up with some-
thing like this: “As a user, I want a login page so that I can access my uploaded pictures.”

Although phrased as a feature, most probably the stakeholder is airing a concern about 
security. If you implement only this functionality, then you’ve met the objectives of the 
login page story. But the mere existence of a login page as such doesn’t provide the 
security you’re after. It might seem obvious that nobody really wants a login page like 
this, but we’ve seen this kind of feature-focused user story about security many times.

Imagine that you and your team implement a login page. After logging in, the user is 
redirected to a listing of their pictures, and among them is a really-embarrasing-pose.jpg. 
The user can click a link to get a download of the picture as well. To complicate things, 
imagine further that another user happens to have the direct download link and is also 
able to download that embarrassing photo (figure 1.1). How does that feel? You have 
implemented the story, because you have a login page with the described functionality, but 
you’ve subtly missed the point, have you not?

Taking a step back, we realize that the purpose of the story wasn’t the login page 
as such. The purpose was rather that only the owner of the pictures should be able to 
see their pictures and download them—no one else. The login page is just there to 
uphold that rule. There should be no way for a user to get to the pictures without going 
through the login page.

You can now propose a better phrasing for the story: “As a user, I want access to 
my uploaded pictures to pass through a login page so that my pictures stay confiden-
tial.” This phrasing better catches the concern the stakeholder was airing when initially 
talking about the login page.

An even better phrasing is not to mention the login page at all: “As a user, I want all 
access to my uploaded pictures to be protected by authentication so that my pictures 
stay confidential.”

The point of the user story wasn’t to have a security feature, it was to address a secu-
rity concern; in this case, a concern about confidentiality (keeping things secret). The 
tricky part here is that when implementing such a story, it doesn’t suffice to change the 
code along one path to the pictures. Instead, all paths leading to the pictures must be 
guarded, and it’s enough to miss just one of them for the concern to not be met.

5 See Wilander, J., and Gustavsson, J., “Security Requirements—A Field Study of Current Practice,” 
http://johnwilander.se/research_publications/paper_sreis2005_wilander_gustavsson.pdf.

6 The Swedish certificate-based authentication system BankID is one example that has become a de 
facto standard, beginning with financial institutions and governmental agencies but now encompass-
ing lots of industries.



8 chapter 1 Why design matters for security 

To get real security, you need to get away from thinking about security as a set of fea-
tures. You must think about security as a cross-cutting concern—a concern that cuts 
across the functionality.

1.1.3 Categorizing security concerns: CIA-T

We’ve mentioned confidentiality as a security concern. But security is more than keep-
ing things secret, and in this book, we’ll talk about other aspects of security as well. To 
begin, let’s provide some terminology around security concerns.

Classical information security usually talks about the security concern triad: confi-
dentiality, integrity, and availability (or CIA as a mnemonic):

¡	Confidentiality—Most often associated with talking about security, is about keep-
ing things secret that shouldn’t be made known to the public. Your healthcare 
record is one of the best examples of confidential information.

¡	Integrity—Refers to when it’s important that the information doesn’t change or 
is only allowed to change in specific, authorized ways. An example of integrity is 
counting election results. Security in this context means that the votes haven’t 
been manipulated.

Login page

Takes you to
your pictures

Link to
download
picture

Really
embarrassing

picture

Oops! Knowing/guessing
link, I could download

without login.

Listing of
pictures

Figure 1.1  Having only a login page doesn’t help much.



9Defining design

¡	Availability—Means data is at hand in a timely manner. The fire department 
needs to know about the location of a fire, and they need that information imme-
diately. If they get the location later, it might be too late, and the need for security 
can’t be met.

All three factors might be important for any piece of data, but most often there’s some 
kind of profile for the concern of how much you suffer from a breach. Take your health 
record, for example. If some data is revealed (breached confidentiality), you’ll be irri-
tated and angry. If there are errors in the data (breached integrity), things might get 
confused and dangerous. If the data isn’t there when needed in the emergency room 
(breached availability), you might end up dead.

On the other hand, let’s think about your bank record. If you can’t see your balance 
(availability) when trying to pay your bills, it’s irritating. If your balance is revealed pub-
licly (confidentiality), you’ll most probably be angry. But if your pension fund is sud-
denly wiped out (integrity), it’s a catastrophe.

Later added to the CIA triad was the letter T for traceability, which captures the need 
for knowing who changed or accessed what data when. After some scandals, this became 
important in the financial sector and in healthcare. This kind of audit logging is also 
an important part of the European Union directive, GDPR (General Data Protection 
Regulation), which went into effect in 2018. For example, GDPR specifies that when 
personal data is accessed, the access should be traced and saved to a persistent audit 
log. We’ll refer to confidentiality, integrity, availability, and traceability in the rest of this 
book when we want to be a little bit more specific about what kind of security is at stake.

Focusing on security concerns instead of security features does a lot for the qual-
ity of the system, but it also puts developers in a difficult position: how do you ensure 
security in the software you write? It’s hard to make sure there are no security mistakes 
anywhere. Ensuring this would require developers to actively think about security all 
the time while working. But there’s another way—embed security into the way you work 
and the way you design.

1.2 Defining design
Writing software is by no means a trivial task. As a developer, you’re required to have 
skills within a wide range of disciplines. You’re expected to be knowledgeable in areas 
ranging from programming languages and algorithms to system architecture and agile 
methodologies. Although these software development disciplines span various fields 
of knowledge and can be quite different from one another, one term that keeps occur-
ring when discussing almost all the different disciplines is design. But what do people 
mean when they use the word design?

Our view, in general, is that the word design is used quite loosely and takes on a dif-
ferent meaning depending on whom you talk to and in what context it’s being used. 
We believe that design is an extremely important concept in software development, so 
important that we even put the word in the title of this book. As such, it’s only appro-
priate to start by defining our view of the term design and how it’s used throughout this 



10 chapter 1 Why design matters for security 

book. Understanding the meaning of the word will help you understand the discussions 
and concepts being conveyed in this book.

When developing software, you constantly make decisions on how to write the code 
that solves the problems at hand. You decide what syntax to use, what constructs and 
algorithms to apply, how to structure the code, and how to steer the flow of execution. 
If you’re using an object-oriented approach, you’ll make decisions on what your object 
model should look like and the interactions between the objects within that model. 
If you’re applying a functional style of programming, you’ll make decisions on what 
behavior to pass in as functions, making sure you’re creating pure functions without 
side effects.7 All these decisions can be viewed as part of the design process.

When you write code, you pay careful attention to how to represent your business 
logic, which is the functionality that makes your software unique. You’ll think about 
how you’ll implement that logic and how to make it explicit and easy to maintain. If 
you’re involved in activities around modeling your business domain, you’ll spend a con-
siderable amount of time evolving and refining your domain model and how it’ll be 
represented in code. Even when you’re implementing simple logic such as a straightfor-
ward conditional statement, you’re making an active choice. For example, you might 
consider aspects such as readability or performance, and, based on your preferences, 
you’ll make a decision on how you’re going to write the code in that statement. You’re 
drawing from your experience and knowledge to actively make choices appropriate 
to the software you’re creating. These choices are part of what determines the design   
of the software.

As your codebase evolves, you’ll put effort into structuring your code into packages or 
modules to make it more understandable and easier to work with, while at the same time 
achieving desirable properties like high cohesion and low coupling. You might apply 
techniques and concepts like the use of interfaces, the Dependency Inversion Principle,8

and immutability, while making sure you’re not violating the Liskov Substitution Princi-
ple.9 You might also think about breaking out and isolating certain functionality within 
the code in order to make it more explicit or to allow it to be easily testable. What you’re 
doing is writing and refactoring your code in order to give it a better design.

If your software is interacting with other software (say, for example, you’re develop-
ing a service in a microservices architecture), then you’re going to need to think about 
how to define the public API for your service in order for it to be cohesive and easy to 
consume and be versioned. You’ll also need to consider how it’ll interact with other 
services in order to be resilient and responsive, and to provide acceptable uptime. On 
a higher level, you’re probably going to have to take into account that your service also 
needs to fit into the overall system architecture. You’re making decisions that, albeit 
quite diverse, are all part of shaping the overall design of the software.

7 A pure function is a function that always returns the same result for a given argument and has no side 
effects.

8 See Martin, R. C., “The Dependency Inversion Principle,” C++ Report 8 (May, 1996).
9 See Liskov, B., “Keynote Address—Data Abstraction and Hierarchy,” OOPSLA '87 Addendum to the 

Proceedings on Object-Oriented Programming Systems, Languages and Applications (1987).



11The traditional approach to software security and its shortcomings

All of the activities that we’ve discussed so far are related to writing code. We’ve stated 
that they are all part of the design process, but if you think about them for a moment, 
which would you say are design activities and which are not?

¡	Are API design and taking system architecture into account typical examples of 
design activities?

¡	Can domain modeling also count as a design activity?
¡	Is the choice between making the declaration of an object’s field final or non-

final a design activity?

If you ask 10 people what activities in software development count as design, then 
you’re probably going to end up with 10 different answers. Many will probably answer 
that domain modeling, API design, applying design patterns, and system architecture 
are clearly examples of design activities, partly because this is the more traditional view 
of what design is. Whereas only a few, if any, will say that thinking hard about how to 
write an if statement or for loop qualifies as part of the software design process.

The answer to the question of which activities are design activities is that everything 
involved in software development is part of the design process. A system or piece of 
software won’t reach a point of stable design (stable as in functioning, not as in hav-
ing stopped evolving) until it has been written and put into production. That means 
that domain models, software modules, APIs, and design patterns are just as important 
to the design of the software as are field declarations, if statements, hash tables, and 
method declarations. All of these contribute to the stability of the design.

One thing that all these activities have in common is that they involve conscious deci-
sion-making. Any activity that involves active decision-making should be considered 
part of the software design process and can thus be referred to as design. This, in turn, 
means that design is the guiding principle for how a system is built and is applicable on 
all levels, from code to architecture.

NOTE  Design is the guiding principle for how a system is built and is applicable 
on all levels, from code to architecture. It includes any activity that involves 
active decision-making.

In this section, you’ve learned how to view software design and what the word design
means when used in this book. Next, we’ll take a look at the traditional software secu-
rity approach and some of its shortcomings.

1.3 The traditional approach to software security and its 
shortcomings
From our observation of the software industry, a common view when attempting to 
mitigate security vulnerabilities is that security should be a top priority when develop-
ing and writing code. Everyone involved in the process should be trained and experi-
enced in software security. Let’s refer to this view as the traditional approach to software 
security. This approach typically includes specific tasks and actions developers need to 
adhere to (figure 1.2).



12 chapter 1 Why design matters for security 

Developers should know about things like cross-site scripting (XSS) attacks, be aware 
of vulnerabilities in low-level protocols, and know the OWASP Top 10 like the backs of 
their hands.10 Testers should be trained in basic penetration testing techniques, and 
business domain experts should be capable of having discussions and making deci-
sions concerning software security.

The weakness in this approach is that, for a number of reasons, it struggles to cre-
ate software that’s secure enough to withstand the harsh reality of production envi-
ronments. If it had been successful, software security vulnerabilities wouldn’t be as 
common as they are today, and we wouldn’t see the same vulnerabilities responsible 
for massive security breaches over and over again. Let’s take a closer look at some of the 
shortcomings of this approach to better understand why this approach struggles and 
why we think a different approach can be more successful.

As an example, say you have a simple domain object that represents a user in a typi-
cal web application, where the username is displayed on some page. The user object is 
quite simple and holds only an ID and a username. It’s a simplified example but, in our 
experience, it’s quite representative of code one might see. The implementation of the 
user object can be seen in the following listing.

Listing 1.1  Simple User class

public class User {
   private final Long id;
   private final String username;

   public User(final Long id, final String username) {
      this.id = id;
      this.username = username;   
   }

   // ...
}

TOP PRIO
RITY

Atta ck vectors
Worklist

Zero day explo i ts
Web vulnerabilities
OWASP

�
�
�
�
Figure 1.2  Traditionally, software security is viewed as explicit activities and concepts.

10 See the Open Web Application Security Project (OWASP) Top 10, https://www.owasp.org/index.
php/Category:OWASP_Top_Ten_Project.

Possible XSS vulnerability



13The traditional approach to software security and its shortcomings

If you take a look at this representation of a user, you can see that there are possible security 
issues in this code. One issue is that because you’re accepting any string value as a user-
name, the username could be used for performing XSS attacks. An XSS attack occurs when 
an attacker uses a web application to send malicious code to  a different user. The mali-
cious code could, for example, be in the form of client-side JavaScript. If the attacker enters 
something like <script>alert(42);</script> as the username when registering for the 
service, later, when the user’s username is displayed on some web page in the application, it 
could lead to an alert box being displayed in the browser showing the number 42.11

If you want to mitigate this security vulnerability using the traditional approach, you 
could introduce explicit, security-focused input data validation. The data validation could, 
for example, be implemented as web application filters that validate all posted form data 
in the web application and check that it doesn’t contain any malicious XSS code. Or the 
validation could occur right in the domain class. If you chose to introduce input validation 
in the User class, it could look something like that shown in the following listing.

Listing 1.2  User class with input validation

import static com.example.xss.ValidationUtils.validateForXSS;
import static org.apache.commons.lang3.Validate.notNull;

public class User {
   private final Long id;
   private final String username;

   public User(final Long id, final String username) {
      notNull(id);               
      notNull(username);         

      this.id = notNull(id);
      this.username = validateForXSS(username);   
   }

   // ...
}

You can see in the listing how you’re pulling in an (imaginary) security library that 
provides functionality to validate a string for possible XSS attacks. You also decided to 
check that none of the constructor parameters are null to further improve the valida-
tion. This way of handling security in software is common, but it’s also problematic for 
several reasons, some being:

¡	The developer needs to explicitly think about security vulnerabilities, while at 
the same time focusing on solving business functionality.

¡	It requires every developer to be a security expert.
¡	It assumes that the person writing the code can think of every potential vulnera-

bility that might occur now or in the future.

11 In a real attack, the executed script would most likely perform something a bit more evil than simply 
showing this number!

Checks that parameters aren’t null

Validates input with  
an (imaginary) external  
library, ValidationUtils



14 chapter 1 Why design matters for security 

Let’s take a look at each one of these issues and see why they’re problematic.

1.3.1 Explicitly thinking about security

The first issue, thinking explicitly about security, is problematic, because when you as 
a developer are writing code, your main focus will always be the functionality you’re 
trying to implement. Saying that you also need to actively think about security while 
coding is going to conflict with that focus. When that conflict occurs, security will always 
come in second to the priority of the business functionality. Security always gets a lower 
priority for a couple of reasons, and we’ll look into those in more depth in section 1.4.2.

1.3.2 Everyone is a security expert

The next issue, requiring every developer to be a security expert, is also problematic 
because not everyone can be or wants to be such an expert, in the same way as every-
one can’t be an expert on JVM performance or UX design. And if the developers aren’t 
highly skilled in security, then the software they create is only going to reflect the level 
of security that the developers are capable of.

Perhaps sometime in the future, all developers will need to have a thorough under-
standing of software security similar to the more or less mandatory knowledge nowa-
days of how to write good unit tests. But this isn’t what the current state in the industry 
looks like, so it’s somewhat of an unrealistic expectation.

1.3.3 Knowing all and the unknowable

Even if you have a team of security experts writing your software, you’d still face the fact 
that you can only write countermeasures for the vulnerabilities that you already know 
about. Not only do you need to know a lot about the many different types of attack 
vectors that you’re familiar with, but you also need to know about the attacks that you 
currently are unaware of. You need to know the unknowable, so to speak. Once you 
realize this dilemma, it becomes obvious that the third issue also has its shortcomings 
in creating secure software.

The approach of creating secure software by making security the top priority has 
been around for as long as anyone can remember, and we’ve all tried it. Sometimes it 
has gotten the job done, but many times we’ve felt that there was something missing 
and that there should be a better way of creating secure software. We believe that soft-
ware design is the enabler for successfully creating truly secure code. And by focusing 
on design, you avoid many of the shortcomings posed by the approach we’ve discussed 
in this section.

1.4 Driving security through design
We’re not arguing that security isn’t important or that you don’t have to be aware of 
security when developing software. But we believe that, instead of adhering to the tra-
ditional approach to software security, there’s an alternative approach that achieves 
the same or even better results when it comes to how secure your finished software will 
be (figure 1.3).



15Driving security through design

Rather than having security be one of the main focuses when you’re developing soft-
ware, you can choose to focus on software design instead—focusing on design in the 
sense that you’re always aiming toward the highest possible standards with what you 
create. By shifting the focus to design, you’ll be able to achieve a high degree of soft-
ware security without the need to constantly and explicitly think about security.

1.4.1 Making the user secure by design

Let’s go back to the example of the User class from the previous section and see how 
you’d approach it instead by focusing on good design. First, you’ll discuss with your 
domain experts what the meaning of a username is in the context of the current appli-
cation (figure 1.4).

You twist and turn on the concept and finally come to the conclusion that a user-
name can only contain the characters [A-Za-z0-9_-] and must be at least 4 char-
acters long, but no longer than 40. This is because that’s what’s considered to be a 
normal username in the application you’re creating. You’re not excluding characters 
like < or > because they might be part of an XSS attack in the event of the username 
being rendered in a web browser. Rather, you address the question, “In this context, 
what’s a username supposed to look like?” In this case, you decide < or > isn’t part of a 
valid username and shouldn’t be included.

DESIGN
SECURITY

Figure 1.3  A focus on design rather than on security avoids issues with the traditional approach to 
security.



16 chapter 1 Why design matters for security 

This little exploration exercise with your domain experts has given you a deeper insight 
into the current domain that, in turn, allows you to create a more precise definition of 
a username. The following listing shows the new User class.

Listing 1.3  User class with domain constraints

import static org.apache.commons.lang3.Validate.*;

public class User {
   private static final int USERNAME_MINIMUM_LENGTH = 4;
   private static final int USERNAME_MAXIMUM_LENGTH = 40;
   private static final String USERNAME_VALID_CHARACTERS =
         "[A-Za-z0-9_-]+";

   private final Long id;
   private final String username;

   public User(final Long id, final String username) {
      notNull(id);
      notBlank(username);

Figure 1.4  Exploring concepts with domain experts to gain deeper insight into the domain



17Driving security through design

      final String trimmed = username.trim();
      inclusiveBetween(USERNAME_MINIMUM_LENGTH,    
                       USERNAME_MAXIMUM_LENGTH,    
                       trimmed.length());          
      matchesPattern(trimmed,                      
                     USERNAME_VALID_CHARACTERS,    
                     "Allowed characters are: %s", 
                     USERNAME_VALID_CHARACTERS);   

      this.id = id;
      this.username = trimmed;
   }

   // ...
}

Looking at the User class now, you can see that there’s a lot of logic concerning the 
username of a user. This, together with the fact that you discussed it extensively with 
your domain experts, is a sign that the username should be represented explicitly in 
the domain model. That’s partly because it seems to be an important concept, but also 
because extracting the logic would follow the principle of high cohesion.

With that insight, you can go ahead and extract the logic into its own Username class 
that encapsulates all the knowledge about a username. The new class also enforces all 
domain rules at the time of creation. This new object is called a domain primitive (you’ll 
learn more about them in chapter 5). The following listing shows what your User class 
will look like once you’ve extracted the new Username class.

Listing 1.4  User class with domain value object

import static org.apache.commons.lang3.Validate.*;

public class Username {                            
   private static final int MINIMUM_LENGTH = 4;
   private static final int MAXIMUM_LENGTH = 40;
   private static final String VALID_CHARACTERS = "[A-Za-z0-9_-]+";

   private final String value;

   public Username(final String value) {
      notBlank(value);

      final String trimmed = value.trim();
      inclusiveBetween(MINIMUM_LENGTH,
                       MAXIMUM_LENGTH,
                       trimmed.length());
      matchesPattern(trimmed,
                     VALID_CHARACTERS,
                     "Allowed characters are: %s", VALID_CHARACTERS);
      this.value = trimmed;
   }

Using domain invariants validates 
input at the time of creation.

The value object that upholds the 
domain invariants for a username



18 chapter 1 Why design matters for security 

   public String value() {
      return value;
   }
}

public class User {
   private final Long id;
   private final Username username;                

   public User(final Long id, final Username username) {
      this.id = notNull(id);
      this.username = notNull(username);
   }

   // ...
}

By focusing on design, you were able to find out more about the details surrounding 
a user and a username. This, in turn, let you create a more precise domain model. 
You also paid close attention to when concepts within the current domain became 
so important that they should be extracted into their own objects. In the end, you 
gained a deeper knowledge about your domain and, at the same time, protected 
yourself against the XSS vulnerability we discussed earlier; attempting to input 
<script>alert(42);</script> as a username becomes impossible because it’s not a 
valid username anymore. And you haven’t even started to think about security yet! If 
you were to consider security in your design choices, then you could probably tighten 
the restrictions on a username even more, hardening the code further, but still keep-
ing the focus on good design.

NOTE  A strong design focus lets you create code that’s more secure when com-
pared to the traditional approach to software security.

So far, you’ve learned about the shortcomings of the traditional approach, and you’ve 
seen how to use design to your advantage to create secure software. Some of the con-
cepts that we’ve briefly touched on in this section will be explained in detail in chap-
ter 3. There, you’ll learn core concepts about Domain-Driven Design relevant for 
this book. Then, in chapters 4 and 5, we’ll explain fundamental code constructs that 
promote security. Now, let’s take a look at the advantages of driving security through 
design and why we believe this approach succeeds better than the traditional approach 
to software security.

1.4.2 The advantages of the design approach

In the simple User example, we showed you how to use design to drive security in your 
development process. We also stated that by focusing on design, you can achieve a level 
of software security that’s on par with, or even better than, the traditional approach. 
But on what grounds do we make the claim that this approach succeeds better than the 
traditional one?

The User object now uses the Username 
domain primitive, knowing that a 
username is always valid if one exists.



19Driving security through design

We believe that if the main focus when developing software centers on design, secu-
rity can become a natural part of the development process instead of being perceived as 
a forced requirement. We also believe that this overcomes or avoids many of the short-
comings of the traditional approach and that it brings its own advantages. The main 
reasons for this follow:

¡	Software design is central to the interest and competence of most developers, 
which makes secure by design concepts easy to adapt.

¡	By focusing on design, business and security concerns gain equal priority in the 
view of both business experts and developers.

¡	By choosing good design constructs, nonsecurity experts are able to write 
secure code.

¡	By focusing on the domain, many security bugs are solved implicitly.

Let’s take a closer look at the reasoning behind these advantages and why we believe 
the design approach succeeds better than the traditional approach.

design is a natural part of software development

As software developers, you’re taught from early on the importance of good design. 
You study it and you take pride in creating good designs that serve their purpose well. 
This makes design a natural part of creating software.

Many developers feel like it’s hard to understand all the details around intricate soft-
ware vulnerabilities, classifying themselves as people who don’t do security—security 
is something that’s best left to someone else. But because most developers understand 
and appreciate software design, if you can use design to achieve security, then suddenly 
everyone can create secure software.

When you focus on design, security becomes the concern and interest of everyone, 
not only the experts. It also means that there’s no longer a conflict between business 
functionality and security concerns because the distinction between them no longer 
exists. This reduces the cognitive load on the developer and avoids one of the short-
comings of the traditional approach.

business concerns and security concerns become of equal priority

One issue with the traditional approach is that it treats security as a separate activity. 
This forces security to compete with all the other important aspects you’re trying to 
address, such as business functionality, scalability, testability, maintainability, and so on. 
Security-related tasks are added to the backlog and prioritized against everything else 
that needs to be done.

When you determine the priority of the different tasks, there’s nothing that says 
security should automatically get the fast lane in the backlog. But what we often see is 
that security tends to consistently get too low of a priority. Here are some of the reasons 
for this:

¡	Security isn’t well understood by either the business side or the development side 
of the organization.



20 chapter 1 Why design matters for security 

¡	Developers tend to think security isn’t their concern because of the reasons we 
discussed earlier.

¡	Even if security is understood, it’s easy to think of it as less important than user 
features, and something that can therefore be added at a later time.

The caveat with the notion of adding security later is that it might not be possible if the 
security aspects needed imply a fundamentally different design. This is similar to why 
it’s usually hard or impossible to add scalability or statelessness late in the software cycle.

By focusing on design and domain knowledge (as you did in the previous example 
with the User), you’re removing several of the situations where it’s necessary to priori-
tize security against other tasks in the backlog. It’s no longer a question about whether 
to implement a security feature or a business feature. Now it’s about implementing 
functionality relevant to your domain.

Finally, the design focus also makes security more accessible to all stakeholders, not 
only the experts. This is because it’s easier to reason about, see the value in, and prior-
itize tasks that are related to your domain rather than specific security vulnerabilities.

non-security experts naturally write secure code

Another interesting benefit of using a secure by design approach is that non-security 
experts can now naturally write secure code. This isn’t because they consider attack 
vectors and how malicious data might affect the system, but rather because the design 
implicitly avoids insecure constructs. To illustrate this, consider the Username class in 
listing 1.4, where invariants ensure only valid usernames are accepted. How do we jus-
tify using this complex type instead of a simple string?

As it turns out, when talking to domain experts, most developers realize the impor-
tance of representing business concepts as precisely as possible. A username isn’t an 
unbounded random sequence of characters; it’s a well-defined concept with a precise 
meaning and purpose in the domain. Representing this by the standard String class 
isn’t only a poor design decision, it’s completely wrong—an insight that makes pre-
ciseness and correctness the natural choice for any developer, regardless of interest in 
security or experience level.

domain focus solves security bugs implicitly

Security issues are often perceived as scary and complicated, but when using the design 
approach, the complexity suddenly disappears. This is primarily because the distinc-
tion between security bugs and ordinary bugs is erased when focus is placed on the 
domain rather than on which countermeasure to use.

If you look at Username in listing 1.4, the main reason for applying strict invariants 
isn’t to protect a username from injection attacks, but rather to ensure the true mean-
ing of a username is captured. As a consequence, every malicious input not satisfying 
the definition is rejected, and a username becomes secure by focusing on the domain 
rather than by thinking about security. The domain focus reduces the risk of security 
bugs in your code and, in some cases, it can also protect you against security bugs in 
third-party code.



21Dealing with strings, XML, and a billion laughs

1.4.3 Staying eclectic

As we mentioned earlier, if you complement your focus on design with a more tra-
ditional and explicit security awareness, then the resulting code becomes even more 
secure. This is an important note to point out, because the design focus gives you a 
high level of security but never covers all the security needs a system has (nor is that 
the intention). There’s always a need to perform tasks like penetration testing and to 
actively think about specific attack vectors and vulnerabilities when creating software 
systems.12 Even if the domain focus makes Username in the example secure, you still 
have to remember to perform proper output encoding when displaying it on a web 
page. By keeping the focus on design and at the same time taking an eclectic approach 
to software security, you can create truly secure software.

We’ve gone through quite a lot of material so far, but we believe it’s important to 
understand the why before looking at the how. You’ve learned the meaning of design 
and the fundamental thinking behind the idea that a strong design focus can drive 
security in software development. You’ve also seen a simple example of how this can 
work. In the next section, we’ll take a look at a slightly more complex scenario to give 
you another example of how design can improve security.

1.5 Dealing with strings, XML, and a billion laughs
When designing software, you’re often faced with the decision of how to represent 
data. Unfortunately, there’s a tendency towards using data types that are too generic 
for the purpose. For example, representing a phone number as a string can seem con-
venient at first, but from a security perspective, it’s devastating, because a string can 
represent almost any kind of data—not just what you’d expect. Still, developers tend to 
favor strings, and often the protection against invalid input is enforced by name typing
as seen in the next listing. The method register expects a phone number, but the 
argument is a String, which means it could be anything!

Listing 1.5  A String argument protected by name typing

public void register(String phoneNumber) { 
...
}

Obviously, preventing invalid input this way doesn’t work. The solution is to use strict 
domain types with rules, as you saw with User and Username earlier. But using strict 
types is only half of the story.

If you dissect Username, you see that the validation logic in the constructor contains a 
notBlank and a length check before applying the regular expression. This turns out to be 

12 We’ll discuss some of the other aspects important for software security in more depth in chapter 14.

phoneNumber can contain any 
character sequence because 
it’s a String.



22 chapter 1 Why design matters for security 

extremely important from a security perspective, and we’ll further discuss why this is in 
chapter 4. So, for now, accept that validation should be executed in the following order:

¡	Length check —Is the input length within the expected boundaries?
¡	Lexical content check—Does the input contain the right characters and encoding?
¡	Syntax check—Is the input format right?

Up to this point, we’ve only touched on simple examples using validation, but that 
doesn’t mean validation can’t be used in more complex situations as well. To illustrate, 
we’ll walk you through an example where you’ll learn how to process XML securely. 
This seems quite remote from the previous examples, but when applying the same 
validation principles, you’ll see that the parsing complexity is reduced to an ordinary 
input validation problem. So let’s proceed with some XML.

1.5.1 Extensible Markup Language (XML)

XML is similar to a string in the sense that it can represent almost any kind of data.13

Because of this, XML is often used as an intermediate data representation when com-
municating between systems. Unfortunately, not many realize there’s a lot more to 
XML than just representing data on a normalized form.

XML is really a complete language derived from SGML (Standard Generalized 
Markup Language), which means there are probably features supported by XML that 
most developers don’t care about. Consequently, many security weaknesses are intro-
duced in software because of how XML is used. And to illustrate, we’ll use the Billion 
Laughs attack (which exploits the expandability property of XML entities during the pars-
ing process) as a foundation when learning how to process XML securely. But before we 
dive into details, let’s take a quick refresher on how internal XML entities work.

1.5.2 Internal XML entities in a nutshell

Internal XML entities are powerful constructs that allow you to create simple abbrevia-
tions in XML. They’re defined in the Document Type Definition (DTD) and written in 
the form <!ENTITY name "value">. The following listing shows a simple example of an 
entity that’s an abbreviation of Secure by Design.

Listing 1.6  Defining an entity and referencing it in XML

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE example [
<!ELEMENT example (#PCDATA)>
<!ENTITY title "Secure by Design">
]>
<example>&title;</example>  

When the XML parser encounters the title entity, it expands the abbreviation and 
replaces it with the value found in the DTD. This, in turn, leads to a rich XML block 
without abbreviations, as seen in the next listing.

13 For more, see W3C, https://www.w3.org/XML/.

References the title entity



23Dealing with strings, XML, and a billion laughs

Listing 1.7  XML after entity expansion

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE example [
<!ELEMENT example (#PCDATA)>
<!ENTITY title "Secure by Design">
]>
<example>Secure by Design</example>  

Allowing entity expansion is handy indeed, but, unfortunately, it also opens up the possibil-
ity of entity expansion attacks. Let’s see how the Billion Laughs attack exploits this behavior.

1.5.3 The Billion Laughs attack

The Billion Laughs attack is as simple as it is effective. The main idea is to exploit the 
expandability property of XML entities by defining recursive definitions that expand 
into a huge memory footprint. Listing  1.8 shows an example of the attack that’s 
defined by a small XML block, less than 1 KB in size. This allows the block to pass most 
validation checks that rely on size or length. When the XML is loaded by the parser, 
lol9 expands into 10 lol8s, which then expands into 100 lol7s, and so on. This finally 
results in a billion lol strings that consume several gigabytes of memory.

Listing 1.8  XML expanding to a billion “lol”s

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE lolz [
<!ELEMENT lolz (#PCDATA)>
<!ENTITY lol "lol">
<!ENTITY lol1 "&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;">
<!ENTITY lol2 "&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;">
<!ENTITY lol3 "&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;">
<!ENTITY lol4 "&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;">
<!ENTITY lol5 "&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;">
<!ENTITY lol6 "&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;">
<!ENTITY lol7 "&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;">
<!ENTITY lol8 "&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;">
<!ENTITY lol9 "&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;">
]>
<lolz>&lol9;</lolz> 

Obviously, this violates the intended behavior of entities, but the mere fact that entities 
are part of the XML language makes every parser vulnerable to expansion attacks. From 
our experience, the best way to address this is to use a design that combines parser con-
figuration with a lexical content check. Let’s start this process by configuring the parser.

1.5.4 Configuring the XML parser

To disallow entity expansion, you need to figure out which settings control entity 
behavior in the parsing process. Surprisingly, this becomes a challenge without fully 
understanding the underlying parser implementation, because every parser can 

Replaces the title entity with 
the string Secure by Design

lol9 expands into 10 lol8s, which then 
expands into 100 lol7s, and so on.



24 chapter 1 Why design matters for security 

behave differently. To get a solid foundation, a good starting point is to use external 
resources such as OWASP (the Open Web Application Security Project) as a guide.

Listing 1.9 provides an example of a parser configuration based on OWASP’s recom-
mendations that attempts to avoid entity expansion.14 The selected features are quite 
invasive because almost everything regarding entities is disabled. For example, disallow-
ing doctype does indeed make it difficult to do an entity attack, but at the same time, 
it affects overall usability. In these situations, security concerns are often compared 
against business needs, and if it’s decided to weaken the configuration, it’s important to 
understand what the risks are.

Listing 1.9  XML parser configuration suggested by OWASP

import static javax.xml.XMLConstants.FEATURE_SECURE_PROCESSING;

public final class XMLParser {
  static final String DISALLOW_DOCTYPE =
         "http://apache.org/xml/features/disallow-doctype-decl";
  static final String ALLOW_EXT_GEN_ENTITIES =
         "http://xml.org/sax/features/external-general-entities";
  static final String ALLOW_EXT_PARAM_ENTITIES =
         "http://xml.org/sax/features/external-parameter-entities";
  static final String ALLOW_EXTERNAL_DTD =
         "http://apache.org/xml/features/nonvalidating/load-external-dtd";

  public static Document parse(final InputStream input)
                                    throws SAXException, IOException {
    try {
     final DocumentBuilderFactory factory =
                            DocumentBuilderFactory.newInstance();

     factory.setExpandEntityReferences(false);       
     factory.setFeature(FEATURE_SECURE_PROCESSING,       
                                             true);
     factory.setFeature(DISALLOW_DOCTYPE, true);     
     factory.setFeature(ALLOW_EXT_GEN_ENTITIES,          
                                            false);
     factory.setFeature(ALLOW_EXT_PARAM_ENTITIES,    
                                            false);
     factory.setFeature(ALLOW_EXTERNAL_DTD, false);      

     return factory.newDocumentBuilder().parse(input);
   } catch(ParserConfigurationException e) {
           throw new IllegalStateException("Configuration Error", e);
   }
  }
}

Even though relying on the parser configuration is recommended, it feels as if there’s 
a lot of risk to it. For example, what happens if the underlying parser implementation 
changes or a feature is forgotten? These concerns are valid, and to address them, we 
recommend applying another layer of security—design.

14 See the “XML External Entity (XXE) Prevention Cheat Sheet,” https://github.com/OWASP/Cheat-
SheetSeries/blob/master/cheatsheets/.

Disables entity reference expansion

Instructs the 
parser to 

process XML 
securely

Disallows DTDs in XML

Disallows external general entities

Disallows external parameter entities

Disallows loading external DTDs



25Dealing with strings, XML, and a billion laughs

TIP  To detect entity expansion, add a test in your build pipeline with a recur-
sive entity definition. If the entity is expanded and the XML is accepted, then 
the test should fail because the parser might be vulnerable to expansion attacks.

1.5.5 Applying a design mindset

Before approaching the Billion Laughs problem from a design perspective, we think 
it’s important to let go of the idea that the root cause lies in how entities are expanded. 
This is because the expansion is in accordance with the XML specification and not 
the result of a faulty parser implementation. This implies that the problem shouldn’t 
be treated as a structural problem of XML, but rather as an input validation problem 
in the receiving system. This, in turn, means that a malicious XML block (such as the 
Billion Laughs XML) must be rejected by the receiving system without parsing it—this 
certainly sounds appealing, but is it a viable solution? It definitely is, and the answer 
lies in the second step of the validation order presented earlier—to run a lexical con-
tent scan. It can seem like a complex operation at first, but running a lexical content 
scan isn’t that difficult. It’s simply the process of converting a stream of characters into 
a sequence of tokens without analyzing their order or meaning (because that’s the job 
of the parser).

There are many ways to implement a lexical content scan. In listing 1.10, you see an 
example of using a SAX parser (Simple API for XML) to scan XML. It’s somewhat coun-
terintuitive to use a parser as a lexical content scanner, but a SAX parser is in fact quite 
suitable because it emits an event for each token that’s identified in the data stream. 
These events can then be used to analyze contents, which would be done if using it as a 
parser or, as in this example, to reject XML with entities. The startEntity method of 
the ElementHandler in the example achieves this by throwing an exception to abort the 
scan as soon as an entity is detected.

Listing 1.10  Simple lexical scanner that detects entities

import static org.apache.commons.lang3.Validate.notNull;

public class LexicalScanner {
   private static final String LEXICAL_HANDLER =
         "http://xml.org/sax/properties/lexical-handler";

   public static boolean isValid(final InputStream data)
                                                  throws Exception {
      notNull(data);

      final SAXParser saxParser = SAXParserFactory
                      .newInstance().newSAXParser();  
      final ElementHandler handler = new ElementHandler();           

      saxParser.getXMLReader().setProperty(LEXICAL_HANDLER, handler);  
      try {
         saxParser.parse(data, handler);              
         return true;

Creates a 
SAX parser

Creates a lexical element  
handler to detect entities

Registers the 
handler to listen  
to lexical events

Scans the XML for entities



26 chapter 1 Why design matters for security 

      }
      catch(IllegalArgumentException e) {
         return false;
      }
   }

   public static final class ElementHandler extends
                                     org.xml.sax.ext.DefaultHandler2 {
      @Override
      public void startEntity(final String name) throws SAXException {
         throw new IllegalArgumentException("Entities are illegal"); 
      }
   }
}

The scanner does indeed meet the expectations, but the main objective of the lexi-
cal scan is greater than just rejecting entities. A lexical scan should also ensure that all 
required elements exist in the XML; otherwise, it doesn’t make sense to parse it. To 
illustrate, assume there’s a customer object with exactly one phone number, email, and 
address represented in XML, as shown in listing 1.11. The phone number and address 
are required elements, whereas the email is optional. The only time it makes sense to pass 
the customer XML to the parser is when it contains all the required elements. All other 
element combinations are invalid from a business perspective and should be rejected by 
the scan—similar to how invalid input was rejected in the Username example earlier.

Listing 1.11  XML example representing a customer object

<customer>
      <phone>212-111-2222</phone>
      <email>jane.doe@example.com</email>
      <address>
         <street>Fifth Ave</street>
         <city>New York</city>
         <country>USA</country>
      </address>
</customer>

To ensure the customer XML contains all required elements, a richer design of the 
ElementHandler is needed. But before diving into details, it’s important to remem-
ber that a lexical scan only cares about the existence of elements, not the meaning, 
the order, or if the elements exist multiple times. This allows for a structurally incor-
rect customer XML block (for example, with multiple phone numbers or address ele-
ments) to pass a lexical scan. Even though this seems like a flaw, the behavior is exactly 
as intended. Because as soon as semantic analysis is added to a lexical scan, it turns into 
a parsing process, and that brings everything back to square one.

With this in mind, let’s turn back to the updated ElementHandler in listing 1.12. The 
implementation shows a couple of interesting details worth pointing out. First, all of 
the required elements are stored in a collection that’s consulted in the startElement
method each time an element is found. This looks straightforward, but there’s a subtle 
trick to this that’s easy to miss. Because the lexical scan only cares about the existence 

Aborts the scan if an entity is found



27Dealing with strings, XML, and a billion laughs

of elements, it needs a mechanism to determine if all required elements are present at 
least once in the XML. This is achieved by trying to remove each detected element from 
the required elements collection. It doesn’t matter if a detected element is required 
or not, it only matters that it doesn’t exist in the collection after the remove operation. 
This is because when reaching the end of the data stream, the scanner needs to ensure 
that all required elements have been found, which is verified by checking that the col-
lection is empty in the endDocument method.

Listing 1.12  Element handler with required elements check

import static org.apache.commons.lang3.Validate.isTrue;
import static org.apache.commons.lang3.Validate.notNull;

private static final class ElementHandler extends
                                org.xml.sax.ext.DefaultHandler2 {

   private final Set<String> requiredElements = new HashSet<>();

   public ElementHandler() {
      requiredElements.add("customer");            
      requiredElements.add("phone");               
      requiredElements.add("address");             
      requiredElements.add("street");              
      requiredElements.add("city");                
      requiredElements.add("country");             
   }

   @Override
   public void startElement(final String uri,
                            final String localName,
                            final String name,
                            final Attributes attributes)
                            throws SAXException {
      notNull(name);
      final String element = name.toLowerCase();   
      requiredElements.remove(element);            
      isTrue(!requiredElements.contains(element)); 
   }

   @Override
   public void endDocument() throws SAXException {
      isTrue(requiredElements.isEmpty());          
   }

   @Override
   public void startEntity(final String name) throws SAXException {
      throw new IllegalArgumentException("Entities are illegal");
   }
}

The second detail worth mentioning is the choice of using a liberal scanning strategy to 
ignore all nonrequired elements. This can seem like a potential weakness because it accepts 
customer XML that fails the parser requirements, but the choice is carefully made. When 
communicating between systems, Postel’s Law and the Tolerant Reader pattern state that 

All required elements

Normalizes the element 
name to lowercase

Removes the element  
from the collection if  
and only if it exists

Ensures the element doesn’t  
exist in the collection

Verifies that all required elements  
have been encountered



28 chapter 1 Why design matters for security 

an implementation should be liberal when receiving data and conservative when sending 
data.15 This makes system integration less painful because changes to data fields ignored 
by the receiving system becomes seamless to the overall integration. As a result, choosing 
to ignore all nonrequired elements makes the lexical scan resilient against less important 
data changes, such as updating an optional element in the customer XML.

This certainly makes it difficult to inject a Billion Laughs XML block, but what if enti-
ties are required? Wouldn’t that render the lexical scan obsolete? Or is there a way to 
accept entities and prevent expansion attacks at the same time? There is, but to see how, 
we need to approach this from a different angle.

1.5.6 Applying operational constraints

Both the lexical scan and the parser configuration address expansion attacks by blindly 
rejecting XML with entities, regardless if they’re malicious or not. This has the down-
side of working only when entities are illegal. All other situations call for a different 
solution. It’s therefore interesting to revisit the Billion Laughs XML and try to under-
stand where the real danger lies.

The primary suspect is the entity expansion, but that in itself isn’t what makes enti-
ties unsafe to parse. Instead, it’s the resulting memory footprint that’s dangerous. This 
implies that parsing XML with entities isn’t dangerous per se, but rather the actual size 
of the resulting XML. A viable solution is therefore to allow entity expansion but with 
operational constraints on the parser process (such as memory limits or quotas) to pre-
vent runaway resource consumption.

Choosing this approach, however, doesn’t automatically protect against resource 
depletion. Even if a single parser process is prevented from consuming too much 
resources (because it’s killed when exceeding the limits), running processes in parallel 
can result in a similar situation as with the Billion Laughs attack. For example, assume 
there are parser processes running in parallel, where each process consumes the maxi-
mum amount of resources. The total amount of resources used is then proportional to 
the number of processes, which creates a significant resource consumption footprint. 
Consequently, any other part of the system that relies on the same resources (for exam-
ple, CPU or memory) will be affected. This calls for a design where parsing is done in 
isolation because it reduces the risk of cascading failures. We’ll elaborate more on this 
when discussing bulkheads in chapter 9.

Relying on operational constraints does indeed seem like a viable solution, but it 
doesn’t render the use of a lexical scan or parser configuration obsolete. In fact, choos-
ing a design where all strategies are applied makes the system even more resilient against 
expansion attacks, which brings us to the next topic—achieving security in depth.

1.5.7 Achieving security in depth

Most developers have a tendency to address entity expansion attacks using parser con-
figuration only. This isn’t flawed per se, but it’s like building a fence around a house 

15 See RFC 760 for Postel’s Law at https://tools.ietf.org/html/rfc760, and for the Tolerant Reader 
pattern, see https://martinfowler.com/bliki/TolerantReader.html.



29Summary

without locking the doors. No one is able to enter the house as long as the fence holds, 
but if it’s breached, access is granted. This really isn’t desirable. The obvious solution 
is to lock the doors and perhaps add an alarm on the inside. This is what security in 
depth is all about. With multiple layers of security, it becomes a lot harder for an attack 
to be successful even if a single protection mechanism is breached.16

If we look at the design for dealing with the Billion Laughs XML and correlate it to 
the house metaphor, it becomes easy to see how it achieves security in depth. By config-
uring the parser, a strong fence is built around the house. Sometimes this is too strict, 
and you can’t reject all types of entities. In those situations, it’s important not to remove 
the entire fence, but rather to understand what type of entities are needed. It might be 
possible to weaken the configuration to only accept certain types of entities (for exam-
ple, only internal entities), which isn’t perfect, but it’s still a fence around the house.

The lexical scan process made sure that only XML with required elements was passed 
to the parser. This is similar to only letting people with keys into the house. That way, 
the set of XML blocks that need parsing is significantly reduced to those that might 
meet the business requirements. In turn, this makes it a lot harder to exploit the parser 
because the attack vector is now reduced to XML blocks with required elements. But 
what about entities? What if you need to accept them?

This is where the last layer of protection comes in. By applying operational con-
straints on the parser process, it’s acceptable to weaken the lexical scan and pass XML 
with entities to the parser—similar to having a window open on the second floor. The 
operational constraints then make sure the parsing process never consumes too much 
resources—like a watchdog inside the house.

All in all, by applying parser configuration, lexical scan, and operational constraints 
together, it becomes significantly harder to do an expansion attack. And this is what secure 
by design is all about: using design as the primary tool and mindset for creating secure 
software. In the next chapter, we’ll dive into a real-world case story that shows how brittle 
design and a lack of domain knowledge caused significant economic loss for a big global 
company, a situation that could have been avoided using secure by design principles.

Summary

¡	It’s better to view security as a concern to be met than to view it as a set of features 
to implement.

¡	It’s impractical to achieve security by keeping it at the top of your mind all the 
time while developing. A better way is to find design practices that guide you to 
more secure solutions.

¡	Any activity involving active decision-making should be considered part of the 
software design process and can thus be referred to as design.

¡	Design is the guiding principle for how a system is built and is applicable on all 
levels, from code to architecture.

16 See “Defense in Depth,” https://www.us-cert.gov/bsi/articles/knowledge/principles/defense-in-
depth.



30 chapter 1 Why design matters for security 

¡	The traditional approach to software security struggles because it relies on the 
developer to explicitly think about security vulnerabilities while at the same time 
trying to focus on implementing business functionality. It requires every devel-
oper to be a security expert and assumes that the person writing the code can 
think of every potential vulnerability that can occur now or in the future.

¡	By shifting the focus to design, you’re able to achieve a high degree of software 
security without the need to constantly and explicitly think about security.

¡	A strong design focus lets you create code that’s more secure compared to the 
traditional approach to software security.

¡	Every XML parser is implicitly vulnerable to entity attacks because entities are 
part of the XML language.

¡	Using generic types to represent specific data is a potential door opener for secu-
rity weaknesses.

¡	Choosing the XML parser configuration is difficult without understanding the 
underlying parser implementation.

¡	Secure by design promotes security in-depth by adding several layers of security.



31

2Intermission:   
The anti-Hamlet

This chapter covers
¡	The hazards of too-shallow modeling

¡	What deep modeling feels like

¡	Security flaws in the form of broken business 
integrity

¡	Deep modeling to mitigate risk

This is a real story about how negative numbers can cause severe economic loss. It’s 
based on a case we worked on with a client, but to be able to share the details, we’ve 
obfuscated the context. Most importantly, we’ve changed what the business sold. We 
can assure you that it wasn’t books. Interestingly enough, there are other examples 
that actually did involve books. Amazon had a similar bug around the year 2000.1

But for those cases, we don’t know the under-the-hood details.
This is also a story about how a serious security problem persisted in production 

for a long time without being detected and without anything being broken—at least, 
not in the technical sense. Nevertheless, it still caused money to bleed from the 
enterprise. Although the company could have uncovered who benefited unfairly, for 
practical reasons it wasn’t possible for it to recoup its losses.

1 Described, for example, in Gojko Adzic’s book Humans vs Computers (Neuri Consulting Llp, 2017).



32 chapter 2 Intermission: The anti-Hamlet 

Finally, this story is about how an international retail business accidently gave its custom-
ers do-it-yourself discount vouchers in its online store. We’ll show how its loss was the result 
of a shallow design with incomplete or missing modeling, something we often encounter.2

And we’ll discuss how an explicit and conscious modeling effort makes a difference.
This online store is nothing unusual; it’s the typical kind of business where the cus-

tomer puts books in a basket, checks out, and pays with a credit card, and the books ship 
(figure 2.1). The store has been in production for a while, with ongoing development 
since its initial release. The retail business brings in a security team to do some auditing 
and testing. Specifically, the team audits how the system is set up in production as well as 
in the codebase. They also do tests where they try to manipulate the system from the out-
side to find security flaws. The team has a pretty open mandate to follow up on anything 
strange they find.

The infrastructure seems solid as the security team pokes around. They probe the 
firewalls. They scan for open operating system ports. They throw malicious packages at 
the web server. Still, everything works fine. This isn’t a big surprise. Nowadays, security 
problems are seldom the result of broken infrastructure. We’ve learned that things that 
shouldn’t be exposed to the public should be cut off from the public.

2 In this case study, we discuss modeling only briefly. We’ll discuss it in more depth in chapter 3.

Online store

Inventory ShippingEconomy
system

Accounts
receivable

ledger
Payment

Hamlet 2 $39

$78

$78

MC/VISA/...

$78

2 Hamlet

Hamlet 17 15 Pick: 2 Hamlet

2 Hamlet

2 less
to sell

Joe owes the
book retailer
$78 until
payment goes
through.

Joe 78 $

Joe Tester buys
two copies of

Hamlet $39 each.

The Normal
Flow of an
Online Order

Figure 2.1  The normal flow when Joe buys two copies of Hamlet at $39 each



33An online bookstore with business integrity issues

At the same time, other members of the team investigate the online store application 
from a technical perspective. They search for ways to circumvent the login. They see 
whether they can kidnap an open customer session. They try to poison the cookies. 
Same thing here—no success. These things would also be OK if the web server had 
been properly configured and, in this example, someone had obviously made the 
effort to read the documentation to implement the configuration.

A breakthrough comes when one of the team members, Joe Tester, gets curious 
about the Quantity field (where you specify how many books you want) on the order 
form. He passes in a JavaScript snippet to see if it executes, but nothing happens. Then 
he attempts to provoke a SQL injection—still nothing.3 Finally, he gets curious and 
enters -1 as the quantity for a copy of Hamlet priced at $39. Phrased in another way, Joe 
Tester tries to buy a negative Hamlet —an anti-Hamlet.

Joe’s surprised that he receives no error message. The store accepts the order, and 
it goes all the way through the order flow. He checks out with a credit card and gets an 
email confirmation that the order is accepted. “Strange,” he thinks, makes a comment 
in his notebook, and continues working. The next afternoon, there’s a knock on the 
security team’s door. A lady hesitantly enters.

“I’m from accounting,” she presents herself, “and I wonder if any of you know 
anything about a person named Joe Tester.” To clarify, she adds, “Because I asked 
around, and someone said you might know.” 

“Yes, that’s our test customer,” the team answers. “What about him?” 

The lady from accounting continues: “I was running the accounts receivable led-
ger, and the system issued a credit invoice to him for $39. But when we were going 
to mail the book to him, we noticed a strange thing about his customer address; 
it’s the same as our address here at headquarters. That’s why I got suspicious and 
started asking around.”

The system tried to pay real money to Joe Tester—not good.

2.1 An online bookstore with business integrity issues
Let’s step back from the case for a moment to see what happened. It’s definitely strange 
that the online store accepted an order of -1 copy of Hamlet. But now that this has hap-
pened, let’s think about the logical consequences.

If someone buys a book that costs $39, then the value of the order is $39, and it makes 
sense that the customer pays $39 to the store. In this case, the customer, Joe Tester, 
didn’t buy a copy of Hamlet, he bought a negative copy, so the value of the order is -$39 
(figure 2.2). He should pay -$39 to the store, or the store should pay him $39. But a 
store isn’t meant to pay out money in this fashion. Perhaps Joe Tester should give the 
store a copy of Hamlet.

3 In SQL injection, the attacker tries to send commands to the database through the application. For 
more, see https://www.owasp.org/index.php/Top_10_2013-A1-Injection.



34 chapter 2 Intermission: The anti-Hamlet 

From a security perspective, this is a security breach. One aspect of security talks about 
the integrity of data, which roughly means that data hasn’t changed or isn’t gener-
ated in an unauthorized manner. Most often, you think about integrity in a technical 
way—providing checksums and cryptographic signatures to ensure data only changes 
according to the rules. In this case, the rules aren’t technical rules but business rules. 
It’s not sound business for a store to send customers money for anti-books. What we 
have is a breach of business integrity.

Suspicions raised, the security team starts investigating what’s really going on. It 
turns out that the online store system calculates the “to pay” value for the order to be 
-$39, which is logical, although weird. The amount of -$39 passes through several online 
store systems, one after another (figure 2.3).

An interesting aspect of this story is that the security problem can’t be understood 
without understanding each of these systems and how they react and interact. We’ll 
start with two of them: the billing system and the accounts receivable ledger.

The purpose of the billing system is to collect payments from customers. If a customer 
sets the payment preference to a credit card and checks out an order worth $347, then 
that sum is charged to the customer’s credit card. Customers can have other payment 
preferences too; for example, invoice, accumulated invoicing, or gift cards. Some cus-
tomers have different payment methods for different amounts. Large amounts might 
be paid directly, whereas small amounts are accumulated into an end-of-month invoice.

When Joe Tester takes his order of -$39 to checkout, that amount is sent to the billing 
system. But the credit card module of the billing system doesn’t know how to handle 
negative amounts. From the perspective of the billing system, a negative amount means 
there’s no payment to collect. The payment task drops through without action.

Value $39

Hamlet
One

Value -$39

Hamlet

Negative
one

Negative value

Figure 2.2  The “to pay” value of a negative book in a shopping cart

Online store

Economy
system

Accounts
receivable

ledger
Billing

-1 Hamlet

-39 -39

-39

Looks like
we owe him,
better pay out.

???????
This doesn’t look
like there’s any

payment to collect.
Joe

Debts

-39

Figure 2.3  Online store sending -$39 to billing and to the accounts receivable ledger



35An online bookstore with business integrity issues

2.1.1 The inner workings of the accounts receivable ledger

Now let’s turn to the accounts receivable ledger. Part of the accounting system, the 
ledger keeps track of customers who owe the company money, which is the case when 
they’ve bought books but the company has yet to receive payment. In short, the accounts 
receivable ledger handles the balance of each customer. For example, if someone checks 
out an order of $347 and selects pay by invoice, then $347 is added onto that customer’s 
balance. Later, when the company receives the payment, the balance in the ledger is 
cleared. Sometimes people pay too much, perhaps $350 in this case. The balance then 
drops to a negative, -$3, meaning that the company owes money to the customer. For a 
bank, it’s often normal that a company owes money to the customer, even in the long 
run. But for an online bookstore, such a situation is only acceptable as a temporary con-
dition. If it arises, the store should try to clear its debt as soon as possible.4

The normal procedure for the online book company is to pay out money owed to 
customers by sending a credit invoice. Those checks run as a batch job, which was what 
the lady from accounting referred to when she said, “I was running the accounts receiv-
able ledger….” When Joe Tester makes his anti-purchase, the online store system sends a 
payment amount of -$39 to the accounts receivable ledger, which immediately puts him 
at an advantage to the company. The next night, the job runs and finds this outstand-
ing debt, so it creates a credit invoice to be sent to him to clear the ledger, effectively 

4 A deeper explanation of accounts receivable is beyond the scope of this book, but see https://en 
.wikipedia.org/wiki/Accounts_receivable if you’d like to know more.

From a security perspective, this is a security breach. One aspect of security talks about 
the integrity of data, which roughly means that data hasn’t changed or isn’t gener-
ated in an unauthorized manner. Most often, you think about integrity in a technical 
way—providing checksums and cryptographic signatures to ensure data only changes 
according to the rules. In this case, the rules aren’t technical rules but business rules. 
It’s not sound business for a store to send customers money for anti-books. What we 
have is a breach of business integrity.

Suspicions raised, the security team starts investigating what’s really going on. It 
turns out that the online store system calculates the “to pay” value for the order to be 
-$39, which is logical, although weird. The amount of -$39 passes through several online 
store systems, one after another (figure 2.3).

An interesting aspect of this story is that the security problem can’t be understood 
without understanding each of these systems and how they react and interact. We’ll 
start with two of them: the billing system and the accounts receivable ledger.

The purpose of the billing system is to collect payments from customers. If a customer 
sets the payment preference to a credit card and checks out an order worth $347, then 
that sum is charged to the customer’s credit card. Customers can have other payment 
preferences too; for example, invoice, accumulated invoicing, or gift cards. Some cus-
tomers have different payment methods for different amounts. Large amounts might 
be paid directly, whereas small amounts are accumulated into an end-of-month invoice.

When Joe Tester takes his order of -$39 to checkout, that amount is sent to the billing 
system. But the credit card module of the billing system doesn’t know how to handle 
negative amounts. From the perspective of the billing system, a negative amount means 
there’s no payment to collect. The payment task drops through without action.

Value $39

Hamlet
One

Value -$39

Hamlet

Negative
one

Negative value

Figure 2.2  The “to pay” value of a negative book in a shopping cart

Online store

Economy
system

Accounts
receivable

ledger
Billing

-1 Hamlet

-39 -39

-39

Looks like
we owe him,
better pay out.

???????
This doesn’t look
like there’s any

payment to collect.
Joe

Debts

-39

Figure 2.3  Online store sending -$39 to billing and to the accounts receivable ledger



36 chapter 2 Intermission: The anti-Hamlet 

sending our tester a payment (figure 2.4). This is the invoice that a perceptive lady in 
accounting catches as suspicious and starts asking around about.

As these tests are done in production, it’s obvious that the production system has had 
this flaw for a while. The only reason this particular case was caught was that the strange 
address raised suspicion. But there may have been similar cases earlier.

A financial investigation is started to see how big the problem is. Operations and the 
security team join forces to do a cross-check of all credit invoices that have been issued. 
Sieving away credit invoices to suppliers and partners leaves the customer-facing credit 
invoices. Most of those are valid credits issued for damaged goods or other legitimate 
reasons. Only a small portion is left, so the problem turns out not to be particularly 
big—or so it seems at the time. Still, it’s strange that sending out money for nothing has 
gone undetected. The technical investigation continues to unveil the entire scope of 
what happens when someone orders an anti-book. And two more important systems are 
involved: inventory and shipping.

2.1.2 How the inventory system tracks books in the store

The inventory system for the store keeps track of how many books of each kind the 
store has in stock and can sell from the warehouse. A good starting point for that is 
how many books of each kind are on the shelves in the warehouse, but, unfortunately, 
it’s not quite that straightforward. For example, say that there are 17 copies of Hamlet
in the warehouse. A customer has bought two of them, but those two haven’t yet been 
picked from the shelf and shipped to the customer. These two copies shouldn’t be 
counted, because they aren’t sellable, and they don’t belong to the store any more. 
The inventory of Hamlet should be 15 copies, not 17.

Another situation might be that the shelf for Pride and Prejudice is empty. The retailer 
has bought another 100 copies from the publisher, but those copies are still on a truck 
that hasn’t yet arrived at the warehouse. As the copies are in the possession of the store, 

Accounts
receivable

ledger

Credi
t

invo
ice

$39 to

Joe
Test

er
Joe

Debts

-39

Let’s get
rid of us
owing Joe.

Figure 2.4  Accounts receivable ledger sending a credit invoice and clearing the ledger



37An online bookstore with business integrity issues

they are sellable and should be included in the inventory. The inventory of Pride and 
Prejudice should be 100 copies, not 0. There’s lots of other strange situations that might 
occur as well. The inventory system is a complicated piece of logic in and of itself.

If the online store sells three copies of Hamlet, it sends a message to the inventory 
system, decreasing the inventory level of Hamlet from 15 to 12. But what happens if 
instead Joe Tester buys -1 copy of that book? The inventory level of Hamlet was 15 and 
should now be reduced by -1, resulting in an inventory level of 16 (figure 2.5). Selling 
one anti-Hamlet increases the inventory level by one!

2.1.3 Shipping anti-books

The shipping system ensures the books are shipped to the customers. When an order 
arrives from the online store, the shipping system iterates through the order lines and com-
piles pick lists for the warehouse workers to pack the boxes. This is a complicated system 
that tries to minimize the work for the warehouse workers by letting workers pick books 
for several orders simultaneously, for example. The system handles that optimization well.

What the shipping system doesn’t handle well is a negative number of books. Such 
an order line causes a runtime exception that’s logged to the system log, together with a 
multitude of other messages. Unfortunately, no one ever looks at that log. In effect, the 
order line is discarded.

Online store

Inventory ShippingEconomy
system

Accounts
receivable

ledger
Payment

-1 Hamlet per $39

-$39

-$39 -$39

MC/VISA/Bank

???
That’s no
payment.

-1

Hamlet 15 16 ??

-1

Joe has
$39 available
(Later: credit
invoice).

Joe -$39

Joe Tester buys
minus one copy of
Hamlet $39 each.

The Abnormal Flow
of an Antibook
Online Order

Figure 2.5  Joe Tester ordering -1 Hamlet



38 chapter 2 Intermission: The anti-Hamlet 

2.1.4 Systems living the same lie

Here dawns an interesting realization. From a financial perspective, the IT systems are 
consistent with each other. The billing system and shipping system are of less impor-
tance, as they don’t change their state. The more interesting systems are the inventory 
system and the accounts receivable ledger.

¡	The inventory system falsely believes the inventory of Hamlet is 16 when it should 
be 15.

¡	The accounts receivable ledger falsely believes the retailer owes money to some-
one else.

From a financial perspective, this balances out: instead of having 15 books and owing 
nothing, the retailer has 16 books and has a debt of the value of one book. Both sys-
tems live a lie, but they live the same lie. The illusion is consistent.

Because the systems are consistent, the regular reports won’t show any discrepan-
cies. As a matter of fact, there are reports that run every night. More comprehensive 
reports are also run each quarter as part of the financial reporting. And none of these 
have reported any discrepancies because there are no discrepancies between the IT 
systems. The discrepancy that exists is the inconsistency between the inventory system 
(16 books) and what’s actually in the warehouse (15 books). But that won’t be noticed 
until the end-of-year inventory, when the inventory of the warehouse is counted man-
ually and fed into the bookkeeping system. Then, and only then, will the missing book 
be noticed.

At the end-of-year inventory, there’s nothing strange in finding a discrepancy. Books 
are physical objects, and things happen at a warehouse. A delivery from a supplier might 
arrive that should contain 134 books but only contains 133. Not all boxes are counted, 
and sometimes there’s a mistake in counting. A book might be dropped, damaged, and 
discarded. This should be noted, but sometimes people are in a hurry and forget to do 
so. And sometimes, there’s theft. All wrapped together, this is reported by finance as a 
loss-on-warehouse, and a certain level is expected.

As a matter of fact, the end-of-year inventory a few months earlier reported a 
higher level of loss-on-warehouse than usual. Management’s analysis was that there 
was a motivational problem with the people at the warehouse: either they had gotten 
less careful and damaged more books or they had started stealing books. As a result, 
management sent them on a day retreat with a motivational coach to get their values 
more aligned with the company’s ethics. The folks at the warehouse were confused 
and not happy.

2.1.5 A do-it-yourself discount voucher

On further study of the discrepancies, things turn out to be worse than they initially 
seemed. The inventory difference in the warehouse is much larger than the total num-
ber of credit invoices. But there’s something more going on.



39An online bookstore with business integrity issues

Realizing that the usual reports can’t be trusted, the team starts a deeper investiga-
tion. It turns out that getting a credit invoice wasn’t the most usual way the flaw had 
been exploited. A much more popular version was to give yourself a discount by ending 
your shopping trip in the e-store with some negative books to reduce the total amount 
of your order before paying (figure 2.6). The rumor about this strange feature had 
obviously spread, because quite a lot of customers used it.

The investigation shows that the company has lost a significant amount of money 
through this loophole. Now it’s time to decide what to do.

The technical flaw will be addressed, and we’ll return to that soon. But what about 
all the money customers owe the business because they’ve given themselves dis-
counts? In the end, it’s the board of directors that gets the call to decide what to do. 
After careful consideration, they decide to let things be. Chasing down customers, 
many of them returning and frequent customers, would generate more ill will and 
would hurt the company more than simply accepting the loss, patching the hole, and 
moving forward.

This continuous breach of business integrity had been going on for months without 
anything being technically broken. And it most probably would have continued unno-
ticed had it not been for the curious lady in accounting and a security tester with an 
interest in how the business worked—the domain of book sales. We’re convinced that, 
throughout the world today, there are many similar flaws in existence, being continu-
ously exploited without triggering any alarms.

Hamlet

$246

$246 worth
of books

$207

$246This got
expensive.
Better add
a discount.

-1
-$39

Figure 2.6  Do-it-yourself discounting—add an anti-Hamlet



40 chapter 2 Intermission: The anti-Hamlet 

2.2 Shallow modeling
A company leaking money this way obviously has a security problem. How could this 
occur? And, more importantly, how could it have been avoided? Our observation is 
that this kind of situation is often the result of modeling that stops short at the first 
model that seems to fit, without digging deeper or questioning and without planning 
or consideration. Let’s refer to this ad hoc style as shallow modeling (in contrast to deep 
modeling).

Let’s start by asking the question, “How could 
things go wrong this way?” Looking at it after the fact, 
it seems obvious that a quantity can’t be an integer 
without restrictions. But why did someone design it 
that way? As we mentioned in chapter 1, design consists 
of all the active decisions you make when developing 
software. In this case, the design included the (active) 
choice to make a quantity an unrestricted integer. It 
might not have been a decision that was well thought 
through, but it was a decision nevertheless.

Let’s look at the rest of the concepts in the design—
and there are lots of concepts in the domain of online 
sales. Some of these are more important and some 
less. When designing, someone chooses some con-
cepts to be the most crucial: order, order line, book, 
and quantity, for example. We often see designs where 
the main focus seems to be on answering the question, 
“How can I represent this?” With this mindset, design 
is about finding a way to code it. When you find a way 
to code it, you’re done. And, in this case, the shortest 
distance between business and code is achieved if you 
can represent things using the language primitives: 
integers, floats, booleans, and strings (figure 2.7).5

Different things are represented in different ways 
in the domain, some explicit and some implicit. For 
example, the model contains order as a concept, and 
an order has a monetary value. An order also consists 
of order lines, each with a book and a quantity. A book 
has a title, an ISBN, and a price. Order, order line, and book are explicit concepts in the 
domain. Quantity, title, ISBN, and price are implicit concepts, represented by integers, 
strings, and so forth. Rephrased, a quantity is an integer without restrictions. Looking at 
it this way, it seems strange that order, order line, and book are all well elaborated, but 
quantity is left as an integer without consideration. How did it become this way?

I know! I can
use an int for this.

Problem solved.
I rock!

Figure 2.7  The how-can-I-code-this  
mindset at work

5 Well, in Java, strings are technically not primitives but are so fundamental that we can consider them as 
primitives for the sake of this discussion.



41Shallow modeling

2.2.1 How shallow models emerge

We think many of these mistakes boil down to the modeling being incomplete or even 
missing. Imagine a conversation in the early stages of the project between a sales per-
son, Sal Esperson, and a developer, Deve Loper. The discussion might go something 
along these lines:

“And then you can add books to the order,” says Sal.

“So, how do we describe a book?” questions Deve.

“We show a title and a price,” answers Sal.

“What can the price be? Is it always a whole number?” asks Deve.

“Well no, a book can be priced $19.50, tax excluded,” clarifies Sal.

Deve thinks, “So a book has a title and a price as attributes. The title is a string. 
The price is not an int, it’s a float.”

WARNING  Never, ever, ever represent money as a float! See “No double money” 
in chapter 12 to find out why.

And Deve asks, “Is that all there is to a book?”

“Nah,” answers Sal, “it’s also important that it has an ISBN, so we can keep hard-
backs and paperbacks separate.”

“OK. And then we add books to the order,” says Deve. “For example, Moby Dick, 
Pride and Prejudice, Hamlet, Moby Dick again, 1984, and Moby Dick again?”

“Well, almost. We would say three Moby Dick books, as we don’t care about what 
order you buy them in.”

“OK,” Deve thinks. “It isn’t a float, it’s an integer.”

WARNING  Beware of leaving modeling as “It’s an integer”!

Later on, this discussion is turned into code. Deve creates a class Book that gets the 
attributes title, isbn, and price. The Order class gets a new method, addOrder-
Line(Book book, int quantity). Because order, order line, and book get explicit 
representations, those each become classes. The type system enforces that these are 
used at the proper places in the code. If you try to pass anything else where a Book is 
expected, you’ll get a compilation error.

On the other hand, quantity is implicitly represented by the primitive type int. But 
using quantity isn’t enforced by the type system and compiler. You can accidentally pass 
in some other integer, such as the temperature outside, without getting a compiler 
error. The only hint that a quantity is expected is the parameter name quantity, as 
shown in the following:

class Book {
    String title;
    String isbn;
    double price;
    ...
}



42 chapter 2 Intermission: The anti-Hamlet 

class Order {
    void addOrderLine(Book book, int quantity) {
    ...
    }
}

In the conversation, note that Deve asks no further questions about what a title is or 
about the ISBN, jumping to the conclusion that they are simply text, and he represents 
them using Strings in the code. But, most probably, a title can’t be any string, and an 
ISBN certainly can’t.

Deve isn’t incompetent when it comes to modeling. He does ask an interesting ques-
tion about the nature of price (“Is it always a whole number?”) but leaves it there. Also, 
he completely misses the hint that prices might be more complicated when Sal answers, 
“…tax excluded.” The drive for Deve seems to be “Can I represent this in code?” and 
not “Do I understand how this works?”

We’ve seen that shallow modeling like this leads to having interesting business con-
cepts represented as primitives: int, float/double, string, boolean, and so forth. Our 
experience is that these kinds of implicit representations are common. We often see 
systems where almost everything is represented by strings, integers, and floats. Unfortu-
nately, this has several drawbacks.

2.2.2 The dangers of implicit concepts

You’ve seen that something as simple as leaving quantity as a primitive integer can 
cause severe security problems. This type doesn’t capture the crucial restrictions. In 
the same way, having the title and ISBN as unrestricted strings provides too much lee-
way. Strange things can happen when a system assumes some data is formatted as a 
proper ISBN when it’s not.

WARNING  Any integer between -2 billion and 2 billion is seldom a good repre-
sentation of anything.

Credit card numbers and Social Security numbers (SSNs) are two other examples that 
we often see as implicit concepts represented by strings. Obviously, this risks having 
data that’s not a valid credit card number or SSN, and it might not even have the right 
format. But worse is the risk that you might not treat it properly.

Both credit card numbers and SSNs have strong restrictions on how they can be 
revealed, put into logs, and so on. If they are represented as strings, there’s a risk that 
they’ll be accidentally put into logs or shown. Later, we’ll see how representing these 
things as domain classes can avoid such mistakes; for example, by using read-once 
objects (we cover this in chapter 5).

Back to our implicit concepts represented by language primitives, such representa-
tions also create very funky code. Ponder the following method signature:

void addCust(String name, String phone, String fax, int creditStatus,
   int vipLevel, String contact, String contactPhone, boolean partner)



43Deep modeling

This code has only eight parameters, but if you accidentally swap two of them, then 
the customer might get a credit status or a VIP level they shouldn’t have. As both the 
creditStatus and vipLevel are ints, the compiler won’t catch that you’ve sent them 
in the wrong order. These kinds of mistakes can lead to subtle and hard-to-find bugs, 
sometimes with security connotations. And eight parameters isn’t a long list. We’ve 
seen parameter lists with tens of parameters, all strings. Constructors especially seem to 
be at risk for this specific problem.

Shallow modeling and the resulting implicit concepts lead to a high risk of buggy and inse-
cure code. The alternative is a more conscious approach with deep modeling and explicit 
concepts. Now let’s turn to what this story would look like if the modeling had been a 
conscious effort to implement a deep model.

2.3 Deep modeling
To understand deep modeling, you must first acknowledge that any model you come 
up with is a choice. In any domain, there are uncountably many different models pos-
sible. When you design, you choose what set of concepts to build your design around, 
and what meaning you load into those words. Using the terminology from Domain-
Driven Design, this particular choice makes up the domain model, the chosen distillation 
of the domain. In our work with security and design, we’ve gotten lots of inspiration 
from Domain-Driven Design and its focus on understanding and modeling the domain 
in a strict way.6

Making a conscious effort when modeling means that you actively search for ways to 
understand the domain. The drive isn’t “How do I code this concept?” but rather “How 
can I understand this concept?” This leads to much deeper dialogues when modeling 
and often to an iterative process of discussions and coding. The result is that you unveil 
more concepts that need to be represented explicitly to capture the full understanding 
of your model.

2.3.1 How deep models emerge

Let’s go back to the discussion between Deve Loper and Sal Esperson to see how it 
might evolve with a mindset of deep modeling:

“And then you can add books to the order,” says Sal.

“So, how do we describe a book?” questions Deve.

“We show a title and a price,” answers Sal.

“What can the price be? Is it always a whole number?” asks Deve.

“Well no, a book can be priced $19.50, tax excluded,” clarifies Sal.

Deve thinks, “So, a book has title and price as attributes. And price seems to be a 
complicated issue in itself because you mentioned tax. I’ll need to dive into those 
later,” and asks, “Is that all there is to a book?”

6 Eric Evans coined the term and wrote the seminal book Domain-Driven Design: Tackling Complexity in the 
Heart of Software (Addison-Wesley Professional, 2004). Read it, preferably a few times.



44 chapter 2 Intermission: The anti-Hamlet 

“Nah,” answers Sal, “it’s also important that it has an ISBN so we keep hardbacks 
and paperbacks separate.”

“OK. And then we add books to the order,” says Deve. “For example, Moby Dick, 
Pride and Prejudice, Hamlet, Moby Dick again, 1984, and Moby Dick again?”

“Well, almost. We would say you have a quantity of three Moby Dick books, as we 
don’t care about what order you buy them in,” says Sal.

“Can you buy half a Moby Dick?” asks Deve.

“Of course not, silly.”

“You used the word quantity,” Deve says. “I want to understand that better. 
What happens if you have a quantity of three Moby Dick books and then they’re 
removed? Do you then have a quantity of zero Moby Dick books?”

“Eehhh, not really. I mean, a quantity of zero isn’t really a quantity at all. We’d say 
no quantity,” Sal clarifies.

“This quantity seems to have some rules around it,” Deve says. “So, how big can a 
quantity be? Two billion books?”

“Haha. Well, certainly not. Seriously, I think we’re limited by the through-store 
logistics flow, and it can’t handle orders bigger than a total quantity of 240.”

“The through-store flow?” asks Deve.

“Yep, that’s what they call it. It’s how the orders from the online store are handled 
at the warehouse; it’s about box sizes, packing stations, and stuff. Orders bigger 
than that must go to the warehouse bulk flow. But we can’t use that from the 
online store,” Sal explains.

“What is the total quantity of an order? Can you give me an example?”

“That’s simply adding the quantity of all books. If you have three Hamlets, four 
Pride and Prejudices, and one Moby Dick, then you have a total quantity of eight,” 
Sal says.

TIP  When modeling, discuss upper limits—that always yields interesting 
information.

Deve makes a note that a single quantity can’t be larger than 240, and the same goes 
for the total quantity of an order. Later on, this knowledge is captured as code:

class Book {    
    BookTitle title;

    ISBN isbn;
    Money price;
    ...
}

class Quantity {    

Book has a class of its own  
(an explicit representation).

The Quantity class contains restrictions 
on how small or large a quantity might 
be (business insight captured as code).



45Deep modeling

  ...
  Quantity(int quantityOfBooks) {
      isTrue(0 < quantityOfBooks, "Quantity must be positive");
      isTrue(quantityOfBooks <= 240,
        "Quantity must fit in through-store flow, which is limited to 240");
      ...
  }
}

class Order {
    void addOrderLine(Book book,
                      Quantity quantity) { 

        ...
    }

    Quantity totalQuantity() {
        ...
    }
}

NOTE  Code is encoded knowledge, thus its name.

In a later chapter, we’ll dig deeper into code like this. Chapter 4 covers contracts such 
as isTrue(0 < quantityOfBooks.... The class Quantity is an example of a domain 
primitive, to which chapter 5 is dedicated. Creating entities such as the Order class is 
the subject of chapters 6 and 7.

2.3.2 Make the implicit explicit

With deep modeling, you can find lots more concepts that are interesting—too inter-
esting to be left implicit. Our standard advice is to make implicit concepts explicit. 
When you find an implicit concept like “quantity” in your story, take a few minutes to 
discuss it a little bit more deeply. If it seems interesting enough, make it into an explicit 
concept instead—spell it out as a part of the design. Later on in the code, quantity will 
show up as a class of its own and will uphold its own constraints. Using the concept of 
quantity also makes the rest of the code more expressive.

A common objection is that making all these concepts explicit creates a lot of classes. 
We’d like to point out that the code in those classes is necessary in any case: all the inter-
esting business rules have to be caught in code, or else you’re creating a worse system. 
Having explicit concepts as classes makes a difference in how your code is organized. 
Extracting interesting concepts into classes of their own makes them easier to find than 
if the same code is spread out into service methods in large service classes.7

TIP  When modeling, make implicit concepts explicit.

There’s no risk of someone sending in an 
illegal quantity; the compiler won’t allow it.

7 An architectural style Martin Fowler refers to as Transaction Scripts; see http://martinfowler.com/
eaaCatalog/transactionScript.html.



46 chapter 2 Intermission: The anti-Hamlet 

Shallow modeling is a missed opportunity for learning. As you’ve seen, it’s also a poten-
tial source of security vulnerabilities. To grab the opportunity would be to ask, “What 
do you mean by quantity? Can there be variants? Are there restrictions?” Most proba-
bly, you’d learn that a quantity of books can never be a negative value. Perhaps you’d 
even learn that it can’t be zero because “We only use the word quantity with a number 
if there are books; otherwise, we say there’s no quantity.”

Discussing the lower bound might lead to a discussion about an upper bound. Is it 
sensible to be able to order 2,147,483,647 books? Asking about such an order might 
lead the domain expert to start explaining how logistics work, how books are loaded on 
pallets, and so on. Such a discussion will again give you a deeper understanding and, yet 
again, reduce the risk of business integrity problems.

A design like this is much more expressive, much more robust, and much less prone 
to contain security vulnerabilities. We’ll spend the following chapters elaborating on 
how to achieve this and what design guidelines we’ve found most effective to avoid secu-
rity flaws. We’ll start by looking at some of the concepts of Domain-Driven Design we’ve 
found most useful.

Summary

¡	Incomplete, missing, or shallow modeling leads to a design with security flaws.
¡	A security flaw in the form of broken business integrity can live in production for 

a long time, bleeding money from your enterprise.
¡	Conscious, explicit design results in a much more robust solution.



Part 2

Fundamentals

The second part of this book is the longest and also the most important. 
This is where you’ll learn the design principles, ideas, and concepts that make up 
the foundation of the secure by design approach of creating software.

We wanted to include many topics in this part, but those that made it into the 
book are the ones we believe are the most valuable. First, these topics will equip 
you with a set of tools and concepts that you can start to apply immediately in your 
daily coding. Second, and perhaps most important, they’ll teach you the mind-
set of secure by design—a mindset that’ll enable you to expand on the ideas in 
this book and perhaps come up with your own secure design practices. Once you 
understand the secure by design ideas and start seeing the connection between 
software design and software security, you’ll probably view software development 
in a whole new light.





49

3Core concepts of   
Domain-Driven Design

This chapter covers
¡	The parts of Domain-Driven Design (DDD) most 

important for security

¡	Models as strict simplifications of the domain

¡	Value objects, entities, and aggregates

¡	Domain models as ubiquitous language

¡	Bounded contexts and semantic boundaries

During the years that we’ve been developing software, we’ve found inspiration from 
many sources—some different, some shared. One of the biggest sources of inspira-
tion we have in common is Domain-Driven Design, often abbreviated as DDD.

DDD sets the bar a little higher in regards to most system development. We’ve 
seen a lot of system development where the attitude “just make it work” has been the 
guiding principle. When a bug was found, the solution was to just add an if clause. 
Although seldom a local programming mistake, the problem was poorly understood, 
and the solution was built on a model that was incomplete or inconsistent.



50 chapter 3 Core concepts of Domain-Driven Design 

Domain-Driven Design is an approach to the development of complex software in which we:

1 Focus on the core domain.

2 Explore models in a creative collaboration of domain practitioners and software 
practitioners.

3 Speak a ubiquitous language within an explicitly bounded context.

—Eric Evans, Domain-Driven Design Reference (Dog Ear Publishing, 2014)

DDD says we don’t just want our systems to work, we want to truly understand what 
we’re building. Let’s stress the word what in this context. What DDD emphasizes is a 
deep understanding of the problem domain, not just an understanding of the solu-
tion. The beauty we see in DDD is that it also insists on capturing that understanding 
in code—it makes the code speak the language of the problem you’re solving. We find 
that a focus on deep understanding helps us become better developers. It was much 
later that we realized this approach also has a profound effect on security.

This chapter is about DDD, but not all aspects of it. DDD is in itself a huge and mul-
tifaceted subject. It spans from crafting code to system integration, from requirement 
analysis to testing. It links into other agile-minded methodologies and processes. You’ll 
find multiple books and an overwhelming number of articles about DDD, so covering 
it comprehensively in one chapter would be impossible. We’ll instead focus on those 
parts of DDD that we’ve found can drive security.

If you’re unfamiliar with DDD, this chapter gives you the understanding of DDD that 
we’ll use in later chapters. This chapter is also here as a reference. In later chapters, we 
use parts of DDD to promote security, so come back here when you need a refresher 
about value objects, aggregates, context maps, or any other DDD concept.

As a side note, we recommend you dig deeper into this subject, as there is a lot more 
to it beside the security aspects. The mini-book Domain-Driven Design Quickly is a good 
starting point.1 Patterns, Principles, and Practices of Domain-Driven Design (Wrox, 2015), by 
Scott Millett, is also an easygoing start. If you want to dig deeply into the subject, then 
Eric Evans’s seminal book Domain-Driven Design: Tackling Complexity in the Heart of Soft-
ware (Addison-Wesley, 2003) is the definitive read.

If you’re somewhat familiar with DDD, read this chapter as a refresher. If you’re a 
proficient Domain-Driven Designer, read this chapter anyway, as there are some aspects 
we want to stress—those aspects that we’ll use later for promoting security. Also, be 
aware that we might express some ideas in a somewhat compressed fashion, and they 
might seem somewhat distorted. We’re not aiming for completeness, but for an under-
standing that’s enough to talk about its relationship to security.

We’ll cover domain models, which form the foundation of system development à la 
DDD. Domain models provide an unambiguous, strict foundation for what the system 
does. From a security perspective, this is interesting. When you define what the system 
should do, it also gives you a powerful tool to say what the system shouldn’t do.

1 Domain-Driven Design Quickly (InfoQ, 2006) can be downloaded freely as a PDF at https://www.infoq 
.com/minibooks/domain-driven-design-quickly.



51Models as tools for deeper insight

When modeling, and implementing that model as code, it’s handy to have some 
building blocks. Domain models are usually based on value objects and entities. Larger 
structures are usually represented through aggregates. Using these elements makes the 
code more precise and less prone to vulnerabilities.

When zooming out from a single system to the integration level, DDD gives you the 
tools of bounded contexts and context mappings. These tools give you a better possi-
bility to ensure that integration between systems is tight so that it’s easier to hold up 
security across several systems. As DDD is founded on domain models, let’s start with 
creating strict models to capture a deep understanding about the problems you can 
solve with your software.

3.1 Models as tools for deeper insight
Let’s start with explaining what DDD models mean, as they are at the center of DDD. 
In system development, the word model is used for many things: flow diagrams in UML, 
how data is laid out in the tables of a database, and more. In DDD, the model explains 
how you’ve captured your essential understanding of the business-at-hand as a selected 
set of concepts. Why do you need such models, and what should they look like?

We all know that there are no silver bullets, and DDD is no exception. To stay intel-
lectually honest, it’s important to point out when a technique or methodology doesn’t
yield a significant benefit, as well as under what circumstances it has its sweet spot. If 
you’re designing a network router or a baggage-handling system, the circumstances 
differ wildly. DDD won’t help much in the first case, but will help you in the second case.

In the case of a network router, the most important problem is technical: getting 
high enough I/O throughput and low enough network latency, which is a really com-
plex problem. Should you fail to master this complexity, you’ll get a product that no 
one wants to buy. Network performance is the critical complexity for your router. DDD 
can aid you in modeling the package queues and routing tables, but it won’t address the 
throughput and latency.

In contrast, let’s think about the case of the baggage system that handles checked-in 
baggage at an airport. In its technical implementation, it will use the same databases, 
message queues, and GUI frameworks as most other systems. There will be a lot of com-
plexity to handle, but this is probably not the critical problem. For the baggage system, 
you need to represent how baggage is routed from check-in counters to airplanes via 
conveyor belts and loading trucks. If the representation is flawed, then the bags might 
not make it in time for the right flight or might end up on the wrong one. Passengers 
will be angry, and the business will lose goodwill, confidence, and money. Even worse, 
there are important security aspects at stake. For obvious security reasons, a bag is only 
allowed on the plane if the passenger is on the plane. If a bag is checked, but the pas-
senger doesn’t show up at the gate, then the baggage system must ensure the baggage is 
unloaded. If the system isn’t properly crafted, it might be possible to trick it into loading 
a bag onto a specific flight or not unloading it—something that could have severe secu-
rity consequences.



52 chapter 3 Core concepts of Domain-Driven Design 

If you fail to capture a deep and precise understanding of baggage handling, you’ll 
build a flawed system. But the greater risk is that it’s harmful to the business and poten-
tially dangerous to the customers. It might even be so bad it makes the system meaning-
less. The airport might be better off closed with such a flawed system in place. This isn’t 
a hypothetical example; the opening of the Denver Airport in the 1990s was delayed a 
year-and-a-half because of deficiencies in the baggage system, resulting in heavy eco-
nomic loss.2 In cases like this, understanding and modeling the domain of baggage 
handling should be the focus of your work. Spending time on optimizing your database 
connection pool would be a bad choice. The critical complexity is the domain.

DDD is at its best when your system handles a problem domain that’s hard to under-
stand. In these cases, the most critical problem is understanding the complexity of the 
domain. Then understanding and modeling that domain should be your main focus. If 
you fail to master the complexity of various technical aspects, you get a system that’s less 
useful. But, if you fail to master the complexity of the domain, you get a system that’s 
doing the wrong thing. In that regard, the domain is the critical complexity. In our expe-
rience, most business applications fall into this category. Understanding the domain 
and crafting a purposeful model targets the core of solving the business logic problems.

It might be tempting to think that the domain isn’t technical. However, that would 
be a mistake. Sometimes the critical complexity is understanding the domain, but the 
domain is technical. Consider writing an optimizing compiler. It transforms source 
code to highly optimized machine code that can be executed and, in doing so, applies 
peephole optimizations, performs dead-code elimination, evaluates subexpressions at 
compile time, and so on. The tricky part isn’t the read/write performance of files, it’s 
ensuring that all these optimizations result in a program that does the same thing as 
defined by the source code. The main effort should be to represent the source code 
and all transformations in a strict way that enables the optimizations but still guarantees 
that the resulting program is the same. Here it’s the domain that’s the critical complex-
ity, but the domain is technical!

Now the connection to security. It’s hard to capture enough understanding to make 
a system that behaves well in all possible cases. It’s hard enough to do it for benevolent, 
normal data with all the weird cases that can occur. It’s even harder to do it in a way that’s 
resistant to malevolent data. Someone might try to attack your system by sending bizarre 
data to it, manipulating it into doing something unpleasant. The system still needs to 
respond in a sound and safe way. We saw an example of this in the case study of the 
online bookstore in chapter 2. No normal business procedure results in an anti-book 
(quantity -1) being placed in a shopping cart. Still, a dishonest customer might do so to 
manipulate the system (in that example, to avoid paying the full price for an order).

We’ve found that for security, it’s essential to focus on building domain models. A lot 
of security problems are avoided as a side effect, especially business integrity problems. 
Domain models to a certain extent also shield your code from some technical attacks. 

2  Denver is not alone. For example, Heathrow Airport, terminal 5, in Longford, England, has had sim-
ilar problems.



53Models as tools for deeper insight

What you need are domain models that support development in a stable and secure 
way. For a domain model to be effective, it needs to

¡	Be simple so you focus on the essentials
¡	Be strict so it can be a foundation for writing code
¡	Capture deep understanding to make the system truly useful and helpful
¡	Be the best choice from a pragmatic viewpoint
¡	Provide you with a language you can use when you talk about the system

DDD isn’t a silver bullet; its value depends on the context. There are situations where 
a main focus on modeling the domain isn’t the right choice. For example, if you write 
software for a network router, then I/O throughput will be the most critical thing. 
Your critical complexity is technical in this case. But even here, you should consider 
whether a sloppy domain model might be a security issue.

TIP  There’s always a critical complexity. Be aware of whether it’s a technical 
aspect or the domain.

In our opinion, the main benefit of domain modeling is that it works as a vehicle for 
learning at a deeper level—and learning at that level is crucial. It’s not hard to “catch 
the lingo” of businesspeople, and you can use that same language to write a require-
ments document that looks good. But without deep learning, such a document will 
contain subtle misunderstandings, inconsistencies, and logical loopholes. These flaws 
make it impossible to build a solid system that does the right thing in tricky situations, 
with security vulnerabilities as the worst consequence. Working in collaboration with 
domain experts to create a domain model fuels that learning.

3.1.1 Models are simplifications

A model is a simplified version of reality where you’ve removed irrelevant parts. For 
example, when you check in a bag at the airport, there’s no need for the system to rep-
resent your shoe size. On the other hand, it’s probably relevant to represent how heavy 
the bag is. To make it easier to understand and code the system, you create a model 
that contains the weight of the bag (but not the shoe size of the passenger), keeping 
just the details you think are relevant.

To be clear, models aren’t diagrams. In many other contexts, model means a specific 
diagram type, like an entity-relationship model often used for database design or the 
class diagram from UML. These diagrams are representations of the model, but the 
model itself is the conceptual understanding of how our simplified view of reality works.

NOTE  The model isn’t a diagram. The model is a chosen set of abstractions.

The use of “model” in DDD is closer to another use of the word, as in the phrase “model 
train.” When building model trains, the builders put much effort into keeping some 
aspects of reality, while totally ignoring others (figure 3.1). Knowing what details to keep 
and what details to distort is key to building train models, as well as domain models.



54 chapter 3 Core concepts of Domain-Driven Design 

Figure 3.1 shows a model train. It looks like a train and moves around on rails, but it’s not 
a real train. We consider it a model because it has kept some important attributes while 
disregarding others. Let’s list some attributes the model has in common with real trains:

¡	Color —We think that the model of a specific train should have the same colors as 
the original train.

¡	Relative size —We expect the proportions to be maintained. If the doors are twice 
as high as they are wide in reality, we expect the same ratio on the model train.

¡	Shape —We expect the model train and its details to have the same shape, such as 
the curvature of the front window.

¡	Movement —We expect the model train to move along rails in the same way as a 
real train does.

Let’s also list some attributes where the model differs from reality and where we think 
the difference is fine:

¡	Material —It’s OK that the model train is made out of plastic or tin when the orig-
inal is built from other materials.

¡	Absolute size —If the real cars were 30 meters long, it’s fine that they are much 
smaller in the model.

¡	Weight —The model is much lighter, which is OK.
¡	Method of propulsion —The model doesn’t have a steam engine; it runs on 

electricity.
¡	Rail curvature —The curves in the model are much tighter than in reality, which 

we accept.

Strangely enough, it’s easier to find differences between the model train and a real 
train than it is to find things they have in common. Still, we have a firm opinion that 
this is a proper model of a train. Clearly this specific model has managed to capture 
the essentials of our understanding of a train.

It seems like color, relative size, and movement are enough for us to understand that 
the model is a train. These three attributes are necessary; if the model doesn’t fulfill 

Figure 3.1  A model train looks like the real, original train.



55Models as tools for deeper insight

these attributes, we won’t play along and pretend it’s a train. And these three are suffi-
cient. If the model fails to fulfill some other expectation, such as material, we’ll still play 
along and pretend it’s a train.

NOTE  A model is a simplification of reality, a simplification we still accept as a 
valid representation of the real thing.

We’ll now leave the realm of toys and take with us the idea that a model is a simplified 
understanding of the real thing. This goes for the models you use in system develop-
ment as well. If you model a person, you might choose to grab onto a few attributes: a 
person has a name, is of a certain age, has a specific shoe size, and optionally has a pet. 
Agreed, this is a crude model, but a model nevertheless (figure 3.2).

A model is a simplification, but it must still be general enough so that you can capture 
some variations that you think are interesting. In our example, we want to allow different 
names, different ages, and different shoe sizes, and we allow people to have pets or not. 
All these differences we allow to show up in the model. We don’t make any distinctions 
between people of different height or pay any attention to their hairdo (figure 3.3).

You can represent this model in many different ways. You can use plain text to explain 
what you mean. You can use different kinds of diagrams to illustrate it (for example, 

Person
may have

Name
Age
Shoe size

Pet
Figure 3.2  One possible model  
of people and pets

Joe

Zarphac

Jane

Figure 3.3  Joe, age 34, shoe size 9, and his dog Zarphac, together with Jane, age 28, shoe size 6, no pet



56 chapter 3 Core concepts of Domain-Driven Design 

compare figures 3.2 and 3.4). You can use code (pseudocode or actual code from a pro-
gramming language). The important point here is that none of these representations 
is the model. Class diagrams in particular are often confused with being the model, but 
the model, as such, isn’t any of the representations. The model is the conceptual under-
standing of what you consider as essential in your modeling—in this case, name, age, 
shoe size, and pet.

The main benefit of keeping models as really simplified versions of reality is that 
simple models are easier to make strict. This is something that’s essential when you later 
build software from them.

3.1.2 Models are strict

The domain model isn’t just a watered-down version of reality; what it has lost in rich-
ness, it has gained in strictness. When we talk about a model being strict, we mean it in 
the mathematical sense of “exact, precise,” that the concepts, attributes, relations, and 
behaviors are unambiguous.

People are really complex beings with lots of attributes and lots of relationships. 
When you decide to focus on name, age, shoe size, and pets, you lose a lot of rich-
ness. But you gain precision in what you mean by “a person,” a precision that makes 
it possible to represent this entity in software. Knowing what to sacrifice in richness 
to gain in precision is hard work, and you need access to people with deep domain 
knowledge to do this well.

NOTE  The folks who really understand the domain, we call domain experts.

Writing software is a collaboration between two kinds of professionals who come from 
different directions and who need to meet in a productive way: the businesspeople 
and the developers. Each has different needs that have to be fulfilled to create great 
software. Businesspeople need to see the terminology they’re used to, not some qua-
si-technical mumbo-jumbo. If they don’t recognize their domain, you’ve failed them.

Some terminology

¡	Domain —A part of the real world where stuff happens (for example, the domain of 
baggage handling)

¡	Domain model —A distilled version of the domain where each concept has a spe-
cific meaning

¡	Code —An encoded version of the domain model written in a programming 
language

Person

Person ID
Name
Age
Shoe size

PK FK Owner ID

Pet

Figure 3.4  The same model as before, but 
another representation



57Models as tools for deeper insight

It’s not enough to just have some familiar words as labels in the user interface or in the 
headers of printed reports. The system must also behave in a way that businesspeople 
think is reasonable, consistent, and understandable. For this to happen, the domain 
model has to be strict. If the model isn’t strict and contains ambiguities, then one part 
of the system might behave in one way and another part in another way.

For example, a screen at the check-in counter might talk about “number of bags,” 
another at the gate might say “baggage count,” and the tablet used by loading staff might 
say “luggage.” To make things worse, some of these terms might count the carry-on as 
part of the number, while others don’t. When the personnel speak to each other, they 
each have to remember what screen the other person is seeing and whether to add or 
subtract the carry-on from the number they’re seeing. Sometimes there are misunder-
standings, and bags are lost. The system fails the business, and not even the domain 
experts think it makes sense.

WARNING  Many “almost synonyms” describing the same concept are often a 
sign that the model isn’t strict.

Another shameful variant is when a model is consistent in the terminology but too 
lenient in its constraints and relationships. This is often the result of using a standard 
system and configuring it to the domain, which is the usual way of working with, for 
example, Enterprise Resource Planning (ERP) products.

One of the first business uses of computers in the 1940s and 1950s was to plan the use 
of machines and raw materials in manufacturing industry, which provided huge ben-
efits compared to paperwork and manual routines. In the 1980s, material requirements 
planning (MRP) expanded into manufacturing resources planning (sometimes called MRP 
II) to include finance, personnel, marketing, and other so-called resources. But the 
underlying domain still used resources from a bill-of-material to produce products to 
sell. Because factories differ, these MRPs were highly configurable.

In the 1990s, these processes evolved into ERP systems, planning the work of entire 
enterprises and becoming even more configurable to support any enterprise in any 
kind of business. They were often described and sold as standard systems, which could 
be configured to handle any domain; whereas, under the hood, they were still the 
same flow-of-materials systems. This line of business has successfully sold such systems 
to handle customer complaints, police investigations, or other completely different 
domains. Unfortunately, successfully selling is one thing and successfully delivering 
value is another. If you want to configure a flow-of-materials system to handle police 
investigations, you need to do some very nonintuitive abstractions: police can be seen 
as a machine, and a report about a burglary can be seen as a pile of raw material that is 
refined by the (police) machine during its investigation.

In order to shoehorn one domain into another, you need to be less and less specific, 
and less and less precise. The result is often a general object management system where 
everything is an object. Through the user interface, you can update the attributes of the 
objects, but this watered-down model carries little understanding of what those objects 
actually represent. Often you can fill in any combination of attributes and relationships. 



58 chapter 3 Core concepts of Domain-Driven Design 

A system that is so lenient is of course prone to mistakes, and as you saw in the case study 
of the online bookstore, such lenience can result in security flaws.

NOTE  It takes both happy businesspeople and happy developers to make a 
good system. Both groups need to have their professional needs fulfilled.

Obviously, it’s important to pay attention to the businesspeople. They need to recog-
nize the domain they’re used to working in, so you should choose terminology that’s 
familiar to them. And it’s a big mistake to fail to meet the needs of the domain profes-
sionals. It’s an equally big mistake to fail to meet the needs of the other professionals: 
the developers.

As developers, at the end of the day, we write code. And that code is mathematically 
strict—it tells the computer how to execute based on the data at hand, according to the 
rules we code. This is why we need strictness. Either we get that strictness from our con-
versations with the domain experts or we invent that strictness ourselves by filling in the 
gaps with educated guesses.

It isn’t good enough to say that “most people just have one pet.” Developers need to 
know if having a pet is strictly restricted to having just one. This is where it takes some 
courage to be a developer. You need to ask the questions that make the model strict 
without ambiguities. If you ask if there can be more than one pet, you might get the 
answer, “Oh, that’s really unusual.” This leaves you with two options: either you think, 
“Then I need to allow for a list of pets,” or you think, “Just one pet allowed.” In the first 
case, you end up writing a system with possibly more complexity than necessary, and 
sooner or later some weird combination occurs. In the second case, you disallow multi-
ple pets, just to get hammered a few months later when it turns out that there are some 
customers (perhaps customers you get when acquiring another company) who actually 
have two or more pets. To add insult to injury, this can turn into blame-shifting towards 
you, with businesspeople saying unfairly, “We told you it could happen,” when all you 
did was make a decent assumption to keep complexity at bay. You need to be able to 
make decisions to move development forward.

The way out of this dilemma is to actively ask what should be in the model: “Shall 
we allow for multiple pets, or shall we place a restriction on having just one?” Decid-
ing whether the unusual multipet people should be covered or not isn’t a technical 
decision, it’s a business decision. If you don’t have system support for multiple pets, 
then they have to be handled through a separate manual routine. On the other hand, 
providing scope for lots of diversity doesn’t come for free either. It’s tempting to allow 
for more and more general models, but sooner or later everything is in a many-to-many 
relationship with everything else. That doesn’t make anything better in the long run. It 
can be hard to foresee and get an overview of the ramifications of a general model.

Say there’s a function that allows one person to swap pets with another person. If 
you also allow for multiple pets per person, then you need to figure out what it means 
to swap pets. Does that mean person A gets all of the pets of person B, and vice versa? 



59Models as tools for deeper insight

Or do you just swap one pet? If you don’t let the model reflect the business domain, you 
let the businesspeople down. If you don’t create a strict model, you let the development 
people down.

NOTE  A good model must not only reflect the business domain, it must be 
strict. Having a strict model means that you eventually can build code using the 
model as a foundation.

When you design software, you make similar choices; you make simple representations 
of complex phenomena. Let’s have a look at a schoolbook example of object orienta-
tion, shown in the following code snippet, where lots of attributes and relationships 
are ignored and only a narrow view of a person is left:

class Person {   
    private String name;

    private int age;
    private int shoeSize;
    private Animal pet;
    void growOlder() {
       this.age++;
    }
    void swapPetWith(Person other) {
     ...
    }
}

In this design, you’ve removed tons of attributes and behaviors that a person might 
have, reducing it to four attributes that are essential for the context and purpose at 
hand. The model has a purpose, a scope of behavior you want to describe. Leaving out 
details might seem to make the system poorer, but it provides a great benefit—what 
you gain by leaving out details is the possibility to be precise.

In the domain of people, a person is a complex being with complex interactions. But 
in our model of the domain, a Person is something that has a name, an age, a shoe size, 
a pet, and the ability to grow older. Period. That’s exactly what you mean when you use 
the word person. What you lose in richness, you gain in precision.

3.1.3 Models capture deep understanding

The previous example of modeling a person is of course laughingly simplistic. Real-
world problems are much more intricate, as is the case of airport baggage handling. 
The strict understanding that you capture in a domain model is deeper than what 
most people think. In fact, the knowledge you need to capture is even deeper than 
the understanding most domain experts exercise in their day-to-day work when they 
handle situations on a case-by-case basis. The reason for this is that you not only need 
enough understanding to work in the domain, you need an understanding deep 
enough to build a machine. Let’s compare this with the challenge of riding a bike.

The model of the domain concept 
“person” captured as code



60 chapter 3 Core concepts of Domain-Driven Design 

Most of us are experts at riding a bike in the sense that we can do it without actively 
thinking about what we do.3 We can prove this by taking a bike and riding it even in 
pretty challenging conditions, such as on a bumpy road and in windy weather, and, 
perhaps, even while carrying a large package under one arm. That takes expertise. 
Compare that with the difficulties faced by a child who’s just learning to ride on flat 
ground on a nice sunny summer day. This expertise is comparable to the proficiency 
of a domain expert; they know how the domain works. For example, a shipping expert 
knows how to route cargo containers even when conditions get tough, such as when a 
container is mistakenly unloaded from a ship and there’s no other ship leaving for the 
same destination for a substantial amount of time. The domain expert is able to handle 
even tricky cases, taking each case on its own.

Unfortunately, the understanding you need to write a software system goes even deeper. 
You don’t have the luxury of being “at the site” to handle any situation that arises, of being 
able to assess and improvise to resolve a situation on the spot. You’re writing a program 
that should do this without your being at the site in human form. The challenge you face 
isn’t so much like a youngster riding a bike, but is more like building a bike-riding robot.

If you’re to build a bike-riding robot, the understanding of bike riding needed is 
much deeper than most experts possess, even professional bicycle messengers or BMX 
pros. For example, how do you turn right while riding a bike? Think about it for a few 
seconds; you’ve probably done it a thousand times. Most people spontaneously answer, 
“I pull on the right handlebar.” Unfortunately, doing so would cause you to fall to the 
left, down onto the asphalt, due to centrifugal force.4

What you actually subconsciously do when turning right is to turn the handlebars left, 
causing you to fall to the right for a very short period of time. After a few milliseconds, 
you’ve tilted right just to the appropriate angle, and then you turn the handlebars to the 
right, taking you into a right turn. Your leaning to the right will be exactly what’s needed 
to compensate for centrifugal force, and you’ll turn right, safe and stable (figure 3.5). 
You do this without thinking and without understanding the subtle kinematics mechan-
ics. If you want to build a bike-riding robot, this is the depth of understanding that you 
need to have.

This bike-riding robot story provides some bad news and some good news. The bad 
news is that if you look inside the head of a domain expert, you find no ready-to-go 
model. There’s no true model inside. You can’t simply ask the domain experts and 
expect to get all the answers you need. The good news is that working together with 
domain experts to craft a model is fun and rewarding. Doing so is an iterative process of 
exploring lots of possible models and choosing one that is appropriate for solving the 
problems you have at hand.

3 In the Dreyfus model of skill acquisition, these levels of skill are called Expertise and Mastery. Check 
out A Five-Stage Model of the Mental Activities Involved in Directed Skill Acquisition (University of California, 
Berkeley, 1980) by the brothers Stuart and Hubert Dreyfus.

4 Yes, centrifugal forces do exist, even if your physics teacher might have told you otherwise. The centrif-
ugal force is a fictitious force that’s observed in a rotating frame of reference, such as a bicyclist taking 
a turn. Classical Mechanics (Addison-Wesley, 1951), by Herbert Goldstein, is an excellent book on the 
subject of kinematics mechanics.

PSST:
Most pro bike messengers

don’t know this.

Turn left1

Fall right2

Turn right3

Yiha!
A stable turn
to the right

The subtle art
of turning right

on a bike

4

Figure 3.5  To build a bike-riding robot, you need a deep understanding of how to make a right turn.



61Models as tools for deeper insight

TIP  The best domain models are evolved in cooperation between developers 
and domain experts—over time and many iterations.

3.1.4 Making a model means choosing one

One of the usual myths of modeling is that there’s a true model somewhere, often 
thought to be embedded inside the head of the domain expert. This isn’t the case. 
Making a model involves an active choice among many possible models, and you need 
to choose the one that best suits your needs—that which defines the purpose of the 
model.

NOTE  There is no single true model; there are just choices. Make choices that fit 
the purpose.

DDD practitioners sometimes use the phrase “distilling a model.” Let’s compare our-
selves for a while with a whiskey distiller. Somewhat simplified, the whiskey distiller 
starts with a large batch of fermented wort, something basically undrinkable, then 
adds some heat and collects the vapors.5 The distiller throws away the first part, which 

5 A thorough and accurate description of whiskey distillation is outside the scope of this book... 
unfortunately.

Most of us are experts at riding a bike in the sense that we can do it without actively 
thinking about what we do.3 We can prove this by taking a bike and riding it even in 
pretty challenging conditions, such as on a bumpy road and in windy weather, and, 
perhaps, even while carrying a large package under one arm. That takes expertise. 
Compare that with the difficulties faced by a child who’s just learning to ride on flat 
ground on a nice sunny summer day. This expertise is comparable to the proficiency 
of a domain expert; they know how the domain works. For example, a shipping expert 
knows how to route cargo containers even when conditions get tough, such as when a 
container is mistakenly unloaded from a ship and there’s no other ship leaving for the 
same destination for a substantial amount of time. The domain expert is able to handle 
even tricky cases, taking each case on its own.

Unfortunately, the understanding you need to write a software system goes even deeper. 
You don’t have the luxury of being “at the site” to handle any situation that arises, of being 
able to assess and improvise to resolve a situation on the spot. You’re writing a program 
that should do this without your being at the site in human form. The challenge you face 
isn’t so much like a youngster riding a bike, but is more like building a bike-riding robot.

If you’re to build a bike-riding robot, the understanding of bike riding needed is 
much deeper than most experts possess, even professional bicycle messengers or BMX 
pros. For example, how do you turn right while riding a bike? Think about it for a few 
seconds; you’ve probably done it a thousand times. Most people spontaneously answer, 
“I pull on the right handlebar.” Unfortunately, doing so would cause you to fall to the 
left, down onto the asphalt, due to centrifugal force.4

What you actually subconsciously do when turning right is to turn the handlebars left, 
causing you to fall to the right for a very short period of time. After a few milliseconds, 
you’ve tilted right just to the appropriate angle, and then you turn the handlebars to the 
right, taking you into a right turn. Your leaning to the right will be exactly what’s needed 
to compensate for centrifugal force, and you’ll turn right, safe and stable (figure 3.5). 
You do this without thinking and without understanding the subtle kinematics mechan-
ics. If you want to build a bike-riding robot, this is the depth of understanding that you 
need to have.

This bike-riding robot story provides some bad news and some good news. The bad 
news is that if you look inside the head of a domain expert, you find no ready-to-go 
model. There’s no true model inside. You can’t simply ask the domain experts and 
expect to get all the answers you need. The good news is that working together with 
domain experts to craft a model is fun and rewarding. Doing so is an iterative process of 
exploring lots of possible models and choosing one that is appropriate for solving the 
problems you have at hand.

3 In the Dreyfus model of skill acquisition, these levels of skill are called Expertise and Mastery. Check 
out A Five-Stage Model of the Mental Activities Involved in Directed Skill Acquisition (University of California, 
Berkeley, 1980) by the brothers Stuart and Hubert Dreyfus.

4 Yes, centrifugal forces do exist, even if your physics teacher might have told you otherwise. The centrif-
ugal force is a fictitious force that’s observed in a rotating frame of reference, such as a bicyclist taking 
a turn. Classical Mechanics (Addison-Wesley, 1951), by Herbert Goldstein, is an excellent book on the 
subject of kinematics mechanics.

PSST:
Most pro bike messengers

don’t know this.

Turn left1

Fall right2

Turn right3

Yiha!
A stable turn
to the right

The subtle art
of turning right

on a bike

4

Figure 3.5  To build a bike-riding robot, you need a deep understanding of how to make a right turn.



62 chapter 3 Core concepts of Domain-Driven Design 

contains acetone. The middle part consists of most of the alcohol, some of the water, 
and the natural flavors that are dissolved. This is considered the good part and is kept. 
The last part consists of some alcohol, a lot of water, and some less attractive flavors. 
This is also discarded. What is kept is what we call whiskey. Your personal attitude 
toward whiskey or your tastes might vary, but you get the point. When distilling, we 
actively keep some parts we want and throw away parts we don’t want. In the same way, 
when you distill a model, you throw away some parts of reality and keep others.

The important point here is that there are many ways for distillers to do their job. 
They have a choice. Keeping the middle part is a choice because the objective for the 
distiller is to get a high-alcohol result with some specific flavors. The purpose is to distill 
something that is pleasurable to drink. The purpose directs how we distill.

NOTE  When distilling a model, you do it for a purpose.

But the distiller could have made other choices, if the purpose had been different. Had 
the distiller wanted acetone instead, then the distillation would have looked different. 
The distiller would have kept the first part and thrown away the rest. In the same way, 
you can distill different models from the same reality depending on what you intend to 
use the models for.

Our model describing a person with name, age, shoe size, and pet is just one model. 
Another model could be to describe a person by date of birth, place of birth, mother’s 
name, and father’s name. Neither of these two models is more correct than the other 
(figure 3.6). They’re different, and they’re good for different purposes. If you’re keep-
ing a registry for a dog owners’ club, the first model is clearly superior to the second. If 
you’re studying how a family has spread across the world through migration, the first 
model is worthless, and the second excellent.

When modeling, actively find different models that express your domain. Try to find 
three different models and compare how good they are at expressing your domain 
problems. Finding a good model is important because it makes it possible to talk about 
the domain in an efficient and unambiguous way. A good model forms a language.

Person

may
have
one

Name
Age
Shoe size

Person

Date of birth
Place of birth

Pet

Model
good for...

...dog owner
club

...family
migration studies

Father Mother

Figure 3.6  Two different models of 
people—good for different things



63Models as tools for deeper insight

3.1.5 The model forms the ubiquitous language

An interesting aspect of modeling is that the model creates a language—the language we 
speak about the system. To start with, realize that when domain experts speak with each 
other, they use a language of their own. This is the domain language. In an English-speak-
ing country, this language might sound like English. But there are subtle differences. 
There are a lot of words in English that are simply never used in this domain-expert 
language (for example, chervil will seldom be used in a discussion about accounting). 
The other way around, the domain-expert language contains domain-specific terms 
and idioms that aren’t used in common English (accrual, for example). What domain 
experts speak to one another is simply a language that’s geared to enabling effective 
communication.

Take a moment to consider the domain-expert language of system developers. 
Among ourselves, we easily throw around terminology that makes perfect sense to us 
but is completely impossible to understand for nondevelopers; for example, we might 
“pool the connections” or “make that a strategy.” And the domain experts of finance, 
logistics, or healthcare have their own lingo too.

If you’re building a logistics system, it seems like a logical approach to take the 
terminology from logistics and just encode that as a software system. This is a won-
derful idea, but unfortunately flawed. The language used by logistics experts isn’t 
logically consistent. This isn’t because they’re particularly sloppy with terminol-
ogy. We software developers are equally sloppy with our terminology. Listen in on 
any two seasoned developers talking, and you’ll find that they might use the words 
object, instance, and class interchangeably, as if they were synonyms. And you know they 
aren’t, because when you explain object orientation to beginners, you’re careful to 
distinguish between classes and objects. But when two experts communicate, they can 
be sloppy because they understand each other, and the real discussion is elsewhere on 
a higher level.

TIP  Don’t turn into the language police, correcting domain experts when they 
talk to each other. They’re allowed to be sloppy, and so are you when talking to 
your peers.

If you’re building a logistics system, wouldn’t it be wonderful if you could form a 
language where you can talk about the system in a precise way without the risk of 
misunderstanding? This is exactly what a model is. If you jointly (between logistics 
experts and developers) decide that a leg means transport from one place to another 
using the same vehicle all the way, and you decide that “terminating a leg” means that 
the cargo is unloaded at the destination, then you can use those terms and make your-
selves understood. If you say, “If two transports terminate a leg at the same dock, then 
they can be cotransported on the next leg,” then that phrase can be unambiguously 
understood, and the functionality can be implemented (figure 3.7).



64 chapter 3 Core concepts of Domain-Driven Design 

When discussing the functionality of a system, use the words and phrasings that are 
part of the model. By doing so, you’ll quickly realize whether the functionality can be 
implemented or not. If it’s awkward to express the functionality using the terms from 
the model, this is a sure sign that it’ll be awkward to implement. It might be a sign that 
the model needs to be extended to contain a new term and the system refactored for 
consistency.

Using the terminology of DDD, you want the model to become the ubiquitous lan-
guage when talking about the system. By ubiquitous, in this case we mean that the ter-
minology should be used everywhere you talk about the system (figure 3.8). The same 
terms should be used in the user interface, in the manuals, in the requirements or user 
stories, in the code, and in the database tables. There’s simply no point in calling some-
thing a quantity in the user interface, referring to it as an amount in the manual, and 
naming the database column Volume. Insisting on using the same language across dis-
ciplines helps in finding ambiguities that could manifest as bugs or security flaws later.

Businesspeople
speak business

lingo among
themselves.

Tech people
speak tech
lingo among
themselves.

$
£ ¢€

¥
AX = B B B

Figure 3.7  The domain model forms a language in common.

When specifying an
order, the quantity
of goods must...

Class Order {
      Quantity qty:
      •
      •
      •
}

It’s quantity
all over the place;
it’s ubiquitous.

Specify order

Quantity

Table order
column qty Figure 3.8  The model is ubiquitous;  

it uses “quantity” consistently all  
over the place.



65Building blocks for your model

It’s worth pointing out that, of course, the persistence model might be slightly differ-
ent from the conceptual model. For example, you might have to split concepts into 
different tables, and you might need to join tables or synthetic keys that aren’t part of 
the conceptual model. In the same way, the classes in the code might be slightly dif-
ferent from the terms used in the conceptual model for implementation-specific rea-
sons. Nevertheless, the understanding you capture is still the same, and you should use 
terminology from the ubiquitous language as much as possible when you name your 
constructs (classes or database tables).

This doesn’t mean you’re turning into a language police force. The model or the domain 
model language is the ubiquitous language when talking about the system. The domain 
experts are still allowed to use their ambiguous domain language among themselves in the 
same way developers are allowed to be sloppy about objects versus classes in discussions with 
other developers.

The important point about being precise in the ubiquitous language is that when 
you talk about the system, you need to be precise. This is especially important when 
business experts and developers interact and the risk of misunderstanding is the high-
est. In these situations, you should insist on using the terminology of the ubiquitous 
language.

TIP  Insist on using the words from the domain model in any requirements 
document. If something is hard to express in the terminology of the domain 
model, it’s probably hard to write as software.

It’s also worth pointing out that just because language is ubiquitous doesn’t mean that 
it’s universal. It’s the ubiquitous language when talking about this specific system, not 
when talking about other systems (even other logistics systems). Different systems have 
different needs and different focuses. These will have different models and, thus, dif-
ferent languages. Each domain model language will be the ubiquitous language within 
its realm but not outside that domain.

The context for the language has an outer bound. In DDD, we refer to this as the 
bounded context for the model. Within the bounded context, each word in the model 
has a well-defined meaning, but outside the bounded context, words can mean some-
thing completely different. We’ll cover bounded contexts more deeply later on in this 
chapter. Understanding more about models and their purpose, you can now move on 
to some more pragmatic aspects. You need to actually build those models, so some typ-
ical building blocks are handy to have.

3.2 Building blocks for your model
In order to express your domain model in code, you need a set of building blocks. 
These building blocks should be well defined, and their purpose is to bring order and 
structure to complex models. They provide a framework that allows you to keep your 
domain logic clearly separated from the rest of your code and guides you through the 
technical difficulties in doing so.



66 chapter 3 Core concepts of Domain-Driven Design 

The building blocks from DDD that are of special interest in this book are entities, 
value objects, and aggregates, as shown in figure 3.9. These are interesting because, 
used in a certain way, they can also be building blocks for software security.

Understanding the meaning of these building blocks will help you understand the 
concepts discussed in the rest of this book. In this section, you’ll learn the meaning of 
each of these terms, the details that define them, and how they are used.

3.2.1 Entities

Every part of your domain model has certain characteristics and a certain meaning. 
Entities are one type of model object that have some distinct properties. What makes 
an entity special is that

¡	It has an identity that defines it and makes it distinguishable from others.
¡	It has an identity that’s consistent during its life cycle.
¡	It can contain other objects, such as other entities or value objects.
¡	It’s responsible for the coordination of operations on the objects it owns.

What this means is that if you need to know if two entities are the same, you look at 
their identities instead of their attributes. It’s the identity of the entity that defines it, 
regardless of its attributes, and the identity is consistent over time. During the life cycle 
of an entity, it can transform and take on many different attributes and behaviors, but 
its identity will always remain the same.

Let’s consider a car, for example. Many attributes of a car can change during its life-
time. It can change owners, have parts replaced, or be repainted. But it’s still the same 

O ... *

Store

Name Customer

Age Address

Aggregate boundaryAggregate root

Value
objects

Entity

Figure 3.9  Fundamental building blocks of a domain model



67Building blocks for your model

car. In this case, the identity of the car can be defined by its vehicle identification number 
(VIN), which is a unique 17-character identifier given to every car when it’s manufactured.

Sometimes an entity’s identity is unique within the system, but sometimes its unique-
ness is constrained to a certain scope. In certain cases, the identity of an entity can even 
be unique and relevant outside of the current system. The identity is also what’s used to 
reference an entity from other parts of the model.

Another important trait of an entity is that it’s responsible for the coordination of 
the objects it owns, not only in order to provide cohesion, but also to maintain its inter-
nal invariants. The ability to identify information in a precise manner and to coordinate 
and control behavior is crucial if you want to avoid security bugs sneaking into your 
code. In upcoming chapters, you’ll see that this is what makes entities an important tool 
for designing secure code.

the continuity of identity

Sometimes a domain object is defined by its attributes, but sometimes those attributes 
change over time without implying a change of identity of the domain object. For 
example, a representation of a customer can be defined by its attributes: name, age, 
and address. Most of these attributes can change during the time the customer exists 
in the system, but it’s still the same customer with the same trail of history, so its iden-
tity shouldn’t change (figure 3.10). It would quickly become quite messy if the system 
were to create a new customer every time an address got updated.

The customer isn’t defined by its attributes but rather by its identity and should 
therefore be modeled as an entity. That way, the customer’s identity will stay consistent 
for as long as the customer exists in the system, regardless of how many state changes it 
goes through during that existence.

Customer

Attributes
change, but

identity remains.

Name: Sam Eperson
Age: 31
Address: 2 Domain Drive

Customer

Name: Sam Eperson
Age: 32
Address: 3 Dans Road

Moves to
new house

First
registered Birthday

Time

Figure 3.10  The attributes of the customer change, but the identity remains the same.



68 chapter 3 Core concepts of Domain-Driven Design 

Choosing the right way to define an entity’s identity is essential and should be done 
carefully. The result of that definition will typically be in the form of an identifier. This 
means that the identity and uniqueness of an entity is determined by its identifier. 
Sometimes the identifier can be a generated unique ID, and sometimes it can be the 
result of applying some function to a selected set of attributes of the entity. In the latter 
case, you need to pay careful attention to not include any attributes that can change 
over time. This can be tricky because it’s hard to know which attributes might change 
in the future, even though they seem fixed right now. Therefore, it’s generally better to 
use generated unique IDs for identity.

TIP  As a rule of thumb, favor generated IDs over an identity based on attributes.

It’s also important to note that what we mean by identity in DDD isn’t the same con-
cept of identity, or equality, that’s built into many programming languages. In Java, for 
example, object equality is by default the same as instance equality. Unless you explic-
itly define your own method for equality, two object instances representing the same 
customer won’t be equal. That’s to say, the identity isn’t dependent on a specific repre-
sentation of the entity. Regardless of whether the customer is represented as an object 
instance, a JSON document, or binary data, it’s still the same entity.

local, global, or external uniqueness

The identity of an entity is important, but the scope in which its identity is unique can 
vary. Consider, for example, our customer entity. A system could use an identifier that’s 
unique not only to the current system but also outside of the system. This is an externally 
unique identifier. An example of this would be a national identifier like those used by many 
countries as a means to identify their citizens. In the United States, this would be the 
Social Security number. Using an externally defined identifier can, however, come with 
certain drawbacks, one of which is security implications, as you’ll see in later chapters.

Perhaps more common than externally unique identifiers are identities made to be 
unique within the scope of the system or within the boundaries of the current model. 
Such identifiers can be referred to as being globally unique. An example of this is a 
unique ID generated by the system when a new customer is created (figure 3.11). There 

Customer needs to
be globally unique

Finance Sales

Shipping

Customer

Figure 3.11  Some entities need to be globally unique.



69Building blocks for your model

can be some interesting technical challenges involved here that are worth pointing out. 
If you’re dealing with a distributed system and you need the IDs to not only be unique 
but also sequential, then generating them can be a technical feat in itself.

Some entities will be contained within another entity. Because such encapsulated 
entities are managed by the entity that holds them, it’s usually enough if they have an 
identity that’s only unique inside the owning entity. This identity is said to be local to 
the owning entity (figure 3.12). To go back to our customer entity, say your system is a 
customer management system for retail stores, and every customer belongs to one, and 
only one, store. In this case, the identity only needs to be unique within the store the 
customer belongs to. Modeling an identity to have local uniqueness can simplify the ID 
generation function. It also makes it clearer that the responsibility for managing those 
entities lies with the encapsulating entity.

keep entities focused

One thing to keep in mind when you’re modeling entities is to try to only add attri-
butes and behaviors that are essential for the definition of the entity or help to identify 
it. Other attributes and behaviors should be moved out of the entity itself and put into 
other model objects that can then be part of the entity. These model objects can be other 
entities, or they can be value objects, which we’ll look at in the next section.

Entities are concerned with the coordination of operations on not only themselves, but 
also on the objects they own (figure 3.13). This is important because there can be certain 
invariants that apply to a certain operation, and because the entity is responsible for main-
taining its internal state and encapsulating its behavior, it must also own the operations on 
the internals. Moving the operations outside of the entity would make it anemic.6

O ... * O ... *

Customer need only be
unique within each store

Store A Store B

Customer Customer

Figure 3.12  Some entities only have local identities.

6 Fowler, M., “AnemicDomainModel” (2003), http://www.martinfowler.com/bliki/AnemicDomain-
Model.html.



70 chapter 3 Core concepts of Domain-Driven Design 

When boarding an airplane, each passenger must present a boarding pass in order 
to verify that they’re about to enter the correct plane, which makes it easy to keep 
track of whether anyone is missing when the plane is about to depart. If passengers 
were allowed to freely walk in and out of the airplane, airline personnel would need 
to check all the boarding passes after everyone was seated. This would be a lot more 
time-consuming and possibly cause confusion if passengers had taken seats in the 
wrong plane. With this in mind, it makes sense to control and coordinate the boarding 
of passengers. The same goes for the software model to handle this.

If you model the airplane as an entity with a list of boarded passengers, then other 
parts of the system shouldn’t be allowed to freely add passengers to that list, as it 
would be too easy to bypass the invariants. A passenger should be added by a method 
board(BoardingPass) on the airplane entity. This way, the airplane entity controls the 
boarding of passengers and can maintain a valid state. It only allows boarding of passen-
gers with a boarding pass that matches the current flight.

Entities play a central role in representing concepts in a domain model, but not 
everything in a model is defined by its identity. Some concepts are instead defined by 
their values. We use value objects to model such concepts.

3.2.2 Value objects

As you learned in the previous section, an entity is often made up of other model 
objects. Attributes and behaviors can be moved out of the entity itself and put into 
other objects. Some will be other entities, but many will be value objects. The key char-
acteristics of a value object are as follows:

¡	It has no identity that defines it, but rather it’s defined by its value.
¡	It’s immutable.

Passengers can only be
added through method

board(BoardingPass).

Encapsulation
boundary

Direct access to
list of passengers

is prevented.

O ... *

Airplane
board(BoardingPass)

Passenger

Figure 3.13  Entities coordinate operations.



71Building blocks for your model

¡	It should form a conceptual whole.
¡	It can reference entities.
¡	It explicitly defines and enforces important constraints.
¡	It can be used as an attribute of entities and other value objects.
¡	It can be short-lived.

As you’ll see in upcoming chapters, these properties are part of what gives value objects 
an important role to play when it comes to writing code that’s secure by design.

defined by its value

Because a value object is defined by its value rather than its identity, two value objects 
of the same type are said to be equal if they have the same value. You only care about 
what they are, not who or which they are.7 Value objects have no identity. This is the 
total opposite of how we define entities.

Say you have the concept of money in your domain model. You can choose to model 
money as a value object because you don’t distinguish between different coins or bills. 
A $5 bill is worth as much as another $5 bill. It’s the value of the bill that matters, not 
which bill it is.

NOTE  Whether a concept should be treated as a value object without identity 
or as an entity with a unique identity is dependent on which context you’re 
currently looking at.

If you were modeling the domain of a central bank, then you probably would choose 
to model money as an entity, because in the view of a central bank, which is responsible 
for not only creating banknotes but also keeping track of them and eventually destroy-
ing them, each $5 bill is unique. It’s created and given a unique serial number that 
identifies it so it can be distinguished from other $5 bills. It remains in use until one 
day it’s time to destroy it (perhaps to be replaced by a new type of bill with a new iden-
tity). In the view of the central bank, money has an identity and a life cycle.

immutable

Because a value object is defined by its value, it’s important to make sure that the value 
can’t be changed—if the value is changed, it’s no longer the same value object. This is 
why a value object must be immutable. If a value object were mutable, then changing its 
value could break the invariants of some other object containing the value object. Hav-
ing immutable value objects also means it’s safe to pass them around as arguments and 
allows for various technical optimizations, such as reusing objects if memory is scarce 
and ease of use in multithreaded solutions.

conceptual whole

A value object can consist of one or more attributes or other value objects. It can also 
reference, but not contain, entities. The reason for this is that the value of an entity 

7 Evans, E., Domain-Driven Design: Tackling Complexity in the Heart of Software (Addison-Wesley Professional, 
2004), p. 98.



72 chapter 3 Core concepts of Domain-Driven Design 

can change. If the value object contained the entity rather than referencing it, then 
the value object itself would change whenever the entity changed. This would in turn 
break the immutability of the value object.

When modeling a value object and deciding what it should contain, it’s important that 
it forms a conceptual whole. In other words, it should be a whole value.8 This means that a 
value object shouldn’t be just a convenient grouping of attributes, objects, and references 
but should form a well-defined concept in the domain model (figure 3.14). This is true 
even if it contains only one attribute. When your value object is modeled as a conceptual 
whole, it carries meaning when passed around, and it can uphold its constraints.

In figure 3.14, you can see two different ways to model a customer and its related attri-
butes. In the model on the left, all the attributes have been grouped together in a model 
object called CustomerInfo. In the model on the right, the attributes have been mod-
eled so that they are grouped to form well-defined concepts: street, zip, and city have 
been grouped together in a value object called Address. Phone number and email have 
been put in a value object called ContactInfo. Age becomes its own value object.

TIP  Always strive to model your value objects to form a conceptual whole.

It’s also important to understand that a value object isn’t just a data structure that holds 
values. It can also encapsulate (sometimes nontrivial) logic associated with the concept 
it represents. For example, a value object representing a GPS point could have a method 
that calculates the distance between itself and another GPS point using nontrivial numer-
ical calculations.9

8 Cunningham, W., “The CHECKS Pattern Language of Information Integrity: 1. Whole Value” (1994), 
http://c2.com/ppr/checks.html#1.

ContactInfo
Phone number
Email

Address
Street
Zip
City

Age

CustomerCustomer

CustomerInfo
Age
Phone number
Email
Street
Zip
City

Figure 3.14  A value object should form a well-defined concept.

9 GPS (Global Positioning System) is a satellite-based navigation system that provides accurate position-
ing on earth.



73Building blocks for your model

defines and enforces invariants

Let’s say you have a value object Age that has one integer value, as seen in figure 3.15. 
In Java, for example, an integer can by default take the values from -231 to 231-1. You’d 
probably not consider that range to be typical for a person’s age. Therefore, you should 
model age as a value object with proper constraints or invariants so that its definition 
becomes clear (figure 3.15).

You could during your modeling come to the conclusion that the age of a person 
should be between 0 and 150 years.10 Or maybe your domain doesn’t allow for young 
children, so the minimum age might be 18. Whatever range you choose, it’ll be a lot 
stricter than allowing the full range of a Java integer.

NOTE  These types of invariants should be enforced within the value object 
itself and not be put into other domain objects or utility methods.

It’s also worth noting that the types of invariants we’re talking about aren’t the types 
of checks that are commonly referred to as validation. Validation checks are typically 
performed when asserting that a domain object is valid for a certain operation; it’s pos-
sible to perform a specific action on it. An example of validation would be to check if 
an order is ready to be sent to the shipping system. The validation could include veri-
fying that the order has been paid for and that it contains the necessary address infor-
mation. This type of validation often involves multiple domain objects and is generally 
performed as late as possible.11

3.2.3 Aggregates

When dealing with a model object that has a life cycle, such as an entity, it’s import-
ant to make sure that its state remains valid throughout its entire life cycle. This can 
require quite a bit of logic to implement and can involve code to handle locking 

1

age can be

Person
age: integer

Age
0 ≤ value ≤ 150

Person

Age is a primitive
and is missing

invariants.

Invariants should
be enforced by

the value object.

[-231 231 - 1]

Figure 3.15  Value objects should enforce their own invariants.

10 An age of 150 might be a bit of a stretch, but people are living longer and longer, so you might want to   
future-proof your model.

11 Cunningham, W., “The CHECKS Pattern Language of Information Integrity: 6. Deferred Validation” 
(1994), http://c2.com/ppr/checks.html#6.



74 chapter 3 Core concepts of Domain-Driven Design 

mechanisms to support concurrent operations and managed updates to persistent 
storage. Regardless of whether the entity is being persisted or not, the state change can 
be said to take place within a transaction.12

Transaction management is usually feasible when it comes to a single entity. In reality, 
your domain model is typically not that simple and involves many connections between 
various entities and value objects. This means the consistency you need to manage 
spans over multiple domain objects. Once faced with such a situation, the question 
quickly arises of how to manage transactions that span multiple elements in the model. 
This is where the aggregate comes in.

An aggregate is a conceptual boundary that you use to group parts of the model 
together. The purpose of this grouping is to let you treat the aggregate as a unit during 
state changes; it’s the boundary within which transactions must be managed. The 
boundary that’s defined by the aggregate isn’t randomly chosen or chosen from a tech-
nical point of view. It’s carefully selected based on deep insights of the model.

When modeling an aggregate, it must follow a strict set of rules for it to work as 
intended and to fulfill its purpose. The following lists these rules as put forward by Eric 
Evans:13

¡	Every aggregate has a boundary and a root.
¡	The root is a single, specific entity contained in the aggregate.
¡	The root is the only member of the aggregate that objects outside the boundary 

can hold references to. Thus

– The root has global identity.

– The root controls all access to the objects within the boundary.

– Entities other than the root have local identity. Their identities don’t have to 
be known outside of the aggregate.

– The root can pass references to internal entities to other objects, but those 
references can only be used transiently and can never be held onto.

– The root can pass references of value objects to other objects.
¡	Invariants between the members of the aggregate are always enforced within 

each transaction.
¡	Invariants that span multiple aggregates can’t be expected to be consistent all the 

time, but they can eventually become consistent.
¡	Objects within the aggregate can hold references to other aggregates.

This is quite a comprehensive set of rules, and you might want to go through them 
again and think about their meaning and the implications each of them will bring to 
the design of not only your model but also your code. There are, however, a couple of 
traits that we’d like to expand on to make things clearer.

12 We’re not talking database transactions here but logical state transactions.
13 Evans, E., Domain-Driven Design: Tackling Complexity in the Heart of Software (Addison-Wesley Professional, 

2004).



75Building blocks for your model

The aggregate is a conceptual boundary, and it contains an entity that’s the root 
of the aggregate. In general, when implementing aggregates, the root entity and the 
aggregate will be the same object. Reasoning about them might become easier if you 
think of them as being the same.

The root of the aggregate is the only point of reference outside of the boundary. 
The root also controls all access to everything within the boundary. This makes the 
root the perfect place for upholding all the invariants that span across the objects 
within the boundary. And it can’t be bypassed, as long as you stick to the rules on how 
to model aggregates. Another implication of the root being the only point of refer-
ence is that the root is the only thing that can be accessed through a repository (see 
sidebar). This again is a way to control how an aggregate is accessed and to make sure 
an entity within the aggregate can’t be manipulated directly by objects outside of the 
aggregate.

Repositories
We won’t delve into detail about repositories, but you can think of them as technology- 
agnostic storage for aggregate roots. You can put aggregate roots into a repository and 
then get them back at a later time. You can also use repositories to delete previously 
stored roots, if your model supports that.

Aggregates, with their boundaries and upholding of consistent state, turn out to be of 
importance when you start looking at how to use them to drive security in your code. 
Let’s take a look at an example of how you could model a simple aggregate next.

Our example model consists of a company and its employees. We’ll make the com-
pany an entity because it has a clear identity and, because our system can handle many 
companies, it also needs to be globally identifiable. The company has a name, but the 
name is merely a value, so we’ll make it a value object. It also has employees who work 
at the company. An employee definitely has an identity, so it’s also modeled as an entity. 
An employee always belongs to a company, so it becomes a child entity of the company. 
Each employee will have a specific role, but that’s also a value, so it becomes a value 
object. The resulting model can be seen in figure 3.16.

After discussing the nature of an employee together with the domain experts, you 
realize that an employee doesn’t have to be identifiable outside of the company. The 
employee object can have local identity. You also realize that when roles are assigned 
to employees within the company, there are certain roles that can only be held by 
one person at a time. There can, for example, only be one CTO at any given point. 
The same goes for many other roles. To uphold these required invariants, the com-
pany entity should control the assignment of roles to employees. This leads you to 
the insight that the company, together with its child objects, should be modeled as an 
aggregate. You make the company the root of the aggregate. You can see the result in 
figure 3.17.



76 chapter 3 Core concepts of Domain-Driven Design 

O ... N

Company

Name Employee

Role

Figure 3.16  The company domain model

Aggregate root

Aggregate boundary

O ... N

Company

Name Employee

Role

Figure 3.17  The company modeled as an aggregate



77Bounded contexts

This means that the company, which is globally identifiable, can be referenced and 
looked up by others, but the only way to get to an employee is to go through the aggre-
gate root, the company. The same goes for assigning new roles to employees. The role 
assignment is handled by a method on the company. Because all operations on the 
aggregate are controlled by the root, it becomes a straightforward task to uphold the 
invariants regarding the employees.

In this section, you’ve learned the basics about the fundamental building blocks 
used to create domain models in DDD. We’ve gone through a lot of material so far, and 
it might take some time to digest all this information properly. But if you stay with us, 
you’ll learn about bounded contexts—the next important concept from DDD that you 
need to be familiar with before you get into the remaining chapters of this book.

3.3 Bounded contexts
Another interesting concept is the bounded context pattern, which defines the applicability 
of the domain model. As it turns out, it’s not only essential in DDD, it’s also important 
from a security perspective. Some complex attacks are easier to understand when using 
bounded contexts as a basis for the analysis. To see this, you need to fully understand the 
concept, and therefore we’ll start by diving into the semantics of the ubiquitous language.

3.3.1 Semantics of the ubiquitous language

Ubiquitous is defined as “existing or being everywhere at the same time.”14 In DDD, this 
translates to a language spoken everywhere at all times, by everyone, to promote clarity 
and common understanding—a ubiquitous language as illustrated in figure 3.18.

14 Merriam-Webster, https://www.merriam-webster.com/dictionary/ubiquitous.

Expert

Team

Model

Discussions

The ubiquitous language
is present everywhere at

all times to promote clarity
and common understanding.

Uses

Use

Code

Uses

Tests

Requirements

Expressed in

Use

Speaks

Speaks

Ubiquitous
language

Figure 3.18  Ubiquitous language is present everywhere, at all times, to promote clarity and common 
understanding.



78 chapter 3 Core concepts of Domain-Driven Design 

It’s easy to think that everywhere, at all times, by everyone means there should be a uni-
fied language with terms, operations, and concepts that capture the entire business, 
but that’s a huge misunderstanding. Anyone who has tried this knows it’s doomed to 
fail because it’s too complex. And the reason is semantics.

A term or concept can have the same name in various parts of the business, but each 
usage can have a different meaning. For example, consider the word package. If you ask 
someone in the shipping department, they’ll say that it’s a box, but in the IT depart-
ment, they’ll say that it’s a logical grouping of files in the codebase—both departments 
use the term package, but with different semantics. Trying to capture this in a unified 
language is probably not a good idea because it requires a new term that captures both 
meanings. The obvious conclusion is to allow two coexisting languages instead of a uni-
fied language with imprecise semantics. With this in mind, let’s see how the ubiquitous 
language relates to the model and the bounded context.

3.3.2 The relationship between language, model, and bounded context

The relationship between language, model, and bounded context becomes clear when 
you see it from a semantic point of view. A model is an abstraction of the domain in 
which concepts, relationships, and terms of the ubiquitous language are found. This 
makes the language and model tightly coupled, not only through the terms and rela-
tionships but also through semantics—a concept found in the model must have the 
same meaning in the language and vice versa.

As long as the semantics of terms, operations, and concepts remain the same, the model 
holds. But as soon as the semantics change, the model breaks, and the boundary of the 
context is found. Realizing this is important because this is where the meaning of a term 
could change, only because it crossed the boundary. That means that everything within the 
context adheres to the semantics of the model, but outside the boundary, the same term 
can have different semantics. This certainly makes sense, but it feels a bit theoretical.

NOTE  Data crossing a semantic boundary is of special interest from a secu-
rity perspective because this is where the meaning of a term could implicitly 
change, which could open up security weaknesses.

Let’s dive into an example where we define the ubiquitous language, create a model, 
and use it to identify the semantic boundary of a context.

3.3.3 Identifying the bounded context

When identifying a bounded context, a good starting point is to analyze the ubiquitous 
language. For example, let’s consider the following conversation between a developer 
and a domain expert in the Shipping Department:

Developer: “What characterizes an order?”

Expert: “Well, an order contains products that are sellable and nonsellable items.”

Developer: “Not sure I understand. What do you mean by nonsellable products?”

Expert: “Nonsellable products are items that are bundled with sellable products 
when shipped as a package to their destination.”



79Bounded contexts

Developer: “Oh, I see. Nonsellable items are products without a price?”

Expert: “No no, all products have a value, but bundled products have a price of 
zero, so they get included for free.”

Developer: “Hmm, OK, I guess that makes sense.”

Up to this point, lots of confusion exists, but it’s possible to identify significant terms 
and manifest them as a raw version of a domain model, as seen in figure 3.19.

One of the core principles of the ubiquitous language is to avoid ambiguities, because 
they create a lot of confusion and misunderstanding. We see this in figure 3.19, where 
the model has lots of ambiguity and duplicated concepts. Let’s get back to the conver-
sation and see how the language and model evolve:

Developer: “I’m a bit confused about the terminology. Could we agree on using 
some of the terms?”

Expert: “Sure, any particular ones in mind?”

Developer: “It seems we only have products—is it OK to stop using words like 
items, things, nonsellable, and sellable?”

Expert: “OK, that makes sense. From now on, we’ll use the term product for all 
of these.”

Developer: “Included and bundled mean the same thing, right?”

Expert: “Yes, so let’s only use bundled.”

Developer: “What about price and value?” 

Expert: “Same thing. Let’s use price.”

Developer: “Why do we need to care whether a product is free or not?”

Expert: “You’re right. We don’t. Let’s not use free.”

Bundled
included Price?

Value?
Free?

Could be
shipped
or not

Ship to

Destination

Order Nonsellable
product

Sellable
productThing Item

Price

Contains

Figure 3.19  Raw domain model



80 chapter 3 Core concepts of Domain-Driven Design 

This distillation process results in a much tighter language and a refined domain 
model, as seen in figure 3.20.

But sometimes, distilling also uncovers missing terms, and this is the case here as well:

Developer: “An order can have one or more products?”

Expert: “Yes, that’s correct. But an order without products isn’t much of a 
package.”

Developer: “Package?”

Expert: “Oh, sorry. Yes, a 'package' is what we call the box in which we ship 
everything.”

Developer: “OK, makes sense. But how do we know how many products we need 
to ship in a package?”

Expert: “Well, the quantity of each product is specified in the order.”

Developer: “Ah, I see. Let’s introduce 'quantity' and 'package' in our ubiquitous 
language and add them to the model.”

After this last revision (figure 3.21), the developer and expert are quite confident that 
they share the same view and understanding of an order.

1 ... NCould be
shipped
or not

Ship
package to

Could be
bundled

Destination

Order Product

PriceQuantity

Package
1 ... N

Figure 3.21  Final domain model

Could be
shipped
or not

Could be
bundled

Ship to

Destination

Order Product

Price

Figure 3.20  A refined domain model with less redundancy



81Interactions between contexts

But how far does the model reach into the organization? When does the model no 
longer hold? Determining this is the key to finding the boundary of the context. The 
developer starts asking around, and everyone in the Shipping Department seems to 
have a common understanding. But when talking to an expert in the Finance Depart-
ment, the model suddenly breaks:

Developer: “Could you please have a look at our model of an order?”

Finance Expert: “Sure. The model makes sense, but you seem to miss a lot of 
important concepts.”

Developer: “Really? Please explain.”

Finance Expert: “The payment information and due date are missing. Also, the 
reserved amount doesn’t seem to be represented.”

Developer: “Aha. We seem to have a different definition of an order. Thanks for 
your time.”

As soon as the semantics of the model no longer hold, the boundary of the context is 
found. Finding where the model’s semantics didn’t hold, the developer quickly realizes 
that an order in the Finance domain is something different than in the Shipping domain. 
This tells us where the context boundary is. This can be illustrated as two separate con-
texts, where an order is present in both but with different meanings, as seen in figure 3.22.

But what happens if you need to communicate and pass an order between the con-
texts? Are there any other concepts that are similar but with different semantics? This 
brings us to the next topic: interactions between contexts.

3.4 Interactions between contexts
The context boundary is interesting from a security perspective when you start think-
ing about interactions between contexts. When data crosses a boundary, it implicitly 
accepts the semantics of the receiving context’s ubiquitous language and model. This 
implies that every time no action is taken, a potential security vulnerability opens. 
Although this might be obvious, problems of this kind are surprisingly common. 

Two contexts with
same concept but

different semantics Finance

OrderOrder

Shipping

Context
boundary

Figure 3.22  Two contexts with the same concept but with different semantics



82 chapter 3 Core concepts of Domain-Driven Design 

Ironically, the root cause might be the attempt to satisfy DRY—Don’t Repeat Yourself. 
Andrew Hunt and David Thomas defined the principle as:

Every piece of knowledge must have a single, unambiguous, authoritative representation 
within a system.

—Andrew Hunt and David Thomas, The Pragmatic Programmer  
(Addison-Wesley, 2003)

Many interpret this as avoiding syntactic duplication (for example, the result of copy-
ing and pasting code), but the principle is about semantics. And this brings us back to 
the ubiquitous language.

The ubiquitous language requires the semantics of the domain model to be unam-
biguous throughout the context. But if you apply a syntactic interpretation of DRY, the 
method of how you share data between contexts suddenly becomes a technical matter 
rather than semantic. And this is a huge problem, because if models are shared to reduce 
syntactic duplication, but certain concepts mean different things, it opens the door to all 
sorts of craziness—including security weaknesses. To illustrate this, let’s revisit the exam-
ple with a Shipping and a Finance context, but this time with a shared model to reduce 
syntactic duplication.

3.4.1 Sharing a model in two contexts

Both Shipping and Finance use concepts such as order, product, and price. Having 
a shared model is indeed compelling, as it minimizes duplication. But to do this, you 
need a few more concepts from the Finance domain, as seen in figure 3.23.

Ship
package to

Process
before

Payment
information

Reserved
amount

Account

1 ... NCould be
shipped
or not

Could be
bundled

Destination

Order Product

PriceQuantityTotal

Package
1 ... N

Due date

Figure 3.23  A unified order model that’s shared between the Shipping context and the Finance context



83Interactions between contexts

At first, having a unified model is a great success; the only apparent downside is a rich 
model with some unused concepts. But let’s see what happens when a new business 
requirement is introduced in the Shipping context:

Expert: “To simplify customs declarations for international shipments, we need 
to list the actual value of a package.”

Developer: “OK. So how should we treat bundled products?”

Expert: “Well, previously we made the product free by faking the price by setting 
it to zero, but that’s no longer OK.”

Developer: “Right, so is it OK to just remove the faked price?”

Expert: “Yes, the sum of all prices is the actual value of the package, so that should 
work.”

Developer: “And then we deduct the bundle prices from the total, right?”

Expert: “No, the reserved amount is what’s charged by Finance, so we don’t need 
to deduct anything.”

Developer: “OK, that makes sense. I’ll only remove the faked price then.”

Making the changes doesn’t require much effort, and initially everything works fine, 
but after a while, strange behaviors start to emerge in Finance. For some reason, every 
now and then the invariant reserved amount ≥ sum of all prices is false. This seems like a 
minor problem because it only happens when the products are bundled. But it does, in 
fact, start a full-blown security investigation. A violation of the invariant is the same as 
order tampering, and that’s a serious security problem!

The investigation doesn’t show any security breach, but it’s interesting how a sim-
ple change could lead to all of this. Analyzing it further shows that the root cause is, 
in fact, having one model to represent two conceptual views of an order. The invari-
ant reserved amount ≥ sum of all prices only makes sense in the Finance context. But as 
a direct consequence of sharing a model, the Shipping context is forced to respect 
the invariant, even though it doesn’t make sense. Obviously, this isn’t a good thing, 
because it prevents each context from being independent and the master of its own 
model. But if you don’t share a model, how do you know what concepts need special 
attention when communicating across context boundaries? The solution is to draw a 
context map.

3.4.2 Drawing a context map

A context map is a conceptual view of how different contexts interact. This could be 
a graphical drawing described in text or simply an understanding communicated 
between teams. Regardless of how it’s manifested, the key point is that it helps identify 
concepts that cross semantic boundaries.

An incorrect mapping is often the root cause of misunderstandings that can become 
exploitable. Identifying the context boundary is of great importance therefore, but it 
can be easier said than done. If you don’t know where to start, a good strategy is to use 



84 chapter 3 Core concepts of Domain-Driven Design 

Conway’s Law as a starting point.15 Mel Conway published the paper “How Do Commit-
tees Invent?” in 1968 with the thesis:

Any organization that designs a system (defined broadly) will produce a design whose 
structure is a copy of the organization’s communication structure.

—Mel Conway, “How Do Committees Invent?” (Datamation, 1968)

The implication of the thesis is that the communication structures that exist in the orga-
nization are often reflected in the architectural design of the system. This also seems to 
apply to how bounded contexts are defined. As many teams tend to organize around 
subsystems, bounded contexts often follow the same rules. Laying out the teams is there-
fore a good starting point when trying to identify the bounded contexts for your map.

To illustrate what a graphical representation of a context map might look like, we 
need to revisit the Shipping and Finance contexts one more time. To gain deeper 
insight, a good starting point is to draw a simple, high-level picture of the system inter-
actions when a new order is processed (figure 3.24).

Here’s the interaction between Finance and Shipping:

1 Finance receives a new order.

2 The total value of the order is reserved on the account specified by the payment 
information.

3 Finance sends the order to Shipping for processing.

4 Shipping processes the order and ships it.

5 Shipping notifies Finance with an updated status.

6 Finance completes the financial transaction.

15 http://www.melconway.com/Home/Conways_Law.html.

New order

1

Finance AccountShipping

Ship
package

Reserve
amount

2

Complete
transaction

6

Notify order
shipped

5

Process
order

3

Process
order

4

Figure 3.24  Interaction between Finance and Shipping



85Summary

The interaction flow diagram is easily converted into a context map where it becomes 
clear that the Shipping context is downstream of the Finance context (figure 3.25). 
This might seem obvious, but the mere understanding that a Finance order must be 
translated to a Shipping order makes a huge difference. The relationship makes it 
clear that explicit mapping is required and that communication between the teams is 
needed to ensure success.

You have now gained a conceptual view of why bounded contexts are important and 
how context maps are created, but we still need to show you how they relate to security. 
In the upcoming chapters, you’ll see how bounded contexts help when analyzing code 
from a security point of view; for example, in chapter 9, when looking at failure han-
dling, or in chapters 12 and 13, when working with legacy code.

In the next chapter, you’ll learn about code constructs that promote security by using 
ideas from this chapter combined with concepts from other fields. As a result, you’ll be 
able to immediately apply them in your everyday work and learn how to spot exploitable 
weaknesses in your existing codebase.

Summary

¡	Building domain models is a good way to promote deep learning about the 
domain.

¡	A domain model should be a strict and unambiguous representation of the 
domain that captures only the most important aspects.

¡	When creating a domain model, you make a choice among many possible 
models.

Finance context

OrderOrder

Shipping context

Same concept
but different

contexts

D

D = Downstream
U = Upstream

U

Figure 3.25  The Shipping context is downstream of the Finance context.



86 chapter 3 Core concepts of Domain-Driven Design 

¡	The domain model forms a language for communicating about the system.
¡	Entities, value objects, and aggregates are the basic building blocks for your 

domain model.
¡	Entities have an identity that’s consistent during their life cycle and can contain 

other entities or value objects.
¡	The uniqueness of entities always has a scope, and that scope depends on your 

model.
¡	A value object doesn’t have an identity but rather is defined by its value.
¡	A value object must always be immutable and should form a conceptual whole.
¡	An aggregate is a conceptual boundary that groups together other model objects 

and is responsible for upholding invariants among those objects.
¡	An aggregate always has an aggregate root and, in code, that root is typically the 

same as the aggregate.
¡	The aggregate root has global identity because this is the only part of the aggre-

gate that other parts of the model can hold a reference to.
¡	The ubiquitous language is spoken by everyone on the team, including domain 

experts, to ensure a common understanding.
¡	The domain model is bound by the semantics of the ubiquitous language.
¡	The bounded context is the context in which the semantics of the model hold. As 

soon as the semantics change, the model breaks and the boundary of the context 
is found.

¡	Using Conway’s Law is a good starting point when trying to find the boundary of 
a context.

¡	Data crossing a semantic boundary is of special interest from a security perspec-
tive because this is where the meaning of a concept could implicitly change.



87

4Code constructs   
promoting security

This chapter covers
¡	How immutability solves security problems

¡	How fail-fast contracts secure your design

¡	Types of validation and the order in which to  
do them

As developers, we’re constantly reminded about priorities and deadlines. Cutting 
corners and dirty hacks are sometimes part of reality that we must accept—or are 
they? The truth is, at the end of the day, you decide what syntax to use, what algo-
rithms to apply, and how to steer the flow of execution. If you truly understand why 
certain code constructs are better than others, then using them becomes second 
nature and no more time-consuming than writing bad code. The same applies to 
security. Attackers don’t care about deadlines or priorities—a weak system is exploit-
able, regardless of why or under what circumstances it was built.

We all share the responsibility of designing secure software. In this chapter, 
you’ll learn why that doesn’t take any longer than building weak, exploitable soft-
ware. To this end, we’ve organized this chapter into three sections, each discussing 
different strategies to solve security problems you might encounter in your daily 
work (table 4.1).



88 chapter 4 Code constructs promoting security 

Table 4.1  Problem areas addressed

Section Problem area

Immutability Security problems involving data integrity and availability

Failing fast Security problems involving illegal input and state

Validation Security problems involving input validation

This way, we hope to empower you with a new set of tools, mindset, and best practices to 
use in your daily work. You’ll also learn how to spot weaknesses in legacy code and how to 
address them. As a result, you’ll see why security bugs are just bugs and how good design 
prevents them. We’ll start by dealing with change using immutability and provide an 
example for this.

4.1 Immutability
When designing an object, you need to decide whether it should be mutable or 
immutable. Mutability allows state to change; immutability prevents it. This might seem of 
minor importance, but from a security perspective, it makes a big difference. Immutable 
objects are safe to share between threads and open up high data availability—an import-
ant aspect when protecting a system against denial of service attacks. Mutable objects, 
on the other hand, are designed for change, which can lead to illegal updates and mod-
ifications. Often, mutability is introduced because frameworks require it or because it 
seems easier. But choosing mutability over immutability can be as expensive as it is dan-
gerous. To illustrate, we’ll walk through an example where the mutable design of a web-
shop causes security problems that are easily solved using immutability.

4.1.1 An ordinary webshop

Picture an ordinary webshop where customers log in and add items to a shopping cart. 
Each customer has an associated credit score based on purchase history and member-
ship points. A high credit score allows paying by invoice or credit card, whereas a low 
credit score allows only credit card payments. The credit score computation is quite 
expensive and is done continuously to even out the overall system load.

All in all, the system worked fine—until recently. When the last marketing campaign 
ran, lots of traffic hit the webshop. Then the system didn’t handle the load well, and cus-
tomers complained about orders timing out, long waits, and inconsistent payment alter-
natives. The latter seemed a minor problem, but when the Finance Department reported 
that lots of customers with low credit scores had outstanding invoices, a full-blown secu-
rity investigation started—the system must have been compromised! Obviously, the credit 
score computation was the primary suspect, but to everyone’s surprise, the root cause 
turned out to be a much bigger problem: the design of the Customer object.

the design of the customer object

The Customer object in listing 4.1 shows two interesting details. First, all fields are initial-
ized through setter methods, which implies that internal state is allowed to change after 
object creation. This is problematic because you never know when the object is properly 



89Immutability

initialized. The other observation is that each method is marked as synchronized to pre-
vent concurrent field modification, which in turn can lead to thread contention (when threads 
are forced to wait for another thread to release one or more locks before executing).

Listing 4.1  Mutable Customer class

public class Customer {
   private static final int MIN_INVOICE_SCORE = 500;
   private Id id;                                 
   private Name name;                             
   private Order order;                           
   private CreditScore creditScore;               

   public synchronized Id getId() {
      return id;
   }

   public synchronized void setId(final Id id) {
      this.id = id;
   }

   public synchronized Name getName() {
      return name;
   }

   public synchronized void setName(Name name) {
      this.name = name;
   }

   public synchronized Order getOrder() {
      this.order = OrderService.fetchLatestOrder(id);
      return order;
   }

   public synchronized void setOrder(Order order) {
      this.order = order;
   }

   public synchronized CreditScore getCreditScore() {
      return creditScore;
   }

   public synchronized void setCreditScore(CreditScore creditScore){
      this.creditScore = creditScore;            
   }

   public synchronized boolean isAcceptedForInvoicePayment() {
      return creditScore.compute() >
                             MIN_INVOICE_SCORE;  
   }
   ...
}

Lower bound that allows paying by invoice
Unique value that identifies the customer

Holds first and last name of the customer

Contains all  
items displayed  
in the shopping 
cart

Service that computes the current credit score

Initializes the credit score field

Determines if the customer is 
eligible for invoice payment



90 chapter 4 Code constructs promoting security 

How these design choices relate to security isn’t obvious, but when categorizing the 
webshop problems as data integrity or data availability issues, the correlation becomes 
clear. Let’s discuss those issues next.

categorizing problems as integrity or availability issues

Data integrity involves the consistency of data during its entire life cycle; data availabil-
ity ensures data is obtainable at the expected level of performance in a system.1 Both 
concepts are essential to understanding the root cause of the webshop problems. For 
example, failure to retrieve data is an availability problem that often boils down to 
code that prevents parallel or concurrent access. Similarly, identifying code that allows 
modification is the place to start when analyzing integrity issues. Table 4.2 shows the 
webshop problems categorized as availability and integrity issues.

Table 4.2  Categorization of problems experienced in the webshop

Experienced problems Category Probable cause

Long waits and poor performance Availability The system fails to access customer data in a  
reliable way and times out.

Orders timing out at checkout Availability The system fails to retrieve necessary data to  
process the order in a timely fashion.

Inconsistent payment alternatives Integrity The credit score is changed in an illegal way.

These categories give you an idea of what to look for in the Customer class. Let’s start 
by dealing with how implicit blocking can reduce availability.

implicit blocking yields reduced availability

Choosing to allow or disallow concurrent and parallel access is often a balance between 
performance and consistency. If state always needs to be consistent and updates inter-
leaved with read operations, then using a locking mechanism makes sense. But if access 
is mostly reads, then locking can result in unnecessary thread contention. For some 
reason, contention caused by concurrent access is often easier to reason about in code 
than contention caused by parallel access. For example, if a method is synchronized, 
as in listing 4.1, only one thread at a time is allowed to access the method, because 
the intrinsic lock of the method’s object must be acquired.2 All other threads that try 
to access the method concurrently must then wait until the lock is released—and this 
could cause thread contention.

Using synchronized on a method level can also yield thread contention during par-
allel access of two or more methods. As it turns out, the intrinsic lock acquired for a 
synchronized method is the same for all synchronized methods in an object. This 

1 See “Engineering Principles for Information Technology Security (A Baseline for Achieving Security)” 
by Gary Stoneburner, Clark Hayden, and Alexis Feringa, at https://csrc.nist.gov/publications/ 
detail/sp/800-27/rev-a/archive/2004-06-21.

2 For more information, see the Java documentation on intrinsic locks and synchronization at https://
docs.oracle.com/javase/tutorial/essential/concurrency/locksync.html.



91Immutability

means that threads accessing synchronized methods in parallel implicitly block each 
other, and this kind of contention can be hard to recognize.

If we go back to the webshop and analyze the ratio between read and write opera-
tions, it turns out that reading customer data is far more common than updating it. 
This is because data is primarily changed by the credit score algorithm, and reads are 
made by numerous client requests, including Finance’s reporting system. This gives 
you a hint that most of the time parallel and concurrent reads are safe, so why didn’t we 
remove the locking mechanism (synchronized) altogether?

Although it’s likely that parallel and concurrent reads are safe, you can’t ignore 
writes and remove the locking mechanism to minimize contention. Instead, other 
solutions must be considered. One is to use advanced locking mechanisms, such as a 
ReadWriteLock, which respects the read dominance.3 But locking mechanisms add 
complexity and cognitive load, which is something we’d prefer to avoid.

TIP  Immutable values are safe to share between threads without locks: no lock-
ing, no blocking.

A simpler and better strategy is to use a design that favors parallel and concurrent 
access (for example, immutability). In listing 4.2, you see an immutable version of the 
Customer class that doesn’t allow state to change. This means it’s safe to share Cus-
tomer objects between threads without using locks, and this yields high availability with 
low contention. In other words, no locking, no blocking.

Listing 4.2  Immutable Customer class

import static org.apache.commons.lang3.Validate.notNull;

public final class Customer {
   private final Id id;                            
   private final Name name;                        
   private final CreditScore creditScore;          

   public Customer(final Id id, final Name name,
                   final CreditScore creditScore) {
      this.id = notNull(id);
      this.name = notNull(name);
      this.creditScore = notNull(creditScore);
   }

   public Id id() {
      return id;
   }

3 A ReadWriteLock is actually two locks: one for reading and one for writing. The read lock can be held 
by multiple reader threads until there’s a writer thread requesting the write lock, hence allowing par-
allel and concurrent access of data as long as it’s not modified. For more information, see https://docs 
.oracle.com/javase/8/docs/api/java/util/concurrent/locks/ReadWriteLock.html.

Immutable field that uniquely identifies the customer

Immutable field that holds the 
customer’s first and last name

Immutable field that holds  
the credit score value



92 chapter 4 Code constructs promoting security 

   public Name name() {
      return name;
   }

   public Order order() {
      return OrderService.fetchLatestOrder(id);
   }

   public boolean isAcceptedForInvoicePayment() {
      return creditScore.isAcceptedForInvoicePayment();
   }
}

But you still need to be able to change customer data. How do you do this if Customer is 
immutable? As it turns out, you don’t need mutable data structures to support change. 
What you need is to separate reads from writes and perform updates through channels 
other than those used when reading. This might seem overly complex, but if your system 
has an imbalance between reads and writes, it can be worth it. How to achieve this in 
practice is covered in chapter 7, where we discuss the Entity snapshot pattern in depth.

You’ve learned how immutability prevents availability issues by design, but what about 
the integrity issue in the webshop? Does immutability solve that too? Perhaps. Let’s see 
how the mutable design of Customer and CreditScore opens up the integrity issue.

changing credit score, an integrity issue

Before diving into the analysis, let’s quickly recap the credit score problem. Each cus-
tomer has an associated credit score, where a high value allows paying by invoice. During 
the last campaign, the system failed, and the Finance Department reported that lots of 
customers with low credit scores had outstanding invoices—a data integrity issue where 
credit scores changed to favor invoice payment. But how was this possible? Looking at 
the credit score logic of the mutable Customer object in listing 4.3, we see that

¡	The way creditScore is initialized in Customer opens up the possibility of chang-
ing the credit score at any moment.

¡	The creditScore reference is accidentally escaped in the getCreditScore
method, which allows modification outside of Customer.

¡	The setCreditScore method doesn’t make a copy of the argument. This makes 
it possible to inject a shared creditScore reference.

Listing 4.3  Credit score logic in the mutable Customer object

public class Customer {
  private static final int MIN_INVOICE_SCORE = 500;
  private CreditScore creditScore;
  ...
  public synchronized void setCreditScore(
                         CreditScore creditScore) {
     this.creditScore = creditScore;               
  }

  public synchronized CreditScore getCreditScore() {

A new credit score 
value can be injected 
at any moment.

The credit score field can be 
assigned a shared reference.



93Immutability

     return creditScore;                           
  }

  public synchronized boolean isAcceptedForInvoicePayment() {
     return creditScore.compute() > MIN_INVOICE_SCORE;
  }
  ...
}

Let’s look at each one of these observations to see how they can cause a data integrity 
issue.

The first way to cause this sort of data integrity issue involves explicitly changing 
the credit score through initialization. The creditScore field in Customer is initialized 
through the setCreditScore method. Although done by design, this way of initializing 
the field allows changing a customer’s credit score at any moment, because the method 
doesn’t guarantee an invoke at-most-once behavior. This can seem acceptable because a 
client is only expected to read data, but the mutable design of Customer makes it impos-
sible to prevent anyone from accidentally using the mutable API. This means you can’t 
guarantee the integrity of a Customer object.

The second way involves changing the credit score outside of Customer. If you look 
at the getCreditScore method in Customer, you’ll see that the internal creditScore
field is accidentally escaped. This makes it possible to modify the credit score outside of 
the Customer object without acquiring the lock. This is extremely dangerous because 
Customer is a shared mutable object and updating it without synchronization is a disas-
ter waiting to happen. (We’ll talk more about this in chapter 6.) But changing the credit 
score without a lock is one thing.

Due to the mutable design of CreditScore, it’s also possible to explicitly change the 
associated customer ID by invoking the setCustomerId method, as shown in listing 4.4. 
This implies that a Customer object can have one ID and the CreditScore object another— 
a dissociation that could yield an incorrect credit score value in the compute method!

Listing 4.4  CreditScore class

public class CreditScore {
   private Id id;

   public synchronized void setCustomerId(Id id) { 
      this.id = id;
   }

   public synchronized int compute() {
      List<Record> history =
          BillingService.fetchBillingHistory(id);  
      Membership membership =
          MembershipService.fetchMembership(id);   
      return CreditScoreEngine.compute(id, history, 
                                       membership);
   }
   ...
}

The internal credit score 
reference is escaped.

Sets the ID that uniquely  
identifies which customer  
the credit score belongs to

Fetches billing history to use 
when computing credit score

Fetches membership data to use 
when computing credit score

Heavy computation 
of credit score



94 chapter 4 Code constructs promoting security 

To address this, the mutable design of CreditScore needs to be changed. In list-
ing 4.5, you see an immutable version of the same object. What’s interesting is that the 
synchron ized keyword and the dependency to the customer ID have been removed. 
This is because there’s no longer a need to acquire a lock when checking the credit 
score value, as it can’t change after being assigned in the constructor. This, in turn, 
means that the dependency to a specific customer is redundant, and the design can be 
simplified by moving the credit score computation outside of the object. As a result, 
this allows the credit score to be shared between threads without the risk of illegal 
updates, blocking, or locking.

Listing 4.5  Immutable CreditScore class

import static org.apache.commons.lang3.Validate.isTrue;

public class CreditScore {
   private static final int MIN_INVOICE_SCORE = 500;
   private final int score;

   public CreditScore(final int computedCreditScore) {
      isTrue(computedCreditScore > -1, "Credit score must be > -1");
      this.score = computedCreditScore;            
   }

   public boolean isAcceptedForInvoicePayment() {
      return score > MIN_INVOICE_SCORE;
   }
   ...
}

The third way to change creditScore isn’t as obvious as the other two—it involves 
changing a shared credit score reference. If you look at the setCreditScore method 
in the mutable Customer object, you’ll see that the internal field is assigned the exter-
nal mutable creditScore reference. This is fine as long as the external reference isn’t 
reused in another Customer object. But if it is, the computed credit score value will be 
the same for all customers sharing that reference—a major integrity issue that could 
explain the inconsistent payment alternatives in the webshop.

identifying the root cause

All the scenarios we’ve explored are plausible explanations of the data integrity prob-
lem seen in the webshop, but which one caused it? Well, it doesn’t matter. The key 
point is that the decision to make Customer and CreditScore mutable made the code 
less secure in various ways. But when choosing a design that favors immutability, the 
need for locks and protection against accidental change disappears. Such a design 
yields implicit security benefits.

Score is assigned and 
never allowed to change.



95Failing fast using contracts

You’ve now learned how immutability solves data integrity and availability issues. You 
might have noticed how on some occasions we aggressively blocked bad data before it 
had a chance to establish itself in the object. Doing so is also an effective trick to uphold 
security, so let’s move on to how to fail fast using contracts.

4.2 Failing fast using contracts
As mentioned in chapter 1, a guiding principle for security is security in depth. Even if 
one security mechanism at the border fails, there are more mechanisms in place that 
can stop a breach from continuing or spreading. With physical security, the access card 
a visitor uses to gain entry to a building might also be a badge with a photo that they’re 
required to wear at all times. We’ve found the software design practices of preconditions
and Design by Contract to be effective in making software more secure in a similar way. 
In this section, we show the pragmatic coding practices we’ve come to use, which you’ll 
see plenty of in the examples throughout the book.

Talking about preconditions was part of the theoretical studies of computer science 
in the late 1960s, especially by Sir C. A. R. Hoare (who also takes the blame for inventing 
the null-pointer exception).4 The term Design by Contract was coined in the late 1980s by 
Bertrand Meyer, who used it as a foundation for object orientation.5 Apart from being 
theoretically interesting, these ideas have direct practical benefits for security.

Thinking about design in terms of preconditions and contracts helps you clar-
ify which part of a design takes on which responsibility. Many security problems arise 
because one part of the system assumes another part takes responsibility for something 
when, in fact, that part assumes the opposite. In this section, we’ll walk you through how 
to use contracts, preconditions, and failing fast to avoid those situations in practice.

How does Design by Contract work, and what do we mean by a contract? Let’s start with 
a nonsoftware example. Imagine you contract a plumber to fix the broken sink in your 
bathroom. The plumber might require that the door be unlocked and that the water shut-
off valve be closed. These are the preconditions for the work. If they aren’t fulfilled, things 
might not go well. On the other hand, the plumber promises that after the work is fin-
ished, the bathroom sink will function properly. This is the postcondition of the contract.

Design contracts for objects work the same way. A contract specifies the preconditions 
that are required for the method to work as intended, and it specifies the postcondi-
tions for how the object will have changed after the method is completed. In listing 4.6, 
you see a class that’s part of the support system for a cat breeder. This particular class, 
CatNameList, helps keep track of cat names that can be given to new kittens. When the 
cat breeders come up with a new idea for a cat name, they queue it up using queueCat-
Name. When they need a good cat name, they look up which is next in turn using next-
CatName, and if they decide to use it, they remove the name with dequeueCatName. The 
method size tells them how many names are in the list.

4 See his paper, “An Axiomatic Basis for Computer Programming,” in the October 1969 issue of Commu-
nications of the ACM.

5 For more information, see his book, Object-Oriented Software Construction (Prentice Hall, 1988).



96 chapter 4 Code constructs promoting security 

Listing 4.6  CatNameList that keeps track of good names for cats

public class CatNameList {
    private final List<String> catNames = new ArrayList<String>();

    public void queueCatName(String name) {         
        catNames.add(name);
    }

    public String nextCatName() {                   
        return catNames.get(0);
    }

    public void dequeueCatName() {                  
        catNames.remove(0);
    }

    public int size() {                             
        return catNames.size();
    }
} 

In the contract for this class, there are some pre- and postconditions, as listed in table 4.3.

Table 4.3  Contract for keeping track of cat names

Method Precondition requires Postcondition ensures

nextCatName Must contain something size is the same after call

name is guaranteed to contain s (a sound)

dequeueCatName Must contain something size is one less after call

queueCatName name isn’t null

name must contain s (a sound)

name isn’t in list

size is one more after call

The method queueCatName has some peculiar preconditions. It makes sense that a cat 
name can’t be null; it must be something, otherwise, this design doesn’t work prop-
erly. According to Swedish folklore, a good cat name must have an s sound in it (that 
makes the cat listen to it), so that’s also a precondition. Finally, cat breeders don’t want 
the same name to appear twice in the list, so this contract requires as a precondition 
that the new name isn’t already in the list.

The contract could have been written in another way. For example, the cat name list 
could have taken on the burden of avoiding duplicates. In that case, the pre- and post-
conditions would have been stated differently, as shown in table 4.4.

Should only be called with good cat names

Gives the next cat name in the queue, 
but should only be called if a next exists

Drops the next cat name, perhaps 
because it’s already used

Gives the number of cat names waiting to be used



97Failing fast using contracts

Table 4.4  Alternative contract that takes responsibility for preventing duplicate names

Method Precondition requires Postcondition ensures

nextCatName Must contain something size is the same after call

name is guaranteed to contain s (a sound)

dequeueCatName Must contain something size is one less after call

queueCatName name isn’t null

name must contain s (a sound)

size is one more after call or unchanged if 
name is already in list

Note how this contract is about the entire class, not just one method at a time. The 
contract requires that the name sent to queueCatName contains an s and, at the same 
time, promises that the name returned from nextCatName indeed contains an s. This 
contract is about the responsibility of the class as a whole. The important aspect is that 
the contract points out the intended design. The task of avoiding duplicates has to fall 
on either CatNameList or the caller. Stating the contract makes it clear on whom the 
responsibility falls.

Many security problems arise from situations when one part of the system assumes 
that another part takes responsibility for something when, in actuality, it doesn’t—it 
assumes the callers would do that. Explicitly thinking in terms of Design by Contract 
avoids lots of those situations that give rise to vulnerabilities.

What should you do if preconditions aren’t fulfilled? Let’s look back to the situation 
of the plumber who comes to fix the broken sink, and who requires a few preconditions 
(door open, water turned off). If the door is locked, the plumber won’t be able to gain 
access, and if the water is still on, it’s not a good idea to start working. If work begins on 
the pipes with the shutoff valve still open, things might go seriously wrong. The better 
option is to fail fast —to terminate the job as soon as it becomes clear that the precondi-
tions aren’t met.6 This is where the real security benefit comes in.

TIP  It’s much better to stop bad data or abnormal situations fast than it is to let 
them slide and wreak security problems later.

To make contracts powerful, the rules have to be enforced in code. The programming 
language Eiffel, designed by Bertrand Meyer, has support for this built into the lan-
guage itself. As a programmer, you state the preconditions, postconditions, and invari-
ants, and the runtime platform ensures they are checked. As you probably use other 
programming languages, you’ll need to build these checks into the code yourself. Let’s 
dig into some of those code patterns to help you create more secure software.

4.2.1 Checking preconditions for method arguments

In the contract for CatNameList, there are some restrictions on the names queued up 
by queueCatName: it’s not allowed to send in null, and the name must contain an s. If 

6 This concept is best explained in Jim Shore’s article “Fail Fast” in the September/October 2004 issue 
of IEEE Software, available at https://martinfowler.com/ieeeSoftware/failFast.pdf.



98 chapter 4 Code constructs promoting security 

the caller doesn’t adhere to the contract, things will probably break sooner or later. If 
you do nothing in the implementation to uphold the contract, then names without an 
s could be queued, and much later, you’d end up with cats named Fido, Doggy, or Bon-
nie. To promote security, we advise to fail fast in a controlled manner instead of letting 
things break later, uncontrolled.

To fail fast, you check the preconditions at the beginning of the method before you 
do anything else, and fail hard if they aren’t met. If the preconditions aren’t met, then 
the program isn’t using its classes in a way they were designed to be used. The program 
has lost control of what’s happening, and the safest thing to do is to stop as fast as pos-
sible. This is nothing complicated; you can implement it yourself with an if statement 
that throws an exception along the lines of the following listing.

Listing 4.7  Enforcing fail fast of contract preconditions

public void queueCatName(String name) {
    if (name == null)                              
        throw new NullPointerException();
    if (!name.matches(".*s.*"))                    
        throw new IllegalArgumentException("Must contain s");
    if (catNames.contains(name))                   
        throw new IllegalArgumentException("Already queued");
    catNames.add(name);
}

This code is arguably a little verbose, but it does the trick. It stops if the cat names are 
missed completely (null) or bad cat names and prevents already existing cat names 
from entering the list. And it does so using an aggressive fast-fail approach.

In Java, if you encounter a null when there shouldn’t be one, you throw a Null-
PointerException.7 In the other cases, you throw an IllegalArgumentException to 
mark that the method call itself was valid but a specific argument couldn’t be accepted.

For brevity, we’ve found it useful to use the Validate utility class from Apache’s 
Commons Lang framework.8 It contains several useful helper methods that do exactly 
what we want: check a condition and throw an appropriate exception if the condition is 
false. Using the Validate.notNull, Validate.matchesPattern, and Validate.isTrue
methods gives you the code in the following listing.

Listing 4.8  Using  Validate to enforce preconditions

import org.apache.commons.lang3.Validate.*;
...
public void queueCatName(String name) {

Must be a cat name, not null

Must be a good cat name

Must not be in the queue already

7 The documentation states that this type of exception is thrown “when an application attempts to use 
null in a case where an object is required.” See http://docs.oracle.com/javase/8/docs/api/java/ 
lang/NullPointerException.html.

8 See https://commons.apache.org/proper/commons-lang/javadocs/api-3.1/org/apache/commons/ 
lang3/Validate.html.



99Failing fast using contracts

    notNull(name);                                 
    matchesPattern(name,".*s.*",
                   "Cat name must contain s");     
    isTrue(!catNames.contains(name),
           "Cat name already queued");             
    catNames.add(name);
}

Validate contains a lot of other helpful methods, like exclusiveBetween and   
inclusiveBetween to check if a value is within a range of valid values. Look through the 
documentation to see what’s there; it makes it much easier to check preconditions in 
your code. For brevity, we’ll use the framework in the examples in the rest of the book.

NOTE  You aren’t repeating the bad data in the exception. Such an echo might 
open up vulnerabilities. We’ll cover more about that in chapter 9.

Checking preconditions is pretty easy, but thinking through contracts takes more work. 
When is it worth the effort? In our experience, formulating contracts and checking pre-
conditions for public methods is definitely worth it. This goes for simple checks like 
checking for null, that numbers are within the expected range, and similar. For pack-
age internal methods, it’s a judgement call. If the package is large and the class has a 
lot of usage, it’s probably a good idea, but for a helper class with a few uses, we’d skip it. 
As for private methods, it’s not worth the effort. If the class needs internal contracts, it’s 
probably too big, does too many things, and should be split instead.

TIP  Check the preconditions for all public methods; at least check that the 
arguments aren’t null.

Now that you’ve looked at checking arguments for methods, let’s proceed to the sim-
ilar subject of arguments for constructors. We’ll also talk about one more thing that 
Meyer mentioned in his theory, apart from preconditions and postconditions: invari-
ants, which are things that always should be true for an object. Invariants must initially 
be upheld by the constructor on object creation.

4.2.2 Upholding invariants in constructors

Arguments to constructors add a bit of complexity compared to arguments for meth-
ods. The constructor arguments aren’t only primarily to process or to modify the state 
of the object but to create the object in its initial state. Because an object state can be 
created in one part of an application and used in a completely different part, an invalid 
state can produce hard-to-trace bugs that can be a breeding ground for security vulner-
abilities. Better to fail fast than let that happen.

Enforcing the contract for a constructor could be as simple as saying one of the fields 
is mandatory and then checking that the value isn’t null. Here, you can interpret the 
word mandatory as meaning the contract of this object contains an invariant that states 
that this field must always be set to an object, never null. By adding a non-null check, 
you’re enforcing that invariant. Invariants can be a lot more complicated, but we’ll 
cover that in more depth in chapter 6 when we discuss securing mutable state.

Must be a cat name, not null

Must be a good cat name

Must not be in the queue already



100 chapter 4 Code constructs promoting security 

In the next listing, you see the constructor of the class Cat. The contract states that 
as invariants, neither name nor sex is unspecified, so you must check that both fields are 
non-null. We also included the now familiar check that cat names must contain an s.

Listing 4.9  Enforcing contract for constructor

import org.apache.commons.lang3.Validate.*;

enum Sex {MALE, FEMALE;}

public class Cat {

    private String name;
    private final Sex sex;

    public Cat(String name, Sex sex) {
        notNull(name);                             
        matchesPattern(name,".*s.*",
                       "Cat name must contain s"); 
        notNull(sex);                              
        this.name = name;
        this.sex = sex;
    }
    ...
}

Due to a feature in Validate, this constructor can be compressed. The method not-
Null not only validates but also returns the validated object. Using this feature, your 
Cat constructor becomes even briefer, as seen in the following listing.

Listing 4.10  Enforcing contract for constructor, condensed version

public Cat(String name, Sex sex) {
    this.name = notNull(name);                     
    this.sex = notNull(sex);                       
    matchesPattern(name,".*s.*",
                   "Cat name must contain s");     
}

Although most Validate methods return the validated value, there are a few that 
don’t. The pattern validator matchesPattern is one of these and, therefore, can’t use 
the condensed form but needs to stand on a line of its own. You’ll still have the desired 
behavior, where null results in a NullPointerException, whereas a malformed cat 
name yields an IllegalArgumentException.

You’ve probably noted that there are now two places in the code that do the same for-
mat check for cat names. This is a flagrant violation of the DRY (Don’t Repeat Yourself) 
principle, which states that the same idea should be represented only once.9 In chapter 5, 
we’ll show our preferred way of solving these kinds of issues by introducing a domain prim-
itive that, in this case, takes the form of a class CatName.

Enforces the invariant 
mandatory name

Cat names must 
contain the letter s.

Enforces invariant mandatory sex

notNull returns a validated value.

matchesPattern doesn’t 
return a validated value.

9 This principle was formulated by Andy Hunt and Dave Thomas in their book The Pragmatic Programmer: 
From Journeyman to Master (Addison-Wesley, 1999).



101Failing fast using contracts

Now that you’ve learned how to ensure that methods get appropriate arguments and 
that objects are created with constructors that uphold the invariants, it’s time to move 
on to the last kind of contract check we advise: preconditions checking that an object is 
in an appropriate state.

4.2.3 Failing for bad state

Finally, you want to ensure that preconditions that require an object to be in a certain 
state for an operation to be valid are met. For example, if the list of cat names is empty, it 
doesn’t make sense to look at the next name in the queue. It’s an operation that doesn’t 
fit the state of the CatNameList. If you remember from table 4.3, for nextCatName and 
dequeueCatName, the contract requires that CatNameList must contain something.

The obvious way to check this is to use Validate to ensure that the list in catNames
isn’t empty. But the helper method Validate.isTrue doesn’t do the job well in this 
case. On failure, that method throws an IllegalArgumentException, which would be 
confusing for someone who had called the no-arg method nextCatName. Fortunately, 
for this situation, there’s Validate.validState, which you see used in the code for 
nextCatName in the following listing.

Listing 4.11  Enforcing state when looking at next name

public String nextCatName() {
    validState(!catNames.isEmpty());    
    return catNames.get(0);
}

The next listing shows the CatNameList class in its final form, with preconditions that 
protect the class from bad usage and fast failure if data is received that would, inten-
tionally or by mistake, invalidate the contract.

Listing 4.12  CatNameList  with contract enforced through fast fails

import org.apache.commons.lang3.Validate.*;

public class CatNameList {
    private final List<String> catNames = new ArrayList<String>();

    public void queueCatName(String name) {        
        notNull(name);                             
        matchesPattern(name,".*s.*",
                       "Cat name must contain s"); 
        isTrue(!catNames.contains(name),
               "Cat name already queued");         
        catNames.add(name);
    }

    public String nextCatName() {

It’s only meaningful to look at the 
next name if the list isn’t empty.

Can always be called

Cat names must not be null.

Cat names must contain an s.

No duplicate names in queue



102 chapter 4 Code constructs promoting security 

        validState(!catNames.isEmpty());           
        return catNames.get(0);
    }

    public void dequeueCatName() {
        validState(!catNames.isEmpty());           
        catNames.remove(0);
    }

    public int size() {                            
        return catNames.size();
    }
}

You can see that the class has grown with five lines of code, and it has become much 
more secure. Invalid argument data is stopped early, and the object can never be in an 
invalid state. The main effort goes into thinking through the design and phrasing it as 
a contract, but that’s work that needs to be done anyway.

Failing fast is a small code construct that promotes security. It comes in handy in the 
larger scheme of validating that data is sound and safe to use. In the next section, we’ll 
dig deeper into the different levels of validation.

4.3 Validation
To keep a system secure, it’s important to validate data. OWASP stresses input validation
(validating data when it enters the system).10 This seems like an obvious and sound 
thing to do, but unfortunately it’s not that simple. There’s the challenge of structuring 
the code to ensure input is validated everywhere. There’s also the challenge of what 
constitutes valid data. What is valid or not varies from situation to situation.

Asking whether a particular value is valid or not is meaningless. Is 42 valid input? Is 
-1 or <script>install(keylogger)</script> valid? That depends on the situation. 
When ordering books, 42 is probably a valid input as a quantity, but -1 isn’t. On the 
other hand, when reporting temperatures, -1 is certainly sensible. The script string is 
probably not what you want in most circumstances, but on a site where you report secu-
rity bugs, it definitely fits.

Validation is also a word that tends to mean lots of different things. One person might 
claim that AV56734T is a valid order number because it follows the format for order 
numbers the system uses. Someone else might claim that AV56734T isn’t a valid order 
number because there’s no order in the system with that number. Yet someone else 
might claim that it’s not valid even though there’s an order with that number because 
they tried to clear the order for shipping and, at that specific time, it wasn’t possible to 
do so. Obviously, there are many different kinds of validation.

You have probably come across the security advice “validate your input.” But with the 
confusion about validation in mind, this piece of advice is as helpful as “when driving a 
car, avoid crashing.” It’s certainly well meant, but it’s not helpful.

Can only be called if queue isn’t empty

Can always be called

10 The OWASP Foundation is a worldwide nonprofit organization that works for better software security. 
There’s a lot of excellent resources at their website, www.owasp.org.



103Validation

To clear up this confusion, we’ll walk through a framework that tries to separate 
the different kinds of validation. The list presented here also suggests a good order 
in which to do the different kinds of validation. Cheap operations like checking the 
length of data come early in the list, and more expensive operations that require calling 
the database come later. In this way, the early controls shield the more expensive and 
advanced controls.11 You’ll want to perform the following types of validation, preferably 
in this order:

¡	Origin —Is the data from a legitimate sender?
¡	Size —Is it reasonably big?
¡	Lexical content —Does it contain the right characters and encoding?
¡	Syntax —Is the format right?
¡	Semantics —Does the data make sense?

As mentioned, checking for origin or checking the size can be done cheaply and 
quickly. Checking the lexical content requires a scan, which takes a bit more time and 
resources. Checking syntax might require parsing the data, something that consumes 
CPU resources and occupies a thread for quite some time. And checking if the data 
makes sense probably involves a heavy round-trip to the database. In this way, the ear-
lier checks can prevent the more expensive later checks from being performed unnec-
essarily. We’ll take a look at these different types of validation one-by-one and see how 
they fit into a secure design. We’ll start with checking where data comes from.

4.3.1 Checking the origin of data

It certainly makes sense to check where data comes from before spending any effort 
on handling it. The reason for this is that many attacks are asymmetric in favor of the 
attacker. Asymmetric means that the effort required of the attacker to send malicious 
data is far less than the effort required of your system to handle that data. This is the 
basic logic of a denial of service (DoS) attack: the system is sent so much trash data that 
it becomes preoccupied with handling it, so no resources are left for the system to do 
its proper work.

A popular version is the distributed DoS (DDoS) attack, where lots of geographically 
distributed malicious clients send messages to the system at the same time. The clients 
of DDoS attacks are often botnets made up of computers that someone has infected 
with a remote-control function that’s silent until it receives a message from its master. 
Such botnets can be bought or rented on the less respectable street corners of the web.12

Unfortunately checking the origin of data doesn’t help in all cases, but checking 
data’s origin is a first simple step to change the asymmetry in your favor. If the data 
comes from a legitimate origin, then continue. If not, discard it. Roughly, there are two 
mechanisms you can use: checking which IP address the data comes from or requiring 
an API access key. The simplest thing to do is check the IP address, so we’ll start there.

11 To our knowledge, this list was suggested by Dr. John Wilander but hasn’t been published.
12 Media and blogs report that a botnet of 1,000 bots costs about $50 to rent for one hour.



104 chapter 4 Code constructs promoting security 

checking the ip address

The most obvious way to check the origin of data is to check the IP address it’s sent 
from. The approach is somewhat losing its applicability as things become more and 
more connected, but it still has some merits.

If you have a microservice architecture, then some of the services will sit on the edge, 
accepting outside traffic, but others sit in the inside and only expect calls from other ser-
vices. The services in the inside can be restricted to only accept traffic from a specific IP 
range (of the other services). For the edge services, this is probably not doable, as they 
possibly need to be accessible from any client.

In practice, this kind of check is nothing you do from inside your application. 
Instead, access is restricted by network configuration. In a physical hall, this is set up in 
the physical routers. On a cloud service, such as Amazon Web Services (AWS), you can 
set up a security group that only allows incoming traffic from a specific range or list of IP 
addresses. If your system is used inside a company, such as a point-of-sale system, it might 
also be possible to do origin checks through IP ranges. For example, if servers should 
only be contacted by the point-of-sale terminals or the office desktops inside the com-
pany network, you can lock down access to those IP ranges. Unfortunately, in this more-
and-more connected world, such situations are becoming increasingly uncommon.

Also, be aware that IP filters, MAC address filters, and similar provide no guarantee. 
MAC addresses can be changed from the operating system, IP addresses can be spoofed 
(or real machines taken over). But at least they provide some sort of first line-of-defense.

using an access key

If your system is open for requests from many places, you can’t check by IP origin. For 
example, if your clients could be anywhere on the internet, then all IP addresses are 
legitimate senders. This is the case for almost all public services facing customers. Sort-
ing out attackers based on IP origin is hard or impossible in these cases. Thankfully, 
there’s one more way to restrict who’s allowed to contact your system: requiring an 
access key. Such a key can be given to all legitimate clients. If the client is another sys-
tem, it can be given to that system on deploy. If the clients are applications, the key can 
be built into the application. If the clients access an API, the key can be given to them 
when they sign some kind of end-user agreement. The point is that the holder of an 
access key proves it’s allowed to send data to your system.

Taking AWS as an example, it has a REST API where you can manage your AWS 
resources, such as the S3 cloud data storage.13 When sending an HTTP request to this 
API, you need to provide your access key as part of the HTTP Authorization header, 
as shown in listing 4.13. If there’s no such header, the request is denied. It isn’t enough 
to just send the access key, however. A malicious attacker might be able to spoof your 
access key and could, thereafter, use it to impersonate you. To stop this, the Authoriza-
tion header also contains a signature where the message content has been signed using 
your secret key, which is a secret shared by you and AWS alone. AWS can determine which 
secret key to use for checking the signature by looking at the access key.

13 See http://docs.aws.amazon.com/AmazonS3/latest/dev/RESTAuthentication.html.



105Validation

Listing 4.13  Calling the REST API of AWS using access key and signature14

GET /photos/puppy.jpg HTTP/1.1
Host: johnsmith.s3.amazonaws.com
Date: Mon, 26 Mar 2007 19:37:58 +0000

Authorization: AWS AKIAIOSFODNN7EXAMPLE:frJIUN8DYpKDtOLCwo//yllqDzg=

In this case, you need to invest in some computation on the server side, as you need to 
check that the signature of the message matches. It’s not a particularly expensive opera-
tion, but you’re opening yourself up a little to attacks where someone can send you lots 
of data and fool you into processing it. The good part is that an attacker needs a real 
access key, and if they use that maliciously, you can blacklist them for a limited time. 
The drawback of using access keys is that it’s extra work. Fortunately, it’s something that 
typically only needs to be done once and might be provided if you use an API gateway or 
similar products. If you do the work yourself, remember to do appropriate validation of 
the access key as well (length, charset, format) so that it doesn’t become an attack vector.

Access tokens
Using an access key is a special case of using an access token. There are protocols, 
such as OAuth, that let an authentication server generate a token that can then be used 
as a proof of authorization to access other resources. What they share is that there has 
been an authentication earlier and that the token/key proves that the sender really is the 
entity it claims to be.

Access control through authentication and authorization is a world of its own. OAuth is a 
good place to start to learn about this world. Check out www.oauth.com.

Having checked the origin of the data, you can now safely spend some effort process-
ing it. The first step is to check that the data is of a reasonable size.

4.3.2 Checking the size of data

Does it make sense to accept an order number that’s 1 GB of data? Probably not. If 
you’ve checked that the data comes from a legitimate origin, is the data of a reasonable 
size? Ideally, this check should be done as early as possible.

What is a reasonable size? That depends fully on the context. For example, an upload 
to a video site could easily be in the range of 100 MB to a few GB without anything being 
strange. On the other hand, a business application based on simple JSON or XML messages 
might not have messages bigger than some KB. What is a reasonable size for your data?

If the data comes over HTTP, you can check the Content-Length header and the size 
of the data.15 If you run a batch process, you can check the file size.

Apart from checking the size of the data as a whole, it’s also useful to check the size 
of each part when processing it. An attacker might hide a 1 GB order number inside a 

14 Example from the documentation at https://docs.aws.amazon.com/AmazonS3/latest/dev/ 
RESTAuthentication.html#RESTAuthenticationExamples.

15 Web servers and web containers like Tomcat have configuration options that let you set limits on the 
size of the POST or the size of headers.



106 chapter 4 Code constructs promoting security 

request. You might forget to check the size of each particular request, or the total size 
might be within reasonable limits, but if you also check the size of order numbers, 
there’ll be a defense mechanism every time you create an order number.

Hopefully this seems like sound design to you. If that’s the case, then you get a lot of 
security for free. If you do this trick consistently for order number, phone number, street 
name, zip code, and so forth, then it’s a lot harder for an attacker to find a place to insert 
big data. You have added protection that no part of the data can have a bizarre size.

For example, if you run an online bookstore, you might get batch files or HTTP 
requests regarding orders of books. These books are most probably identified using 
an International Standard Book Number (ISBN), which is a nine-digit number with an 
additional check digit. Checking that the entire order file or HTTP request is of reason-
able size is good, but when you single out a part that should be an ISBN, you also want to 
check that part specifically. The following listing shows a class that represents an ISBN 
and validates its length to stop DoS attacks.

Listing 4.14  ISBN class containing a check that the number is short enough

import org.apache.commons.lang3.Validate.*;

public class ISBN {
    private final String isbn;

    public ISBN(final String isbn) {
        notNull(isbn);                             
        inclusiveBetween(10, 10,isbn.length());    
        this.isbn = isbn;                          
    }
}

Checking the length of the string might seem redundant in some cases. In later steps, 
we often check content and structure using a regular expression (often called a regexp). 
Regexps might look like any of the following:

¡	[a-z]—a single character between a and z
¡	[A-Z]{4}—four letters, each between A and Z
¡	[1-9]*—digits between 1 and 9, repeated any number of times

If the next step is a format control matching the regexp [0-9]{20} (any digit between 0 
and 9, repeated exactly 20 times), why should you check the length separately? A 25-char 
string won’t match the string anyway, so why check twice? The point here is that the 
length check protects the regexp engine. What happens if the string isn’t 25 chars but 1 
billion? Most probably the regexp engine will load and start processing that humongous 
string, not realizing it’s too big. An early length check protects the latter stages.

Once you’ve checked that the input data is of reasonable size, it’s time to look inside 
the data. The first check is that the data contains the expected type of content, such as the 
expected characters and encoding, which is called the lexical content.

Checks that the string isn’t null and throws 
an IllegalArgumentException if it is

Checks that the string is exactly 10 chars and 
throws an IllegalArgumentException otherwise; 

long strings will be stopped early.
Needs additional checks (follows in refined 
versions of this class later in the chapter)



107Validation

4.3.3 Checking lexical content of data

Knowing that the data comes from a trustworthy source and has a reasonable size, you 
can dare to start looking at the content. Most probably, sooner or later you’ll need to 
parse the data to extract the interesting parts (for example, if you receive the data in 
JSON or XML format). But parsing is expensive, both in terms of CPU and memory, so 
before you start parsing, you should do some further checks.

When checking the lexical content of data, we look at the content but not the struc-
ture. We scan through the data to see that it contains the expected characters and the 
expected encoding. If we encounter something suspicious, we discard the data instead 
of starting a parsing process that could bring our servers to their knees.

For example, if we expect data that only contains digits, we scan the stream to see if 
there’s anything else. If we find anything else, we draw the conclusion that the data is 
either broken by mistake or has been maliciously crafted to fool our system. In either case, 
the safe bet is to discard the data. Similarly, if we expect plain text that’s HTML-encoded, 
we scan the data to see that it only contains the expected content. In this case, each <
should be encoded as &lt;, so we shouldn’t encounter any brackets at all. If we come 
across a bracket, we get wary. Might it be someone trying to sneak in a JavaScript snippet? 
To be on the safe side, we discard the data.

Lexical content is how the data is supposed to look when you look at it up close, 
focusing on the details and not paying attention to larger structures. Simple regexps 
are a great way of checking lexical content in many simple situations. For example, the 
ISBN-10 formats for books can only contain digits and the letter X.16 An ISBN can also 
contain hyphens and spaces for readability, but for simplicity, we’ll ignore them. The 
following listing shows the ISBN class from earlier, now refined to check that an ISBN 
only contains the expected characters.

Listing 4.15  ISBN class with a regexp to control lexical content

import org.apache.commons.lang3.Validate.*;

public class ISBN {
    private final String isbn;

    public ISBN(final String isbn) {
        notNull(isbn);
        inclusiveBetween(10, 10,isbn.length());    
        isTrue(isbn.matches("[0-9X]*"));           
        this.isbn = isbn;
    }
}

If your input data is more complicated, for example XML, you might want to use a 
more powerful lexer. A lexer (or tokenizer) splits a sequence of characters into parts 

16 There are actually two ISBN formats in use: ISBN-10 and ISBN-13. In this section, we describe ISBN-10, 
which consists of nine digits followed by a check digit. ISBN-10 is used for books published before 2007, 
and ISBN-13 for books published after. We have chosen to discuss ISBN-10 because the format is more 
interesting from a technical discussion point of view.

Checks that length is 
10 chars as expected

Scans that all characters are 
what you expect in an ISBN



108 chapter 4 Code constructs promoting security 

called lexemes or tokens. These can be defined as the smallest part with a meaning or the 
sequence of characters that forms a syntactic unit. In written English, words are consid-
ered to be the tokens. In XML, tokens are the tags and the content within them. The 
following two listings show an XML document and its tokens.

Listing 4.16  XML document with book information

<book>
   <title>Secure by Design</title>
   <authors>
      <author>Dan Bergh Johnsson</author>
      <author>Daniel Deogun</author>
      <author>Daniel Sawano</author>
   </authors>
</book>

Listing 4.17  Tokens found in book XML document, one token per row

<book>   
<title>  
S        
e
c
u
r
e
...

In some situations, you might not want the full power of XML and might want to 
restrict it. In chapter 1, we presented an example of how dangerous it can be to allow 
XML entities in input. The reasonably short XML file you see in the following listing is 
less than 1,000 characters long. Still, it expands to a billion lol strings, something that 
will most probably break the poor XML parser.

Listing 4.18  XML expanding to a billion lols

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE lolz [
<!ELEMENT lolz (#PCDATA)>
<!ENTITY lol "lol">
<!ENTITY lol1 "&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;">
<!ENTITY lol2 "&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;">
<!ENTITY lol3 "&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;">
<!ENTITY lol4 "&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;">
<!ENTITY lol5 "&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;">
<!ENTITY lol6 "&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;">
<!ENTITY lol7 "&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;">
<!ENTITY lol8 "&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;">
<!ENTITY lol9 "&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;">
]>
<lolz>&lol9;</lolz>

Tag is a token.

Whitespace such as newlines between tags 
has no meaning in XML and isn’t a token.

For content, each character is a token.



109Validation

Needless to say, a billion lol strings will make your parser fall off a cliff and die, so 
you can’t allow this to pass. One way of avoiding this is to disallow the use of XML 
entity definitions by having a lexer that scans the data, not recognizing <!ENTITY
as a legitimate lexeme. Leaf back to chapter 1, section 1.5, if you want to review the 
details.

In practice, when working with XML documents, you’ll most probably parse them 
to pick out the interesting parts. You don’t want to do two parsings, one for checking 
content and one for parsing the structure. One way of avoiding this is to interleave the 
lexical check inside the parsing. The way to do this is to run the lexical check as part of 
stream processing, which was exactly what we did in chapter 1. Once you know that your 
data comes from a legitimate sender, is of reasonable size, and contains the right types 
of tokens, you can invest in digging deeper into the data, parsing it, and seeing if it has 
the right format and structure.

4.3.4 Checking the data syntax

It isn’t uncommon for data to arrive as XML or JSON, and to understand it, you need 
to parse it. In the previous section, we described how we look at the lexical content 
of data: how it looks up close. When checking the syntax, we zoom out so we can see 
the larger picture. In XML, is there a closing tag for each opening tag? Are attributes 
inside the tags well formed?

Sometimes checking syntax is as simple as using a regexp. But to be truthful, regexps 
aren’t always simple; we’ve seen numerous examples of people creating complex and 
sometimes incomprehensible things using regexps. We recommend using regexps in 
a simple way, for simple things. If a regexp makes your head hurt when you look at it, 
consider writing the logic as code instead.

One example where syntax checking is simple is with ISBNs. As mentioned earlier, 
an ISBN consists of nine digits and a control digit. The control digit might be 10, which 
is denoted by the letter X. The syntax of an ISBN is something that can be checked with 
a regexp. To do that, we check if the data matches [0-9]{9}[0-9X]. If it does, it has the 
right format, and not matching this regexp means we discard the data.

More complex data structures, like XML, require a parser. Parsing complex and 
large data structures is something that requires lots of computational resources. This 
is why the parser is a desirable target for someone who wants to launch a DoS attack on 
your system. Many of the preceding steps of checking origin, checking data size, and 
checking lexical content are there to shield the parser.

We’ve mentioned that checking syntax consists of checking that data comes in the   
proper form. We’ll look at one more common mechanism, a checksum, to see if the 
format is correct. An ISBN is a good example of this, as the tenth and last digit in 
the ISBN is a control digit. Without getting into the details of how the checksum is 
computed, checking this is also part of checking syntax. The next listing shows the 
ISBN class again, now with a syntax check of the format as well as a control of the 
check digit.



110 chapter 4 Code constructs promoting security 

Listing 4.19  Checking an ISBN’s lexical content and syntax

import org.apache.commons.lang3.Validate.*;

public class ISBN {
    private final String isbn;

    public ISBN(final String isbn) {
        notNull(isbn);
        inclusiveBetween(10, 10,isbn.length());
        isTrue(isbn.matches("[0-9X]*"));           
        isTrue(isbn.matches("[0-9]{9}[0-9X]"));    
        isTrue(checksumValid(isbn));               
        this.isbn = isbn;
    }

    private boolean checksumValid(String isbn) { /.../ }
}

When the syntax structure is simple enough, it looks ridiculous to first have a lexical 
check with one regexp and then a syntax check with a similar regexp. In these cases, 
the lexical check and syntax check are often collapsed into one step, as in the next 
listing.

Listing 4.20  Checking an ISBN’s lexical content and syntax in one step

import org.apache.commons.lang3.Validate.*;

...

    public ISBN(final String isbn) {
        notNull(isbn);
        inclusiveBetween(10, 10,isbn.length());
        isTrue(isbn.matches("[0-9]{9}[0-9X]"));    
        isTrue(checksumValid(isbn));               
        this.isbn = isbn;
    }

It might look like we’re sidestepping the validation order here. What happens in this 
case is that the lexical analysis and the syntax analysis are so similar that they are done 
by the same mechanism. You can look at it as if they’re interleaved or have collapsed. 
The essential idea of the validation order is still there. Now that you know that you 
have well-formatted data that contains the expected content, has a reasonable size, and 
comes from a legitimate sender, you can see if this data fits in with the data you have—
if it makes sense.

4.3.5 Checking the data semantics

By checking origin, size, content, and structure, you’ll have gathered so much confi-
dence in the input data that you’re ready to act on it. Up to this point, you might have 

Validates all characters are 
what you expect in an ISBN

Checks the format

Checks the checksum

Lexical check and syntax 
check collapse

Checks the checksum



111Validation

performed checks that are CPU-intensive or require lots of memory. For example, you 
might have processed a large XML message that instructs you to add a lot of items to 
an order in an order system. But, thus far, you’ve only worked on the data by itself, not 
on the data in connection with the rest of the system. Chances are that you’ve probably 
not hit the database once during this time.

In the example with a large XML message for extending an order, you might have 
found a lot of order lines to add, but you haven’t checked that the specified product 
numbers exist, and certainly not their stock status. The specified order might not even 
exist or is perhaps already shipped and not open for extension. You’ve only checked the 
syntax.

Now it’s time for the semantic check: is this data sound and consistent with the view 
of the world that resides in the rest of the system? In the semantic check, you check 
things like whether this product number exists in your product catalog or if the order 
described by this order number can be amended with another item. We think the most 
intuitive place to put these constraints is in the domain model.

A search in your product catalog domain service could be asking does this product 
number exist? If there’s no match, an exception is thrown, and the flow is interrupted. 
In the same way, if someone tries to add an item to an order that’s closed (perhaps paid 
and shipped), it’ll show up as an IllegalStateException from the Order class. In fact, 
we think the domain model is such a natural place to put these kinds of checks that we 
don’t think of them as validations—to us, they’re part of the domain model.

Yet we agree that semantic validation is rightly part of the list, as the verb validate
doesn’t make sense on its own. You always need to validate with respect to something. 
You validate that the data adheres to some rules and constraints, and those rules and 
constraints are what make up the domain model. The domain model states how you’ve 
chosen to look at the world. You have modeled order numbers to have a specific format, 
and you’ve modeled orders to be closed for amendments when they ship. After passing 
all these stages, you know that the data is considered sound with respect to the model—
it’s been validated.

You have now reached the point where you know the data is from a legitimate sender, 
has a reasonable size, contains the expected content with the expected structure, and 
makes sense with respect to the rest of the data. You can now safely act on that data 
by adding a new book to the cart, accepting the payment, or sending the order for 
shipping.

To secure the design, it’s powerful to let the code reflect if data is validated and to what 
degree. The ISBN class you saw earlier is an example of this. It’s a small, domain-focused 
building block that we know contains an ISBN of the valid format. There’s no need to vali-
date that number again. In our experience, designing such building blocks does wonders 
for the security of your system. It’s now time to dive into how to craft such blocks, which we 
call domain primitives.



112 chapter 4 Code constructs promoting security 

Summary

¡	Data integrity is about ensuring the consistency and accuracy of data during its 
entire life cycle.

¡	Data availability is about ensuring data is obtainable and accessible at the 
expected level of performance in a system.

¡	Immutable values are safe to share between threads without locks: no locking, no 
blocking.

¡	Immutability solves data availability issues by allowing scalability and no locking 
between threads.

¡	Immutability solves data integrity issues by preventing change.
¡	Contracts are an effective way to clarify the responsibilities of objects and 

methods.
¡	It’s better to fail fast in a controlled manner than to risk uncontrolled failures 

later. Fail fast by checking preconditions early in each method.
¡	Validation can be broken down into checking origin, data size, lexical content, 

syntactic format, and semantics.
¡	Origin checks can be done by checking the origin IP or requiring an access key to 

counteract DDoS attacks.
¡	Data size checks can be done both at the system border and at object creation.
¡	Lexical content checks can be done with a simple regular expression (regexp).
¡	Syntax format checks might require a parser, which is more expensive in terms of 

CPU and memory.
¡	Semantic checks often require looking at the data in the database, such as search-

ing for an entity with a specific ID.
¡	Earlier steps in the validation order are more economical to perform and protect 

the later, more expensive steps. If early checks fail, later steps can be skipped.



113

5Domain primitives

This chapter covers
¡	How domain primitives create secure code

¡	Mitigating data leaks with read-once objects

¡	Improving entities with domain primitives

¡	Ideas from taint analysis

In chapter 4, you learned about powerful design constructs like immutability, failing 
fast, and validation. Those constructs do indeed address several security issues, such 
as invalid input, illegal state, and data integrity, but applying them individually isn’t 
an effective way of achieving secure code. Table 5.1 shows the problem areas we’ll 
address in this chapter and those constructs that will help you achieve a greater level 
of security.



114 chapter 5 Domain primitives

Table 5.1  Problem areas addressed

Section Problem area

Domain primitives and invariants Security issues caused by inexact, error-prone, and 
ambiguous code

Read-once objects Security problems due to leakage of sensitive data

Standing on the shoulders of domain primitives Security issues caused by code burdened by too 
much complexity

The theme of this chapter is how to create a higher-order construct called a domain 
primitive, which combines secure constructs and value objects to define the smallest 
building block of a domain. This way, you’ll learn how to empower your code with a 
design that facilitates security in depth, as well as bringing overall clarity and under-
standing. You’ll also learn how domain primitives can be used to reduce complexity in 
entities and how they allow detection of unintentional leakage of sensitive data. With 
that said, let’s dive into domain primitives and invariants.

5.1 Domain primitives and invariants
Some of the key properties of value objects in Domain-Driven Design are that they are 
immutable and form a conceptual whole.1 We’ve found that if you take the concept 
of the value object and slightly tweak it, keeping security in mind, you get something 
called a domain primitive.

When you start using domain primitives as the smallest building blocks in your 
domain model, you’ll be able to create code with a significantly reduced likelihood 
of security issues, simply by the way you’re designing it. You’re designing code that’s 
precise and leaves little or no room for ambiguity. This type of code tends to contain 
fewer bugs and, as a consequence, fewer security vulnerabilities. The code also tends to 
be easy to work with because domain primitives lower the cognitive load on developers. 
We’ll spend the rest of this section expanding on what domain primitives are, how to 
define them, and how they can be used to create secure software.

5.1.1 Domain primitives as the smallest building blocks

A value object represents an important concept in your domain model. When model-
ing it, you decide how to represent the value object and what name it should have. If 
you take this further and also put some effort into determining what it is and what it’s 
not, you’ll gain significantly deeper insight into that concept. You can then use that 
insight to introduce invariants that must be upheld in order for the value object to be 
considered valid. Continuing, you can say that the value object not only should or can 
but must uphold these invariants, and that they must be enforced at the time of cre-
ation. What you end up with is a value object so strict in its definition that, if it exists, 

1 It’s important to grok the concept of value objects in Domain-Driven Design before you dive into   
domain primitives. Revisit chapter 3 if you feel you need a refresher.



115Domain primitives and invariants

it’ll also be valid. If it’s not valid, then it can’t exist. This type of value object is what we 
refer to as a domain primitive.

NOTE  A value object so precise in its definition that it, by its mere existence, 
manifests its validity is a domain primitive.

Domain primitives are similar to value objects in Domain-Driven Design. Key differ-
ences are that you’re requiring the existence of invariants, and they must be enforced 
at the point of creation. You’re also prohibiting the use of simple language primitives, 
or generic types (including null), as representations of concepts in the domain model. 
It’s also worth pointing out that even though we call them domain primitives, they can 
still be complex objects and contain other domain primitives as well as nontrivial logic.

NOTE  Nothing in a domain model should be represented by a language prim-
itive or a generic type. Each concept should be modeled as a domain primi-
tive so that it carries meaning when passed around, and so it can uphold its 
invariants.

Let’s say the concept of quantity exists in your domain model. Quantity is the amount 
a customer wants to buy of a certain item in the webshop you’re building. The quan-
tity itself is a number, but instead of representing it as an integer, you create a domain 
primitive called Quantity. When defining Quantity, you discuss with the domain 
experts what’s considered to be a valid quantity in the context of the current domain. 
This discussion reveals that a valid quantity is an integer value between 1 and 200. 
A zero quantity isn’t valid because if the customer wants to buy zero items, then the 
order shouldn’t exist at all. A negative value isn’t valid either because you can’t un-buy 
products, and returns are handled separately. Orders for more than 200 items aren’t 
handled by the system at all. Large orders are extremely rare, and if they do occur, they 
need special handling, so they’re dealt with via direct contact with a sales representa-
tive instead of through the online store.

You also encapsulate important behavior of the domain primitive, such as the addi-
tion and subtraction of quantities. By having the domain primitive own and control 
domain operations, you reduce the risk of bugs caused by lack of detailed domain 
knowledge of the concepts involved in the operation. The further away from a con-
cept they are, the less detailed knowledge of the concept can be expected, so it makes 
sense to keep all domain operations within the domain primitive itself. To give you 
an example, if you need to add two quantities, and you create a method add, then the 
implementation of that method needs to take into account the domain rules of a quan-
tity—remember, you’re not dealing with plain integers anymore. If you were to place 
the add method somewhere else in your codebase, say in a utility class called Functions, 
then it’d be easy for subtle bugs to creep in. If you decide to slightly change the behav-
ior of the Quantity domain primitive, will you remember to also update the method in 
the utility class? Chances are you’ll forget, and that’s how you introduce hard-to-find 
bugs that can lead to serious problems. When you’re done, the Quantity domain prim-
itive should look like the following listing when represented in code.



116 chapter 5 Domain primitives

Listing 5.1  The Quantity domain primitive

import static org.apache.commons.lang3.Validate.inclusiveBetween;
import static org.apache.commons.lang3.Validate.notNull;

public final class Quantity {

   private final int value;                       

   public Quantity(final int value) {
      inclusiveBetween(1, 200, value);            
      this.value = value;
   }

   public int value() {
      return value;
   }

   public Quantity add(final Quantity addend) {   
      notNull(addend);
      return new Quantity(value + addend.value);
   }

   // equals() hashCode() etc...

}

This is a precise and strict code representation of the concept of quantity. In the case 
study of the anti-Hamlet in chapter 2, you saw an example of how a small ambiguity 
in the system could lead to customers giving themselves discount vouchers by send-
ing in negative quantities before completing their orders. A domain primitive like the 
Quantity as created here removes the possibility of some dishonest user sending in a 
negative value and tricking the system into unintended behavior. Using domain prim-
itives removes a security vulnerability without the use of explicit countermeasures. As 
this modeling exercise shows, quantity isn’t just an integer. It should be modeled and 
implemented as a domain primitive so that it carries meaning when passed around, 
and so it can uphold its invariants.

Now you’ve learned the basics of what a domain primitive is. Let’s move on and look 
at the importance of defining the scope in which a domain primitive is valid.

5.1.2 Context boundaries define meaning

Domain primitives, like value objects, are defined by their value rather than by an iden-
tity. This means that two domain primitives of the same type and with the same value are 
interchangeable with each other. Domain primitives are perfect for representing a wide 
variety of domain concepts that don’t fit into the categories of entities or aggregates.2

One important aspect to keep in mind when modeling a concept using a domain primi-
tive is that it should be defined to mean exactly what the concept is in the current domain.

The integer value

Enforces invariants at time of creation

Provides domain operations 
to encapsulate behavior

2 Go back to chapter 3 if you need to brush up on what entities and aggregates are in Domain-Driven 
Design.



117Domain primitives and invariants

Say you’re building a system that lets users choose and create their own email 
addresses. A user can choose the local part of the email address (the part to the left 
of the @), and once created, they can start sending and receiving messages using 
that address. If a user enters jane.doe, then the email address jane.doe@example 
.com would be created (assuming your domain name is example.com). When model-
ing, you realize that an email address is a perfect example of a domain primitive. It’s 
defined by its value, and you can come up with some constraints that you could use to 
assert that it’s valid.

At first, you might be inclined to use the official definition of an email address to 
figure out what constitutes a valid address.3 Although this would technically be correct 
in terms of meeting the requirements of the RFC, it might not be what’s considered a 
valid email address in the context of the current domain (figure 5.1). As an engineer, 
this might come as a surprise to you. But remember, we’re focusing on the meaning of 
a concept in a specific domain, not what it might mean in some other context, as in the 
context of a global standard. For example, your domain might define an email address 
to be case-insensitive, so anything the user enters will be transformed to lowercase. You 
could go even further and say that the only characters allowed are ASCII alphabetic 
characters, digits, and dots ([a-z0-9.]). This is a deviation from the technical specifi-
cation, but it’s a valid choice in the context of the current domain.4

Sometimes you’ll encounter situations where the name of the concept you’re trying 
to model is also used outside of the current context, and where its external definition 
is so prevalent, it would be confusing to redefine it in your domain model. An email 
address might be such a term, but as you just learned, it can make sense to redefine the 
term email in your current domain.

3 Explaining the definition of an email address is beyond the scope of this book, but a good place to start 
if you’d like to know more is RFC 3696 (https://tools.ietf.org/html/rfc3696).

4 It might be of interest to know that even RFC 5321 discourages the use of case-sensitive email addresses, 
although the specification defines email addresses as case-sensitive.

Your context

Defined
by RFC

Defined
by you

External context

Email Email

Figure 5.1  The meaning of a term is defined within the boundaries of a given context.



118 chapter 5 Domain primitives

Another example of a well-defined term is an ISBN. The ISBN is defined by the Inter-
national Organization for Standardization (ISO), and redefining it could cause confu-
sion, misinterpretation, and bugs. These types of subtle differences in meaning are a 
common cause for security issues, so you want to avoid them, especially when interact-
ing with other systems or other domain contexts (figure 5.2).

Most times, when you find yourself redefining a well-known term, the need for that 
is because the term is used to describe more than one thing in your current context. 
In those cases, try to either split the term into two distinct terms or come up with an 
entirely new term. The new term is unique to your current context, so you avoid any 
misinterpretation. It also makes it clear why certain specific invariants are used instead 
of those associated with the externally defined term. Another benefit of introduc-
ing a new term is that the original term can keep its crisp definition and remain a 
domain primitive. You’ve maintained full freedom to model important concepts in 
your domain without losing any of the model’s exactness.

Imagine you’re building book-managing software that uses ISBNs to identify books. 
After a while, you realize you need a way to identify and handle books that haven’t received 
an ISBN yet. One approach would be to redefine the term ISBN to not only represent real 
ISBN numbers, but also to include internally assigned identifiers, perhaps using a magic 
prefix or something similar to distinguish them from the real ISBNs. To avoid the possible 
confusion that comes with redefining an ISO standard, you could instead introduce a 
new term, BookId, that would contain either an ISBN or an UnpublishedBookNumber (fig-
ure 5.3). BookId is what identifies a book, and UnpublishedBookNumber is the internally 
assigned identifier.

By introducing two new terms, BookId and UnpublishedBookNumber, you’re able to 
keep the exact and well-known definition of ISBN, while at the same time meeting the 
needs of your business domain.

5.1.3 Building your domain primitive library

Now that you’ve expanded your toolbox with the versatility of domain primitives, you 
should strive to use them as much as you can in your code. These are the smallest building 

Same meaning

Your contextExternal context

ISBN ISBN

Figure 5.2  Using an externally defined term without changing its meaning

Your context

Book Id

Unpublished
book numberISBN

External context

ISBN

Figure 5.3  Introducing new terms instead of redefining existing ones



119Domain primitives and invariants

blocks and form the basis of your domain model. As such, almost every concept in your 
model will be based on one or more domain primitives. When you’re done modeling, 
you’ll have a collection of domain primitives that you can view as your domain primitive 
library. This library isn’t a collection of generic utility classes and methods, but rather a 
well-defined, ubiquitous set of domain concepts. And because they’re domain primitives, 
it’s safe to pass them around as arguments in your code just like regular value objects.

Domain primitives lower the cognitive load on developers because there’s no need to 
understand their inner workings in order to use them. You can safely use them with the 
confidence that they always represent valid values and well-defined concepts. If they aren’t 
valid, they won’t exist. This also removes the need to constantly revalidate data in order to 
make sure it’s safe to use. If it’s defined in your domain, you can trust it and use it freely.

5.1.4 Hardening APIs with your domain primitive library

You should always strive to use domain primitives in your programmatic APIs. If every 
argument and return value of a method is valid by definition, you’ll have input and 
output validation in every single method in your codebase without any extra effort. 
The way you’re using domain design enables you to create code that’s extremely resil-
ient and robust. A positive side effect of this is that the number of security vulnerabili-
ties caused by invalid input data drastically decreases.

Let’s examine this more closely with a code example. Say you’re given the task of 
sending the audit logs of your system to a central audit log repository. Audit logs con-
tain sensitive data, and it’s important that they’re sent to a designated place to be stored 
and protected properly. Sending the data to the wrong place can have a significant neg-
ative business impact. If you create a method in your API that takes the current audit 
logs and sends them to a log repository located at a given server address, it could end up 
looking like this:

void sendAuditLogsToServerAt(java.net.InetAddress serverAddress);

Another example of a well-defined term is an ISBN. The ISBN is defined by the Inter-
national Organization for Standardization (ISO), and redefining it could cause confu-
sion, misinterpretation, and bugs. These types of subtle differences in meaning are a 
common cause for security issues, so you want to avoid them, especially when interact-
ing with other systems or other domain contexts (figure 5.2).

Most times, when you find yourself redefining a well-known term, the need for that 
is because the term is used to describe more than one thing in your current context. 
In those cases, try to either split the term into two distinct terms or come up with an 
entirely new term. The new term is unique to your current context, so you avoid any 
misinterpretation. It also makes it clear why certain specific invariants are used instead 
of those associated with the externally defined term. Another benefit of introduc-
ing a new term is that the original term can keep its crisp definition and remain a 
domain primitive. You’ve maintained full freedom to model important concepts in 
your domain without losing any of the model’s exactness.

Imagine you’re building book-managing software that uses ISBNs to identify books. 
After a while, you realize you need a way to identify and handle books that haven’t received 
an ISBN yet. One approach would be to redefine the term ISBN to not only represent real 
ISBN numbers, but also to include internally assigned identifiers, perhaps using a magic 
prefix or something similar to distinguish them from the real ISBNs. To avoid the possible 
confusion that comes with redefining an ISO standard, you could instead introduce a 
new term, BookId, that would contain either an ISBN or an UnpublishedBookNumber (fig-
ure 5.3). BookId is what identifies a book, and UnpublishedBookNumber is the internally 
assigned identifier.

By introducing two new terms, BookId and UnpublishedBookNumber, you’re able to 
keep the exact and well-known definition of ISBN, while at the same time meeting the 
needs of your business domain.

5.1.3 Building your domain primitive library

Now that you’ve expanded your toolbox with the versatility of domain primitives, you 
should strive to use them as much as you can in your code. These are the smallest building 

Same meaning

Your contextExternal context

ISBN ISBN

Figure 5.2  Using an externally defined term without changing its meaning

Your context

Book Id

Unpublished
book numberISBN

External context

ISBN

Figure 5.3  Introducing new terms instead of redefining existing ones



120 chapter 5 Domain primitives

The issue here is that a method signature like this allows for any IP address to be the 
destination for the logs. If you fail to properly validate the address before sending the 
logs, you could potentially send them to an insecure location and reveal sensitive data. 
If you instead define a domain primitive, InternalAddress, that strictly defines what 
an internal IP address is, you can use that as the type of the input parameter in your 
method. Applying this to the sendAuditLogsToServerAt method leads to the code in 
the following listing instead.

Listing 5.2  Hardening the API with domain primitives

import static org.apache.commons.lang3.Validate.notNull;

void sendAuditLogsToServerAt(InternalAddress serverAddress) {
   notNull(serverAddress);     

   // Retrieve logs and send them to server
}

Now you’ve designed your method so that it’s impossible to pass invalid input to it. The 
only form of validation left to do, in terms of verifying that the IP address is internal, is 
to make sure it’s not null.

5.1.5 Avoid exposing your domain publicly

One thing to remember when hardening your API is that if you have an API that acts 
as an interface to a different domain, you should avoid exposing your domain mod-
el’s objects in that API. If you do, you instantly make your domain model part of your 
public API.5 As soon as other domains start using your API, it quickly becomes hard to 
change and evolve your domain independently.

An example of a public API facing a different domain is a REST API exposed on the 
internet for others to consume via client software. If you expose your internal domain 
in the REST API, then you can’t evolve your domain without forcing the software clients 
to evolve with you. If your business depends on those clients, then you can’t ignore 
them; you have no other option but to evolve at the same pace as your consumers are 
able to adapt their clients. To make things even worse, if you have multiple consumers, 
then you’re not only tying yourself to each consumer, but you’re tying the consumers 
together with each other. This is a less than ideal situation, and you can avoid it by not 
exposing your domain publicly.

What you want to do instead is to use a different representation of each of your 
domain objects. This can be viewed as a type of data transfer object (DTO) used to com-
municate with other domains. You can place invariants in those DTOs, but they won’t 
be the same constraints that exist in your domain. Rather, they can, for example, be 
constraints relevant to the communication protocol defined by the API. The first thing 
you do in an API method like this is convert the DTO into the corresponding domain 
primitive(s) in order to ensure its data is valid. By using this layer of translation between 

The only input validation left 
to perform is a null check.

5 In Domain-Driven Design, this type of shared domain is referred to as a shared kernel.



121Read-once objects

the concepts in your public API and your domain, you’re able to uncouple the two. This 
allows you to evolve the API and your domain independently.

We have covered a lot of important aspects of domain primitives in this section. 
Before we move on, let’s review the key points:

¡	The invariants of domain primitives are checked at the time of creation.
¡	Domain primitives can only exist if they are valid.
¡	Domain primitives should always be used instead of language primitives or 

generic types.
¡	Their meaning is defined within the boundaries of the current domain, even if 

the same term exists outside of the current domain.
¡	You should use your domain primitive library to create secure code.

So far, you’ve learned about immutability, failing fast, validation, and domain prim-
itives and how these concepts promote security by design. There’s one more code 
construct we need to go over in this chapter that’s also important from a security per-
spective—the read-once object.

5.2 Read-once objects
One common source of security issues in software is leakage of sensitive data. This 
leaking of information can either be unintentionally caused by the developer or inten-
tionally triggered by an individual. Regardless of the reason behind the leak, you can 
use a few design techniques to help with this issue. Let’s take a look at how you can use 
a design pattern we call the read-once object to mitigate the possibility of leaking sensi-
tive data. Here’s a list of the key aspects of a read-once object:

¡	Its main purpose is to facilitate detection of unintentional use.
¡	It represents a sensitive value or concept.
¡	It’s often a domain primitive.
¡	Its value can be read once, and once only.
¡	It prevents serialization of sensitive data.
¡	It prevents subclassing and extension.

A read-once object is, as the name implies, an object designed to be read once. This object 
usually represents a value or concept in your domain that’s considered to be sensitive
(for example, passport numbers, credit card numbers, or passwords). The main pur-
pose of the read-once object is to facilitate detection of unintentional use of the data 
it encapsulates. Often this object is a domain primitive, but you can apply this pattern 
to both entities and aggregates as well. The basic idea is that once the object has been 
created, it’s only possible to retrieve the data it encapsulates once. Trying to retrieve it 
more than once results in an error. The object also makes a reasonable effort to pre-
vent the sensitive data from being extracted through serialization.

An example of a read-once object is shown in listing 5.3. As you can see, the Sensitive-
Value object has been modeled as a domain primitive with all its invariants enforced at 
creation. The class is declared as final to prevent subclassing, and the value is wrapped in 



122 chapter 5 Domain primitives

an AtomicReference.6 When the accessor method value is called, it sets the sensitive value 
to null and then returns the previous value. If value has already been called, then the pre-
vious value will be null and an exception is thrown.

The object also implements the java.io.Externalizable interface and always 
throws an exception in order to prevent accidental serialization. The value field is 
declared transient in case some library uses field access to serialize the object rather 
than Java serialization (but still honors the transient keyword). As a last measure, the 
toString method is implemented so it doesn’t output the actual value.

Listing 5.3  Storing sensitive data in a read-once object

import java.io.Externalizable;
import java.io.IOException;
import java.io.ObjectInput;
import java.io.ObjectOutput;
import java.util.concurrent.atomic.AtomicReference;

import static org.apache.commons.lang3.Validate.notNull;

public final class SensitiveValue     
      implements Externalizable {     

   private transient final
            AtomicReference<String> value;      

   public SensitiveValue(final String value) {
     validate(value);                           
     this.value = new AtomicReference<>(value);
   }

   public String value() {
      return notNull(value.getAndSet(null),
         "Sensitive value has already been consumed");  
   }

   @Override
   public String toString() {
      return "SensitiveValue{value=*****}";     
   }

   @Override
   public void writeExternal(final ObjectOutput out) {
      deny();      
   }

   @Override
   public void readExternal(final ObjectInput in) {
      deny();      
   }

6 See the javadoc for java.util.concurrent.atomic.AtomicReference if you’re unfamil-
iar with this.

Makes class  
final to  
prevent  
subclassing

Implements Externalizable

Declares a  
transient field Validates domain rules 

at time of creation

Reminder that  
the value can only  
be retrieved once

toString doesn’t reveal  
the sensitive value.

Throws an exception to 
prevent serialization



123Read-once objects

   private static String validate(final String value) {
      // Check domain-specific invariants
      return notBlank(value).trim();
   }

   private static void deny() {
      throw new UnsupportedOperationException(
            "Not allowed on sensitive value");
   }
}

To give you a better understanding of the benefits of this design pattern, let’s take a 
look at a scenario where a read-once object can prevent sensitive data from uninten-
tional exposure.

5.2.1 Detecting unintentional use

Imagine you’re building simple login functionality, where credentials in the form of 
a username and password are entered and then used to perform authentication. The 
authentication is done by calling a second system responsible for verifying the given 
credentials—the authentication system. Once the password has entered your system, it 
shouldn’t be used for anything other than authentication, as illustrated in figure 5.4. 
This means that the only point you need to retrieve the password is when you pass it 
on to the authentication system. Once you’ve done that, there’s no need to keep the 
password around anymore.

Password

The System

Web
modules

Domain
logic

Infrastructure
modules

Authentication
system

****

Password
****

The password travels
through the system

but is only used once.

Figure 5.4  The life cycle of a read-once object



124 chapter 5 Domain primitives

Passwords are a typical example of sensitive data. The last thing you want is the user’s 
password to end up as plain text in some log file on disk where anyone can read it, or 
written out in an error message in the user’s browser or in a monitoring dashboard for 
your operations team to see. If you model your password as a domain primitive and 
implement it as a read-once object, as shown in the following listing, you’re creating a 
safety net that helps you easily detect if the password starts to leak somehow.

Listing 5.4  Password represented as a read-once domain primitive

import static org.apache.commons.lang3.Validate.validState;

public final class Password implements Externalizable {

   private final char[] value;
   private boolean consumed = false;

   public Password(final char[] value) {
      this.value = validate(value).clone();          
   }

   public synchronized char[] value() {               
      validState(!consumed, "Password value has already been consumed");
      final char[] returnValue = value.clone();      
      Arrays.fill(value, '0');                        
      consumed = true;                               
      return returnValue;
   }

   @Override
   public String toString() {
      return "Password{value=*****}";
   }

   @Override
   public void writeExternal(final ObjectOutput out) {
      deny();
   }

   @Override
   public void readExternal(final ObjectInput in) {
      deny();
   }

   private static void deny() {
      throw new UnsupportedOperationException(
            "Serialization of passwords is not allowed");
   }

   private static char[] validate(final char[] value) {
      // Validate length, characters and so forth
      return value;
   }
}

The input array is cloned.

Thread-safe accessor

The internal  
field is cloned.

The internal  
field is erased.

Value is marked  
as consumed.



125Read-once objects

With this implementation, unintentionally using the password leads to an error mes-
sage saying, “Password value has already been consumed” when you try to verify the 
credentials with the authentication system. This unintentional use could, for example, 
be in a log message or a result of throwing an exception, where the thrown exception 
contains the password. Most likely, you’ll catch this kind of programming mistake early 
on, because of a failing test in your continuous delivery pipeline.7 And if you don’t, 
then the inability to log in will quickly be noticed in production, and the error message 
should make it fairly easy to understand what’s going on.

Details of the Password class
The Password object shown in listing 5.4 is similar to the SensitiveValue object you 
saw earlier but with some additional changes worth pointing out. The reasons for these 
changes are due to how memory is managed by JVMs. We’re not going to go into JVM 
details here, but we’ll point these details out for you to use as best practices.

First, the value field has been changed to a char array instead of using a String. This is 
because you want to be able to clear it after it’s been used. The input array is also cloned for 
this reason. Making a copy of the array ensures you don’t interfere with any cleanup logic 
performed by the code calling the constructor on Password or vice versa. Because you’re 
not using an AtomicReference anymore, a boolean flag together with a synchronized 
accessor method is used to keep track of a consumed value in a thread-safe manner.

When the value is consumed, via the value accessor method, a copy of the internal 
char array is returned, then the internal array is cleared. Again, the reason for making 
a copy of the passed-out array is to have the Password class responsibly do its part in 
handling sensitive data without interfering with the rest of the codebase. Both the calling 
and the receiving code outside of this class should also properly clean up any references 
to the password.

The goal of these implementation details is to reduce the exposure of sensitive values 
in JVM memory. You can take these concepts even further if you want to, but we believe 
these examples add reasonable value for a relatively low effort and should be consid-
ered good practice when coding in Java.

In the case of retrieving the value through the accessor method value, the read-once 
object doesn’t prevent the data from leaking but makes it easy to detect the leak once 
it happens. And if you’re making use of good developer practices and have a compre-
hensive test suite, you have a good chance of preventing the leak from ever reaching 
your production environment.

5.2.2 Avoiding leaks caused by evolving code

Another scenario where it’s easy to cause unintentional data leakage is when rede-
signing or remodeling your code. This is something we’ve experienced ourselves on 

7 Don’t worry if you’re unfamiliar with continuous delivery and pipelines. You’ll learn about them in an 
upcoming chapter.



126 chapter 5 Domain primitives

occasion, and thanks to the use of read-once objects, we were able to find the leak and 
prevent it from reaching production. Let’s take a look at a scenario similar to what we 
experienced but slightly tweaked—to protect the innocent.

Imagine you’re building a web application where the code often needs to access 
data about the currently logged-in user. The required information is available in the 
User domain object. At some point, the developers decide to put the User object in 
the web session in order to ease access and to act as a cache. This solution works as 
intended and has the desired benefits. Later, as a result of new business requirements, 
the User domain object is remodeled and a Social Security number (SSN) is added to 
it (figure 5.5). The SSN object is implemented as a read-once object because it’s only 
intended to be used once.

The new domain model serves the new functionality well, and all tests in your test 
suite pass. But during acceptance testing in your staging environment, you notice, by 
chance, that some stack traces are printed every time you shut down the application. 
The error message is, “Not allowed on sensitive value.” You follow the stack trace and 
see that the exception is caused by an attempt to serialize the SSN. Puzzled that some-
thing is trying to serialize your sensitive data, you start to track down the source for this 
behavior. After some digging, you find that the serialization is triggered by the Tomcat 
web server you’re using. It turns out that, by default, Tomcat persists any active sessions 
to disk whenever it’s shut down or restarted.8 If you put any sensitive data in the ses-
sion without turning this feature off, that data might end up on disk, readily available 
for anyone with disk access to read—a perfect case of exposing sensitive data without 
proper authorization.

It’s common to see these types of data leaks in software systems, and they’re almost 
always unintentional, either because the developers didn’t think about the implications 
or because they weren’t aware of them (perhaps because the code they were working on 
was far away from where the sensitive data had been created). By designing with read-
once objects, you allow the developers to be more focused on the task at hand and not 
have to worry about security.

User

User contains
no sensitive data

User now contains
sensitive data

Remodeling
Name
Nickname
Age

User

Name
Nickname
Age
SSN

Figure 5.5  Remodeling the User object, causing sensitive data to leak

8 For more information about this, see https://tomcat.apache.org/tomcat-8.5-doc/config/manager 
.html#Persistence_Across_Restarts.



127Standing on the shoulders of domain primitives

Now that you know what domain primitives represent and how to implement them, 
let’s take a look at what they do for the rest of the code—how do they help other parts 
of the code to become more secure? In particular, let’s look at what they do for entities.

5.3 Standing on the shoulders of domain primitives
Without domain primitives, the remaining code needs to take care of validation, for-
matting, comparing, and lots of other details. Entities represent long-lived objects with 
a distinguished identity, such as articles in a news feed, rooms in a hotel, and shop-
ping carts in online sales. The functionality in a system often centers around chang-
ing the state of these objects: hotel rooms are booked, shopping cart contents are 
paid for, and so on. Sooner or later the flow of control will be guided to some code 
representing these entities. And if all the data is transmitted as generic types such 
as int or String, responsibilities fall on the entity code to validate, compare, and 
format the data, among other tasks. The entity code will be burdened with a lot of 
tasks, rather than focusing on the central business flow-of-state changes that it mod-
els. Using domain primitives can counteract the tendency for entities to grow overly 
complex.

As development time goes by, entity classes have their code written, extended, and 
changed multiple times. It’s easy for entities to become magnets of functionality, and their 
methods to become code clumps spanning several hundred lines and riddled with nested 
for and if blocks. Numerous times, we’ve found security vulnerabilities caused by local 
changes that didn’t take all conditions into account. Imagine you’re adding an else clause 
to an if statement deep down inside such a method. What are the odds you’ll forget to 
check some condition or another? When the code grows in complexity, important details 
might be overlooked—in particular, validation has a tendency to be forgotten, with disas-
trous results for security. A good way to make entities more secure is to offload them by 
using a library of domain primitives.

Now let’s show how standing on the shoulders of domain primitives can relieve enti-
ties of the burden of many types of validation. At the same time, validation becomes 
more consistent, and the code more secure overall.

5.3.1 The risk with overcluttered entity methods

Let’s look at an example of an overly cluttered entity and how it can benefit from using 
domain primitives. Listing 5.5 shows the class Order from an online bookstore. The 
online bookstore is of the same type as in the case study in chapter 2. The state of the 
application changes when books are added to an order and when the order is paid for 
later and shipped. The class Order is responsible for tracking these changes.

One example of the changes can be seen in the method addItem, which tracks when 
a book is added to the order. It’s 10 lines of code, but still it manages to uphold lots of 
business rules. But there’s also a subtle mistake. See if you can spot it. (It’s not easy.)



128 chapter 5 Domain primitives

Listing 5.5  Order entity that does a lot in its addItem method

import org.apache.commons.lang3.Validate;

class Order {
   private BookRepository bookCatalog;
   private ArrayList<Object> items;
   private boolean paid = false;
   Inventory inventory;

   public void addItem(String isbn, int qty) {
      if(this.paid == false) {                       
         notNull(isbn);                              
         isTrue(isbn.length() == 10);                
         isTrue(isbn.matches("[0-9X]*"));            
         isTrue(isbn.matches("[0-9]{9}[0-9X]"));     
         Book book = bookCatalog.findByISBN(isbn);   
         if(inventory.avaliableBooks(isbn) >= qty)){ 
            items.add(new OrderLine(book, qty));     
         }
      }
   }
   ...
}

class ShoppingFlow {

    void handleOrderAdd() {                      
        ...
        String isbnText = ...
        int qty = Integer.parseInt(qtyText);
        ...                                      
        order.addItem(isbn, qty);
       ...

    }

}

In 10 lines of code, addItem manages to validate arguments, check the state of the 
order, check the availability of books, and manage the list of ordered items. Seems 
solid, doesn’t it? In this online bookstore, those snippets of code that validate ISBNs are 
repeated throughout the code, so often that they are almost an idiom in the codebase.

What about the mistake? There are two. First, the code doesn’t verify the check-
sum of the ISBN. That’s a minor flaw and most probably harmless. But second, the 
code doesn’t check for negative quantities—the very flaw that led to the massive loss of 
money in the chapter 2 case study. If you noticed, good spotting, indeed. If you didn’t, 
don’t feel too bad about it. It’s hard to spot these kinds of mistakes in a codebase you’re 
shown like this. (In the case study, there was also a restriction that the quantity must be 
a maximum of 240 books because of restrictions from the storehouse and logistics. That 
check is also lacking in this code.)

Checks that  
the order  
isn’t closed

Validates ISBN format

Uses validated ISBN  
to search for book

Checks that there 
are enough books 

left for sale

Adds the 
quantity of 
books to 
the order

Calls the order entity to update it

Did we validate or not? Should we have?



129Standing on the shoulders of domain primitives

Finding mistakes gets even trickier with a more realistic codebase. A realistic code-
base needs to take even more aspects into account. For example, it needs to do error 
handling, something this example glosses over. A realistic addItem would throw Item-
CannotBeAddedException and InvalidISBNException when appropriate. It would 
also include a for loop for finding if the ISBN was already in the order to avoid sev-
eral OrderLines with the same ISBN. To make even more of a mess, the code would be 
riddled with outdated functionality, like last year’s promotional campaign where you 
received one cookbook for free if you bought three books on home furnishing. The 
code that was added then is no longer used and hasn’t been removed. The same goes 
for the code for the Christmas campaign. There would also be the VIP customer cases 
with a discount on express shipping, and free shipping under certain circumstances 
would be patched in there somewhere in the mess. The list goes on. In a large and hairy 
method like that, it wouldn’t be strange if you didn’t notice a missing range check.

The reason why it’s so easy to miss the details even in a simple example is due to some 
fundamental psychology. We humans are good at recognizing similarities and uncon-
sciously look for supporting evidence. This is why people have to be trained to check ID 
cards. Without training, you’ll look at the person in front of you, look at the card, and 
think, “Yeah, two eyes, a nose in the middle, a chin at the bottom—seems to match,” or 
some subtly more advanced version of the same idea. Police training includes special 
classes to avoid doing this. Psychologists call this human trait of looking for matches 
confirmation bias, and the phenomenon has been systematically studied since the 1960s.9

How does this apply when looking at code? When you read code, most of the code 
you see is correct. The lazy brain thinks, “The code I’ve seen this far looks good,” and it 
subconsciously makes the hypothesis, “The rest is probably OK as well.” After that, your 
tendency for confirmation bias will make you nod every time something looks OK and 
makes it almost impossible to find the spots where the code is incomplete or wrong.

You’ve probably experienced this phenomenon the other way around as well. When 
you find the first bug, the spell is broken, and suddenly you see bugs all over the place. 
It’s a little bit like searching for mushrooms in the forest or bird watching—at first you 
see none, but when you spot the first, you suddenly see them everywhere. We as humans 
have a tendency to miss subtle details such as validation when looking at lots of code, 
and, at the same time, missing validation is something that can cause severe security 
problems. There’s clearly a need to declutter our entities.

5.3.2 Decluttering entities

Now that you’ve seen the security risks of cluttered entities, let’s see how to use domain 
primitives to avoid these problems. Domain primitives naturally contain a lot of rele-
vant validation. When the entity code isn’t burdened with those pieces of validation, it 

9 Confirmation bias is the human tendency to notice things that confirm our preexisting beliefs and to 
pay less attention to things that aren’t in line with our expectations or prejudices. The term was coined 
by Peter Wason in his 1960 article in the Quarterly Journal of Experimental Psychology, “On the Failure to 
Eliminate Hypotheses in a Conceptual Task.”



130 chapter 5 Domain primitives

can focus on the kind of validation it’s best suited to do. Let’s quickly revise the differ-
ent levels of validation we investigated in chapter 4:

¡	Origin —Is the data from a legitimate sender?
¡	Size —Is it reasonably big?
¡	Lexical content —Does it contain the right characters and encoding?
¡	Syntax —Is the format right?
¡	Semantics —Does the data make sense?

The last step, semantic validation, is clearly the kind of validation that entities should 
do. An entity knows the state and history of data and is well suited to judge whether the 
incoming data makes sense right here and now. But the earlier steps are checks that 
should be done before you bring the data to the entity.

Now let’s put our domain primitives to use. You have the Quantity domain primitive 
created earlier (listing 5.1), which works well to replace the int parameter in addItem. 
Now you need a domain primitive to replace the ISBN String. The following listing 
constructs a domain primitive ISBN in the same way.

Listing 5.6  Domain primitive ISBN including validation logic

import org.apache.commons.lang3.Validate.*;

public class ISBN {
    private final String isbn;

    public ISBN(final String isbn) {             
        notNull(isbn);
        isTrue(isbn.length() == 10);
        isTrue(isbn.matches("[0-9X]*"));
        isTrue(isbn.matches("[0-9]{9}[0-9X]"));
        isTrue(checksumValid(isbn));             
        this.isbn = isbn;
    }

    private boolean checksumValid(String isbn) {
        // ...
    }
    ...
}

This class is written once, so there’s no risk that you’ll sometimes remember to verify 
the checksum and sometimes forget. The class contains all the validations for size, lex-
ical content, and syntax, so when using ISBN in an entity, you don’t have to clutter your 
entity code with that.

You can now revise the entity Order to peruse the domain primitives ISBN and Quantity,   
as seen in in listing 5.7. In the new version of the Order class, you’ll see the improvement. 
To begin with, there’s less code, but that’s mostly due to some of the code having been 
moved elsewhere. More important is that the code is more to the point. It’s about how to 
handle what needs to be done when adding a new item to the order.

The constructor ensures that an ISBN 
object always contains a valid ISBN.

Here we remembered to verify the checksum—
it need only be remembered in one place.



131Standing on the shoulders of domain primitives

Listing 5.7  Order using Quantity

class Order {

    public void addItem(ISBN isbn, Quantity qty) { 
        Validate.notNull(isbn);
        Validate.notNull(qty);

        if(this.paid == false) {        
            Book book =
                bookcatalogue.findByISBN(isbn); 
            if (inventory.avaliableBooks(isbn)
                .greaterOrEqualTo(qty)) {       
                addToItems(new OrderLine(book, qty));
            }
        }
    }

    private void addToItems(OrderLine bookQuantity) {
        ...        
        items.add(new OrderLine(book, qty));
        ...
    }
}

class ShoppingFlow {

    void handleOrderAdd() {
        ...
        String isbn = ...
        int qty = ...
        ...
        order.addItem(new ISBN(isbn),
                      new Quantity(qty));       

       ...
    }
}

The method addItem doesn’t have to carry the burden of earlier stages of validation, 
only the final part—the step we called semantics —which asks, “Does the data make 
sense right now?” You can see that here there’s less code in the method, so there’s less 
risk for mistakes should you need to update it. Also, the validation is handled consis-
tently by domain primitives, so there’s no risk of forgetting to verify the checksum of 
the ISBN or that the quantity isn’t a negative number.

The client code in ShoppingFlow from listing 5.5 can no longer send in a naked 
String for the ISBN and an int for the quantity. Any attempt at doing so generates a 
compiler error. To be able to call Order.addItem, the client code needs to create an 
ISBN object and a Quantity object, and because the constructors of ISBN and Quantity
contain validation, there’s no longer any risk of sending the entity unvalidated data. 
The validation is pushed to the caller.

The ISBN and quantity are 
already validated in a neat 
package.

Checks that the order isn’t closed— 
this is still awkward, we’ll work on it  
in chapter 7.

The format  
of ISBN is  
already done.

The code actually says, “If 
inventory of available books 
of said ISBN is greater than or 
equal to the quantity.…”

Adds a new order line or 
updates an existing one if 
book is already in order

Anything calling the entity 
needs to package each data 
item in a validated wrapper.



132 chapter 5 Domain primitives

The performance constraints mentioned are in the range of nano- to microseconds, 
whereas a database round-trip is measured in milliseconds. It takes an extreme situa-
tion to care about object allocation, perhaps big data analysis, but if you have a situation 
where you are crunching enormous amounts of numbers in memory or programming 
for a restricted device, you might not use entities at all.

It’s worth noting that the pattern of using domain primitives inside entities doesn’t 
only apply to greenfield development, where you’re creating a new entity. When you 
touch an entity for maintenance or further development, you take the chance of 
improving it by changing the signature to use domain primitives. If there’s no suitable 
domain primitive, you’ve probably found a suitable time to introduce a new one. (We’ve 
had codebases that we’ve slowly turned around by using this trick and doing one small 
step each time we worked on the code.) After a while, your domain primitive library 
grows richer, and your entities become more focused. In chapter 12, we talk about what 
to do with legacy code, and we’ll dive deeper into this aspect.

Now you’ve seen how domain primitives provide a solid building ground, due largely 
to the fact that they relieve the rest of the code of the burden of validation. Let’s end this 
chapter by taking a look at some computer science research that has been done that’s 
relevant to this area. In computer science, tracing potentially dangerous input and 
ensuring that it’s validated (to some degree) before it’s used is known as taint analysis.

5.4 Taint analysis
In the field of security research, taint analysis investigates how to stop malicious attack 
data from being used by marking input as tainted. Attack data can be web content 
with embedded JavaScript that installs a keylogger, or it might contain embedded SQL 
commands that attempt to destroy the database or reveal its content. Every input is 
considered suspicious until it has been cleared of suspicion, which is done when the 
data is checked through some mechanism. Should uncleaned (still tainted) data be 
used in a sensitive way (for example, if it’s shown to a user or written to the database), 
then you’ve found a security risk, and the taint analysis will raise an alert.

The interesting part is that taint analysis can be done at runtime and can track every 
input on its way through the system by setting a taint bit. If data that’s still tainted is sent 
to the database or otherwise used in a sensitive way, the taint analysis system intercepts it 
and stops this from happening (figure 5.6).

Each taint analysis tool has specific rules for what to check, when to intercept, and 
how to clean data. But most follow the same framework for terminology.12 The frame-
work consists of four parts:

¡	Taint sources —The places where dirty input might come into the system, which 
can be user interfaces, import jobs, or integrations with external systems

¡	Untainting—The way data is cleaned of suspicion through some type of check

11 For more on this, see Brian Goetz’s September 27, 2005, article “Urban Performance Legends, Revis-
ited” at http://www.ibm.com/developerworks/library/j-jtp09275/.

12 The framework is described in “Dytan: A Generic Dynamic Taint Analysis Framework” (2007) by James 
Clause, Wanchun Li, and Alessandro Orso of the Georgia Institute of Technology (https://www.cc 
.gatech.edu/~orso/papers/clause.li.orso.ISSTA07.pdf).

There could be validation problems when the calling client tries to construct ISBN or 
Quantity. If that happens, the client code needs to get back to the calling GUI to have 
those problems resolved; for example, by asking the user to correct the data. Note the 
separation of concerns: the client code ensures that the validation is done, but how it’s 
done is the responsibility of the domain primitives ISBN and Quantity.

Up to this point, we’ve discussed method arguments. The same discussion applies to 
arguments of constructors. We’ve also found it valuable to apply the same ideas for the 
return values and data fields that the entity holds.

TIP  Use domain primitives for method arguments, constructor arguments, 
return values, and data fields in entities.

The main benefits of using domain primitives in entity code include the following:

¡	Input is always validated. The type system ensures you use domain primitives.
¡	Validation is consistent. It’s always done by the domain primitive constructor.
¡	Entity code is less cluttered and more to the point. It doesn’t need to do boundary 

checks, format controls, and so on.
¡	Entity code is more readable. It speaks the language of the domain.

Using domain primitives isn’t the only way to reap these benefits. We’ve found that 
using domain primitives as the arguments for methods in particular is just the best way 
for ensuring that entities use well-validated input.

5.3.3 When to use domain primitives in entities

Offloading the burden of validation to entities by using domain primitives is a power-
ful technique. In fact, it’s so powerful we have a hard time finding examples of when 
not to use it. It needs to be a situation where there’s no (or almost no) need to validate 
input, a situation where all data would be allowed. Perhaps a time series of tempera-
tures would be simple enough? But even then, you don’t want to accept a temperature 
below absolute zero (0°K, which equates to -273°C or -460°F).10 Finding a situation 
where something is just an int or a completely unrestricted String is hard.

We sometimes hear the argument that the extra wrapper object (such as the ISBN around 
the String) adds a performance penalty at runtime. In principle, that’s true, but it’s seldom 
a practical concern. Remember that you want to run the ISBN validation anyway, and you 
either do it inside the ISBN constructor or in some other way so that it doesn’t add to the 
performance penalty. It’s the allocation and management of an extra object that’s extra.

Using modern garbage collection, there’ll be almost no penalty for this kind of 
short-lived object: the allocation of memory only takes about 10 machine instruc-
tions, and the deallocation of memory is most often zero-cost.11 And all of these con-
cerns are dwarfed as soon as you touch a database or make a call over the network. 

10 Absolute zero is the lowest possible temperature, where nothing could be colder and no heat energy 
remains in a substance. See https://www.sciencedaily.com/terms/absolute_zero.htm.



133Taint analysis

11 For more on this, see Brian Goetz’s September 27, 2005, article “Urban Performance Legends, Revis-
ited” at http://www.ibm.com/developerworks/library/j-jtp09275/.

The performance constraints mentioned are in the range of nano- to microseconds, 
whereas a database round-trip is measured in milliseconds. It takes an extreme situa-
tion to care about object allocation, perhaps big data analysis, but if you have a situation 
where you are crunching enormous amounts of numbers in memory or programming 
for a restricted device, you might not use entities at all.

It’s worth noting that the pattern of using domain primitives inside entities doesn’t 
only apply to greenfield development, where you’re creating a new entity. When you 
touch an entity for maintenance or further development, you take the chance of 
improving it by changing the signature to use domain primitives. If there’s no suitable 
domain primitive, you’ve probably found a suitable time to introduce a new one. (We’ve 
had codebases that we’ve slowly turned around by using this trick and doing one small 
step each time we worked on the code.) After a while, your domain primitive library 
grows richer, and your entities become more focused. In chapter 12, we talk about what 
to do with legacy code, and we’ll dive deeper into this aspect.

Now you’ve seen how domain primitives provide a solid building ground, due largely 
to the fact that they relieve the rest of the code of the burden of validation. Let’s end this 
chapter by taking a look at some computer science research that has been done that’s 
relevant to this area. In computer science, tracing potentially dangerous input and 
ensuring that it’s validated (to some degree) before it’s used is known as taint analysis.

5.4 Taint analysis
In the field of security research, taint analysis investigates how to stop malicious attack 
data from being used by marking input as tainted. Attack data can be web content 
with embedded JavaScript that installs a keylogger, or it might contain embedded SQL 
commands that attempt to destroy the database or reveal its content. Every input is 
considered suspicious until it has been cleared of suspicion, which is done when the 
data is checked through some mechanism. Should uncleaned (still tainted) data be 
used in a sensitive way (for example, if it’s shown to a user or written to the database), 
then you’ve found a security risk, and the taint analysis will raise an alert.

The interesting part is that taint analysis can be done at runtime and can track every 
input on its way through the system by setting a taint bit. If data that’s still tainted is sent 
to the database or otherwise used in a sensitive way, the taint analysis system intercepts it 
and stops this from happening (figure 5.6).

Each taint analysis tool has specific rules for what to check, when to intercept, and 
how to clean data. But most follow the same framework for terminology.12 The frame-
work consists of four parts:

¡	Taint sources —The places where dirty input might come into the system, which 
can be user interfaces, import jobs, or integrations with external systems

¡	Untainting—The way data is cleaned of suspicion through some type of check

12 The framework is described in “Dytan: A Generic Dynamic Taint Analysis Framework” (2007) by James 
Clause, Wanchun Li, and Alessandro Orso of the Georgia Institute of Technology (https://www.cc 
.gatech.edu/~orso/papers/clause.li.orso.ISSTA07.pdf).



134 chapter 5 Domain primitives

¡	Propagation policy—What determines whether the result is marked tainted or not 
when data is processed or combined

¡	Taint sinks —The places where data is used in a sensitive way: rendered to the 
user, written to the database, or similar

The taint analysis tool that implements the framework needs to interact with the run-
time platform. For example, an implementation for systems written in Java would inter-
act with the JVM as it runs the bytecode.13 It extends the memory representation on the 
heap of each object with a taint bit and places itself between the bytecode and the JVM 
so that it can do taint analysis at all times.

In Java, the taint sources can be defined by pointing out specific methods in the stan-
dard libraries. For example, it would probably be interesting to trace anything that 
enters the system through InputStream.read but not Random.nextBytes. The tool 
can also distinguish between different input streams; for example, by tainting Input-
Stream.read if the InputStream is a result of a Socket.getInputStream but not if it was 
created through new FileInputStream(...).

A Story of Two Inputs

Entered at the
same GUI field,
the taint source

One of these cleaned
through an

untainting check

Switching
off the
taint bit

Both written to the database,
the taint sink

One
stopped

The other
let through

But the
other not

Both of them
treated as

suspicious with
taint bit set

GUI

A

A

AB

B

Figure 5.6  Tainted data stopped; cleaned data let through

13 See, for example, “Dynamic Taint Propagation for Java,” by Vivek Haldar, Deepak Chandra, and   
Michael Franz (https://www.acsac.org/2005/papers/45.pdf).



135Taint analysis

Untainting happens when data is considered to be checked. The analysis tool, however, 
doesn’t know when the data is checked because it neither knows the domain rules 
of the application nor has any insight into the programmer’s brain. Instead, it has to 
rely on heuristics. For example, if a String is matched to a regexp through String 
.matches, the tool can assume that the programmer has done some sensible check, 
but strictly it cannot know. Usual approaches for tools to do untainting include look-
ing for regexp checks for strings, comparisons (<, =, >) for numbers, and so on. If the 
code doesn’t react, then the taint analysis considers that the programmer has accepted 
the data as clean, and the taint bit is switched to false. Another case is when the data is 
passed as an argument to a constructor. If the constructor doesn’t react, then the plat-
form takes it as a sign that the programmer thought that the string was OK, and it’s no 
longer considered tainted.

The taint propagation policy needs to determine when the taint bit should change. For 
example, if two strings are concatenated, then the resulting string is tainted if either of 
the concatenated strings is tainted; it’s clean only if both strings are clean. If a string is 
substringed, then the result is clean if the original string is clean; otherwise, it’s tainted, 
and so on.

Finally, taint sinks are those methods that are deemed sensitive. The method java 
.sql.Statement.execute is certainly deemed sensitive. Writing to a local file through 
FileWriter.write might be deemed uncontroversial, or it could require a taint 
check. If the taint check fails, the taint analysis intercepts the execution and throws a 
SecurityException.

NOTE  Running an application with taint analysis instrumentation is currently 
undergoing research, not something we advise you to do in production—the 
performance penalty is way too high.

What’s interesting is to compare the role that taint analysis puts on the constructor. 
Clearly the constructor is considered a central place for validation—if a string has 
passed the constructor, it should be validated. Obviously, if you were to write a construc-
tor that didn’t validate string parameters, you’d render the taint analysis worthless.

Many contemporary systems would probably not run for many seconds with con-
current taint analysis before the taint check at a taint sink threw an exception. In many 
systems, we’ve seen numerous ways for a string to end up in a database without being 
checked by a regexp or in a constructor, and when that happens, the taint system will 
protest. On the other hand, a system with a design that’s built on domain primitives 
would probably run smoothly.

Taint analysis has no formal connection to our idea about domain primitives, but it’s 
refreshing to see that the two ideas are so well aligned. Although concurrent taint analysis 
during runtime sounds like an interesting idea, it’s unfortunately not practical for pro-
duction yet. In the meantime, you can design your systems with domain primitives and get 
a lot of the security benefits anyway.



136 chapter 5 Domain primitives

This chapter has focused on how to form a stable foundation for the domain repre-
sentation. Domain primitives form sound and secure building blocks on which larger 
structures can be built. You have seen what domain primitives can do directly for enti-
ties. The next chapter will dive into other challenges that entities face, how they might 
become insecure, and what you can do about it.

Summary

¡	Domain primitives are the smallest building blocks and form the basis of your 
domain model.

¡	You should never represent a concept in your domain model as a language prim-
itive or a generic type.

¡	If a term in your domain already exists outside of your domain but with a slightly 
different meaning, you should introduce a new term instead of redefining the 
existing one.

¡	A domain primitive is immutable and can only exist if it’s valid in the current 
domain.

¡	When domain primitives are used, the rest of the code is greatly simplified and 
becomes more secure.

¡	You should harden APIs by using your domain primitive library.
¡	A read-once object is a useful way to represent sensitive data in your code.
¡	The value of a read-once object can only be retrieved once.
¡	The read-once object design pattern can mitigate leakage of sensitive data.
¡	Domain primitives provide the same type of security that concurrent taint analy-

sis would.



137

6Ensuring integrity of state

This chapter covers
¡	Managing mutable states using entities

¡	Ensuring an entity is consistent on creation

¡	Ensuring an entity keeps its integrity

Mutable state is an important aspect of systems. To some degree, changing state is 
the point of many systems, like the online bookstore of chapter 2. The system keeps 
track of a variety of state changes: books are put in a shopping cart, the order is 
paid for, and the books are shipped to the customer. If there aren’t state changes, 
not much interesting happens.1 Mutable state can be represented technically in 
many different ways. We’ll take a look at some alternatives and explore our pre-
ferred way—explicitly modeling mutable state in the style of Domain-Driven Design 
(DDD) as entities, as described in chapter 3.

Because entities contain the state that represents your business, it’s important that 
a newly created entity follow the business rules. Entities that can be created in an 
inconsistent state can cause both bugs and security flaws that are hard to find or 

1 Some conceptually interesting programming languages, such as Haskell, attempt to achieve this when 
programming with strictly immutable constructs. But most languages (Java, C, C#, Ruby, and Python, 
to name a few) do it using mutable constructs such as stateful objects.



138 chapter 6 

Sent to
server when

finished
with work

State held
in browser

cookie Cookie

State changes
pass through
and handled
by database

State changes
reported
from UI

Entity
representation

Our
preferred
way

Store

API

Stored
procedure

Figure 6.1  Some different ways to implement state

Ensuring integrity of state

detect. But fulfilling all the constraints at the moment of creation can be difficult. How 
difficult depends on how strict or complicated the constraints are. We’ll walk through 
a couple of techniques that are suitable for handling most mutable states, starting with 
simple techniques for simple constraints and ending up with the builder pattern, which 
can handle even pretty complicated situations.

Once entities are created consistently, they need to stay consistent. We’ll guide you 
through some common traps that can risk the integrity of your entities, as well as pro-
viding advice on how to design so that your entities stay secure. Let’s get started with 
different ways of managing state so you can see why using entities is our preferred way.

6.1 Managing state using entities
A central theme for most systems is to track how the state of things changes. As a bag 
is loaded onto a plane, both the state of the bag and the state of the plane change, 
and suddenly new rules apply. The bag can’t be opened any longer, which it could be 
before it was loaded. On the other hand, it can now be unloaded—something that 
wasn’t possible before. For the plane, the load it carries increases. This is what com-
puter scientists call mutable state. In the systems you write, you need to keep track of 
these state changes and ensure that all the changes follow the rules.

If the systems you write don’t handle change properly, you’ll have security issues 
sooner or later, whether mild or severe. A luggage handling system at an airport needs 
to keep track of bags. If a bag hasn’t been screened, it’s not allowed to be loaded onto a 
plane, and the system must stop that from happening. The system must also keep track 
of what bags belong to which passenger and whether that passenger boards the flight. If 
the passenger doesn’t show, the bags must be unloaded. Not doing so is a severe security 
risk and could be dangerous.

All designs in this chapter revolve around modeling change as entities (to use the ter-
minology of DDD). As we described in chapter 3, DDD describes entities as things with a 
durable identity, whose state can change over its lifetime. The baggage in the airport is a 
good example. It can be checked in, screened, loaded onto, and unloaded from flights, 
but we still perceive it as the same bag with a changed state. Entities are our preferred 
way to implement mutable state, but let’s briefly look at the alternatives (figure 6.1).

When implementing a system, there are many ways to track and handle how state 
changes:

¡	You can keep state in a cookie.
¡	You can make changes in the database directly using SQL or stored procedures.
¡	You can use an application that loads the state from the server, updates the state, 

and sends it back.

All of these approaches are possible and have various merits. Unfortunately, a lot of 
systems are made up of an inconsistent mix of these approaches. This is a risk. If the 
responsibility for holding state and controlling its changes is too spread out, there’s a 
danger that the different parts won’t fit together perfectly. Those small logical cracks 
are what open up the possibility of security breaches. Therefore, what we prefer is a 



139Managing state using entities

kind of design where it’s easy to see what states are allowed and what changes are per-
mitted according to the state.

In our experience, the most effective way to ensure a mutable state is handled in a 
safe and secure way is to model states as entities in the style of DDD. During modeling, 
you decide what concepts are most important to model. Is it bag, flight, and passenger 
that makes it easiest to understand the rules, or should you think about the situation 
in terms of check-in, loading, and boarded travelers? In the first case, the business rule 
can be expressed as “a bag is only allowed to be on the same flight as the passenger that 
checked in the bag.” In the second case, the same rule would be rephrased as “the load-
ing of the plane may only contain checked-in bags that belong to the boarded travelers.” 
In this example, you might agree that the first phrase reads more easily, so that would 
be your model. But it’s effort well spent to explore different models, as we described 
in chapter 3, and to seek deeper understanding, as the case study in chapter 2 showed.

Entities have the benefit of collecting all the understanding of state and how it 
changes in the same place. We also prefer to implement mutable state using a class 
that keeps the data with the associated behavior as methods in the same class. You’ll see 
numerous examples of this in this chapter and the following chapter, which focuses on 
how to reduce the complexity of state.

Entities can be designed in an infinite number of ways, so we’re going to share some 
of our favorite tricks and patterns to keep your design and code clear and secure. The 
rest of this chapter is about how to create and keep entities in a consistent state that 
upholds business integrity. Let’s get started with how to create entities in a secure way.

detect. But fulfilling all the constraints at the moment of creation can be difficult. How 
difficult depends on how strict or complicated the constraints are. We’ll walk through 
a couple of techniques that are suitable for handling most mutable states, starting with 
simple techniques for simple constraints and ending up with the builder pattern, which 
can handle even pretty complicated situations.

Once entities are created consistently, they need to stay consistent. We’ll guide you 
through some common traps that can risk the integrity of your entities, as well as pro-
viding advice on how to design so that your entities stay secure. Let’s get started with 
different ways of managing state so you can see why using entities is our preferred way.

6.1 Managing state using entities
A central theme for most systems is to track how the state of things changes. As a bag 
is loaded onto a plane, both the state of the bag and the state of the plane change, 
and suddenly new rules apply. The bag can’t be opened any longer, which it could be 
before it was loaded. On the other hand, it can now be unloaded—something that 
wasn’t possible before. For the plane, the load it carries increases. This is what com-
puter scientists call mutable state. In the systems you write, you need to keep track of 
these state changes and ensure that all the changes follow the rules.

If the systems you write don’t handle change properly, you’ll have security issues 
sooner or later, whether mild or severe. A luggage handling system at an airport needs 
to keep track of bags. If a bag hasn’t been screened, it’s not allowed to be loaded onto a 
plane, and the system must stop that from happening. The system must also keep track 
of what bags belong to which passenger and whether that passenger boards the flight. If 
the passenger doesn’t show, the bags must be unloaded. Not doing so is a severe security 
risk and could be dangerous.

All designs in this chapter revolve around modeling change as entities (to use the ter-
minology of DDD). As we described in chapter 3, DDD describes entities as things with a 
durable identity, whose state can change over its lifetime. The baggage in the airport is a 
good example. It can be checked in, screened, loaded onto, and unloaded from flights, 
but we still perceive it as the same bag with a changed state. Entities are our preferred 
way to implement mutable state, but let’s briefly look at the alternatives (figure 6.1).

When implementing a system, there are many ways to track and handle how state 
changes:

¡	You can keep state in a cookie.
¡	You can make changes in the database directly using SQL or stored procedures.
¡	You can use an application that loads the state from the server, updates the state, 

and sends it back.

All of these approaches are possible and have various merits. Unfortunately, a lot of 
systems are made up of an inconsistent mix of these approaches. This is a risk. If the 
responsibility for holding state and controlling its changes is too spread out, there’s a 
danger that the different parts won’t fit together perfectly. Those small logical cracks 
are what open up the possibility of security breaches. Therefore, what we prefer is a 

Sent to
server when

finished
with work

State held
in browser

cookie Cookie

State changes
pass through
and handled
by database

State changes
reported
from UI

Entity
representation

Our
preferred
way

Store

API

Stored
procedure

Figure 6.1  Some different ways to implement state



140 chapter 6 Ensuring integrity of state

6.2 Consistent on creation
An entity that isn’t consistent with the business rules is a security problem. This is par-
ticularly true for a newly created entity, so it’s important that the mechanism for cre-
ating objects guarantees entities are consistent on creation. This might seem obvious, 
but still it’s sometimes treated as a technicality—and the consequences just might be 
disastrous.

A colleague of ours was once working with a large Asian bank. He found several 
security vulnerabilities, but they were all dismissed as minor technical flaws. It wasn’t 
until he managed to create an account without an owner that he got attention. A bank 
account without an owner is an abhorrence, and the existence of such an account could 
cause a bank to lose its banking license. Suddenly the issue was escalated to top manage-
ment, who gave it the highest priority.

An entity that isn’t consistent with the rules is a security problem, and the best way 
we’ve found to counteract this risk is to insist that every entity object should be consis-
tent immediately on creation. In this section, we’ll show the perils of the most common 
anti-pattern—the no-arg constructor—and look at some alternative designs. We’ll walk 
through different ways to create an entity, starting with the simplest and progressing to 
the more advanced. When constraints become more complex, you need more compli-
cated constructions. Simple constructions suffice for simple constraints. We’ll start with 
the simplest construction of all, the no-arg constructor, which is so simple, it’s useful for 
almost nothing at all. We’ll end with the builder pattern for handling the most complex 
situations.

Because entities often represent data that’s stored and changed over a long period 
of time, entities are often saved in a database. If you have a relational database together 
with an object-relational mapper (ORM) such as JPA or Hibernate, there’s often con-
fusion that leads to bad and insecure design. We’ll comment on different ways of using 
such frameworks in a way that doesn’t violate security.

Although our introductory example in this chapter was from the financial domain, 
the problem isn’t restricted to that domain. We find inconsistent newly created entities 
in code in all kinds of domains. One thing that many have in common is that they often 
stem from constructing objects using a no-arg constructor.

6.2.1 The perils of no-arg constructors

The simplest way to create an entity is definitely using the constructor. And what could 
be simpler than calling a constructor without any arguments (aka, a no-arg constructor)? 
The problem is that no-arg constructors seldom live up to the promise of creating a 
fully consistent, ready-to-use object.

If you think about it, a no-arg constructor is a strange thing to find in code. It prom-
ises not only to create a Car object, for instance, but a car for which you don’t need to 
specify any attributes at all. It doesn’t have a color, a number of doors, or even a brand. 
Or, if it has any of those attributes, it’s a default value that should apply to all cars on 



141Consistent on creation

creation. In practice, no-arg constructors don’t stand up to the contract for construc-
tors to create consistent objects that are ready to use.

Often, we encounter entities that seem to have a convention for creation: first you 
call a no-arg constructor, then you call a number of setter methods to initialize the 
object before it’s ready to be used. But there’s nothing in the code that enforces this 
convention. And, sadly, the convention is often forgotten or broken in a way that leads 
to inconsistent entities.

WARNING  Where there’s a no-arg constructor for an entity, there’s probably 
setter-based initialization, which is most probably trouble. Setter-based initial-
izations risk becoming incomplete; incomplete initializations result in incon-
sistent objects.

Let’s look at the kind of code we often encounter. In listing 6.1, you see an Account
class with some attributes: an account must have an account number, an owner, and 
an interest rate. It might also have an optional credit limit, which allows the account 
to go into debt to a certain degree, or a fallback account (often a savings account), 
from which money will be drawn if needed to prevent the account from becoming 
empty or going into debt. The method AccountService.openAccount shows how this 
no-arg constructor is intended to be used. First the constructor is called, and then the 
Account object is filled with data by calling one setter method after another.

Listing 6.1  Account class with no-arg construction and setter initialization

public class Account {
    private AccountNumber number;            
    private LegalPerson owner;               
    private Percentage interest;             
    private Money creditLimit;               
    private AccountNumber fallbackAccount;   

    public Account() {}             

    public AccountNumber getNumber() {
        return number;
    }

    public void setNumber(AccountNumber number) { 
        this.number = number;
    }

    public LegalPerson getOwner() {
        return owner;
    }

    public void setOwner(LegalPerson owner) {   
        this.owner = owner;
    }
    ...
}

Mandatory

Optional

In Java, if you leave out the constructor, 
you’ll get a public no-arg constructor.

Clients must remember to 
call these methods before 
the object is ready to use.



142 chapter 6 Ensuring integrity of state

class AccountService {

    void openAccount() {
        Account account= new Account();         
        account.setNumber(number);              
        account.setOwner(accountowner);         
        account.setInterest(interest);          
        account.setCreditLimit(limit);          
        ...
    }
}

What this approach lets you do is create a completely blank object and then fill in the 
fields you want. But there’s no guarantee your Account object will fulfill even the most 
fundamental and important business constraints. Furthermore, the design is brittle 
because it relies on every creation to remember all the steps. If the conditions change, 
there’s an update nightmare. For example, as part of international attempts to curb 
corruption, many countries have passed financial regulations on people classified as 
politically exposed. People in government, for instance, might be more exposed to 
temptations of corruption or bribery due to the influence of their office. Each account 
has to trace whether the owner is a politically exposed person or not.

Imagine you’re working with Account and are given the requirement that it needs 
a new mandatory field, boolean politicallyExposedPerson. Also, it’s required to 
set the field explicitly each time an entity is created. Now you need to find every sin-
gle place the constructor new Account() is called and ensure that setPolitically
ExposedPerson is also called.

The compiler doesn’t point out mistakes as it would if you added a parameter to 
a constructor argument list. A well-honed suite of unit tests would catch the errors, 
but the codebases with no-arg constructors we see have seldom had those kinds of test 
suites. Unfortunately, some places will be overlooked each time an attribute is added; 
not necessarily the same place every time, but rather different places each time. Over 
time, that kind of process tends to result in an inconsistent codebase, where sooner or 
later there are security loopholes.

TIP  Where there’s a no-arg constructor for an entity, there’s probably setter- 
based initialization, which is most probably trouble.

6.2.2 ORM frameworks and no-arg constructors

If you use an object-relational mapper framework such as JPA (Java Persistence API) or 
Hibernate, it might seem like you’re forced into having a no-arg constructor for your 
entities. Tutorials for these frameworks inevitably start with creating an entity with a 
no-arg constructor, and it looks like that’s the way code should or must be written. But 

An inconsistent, newly created object 
needs setter-based initialization.

Client code required to set all  
mandatory fields, forgetting none

Setting one optional field



143Consistent on creation

that’s not completely true. If you use such frameworks, you have two options for avoid-
ing security loopholes in this regard: either separating the domain model from the 
persistence model or ensuring that the persistence framework is secured from expos-
ing inconsistent objects.

The first alternative is to conceptually separate from the persistence model. If you 
do this, your persistence model resides in a separate package, together with other infra-
structure code. When you load data from the database, the persistence framework loads 
it into objects in the persistence package. Thereafter, you construct domain objects 
using those objects before letting the domain objects handle business-logic calls. In this 
way, you’re completely in charge of any creation of domain objects, and any JPA annota-
tions stay in the persistence package.

TIP  Separate the domain model and persistence model to emphasize that they 
are different contexts and to make the mapping explicit.

If you don’t make this distinction and directly map your domain objects using the per-
sistence framework, you’ll need to do due diligence on how you use the framework 
instead. We know this style is pretty common, and it’s possible to do it in a secure way, 
so we’d like to share some tricks for doing so.

When it comes to no-arg constructors, it’s true that persistence frameworks like 
Hibernate and JPA do need a no-arg constructor. The reason for this is that the frame-
work needs to create objects when it loads data from the database. The way it does so 
is by internally creating an empty object and then filling it with data from the database 
through reflection. It therefore needs to have a no-arg constructor to start with. But 
neither JPA nor Hibernate needs a public constructor—they can do well with a private 
no-arg constructor. Furthermore, the frameworks don’t need setter methods to inject 
the data; it can be done through reflection directly into private fields if you set the per-
sistence style to field annotations.

TIP  If you use your domain model as a persistence model, then create private  
no-arg constructors and use field annotations to avoid opening up your domain 
objects to the risks of inconsistent creation or usage.

Now, let’s move on to what you can do about this situation. Because you don’t want a 
no-arg constructor, you can instead use a constructor that sets all mandatory fields.

6.2.3 All mandatory fields as constructor arguments

Let’s take a look at the simplest way of solving the security problem of inconsistent enti-
ties: instead of using a no-arg constructor that doesn’t convey enough information for 
consistent creation, use a constructor where you pass in all the required information 
(figure 6.2).



144 chapter 6 Ensuring integrity of state

Extend the constructor parameter list until all mandatory information is sent. There’s 
no need for parameters for optional information at this stage. Ensure that the entity is 
created in a fully consistent state. Optional information can be supplied after the entity 
is constructed by calling one method at a time.

Listing 6.2 shows the result of applying this approach to the previous Account exam-
ple. The constructor requires an account number, owner, and interest rate—all the 
mandatory attributes. The optional attributes for credit limit and fallback account 
aren’t in the constructor list but are set afterwards via separate method calls.

Listing 6.2  Constructor takes the mandatory attributes, methods the optional

import org.apache.commons.lang3.Validate.*;

public class Account {
    private AccountNumber number;
    private LegalPerson owner;
    private Percentage interest;
    private Money creditLimit;
    private AccountNumber fallbackAccount;

    public Account(AccountNumber number,
                    LegalPerson owner,
                    Percentage interest) {      

I want a car with four doors

Car’s not ready to use yet.
(Is it really worth calling it a “car”?)

Car’s
ready.

winter tires
and it should

be gray.

I want a car with four doors, winter tires, and it should be gray.

Car’s immediately ready to be used.

Figure 6.2  We don’t want half-finished cars to be visible to the outside.

Takes all arguments needed 
to create a fully valid object



145Consistent on creation

        this.number = notNull(number);          
        this.owner = notNull(owner);            
        this.interest = notNull(interest);      
    }

    protected Account() {}                      

    public AccountNumber number() { ... }       

    public LegalPerson owner() { ... }

    public void changeInterest(
                    Percentage interest) {      
        notNull(interest);                      
        this.interest = interest;
    }

    public Money creditlimit() { ... }

    public void changeCreditLimit(
                    Money creditLimit) {        
        notNull(creditLimit);
        this.creditLimit = creditLimit;
    }

    public AccountNumber fallbackAccount() {
        return fallbackAccount;
    }

    public void changeFallbackAccount(AccountNumber fallbackAccount) {
        notNull(fallbackAccount);
        this.fallbackAccount = Validate.notNull(fallbackAccount);
    }

    public void clearFallbackAccount() {
        this.fallbackAccount = null;
    }
}

class AccountService {
    void openAccount() {
        AccountNumber number = ...
        LegalPerson accountowner = ...
        Percentage interest = ...
        Money limit = ...                       
        Account account =
            new Account(number,
                        accountowner,
                        interest);              
        account.changeCreditLimit(limit);       
        accountRepostitory.registerNew(account);
    }
}

Checks that nothing tries 
to sneak in null arguments

Nonpublic constructor might be needed 
for persistence framework

Accessor method with a more domain-
friendly name than one prefixed with get

It’s possible to change the interest 
rate even after the account is created.

The interest rate is mandatory even  
if it’s changed and can’t be null.

Domain-friendly name of method 
that changes the credit limit

Number, owner, interest, and limit 
are fetched from other services.

No risk of forgetting any mandatory data

Optional field (not in constructor)  
as separate method call



146 chapter 6 Ensuring integrity of state

Because the constructor list contains mandatory fields, don’t expect any of them to 
have a null argument at any time. You can include such checks in the constructor.

TIP  Check your constructor arguments for null values.

The history of the JavaBeans set/get naming conventions
In listing 6.2, we renamed setter and getter methods to names that better describe their 
role in the domain. As mentioned in the previous section, there’s a misconception that 
persistence frameworks need set/get methods to work properly. The same functionality 
can be obtained without set/get methods by using field annotations. Frameworks such 
as Hibernate and Spring Data JPA do their work using reflection and can find private attri-
butes that way. There’s no need for public methods with some specific naming conven-
tion for that reason.

We’d also like to put the set/get naming convention into perspective. The convention was 
created in 1996 as part of the JavaBeans specification.* The basic idea of JavaBeans 
was to create a framework that enabled suppliers to provide off-the-shelf components 
(called beans) that could be bought separately and then assembled to work together 
using graphical tools. This vision was never successful, and the specification never got 
beyond version 1.01. But for some reason the strange naming convention of using set 
and get as prefixes stuck. The framework also contained a more interesting part on how 
to make components communicate through events, which sadly didn’t catch on in the 
same way.

Apart from the residual naming convention of set and get, the JavaBeans specification 
is basically dead. We see little value in following a naming convention with a purpose no 
longer found to be desirable. We prefer to name methods in the code according to the 
original idea of object orientation—that methods correspond to actions in the domain, as 
in an object has a method to handle a message it receives.

We are slowly moving from the most basic objects with only mandatory attributes toward 
more complex conditions, sometimes with more attributes. Taking all those attributes 
as parameters to the constructor soon becomes awkward. We guess you’ve felt the awk-
wardness of 20-parameter constructors at some point.2 Also, with more complex condi-
tions that span between attributes, it’s hard for a constructor to uphold them.

The most complex types of entities will need the builder pattern to be created in a 
feasible way. But, on our way to the builder pattern, we’ll first look at an interesting way 
to create objects with mandatory and optional fields in a way that makes the code on the 
client side read fluently. We turn our attention next to fluent interfaces.

* See http://download.oracle.com/otndocs/jcp/7224-javabeans-1.01-fr-spec-oth-JSpec/.

2 If you have 20 parameters, then some of them might feasibly be “baked together” to something that is 
conceptually whole. For example, a monetary amount and a currency might be put together into a 
Money object. See the discussion on conceptual whole in chapter 3.



147Consistent on creation

6.2.4 Construction with a fluent interface

For construction of more advanced entities with more constraints, you need a more 
potent tool. Eventually we’ll get to the builder pattern, but we aren’t there yet. On our 
way to this, we’ll start with a design style that makes the builder pattern easier to under-
stand and use, as well as making the client code simpler to read and ensuring it does 
the right thing. We’re talking about the fluent interface.

This style of interface design was given its name by Eric Evans and Martin Fowler in 
2005, even though the design style it describes has roots in the Smalltalk community 
that dates back to the 1970s. The ambition of a fluent interface is to make the code read 
more like a fluent text in a natural language, and this is often accomplished through 
the form of method chaining.

Let’s describe this style by applying it so you can see how it affects the code needed 
to set up an entity. Listing 6.3 shows the code for Account, adapted to provide a flu-
ent interface. The constructor doesn’t change, but note the methods for the optional 
credit limit and fallback account. These methods also return a reference to the modi-
fied instance, the object itself. You can see in AccountService.openAccount how this 
enables the client code to chain or cascade these method calls so that the code almost 
reads as text.

Listing 6.3  Account class with a fluent interface

public class Account {
    private final AccountNumber number;
    private final LegalPerson owner;
    private Percentage interest;
    private Money creditLimit;
    private AccountNumber fallbackAccount;

    public Account(AccountNumber number,
        LegalPerson owner,
        Percentage interest) {
        ...                                      
    }

    public Account withCreditLimit(Money creditLimit) {
        this.creditLimit = creditLimit;
        return this;                             
    }

    public Account withFallbackAccount(AccountNumber fallbackAccount) {
        this.fallbackAccount = fallbackAccount;
        return this;                             
    }
}

class AccountService {

Same, same, no difference

The with… 
methods return a 
reference to the 
object itself to 
allow chaining.



148 chapter 6 Ensuring integrity of state

    void openAccount() {
        Account account = new Account(number,
                                      accountowner,
                                      interest)    
                            .withCreditLimit(limit)
                            .withFallbackAccount(fallbackAccount);
        ...
    }
}

There’s no doubt that fluent interfaces yield code that reads differently from con-
ventional code; it reads more fluently. But there are trade-offs. Most importantly, this 
design style clashes with one flavor of the command-query separation (CQS) prin-
ciple, which states that a method should either be a command or a query.3 A usual 
interpretation is that a command should change state but return nothing, and a query 
should return the answer but change nothing. In this example of a fluent interface, 
the with… methods do change state but don’t have void as a return type—perhaps a 
small violation, but certainly something to take into account.

Nonfluent fluent interface
If you start at lots of setters and take a half-step toward fluent interfaces, you end up with 
setters that return this.

class Person {
  private String firstname;
  ...
  public Person setFirstName(String firstname) {
    this.firstname = firstname;
    return this;
  }
  ...
}

This makes it possible to chain the setters in the same way as in a fluent interface. In this 
way, you might get code like the following:

Person p = new Person()
            .setFirstName("Deve").setLastName("Loper")
            .setProfession("Developer");

From a technical perspective, it’s very similar to fluent interfaces. In a way, the object 
acts as its own builder (more on the builder pattern in the next section). But it completely 
misses the fluent part—it doesn’t read well, which is an important ambition for fluent 
interfaces.

Fluent interfaces work well when you want to enrich your object under creation, one 
step at a time (first credit limit, then fallback account). But the object needs to be 
consistent after each step. By themselves, fluent interfaces aren’t enough to enforce 

A new account with a credit 
limit and fallback account set

3 This concept was introduced by Bertrand Meyer in his book Object-Oriented Software Construction  
(Prentice Hall, 1988).



149Consistent on creation

advanced constraints. Alone, this approach doesn’t handle restrictions that span mul-
tiple properties; for example, if an account is required to have either a credit limit or 
a fallback account but isn’t allowed to have both. To handle these more advanced con-
straints, we’ll combine fluent interfaces with the builder pattern—but first, you’ll see 
what advanced constraints might look like.

6.2.5 Catching advanced constraints in code

Advanced constraints on an entity might be restrictions among attributes. If one attri-
bute has a certain value, then other attributes are restricted in some way. If the attri-
bute has another value, then the other attributes are restricted in other ways. These 
kinds of advanced constraints often take the form of invariants, or properties that need 
to be true during the entire lifetime of an object. Invariants must hold from creation 
and through all state changes that the object experiences.4

In our example of the bank account, we have two optional attributes: credit limit and 
fallback account. An advanced constraint might span both of these attributes. For the 
sake of the example, let’s look at the situation where an account must have either but 
isn’t allowed to have both (figure 6.3).

As a diligent programmer, you need to ensure that you never leave the object with 
any invariant broken. We’ve found it fruitful to capture such invariants in a specific 
method, which can be called when there’s a need to ensure that the object is in a con-
sistent state. In particular, it’s called at the end of each public method before handing 
control back to the caller. In listing 6.4, you can see how the method checkInvariants
contains these checks. In this listing, the method checks that there’s either a credit limit 
or a fallback account, but not both. If this isn’t the case, then Validate.validState
throws an IllegalStateException.

4 Invariants were first described in Object-Oriented Software Construction by Bertrand Meyer (Prentice Hall, 
1988).

Stop

If overdraft,
go into debt;
it’s OK to a

limited degree. If overdraft,
pick missing
money from...

Account must have either overdraft safeguard mechanism but can’t have both.

-100$

Ba
la

nc
e

Credit limit Fallback account

An account An account

Another
account

Figure 6.3  Safeguarding a bank account by either a credit limit or a fallback account



150 chapter 6 Ensuring integrity of state

Listing 6.4  Checking advanced constraints in separate method

import static org.apache.commons.lang3.Validate.validState;

    private void checkInvariants()
        throws IllegalStateException {   

        validState(fallbackAccount != null
                    ^ creditLimit != null);  
    }

You don’t need to call this method from outside the Account class—an Account
object should always be consistent as seen from the outside. But why have a method 
that checks something that should always be true? The subtle point of the previ-
ous statement is that the invariants should always be true as seen from outside the 
object.

After a method has returned control to the caller outside the object, all the invari-
ants must be fulfilled. But during the run of a method, there might be places where 
the invariants aren’t fulfilled. For example, if switching from credit limit to fallback 
account, there might be a short period of time when the credit limit has been removed, 
but the fallback account isn’t set yet. You can see this moment in listing 6.5: after 
credit Limit has been unset but before fallbackAccount is set, the Account object 
doesn’t fulfill the invariants. This isn’t a violation of the invariants, as the processing 
isn’t finished yet. The method has its chance to clear up the mess before returning 
control to the caller.

Listing 6.5  Changing from a credit limit to a fallback account

    public void changeToFallbackAccount(AccountNumber fallbackAccount) {
        this.creditLimit = null;                     
        this.fallbackAccount = fallbackAccount;      
        checkInvariants();                           
    }

TIP  If you have advanced constraints, end every public method with a call to 
your home-brewed checkInvariants method.

It isn’t necessary to declare the 
exception, but it’s done for clarity.

Fallback account or credit limit 
but not both (^ is the Java 
syntax for XOR operator.)

After removing the credit limit, the 
account is temporarily inconsistent.

Fallback account set and 
invariants hold again

Checking invariants 
before returning 
control to the outside



151Consistent on creation

The design pattern of having a validation method together with the fluent interface design 
lets you tackle a lot of complexity. But there’ll always be situations where that doesn’t suf-
fice. The ultimate tool is the builder pattern, which is the topic of the next section.

6.2.6 The builder pattern for upholding advanced constraints

You have seen how to ensure an object is created consistently by adding all mandatory 
fields to the constructor and using setters for optional attributes. But if there are con-
straints between optional attributes, this doesn’t suffice.

Let’s continue the example where a bank account must have either a credit limit or 
a fallback account set but not both. We’d like to do the construction in steps but still 
ensure that the object is fully created with all constraints fulfilled before the rest of the 
code gets access to it. This is what the builder pattern does.5

The basic idea of the builder pattern is to hide the complexity of constructing an 
entity within another object, the builder. Figure 6.4 shows how a car builder hides the 
car so that you never need to see the half-built car; it’s revealed when the assembly is 
finished and the car is complete.

Now let’s see what this looks like in code using the account example. In listing 6.6, 
you see the client code. We start by creating an AccountBuilder, fiddle around with 
it (ordering it to build an account inside itself), and when we’re satisfied, we tell the 
AccountBuilder to reveal the finished account.

5 This pattern was initially described by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissi-
des, aka the “Gang of Four” (GoF), in their book Design Patterns: Elements of Reusable Object-Oriented 
Software  (Addison-Wesley, 1994).

The basic idea of builder pattern

1) Tell the builder
  what you want.

2) Ask for the finished car.

Windsheild still
missing

Car builder

Assembling the
car in secrecy

Wheel still
missing

I want a car

with snow tires

and sunroof

and subwoofer

and V8 engine.

Open
sesame

You don’t need to see the car in its incomplete and inconsistent intermediary stages.

Complete car

Figure 6.4  Hiding a half-finished car until it’s finished



152 chapter 6 Ensuring integrity of state

Listing 6.6  Account with a credit limit constructed using AccountBuilder

    void openAccount() {
        AccountBuilder accountBuilder =           
                new AccountBuilder(number,        
                                   accountOwner,
                                   interest);
        accountBuilder.withCreditLimit(limit);    
                                                  
        Account account = accountBuilder.build(); 
        ...
    }

In this example, if you had wanted an account with a fallback account, you would have 
called withFallbackAccount before finishing the build. This pattern extends well to 
more complex situations too. In those cases, you fiddle around with the builder for a 
little bit longer, calling more methods to configure the product before calling build to 
obtain the final product. There’s no need for a multitude of constructors or overloaded 
methods. And if AccountBuilder has a fluent interface where the method withCredit
Limit returns a reference to the builder itself, the code can be even more elegant:

    void openAccount_fluent() {
        Account account =
                new AccountBuilder(number,       
                                   accountOwner,
                                   interest)
                        .withCreditLimit(limit)  
                        .build();                
        ...
    }

The tricky part of the builder pattern is how to implement the builder. The account 
builder needs to be able to manipulate an Account object even when it’s not consistent 
(something you want to avoid to start with). Remember that you can’t let the builder 
leave the product in an inconsistent state, because the account builder can’t work on 
the account from the outside.

The classic way of putting the builder on the inside is to put both classes (Account
and its builder) in a module, then provide one interface that the account can show the 
rest of the world and another interface that the builder can work with. This works, but 
sooner or later you’ll get a headache from doing that.

Listing 6.7 shows how we can get around this dilemma using inner classes in Java. 
The inner class Builder inside Account has access to the inner mechanics of Account
without any special methods. Because Builder is a static class, it can create a not-yet-
complete Account using the private constructor and work on it until the client on the 
outside calls the method build to reveal the finished Account object.

Constructs an account

All mandatory fields are sent to 
the builder as soon as possible.

Sets the optional fields

Here we could have set other optional 
fields and fiddled around until ready.

Building is done, and we ask to see the result.

AccountBuilder with mandatory fields

Configured with credit limit

Calls build to yield the Account



153Consistent on creation

Listing 6.7  Builder of accounts implemented as an inner class

import static org.apache.commons.lang3.Validate.notNull;
import static org.apache.commons.lang3.Validate.validState;

public class Account {
    private final AccountNumber number;
    private final LegalPerson owner;
    private Percentage interest;
    private Money creditLimit;
    private AccountNumber fallbackAccount;

    private Account(AccountNumber number,
                    LegalPerson owner,
                    Percentage interest) {      
        this.number = notNull(number);
        this.owner = notNull(owner);
        this.interest = notNull(interest);
    }

    ...

    private void checkInvariants() throws IllegalStateException {
        validState(fallbackAccount != null
                    ^ creditLimit != null);     
    }

    public static class Builder {               
        private Account product;

        public Builder(AccountNumber number,
                       LegalPerson owner,
                       Percentage interest) {   
            product = new Account(number, owner, interest);
        }

        public Builder withCreditLimit(Money creditLimit) {
            validState(product != null);                    
            product.creditLimit = creditLimit;
            return this;                        
        }

        public Builder withFallbackAccount(AccountNumber fallbackAccount) {
            validState(product != null);                    
            product.fallbackAccount = fallbackAccount;
            return this;                        
        }

        public Account build() {
            validState(product != null);
            product.checkInvariants();          
            Account result = product;
            product = null;                     

The constructor is private because it’s not 
intended to be used from the outside.

Fallback account or credit 
limit but not both

Builder class to build an account

Constructor with mandatory 
attributes to get building started

Methods to add optional 
arguments to the account

Support for 
fluent interface

Ensures the produced account 
is consistent before releasing it

The builder object self-destructs 
so it can’t be used twice.



154 chapter 6 Ensuring integrity of state

            return result;                      
        }
    }
}

By making the Account constructor private, you ensure that the only way to construct 
an account is with the Builder class and build method. The account under construc-
tion can be inconsistent as long as it can only be accessed by the builder object that’s 
building it. But when it’s time to release the account from the builder, it’s required to 
fulfill all invariants.

When the Account is delivered to the caller using build(), you also make the builder 
object release the reference to the product (Account). This is to ensure that another 
call to build won’t hand out another reference to the same Account. Once the builder 
produces an Account, it self-destructs. From an object-orientation theoretical point of 
view, the concept of an inner class is a bit strange, but from an implementation point of 
view, it’s practical in this specific situation.

TIP  Think of a builder as a multistep constructor. When the constructed object 
is released, it must be consistent.

Used this way, the builder process replaces calling the constructor. Phrased slightly dif-
ferently, you can say that when creating an object is a complex process, use the builder 
process in multiple steps; when it’s a simple process, use a constructor in a single step. 
Note the similarity between the words constructor and builder —they mean the same 
thing.

Constructors galore
In theory, we can ensure some complicated constraints using constructors. You could 
have a constructor that has every single attribute as a parameter, whether mandatory 
or optional, and then check all constraints inside the constructor. But that would require 
you to allow null or Optional.empty() as constructor arguments—something that’s 
confusing and not recommended. Another alternative would be to have one constructor 
for every valid combination of arguments. A class Foo with mandatory fields A, B, and C
and an optional field D would need two constructors: Foo(A,B,C) and Foo(A,B,C,D). If 
there were instead two optional fields, D and E, it’d need four constructors: Foo(A,B,C), 
Foo(A,B,C,D), Foo(A,B,C,E), and Foo(A,B,C,D,E).

Under the hood, all these constructors would call the same underlying code, so there’d 
be no code duplication between them. Still, the number of outward-facing constructors 
can quickly grow unmanageable. With 3 parameters, there would need to be 8 construc-
tors; with 7 parameters, there would need to be over 100; and with 10 parameters, you’d 
need more than 1,000 different constructors! You can’t design code in such an unman-
ageable fashion. The builder pattern provides the same flexibility in a much more con-
densed way.

Releases a reference to the newly 
constructed and consistent account



155Consistent on creation

6.2.7 ORM frameworks and advanced constraints

When you have entities with the kind of complexity we’re handling here, with con-
straints that span attributes, you need to think about how you relate to the database. 
This is true if you use an ORM framework such as JPA or Hibernate to directly map 
your domain objects to the database.

If your domain is small and you have full control of the only application that touches 
the database, you might consider it to be inside your security region, your trusted area 
of control. In that case, you might assume that the data in the database is consistent with 
your business rules and that you can safely load it into your application without valida-
tion. Things stay simple, but you should be sure you have strict control over your data.

If your domain is a little richer, or if you can’t guarantee that you’re the only one 
touching the database, we recommend that you look at the database as a separate sys-
tem and validate data when loading it. If you’re using your domain entities to directly 
map to the database using the ORM, things get more delicate. It’s still possible, but we 
advise that you read up on persistence frameworks.

For advanced constraints, you’ll need to ensure that the invariants hold after you’ve 
loaded the data from the database, which is exactly what the checkInvariants method 
does. All you need to do is ensure that it’s run on load. This is what the annotation   
@PostLoad, demonstrated in the following listing, does in both JPA and Hibernate.

Listing 6.8  Integrating invariants check with an ORM framework

@PostLoad                                      
private void checkInvariants() throws IllegalStateException {
    Validate.isTrue(fallbackAccount != null
                ^ creditLimit != null);    
}

6.2.8 Which construction to use when

In this section, we showed three patterns for ensuring that entities are created in a con-
sistent state: constructor with mandatory attributes, fluent interface, and the builder 
pattern. All three have the common goal of ensuring that an object is consistent on 
creation by moving away from the perils of a no-arg constructor.

Even if the builder pattern makes it possible to build the construction over the run of 
lots of calls to the builder, we recommend that the builder be a short-lived object—the 
main limitation of all these approaches. Exactly what short-lived means depends on the sit-
uation, but for a web-based system, we recommend finishing the construction in the same 
request or client-server round-trip. If the construction is so complex that it needs several 
steps of interaction with the client, we’d rather recommend that you make initialization a 
state of its own in the entity.

Runs after data has been 
loaded from the database

Either fallback account or credit limit but not 
both (^ is the Java syntax for XOR operator.)



156 chapter 6 Ensuring integrity of state

Now that your entity is constructed in a nice and consistent state, you certainly want it 
to stay that way. You don’t want the integrity of your entity to be compromised so that its 
security is in the hands of the calling code.

6.3 Integrity of entities
Entities that are created following all the business rules are a good thing. It’s even 
better if they continue to follow the rules, and one of the points of designing entities 
as objects is that you can encapsulate all the relevant business logic close to the data. 
What you want to avoid at this stage is designs that leak that data into the hands of your 
clients in a way that enables them to change the data in violation of the business rules. 
This is what information security professionals refer to as protecting the integrity of the 
information.

If there are ways to change entity data without the entity being in control, you can 
be almost sure that sooner or later there’ll either be a mistake or a malicious attack 
that changes the data in violation of the rules. In either case, bad integrity of entities is 
a security problem. The basic trick of ensuring the integrity of entities is to never leave 
anything mutable accessible to the outside.

NOTE  If you give the client access to something mutable, it can modify the 
entity without the entity being in charge of the change—exactly what you want 
to avoid.

In this section, we want to share some common pitfalls of designs that don’t protect 
the integrity of entities, as well as ways of designing so that integrity is protected. We’ll 
look at some different cases: fields with getter and setter methods, mutable objects, 
and collections.

6.3.1 Getter and setter methods

Most developers agree that leaving a data field open as a mutable public field is a bad 
idea—and to many, it’s close to taboo to even discuss it. But to our surprise, there are 
many developers who are happy to leave fields equally open by providing a pair of 
unrestricted setter and getter methods. It might be aesthetically more pleasing accord-
ing to some tastes, but from a security point of view, it’s equally bad. Let’s look at the 
ramifications of setters and getters.

In the following listing, the attribute paid of an order is protected as a private field. 
But it can still be manipulated by the outside in the same way as if it was unprotected 
because it has an unrestricted setter and getter method pair.

Listing 6.9  Data field not really protected when there is a setter method

class Order {
    private CustomerID custid;
    private List<OrderLine> orderitems;



157Integrity of entities

    private Addr billingaddr;
    private Addr shippingaddr;
    private boolean paid;       
    private boolean shipped;

    public void setPaid(boolean paid) {
        this.paid = paid;       
    }
    public boolean getPaid() { return paid; }
}

Order order = ...
order.paid = true;              
order.setPaid(true);            

Let’s work with this for a while. You want to protect the field paid from being changed 
arbitrarily. Making it private, like the data field boolean paid in the Order class, is 
a good start. But protecting data fields doesn’t help much when the data is open to 
arbitrary modification through setter methods. In some cases, there’s intelligent 
functionality in the setter and getter methods, and they do some good for security by 
encapsulating behavior. But often setters and getters open up the data field to arbitrary 
access and modification.

WARNING  Protecting data fields with private and providing a setter method is 
like buying a high-class security door and leaving the key in the lock.

What kind of behavior might be interesting to encapsulate? Let’s return to the paid
field. Is it sensible that its value can be changed without restrictions? Probably not. In 
this case, it only makes sense to go from not paid to paid, which happens when you 
receive a payment for the order. There’s no business case for going in the opposite 
direction.

You can secure this design by restricting how the data can change. The obvious way is 
to replace the arbitrary setPaid with a method for the specific situation of marking an 
order as paid:

class Order {
    private boolean paid = false; 
    private boolean shipped;

    public void markPaid() { this.paid = true; } 
    public boolean isPaid() { return paid; }
}

Now you’ve ensured that the attribute paid can only change according to business 
rules. It’s important to note that encapsulation is about enclosing the interpretations 
and rules about the data together with the data. It’s not about just technically protect-
ing a data field from direct access.

The field is protected by 
the private access modifier.

Data is open to arbitrary change 
through the setter method.

Not possible, compiler would complain

No problem, unrestricted change 
to the same effect as public field

Orders aren’t paid to start with.

The attribute paid can only move  
in one direction, from false to true.



158 chapter 6 Ensuring integrity of state

6.3.2 Avoid sharing mutable objects

An entity needs to share its data with its surroundings. The Order entity in listing 6.9 
will certainly need to share the shipping address sooner or later. The safest way for an 
entity to do this is by sharing domain primitives, which are immutable and therefore 
safe to share (as explained in chapter 5).

Sharing an object that’s possible to mutate comes with the risk that the reference will 
be used to change the object you’re using for your state representation. In listing 6.10, 
the attribute Person.name is represented by an immutable String, but the attribute 
Person.title is represented by a mutable StringBuffer. Even if the code for access-
ing them looks alike, the difference is fundamental. When the immutable name is used, 
the object Person keeps its integrity. But when the mutable title is used, it accidentally 
changes the representation that Person uses for keeping its state. The integrity of the 
Person object is violated.

Listing 6.10  Person class that shares one immutable object and one mutable one

class Person {
    private String name;
    private StringBuffer title;

    String name() {
        return name;         
    }

    StringBuffer title() {   
        return title;
    }
}

String personalizedLetter(Person p) {
    String greeting =
        p.name()
         .concat(", we'd like to make you an offer"); 
    String salute =
        p.title()
          .append(", we'd like to make you an offer")
          .toString();       
    ...
}

The risk of changing mutable objects in data fields is why we advise using immutable 
domain primitives instead, both for representation of data fields and for method argu-
ments and return types.

WARNING  Sometimes Java is explained as pass-by-reference for objects. It isn’t. 
Java is always pass-by-value, but the value is either a primitive type (boolean, int, 
and so forth) or a reference to an object. When a method is called, the method 
gets a copy of the reference to the same object. The difference is important! You 

Returns copied reference to 
the same immutable object

Returns copied reference to 
the same mutable object

Uses the immutable name 
to construct new objects

Uses the mutable title by changing it



159Integrity of entities

can’t change the outside reference within a method, because you only have a 
copy of it. But you can use the reference to change the object that’s referred to.

A bad date
Designing things as mutable when they shouldn’t be might seem like a beginner’s mis-
take, but even the smartest API designers have made such mistakes. The first version of 
the Java standard libraries contained a Date class with a severe design flaw.* It repre-
sented a specific date, such as the 28th of January 1972 at 08:24 UTC. Unfortunately, 
it was also mutable: if you had a reference to the object, you could change it through 
mutator methods like setHour, setYear, and so forth. This put a huge challenge on any 
entity that used a date as an attribute. Many mistakes occurred where a date object was 
returned from an entity and thereafter changed from the outside. Several of these mis-
takes ended up as security issues.

Obviously, this is a design flaw of the java.util.Date class. A date should be a value 
object, and value objects shouldn’t be mutable. A value object that can change its value 
doesn’t make sense at all. You don’t say, “This is today’s date but changed to tomorrow 
instead.” No, today is one day, and tomorrow is another day.† Unfortunately, the java.
util.Date class was designed as mutable, and even though many of the methods are 
now deprecated, the setTime mutator method remains undeprecated.

Our advice for java.util.Date is short: don’t use it. We recommend using a modern 
library such as the java.time package instead.‡

If for some reason you find yourself in a situation writing code where your only option 
is to work with a mutable object, there’s a trick. When your methods return a reference 
to an encapsulated object, first clone the object. In this way, you avoid having your 
mutable object changed by someone else. If they use the reference you give them to 
mutate the object, they’ll only change their copy, not your original. In the following 
listing, you see this trick applied to java.util.Date.

Listing 6.11  Person class that returns a clone of birthdate

class Person {

    private Date birthdate;

    Date birthdate() {
        return birthdate.clone(); 
    }
}

* See http://web.mit.edu/java_v1.0.2/www/javadoc/java.util.Date.html.
† Niklas Strömstedt, “I Morgon Är En Annan Dag” (1992).
‡ See https://docs.oracle.com/javase/tutorial/datetime/index.html.

Ensures that a copy is returned



160 chapter 6 Ensuring integrity of state

Most often, it’s not too hard to avoid sharing mutable objects because many modern 
libraries have good immutable classes. But there’s one case that often surfaces as a 
problem—collections.

6.3.3 Securing the integrity of collections

Even if a class is well designed so as not to leak mutable objects, there’s one tricky 
area: collections such as lists or sets. For example, an Order object of an online book-
store might have a list of order lines, where each line describes a book being bought 
together with the quantity. On the inside, this is stored as a data field, List<OrderLine> 
orderItems. For such collections, we’ve seen a few pitfalls that we’d like to share.

To start with, you obviously must not expose the list to the outside. Making the field 
orderItems public would allow anyone to replace the list arbitrarily. Neither should 
you use a setter method like void setOrderItems(List<OrderLine> orderItems) that 
does the same thing. Instead of exporting the collection to the outside and letting the 
client work on the list, you want to encapsulate what is done inside the entity.

For example, to add items to the list, you should have a void addOrderItem(Order
Line orderItem) method. If you want to know the total quantity of items in the order, 
you don’t give the client the list to do the sum; instead, you capture the calculation 
inside an int nrItems() method. Think of the entity as a gravity well for functionality 
and let computations move into the entity. The result over time is a much greater con-
sistency of business rules, as well as greater integrity of data. You might even come to the 
point where there’s no need to expose the list at all because everything that works on 
that list is now inside the entity abstraction.

If there’s still a legitimate need for the rest of the code to work on the list of order 
items, then you need to share it in some form; for example, by providing a method 
List<OrderItem> orderItems(). But now you’re back to the same problem as before. 
The list is a mutable object, and there’s nothing that stops a client from obtaining a refer-
ence to the order item list and then modifying it by adding new order items or removing 
existing items. In the following listing, you can see how void addFreeShipping(Order)
works directly on the order item list.

Listing 6.12  Violating integrity by working on the list from outside

void addFreeShipping(Order order) {
    if(order.value().greaterThan(FREE_SHIPPING_LIMIT) {
        List<OrderLine> orderlines = order.orderItems();
        orderlines.add(                         
            new OrderLine(SHIPPING_VOUCHER, 1));
    }
}

Adds directly to the list, without 
the consent of the Order object



161Integrity of entities

In this example, the method orderItems gives out a reference to the list where order 
items are stored. The client directly changes this list, and the Order object doesn’t get 
a chance to control the change. This is definitely a security loophole, and something 
we see quite often.

The way to secure this design is to ensure that when an entity returns its data, it 
should be a nonmodifiable copy. For data fields of primitive types, this isn’t a problem. 
In the previous example of boolean isPaid(), the value returned is a copy of the bool-
ean value in the data field. The receiver can do whatever it likes without affecting the 
Order. To secure the design for List<OrderItem> orderItems(), you must ensure the 
copy that’s returned can’t be used to make changes to your internal list. You can clone 
the list in the same way as you did with Date, but for collections, there’s also a special 
trick using a read-only proxy.

Starting with cloning, the usual way to copy collections isn’t by using clone but 
instead by using the so-called copy constructors. Every class in the collections library in 
Java has a constructor that takes another collection as an argument and creates a new 
collection with the same content. You can see in the following listing how this is used for 
orderItems, which returns a copy of the list of order items.

Listing 6.13  Copy constructor to return a copy of the list of order items

class Order {
    private List<OrderLine> orderitems;       
    public List<OrderLine> getOrderItems() {
        return new ArrayList(orderitems);     
    }
}

The caller of orderItems gets a copy of the collection, and any changes are made to 
that copy, not to the list inside Order. The drawback of this approach is that the caller 
can still do operations on the list, thinking they should result in state changes. This 
can lead to hard-to-find bugs. But, as we mentioned, for collections there’s another 
neat trick available. In the handy Collections utility class, there are many useful static 
methods. One of them is

static <T> List<T> unmodifiableList(List<? extends T> list)

You can see this used in listing 6.14. The method returns a read-only proxy to the orig-
inal list. Any attempt to call a modifying method on the returned list results in an 
UnsupportedOperationException.6

Collection that carries the internal state

The caller is handed a copy of the list.

6 This is really a horrible design—to implement an interface but not really provide implementations for 
all methods. It’s a make-believe fulfillment that pretends to have compile-time type checking but   
replaces it with runtime checks instead.



162 chapter 6 Ensuring integrity of state

Listing 6.14  Exporting unmodifiable collections to protect internals

class Order {
    private CustomerID custId;
    private List<OrderLine> orderitems;    
    public List<OrderLine> orderItems() {  
        return new Collections.unmodifiableList(orderitems);
    }
}

List<OrderItem> items = order.orderItems();      
items.add(new OrderItem(SHIPPING_VOUCHER, 1));   

A word of caution: even if the list is unmodifiable from the outside, that’s not the same 
as immutable. It’s still possible to change the underlying list orderitems from inside 
the Order object; for example, by adding a new item. It’s a way of locking out changes 
made by clients, not a way to make the list immutable. Either way, by copying the list or 
returning an unmodifiable proxy, you’ve now secured the integrity of the order item 
list. It can’t be modified from the outside, either by mistake or by malicious manipula-
tions, which was the original intent of making the data field private.

What you’ve now secured is the content of the list, which consists of references to 
objects. You’ve also ensured that those references can’t be removed and no new refer-
ences can be added to the list. The next step is to ensure that the objects in the list can’t 
be changed themselves. The best way to do this is to make the items in the list immutable, 
as described earlier in this chapter.

The trouble of modifiable items in a list
A metal hardware online store had the price of each item the shop sold stored in a list. It 
wasn’t possible to modify the list itself from the outside—the list was unmodifiable. But 
the items in the list weren’t protected. It was possible to first add 100 kg of wire to your 
basket in the normal way at the price of $9.00/kg. After that, you could change the price 
of copper wire in your basket to $0.01/kg. Having integrity of the list of items doesn’t 
help if you don’t have integrity of the items themselves.

TIP  If a data field in an entity is a collection (list, set, or similar), make the 
entries in the list immutable and expose the collection to the outside in an 
unmodifiable form.

This chapter has been devoted to entities as a secure way of representing mutable 
states. In particular, we’ve dived into the important aspects of ensuring that entities are 
created in a state that’s consistent with business constraints, and that entities uphold 
their integrity and stay consistent. In this chapter, you’ve learned about the patterns 
listed in table 6.1.

The caller gets  
an unmodifiable  
proxy to the  
underlying list.

Trying to modify the list 
causes an exception.



163Summary

Table 6.1  What pattern serves which purpose and addresses which problem?

Pattern Purpose Security concern

Creation through a constructor with all man-
datory attributes; optional attributes set via 
method calls

Entities fulfill simple business rules from 
the start.

Integrity

Creation through fluent interface Simplified client code for creating enti-
ties with simple business rules

Integrity

Creation through builder pattern Consistent creation for advanced 
constraints

Integrity

Public fields only for final attributes that 
can’t change

Encapsulate behavior, not data as such Integrity

Restrictions on getter/setter methods Without restrictions, there’s no 
encapsulation.

Integrity

Securing collections through immutability Avoid opening collection data for access 
or modification by mistake.

Integrity, 
confidentiality

In the next chapter, we’re going to consider another aspect of entities: what to do 
when the number or complexity of states grows unmanageable. We’ll look at what 
designs you have at your disposal to keep the entities secure even in these conditions.

Summary

¡	Entities are the preferred way to handle mutable states.
¡	Entities must be consistent on creation.
¡	No-arg constructors are dangerous.
¡	The builder pattern can be used to construct entities with complex constraints.
¡	You need to protect the integrity of attributes when they’re accessed.
¡	A private data field with unrestricted getter and setter methods isn’t more secure 

than a public data field.
¡	You should avoid sharing mutable objects and use immutable domain primitives 

instead.
¡	You shouldn’t expose a collection, but rather expose a useful property of the 

collection.
¡	Collections can be protected by exposing an unmodifiable version.
¡	You must take care so that the data in a collection can’t be changed from the 

outside.



164

7Reducing complexity of state

This chapter covers
¡	Making entities partially immutable

¡	Using entity state objects

¡	Looking at entities through entity snapshots

¡	Modeling changes as a relay of entities

If mutable state isn’t handled properly, bad things happen. For example, a flight 
taking off with a bag in the hold belonging to a passenger who never showed up 
for boarding might be a security risk. But keeping the state of entities controlled 
becomes hard when entities become complex, especially when there are lots of 
states with complex transitions between them. We need patterns to deal with this 
complexity, to reduce it in a manageable way.

On top of the problems with complex mutable states, entities are also hard to 
code. This is because they represent data with a long lifespan, during which they are 
changed. The problem occurs if two different agents try to change the same entity 
at the same time. Technically, this boils down to two threads trying to change the 
same object simultaneously. The patterns you use to control complexity need to 
handle this situation as well. We’ll look more closely at this to distinguish between 



165

7
single-threaded environments, such as the inside of an EJB container, and multi-
threaded environments.

In this chapter, we’ll cover four patterns that can reduce complexity. We’ll start with 
two patterns that are useful in single-threaded environments: partially immutable enti-
ties and state objects. Later, we’ll look at the entity snapshot pattern that’s well-suited 
to multithreaded environments. Finally, we’ll explore the large-scale design pattern of 
entity relay as a way to reduce overall conceptual complexity in both single-threaded 
and multithreaded environments.

NOTE  One tricky thing about entities is the environment in which they are 
found. Whether you’re working in a single-threaded or multithreaded environ-
ment makes a huge difference in how you implement them.

When first learning about object orientation, students are taught to implement entities 
using an object with mutable data fields. In the following listing, for example, you can 
see how the account balance is updated and how the update is protected by a check to 
see that there are sufficient funds in the account.

Listing 7.1  Naive implementation of withdraw in class Account

void withdraw(Money amount) {
    if(this.balance.moreThan(amount)) {         
        Money newBalance = this.balance.subtract(amount); 
        this.balance = newBalance;              
     } else {
        throw new InsufficientFundsException();
     }
}

But this code isn’t safe in a multithreaded environment. Imagine the account balance 
is $100, and there are two different withdrawals that accidentally happen at the same 
time: one ATM withdrawal of $75 and an automatic transfer of $50. The second with-
drawal might reach the balance check before the first withdrawal has reached the stage 
of reducing the balance. Consider this sequence of events:

1 ATM withdrawal checks balance ($100 > $75): OK, proceed.

2 Automatic transfer checks balance ($100 > $50): OK, proceed.

3 ATM withdrawal calculates new balance: $100 - $75 = $25.

4 ATM withdrawal updates balance: $25.

5 Automatic transfer calculates new balance: $25 - $50 = -$25.

6 Automatic transfer updates balance: -$25.

Because the two threads weren’t executed consecutively (one after the other) but 
concurrently, the balance check was circumvented. The balance check for the second 
transaction was performed before the first transaction was completed, so it made no 
difference—it didn’t protect from overdraft.

Checks balance

Calculates new balance

Updates balance



166 chapter 7 Reducing complexity of state

This is an example of a so-called race condition. Things can be even worse: if the events 
happen in the order 1, 2, 3, 5, 4, 6, then the ending balance would be wrong. In that 
scenario, the final balance would be $50. Even though $125 has been transferred from 
an account holding $100, a credit remains in the account. (Walk through the scenario 
if you like.)

To handle this situation, you need to either build a shielding environment to ensure 
each entity is only accessed by one thread at a time or design your entities so that they 
handle multiple concurrent threads well. There are many approaches to creating 
a single -threaded shielding environment. One of the simplest is having each client 
request run in a separate thread, then loading an entity object separately in each thread. 
This way, you’re guaranteed to have only one thread accessing each entity instance. But 
if two threads are working on the same entity (the same data), then two entity instances 
change simultaneously, one in each thread. In that situation, it’ll be the database trans-
action engine that resolves what happens.

Another approach is to use a framework, such as Enterprise JavaBeans (EJB), that 
handles the load/store cycle of the entity. In this case, it’ll be the framework that 
ensures only one thread at a time accesses the entity, while minimizing the traffic to 
the database. Whether an entity instance is shared or not is up to the configuration. 
Perhaps the most up-to-date way of creating a single-threaded environment is to use an 
actor framework like Akka. In Akka, an entity might reside inside an actor that guaran-
tees that only one transaction thread at a time touches the entity.

Multithreaded environments are typical when you want to avoid communication 
with the database and, instead, keep entity instances in a shared cache, such as Mem-
cached. When a thread wants to work with an entity, it first looks up the entity in the 
cache. In this scenario, your entities need to be designed to work correctly even with 
multiple concurrent threads. The traditional—ancient and error-prone—way of doing 
this is to add semaphores in the code to synchronize the threads with each other. In 
Java, the most low-level way of doing this is through the keyword synchronized.

You can use many other options and frameworks, but common to all of them is that 
guaranteeing correct behavior is a challenging task. Let’s start with reducing the com-
plexity of mutable states in single-threaded environments by looking at situations where 
you can make an entity partially immutable.

7.1 Partially immutable entities
When something is mutable, there’s a risk of some other part of the code changing 
it. And when something changes in code, there’s a risk of it changing in an unwanted 
way. Unwanted changes can happen because some other piece of the code is broken or 
because someone has identified a weakness and used it to launch an attack. If moving 
parts are dangerous, it makes sense to reduce the number of moving parts. And, even if 
entities are bearers of change, we’ve found it fruitful to look at parts of entities and ask, 
“Does this particular part need to change?”

Let’s return to the Order class, and this time let’s take a look at the attribute for cus-
tomer identity, custid. Customer IDs don’t need to change: why should a shopping cart 



167Partially immutable entities

of books for one customer suddenly be transferred to another customer? That doesn’t 
make sense, and keeping that possibility open can result in a security issue. Say an order 
has been paid for but not yet shipped. If an attacker at that moment manages to change 
the customer ID associated with the order, they’ll have, in effect, kidnapped the order. 
You don’t need to leave that possibility open.

An effective way to avoid these issues through design is to make entities partially 
immutable. To do that, ensure that you set the customer ID once and that it isn’t  possible 
to change it thereafter. Listing 7.2 shows an example of this, where the custid attribute 
of the Order class is set to private final. This enforces that custid must be set in the 
constructor and isn’t allowed to change after that. The method getCustid returns the 
same reference every time it’s called—a reference to the same CustomerID object. In 
this listing, CustomerID is a domain primitive and is designed to be immutable.

Listing 7.2  Order class with an immutable customer identity

class Order {
    private final CustomerID custid; 
    Order(CustomerID custid) {
        Validate.notNull(custid);
        this.custid = custid;        
    }
    public CustomerID getCustid() {  
        return custid;
    }
}
class SomeOtherPartOfFlow {
    void processPayment(Order order) {
        registerDebt(order.getCustid(), order.value());
        ...
    }
}

Thinking further about this code, it becomes evident that the method getCustid
doesn’t encapsulate anything interesting and can be replaced with direct access to the 
field. Listing 7.3 shows how custid can be exposed directly, but in a secure way. The 
reference in the data field can’t be changed, and the CustomerID object the reference 
points to is immutable and can’t be changed either. Even if processPayment gets direct 
access to the field order.custid, it can’t do anything insecure with it.

Listing 7.3  Protecting the Order attribute custid at compile time

Order order = ...
order.custid = new CustomerID(...);   

An interesting feature of this code is that we’ve enlisted the compiler’s help to ensure 
the integrity of the custid data field. Any attempt to change the attribute will never get 
to runtime but is caught at compile time.

TIP  When there are attributes that shouldn’t change, make entities partially 
immutable to avoid integrity-breaking mistakes.

Ensures that this field can’t be changed 
after the Order object is created

The compiler enforces that a  
final field is set by the constructor.

Guarantees the getter always  
returns the same customer ID

Doesn’t compile; custid is final.



168 chapter 7 Reducing complexity of state

You’ve seen how data fields can be protected either by encapsulation, as discussed in 
section 6.3, or by making them partially immutable. Now let’s turn to a trickier aspect 
of entities: the fact that behavior, or allowed behavior, can change depending on what 
state entities are in.

7.2 Entity state objects
One thing that makes working with entities difficult is that not all actions are allowed 
in all states. Figure 7.1 shows two marital states: unmarried and married. Most of us 
would agree that for someone who’s unmarried, it’s acceptable to date. But after mar-
rying, you’re in the married state, and dating isn’t appropriate behavior (except with 
your spouse, of course). Someone who’s married can divorce and reenter the unmar-
ried state; at which point, they’re free to date and to marry again. But while you’re 
married, it isn’t possible to marry again. Similarly, when you’re unmarried, it isn’t 
possible to divorce.

Obviously, this is a coarse model. It doesn’t take into account polygamy or that you 
might be unmarried but still not free to date (for example, when you’re engaged or in 
a committed relationship). Still, it serves the purpose as an example of when actions 
aren’t allowed at all times for entities.

7.2.1 Upholding entity state rules

Moving over to software, the design must ensure that these rules on entity states are 
upheld. Failing to do so can lead to security problems; for example, a bookstore pro-
viding goods without payment. And this isn’t an uncommon problem. Missing, incom-
plete, or broken management of entity state is something we encounter often in almost 
every codebase of significant size.

The cause of this security problem is that the state rules are often not designed at all 
or are implicit and vague. It’s often obvious that there’s no conscious effort at design; 
rather, the rules have gradually appeared in the codebase, most probably on a case-by-
case basis.

Unmarried Married

Marry

Divorce

Dating not
allowed in

this marital
status

Start

Date Date

Figure 7.1  Entities should behave in a way that’s appropriate to their state.



169Entity state objects

WARNING  Hearing something like, “It’s just an if statement,” is a sign that 
you’re on a dangerous slope, heading downhill toward broken entity states. 
Listen carefully during story-planning or solution-design meetings.

The manifestation in code is often one of two variants: rules embedded in service meth-
ods or if statements in entity methods. In listing 7.4, you see the first variant. There’s a 
rule that states if the person boss is married, then it’s not appropriate for them to turn 
an after work chat into a date. That rule is upheld by the afterwork method in the 
class Work, not by the class Person.

Listing 7.4  Entity state rule upheld by a service method

public class Person {
    private final boolean married;
    public Person(boolean married) {
        this.married = married;
    }
    public boolean isMarried() {
        return married;
    }
    public void date(Person datee) {} 
}

public class Work {
    private Person boss;
    private Person employee;

    void afterwork() {
        // boss attempts to date
        if (!boss.isMarried()) {      
            boss.date(employee);
        } else {                      
            logger.warn("bad egg");
        }
    }
}

Looking at the code once again, you realize something odd. The rule about not dating 
when married is a general rule. But in the codebase, it appears as a rule that specifically 
applies to the afterwork scenario. This would better fit as a rule about when a person 
is allowed to date. In that case, it would better reside inside the date method of Person.

In real-life codebases, we regularly see entities that are just structs (classes with pri-
vate data fields, setters, and getters). The rules for how entities can behave must then 
be upheld by service methods. Practically, this might be possible to start with when the 
system is small. But as code evolves over time, upholding rules becomes inconsistent. 
Some parts of the system uphold some rules, whereas others don’t. Also, it’s hard to get 
an overview of what rules apply. To do so, you must mine all the code where the entity is 
used and search for guarding if statements. In short, there’s no practical way to audit 
what rules apply to the entity.

Not called when married

Method upholds rule for entity state

This part is often forgotten.



170 chapter 7 Reducing complexity of state

Closely related to how hard it is to audit is how hard it is to test. Imagine that you 
want to write a unit test that checks that the boss isn’t allowed to date when married. To 
do so, you need to test the conditional inside the afterwork method, which means you 
have to mock any dependencies it might have, such as a connection to the database. You 
also need to craft test data: both the boss itself and the dating object, employee, must 
be provided. Finally, you need to ensure that the afterwork method does the right 
thing to report an inappropriate dating attempt, so you’ll need to mock the logging 
framework and scan the log for bad egg. And, should there be a coffeeBreak method 
somewhere else in the codebase, you’ll need to do the same thing there to ensure no 
attempts to initiate dating are made during coffee breaks. This isn’t an easy way to test 
the rule “a married boss isn’t allowed to date.”

A somewhat better version is when entity methods uphold the state rules. But even 
this approach might lead to exploitable inconsistencies. Listing 7.5 shows another ver-
sion of the dating code. Here it’s the responsibility of the Person class to check that the 
person boss isn’t married before proceeding with dating. (Note the if statement in the 
method date.)

Listing 7.5  Entity state rule upheld by entity method

public class Person {
    private boolean married;

    public Person(boolean married) {
        this.married = married;
    }

    public boolean isMarried() {
        return married;
    }

    public void date(Person datee) {     
        if (!isMarried()) {              
            dinnerAndDrinks();
        } else {                         
            logger.warn("bad egg");
        }
    }

    private void dinnerAndDrinks() {}
}

public class Work {
    Person boss = new Person(true);
    Person employee = new Person(false);

    void afterwork() {
        // boss attempts to date
        boss.date(employee);
    }
}

Entity method upholds rule for entity state

The check might be embedded 
some way down in the code.

This part is often forgotten.



171Entity state objects

This approach is definitely a step in the right direction. Business rules are at least inside 
the Person class. If dating can be initiated both after work and during coffee breaks, 
then at least it’s the same code that does the checking, which means there’s less risk of 
inconsistencies that can lead to security flaws.

Unfortunately, the state handling is still implicit, or at least convoluted. We’ve often 
seen these if statements sprinkled around deep inside the entity methods. When dig-
ging through the history of the code, it often becomes clear that they have been added 
one by one to handle some special cases. Sometimes the big picture of all the rules isn’t 
even a logically consistent model.

TIP  When you encounter an entity with lots of if guards inside it, try to draw a 
state graph and give a name to each state.

Obviously, having a state implemented as if statements in service methods or entity 
methods isn’t good design, but is it a security problem? Well, yes. If an entity leaves an 
opening for using a method that shouldn’t be open in that state, then that opening 
can potentially be used as the starting point of an attack that exploits the mistake. For 
example, a mistake that makes it possible to add items to an order after it has been 
paid might be exploited by an attacker to get goods without paying.

Let’s return to the online bookstore. In the webshop, it’s important that you ensure 
that an order has been paid for before you ship it. The following listing shows what that 
would look like if the logic were upheld in the service method processOrderShipment
outside the Order class.

Listing 7.6  Business rule upheld by a service method

class Order {
    final public CustomerID custid;
    Order(CustomerID custid) {
        Validate.notNull(custid);
        this.custid = custid;
    }
    ...
}

class SomeOtherPartOfFlow {
    void processOrderShipment(Order order) {
        if(order.getPaid()) {       

            warehouse.prepareShipment(order.custid, order.getOrderitems());
        } else {
        ...                
        }
        ... 
    }
}

There’s one small if statement in processOrderShipment that protects goods that   
haven’t been paid for from being shipped—and that small if statement resides in some 

Shipping is protected by an if 
statement in the shipping flow.

Some kind of error alert should go here.



172 chapter 7 Reducing complexity of state

other class. It’s easy to imagine such checks being missed or gradually undermined as 
more and more code is added over time. If you omit to check that an order is paid for 
before it’s shipped, you get a loophole for customers not paying for their goods. If that 
loophole becomes known, you might start losing big money as unpaid-for goods sud-
denly start streaming out of your warehouse. Missing entity state handling is indeed a 
security issue.

Online gambling sites and free money
Online gambling sites often have campaigns where they give away free credit or free 
spins. Lots of people try hard to convert these to real money they can withdraw. In doing 
so, they add some credit, gamble a little, lose a little, win a little, and add some more 
credit in the hopes of sooner or later confusing the system about what is real money and 
what isn’t. Many gambling sites have lost real money through such attacks.

The sites that have succeeded the best at blocking these attacks are those that have 
put effort into modeling this scenario as an interesting set of entities that capture the 
intended rules in a logically coherent way. Is the credit in the account playable? Is it pos-
sible to withdraw it and, if so, how much of it? The credit isn’t just a dollar amount; it’s a 
complicated entity with many states.

7.2.2 Implementing entity state as a separate object

We suggest that entity state be explicitly designed and implemented as a class of its 
own. With this approach, the state object is used as a delegated helper object for the 
entity. Every call to the entity is first checked with the state object.

Returning to the example of marital status, you can see in listing 7.7 what a Marital
Status helper object looks like. It encapsulates the rules around marital status, but 
nothing else. For example, you see in the method date how a call to the Validate
framework helps to uphold the rule about not dating when married.

Listing 7.7  MaritalStatus helper object encapsulating the rules of marital status

import static org.apache.commons.lang3.Validate.validState;

public class MaritalStatus {

    private boolean married = false;              

    public void date() {                          
        validState(!married,                      
                "Not appropriate to date when married");
    }

    public void marry() {
        validState(!married);                     
        married = true;
    }

We all start out as singles.

No need to know the datee, 
it’s all about the person.

To date or marry, you 
must be unmarried.



173Entity state objects

    public void divorce() {
        validState(married);                      
        married = false;
    }
}

The code of the helper object is concise. The married versus the unmarried examples 
are almost the simplest state graph possible. The state graph would be slightly more 
complicated if you introduce support for the state dead by adding a private boolean 
variable alive, which initially would be set to true. When the person dies, the flag 
would be switched to false, and at that point, the value of the flag married would be 
meaningless.

Having logic for dead or alive in the entity would probably result in a couple of if
statements that would decrease both readability and testability and, over time, lead to 
less secure code. Alternatively, you could add the same logic in the helper class Marital
Status, and the code would still be manageable. A direct effect of the conciseness of 
the helper object’s code is that the code is also testable. In the following listing, you see 
a few possible tests that check that the rules are upheld by MaritalStatus.

Listing 7.8  Some test cases for MaritalStatus

public class MaritalStatusTest {
    @Test
    public void should_allow_dating_when_unmarried() {
        MaritalStatus maritalStatus = new MaritalStatus();
        maritalStatus.date();
    }

    @Test(expected = IllegalStateException.class)
    public void should_not_allow_dating_when_married() {
        MaritalStatus maritalStatus = new MaritalStatus();
        maritalStatus.marry();
        maritalStatus.date();
    }

    @Test
    public void should_allow_dating_after_divorces() {
        MaritalStatus maritalStatus = new MaritalStatus();
        maritalStatus.marry();
        maritalStatus.divorce();
        maritalStatus.date();
    }
}

Note how well the code reads. The code of the test should_allow_dating_after_
divorces clearly states that if you marry and then divorce, then you’re free to date. 
Naming your classes after concepts that exist in the domain, such as marital status, 
helps.

You can only divorce if you’re married.



174 chapter 7 Reducing complexity of state

TIP  Find a good name for your state helper class. MaritalStatus is a much 
better name than PersonStateHelper. Good naming aids good thinking.

It’s time now to look at how to weave this state representation into the entity. In the fol-
lowing listing, we let the entity Person consult its helper object MaritalStatus at the 
beginning of every public method to detect whether the call is legal.

Listing 7.9  The class Person aided by the class MaritalStatus

public class Person {

    private MaritalStatus maritalStatus =
            new MaritalStatus();

    public void date(Person datee) {
        maritalStatus.date();          
        buydrinks();
        offerCompliments();
    }

    public void divorce() {
        maritalStatus.divorce();       
        ...
    }
    ...
 }

Extracting your state management into a separate object makes your entity code much 
more robust and much less prone to subtle business integrity problems like custom-
ers avoiding to pay for their orders before they’re shipped. We recommend using a 
separate state object when there are at least two states with different rules and when 
the transitions between them aren’t completely trivial. We would probably not use a 
separate state object to represent the state of a light bulb (on/off, and where switch is 
always allowed and always switches to the other state). But for anything more compli-
cated than that, we recommend you consider using a separate state object.

This kind of entity representation as a mutable object works well in single-threaded 
environments as mentioned. But in multithreaded environments, you’d need to 
have lots of synchronized keywords in your code to stop threads from thrashing the 
state. Unfortunately, that leads to other problems, such as limited capacity and poten-
tial deadlocks. Next, we look at a different design that works well in multithreaded 
environments.

7.3 Entity snapshots
Let’s turn now to multithreaded environments, where the same entity instance can be 
accessed by multiple threads. In a high-performance solution where response times 
are critical, you want to avoid hitting the database. This is usual in financial trading, 
streaming, and multiuser gaming applications, as well as highly responsive websites. 
The round-trip time to fetch data from the database would kill the quick responses 

Checks that it’s OK to date,  
throws an exception otherwise

Checks that a person is married and 
changes status to unmarried



175Entity snapshots

you’re after in these situations. Instead, you might hold your entities in memory as 
much as possible; for example, using a shared cache (such as Memcached). All threads 
that need to work with an entity fetch the data from the cache, and the entity represen-
tation becomes shared between threads. This results in fast response times and high 
capacity, but it puts an additional burden on the design of entities: they must live well 
in an environment with multiple threads.

One way of handling this situation would be to add a lot of synchronized keywords 
to the code, but that would result in lots of threads waiting for each other and would 
reduce capacity drastically. Even worse, it might cause a deadlock, where two threads wait 
for each other indefinitely. Instead, let’s take a look at another design pattern for han-
dling this situation—representing entities as entity snapshots.

7.3.1 Entities represented with immutable objects

When designing with entity snapshots, you have an entity, but that entity isn’t rep-
resented in code through a mutable entity class. Instead, there are snapshots of the 
entity that are used to look at that entity and take action. This is most easily described 
through a metaphor.

Imagine an old friend who you haven’t seen in a while. You live in separate cities, but 
you keep in contact by following each other on a photo-sharing site. On a regular basis, 
you see photos of your friend, and you can follow how they change over time. Perhaps 
they try out a new hairstyle or move to a new house, and they certainly slowly grow older, 
as we all do. No doubt your friend is someone with an identity that transcends all these 
attribute changes. You see the changes and you stay in touch, although you never meet 
up in person (see figure 7.2).

The entity
snapshot
inference

You

just
see

photos

Insta account
with photos

(value objects)

But you still think of him/her as a person (entity)

Person you
never see

IRL

Figure 7.2  A series of photos gives an impression of a real person, even if you never meet up in real life.



176 chapter 7 Reducing complexity of state

What about the photos? Are those your friend? Of course not. Those are snapshots of 
your friend. Each photo is a representation of your friend at a particular point in time. 
The photo can be copied and disposed of, the copy replacing the original, without you 
caring. Your friend will still be there, in the far-away city, living their life.

The entity snapshot pattern follows the same idea. In an online webshop, orders are 
created when customers purchase products. Each order has a significant lifespan and 
evolves as the customer adds items, selects a payment method, and so on. Technically, 
the state might be kept in the database. But when it’s time for the code to look at the 
state, you take a snapshot of it and represent it in a class OrderSnapshot, which is an 
immutable representation of the underlying entity as shown in the following listing. It 
provides a snapshot of what the order looks like at the moment you ask for it.

Listing 7.10  Class OrderSnapshot

import static org.apache.commons.lang3.Validate.*;

public class OrderSnapshot {                     
    public final OrderID orderid;
    public final CustomerID custid;
    private final List<OrderItem> orderItemList;

    public OrderSnapshot(OrderID orderid;
                            CustomerID custid,
                            List<OrderItem> orderItemList) {
        this.orderid = notNull(orderid);
        this.custid = notNull(custid);
        this.orderItemList =
            Collections
                .unmodifiableList(
                    notNull(orderItemList));     
        checkBusinessRuleInvariants();
    }

    public List<OrderItem> orderItems() {
        return orderItemList;                    
    }

    public int nrItems() {                       
        ...
    }

    private void checkBusinessRuleInvariants() {
        validState(nrItems() <= 38, "Too large for ordinary shipping");
    }

}                                                

public class OrderService {
    public OrderSnapshot findOrder(OrderID orderid) ...
    public List<OrderSnapshot> findOrdersByCustomer(CustomerID custid) ...
}

Not the order entity per 
se, but a snapshot of it

ItemList is directly  
stored as immutable.

The entity snapshot contains intelligent 
business logic for observing the state.

No mutating methods at all



177Entity snapshots

Even if the order entity still exists conceptually, it doesn’t manifest itself as a mutable 
entity class in the code. Instead, the OrderSnapshot class does the job of bringing you 
the information you need about the entity, probably to visualize it in the webshop GUI. 
The idea behind the snapshot metaphor is that the domain service goes down to the 
database, bringing a camera with it, and brings back a snapshot photo of what the 
order looked like. OrderSnapshot isn’t just a dumb reporting object, it contains inter-
esting domain logic like a classical entity. For example, it’s able to compute the total 
number of items in the order and ensure that the number stays within the prescribed 
range for shipping.

But what about the underlying entity? Does it exist when there isn’t a mutable entity 
class? Well, the entity order does still exist, conceptually, in the same way as your faraway 
friend. Like your friend, you never see the order entity directly but only see snapshots of 
its state. The only place where the order is represented as a mutable state is in the data-
base: the row in the Orders table and the corresponding rows in the OrderLines table.

7.3.2 Changing the state of the underlying entity

We’ve shown how a mutable entity can be represented through immutable snapshots. 
But if this is a true entity, it needs to be able to change its state. How do you achieve this 
if the representation is immutable?

There needs to be a mechanism to mutate the entity (by which we mean the under-
lying entity data). To this end, you can provide a domain service to which you send 
updates. In the following listing, you can see that the domain service OrderService has 
been given another method, addOrderItem, to provide such updates.

Listing 7.11  OrderService with methods for updating the order in the database

class OrderService {

    public void addOrderItem(OrderID orderid,
                        ProductID pid, Quantity qty) {
        //...                               
        //...                               
    }
}

The method addOrderItem validates the conditions to ensure the change is allowed 
and then performs an update of the underlying data, either through SQL commands 
sent directly to the database or via the persistence framework you use. With this 
approach, you get high availability because you avoid locks when reading, which is 
assumed to be much more common than writing (in the form of changing data). Writ-
ing, which might require locks, is separated from the reads, and you avoid the security 
problem of not having data available.

A drawback of this approach is that it violates some of the ideas of object orienta-
tion—especially the guideline to keep data and its accompanying behavior close 
together, preferably in the same class. Here, you’ve ripped the entity apart, putting the 
read side in a value object in one class and the write side in a domain service in another 

Validates that the specified 
quantity can be added

Updates the underlying database  
with the new information



178 chapter 7 Reducing complexity of state

class. Architecture often involves trade-offs. In cases like this, you might value avail-
ability so highly that you’re willing to sacrifice other things, like certain principles of 
object-oriented code.

The idea isn’t as strange as it might sound. Similar approaches have been suggested 
elsewhere, sometimes in slightly different settings. The pattern of Command Query 
Responsibility Segregation (CQRS), suggested by Greg Young, and the Single Writer 
Principle, proposed by Martin Thompson, both bear similar signs.

Apart from availability, the entity snapshot pattern also supports integrity. Because 
the snapshot is immutable, there’s no risk at all of the representation mutating to a foul 
state. An ordinary entity with methods that change its state is vulnerable to bugs of that 
kind, but the snapshot isn’t. There’s code that changes the state of the underlying data, 
and that code can contain bugs, but at least the snapshot that’s used to show the state of 
the entity can’t change.

How databases make entities lock
In some situations, read performance (in terms of both response time and capacity) is 
important. In the online bookstore, for example, there might be peak times when lots 
of clients are looking up books they intend to buy (say, just before Christmas). Each of 
these clients wants a fast response with a description of the book, the price, and how 
many there are left in stock. If each lookup puts a read/write lock on that book’s row in 
the database, the product catalogue would soon come to a grinding halt. It wouldn’t be 
feasible to tell customers, “I’m sorry, I can’t give you the description of Hamlet at the 
moment because someone else is looking at it. Please wait until that customer is fin-
ished, and we’ll get back to you.”

When working with an entity that’s stored in a database, it’s pretty normal to put some 
kind of lock on the database row. Exactly what type of lock and how it’s managed 
depends on the persistence framework, the database management product, and the 
table’s configuration, but it’s not unusual that fetching a mutable entity sets a read/write 
lock on that entity’s row. In this way, the database guarantees that no other client modi-
fies the same entity at the same time.

If entities lead to this kind of restriction, they’re clearly not a good modeling choice when 
there are many clients that want to look at an entity at the same time. We’ll soon get back 
to this situation, but let’s first look at what happens when there’s high traffic load, but 
each client is only interested in one specific entity.

If we return to our online bookstore, it seems like a good idea to model orders as entities. 
The entire point of orders is to capture the changes in state when books are added to an 
order and the order is paid for, packed, and delivered. Each order is stored in the data-
base in a few tables: the Orders table, the OrderLines table, and perhaps a few others. 
This should be fine even under high load, right? No one else apart from the customer to 
whom the order belongs will look at its row or rows in those tables. Hence, there’ll never 
be two clients locking each other out.

In principle, this sounds fine, but in practice, things are slightly more complicated. The 
problem is that many database management systems don’t lock individual rows sepa-
rately. Instead, they put locks on blocks of rows for efficiency, as shown in the figure. 



179Entity snapshots

Rather than a single row, an entire memory page (and all the rows in it) is locked and 
loaded into memory!

Alice Bob

I really
just want
my own
record.

Mem page
loaded to

serve Alice

Locked while
loaded for Alice

Memory page
containing both
Alice and Bob

Loading of
Bob’s record is
blocked while
page locked
by Alice.

Memory page lock
blocks everybody

on same page.

For efficiency
serve/lock

entire mem page

I guess
I will just

have to
wait....

Alice

Bob

Alice record

Bob record

Locking one row also locks other rows because of page locking.

The reason for page-level locking is read/write efficiency, which is crucial for a database 
management system. During a transaction, the system reads an entire page from disk 
and loads it into memory. The transaction makes some changes to the data contained 
in this page. On commit, the entire page is written back to disk. It’s an efficient way of 
handling I/O. But what happens if some other client wants to work on data that resides 
on the same page? How does the system ensure that clients don’t overwrite each other’s 
changes?

The simplest and most naive way is to lock the entire page while someone is working 
on it. If some other clients want to access data from the same page while it’s locked, 
they’re put on hold until the first client commits. Then and only then is the next client in 
turn given the opportunity to load the page and perform its operations. This is a simpli-
fication—database management systems are much more sophisticated than we can get 
into here, but you get the gist. The unfortunate effect is that one customer accessing 
their order locks not only their row in the database but also neighboring rows. If other 
customers arrive at the same time, they’ll have to wait until the lock is released. This puts 
you in a situation where clients are forced to wait for each other, which results in worse 
response times as well as lower capacity—not good. The availability of your system is at 
risk, which is a security concern.



180 chapter 7 Reducing complexity of state

Implementing entities using the entity snapshot pattern makes it possible for them to 
live well in a multithreaded environment without causing the drawbacks you get if you 
sprinkle your code with synchronized. You also avoid contention by letting the data-
base handle the transaction synchronization, with all the locking issues involved.

7.3.3 When to use snapshots

No doubt, the idea of having an entity without an entity class doesn’t follow ordinary 
schoolbook patterns for object orientation, and it might seem counterintuitive. To 
the object-oriented mind, it might also be disturbing to have the data definition of an 
entity in one place and the mechanics for updating the same data in another place. 
Nevertheless, there are situations with tough capacity and availability requirements—
be it a high-traffic website or a hospital, where medical staff need to get immediate 
access to a patient’s notes—where we think the entity snapshot pattern is well worth 
taking into account.

Another interesting security benefit of the entity snapshot design is in situations 
where different privileges are needed for reading data and for changing and writing 
data. For user scenarios where you only want to display the state of the data (looking at 
the cart), there need to be methods for fetching that data. And for user scenarios where 
you change the data (adding items to the cart), there need to be methods for changing 
that data. In classical object orientation, the entity will have methods to support both 
reading and writing. During a user scenario where you display data, the client code has 
access to those methods for writing as well. There’s a need for some other kind of secu-
rity mechanism that controls changes to the entity object, making sure there are none 
during read scenarios.

With the entity snapshot design, read scenarios only have access to the immutable 
snapshot, and it’s impossible for them to call a mutating method. Only the clients that 
are allowed to make changes will have access to the domain service used for updating 
the underlying entity. In this way, the entity snapshot pattern also supports integrity for 
some common scenarios. In an environment where multiple threads access the same 
entity, perhaps at the same time, using entity snapshots is therefore an effective design 
to ensure high availability together with integrity.

Now you’ve studied two designs: one that works well in single-threaded environ-
ments and one that works well in multithreaded environments. But there’s another 
way complexity might arise: when an entity has a lot of different states. Handling more 
than 10 states in an entity can get awkward, but often it’s possible to apply an alternative 
design—splitting the complex states into an entity chain.



181Entity relay

7.4 Entity relay
Many entities have a reasonably low number of separate states, and they are fairly easy 
to grasp. For example, the civil status of an individual in the marital status example has 
few states and transitions among them, as figure 7.3 shows.

A state graph of this size is easy to understand. It’d also be easy to implement using 
the state object pattern from section 7.2 for example.

Sometimes an entity state graph grows and becomes quite large and less easy to grasp. 
It might well be designed that way from the beginning, but more often, such a design 
is the result of a long history of many changes. Most of the changes were probably per-
ceived as a small fix at the time they were made, but the accumulative result as time 
passes is a lot of states. You can imagine that an online bookstore might start out having 
two states for its orders, received and shipped. After a while, the state graph might look 
like that shown in figure 7.4.

It can be hard to understand all the possible states and transitions for such an entity, 
even when you’re looking at the graph. To implement these states in code and to ensure 
that all the different rules are enforced in all the different states would be a nightmare. 
When this entity is implemented as one single class, that class becomes so complex that 
it risks containing hard-to-spot inconsistencies. Something has to be done if you have a 
state graph like that for the online order in figure 7.4. You need to break it up. Having 
five states is manageable. Having 10 states is endurable. Having to juggle 15 states is sim-
ply too risky. And this is where we suggest entity chaining.

Divorced Married

Single

Widow/er

Dead

A handful of states in a familiar domain is MANAGEABLE to grasp

Start

Figure 7.3  Civil status: single, married, divorced, widow/er, dead



182 chapter 7 Reducing complexity of state

Misplaced

Shipped

Delivered

Paid

Lost

Complete,
but not paid

Complete,
but payment

rejected

Under
configuration

Start

Under
return

Returned

Repaid

Rejected

End
states

Figure 7.4  The book order can be in a lot of distinct states, each with its own rules and constraints.

The basic idea of entity relay is to split the entity’s lifespan into phases, and let each 
entity represent its own phase. When a phase is over, the entity goes away, and another 
kind of entity takes over—like a relay race. As an example, look at figure 7.5, which 
views the life of a person in two ways: first as one single entity that goes through many 
states of life, then as a chain of entities.

On the left side of figure 7.5, you see the life of a person viewed as one single entity: 
a person is born and spends a few years in childhood, then some time in adolescence 
before shouldering the responsibilities of adulthood, followed by aging, until death. 
You can view the person as the same entity, which passes through the states of birth, 
childhood, adolescence, adulthood, aging, and death.

One entity passing
through many
phases/statesBirth

Childhood

Adolescence

Adulthood

Aging

Death

Several entities in a chain.
When a phase is over, a new

entity of the next phase
arises like a phoenix.

Birth

No longer
a child

give rise to
No longer

a youngster
give rise to

No longer
an adult

give rise to

Dead

Child

Youngster

Adult

Elder

Figure 7.5  The life of a person viewed in two ways: as a single entity and as a chain of entities.



183Entity relay

On the right side of the figure, you see the same life viewed as a chain of entities. A 
child is born and grows. One day, the child is gone, and there’s a youngster standing 
in its place, taking over the relay baton. A few years later, the youngster is gone and is 
replaced by an adult. The adult eventually yields to an elder, who finally dies. In this 
case, you can view this life as a succession of different characters.

We’ve presented two ways of looking at the same thing. Neither representation is 
more true or better than the other; they focus on different aspects and are good at dif-
ferent things. Shifting focus from one to the other might help you sometimes—when 
you have an entity with a lot of states is one such occasion. We’ve found that this design 
shift can be a powerful way to handle entities that have far too many states. You split the 
too large state graph into phases, model each phase with an entity of its own, and let 
these entities form a relay chain. Each entity in the relay has a few states to manage, and 
you’ve overcome risky complexity.

The power of entity relay comes from the ability to split the overall lifespan of the 
entity into phases and instead model the phases as one entity following another. For 
this to work well, there should be no looping back to a previous phase. If there are loop-
backs, then you can still apply the same idea, but the simplicity of the relay metaphor is 
lost, as well as much of the gain. Next, we’ll return to the scary state graph of the book 
order and show how you can turn it into a more manageable relay chain.

7.4.1 Splitting the state graph into phases

Let’s take another look at the overcomplex entity in figure 7.4 and see how you can 
remodel it as a relay race of entities. Look for places where one group of states leads to 

Misplaced

Shipped

Delivered

Paid

Lost

Complete,
but not paid

Complete,
but payment

rejected

Under
configuration

Start

Under
return

Returned

Repaid

Rejected

End
states

Figure 7.4  The book order can be in a lot of distinct states, each with its own rules and constraints.

The basic idea of entity relay is to split the entity’s lifespan into phases, and let each 
entity represent its own phase. When a phase is over, the entity goes away, and another 
kind of entity takes over—like a relay race. As an example, look at figure 7.5, which 
views the life of a person in two ways: first as one single entity that goes through many 
states of life, then as a chain of entities.

On the left side of figure 7.5, you see the life of a person viewed as one single entity: 
a person is born and spends a few years in childhood, then some time in adolescence 
before shouldering the responsibilities of adulthood, followed by aging, until death. 
You can view the person as the same entity, which passes through the states of birth, 
childhood, adolescence, adulthood, aging, and death.

One entity passing
through many
phases/statesBirth

Childhood

Adolescence

Adulthood

Aging

Death

Several entities in a chain.
When a phase is over, a new

entity of the next phase
arises like a phoenix.

Birth

No longer
a child

give rise to
No longer

a youngster
give rise to

No longer
an adult

give rise to

Dead

Child

Youngster

Adult

Elder

Figure 7.5  The life of a person viewed in two ways: as a single entity and as a chain of entities.



184 chapter 7 Reducing complexity of state

another group of states. Preferably, there should be no way back to the first group once 
you’ve left it. Figure 7.6 shows one way to partition the states.

Now you see that the complex graph of the online order can be viewed as two phases: 
up until payment and after payment. Call the first phase a preliminary order and the 
second phase a definitive order. These are the phases that you want to redesign to be 
separate entities instead. The runners that make up the relay race include the first 
entity (or preliminary order), which starts the race, and the second entity (or definitive 
order), which takes over when the first entity completes. When a preliminary order is 
paid for, a definitive order is born as a result.

Orders that are
“definitive”; that is, paid

for and thus shipped

Orders that were
“rejected” on delivery

Orders that are
“preliminary” because they
haven’t been paid for yet

Here we pass from
one group of states
to another group.

Misplaced

Shipped

Delivered

Paid

Lost

Complete,
but not paid

Complete,
but payment

rejected

Under
configuration

Start

Under
return

Returned

Repaid

Rejected

Figure 7.6  A book order passes through different phases during its lifespan.



185Entity relay

TIP  When applying this strategy, look for places where you can’t go back, so 
that an earlier entity in the chain never needs to be reborn. It’s also preferable 
if there’s only one end state for each entity in the relay that gives rise to a new 
entity—the next runner in the race.

If you take another look at the state graph in figure 7.6, you’ll see that there’s one 
more place that meets these requirements—when the delivered package is rejected by 
the receiver. The difference here is that not all delivered orders give rise to a rejected 
order, just some. It’s still a good place to split the state graph. You need to remember 
that the birth of a rejected order isn’t automatic, it’s conditioned on the recipient not 
accepting the delivery.

After these transformations, you now have a simpler setup. As you can see in fig-
ure 7.7, you no longer have one entity with an overwhelming amount of states. Instead, 
you have three entities, each of which is reasonably simple.

Definitive order

Preliminary order Rejected order
If rejected
on delivery,
gives rise to

Gives
rise to

Misplaced

Shipped

Delivered

Paid

Paid

Lost

Complete,
but not paid

Complete,
but payment

rejected

Under
configuration

Start

Under
return

Returned

Repaid

Rejected

Figure 7.7  A book order as a chain of three entities



186 chapter 7 Reducing complexity of state

The three entities (preliminary order, definitive order, and rejected order) have four 
or five possible states each, so implementing them on their own is pretty straightfor-
ward. Using the previous design of state objects, you’ll be able to implement all three 
entities in a secure way.

Let’s briefly look at the transitions, the baton handovers between the entities in the 
relay. When a preliminary order is finally configured completely and paid for, it moves 
into the state paid, which is its end state. At that time, a definitive order is born in its 
start state, paid. The baton is handed from the preliminary order, which has reached 
its goal, to the definitive order, which starts its run. This is the same situation as when 
a youngster entity moves into the state no longer youngster and, at the same time, an 
adult entity arises. In the same way, as an adult can’t move back and become a youngster 
again, a preliminary order can’t move back before its start state, paid.

The transition between definitive order (paid for and shipped to the customer) 
and rejected order works almost the same way, but with a small twist. When a definitive 
order reaches its end state, delivered, that doesn’t always cause a next entity to arise. 
A rejected order only arises if the definitive order is rejected on delivery (no one was 
willing to sign for it, or the address couldn’t be found, for example). In most cases, the 
delivery of a definitive order won’t give rise to a rejected order.

With this design, you’ve greatly simplified the task of writing code and made your 
code much less susceptible to mistakes. With a large and complex state graph, like that 
in figure 7.4, you’ll have a hard time guaranteeing that there are no strange, esoteric 
paths that break intended business rules. With a simpler design of three entities, each 
with four or five states, as in figure 7.7, you can more easily validate and test that the 
code does what it should. You have drastically lowered the risk of security vulnerabili-
ties. Let’s now zoom out and think about when to apply this pattern or not.

7.4.2 When to form an entity relay

For this pattern to be valuable, you want to see three factors in place:

¡	Too many states in an entity
¡	Phases where you never go back to an earlier phase
¡	Simple transitions from one phase to another and few transition points (prefer-

ably only one)

If the number of states in your entity is manageable as it is, there’s no reason to bring 
in the complexity of several entities with different names. Unless you have at least 10 
states, we don’t recommend splitting your entity into a relay. Similarly, if there are ways 
for an entity to go from a later phase back to an earlier one, we don’t recommend 
splitting it into two entities. The power of entity chaining comes from the simplicity 
that once an earlier entity is finished, you’re done with it. In our order example, this 
is the case when a preliminary order (still under configuration) is paid for. Then that 
turns into a definitive order, and there’s no way it can go back and become preliminary 
again.



187Entity relay

If it’s possible to reopen an earlier entity, that would be comparable to having one 
runner hand the baton over to an earlier runner. Now, you no longer have the simple 
succession of one runner handing the baton on to the next until the relay race is over. 
Instead, you get some kind of directed graph where entities of different phases can be 
revived. The simplicity of a relay race is lost.

If there are many ways that an earlier entity can give rise to a later entity, you should 
consider whether the benefits of entity relay outweigh the costs. There’s a simplicity 
in having only one place where the next entity is born. If there are several, consider 
remodeling. Perhaps you can add an end state for the phase? If not, perhaps the two 
phases should be seen as one.

Finally, sometimes you get a huge state graph with a lot of states and where the tran-
sitions look like a tangled ball of yarn. Don’t even try to resolve that by creating relays. 
No amount of effort to design it nicely will help. A mess like that continues to be a mess, 
even if you pull a few threads. Instead, we recommend that you take the model back to 
the drawing table. Sit down with the domain experts and talk it over:

¡	What are the real drivers for the model being this complex?
¡	Is all that complexity really needed?
¡	Is there a valid business driver for each part of the complexity?
¡	Is that business driver so valuable that it justifies the cost of such complexity and, 

perhaps, an insecure system?

We’ve covered a few ways of reducing complexity in this chapter. Table 7.1 provides 
a concise summary of the central aim of each pattern and the security concerns it 
addresses.

Table 7.1  Patterns of this chapter: purposes and security concerns

Pattern Purpose Security concern

Partially immutable entity Locks down parts of entities that 
shouldn’t change anyway

Integrity

Entity state object Makes it easier to grasp what 
states the entity can have

Integrity

Entity snapshot Supports high capacity and 
fast response times by avoiding 
locking

Availability, integrity

Entity relay Makes it easier to handle large 
and complex state graphs

Integrity

The first pattern we looked at was minimizing the number of moving parts by making 
the entity partially immutable where possible. The next pattern, the entity state object, 
focused on capturing state transitions of one entity and worked well in single-threaded 
environments. In multithreaded environments, it becomes more feasible to represent 



188 chapter 7 Reducing complexity of state

the entity through entity snapshots to avoid threading issues. Finally, for a complex 
entity with lots of states, an alternative design is to model it as an entity relay, reducing 
the number of states you need to keep in mind at the same time.

Summary

¡	Entities can be designed to be partially immutable.
¡	State handling is easier to test and develop when extracted to a separate object.
¡	Multithreaded environments for high capacity require a careful design.
¡	Database locking can put a limit on availability of entities.
¡	Entity snapshots are a way to regain high availability in multithreaded 

environments.
¡	Entity relay (when fulfillment of one entity gives rise to another) is an alternative 

way to model an entity that has lots of different states.



189

8Leveraging your delivery 
pipeline for security

This chapter covers
¡	Security-style unit tests

¡	A security perspective on feature toggles

¡	Writing automated security tests

¡	Why availability tests are important

¡	How misconfiguration causes security issues

Most developers agree that testing should be an integral part of the development 
process. This way, the perils of having a separate bug-fixing phase after develop-
ment is avoided. Methodologies such as test-driven development (TDD) and behav-
ior-driven development (BDD) have made it the de facto standard to execute 
thousands of tests each time a change is integrated. But for some reason, perhaps 
because security is an afterthought for many people, this only seems to apply to 
nonsecurity tests. In our opinion, this doesn’t make sense. Security tests are no dif-
ferent than regular tests and should be executed as frequently. This doesn’t mean 
you need a penetration test at every commit.1 Instead, you need a different mindset, 

1 A test performed on a system to uncover possible security weaknesses; see https://www.owasp.org/
index.php/Web_Application_Penetration_Testing.



190 chapter 8 Leveraging your delivery pipeline for security

where security concerns are seamlessly integrated into the delivery pipeline and exer-
cised every time a change is made—and that’s what this chapter is about.

Each section in this chapter is more or less independent, but a common theme is to 
teach you how to integrate different security tests into your delivery pipeline. This may 
require thinking explicitly about security for a change, but doing this in your daily work 
instantly gives you feedback on and an understanding of how secure your software is. 
Before we dive into the details, let’s have a quick refresher on what a delivery pipeline is.

8.1 Using a delivery pipeline
A delivery pipeline is an automated manifestation of the process for delivering software 
to production (or to some other environment).2 Although this sounds advanced and 
overly complex, it’s just the opposite. Suppose you have the following delivery process:

1 Make sure all files have been checked into Git.

2 Build the application from the master branch.

3 Execute all unit tests and make sure they pass.

4 Execute all application tests and make sure they pass.

5 Execute all integration tests and make sure they pass.

6 Execute all system tests and make sure they pass.

7 Execute all availability tests and make sure they pass.

8 Deploy to production (if all previous steps pass).

The first couple of steps ensure that all files have been included in the build and that 
the code compiles. Steps 3 to 7 exercise different quality aspects, and the last step 
allows deployment to production if all previous steps pass. Regardless of whether you 
choose to run the process manually or automatically, the main objective is to prevent 
bugs from slipping through to production. If you choose to use a build server, you end 
up with an automated manifestation of the process—a delivery pipeline as illustrated 
in figure 8.1.

2 See Jez Humble and David Farley’s Continuous Delivery: Reliable Software Releases Through Build, Test, and 
Deployment Automation (Addison-Wesley, 2010).

Build Unit
tests

Application
tests

Integration
tests

System
tests

Availability
tests Deploy

Figure 8.1  Example of a delivery pipeline



191Securing your design using unit tests

As illustrated, unit tests, application tests, and integration tests run in parallel, whereas 
the other steps run sequentially. Although not required, a benefit of automating the 
process is the ease of moving around the process steps. Although it’s interesting to 
analyze how to do this best, what’s far more important is the choice of making this an 
automated process.

Using a delivery pipeline guarantees that the process is executed consistently—no 
one can choose to skip a step or cheat when delivering to production or some other 
environment. You can take advantage of this to ensure that security checks are done 
continuously during development. By including security tests in the pipeline, you gain 
immediate feedback and an understanding of how secure your software is. This makes 
a huge difference to quality, so let’s see how you can secure your design using unit tests.

8.2 Securing your design using unit tests
When securing a design using unit tests, you need to think a bit differently from what 
you may be used to. Using TDD helps you focus on what the code should do rather than 
what it shouldn’t do. This is a good strategy, but unfortunately, it only takes you halfway. 
Only focusing on what the code should do makes it easy to forget that security weak-
nesses often are unintended behavior.

For example, if you represent a phone number as a string, you probably expect phone 
numbers as input and nothing else. But the definition of a string is much broader than 
the definition of a phone number, and this makes you automatically accept any input 
that could be represented by a string—a weakness that opens up the possibility of injec-
tion attacks. This justifies the need for a different test strategy that includes both what 
the code should do and what it shouldn’t do.

When testing your objects, we suggest using four different test types, as described in 
table 8.1. That way, you’ll gain confidence that the code truly does what it claims to do 
and that unintended behavior is avoided.

Table 8.1  Test types and their objectives

Test type Objective

Normal input testing Verifies that the design accepts input that clearly passes the domain rules, 
ensuring that the code handles vanilla input in a correct way.

Boundary input testing Verifies that only structurally correct input is accepted. Examples of bound-
ary checks are length, size, and quantity, but they could also include com-
plex invariants and domain rules.

Invalid input testing Verifies that the design doesn’t break when invalid input is handled. Empty 
data structures, null, and strange characters are often considered invalid 
input.

Extreme input testing Verifies that the design doesn’t break when extreme input is handled. For 
example, such input might include a string of 40 million characters.



192 chapter 8 Leveraging your delivery pipeline for security

To give you a feel for and understanding of how to use these tests, we’ll walk you 
through an example where sensitive patient information in a hospital is sent by email. 
Although designing and testing an email domain primitive might seem trivial, the 
methods and reasoning used are universal and can be applied to any object you create.

Picture a hospital with an advanced computerized medical system. The system 
includes everything from medical charts to drug prescriptions to x-ray results—a vital 
system with thousands of transactions per day. As part of the daily routine, doctors and 
nurses use the system when discussing sensitive patient information. This communi-
cation is email-based, and for patient integrity reasons, it’s critical that information is 
never sent to email addresses outside the hospital domain.

Configuring the email servers to only accept addresses in the hospital domain is 
the natural strategy of choice. But what if the configuration changes or is lost during 
an upgrade? Then you’d silently start to accept emails to invalid addresses—a security 
breach that could lead to catastrophic consequences. A better strategy is to combine 
email server configuration with the rejection of invalid addresses in the system. This 
way, security in depth is achieved, which makes the system harder to attack because 
it’s not enough to circumvent one protection mechanism.3 But to do this, you need to 
understand the rules for an email address in the hospital domain.

8.2.1 Understanding the domain rules

In chapter 1, you learned that talking to domain experts helps you gain a deeper 
understanding about the domain. This is also the case for the hospital domain. As it 
turns out, the rules for an email address in this context are quite different from what 
you might expect.

The email address specification, RFC 5322, is quite generous when it comes to what 
characters an accepted address can have.4 Unfortunately, you can’t use the same defini-
tion in the hospital domain because several legacy systems have character restrictions 
that need to be considered. Because of this, the domain experts have decided to allow 
only alphabetic characters, digits, and periods in a valid email address. The total length 
is restricted to 77 characters, and the domain must be hospital.com. Several other 
requirements include:

¡	The format of an email address must be local-part@domain.
¡	The local part can’t be longer than 64 characters.
¡	Subdomains aren’t accepted.
¡	The minimum length of an email address is 15 characters.
¡	The maximum length of an email address is 77 characters.
¡	The local part can only contain alphabetic characters (a-z), digits (0-9), and one 

period.
¡	The local part can’t start with nor end with a period.

3 For a discussion of security or defense in depth, see https://www.us-cert.gov/bsi/articles/knowledge/
principles/defense-in-depth.

4 Request for Comments, Internet Message Format, available at https://www.ietf.org/rfc/rfc5322.txt.



193Securing your design using unit tests

At first, it can be tempting to represent an email address as a String because of the 
generous definition in RFC 5322. But the requirements defined by the domain rules 
suggests that a better choice would be to represent it as a domain primitive, Email
Address. One way to ensure it complies with the domain rules is to drive the design 
using unit tests, so let’s start by testing normal behavior.

8.2.2 Testing normal behavior

When testing normal behavior, you want to focus on input that clearly meets the 
domain rules. For EmailAddress that means input that fits within the length con-
straints (15 to 77 characters); has hospital.com as the domain; and has a local part 
containing only alphabetic characters (a-z), digits, and at most one period. This way, 
confidence is gained that the implementation works as expected when vanilla input is 
provided.

In listing 8.1, you see an example of how to capture the normal behavior of Email
Address. The test is executed with JUnit 5, and the construction is quite clever in the 
sense that it uses a stream of input values (valid email addresses), which are mapped to a 
lazily executed test case—a dynamic test.5 Compared to an ordinary test case, a dynamic 
test case is different in that it’s not defined at compile time but rather at runtime. That 
way, it’s possible to dynamically create test cases based on parameter input, as is done 
in the listing. In addition, using a parameterized test construction is often preferable 
when confirming a theory because it lets you easily add or remove input values without 
affecting test logic.

TIP  When designing tests that need to confirm a theory (for example, the nor-
mal behavior), use a parameterized test construction that lets you inject differ-
ent values in the same test.

Listing 8.1  Test capturing the normal behavior of EmailAddress

import static org.junit.jupiter.api.Assertions.assertDoesNotThrow;
import static org.junit.jupiter.api.DynamicTest.dynamicTest;

class EmailAddressTest {
  @TestFactory
  Stream<DynamicTest> should_be_a_valid_address() {
     return Stream.of(                              
           "jane@hospital.com",                     
           "jane01@hospital.com",                   
           "jane.doe@hospital.com")                 
           .map(input >
              dynamicTest("Accepted: " + input,     
                () > assertDoesNotThrow(
                  () > new EmailAddress(input)))); 
  }
}

5 The JUnit 5 documentation is available at http://junit.org/junit5/docs/current/user-guide/.

Creates a stream of input values

Input values that clearly 
satisfy the domain rules

Creates a dynamic test 
case at runtime

Asserts that the input doesn’t 
throw an exception when an 
EmailAddress object is created



194 chapter 8 Leveraging your delivery pipeline for security

Having this test in place allows you to start designing the EmailAddress object. Accord-
ing to the domain rules, only alphabetic characters, digits, and one period are allowed 
in the local part. This adds some complexity, but the next listing shows a solution that 
addresses this using a regular expression (regexp). The domain is also restricted to 
hospital.com, which prevents any other domains from being accepted.

Listing 8.2  EmailAddress meeting the normal behavior criteria

import static org.apache.commons.lang3.Validate.matchesPattern;

public final class EmailAddress {

   public final String value;

   public EmailAddress(final String value) {
      matchesPattern(value.toLowerCase(),           
        "^[az09]+\\.?[az09]+@\\bhospital.com$", 
        "Illegal email address");

      this.value = value.toLowerCase();             
   }
   ...
}

But testing normal behavior is only one step toward making EmailAddress secure. You 
also need to ensure that addresses close to the semantic boundary behave as expected. 
For example, how do you know if an email address longer than 77 characters is rejected 
or that an address can’t start with a period? This justifies adding a new set of tests where 
the boundary behavior is verified.

8.2.3 Testing boundary behavior

In chapter 3, we discussed the importance of understanding the semantic boundary of 
a context and how data could implicitly change meaning when crossing a boundary. 
For a domain object, it’s often a combination of simple structural rules (for example, 
length, size, or quantity) and complex domain rules that defines the semantic bound-
ary. For example, consider a shopping cart on a web page that’s modeled as an entity. 
It’s fine to add items up to a certain limit and modify the cart as long as you haven’t 
gone through checkout. After that, the order is immutable, and updates are illegal. 
This state transition makes the order cross a semantic boundary because the meaning 
of an open order isn’t the same as that of a submitted order. This is important to test 
because many security problems tend to lie around these boundaries.

Returning to EmailAddress and the hospital domain, you need to ensure the design 
truly satisfies the boundary conditions defined by the domain rules. Fortunately, you 
can simplify the testing a little because the rules don’t impose any complex state transi-
tions like those in the shopping cart example. Instead, you only have structural require-
ments, such as length restrictions and which symbols to allow, and they are quite easy to 
test. Table 8.2 summarizes the boundary conditions that need to be verified.

Normalizes the input into 
lowercase and passes it to 

the regexp engine Regexp that ensures the local 
part contains alphabetic 
characters, digits, and at most 
one period, explicitly requiring 
the domain to be hospital.com

Assigns the input to the value  
field if it matches the regexp



195Securing your design using unit tests

Table 8.2  Boundary conditions to verify

Accept Reject

Address that’s exactly 15 characters long Address that’s 14 characters long

Address with a local part that’s 64 characters long Address with a local part that’s 65 characters long

Address that’s exactly 77 characters long Address with a local part containing an invalid 
character

Address with multiple @ symbols

Address with a domain other than hospital.com

Address with a subdomain

Address with a local part that starts with a period

Address with a local part that ends with a period

Address with more than one period in the local part

Having this list in place allows you to start designing unit tests that verify boundary 
behavior for each particular case. In listing 8.3, you see an example of how to imple-
ment this with JUnit 5. The first test, should_be_accepted, verifies that an address 
is accepted if it’s part of the hospital.com domain and between 15 and 77 characters 
long. The second test, should_be_rejected, is a bit longer and focuses on rejecting 
input that’s outside the boundaries; for example, input that’s too short, too long, has 
invalid characters, or has an invalid domain.

Listing 8.3  Tests verifying that addresses meet boundary conditions

import static org.apache.commons.lang3.StringUtils.repeat;
import static org.junit.Assert.assertEquals;
import static org.junit.jupiter.api.Assertions.assertDoesNotThrow;
import static org.junit.jupiter.api.Assertions.assertThrows;
import static org.junit.jupiter.api.DynamicTest.dynamicTest;

class EmailAddressTest {
   @TestFactory
   Stream<DynamicTest> should_be_accepted() {
      return Stream.of(
            "aa@hospital.com",                     
            repeat("X", 64) + "@hospital.com")     
            .map(input > dynamicTest("Accepted: " + input,
              () > assertDoesNotThrow(() > new EmailAddress(input))));
   }

   @TestFactory
   Stream<DynamicTest> should_be_rejected() {
      return Stream.of(
         "a@hospital.com",                         
         repeat("X", 64) + "@something.com",                   
         repeat("X", 65) + "@hospital.com",        

Should accept a 15-character address

Should accept a 
77-character address

Should reject a 
14-character address

Should reject a 
78-character 
address

Should reject a 
65-character local part



196 chapter 8 Leveraging your delivery pipeline for security

         "address_with_invalid_char@hospital.com", 
         "jane@doe@hospital.com",                  
         "jane.doe@hospital.se",                   
         "jane.doe@subdomain.hospital.com",        
         ".jane@hospital.com",                     
         "jane.@hospital.com",                     
         "jane.a.doe@hospital.com")                
         .map(input >
             dynamicTest("Rejected: " + input,
                () > assertThrows(                
                         IllegalArgumentException.class,
                         () > new EmailAddress(input))));
   }
}

Executing this test shows that the implementation of EmailAddress is too weak. The reg-
ular expression ^[az09]\+\.?[az09]\+@\bhospital.com$ is a bit naive because it 
doesn’t limit the length of the local part or the total length of an address.

Listing  8.4 shows an updated version of EmailAddress where length is explic-
itly checked before applying the regexp. In chapter 4, you learned that a lexical scan 
should always be applied before processing the input. This can be achieved using a 
positive lookahead in the regular expression, but we’ve deliberately skipped it because 
the length check ensures the input is safe to parse regardless of which characters it con-
tains.6 However, in more complex situations, you should protect the parser by doing a 
lexical scan first.

Listing 8.4  EmailAddress with explicit length check

import static org.apache.commons.lang3.Validate.inclusiveBetween;
import static org.apache.commons.lang3.Validate.isTrue;
import static org.apache.commons.lang3.Validate.matchesPattern;

public final class EmailAddress {

   public final String value;

   public EmailAddress(final String value) {
      inclusiveBetween(15, 77, value.length(),     
         "address length must be between 15 and 77 chars");

      isTrue(value.indexOf("@") < 65,              
         "local part must be at most 64 chars");

      matchesPattern(value.toLowerCase(),

Should reject underscores in the local part

Should reject multiple @ symbols

Should reject 
invalid domain

Should reject subdomains

Should reject a 
local part starting 

with a period

Should reject a local part 
ending with a period

Should reject multiple periods

Asserts that the input is rejected  
by the EmailAddress contracts

6 For more information about positive lookaheads, see http://www.regular-expressions.info/
lookaround.html.

Ensures that the input 
is 15 to 77 chars long

Ensures that the local part  
is at most 64 chars long



197Securing your design using unit tests

         "^[az09]+\\.?[az09]+@\\bhospital.com$",
         "Illegal email address");

      this.value = value.toLowerCase();
   }
   ...
}

Adding the explicit length check does indeed make the design appear solid. Unfortu-
nately, this is where most developers stop their testing efforts, because the implemen-
tation appears to be good enough. But from a security perspective, you need to go 
further.

It’s also important to verify that harmful input can’t break the validation mechanism. 
For example, the design of EmailAddress relies heavily on how regular expressions are 
interpreted. This is fine, but what if there’s a weakness in the regexp engine that could 
make it crash when parsing a certain input, or if there’s input that takes an extremely 
long time to evaluate? Flushing out these types of problems is the objective of the last 
two test types: invalid input testing and extreme input testing. Let’s see how to apply 
invalid input testing on the EmailAddress object.

8.2.4 Testing with invalid input

Before you design tests with invalid input, you need to understand what invalid input 
is. As a general rule of thumb, any input that doesn’t satisfy the domain rules is con-
sidered invalid. But from a security perspective, we’re also interested in testing with 
invalid input that causes immediate or eventual harm, and for some reason, null, 
empty strings, and strange characters tend to have this effect on many systems.

Listing 8.5 illustrates how EmailAddress is tested with invalid input. The input is a 
mix of addresses containing strange characters, null values, and input resembling valid 
data. With this type of testing, you increase the probability that the design truly holds 
for simple injection attacks that could exploit weaknesses in the validation logic.

Listing 8.5  Testing with invalid input

import static org.junit.Assert.assertEquals;
import static org.junit.jupiter.api.Assertions.assertThrows;
import static org.junit.jupiter.api.DynamicTest.dynamicTest;

class EmailAddressTest {
   @TestFactory
   Stream<DynamicTest> should_reject_invalid_input() {
      return Stream.of(
            null,                                  
            "null",                                
            "nil",                                 
            "0",                                   
            "",                                    
            " ",                                   
            "\t",                                  
            "\n",                                  

Invalid input that tries to break 
the validation logic in the 
constructor of EmailAddress



198 chapter 8 Leveraging your delivery pipeline for security

            "john.doe\n@hospital.com",             
            "   @hospital.com",                    
            "%20@hospital.com",                    
            "john.d%20e@hospital.com",             
            "john..doe@hospital.com",              
            "",                                  
            "e x a m p l e @ hospital . c o m",    
            "=0@$*^%;<!>.:\\()&#\"",              
            "©@£$∞§|[]≈±´•Ωé®†µüıœπ˙~ß∂¸√ç‹›‘’‚…") 
            .map(input >
               dynamicTest("Rejected: " + input,
                  () > assertThrows(              
                           RuntimeException.class,
                           () > new EmailAddress(input))));
   }
}

After running the boundary tests, it appears that the design of EmailAddress was good 
enough. But testing with invalid input revealed that null causes the implementation 
to crash when invoking value.length(). The next listing is an updated version of 
EmailAddress where null is explicitly rejected by a notNull contract.

Listing 8.6  Updated version of EmailAddress that rejects null input

import static org.apache.commons.lang3.Validate.inclusiveBetween;
import static org.apache.commons.lang3.Validate.isTrue;
import static org.apache.commons.lang3.Validate.matchesPattern;
import static org.apache.commons.lang3.Validate.notNull;

public final class EmailAddress {

   public final String value;

   public EmailAddress(final String value) {
      notNull(value, "Input cannot be null");      

      inclusiveBetween(15, 77, value.length(),
              "address length must be between 15 and 77 chars");

      isTrue(value.indexOf("@") < 65,
              "local part must be at most 64 chars");

      matchesPattern(value.toLowerCase(),
              "^[az09]+\\.?[az09]+@\\bhospital.com$",
              "Illegal email address");

      this.value = value.toLowerCase();
   }
   ...
}

Asserts that the input is 
rejected by the contracts 
in the EmailAddress 
constructor

Guards against null input

Invalid input that tries to break 
the validation logic in the 
constructor of EmailAddress



199Securing your design using unit tests

Testing with input that causes eventual harm
Testing with input that causes eventual harm is interesting from a security standpoint 
because it’s the underlying foundation of second-order injection attacks.*

In chapter 3, we talked about context mapping and how data changes meaning when 
crossing a semantic boundary. A similar reasoning applies when trying to understand 
where and when input might cause eventual harm in a system. This is because the input 
isn’t trying to exploit a weakness in the receiving context, but rather in a context where 
it’s used at a later stage. For example, when analyzing how the EmailAddress is used in 
the hospital domain, you might find that it’s used in SQL queries and displayed on a web 
page. Although this isn’t the primary concern of the EmailAddress object, knowing this 
should inspire you to test against SQL injection and cross-site scripting (XSS) attacks.

In the following code example, the EmailAddress object is tested with 10 SQL injection 
statements to ensure that it rejects the input. There are of course a lot more SQL injec-
tion statements to test for, but this gives you an idea of how to gain confidence that the 
EmailAddress object isn’t susceptible to SQL injection attacks. (A better solution might 
be to dynamically load thousands of injection strings from an SQL dictionary instead of 
listing them explicitly.†)

Testing that SQL injection statements are rejected

import static org.junit.Assert.assertEquals;
import static org.junit.jupiter.api.Assertions.assertThrows;
import static org.junit.jupiter.api.DynamicTest.dynamicTest;

class EmailAddressTest {
  @TestFactory
  Stream<DynamicTest> should_reject_SQL() {
     return Stream.of(
           "'or%20select *",                       
           "admin'",                             
           "<>\"'%;)(&+",                          
           "'%20or%20''='",                        
           "'%20or%20'x'='x",                      
           "\"%20or%20\"x\"=\"x",                  
           "')%20or%20('x'='x",                    
           "0 or 1=1",                             
           "' or 0=0 ",                          
           "\" or 0=0 ")                         
           .map(input >
              dynamicTest("Rejected: " + input,
                 () > assertThrows(               
                       RuntimeException.class,
                       () > new EmailAddress(input))));
  }
}

* For details on this type of attack, see the NCC Group white paper, “Second-Order Code   
Injection Attacks,” available at https://www.nccgroup.trust/uk/our-research/second-order-
code- injection-attacks/.

† For an example of a tool that can help, see the open source project Wfuzz, the Web fuzzer, at 
https://github.com/xmendez/wfuzz.

Example of SQL injection statements that 
normally would be imported from a dictionary

Asserts that the input is 
rejected by the contracts in the 
EmailAddress constructor



200 chapter 8 Leveraging your delivery pipeline for security

NOTE  Testing for XSS injections can be done in a similar fashion by using dic-
tionaries with different ways of expressing <script>, along with the less than 
(<) character.7

Running the invalid input tests shows that the validation logic is sound. But to ensure 
it’s really secure, we also need to test the extreme.

8.2.5 Testing the extreme

Testing the extreme is about identifying weaknesses in the design that make the appli-
cation break or behave strangely when handling extreme values. For example, injecting 
large inputs can yield poor performance, memory leaks, or other unwanted behaviors. 
Listing 8.7 shows how EmailAddress is tested using a Supplier lambda with inputs 
ranging from 10,000 to 40 million characters. This clearly doesn’t meet the domain 
rules, but the point isn’t to test them; it’s rather to see how the validation logic behaves 
when parsing the input. Ideally, it should reject it, but if a poor evaluation algorithm is 
used, then all sort of craziness might happen.

Listing 8.7  Testing EmailAddress with extreme values

import static org.apache.commons.lang3.StringUtils.repeat;
import static org.junit.Assert.assertEquals;
import static org.junit.jupiter.api.Assertions.assertThrows;
import static org.junit.jupiter.api.DynamicTest.dynamicTest;

class EmailAddressTest {
   @TestFactory
   Stream<DynamicTest> should_reject_extreme_input() {
      return Stream.<Supplier<String>>of(
            () > repeat("X", 10000),              
            () > repeat("X", 100000),             
            () > repeat("X", 1000000),            
            () > repeat("X", 10000000),           
            () > repeat("X", 20000000),           
            () > repeat("X", 40000000))           
            .map(input >
               dynamicTest("Rejecting extreme input",
                  () > assertThrows(              
                           RuntimeException.class,
                           () > new EmailAddress(input.get()))));
   }
}

As it turns out, running the extreme input test shows that the design of EmailAddress
truly holds. The input is rejected in an efficient way, but this might not have been the 
case. In chapter 4, we talked about validation order and the importance of validating 
input length before parsing contents. Listing 8.7 is an example where it really matters.

7 See https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet for the possibilities.

Generates a string   
with 10,000 characters

Generates a string  
with 100,000 characters

Generates a string with 
1,000,000 characters

Generates a string with 
10,000,000 characters

Generates a string with 
20,000,000 characters

Generates a string with 
40,000,000 characters

Asserts that input is rejected by the contracts 
in the EmailAddress constructor



201Verifying feature toggles

The length check can seem redundant, but without it, the extreme input yields such 
terrible performance that the application more or less halts. This is because when the 
regexp engine fails to match an expression, it backtracks to the character next to the 
potential match and starts over again. For large input, this could lead to a catastrophic 
performance drop due to the vast number of backtracking operations.8

WARNING  Input length should always be checked before passing data to a reg-
exp engine. Otherwise, you might open up security weaknesses caused by inef-
ficient backtracking.

This concludes the EmailAddress example and how to use a security mindset when 
designing unit tests. But this is only one step toward making software secure by design. 
Another way is to ensure you only have the features you want in production, and this 
brings us to the next topic: verifying feature toggles.

8.3 Verifying feature toggles
With continuous delivery and continuous deployment increasingly becoming best 
practices in software development, the use of feature toggles when developing systems 
has also found greater acceptance. Feature toggling is a practice that allows developers to 
rapidly develop and deploy features in a controlled and safe manner. Feature toggling 
is a useful tool, but if used excessively, it can quickly become complex and nontriv-
ial. Depending on what functionality you’re toggling, a mistake made in the toggling 
mechanism can lead to not only incorrect business behavior, but also severe security 
complications (as you’ll soon see).

When using feature toggles, it’s important to understand that a toggle alters the 
behavior of your application. And like any other behavior, you should verify it using 
automated tests. This means you shouldn’t verify only the feature code in your appli-
cation, but also the toggles themselves. Before we start looking at how to verify toggles, 
let’s take a look at an example of why it’s important you verify them.

8.3.1 The perils of slippery toggles

Here’s a story about a team of experienced developers and an unfortunate mishap 
with feature toggles—a mishap that led to exposure of sensitive data in a public API.9

This mishap could have been avoided if the developers had used automated tests to 
verify the toggles. If you’re not familiar with feature toggling, don’t worry, you’ll get a 
primer before we move on with the rest of the section.

The members of the team had been working together for some time, and it had 
become a tight group that was delivering working software at a high pace. The team 
applied many software development practices from continuous delivery, and they also 
used test-driven development when writing code. In addition to that, they’d built an 
extensive delivery pipeline that ensured only properly working features made it all the 
way to production.

8 For details, see http://www.regular-expressions.info/catastrophic.html.
9 The story is based on true events, but obfuscated for the purpose of this book.



202 chapter 8 Leveraging your delivery pipeline for security

The team was working on a set of new functionality. One of the first things they did, 
as they’d done many times before, was to add a feature toggle that allowed them to 
turn the new functionality on and off. This toggle was used when executing local tests 
on a developer’s computer and the CI server, or when running tests against a deployed 
instance in the test environment. The new functionality was to be exposed through a 
public API, and when finished, it would have proper authentication and authorization 
so that only certain users could call the new API endpoints. The authorization would 
be based on some new permission rules that hadn’t been developed yet and would be 
developed by a different team. But the new permission rules weren’t needed to verify 
the rest of the business behavior. This allowed the team to continue to work while the 
other team was finishing up on its side. The toggle for the unfinished functionality was 
configured to be off during production in order to prevent it from being exposed in the 
public API. It was to remain off until the new functionality was completely finished and 
had passed all acceptance tests.

At one point during development, the toggle accidentally got enabled in the pro-
duction configuration. This happened because of a mistake made by a developer when 
merging some code changes in the configuration files. The number of toggles used 
in the application had built up over time, and the configuration for the toggles had 
become rather complex. Spotting a subtle mistake in the configuration wasn’t easy, and 
it was a mistake any one of the developers could have made. This mishap resulted in the 
new functionality being exposed in the public API—but without any form of authori-
zation controls in place, because they hadn’t been implemented yet. This made it pos-
sible for almost anyone to access the new endpoints. Fortunately, the mistake was soon 
discovered by the team, and the error in the configuration was corrected before the 
exposed functionality was ever executed in production.

Had an ill-minded person discovered those publicly exposed endpoints, they could 
have caused significant damage to the company. Even though this particular story 
ended well, there’s still an interesting observation to make: none of the toggle config-
urations were verified to work as expected. If the team had employed automatic veri-
fication of the behavior of each toggle, it would have prevented the mishap from ever 
happening.

We wanted to share this story with you to show you a real example of how feature tog-
gles can lead to quite serious problems if not implemented correctly. You’re now ready 
to start looking at how to verify feature toggles from a security perspective.

8.3.2 Feature toggling as a development tool

A full exploration of the topic of feature toggling is beyond the scope of this book. But 
in order to understand why and how you should test your feature toggles, we feel it’s 
fitting to begin with a brief introduction to the subject. If you’re already familiar with 
feature toggling, you can view this section as a quick refresher.



203Verifying feature toggles

In essence, a feature toggle works much like an electric switch. It lets you turn on and 
off a certain feature in your software, like an electric switch turns a light bulb on and off 
(figure 8.2). Apart from turning features on and off, toggles can also be used to switch 
between two different features, letting you alternate between different behaviors.

When working on new functionality, you can use a toggle to turn on, or enable, that 
functionality when you need to run tests or deploy the application to a test environ-
ment. This gives you full access to the new functionality while you’re working on it. 
At the same time, the toggle lets you turn off, or disable, the functionality when the 
application is deployed to your staging or production environment. This ability to turn 
specific functionality on and off gives you full control over when the functionality is 
made available to end users.

Another aspect of using feature toggles is that it lets you perform development on 
the main branch of the version control system instead of a long-lived feature branch. 
This is something many consider to be a necessity in order to follow best practices from 
continuous integration and, as a consequence, continuous delivery. (This is yet another 
reason for why feature toggles are becoming more common among developers.)

There are various types of feature toggles. Some are used to toggle features still   
in development, others to enable or disable functionality in production, depending   
on runtime parameters like time or date or certain aspects of the current user. You can 
also implement toggles in different ways. The most basic implementation is by chang-
ing a piece of code to either include or exclude certain parts of the codebase, as seen in 
listing 8.8.

As you can see, the code toggles between an old and a new functionality. The old 
functionality is invoked via the callOldFunctionality method. When the old func-
tionality is enabled, you disable the new functionality by commenting out the callNew
Functionality method. When you want to use the new functionality instead, you do 
the opposite: you comment out the callOldFunctionality method and invoke call
NewFunctionality, as is done in the listing with usingNewImplementation.

Use toggles to
turn on/off or switch

between features.

Toggle

Feature

Toggle

Feature 1

Feature 2

Figure 8.2  Feature toggles let you switch between features or turn them on and off.



204 chapter 8 Leveraging your delivery pipeline for security

Listing 8.8  Feature toggling by code in its most rudimentary form

void usingOldImplementation() {

   doSomething();
   callOldFunctionality();           
   //callNewFunctionality();         
   doSomethingElse();

}

void usingNewImplementation() {

   doSomething();
   //callOldFunctionality();         
   callNewFunctionality();           
   doSomethingElse();

}

A more elaborate toggle can, for example, be controlled via configuration provided at 
application startup. An example of this is shown in listing 8.9, where the functionality 
executed depends on the value of a system property called feature.enabled. If you 
want more dynamic toggles, you can make them controllable during runtime via some 
administrative mechanism.10

Listing 8.9  Feature toggling by configuration—a simple example

void branchByConfigurationProperty() {

  final String isEnabled = System.getProperty("feature.enabled", "false");
    if (Boolean.valueOf(isEnabled)) {     
       doSomething();
    }
    else {
       doSomethingElse();
    }

}

Regardless of what type of toggles you use, or what mechanism you use to toggle them, 
it’s important to understand that a feature toggle alters the behavior of your applica-
tion. When you’re flipping the toggle’s switch, you’re changing the behavior of your 
system. When you make use of feature toggles, you’re designing your system to allow 
for alternating behavior, and, like any other behavior in your application, you should 

Enables current (old) implementation

Disables new implementation

Disables old implementation

Enables new implementation

10 If you’re interested in runtime toggles, there are several popular open source alternatives available that 
are worth taking a look at.

If the system property feature.enabled is 
set to true, then doSomething executes.



205Verifying feature toggles

verify it with as many automated tests as you can. Because feature toggles can lead to 
security implications, it’s important you get them right. Now that we’ve reviewed the 
basics of feature toggles, we can start looking at how you can verify them using auto-
mated tests.

8.3.3 Taming the toggles

Whenever you use feature toggles, you introduce complexity. The more toggles you 
add, the more complexity you end up with, especially if the toggles depend on each 
other. If you can, minimize the number of toggles you use at any given point. If that’s 
not possible, then you’ll have to learn how to deal with the complexity they add.

Complexity increases the likelihood of making mistakes, and when talking security, 
even a simple mistake can lead to severe problems. For example, exposing unfinished 
functionality in a public API can lead to a variety of security problems, ranging from 
direct economic loss to sensitive data being exposed.

TIP  For every toggle you create, also create a test verifying the toggle works as 
intended.

If you create automatic tests that verify every toggle works as intended and you add 
those tests to your delivery pipeline, you get a safety net that ensures the toggles behave 
as expected. Because the tests are executed automatically, and for every build, they 
also work as regression tests for future changes, preventing you from accidentally mess-
ing things up. The scenario from the story at the beginning of this section, where a 
bad code merge led to API endpoints being exposed to the public, could’ve been pre-
vented if there had been automatic tests in place that made sure the new functionality 
was never enabled in production.

Always strive to test feature toggles automatically rather than manually. Automated 
tests are the most reliable and deterministic way to verify not only feature toggles but 
any behavior of your code. There are exceptions to the rule, and sometimes you’ll find 
it too costly to automate the verification. In those cases, it makes sense to resort to man-
ual verification. When you need to perform manual testing, make sure you add that as 
a manual step in your delivery pipeline. By doing so, you avoid the risk of forgetting to 
perform the testing before a deliverable is marked as ready for production, because you 
can’t accidentally skip a step that’s in the pipeline.

Table 8.3 shows a few examples of how you can verify different types of feature 
toggles. These are basic suggestions, and often the verification will be more elabo-
rate, but they’ll suffice to give you an idea of how to verify a toggle using an auto-
mated test.



206 chapter 8 Leveraging your delivery pipeline for security

Table 8.3  Examples of methods for verifying feature toggles

Type of toggle Typical methods of verification

Remove functionality in public API If removed successfully, the API should:

■ Return 404 in an HTTP API call

■ Discard/ignore sent messages

■ Refuse connections on a socket

Replace existing functionality Try to perform a new action.

New behavior shouldn’t be observed until finished (can be checked 
via resulting data or nonexisting UI elements, and so forth).

New authentication/authorization Should be unable to log in/access system with new functionality/
users/permissions. Only the old way should work.

Alternating behavior When enabling feature A, then feature B shouldn’t be executed/
accessible, and vice versa when enabling feature B.

Listing 8.10 shows an example of a slightly more realistic OrderService that provides 
the ability to place an order. The OrderService has been extended with a new feature 
that sends data about the placed order to a business intelligence (BI) system. The new 
feature is toggled with the help of a ToggleService, which is a fictional library for man-
aging feature toggles. Whenever the placeOrder method is executed, the Order Service
checks to see whether the new or old order mode is enabled and acts accordingly.

Listing 8.10  OrderService with a new feature placed in a toggle

import static org.apache.commons.lang3.Validate.notNull;

public class OrderService {

   // ...

   public void placeOrder(final Order order) {
      notNull(order);

      if (OrderMode.OLD.equals(toggleService.orderMode())) {
         orderBackend.process(order);              
      }
      else if (OrderMode.NEW.equals(toggleService.orderMode())) {
         orderBackend.process(order);
         biBackend.record(order);                  
      }
      else {
         throw new IllegalStateException("No supported order mode");
      }
   }

}

With the old order mode 
enabled, only the order is 
processed; no additional 

processing is done.

Order data is sent to the BI system  
if the new order mode is enabled.



207Verifying feature toggles

public class ToggleService {                       

   public enum OrderMode {
      OLD("old"),
      NEW("new");

      private final String key;

      OrderMode(final String key) {
         this.key = key;
      }

      public String key() {
         return key;
      }
   }

   private OrderMode orderMode = OLD;

   public OrderMode orderMode() {
      return orderMode;
   }

   public void setOrderMode(final OrderMode orderMode) {
      this.orderMode = notNull(orderMode);
   }
}

An example of how to write tests for this toggle is shown in listing 8.11. The tests aren’t 
focusing on the behavior of the underlying functionality of placing an order and send-
ing data to a BI system. They’re only concerned with verifying if correct behavior is 
triggered based on the setting of the toggle. If the order mode of the toggle is set to 
OLD, then the order should be sent for processing, but nothing should be sent to the BI 
system. If the order mode is set to NEW, then data about the order should be sent to the 
BI system in addition to the order being processed. The tests are using mocks to ver-
ify interaction with the supporting services (the BI backend and the order backend). 
Don’t worry if you’re not familiar with using mocks in tests. In this example, it’s a way 
to verify if any calls have been made to the supporting services.

Listing 8.11  Testing the toggle in OrderService

import org.junit.Test;

import static org.mockito.Matchers.any;
import static org.mockito.Mockito.*;

public class OrderServiceToggleTests {

   @Test
   public void should_process_order_if_old_order_mode_is_enabled() {
      givenOrderModeIs(OLD);

      whenPlacingAnOrder();

Used by OrderService to keep track of 
what order mode is currently enabled



208 chapter 8 Leveraging your delivery pipeline for security

      thenOrderShouldBeProcessed();                
   }

   @Test
   public void should_not_send_to_BI_if_old_order_mode_is_enabled() {
      givenOrderModeIs(OLD);

      whenPlacingAnOrder();

      thenOrderShouldNotBeSentToBI();              
   }

   @Test
   public void should_process_order_if_new_order_mode_is_enabled() {
      givenOrderModeIs(NEW);

      whenPlacingAnOrder();

      thenOrderShouldBeProcessed();                
   }

   @Test
   public void should_send_to_BI_if_new_order_mode_is_enabled() {
      givenOrderModeIs(NEW);

      whenPlacingAnOrder();

      thenOrderShouldBeSentToBI();                 
   }

   private ToggleService toggleService;
   private OrderBackend orderBackend;
   private BIBackend biBackend;

   private void givenOrderModeIs(final OrderMode orderMode) {
      toggleService = new ToggleService();
      toggleService.setOrderMode(orderMode);
   }

   private void whenPlacingAnOrder() {
      createOrderService().placeOrder(new Order());
   }

   private OrderService createOrderService() {
      orderBackend = mock(OrderBackend.class);     
      biBackend = mock(BIBackend.class);           
      return new OrderService(orderBackend,
                              biBackend,
                              toggleService);
   }

   private void thenOrderShouldBeProcessed() {
      verify(orderBackend).process(any(Order.class)); 
   }

   private void thenOrderShouldNotBeSentToBI() {
      verifyZeroInteractions(biBackend);           

Verifies that the order has 
been sent for processing

The order shouldn’t be sent to the BI system.

Verifies that the order has 
been sent for processing

The order should be sent to the BI system.

Mocks the supporting services 
injected to the OrderService

Verifies that the process(Order) 
method is called

Verifies that no calls have 
been made to the BIBackend



209Verifying feature toggles

   }

   private void thenOrderShouldBeSentToBI() {
      verify(biBackend).record(any(Order.class));  
   }

}

So far, you’ve learned why it’s important to test your toggles, and you’ve seen a few 
examples of how to test them. There are a few more things to discuss before we close 
the section on feature toggles: dealing with a large number of toggles and the fact that 
the process of toggling can be subject to auditing.

8.3.4 Dealing with combinatory complexity

If you’re using multiple toggles, you should strive to verify all combinations of them, 
especially if there are toggles that affect each other. Even if they aren’t directly related, 
you should test all the combinations, because there might be indirect coupling between 
them. Indirect coupling can occur at any time during development. As you might guess, 
it can quickly become a combinatory nightmare if you have a large number of feature 
toggles to verify. But the more toggles you have, the more likely it is you’ll get something 
wrong—and the more important it is you test them. This is one of the reasons why you 
should always try to keep the number of feature toggles as low as possible.

One could argue that it isn’t necessary to test all combinations if you first perform a 
risk analysis—evaluating how much more confidence or less risk you get by testing all 
combinations versus testing a few of them—and then only choose a selected set of com-
binations to test. This approach might appear reasonable, but it’s based on the assump-
tion that you can assess security flaws you’re unaware of. If you’re aware of them, you 
most likely have already addressed them.11 Our recommendation is to verify all combi-
nations of your toggles and mitigate the testing complexity by reducing the number of 
toggles in your codebase.

8.3.5 Toggles are subject to auditing

One thing to keep in mind when using runtime toggles is the importance of exposing 
the toggle mechanism in a safe manner. Because these types of toggles are changing 
the behavior of the application in production, the mechanism you use to change the 
state of the toggles should be protected so that only authorized access is possible. You 
should also consider if any modifications to the state of a toggle should be logged for 
auditing purposes. It should always be possible to identify when and by whom a toggle 
was changed in production.

NOTE  When and by whom a toggle is changed in production is a fundamental 
question you should be able to answer.

Verifies that the record 
method is called

11 This is similar to the reasoning about the shortcomings of the traditional approach to software security 
we discussed in chapter 1, where we identified the problems with trying to explicitly protect yourself 
against threats you aren’t aware of.



210 chapter 8 

Security tests
are just tests.

I am a
security
test! Who do you think you are?

You’re just a test like
the rest of us.

Figure 8.3  Security tests are no different from other tests.

Leveraging your delivery pipeline for security

The use of feature toggling is becoming more and more popular, and we predict many 
developers will come to see such toggles as a natural part of how software is developed. 
An effect of this is that it’ll be increasingly important to verify your toggles in an auto-
matic way and to make that verification part of your delivery pipeline. We’re advocates 
of using feature toggles because they bring many benefits to software development. As 
long as you’re aware of the potential pitfalls and how to mitigate them, we believe the 
benefits far outweigh the drawbacks. In the next section, we’ll take a look at how to get 
started writing automated tests that explicitly verify security features and vulnerabilities.

8.4 Automated security tests
Most developers will agree that security testing is important and should be performed 
regularly. The reality, though, is that most software projects will never be subjected to 
a security audit or a penetration test, perhaps because the software has been deemed 
low risk or because security has been overlooked by the developers. Another common 
reason for why these tests are skipped, in our experience, is because penetration tests 
are often considered too time-consuming and costly.

Security testing tends to be time-consuming because a lot of the testing involved can be 
hard to automate. It’s hard to automate because it’s the experience and knowledge of the 
security expert that’s needed to expose possible flaws and weaknesses in an application.

In a way, the work (and value) of a penetration tester is not that different from that of 
a normal tester performing exploratory testing. Humans can perform tasks and logical 
reasoning in ways computers are still incapable of. Trying to replace a human tester 
with automated tests is not a realistic option, nor do we suggest it should be your goal. 
But some of the testing performed during a penetration test can be automated. In this 
section, you’ll learn how to write tests that can be used to perform a mini pen test as part 
of your delivery pipeline.

8.4.1 Security tests are only tests

One thing you should realize is that security tests are no different from any other tests 
(figure 8.3). The only difference is that as developers, for whatever reason, we choose to 
label the tests with the word security. If you know how to write regular automated tests to 
verify behavior and find bugs, you can apply the exact same principles to security testing.

¡	Do you handle failed login attempts correctly? Write a test for it.
¡	Does your online discussion forum have adequate protection against XSS?   

Write a test that tries to enter malicious data.

Once you understand that there’s nothing magical about security testing, you can start 
using automated tests to verify security features and to find security bugs.12

Let’s take a closer look at what types of checks a security tester performs. Some are 
more or less mandatory in the sense that they will always be performed regardless of 
what the goal of the testing is. A lot of these checks can be considered hygiene-level, 

12 OWASP publishes a number of cheat sheets that you can use as a guide when writing your own security 
tests. See https://www.owasp.org/index.php/OWASP_Cheat_Sheet_Series.



211Automated security tests

and an application should always pass them. As it turns out, many of them aren’t that 
hard to perform through automated tests. The checks that are easy to automate are usu-
ally also the ones where having a human performing them adds little value. Converting 
these into automated tests not only allows you to run them at will, but it also allows the 
testers to focus on more elaborate testing. Supplying malicious data to check for flaws 
in input validation, such as flaws that enable SQL injection or buffer overflow attacks, 
isn’t only a mundane task but also a good example of testing that can be automated.

8.4.2 Working with security tests

To help you understand what features to test and how to structure the work with test 
automation, we can categorize security tests into two main categories: application and 
infrastructure (as seen in table 8.4). Apart from these two types of tests that explicitly 
focus on security, there are also tests with a domain focus. We covered domain testing 
in the first part of this chapter and, as you learned, those tests will also help secure your 
system. We’ll now take a look at the other two categories of tests.

Table 8.4  Types of security tests

Category Types of checks

Application focused These tests verify the application in parts other than the domain. Examples 
include checking HTTP headers in a web application or testing input validation.

Infrastructure focused These tests verify correct behavior from the infrastructure running the applica-
tion. Examples include checking for open ports and looking at the privileges of 
the running process.

The use of feature toggling is becoming more and more popular, and we predict many 
developers will come to see such toggles as a natural part of how software is developed. 
An effect of this is that it’ll be increasingly important to verify your toggles in an auto-
matic way and to make that verification part of your delivery pipeline. We’re advocates 
of using feature toggles because they bring many benefits to software development. As 
long as you’re aware of the potential pitfalls and how to mitigate them, we believe the 
benefits far outweigh the drawbacks. In the next section, we’ll take a look at how to get 
started writing automated tests that explicitly verify security features and vulnerabilities.

8.4 Automated security tests
Most developers will agree that security testing is important and should be performed 
regularly. The reality, though, is that most software projects will never be subjected to 
a security audit or a penetration test, perhaps because the software has been deemed 
low risk or because security has been overlooked by the developers. Another common 
reason for why these tests are skipped, in our experience, is because penetration tests 
are often considered too time-consuming and costly.

Security testing tends to be time-consuming because a lot of the testing involved can be 
hard to automate. It’s hard to automate because it’s the experience and knowledge of the 
security expert that’s needed to expose possible flaws and weaknesses in an application.

In a way, the work (and value) of a penetration tester is not that different from that of 
a normal tester performing exploratory testing. Humans can perform tasks and logical 
reasoning in ways computers are still incapable of. Trying to replace a human tester 
with automated tests is not a realistic option, nor do we suggest it should be your goal. 
But some of the testing performed during a penetration test can be automated. In this 
section, you’ll learn how to write tests that can be used to perform a mini pen test as part 
of your delivery pipeline.

8.4.1 Security tests are only tests

One thing you should realize is that security tests are no different from any other tests 
(figure 8.3). The only difference is that as developers, for whatever reason, we choose to 
label the tests with the word security. If you know how to write regular automated tests to 
verify behavior and find bugs, you can apply the exact same principles to security testing.

¡	Do you handle failed login attempts correctly? Write a test for it.
¡	Does your online discussion forum have adequate protection against XSS?  

Write a test that tries to enter malicious data.

Once you understand that there’s nothing magical about security testing, you can start 
using automated tests to verify security features and to find security bugs.12

Let’s take a closer look at what types of checks a security tester performs. Some are 
more or less mandatory in the sense that they will always be performed regardless of 
what the goal of the testing is. A lot of these checks can be considered hygiene-level, 

12 OWASP publishes a number of cheat sheets that you can use as a guide when writing your own security 
tests. See https://www.owasp.org/index.php/OWASP_Cheat_Sheet_Series.

Security tests
are just tests.

I am a
security
test! Who do you think you are?

You’re just a test like
the rest of us.

Figure 8.3  Security tests are no different from other tests.



212 chapter 8 Leveraging your delivery pipeline for security

For tests focusing on the application and infrastructure, there are a number of tools 
available that might be worth exploring. Port scanning tools can, for example, be set 
up to run against the server you deploy your application on. Likewise, a web testing 
tool can scan your web application or run predefined use cases, while at the same time 
checking for vulnerabilities.13 You can also use tools to scan your code for vulnera-
ble third-party dependencies.14 Any unexpected results from a test run should fail and 
cause the delivery pipeline to be stopped.

These types of tests can sometimes take a while to execute, so you might choose to 
run them less often than other tests in your pipeline. If you have other long-running 
tests such as performance tests executed nightly, a good approach can be to run the 
scanning tools before or after them.

8.4.3 Leveraging infrastructure as code

With the adoption of cloud computing, the idea of infrastructure as code (IaC) is 
becoming more common. The basic concept of IaC is that it allows you to declaratively 
define infrastructure. This can be anything from servers and network topologies to 
firewalls, routing, and more. This has multiple advantages, one of which is making the 
setup of your infrastructure deterministic, giving you the ability to recreate your entire 
infrastructure as many times as you want. It also becomes a breeze to use version control 
to track the history of every change to your infrastructure, no matter how small or big.

From a security perspective, this is exciting. Not only do you minimize the risk of 
human error, but you can also use this approach to automatically verify your infrastruc-
ture. Because you’re putting all changes in a version control system, you get traceabil-
ity of any changes made, and the automated nature of IaC means you can verify the 
changes before pushing them into production.

For example, say you’re updating a firewall. Before applying the changes in produc-
tion, you first apply them in a preproduction environment. The ideal way to do this 
is to completely recreate the entire infrastructure in a mirrored setup. Once you’ve 
created the preproduction environment, you can run automated security tests against 
it, verifying that no previous functionality has been unintentionally altered and that 
the changes made have the expected effects. You can then safely deploy the changes in 
production. If you are using IaC or are about to move in that direction, you should defi-
nitely look into the opportunities it provides in terms of securing your infrastructure.

8.4.4 Putting it into practice

By writing tests with an explicit security focus and adding them to your pipeline, you 
can pick a lot of low-hanging fruit. If you couple that with the execution of existing 
tools in an automated fashion, you get a mini pen test you can execute at will and as 
often as you want. This field is still developing, but we’ll be watching it with interest in 

13 OWASP has a great list of tools at https://www.owasp.org/index.php/Category:Vulnerability 
_Scanning_Tools.

14 OWASP Dependency Check is an example of a tool you can use to scan for vulnerable dependencies; 
see https://www.owasp.org/index.php/OWASP_Dependency_Check.



213Testing for availability

the upcoming years because we’re hoping the tools will become more mature and 
accessible to both developers and QA.

You have now learned the basics of how to automate explicit security testing. In the next 
section, we’ll take a look at why availability is important and how it relates to secure software.

8.5 Testing for availability
It’s easy to think that the classical security concerns of confidentiality, integrity, and 
availability (CIA) only apply to information security, but they’re also important when 
designing secure software.15 For example, confidentiality is about protecting data from 
being read by unauthorized users, and integrity ensures data is changed in an authorized 
way. But what about availability? Many developers find it easy to understand but difficult 
to test because it concerns having data available when authorized users need it.

For example, suppose a fire breaks out and you call 911 (or 112 in Europe), but your 
call doesn’t get through, not because you dialed the wrong number but because the 
switchboard is flooded with prank calls. Not good! Another less serious example is when 
you’re trying to buy tickets to a popular concert online, and the website crashes or can’t 
be accessed. Often, this isn’t the result of malevolent behavior, but rather that everyone 
tries to buy tickets at the same time; people’s intentions are good, but the consequences 
are equally as bad as those of an evil attack.

Testing availability is therefore something every application needs to do, but how do 
you do this in practice? One way is to simulate a denial of service (DoS) attack, which 
lets you understand what the behavior is before and after data becomes unavailable.16

To do this, you need to start by estimating the headroom.

8.5.1 Estimating the headroom

Estimating the headroom is about trying to understand how much load an application 
can handle before it fails to serve its clients in a satisfactory way. Typical things to look 
for are memory consumption, CPU utilization, response times, and so on. But it can 
also be a way to understand how the application behaves before it fails and where the 
weak spots are in the design.

Figure 8.4 shows an example of a distributed denial of service (DDoS) attack, where 
a massive number of parallel requests are made from different servers against an appli-
cation. Regardless of how many requests are made or how much load they generate, 
the main objective is to limit the availability of the application’s services. When talking 
about DDoS attacks, it’s not uncommon to use the more generic term DoS attack. The 
main difference between the two is that DoS attacks are made from a single server 
instead of multiple ones. The objective is, however, the same, and from now on, we’ll 
use the terms DDoS and DoS interchangeably.

15 See NIST Special Publication 800-27, “Engineering Principles for Information Technology Security (A 
Baseline for Achieving Security),” available at https://csrc.nist.gov/publications/detail/sp/800-
27/rev-a/archive/2004-06-21.

16 To simulate this type of attack, see US-CERT Security Tip ST04-015, “Understanding Denial-of-Service 
Attacks” at https://www.us-cert.gov/ncas/tips/ST04-015.



214 chapter 8 Leveraging your delivery pipeline for security

By simulating a DoS attack, you can easily get a feel for how well your application scales 
and how it behaves before it fails to meet its availability requirements. It’s important to 
note that regardless of how well a system is designed, an attack large enough will even-
tually break it. This makes it practically impossible to design a system that’s 100% resil-
ient, but estimating the headroom is a good strategy to use when trying to understand 
where the weak spots are in your design.

Several commercial products and open source alternatives let you load test your 
application. One example is “Bees with Machine Guns,”17 which is a utility for creating 
EC2 server instances on the Amazon Web Services platform that attack an application 
with thousands of parallel requests.18 In listing 8.12, you see an example of how to con-
figure eight EC2 instances that issue 100,000 requests, 500 at a time, against a website.

WARNING  Attacking a website is illegal unless you have explicit permission to 
do so, and consuming resources this way can lead to a painful experience on 
your credit card.

Listing 8.12  Simple example of configuring a test running a DDoS attack

bees up s 8 g public k your_ssh_key       
bees attack n 100000 c 500 u website_url  
bees down                                    

Server

ServerServer

Server

ServerServer

Server

ServerServer Application 

Figure 8.4  Denial of service attack (DDoS, but more commonly referred to as DoS attack)

17 See https://github.com/newsapps/beeswithmachineguns.
18 See https://aws.amazon.com for more information on the Amazon Elastic Compute Cloud.

Spins up eight EC2 server 
instances to attack the website

Sends 100,000 requests, 500 
at a time, to the specified url

Spins down the EC2 server instances



215Testing for availability

Regardless of which product you choose, having tests in your delivery pipeline that place 
your system under a heavy load is an efficient way of flushing out weaknesses that could 
be exploitable by an attacker in production. But a DoS attack doesn’t require thousands 
of parallel requests to be successful. Availability could be affected in a more sophisti-
cated way; for example, by exploiting domain rules that execute under the radar.

8.5.2 Exploiting domain rules

When exploiting domain rules, you’re actually creating a domain DoS attack in which 
rules are executed in a way that’s accepted by the business, but with malicious intent.19

To illustrate, let’s consider the example of a hotel that has a generous cancellation policy.

WARNING  Domain DoS attacks are extremely difficult to detect because there’s 
no difference between benevolent and malevolent use of domain rules—it’s 
only the intent that differs.

To provide great customer service, the hotel manager has decided to fully refund any 
reservation that’s canceled before 4 p.m. on the day of arrival. This allows for great 
flexibility, but what if someone makes a reservation without the intent of staying at 
the hotel? Won’t that prevent someone else from making a reservation, causing the 
hotel to lose business? It certainly will, and that’s how a domain DoS attack works. By 
exploiting the domain rules for cancellation, it’s possible to reserve all the rooms at 
the hotel and cancel them at the latest possible moment without being charged. This 
way, an attacker might be able to block out a certain room type or direct customers to 
a competitor’s hotel.

This type of attack might seem fictitious and unlikely, but there are several real-world 
examples where this has happened. One was in San Francisco, where the ride-sharing 
company, Lyft, accused rival Uber of booking and then canceling over 5,000 rides in an 
attempt to affect its business.20 Another was in India, where Uber sued its competitor 
Ola for booking over 400,000 false rides.21

Simulating this in tests might seem pointless, but the fact is that by exercising 
domain rules in a malicious way, you gain deeper understanding of weaknesses in the 
domain model—knowledge that could be invaluable when designing alarms to trig-
ger on thresholds and user behavior, for example, or when using machine learning to 
detect malicious activity. But testing availability is only one thing to consider when add-
ing security to your delivery pipeline. Another is to understand how an application’s 
behavior changes with its configuration, especially the security aspects. And this brings 
us to the next topic: validating configuration.

19 See Johan Arnör’s master’s thesis “Domain-Driven Security’s Take on Denial-of-Service (DoS) Attacks,” 
available at http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A945831.

20 See the August 12, 2014, TIME article, “Lyft Accuses Uber of Booking Then Canceling More Than 
5,000 Rides,” available at http://time.com/3102548/lyft-uber-cancelling-rides/.

21 See the March 23, 2016, Bloomberg article, “Uber Sues Ola Claiming Fake Bookings as India Fight Esca-
lates,” available at https://www.bloomberg.com/news/articles/2016-03-23/uber-sues-ola-claiming-
fake-bookings-as-india-fight-escalates.



216 chapter 8 Leveraging your delivery pipeline for security

8.6 Validating configuration
In contemporary software development, common features are often realized through 
configuration; you bring in an existing library or framework that allows you to enable, 
disable, and tweak functionality without having to implement it yourself. In this sec-
tion, we’ll take a look at why it’s important to verify your configuration and how auto-
mation can be used to protect against security flaws caused by misconfiguration.

If you’re building a web application, you probably don’t want to spend time writ-
ing your own HTTPS implementation to serve web requests or implementing a home-
grown ORM framework for database persistence—both of which can be hard to get 
right. Instead of implementing these generic features yourself, you can use an exist-
ing implementation in the form of a library or a framework. For most developers, this 
makes a lot of sense, because bringing in generic functionality via an external tool lets 
you focus on what’s unique about your business domain.

Even if you do decide to roll your own in-house implementation of generic func-
tionality, you’re most likely going to distribute it as a library for development teams to 
reuse in their applications. Regardless of which approach you take, the result is that 
important features of an application are provided by code external to the current team, 
and those features are controlled through configuration. The features provided can be 
generic but can, nonetheless, play a central role in the security of your application. As a 
consequence, errors in the configuration can directly lead to security problems. Auto-
mated tests can effectively be used to mitigate these problems.

8.6.1 Causes for configuration-related security flaws

Security flaws resulting from faulty configuration can generally be said to stem from 
either unintentional changes, intentional changes, or misunderstood configuration 
(figure 8.5).

Let’s take a look at each one of these underlying causes to give you an understanding 
of how they can arise, and why it’s so important that you use automated tests to prevent 
these types of flaws from occurring.

Misunderstood

Intentional

Unintentional

Security flaw
by configuration

Unintuitive API
Poor documentation

Missing test

Missing test
Upgraded dependency

New feature

Bad merge
Typo

Missing test

Figure 8.5  Underlying causes for security flaws induced by configuration



217Validating configuration

unintentional changes

Being able to control functionality through configuration makes the lives of devel-
opers a lot easier. Not only does it speed up development, but it can also make your 
application more secure. Using well-known, community-reviewed, battle-tested, open 
source implementations is most likely going to be more secure than writing your own 
libraries. Getting security features right in software is hard, even for the most seasoned 
security experts.

When features are controlled via configuration, it’s easy to alter the behavior of your 
application. Even substantial changes can be made by altering one line in a configura-
tion. But although it’s easy to change the behavior to something you want, it’s equally 
easy to unintentionally change it to something you don’t want. Say you mistakenly alter 
a line in your configuration or you misspell a string parameter, and suddenly the behav-
ior of your application is silently changed; there’s no exception or other error when 
you run the application. If you’re unlucky, the changed behavior makes your applica-
tion vulnerable in one way or another, and if you’re really unlucky, you’re not going to 
notice until after it’s been deployed to production.

What you need is a safety net that can catch many of the problems caused by uninten-
tional configuration changes. Creating automated tests that check features and behav-
ior enabled via configuration is a relatively economical and easy way to implement such 
a safety net.

intentional changes

It’s not only unintentional changes that can make your application insecure through 
unwanted side effects. Sometimes an intentional change can have unwanted side 
effects too.

Say you’re implementing a new feature and, as part of that, you need to make a 
change in your application’s configuration. You verify the new behavior—ideally by 
adding a new automated test as you just learned—and then continue implementing 
the rest of the new feature. But what you didn’t notice when verifying the new behavior 
was that by making the change, you also altered the behavior in a different part of the 
application. Maybe the configuration you changed had been carefully placed there by 
another developer as the result of a previously conducted security audit or penetration 
test, or in order to prevent the exposure of a certain weakness. When altering the con-
figuration, you also disabled those security features, leaving your application exposed.

Unknowingly changing the behavior in one part of a system while making changes 
in another part isn’t an uncommon scenario. The scenario is similar to the one with 
the unintentional changes, but it’s worth pointing this one out because, as a developer, 
you’re not doing anything wrong here.

Unintentional changes are caused by someone making a mistake, so you might think 
you can protect yourself by being more careful or introducing more rigorous processes. 
But, in this case, you’re making the correct code changes with a deliberate intent. You 
might even add automated tests for the changes you’re currently making. The tests you 
add might protect you from unintentional changes of the feature you just implemented, 



218 chapter 8 Leveraging your delivery pipeline for security

but unless you have tests for the already existing features, your intentional change can 
break existing behavior. This is something to look out for when working in existing 
codebases where, historically, not many tests have been written.

misunderstood configuration

The third main cause of misconfiguration is not understanding the configuration 
mechanism used. In essence, this occurs when you think you’re configuring a certain 
behavior, whereas in reality, you’re configuring something else. This can easily happen 
when the configuration API for the library you’re using hasn’t been designed to be 
unambiguous.

Integer values, magic strings, and negating statements are typical giveaways of an 
ambiguous configuration API. When you use such configuration, chances are you’re 
not getting what you think you are. Every time you configure a feature, make it a habit 
to add a test that verifies your configuration is doing what you intend.

8.6.2 Automated tests as your safety net

How can you protect yourself from accidentally introducing security vulnerabilities in 
other parts of the software than the one you’re currently working on? How can you 
ensure the intention and tribal knowledge behind important configuration don’t get 
lost as a codebase evolves? As we’ve already hinted, an efficient way is to write auto-
mated tests to verify the expected behavior and use those tests as a regression suite in 
your delivery pipeline.

If you’re new to this view on testing configuration from a security perspective, it helps 
to think in terms of configuration hot spots. A configuration hot spot is an area in your con-
figuration where the type of behavior you’re controlling has a direct or indirect impact 
on how secure your system will be. To give you an idea of some typical configuration hot 
spots, table 8.5 lists examples of functionality it’s important to have automated tests for.

Table 8.5  Examples of configuration hot spots to test

Type of configuration Examples of behavior controlled

Web containers ■ HTTP headers

■ CSRF tokens

■ Output encoding

Network communication ■ Transport Layer Security (HTTPS and so on)

Data parsing ■ Behavior of data parsers (such as XML and JSON parsers)

Authentication mechanisms ■ Authentication on/off

■ Integration settings (for example, for CAS and LDAP)

Our experience is that the functionality that is controlled via configuration and is inter-
esting from a security perspective is often fairly straightforward to write automated 
tests for. In a web application, for example, it isn’t hard to write a test that checks for 



219Validating configuration

proper HTTP headers or that a form uses CSRF tokens.22 These types of tests are best 
created as you’re developing an application, but because they tend to be straightfor-
ward to write, it’s fairly easy to add them to an existing codebase.

When discussing test automation for functionality controlled by configuration, 
sometimes arguments are made against this practice. One common argument is that 
testing your configuration is similar to testing a setter method that sets a simple value 
and therefore adds little value. Although this can be true for some types of configura-
tion, it isn’t true for the one we’re discussing here.

The type of configuration you should test is configuration that alters the behavior of 
your application. In the same way you write tests to verify the behavior you implement, 
it’s equally important to write tests for the behavior you configure. Once you realize that 
you aren’t testing the configuration itself but rather the resulting behavior, it becomes 
clearer why this is so important.

8.6.3 Knowing your defaults and verifying them

In addition to the behaviors you explicitly configure, it’s also important to verify the 
implicit behaviors you get when using a library or framework. An implicit behavior is 
one you get without adding any configuration. This is sometimes also referred to as a 
default behavior. Because there’s no configuration, the tricky part here is even knowing 
you have an important feature to verify. In order to gain that knowledge, you need to 
know the defaults of the tool you use.

As an example, most modern web frameworks make it easy to write HTTP APIs 
or RESTful web services. Numerous frameworks and libraries allow the developer to 
declaratively write code to define the HTTP endpoints. These types of frameworks can 
boost your productivity because they let you focus on your business logic instead of 
generic plumbing and boilerplate code. What enables the code you write to be clean 
and concise is usually the application of sensible default behavior by the framework. As 
long as you stick to the defaults, there’s little code to write. This is all good when writing 
code tutorials or small proof-of-concept applications, but for real business-critical proj-
ects, you must make sure you understand exactly what the defaults are. In many cases, 
the defaults will help make your application more secure, but in some cases, they might 
sacrifice some level of security for an increased ease of use. If you aren’t aware of those 
trade-offs, you might expose security vulnerabilities without knowing it.

Say you’re writing an HTTP service. It could be in the form of a RESTful API or some 
other API approach based on HTTP. In order to reduce the number of attack vectors, 
it’s a good security practice to only enable the HTTP methods required by the API. If 
an API endpoint is meant to serve data to clients accessing it using an HTTP GET, you 
should make sure it doesn’t return a normal response when accessed with any other 
HTTP method. Instead, it can respond with a status code 405 Method Not Allowed 
or 501 Not Implemented to let the client know the requested HTTP method is not 

22 A good place to start to learn more about HTTP headers to consider is the OWASP Secure Headers 
Project at https://www.owasp.org/index.php/OWASP_Secure_Headers_Project.



220 chapter 8 Leveraging your delivery pipeline for security

supported. The more HTTP methods the endpoint responds to, the more security vul-
nerabilities it opens up. For example, TRACE is an HTTP method known to be used to 
perform cross-site tracing (XST) attacks, so you don’t want to enable TRACE unless you 
have to.23

Listing 8.13 shows an example of how to write a test that verifies only specific HTTP 
methods are enabled for an endpoint. Note that the example is simplified and that a 
real implementation depends on how the API under test is designed and what the defi-
nition of an enabled endpoint is. Other aspects to consider are, for example, if custom 
HTTP methods are allowed and if authentication is enabled.

Listing 8.13  Testing enabled HTTP methods

import org.junit.Test;
import java.net.URI;

import static java.util.Arrays.asList;
import static java.util.stream.Collectors.toList;
import static java.util.stream.Collectors.toSet;
import static org.apache.commons.lang3.Validate.notNull;
import static org.junit.Assert.assertEquals;

public class OnlyExpectedMethodsAreEnabledTest {

   enum HTTPMethod {
      GET, HEAD, POST, PUT, DELETE, CONNECT, OPTIONS, TRACE
   }

   URI uri;
   List<Result> results;

   @Test
   public void verify_only_expected_HTTP_methods_are_enabled() {
      givenEndpoint("http://example.com/endpoint"); 

      whenTestingMethods(HTTPMethod.values());      

      thenTheOnlyMethodsEnabledAre(GET, PUT, HEAD); 
   }

   void givenEndpoint(final String uri) {
      this.uri = URI.create(uri);
   }

   void whenTestingMethods(final HTTPMethod... methods) {
      results = Arrays.stream(methods)
                      .distinct()
                      .map(method > getStatus(method, uri))
                      .collect(toList());
   }

23 See https://www.owasp.org/index.php/Cross_Site_Tracing for details.

The endpoint 
under test

Tests all HTTP methods

Only GET, PUT, and 
HEAD are enabled



221Validating configuration

   void thenTheOnlyMethodsEnabledAre(final HTTPMethod... methods) {
      final Set<HTTPMethod> enabled = enabledHttpMethods();
      assertEquals(new HashSet<>(asList(methods)), enabled);
   }

   Set<HTTPMethod> enabledHttpMethods() {
      return results.stream()
                    .filter(r > isEnabled(r.status))
                    .map(r > r.method)
                    .collect(toSet());
   }

   static class Result {

      final int status;
      final HTTPMethod method;

      Result(final int status, final HTTPMethod method) {
         this.status = status;
         this.method = notNull(method);
      }

   }

   boolean isEnabled(final int statusCode) {
     // Check if the status code is considered     
     // as "enabled"
   }

   Result getStatus(final HTTPMethod method, final URI uri) {
     // Call the URI with the given HTTP method    
     // and return the status
   }

   // ...

}

Remember that the mindset you should have here isn’t to explicitly forbid HTTP 
methods, but to only enable those that are needed for the functionality you’re imple-
menting. Also, even if the default settings are what you need, you should add tests that 
verify the behavior. Even if the defaults are what you need right now, a later release of 
the framework might change the defaults; if you have tests for those behaviors, you’ll 
immediately catch those changes.

In this chapter, you saw several ways to use your delivery pipeline to automatically ver-
ify security concerns. Some approaches we’ve discussed have involved a more explicit 
focus on security than other concepts in this book. If you’re already familiar with some 
of these approaches, we hope you’ve learned how to view them from a slightly different 
perspective. In the next chapter, you’ll learn how to securely handle exceptions and 
how you can use different design ideas to avoid many of the issues with traditional error 
handling.

Implementation details 
left out for brevity



222 chapter 8 Leveraging your delivery pipeline for security

Summary

¡	By dividing tests into normal testing, boundary testing, invalid input testing, and 
extreme input testing, you can include security in your unit test suites.

¡	Regular expressions can be sensitive to inefficient backtracking, and, therefore, 
you should check the length of input before sending it to the regular expression 
engine.

¡	Feature toggles can cause security vulnerabilities, but you can mitigate those vul-
nerabilities by verifying the toggle mechanisms using automated tests.

¡	A good rule of thumb is to create a test for every toggle you add, and you should 
test all possible combinations of them.

¡	You should watch out for the combinatory complexity that large numbers of tog-
gles can lead to. The best way to avoid this is by keeping the number of toggles as 
small as possible.

¡	The toggle mechanism itself can be subject to auditing and record keeping.
¡	Incorporating automated security tests into your build pipeline can give you the 

ability to run a mini penetration test as often as you like.
¡	Availability is an important security aspect that needs to be considered in every 

system.
¡	Simulating DoS attacks helps in understanding weaknesses in the overall design.
¡	A domain DoS attack is extremely difficult to protect against because it’s only the 

intent that distinguishes it from regular usage.
¡	Many security problems are caused by misconfiguration, and the cause for faulty 

configuration can be either unintentional changes, intentional changes, or mis-
understood configuration.

¡	Configuration hot spots are good indicators for finding areas in your configura-
tion where testing is most critical.

¡	It’s important to know the default behavior of the tools you use and assert that 
behavior with tests.



223

9Handling failures securely

This chapter covers
¡	Separating business and technical exceptions

¡	Removing security issues by designing for 
failure

¡	Why availability is an important security goal

¡	Designing for resilience for a more secure 
system

¡	Unvalidated data and security vulnerabilities

What is it that makes failures so interesting from a security perspective? Could it be 
that many systems reveal their internal secrets when they fail? Or is it how handling 
failure defines a system’s level of security? Regardless, recognizing that failures and 
security go hand-in-hand is incredibly important when designing secure software. 
This, in turn, requires understanding what the security implications are when mak-
ing certain design choices. For example, if you choose to use exceptions to signal 
errors, you need to make sure you don’t leak sensitive data. Or when integrating 
systems, if you don’t recognize the danger of cascading failures, you could end up 
with a system as fragile as a house of cards.



224 chapter 9 Handling failures securely

Regardless of which design choices you make, or why, you need to consider failure. 
The focus of this chapter isn’t to tell you which design is better, but rather to give you 
insight into the security implications when making certain design choices. Also, the 
scope of failures is huge. To give you an idea of how complex the topic is, we’ll show you 
examples ranging from low-level code constructs to high-level system design. All in all, 
this is a good starting point for learning how to handle failures securely. With that said, 
let’s start with one of the most common design choices—exceptions.

9.1 Using exceptions to deal with failure
Exceptions are often used to represent failures because they allow you to disrupt the 
normal flow of an application program.1 Because of this, it’s common that exceptions 
carry information about why and where the execution flow was disrupted—the why is 
described in the message and the where by the stack trace. In listing 9.1, you see a stack 
trace resulting from a closed database connection. At first glance, it seems harmless, 
but if you look carefully, you’ll see that it reveals information that you might want to 
keep secret. For example, the first line shows that the exception is a java.sql.SQL
Exception. This tells you that data is stored in a relational database, and the system can 
be susceptible to SQL injection attacks. The same line also shows that the code is writ-
ten in Java, which hints that the overall system might be vulnerable to exploits present 
in the language and the Java Virtual Machine (JVM).

Listing 9.1  Stack trace of a SQL exception when the database connection was closed

java.sql.SQLException: Closed Connection         
  at oracle.jdbc.driver.DatabaseError...            
  at oracle.jdbc.driver.DatabaseError.throwSqlException(...
  at oracle.jdbc.driver.PhysicalConnection.rollback(...
  at org.apache.tomcat.dbcp.dbcp.DelegatingConnection...
  at org.apache.tomcat.dbcp.dbcp.PoolingDataSource$ 
                     PoolGuardConnectionWrapper.rollback(...
  at net.sf.hibernate.transaction.JDBCTransaction... 
...

Obviously, the level of detail in a stack trace is meant for troubleshooting rather than 
sharing. But why is it that stack traces get revealed to the end user every now and 
then? The answer lies in a combination of sloppy design and not understanding why 

1 See the Oracle documentation on exceptions at https://docs.oracle.com/javase/tutorial/essential/ 
exceptions/definition.html.

java.sql.SQLException shows Java is used. SQLException indicates that data 
is stored in a relational database.

org.apache.tomcat.dbcp shows  
that Apache Tomcat’s database 
connection pool component is used.2

net.sf.hibernate shows that Hibernate   
is used as an object relational mapper.3

2 See the Apache Commons DBCP documentation at https://commons.apache.org/proper/ 
commons-dbcp/index.html.

3 See “Hibernate ORM: What Is Object/Relational Mapping?” at http://hibernate.org/orm/what-is-
an-orm/.



225Using exceptions to deal with failure

exceptions are thrown. To illustrate this, we’ll walk you through an example where sen-
sitive business information is leaked from the domain because of intermixing business 
and technical exceptions of the same type. The example also helps to demonstrate 
why it’s important to never include business data in technical exceptions, regardless of 
whether it’s sensitive or not.

9.1.1 Throwing exceptions

As illustrated in figure 9.1, there are three main reasons why exceptions are thrown in 
an application: business rule violations, technical errors, and failures in the underlying 
framework. All exceptions share the same objective of preventing illegal actions, but 
the purpose of each one differs. For example, business exceptions prevent actions that 
are considered illegal from a domain perspective, such as withdrawing money from a 
bank account with insufficient funds or adding items to a paid order. Technical excep-
tions are exceptions that aren’t concerned about domain rules. Instead, they prevent 
actions that are illegal from a technical point of view, such as adding items to an order 
without enough memory allocated.

We believe separating business exceptions and technical exceptions is a good design 
strategy because technical details don’t belong in the domain.4 But not everyone agrees. 
Some choose to favor designs that intermix business exceptions and technical excep-
tions because the main objective is to prevent illegal actions, regardless of whether 
the illegality is technical or not. This might seem to be a minor detail, but intermixing 
exceptions is a door opener to a lot of complexity and potential security problems.

Business
exceptions

Technical
exceptions

Domain rule
violations

Framework
violations

Technical
violations

Figure 9.1  Three reasons for throwing exceptions in an application: domain rule  
violations, technical violations, and framework violations

4 See Dan B. Johnsson’s essay “Distinguish Business Exceptions from Technical” in 97 Things Every Pro-
grammer Should Know: Collective Wisdom from the Experts, edited by Kevlin Henney (O’Reilly, 2010).



226 chapter 9 Handling failures securely

In listing 9.2, business and technical exceptions are intermixed using the same excep-
tion type. The main flow is fairly straightforward: a customer’s accounts are fetched 
from a database, and the account matching the provided account number is returned. 
As part of this, an exception is thrown if no account is found or if an error occurs in the 
database.

Listing 9.2  Intermixing business and technical exceptions using the same type

import static java.lang.String.format;
import static org.apache.commons.lang3.Validate.notNull;

public Account fetchAccountFor(final Customer customer,
                               final AccountNumber accountNumber) {
   notNull(customer);
   notNull(accountNumber);

   try {
      return accountDatabase
            .selectAccountsFor(customer)            
            .stream()
            .filter(account >
                    account.number().equals(accountNumber)) 
            .findFirst()                            
            .orElseThrow(
              () > new IllegalStateException(      
                      format("No account matching %s for %s",
                             accountNumber.value(), customer)));
   } catch (SQLException e) {                       
      throw new IllegalStateException(              
            format("Unable to retrieve account %s for %s",
                   accountNumber.value(), customer), e);
   }
}

The documentation of IllegalStateException specifies that it should be used to sig-
nal that a method has been invoked at an illegal or inappropriate time. It could be 
argued that not matching an account is neither illegal nor inappropriate and using 
an IllegalStateException is incorrect—a better choice might be IllegalArgument
Exception. But using IllegalStateException as a generic way of signaling failure is 
quite common, and we’ve decided to follow this pattern to better illustrate the prob-
lem of intermixing technical and business exceptions.

Throwing an exception when no account is found is logically sound, but is this a 
technical problem or a business rule violation? From a technical point of view, not 
matching an account is perfectly fine, but from a business perspective, you might want 
to communicate this to the user—for example, “Incorrect account number, please try 
again.” This motivates having business rules around it, which makes the exception a 
business exception.

Fetches the customer’s 
accounts from the database

Selects only the accounts 
that match the provided 
account number

Selects the first matching 
account because there can 

only be one matching   
account per account number

Throws an IllegalStateException  
if there’s no matching account 
for the provided account number

Translates a SQLException into an IllegalStateException 
with a specific message if there’s an error in the database



227Using exceptions to deal with failure

The second exception (thrown in the catch clause) is caused by a failing database 
connection or a malformed SQL query in the database. This also needs to be communi-
cated, but not by the domain. Instead, you could rely on the surrounding framework to 
give an appropriate message—for example, “We’re experiencing some technical prob-
lems at the moment, please try again later.” This means the domain doesn’t need rules 
for this exception, which makes it a technical exception. But how can you tell if you’re 
dealing with a business or technical exception when both are of type IllegalState
Exception? Well, this is why you shouldn’t intermix business and technical exceptions 
using the same type. But sometimes things are just the way they are, so let’s find out how 
to handle this and learn what the security implications are.

Be careful using findFirst
The Java Stream API offers a rich set of functionality, where findFirst is a method that 
lets you short-circuit stream processing by selecting the first occurrence of an object. In 
listing 9.2, it’s assumed that a one-to-one mapping exists between account and account 
number. Applying findFirst might then seem to be the natural choice, but this is where 
you need to be careful.

If you choose to use findFirst, it implies you don’t care which element you choose as 
long as it exists. But that’s not the case when fetching accounts: associating an account 
number with the correct account is imperative, and anything else is a disaster. The only 
reason that findFirst works in fetchAccountFor is because of the underlying rela-
tionship between account and account number. If this suddenly changes (either inten-
tionally or because of a bug), the behavior of fetching accounts becomes random, and 
that’s a hard bug to find!

A better solution is to use the Stream API’s reduce method instead of findFirst to 
state the uniqueness assumption explicitly and to fail if multiple elements are found. 
The reduce operation is sometimes perceived as complex and hard to understand, but 
the essence is that it reduces the number of elements in a stream by applying an asso-
ciative accumulation function to derive a new element. For example, summation can be 
expressed as reduce((a, b) → a + b). This implies that reduce executes only if there 
are two or more elements present in a stream, and this is something you can use as a guar-
antee or contract. If reduce executes, you know the uniqueness requirement has been 
violated, but instead of reducing two elements into one, you throw an exception; for exam-
ple, reduce((accountA, accountB) → throw new IllegalStateException(...). 
This way, assumptions are stated explicitly, along with avoiding ambiguities and random 
behavior by design.

9.1.2 Handling exceptions

Handling exceptions seems easy at first; you surround a statement with a trycatch block 
and you’re done. But when different failures use the same exception type, things get a 
bit more complicated. In listing 9.3, you see the calling code of the fetch AccountFor
method in listing 9.2. Because you want to deal with only business exceptions in the 



228 chapter 9 Handling failures securely

domain, you need to figure out how to distinguish between business exceptions and 
technical exceptions, even though both are of type IllegalStateException.

Unfortunately, you don’t have much to go on, because both exceptions carry the 
same data. The only tangible difference is the internal message: the business excep-
tion message contains “No account matching,” and the technical exception contains 
“Unable to retrieve account.” This allows you to use the message as a discriminator and 
pass technical exceptions to a global exception handler that catches all exceptions, logs 
the payload, and rolls back the transaction due to technical problems.

Listing 9.3  Separating technical and business exceptions by message contents

import static org.apache.commons.lang3.Validate.notNull;

private final AccountRepository repository;

public Balance accountBalance(final Customer customer,
                              final AccountNumber accountNumber) {
   notNull(customer);
   notNull(accountNumber);

   try {
      return repository.fetchAccountFor(customer, accountNumber)
                       .balance();
   } catch (IllegalStateException e) {
      if (e.getMessage().contains("No account matching")) { 
         return Balance.unknown(accountNumber);    
      }
      throw e;                                     
   }
}

But what happens if you change the message or add another business exception with a 
different message? Won’t that cause the exception to propagate out of the domain? It 
certainly will, and this is how sensitive data often ends up in logs or accidentally being 
displayed to the end user.

In listing 9.1, you saw how stack traces reveal information that doesn’t make sense 
to show to a normal user. Instead, displaying a default error page with an informative 
message would be far better; for example, the message “Oops, something has gone 
terribly wrong. Sorry for the inconvenience. Please try again later.” A global exception 
handler is often used for this purpose because it prevents exceptions from propagat-
ing to the end user by catching all exceptions. Different frameworks use different solu-
tions for this, but the idea is the same. All transactions execute via a global exception 
handler, and if an exception is caught, the exception payload is logged and the trans-
action is rolled back. This way, it’s possible to prevent exceptions from propagating 
further, which makes it a lot harder for an attacker to retrieve internal information 
when a transaction fails.

Let’s turn back to the accountBalance method in listing 9.3. It’s obvious you can’t 
discriminate based on the exception message, because it makes the design too fragile. 

Checks the internal message to determine   
if it’s a business exception or not

Returns an unknown balance 
for the requested account 
number if the message matchesPropagates the exception further up the 

call stack if the message doesn’t match



229Using exceptions to deal with failure

Instead, you should separate business and technical exceptions by explicitly defining 
exceptions that are important for the business.

In listing 9.4, you can see an explicit domain exception (AccountNotFound) that sig-
nifies the event of not matching an account. The exception extends the generic type 
AccountException, which acts only as a marker type—a design decision that helps to 
prevent accidental business exceptions from leaking from the handling logic.

Listing 9.4  An explicit domain exception signifying that no account has been found

import static org.apache.commons.lang3.Validate.notNull;

public abstract class AccountException extends
                               RuntimeException {} 

public class AccountNotFound extends
                               AccountException {  
   private final AccountNumber accountNumber;
   private final Customer customer;

   public AccountNotFound(final AccountNumber accountNumber,
                          final Customer customer) {
      this.accountNumber = notNull(accountNumber);
      this.customer = notNull(customer);
   }
   ...
}

In listing 9.5, the fetchAccountFor method is revised to use the AccountNotFound
exception instead of a generic IllegalStateException. This way, the code is clarified 
in the sense that you don’t need to provide a message or worry about intermixing its 
purpose with other exceptions.

Listing 9.5  Explicitly defining a domain exception to signal that no account is found

import static java.lang.String.format;
import static org.apache.commons.lang3.Validate.notNull;

private final AccountDatabase accountDatabase;

public Account fetchAccountFor(final Customer customer,
                               final AccountNumber accountNumber) {
   notNull(customer);
   notNull(accountNumber);

   try {
      return accountDatabase
            .selectAccountsFor(customer).stream()
            .filter(account > account.number().equals(accountNumber))
            .findFirst()
            .orElseThrow(() >
                new AccountNotFound(accountNumber,customer));    

Generic domain type that all 
account exceptions extend

Explicit domain exception 
that signifies that no 
account has been found

Replaces the generic 
IllegalStateException with an 

explicit domain exception



230 chapter 9 Handling failures securely

   } catch (SQLException e) {
      throw new IllegalStateException(
            format("Unable to retrieve account %s for %s",
                   accountNumber.value(), customer), e);
   }
}

In listing 9.6, the handling logic is revised to catch the exceptions AccountNotFound and 
AccountException. From a security perspective, this is much better because it allows 
less complex mappings between business rules and exceptions, compared with using 
only generic exceptions such as IllegalStateException. Catching AccountException
seems redundant, but this safety net is quite important. Because all business exceptions 
extend AccountException, it’s possible to guarantee that all business exceptions are 
handled and that only technical exceptions propagate to the global exception handler.

Listing 9.6  Revised handling logic with explicit domain exception

import static java.lang.String.format;
import static org.apache.commons.lang3.Validate.notNull;

private final AccountRepository repository;

public Balance accountBalance(final Customer customer,
                              final AccountNumber accountNumber) {
   notNull(customer);
   notNull(accountNumber);

   try {
      return repository.fetchAccountFor(customer, accountNumber)
                       .balance();
   }
   catch (AccountNotFound e) {                    
      return Balance.unknown(accountNumber);
   }
   catch (AccountException e) {                   
      throw new IllegalStateException(            
            format("Unhandled domain exception: %s",
                   e.getClass().getSimpleName()));
   }
}

Separating business exceptions and technical exceptions clearly makes the code less com-
plex and helps prevent accidental leakage of business information. But sensitive data isn’t 
leaked only through unhandled business exceptions. It’s often the case that business data 
is included in technical exceptions for debugging and failure analysis as well; for example, 
in listing 9.5, the SQLException is mapped to an IllegalStateException that includes 
the account number and customer data, which are needed only during failure analysis. 
To some extent, this counteracts the work of separating business and technical excep-
tions, because sensitive data leaks regardless. To address this issue, you need a design that 
enforces security in depth—so let’s have a look at how to deal with exception payload.

Handles AccountNotFound exception explicitly 
without parsing the internal message

Catches all unhandled business exceptions

Signals that an unhandled domain 
exception has been detected and that 
the transaction should be aborted



231Using exceptions to deal with failure

9.1.3 Dealing with exception payload

There are two parts of an exception that are of special interest when analyzing failures: 
the type and the payload. By combining type information and payload data, you get 
an understanding of what failed and why it failed. As a consequence, many developers 
tend to include lots of business information in exceptions, regardless of how sensitive 
it is. For example, in the next listing, you see a snippet from the fetchAccountFor
example where an IllegalStateException is populated with the account number 
and customer data, even though it’s a technical exception.

Listing 9.7  Including sensitive data in a technical exception

import static java.lang.String.format;

catch (SQLException e) {
   throw new IllegalStateException(
         format("Unable to retrieve account %s for %s",
             accountNumber.value(), customer), e); 
}

Having the account number and customer data during failure analysis certainly helps, 
but from a security perspective, you have a major problem. All technical exceptions 
propagate to the global exception handler that logs all exception data before rolling 
back the transaction. This means that the account number and customer data, like 
Social Security number, address, and customer ID, get logged when a database error 
occurs—a major security problem that requires logs to be placed under strict access 
and authorization control. And this isn’t what you want when developers need access 
to production logs.

Obviously, you don’t want sensitive data to escape the business domain, but some-
times it’s hard to recognize what’s sensitive. Exceptions can travel across context 
boundaries, and insensitive data in one context could become sensitive when entering 
another context. For example, a car’s license plate number tends to be seen as public 
information, but if someone runs your car’s plate against the Department of Motor 
Vehicles database to identify you, it suddenly becomes information you don’t want to 
share. This puts you in a difficult position. On one hand, you need enough information 
to facilitate failure analysis; on the other hand, you want to prevent data leakage. How 
does this affect the design?

To start with, you need to recognize that almost any business data is potentially sensi-
tive in another context. This means it’s good design practice to never include business 
data in technical exceptions, regardless of whether it’s sensitive or not. Also, you need 
to make sure to provide only information that makes sense from a technical perspec-
tive; for example, “Unable to connect to database with ID XYZ,” instead of the account 
number and customer data that caused the failure. This way, you know that it’s safe to 
propagate technical exceptions from the domain and that the payload never contains 
sensitive business data.

Leaks account number 
and customer data from 
the business domain 
when logged by the 
global exception handler



232 chapter 9 

Has
sufficient
funds?

Yes

No

Initiate
transfer

Execute
transfer

Execution flow of
a money transfer

Reject
transfer

Figure 9.2  The possible outcomes of a money transfer between bank accounts

Handling failures securely

But following this practice gets you only halfway. You also need to identify sensitive 
data in your domain and model it as such. In chapter 5, you learned about the read-once
pattern, which prevents data from being read multiple times and accidentally serial-
ized; for example, when sent over the network or written to log files. If the account 
number and customer data had been modeled as sensitive and the read-once pattern 
used, illegal logging in the global exception handler would have been detected.

The choice of using exceptions to represent technical errors and valid results pri-
marily opens the door to data leakage problems. By separating business and technical 
exceptions along with using the read-once pattern, it’s possible to solve this—but is it 
the best solution, or is there another way? Perhaps, so let’s evaluate how to handle fail-
ures without exceptions and see what security benefits there are.

9.2 Handling failures without exceptions
Using exceptions to represent failures in domain logic is a common practice, but 
another equally common approach is to not use exceptions at all. This approach starts 
with the design mindset that failures are a natural and expected outcome of anything 
we do. Because exceptions represent something exceptional (the name kind of gives 
it away) and failures are expected outcomes, it doesn’t make sense to model them as 
exceptions. Instead, a failure should be modeled as a possible result of a performed 
operation in the same way a success is. By designing failures as unexceptional out-
comes, you can avoid several of the problems that come from using exceptions—
including ambiguity between domain and technical exceptions, and inadvertently 
leaking sensitive information.

If you look at the logic you implement in an application, it quickly becomes obvious 
that it’s not only about happy cases. When you execute a method, you have an intention 
of performing a specific action. Performing that action can almost always have multiple 
outcomes. At the very least, it can succeed or it can fail. In this section, you’ll learn how 
to gain more security by designing failures without using exceptions.

To explain this design approach, let’s illustrate the difference between designing fail-
ures as exceptions versus designing them as expected outcomes. We’ll do this by solving 
the same task using the two different approaches. The task is to implement a system to 
transfer money between bank accounts. In the current domain of banking, a money 
transfer can have two possible outcomes: either the transaction is performed or it fails 
due to insufficient funds (figure 9.2).

9.2.1 Failures aren’t exceptional

If you choose to design using exceptions, your implementation will look something like 
listing 9.8. The method to transfer money from one bank account to another is called 
transfer and takes two arguments: the amount to transfer and the destination account. 
The first thing that needs to be done in the transfer method is to check that there are 
enough funds in the source account to cover the transfer. If the source account is lacking 
funds, an InsufficientFundsException is thrown; in which case, the exception needs 



233Handling failures without exceptions

to be handled appropriately—perhaps by asking the user to adjust the amount or abort 
the transaction. If sufficient funds are available, you can execute the transfer by calling 
another backend system through the executeTransfer(amount, toAccount) method. 
This method can also throw exceptions in case of a failure. If the executeTransfer
method is successful, nothing more happens and the code calling transfer continues to 
execute as normal.

Listing 9.8  Using exceptions for business logic

import static org.apache.commons.lang3.Validate.notNull;

public final class Account {

  public void transfer(final Amount amount,
                       final Account toAccount)
        throws InsufficientFundsException {
    notNull(amount);
    notNull(toAccount);

    if (balance().isLessThan(amount)) {          
      throw new InsufficientFundsException();    
    }

    executeTransfer(amount, toAccount);          
  }

  public Amount balance() {
      return calculateBalance();
  }

  // ...
}



Checks whether there are sufficient funds

Throws an exception if there 
aren’t enough funds

Calls underlying systems to execute the 
transfer; may also throw exceptions

But following this practice gets you only halfway. You also need to identify sensitive 
data in your domain and model it as such. In chapter 5, you learned about the read-once 
pattern, which prevents data from being read multiple times and accidentally serial-
ized; for example, when sent over the network or written to log files. If the account 
number and customer data had been modeled as sensitive and the read-once pattern 
used, illegal logging in the global exception handler would have been detected.

The choice of using exceptions to represent technical errors and valid results pri-
marily opens the door to data leakage problems. By separating business and technical 
exceptions along with using the read-once pattern, it’s possible to solve this—but is it 
the best solution, or is there another way? Perhaps, so let’s evaluate how to handle fail-
ures without exceptions and see what security benefits there are.

9.2 Handling failures without exceptions
Using exceptions to represent failures in domain logic is a common practice, but 
another equally common approach is to not use exceptions at all. This approach starts 
with the design mindset that failures are a natural and expected outcome of anything 
we do. Because exceptions represent something exceptional (the name kind of gives 
it away) and failures are expected outcomes, it doesn’t make sense to model them as 
exceptions. Instead, a failure should be modeled as a possible result of a performed 
operation in the same way a success is. By designing failures as unexceptional out-
comes, you can avoid several of the problems that come from using exceptions—
including ambiguity between domain and technical exceptions, and inadvertently 
leaking sensitive information.

If you look at the logic you implement in an application, it quickly becomes obvious 
that it’s not only about happy cases. When you execute a method, you have an intention 
of performing a specific action. Performing that action can almost always have multiple 
outcomes. At the very least, it can succeed or it can fail. In this section, you’ll learn how 
to gain more security by designing failures without using exceptions.

To explain this design approach, let’s illustrate the difference between designing fail-
ures as exceptions versus designing them as expected outcomes. We’ll do this by solving 
the same task using the two different approaches. The task is to implement a system to 
transfer money between bank accounts. In the current domain of banking, a money 
transfer can have two possible outcomes: either the transaction is performed or it fails 
due to insufficient funds (figure 9.2).

9.2.1 Failures aren’t exceptional

If you choose to design using exceptions, your implementation will look something like 
listing 9.8. The method to transfer money from one bank account to another is called 
transfer and takes two arguments: the amount to transfer and the destination account. 
The first thing that needs to be done in the transfer method is to check that there are 
enough funds in the source account to cover the transfer. If the source account is lacking 
funds, an InsufficientFundsException is thrown; in which case, the exception needs 

Has
sufficient
funds?

Yes

No

Initiate
transfer

Execute
transfer

Execution flow of
a money transfer

Reject
transfer

Figure 9.2  The possible outcomes of a money transfer between bank accounts



234 chapter 9 Handling failures securely

import static org.apache.commons.lang3.Validate.isTrue;
import static org.apache.commons.lang3.Validate.notNull;

public final class Amount implements Comparable<Amount> {
   private final long value;

   public Amount(final long value) {
      isTrue(value >= 0, "A price cannot be negative");
      this.value = value;
   }

   @Override
   public int compareTo(final Amount that) {
      notNull(that);
      return Long.compare(value, that.value);
   }

   public boolean isLessThan(final Amount that) {
      return compareTo(that) < 0;
   }

   // ...

}

With this approach, you’re handling the flow of your business logic using two mecha-
nisms in the programming language. One is the result from calling a method (in this 
case, the result is void), and the other is the exception mechanism. You’re using the 
exception mechanism of the programming language as part of your control flow.

Let’s stop for a second and think about the semantics of using exceptions as a con-
trol flow in the transfer method. By doing so, you’re saying that not having sufficient 
funds in the source account is an exceptional occurrence. You’re treating the negative 
result as something exceptional. This is a common way of designing code, but there’s an 
alternative way to view failures. This alternative way stems from the perspective that fail-
ures aren’t exceptional but rather an expected outcome of any task you try to perform.

9.2.2 Designing for failures

In banking, it’s not uncommon for users to try to initiate a transfer of an amount that’s 
larger than the current account balance. This can, for example, happen if the amount 
is entered incorrectly, or if the user thinks they have more money in the account than 
they actually have. For whatever reason, it’s relatively common for a money transfer to 
fail due to insufficient funds. Not having sufficient funds is therefore an expected out-
come of the operation “trying to transfer money.” Because it’s an expected outcome, it 
shouldn’t be modeled as an exceptional one. Rather, it should be modeled as a possi-
ble result of the action.

If you redesign the transfer method from listing 9.8 so that insufficient funds are 
an expected outcome, you’ll have something like that in listing 9.9. This new method 
won’t throw any exceptions as part of the logical flow. Instead, it returns the result of 
the transfer operation. The result can either be a success or a failure, and in the case 



235Handling failures without exceptions

of a failure, it’s possible for the calling code to find out what type of failure it was by 
inspecting the result. If there aren’t enough funds, an INSUFFICIENT_FUNDS failure is 
returned. Otherwise, the method continues and will try to execute the transfer via the 
executeTransfer(amount, toAccount) method. The executeTransfer method also 
returns a result that can either be a success or a failure due to difficulties in executing 
the transfer. When the executeTransfer method finishes, the money transfer either 
succeeds or fails, with a failure message indicating the reason for failure.

Listing 9.9  Expected results not modeled as exceptional

import static Result.Failure.INSUFFICIENT_FUNDS;
import static Result.success;
import static org.apache.commons.lang3.Validate.notNull;

public final class Account {

  public Result transfer(final Amount amount,
                         final Account toAccount) {
     notNull(amount);
     notNull(toAccount);

     if (balance().isLessThan(amount)) {           
        return INSUFFICIENT_FUNDS.failure();       
     }

     return executeTransfer(amount, toAccount);    
  }

  public Amount balance() {
     return calculateBalance();
  }

  // ...
}



import java.util.Optional;

public final class Result {

   public enum Failure {
      INSUFFICIENT_FUNDS,                          
      SERVICE_NOT_AVAILABLE;

      public Result failure() {
         return new Result(this);
      }
   }

   public static Result success() {
      return new Result(null);
   }

Checks whether there are sufficient funds

Returns the failure as a result 
instead of throwing an exception

Returns the result of calling 
the underlying systems to 
execute the transfer

Different types of possible failures



236 chapter 9 Handling failures securely

   private final Failure failure;

   private Result(final Failure failure) {
      this.failure = failure;
   }

   public boolean isFailure() {
      return failure != null;
   }

   public boolean isSuccess() {
      return !isFailure();
   }

   public Optional<Failure> failure() {
      return Optional.ofNullable(failure);
   }
}

It’s worth pointing out that the Result shown in listing 9.9 is a basic implementation. 
Once you start using result objects, you’ll probably find that you want to design them 
in certain ways to make them easy to work with and error-free. As an example, if you’re 
using a functional style of programming, you might want to add the ability to perform 
operations such as map, flatmap, and reduce to simplify dealing with results. Exactly 
how you choose to design them is up to you or your team.

By designing failures as expected and unexceptional outcomes, you completely elim-
inate the use of exceptions as part of the domain logic. By doing so, you’re able to either 
avoid or reduce the risk of many of the security issues you faced when designing your code 
with exceptions. Some of the security benefits of this approach are listed in table 9.1.

Table 9.1  Security benefits of designing failures as expected outcomes

Security issue Solved through

Ambiguity between domain exceptions 
and technical exceptions

Domain exceptions are completely removed.

Exception payload leaking into logs Failures aren’t handled by generic error-handling code, and, 
therefore, the data the payload carries doesn’t accidentally slip 
into error logs.

Inadvertently leaking sensitive 
information

Failures are handled in a context that has knowledge about 
what’s sensitive and what’s not and knows how to handle sensi-
tive data properly.

In our experience, another benefit of treating failures as unexceptional is that once 
you start designing both successes and failures as results, the only exceptions that can 
still occur are those caused by either bugs or a violation of an invariant.

So far, you’ve seen how to handle failures in a secure way on a code level by either 
using exceptions or designing your failures as unexceptional. In the next section, we’ll 



237Designing for availability

discuss more high-level designs to show you how you can use design principles com-
monly used for resilience to gain security benefits.

9.3 Designing for availability
The availability of data and systems is an important security goal and is part of the 
CIA acronym (confidentiality, integrity, and availability).5 The National Institute of 
Standards and Technology (NIST) publication “Engineering Principles for Informa-
tion Technology Security” talks about five different goals for IT security: confidenti-
ality, availability, integrity, accountability, and assurance.6 It defines availability as the 
“goal that generates the requirement for protection against intentional or accidental 
attempts to (1) perform unauthorized deletion of data or (2) otherwise cause a denial 
of service or data.” In this section, you’ll learn about design concepts that improve the 
availability of a system—concepts you can use to create more secure systems.

We’ve gathered some well-known and commonly used concepts that promote avail-
ability, and it’s our belief that they’re also some of the most important and foundational 
principles on the subject. We could easily write an entire book on how to build systems 
that are robust and that will stay available even when experiencing failures. Going into 
great depth on each concept is beyond the scope of this book, but it’s our intention to 
provide you with enough knowledge to understand each one and how they promote the 
security of a system. Once you see the connection to security for the concepts described, 
they will become even more valuable as guiding design principles.

9.3.1 Resilience

It’s becoming increasingly common to design and build systems to be resilient. A system 
that’s resilient is designed to stay functional even during high stress. Stress for a system 
can be caused by both internal failures (such as errors in code or failing network com-
munication) and external factors (such as high traffic load). Stress can cause a resilient 
system to slow down or run with reduced functionality, and parts of the system can 
crash, but the system as a whole will stay available, and it’ll recover once the stress it’s 
been put under disappears.

Another way to describe a system that’s resilient is to say it’s stable. You can design 
stable systems in several ways (some of which you’ll learn about in this chapter), but the 
main goal of a resilient system is to survive failures and continue to provide its service. 
Put differently, a resilient system is a system that stays available in the presence of failures.

Because availability is an explicit security goal, and a resilient system stays available 
during failures, a system that is resilient must also by definition be a more secure system. 
This, in turn, leads to the conclusion that all contemporary and well-established design 
practices that promote the resilience and stability of a system are also beneficial to use 
when designing secure systems.

5 Go back to chapter 1 for more details on CIA.
6 NIST Special Publication 800-27 Rev A, “Engineering Principles for Information Technology Security 

(A Baseline for Achieving Security),” by Gary Stoneburner, Clark Hayden, and Alexis Feringa. Avail-
able at https://csrc.nist.gov/publications/detail/sp/800-27/rev-a/archive/2004-06-21.



238 chapter 9 Handling failures securely

9.3.2 Responsiveness

Say you’ve built a system that’s resilient and stays available during high stress. It doesn’t 
crash, but when the load on the system becomes high enough, the response times 
increase dramatically. When the system is available but responds slowly, another sys-
tem calling the slow system eventually gets a response, but it can take an unacceptably 
long time. From the caller’s point of view, the system under load can be considered to 
be unusable, even though it’s technically still available. This is where responsiveness 
comes in as an important trait when discussing availability.

For a system to be responsive, it not only needs to survive stress but also has to respond 
quickly to anyone trying to use it during times of stress. Even if you’ve optimized the pro-
cessing logic as much as possible to make the system run faster, the system will still have 
a threshold for how much stress it can handle before the response times go through 
the roof. When this happens, you might wonder how you can possibly make the system 
respond any faster. In this situation, it’s important to realize that to stay responsive, it’s 
far better to answer quickly with an error saying that the system is unable to accept any 
more requests than to have the caller sit around waiting for an answer that might never 
come. Any answer is better than no answer, even if that answer is rejecting the request.

To make the system more responsive without rejecting requests, you could, for 
example, place all the processing work in a queue. Separating the requests for pro-
cessing and the actual processing makes the system more asynchronous. This way, even 
if the work queue is growing because of a high load and the requested work takes a 
long time to finish, the system will be able to accept new requests. The caller gets a fast 
response saying that the request has been accepted, but it’ll have to wait before the 
result of the work is available. The work queue might eventually get full; in which case, 
you’ll have to decide how to handle that situation—possibly by denying more work to 
be queued and asking the caller to try again later.

Staying responsive is important for security, because for a system to be truly available, 
it’s not enough that it be resilient and survive stress, it’s also necessary for it to con-
tinue to respond quickly. How quickly it needs to respond depends on the system you’re 
building and the maximum acceptable response time before the system is considered 
to be unavailable.

9.3.3 Circuit breakers and timeouts

A useful design pattern when building resilient systems is the circuit breaker pattern.7

This pattern is handy for dealing with failures in a way that promotes system resilience, 
responsiveness, and overall availability—and therefore, also security.

The general idea of the circuit breaker pattern is to write code that protects a sys-
tem from failures in the same way that an electrical fuse protects a house in the case 
of failure in the electrical system. A fuse is designed to break the electrical circuit if an 

7 See Michael T. Nygard’s Release It! Design and Deploy Production-Ready Software (The Pragmatic Bookshelf, 
2007).



239Designing for availability

excessive load is placed on the system (for example, by a faulty appliance or a short-
circuit somewhere). If the circuit doesn’t break, a high electrical current can generate 
so much heat that a fire can start. By breaking the circuit, and thereby isolating or stop-
ping the failure, it’s possible to prevent the entire house from burning down.

In the same way that a fuse protects a house, a circuit breaker in software can isolate 
failures and prevent an entire system from crashing. Just as an electrical current passes 
through a fuse during normal operation, you use a circuit breaker to protect your sys-
tem by having your method calls or requests to other systems pass through it. Figure 9.3 
shows an example of a rudimentary circuit breaker.

Depending on which state the circuit breaker is in, the request is handled differently. 
If it’s in the closed state, any request performed passes through it. If the request com-
pletes successfully, nothing more happens. If the request fails, it’ll increment a failure 
counter. If multiple subsequent calls fail, then the failure count eventually reaches a 
threshold that triggers the circuit breaker to open. Once it’s in its open state, any new 
requests won’t pass through but will fail immediately by the circuit breaker.

When a circuit breaker is open, it’s effectively applying the fail-fast pattern instead 
of letting the requests pass through. If a circuit breaker is open, after a while it’ll tran-
sition into a half-open state. In the half-open state, it can let one or more requests pass 
through to see if they’ll succeed. In the event of success, the circuit breaker can return 
to its closed state and let all requests pass through. In the event of failure, the circuit 
breaker goes back to its open state until it’s ready to let another trial request through.

When you make a call to another service, it’s important to specify a timeout for that 
request. If an integration point is unresponsive, you don’t want your application to hang 
forever, waiting for a response, because that eventually makes your system unstable. 
Because both timeouts and circuit breakers deal with protecting a system when making 
requests to other systems, they typically go hand-in-hand. It’s common for implemen-
tations of circuit breakers to track timeouts separately and sometimes to even provide 
built-in functionality for managing timeouts for requests.

Closed Open

Half-open

Retry
succeeded

Retry
failed

Time
to retry
elapsed

Failure threshold
reached

Figure 9.3  The three states of a circuit breaker



240 chapter 9 Handling failures securely

Always specify a timeout
In Java, for example, the default timeout for a network call is infinite—meaning that if a 
timeout isn’t explicitly set, a network call waits forever for a response. As a result, the 
number of systems that have turned into unresponsive memory hogs due to unrespon-
sive integration points is almost infinite too. Whatever environment you’re in, whatever 
programming language or framework you use, always make sure you explicitly set a time-
out for all your network requests.

Circuit breakers are typically used when making inter-process requests from one ser-
vice to another, but they can also be used within the same service if it makes sense 
to do so. What makes the circuit breaker pattern so effective is that it works well for 
preventing failures from spreading from one part of a system to another. Isolating the 
failures and offloading the part of the system currently experiencing stress increases 
the stability of the system. Through the use of the fail-fast approach, it also improves 
the responsiveness of the system. Because circuit breakers promote both the resilience 
and the responsiveness of a system, this is an effective design pattern for improving the 
security of a system by increasing its availability.

a note on circuit breakers and domain modeling

When using circuit breakers, it’s common to use a default answer when a call fails. This 
is sometimes called a fallback answer. This pattern is quite effective and allows systems 
to continue to function despite failures, albeit with reduced or limited functionality.

One thing that’s important to remember is that the way the system should behave 
if a request fails is usually a decision that affects your domain logic, and, therefore, it’s 
a decision that needs to be made together with the domain experts. For example, if 
you’re unable to check the inventory for an item when a customer places an order, do 
you refuse to take the order and lose a sale, or do you continue processing the order 
and deal with the unlikelihood of the item being out of stock? The answer is that it 
depends on how the business wants to handle this scenario. Another example is if you 
need to get a list of all books written by a particular author. Is it OK to return an empty 
list if the remote service you need to call is down? Sometimes that might be acceptable, 
but at other times, it’s necessary to convey the failure so the client can distinguish a fail-
ure from the fact that no books exist for a given author.

TIP  When you use default or fallback answers with circuit breakers, make sure 
to involve the domain experts. Then model and design your failure-handling 
code as you would any other business logic.

The approach of designing for failures that you read about earlier in this chapter is 
a great way of handling these scenarios. It forces you to handle failures within your 
domain logic rather than as part of your infrastructure logic.

Finally, circuit breakers are typically a design tool brought into a codebase by devel-
opers, and it’s easy to think they are only relevant from a technical perspective. More 



241Designing for availability

often than not, the opposite is true. We encourage you to involve your domain experts 
and stakeholders in the use of circuit breakers so you can design systems that not 
only technically stay available, but also continue to work as intended from a business 
perspective.

9.3.4 Bulkheads

The bulkhead design pattern is another tool you can use to efficiently prevent failures 
in one part of a system from spreading and taking down the entire system. Bulkheads 
can be applied as both a high-level design pattern when architecting infrastructure 
(such as servers, networks, routing of traffic, and so on) and a low-level design pattern 
for designing resilient code. Because bulkheads are so commonly used and do such 
a good job of isolating failures, it’s a pattern that you should become familiar with to 
create systems with a high degree of availability.

In ship building, the term bulkhead refers to a wall or panel used to compartmental-
ize the hull into sections that are sealed against both water and fire (figure 9.4). Con-
structing a ship with these types of compartments means that if a water leak or fire were 
to occur in one part of the ship, the bulkheads would prevent the ship from taking on 
too much water and sinking or the fire from spreading.

In software, the same design techniques can be used to build resilient systems. One 
thing that’s interesting with the bulkhead pattern is that it can be applied on different 
levels in your architecture. Let’s take a look at each of these levels so you can get an 
idea of various ways to apply this pattern.

location level

At a high level, a system’s availability can be improved by running the system on servers 
distributed over multiple geographical locations. If one location becomes inoperable— 
perhaps because of a power outage, a network fiber dug up during construction work, 
or an earthquake—then the other location or locations will still be available to pro-
vide the service. When deploying systems this way, you typically design each location to 
be completely self-sustained so that no interdependencies exist. How you choose the 
geographic locations depends on the business requirements, but they can be anything 
from different parts of a town to different parts of the world.

Partitioning a ship hull by use of bulkheads

Bulkheads

Figure 9.4  A ship hull constructed with bulkheads



242 chapter 9 Handling failures securely

infrastructure level

Zooming in a bit, you can also apply the bulkhead pattern when designing your system 
infrastructure. For example, if you have a backend for a webshop, you can have one set 
of servers handling the load of customers browsing products and adding them to the 
shopping cart and another set of servers handling the checkout and payment flow, as 
seen in figure 9.5.

By partitioning the workload on your backend servers, you separate different areas of 
business functionality so they don’t affect each other. (You could also choose to parti-
tion your frontend servers, but we’ll disregard that in this example.) For example, a 
release of a popular product that you sell could potentially generate so much traffic 
that the servers handling product information start to slow down due to the high load. 
But because the checkout process is handled by a different set of servers, the ongoing 
sales aren’t affected by the high demand on product information. The use of bulk-
heads ensures that the reduction or loss of availability in one part of the system doesn’t 
affect the availability of another part. Service-oriented architectures are typically a 
good fit for applying bulkheads in this manner.

One thing to watch out for when partitioning services and servers is hidden depen-
dencies. If you have multiple services using the same database, for example, then one 
service can cause slow responses or deadlocks in the database, which in turn can reduce 
the availability of another service. In this scenario, you’ve failed to properly apply the 
bulkhead by not separating the persistence solution. Other common hidden depen-
dencies are message queues; network storage, like storage area networks (SANs) and 
network-attached storage (NAS); and shared network infrastructure, like routers and 
firewalls. It’s also common to see bulkheading applied via use of virtualization technol-
ogies, such as containers and virtual machines. These technologies are great, but if you 
run everything on the same physical hardware, you’ve managed to create not only a lot 
of complexity, but also a hidden dependency. If the hardware crashes, it doesn’t matter 
how many containers you partitioned your system on—they’ll all go down together.

Frontend

Multiple
instances to
distribute load

Separating load and service instances by business functionality

Backend

Web app

Product info
service

Checkout &
payment service

Figure 9.5  Protecting business functionality by partitioning workload



243Designing for availability

code level

You can also use bulkheads when designing your code. A common example of the 
bulkhead pattern applied on a code level is thread pools. The reason this is common 
is that if you let your code create an unlimited number of threads, your application 
inevitably grinds to a halt and possibly crashes. An easy and effective way to limit the 
number of threads is to use a thread pool. A thread pool lets you set a limit on how 
many threads the code can create. You can then use the threads in the pool to process 
work. Regardless of how much work needs to be processed, there’ll never be more 
threads than are allowed in the pool. You also have the benefit of reusing threads in 
the pool instead of constantly creating new ones. Request pools in web servers and con-
nection pools for databases are typical real-world uses of thread pools that you might 
have encountered before.

Queues are another code construct you can use in order to isolate failures in your 
code base. Queues are often used together with thread pools. If all the threads in the 
pool are busy, additional work can be put in a queue. As soon as a thread becomes avail-
able in the pool, the queue can be queried for work to be processed. If work is added to 
the queue at a higher rate than the thread pool can process, the queue grows in size. If 
this continues, the queue eventually becomes full and, at that point, the application can 
refuse to accept any new work.

Going back to the example of the webshop backend that provides product informa-
tion and processes orders, you can write your code to use different thread pools and 
queues for different types of work. If one thread pool becomes so busy it needs to put 
work in a queue for later processing, the other thread pool can continue unaffected. 
Moreover, if the queue for fetching product information becomes full and the system 
starts to refuse more requests for product information, the queue for order processing 
can still accept new work and continue processing.

By using thread pools and queues as bulkheads, you’re preventing the consumption 
of resources in one part of your code from affecting another part. If one part of your 
code becomes unavailable, other parts will remain available even if they’re within the 
same service instance. This effectively increases the availability of your system.

The Reactive Manifesto
The Reactive Manifesto defines four important traits that need to be present for what it 
calls a reactive system: the system must be responsive, resilient, elastic, and message 
driven (http://reactivemanifesto.org). A reactive system, according to the manifesto, is a 
system that’s “more robust, more resilient, more flexible, and better positioned” to meet 
the demands put on modern systems. But, as it turns out, the Reactive Manifesto is also 
interesting from a security perspective. Let’s take a look at why.

The goal of the manifesto is to promote good design practices by creating a common, ubiqui-
tous vocabulary to use when discussing modern system design. The manifesto talks about 
the four traits and what defines each of them, and it also discusses how to achieve them.



244 chapter 9 Handling failures securely

The main focus of the manifesto is how to build systems that can live up to the demands 
put on them. Modern systems need to live up to far higher demands than their prede-
cessors. They need to serve more data to more users and with shorter response times. 
Downtime should be minimal, and it’s necessary for modern systems to be able to adapt 
to fluctuations in load. Reactive systems meet these demands and are also typically 
more modular in their design, which tends to make them easier to develop and to evolve.

A reactive system stays resilient and responsive during periods of high stress. It’s 
designed to have a high degree of availability. This makes the Reactive Manifesto inter-
esting from a security perspective, because availability is an important trait for secure sys-
tems. If you’re designing your systems to be reactive, you not only are getting the benefits 
of scalability and high capacity, but you’re also improving the security of the systems.

You’ve now learned that availability is an important security goal, and you’ve learned 
how you can improve the availability of a system by making it more resilient. You’ve 
also seen some common techniques for designing resilient and responsive systems. If 
you weren’t familiar with them before, you now have a good starting point for learn-
ing more about building resilient systems. In any case, you’ve hopefully grokked the 
connection between resilient systems and security, and learned yet another reason for 
building systems that survive failures. Now it’s time to take a look at how to avoid secu-
rity flaws when dealing with bad data.

9.4 Handling bad data
When dealing with data, whether it’s from a database, user input, or an external source, 
there’s always a chance it’ll be partially broken by having trailing spaces, missing char-
acters, or other flaws that make it invalid. Regardless of the cause, how your code han-
dles bad data is essential for security. In chapter 4, you learned about using contracts to 
protect against bad state and input that doesn’t meet the defined preconditions. This 
certainly tightens the design and makes assumptions explicit, but applying contracts 
often leads to discussions about repairing data before validation to avoid unnecessary 
rejection. Unfortunately, choosing this approach is extremely dangerous because it 
can expose vulnerabilities and result in a false sense of security.

But modifying data to avoid false positives isn’t the only security problem to consider. 
Another interesting issue is the urge to echo input verbatim in exceptions and write 
it to log files when a contract fails. This can be justifiable for debugging purposes, but 
from a security perspective, it’s a ticking bomb waiting to explode. To see why, we’ll 
guide you through a simple example of a webshop where it has been decided to expand 
the membership database with data from another system. Unfortunately, the data qual-
ity is poor, which makes the business decide to apply a repair filter before validation. 
This turns out to be a great mistake because, combined with echoing validation failures, 
it opens up security vulnerabilities such as cross-site scripting and second-order injec-
tion attacks. Let’s see how this happens by starting with why you shouldn’t blindly repair 
data before validation.

(continued)



245Handling bad data

Cross-site scripting and second-order attacks
In a cross-site scripting (XSS) attack, the attacker sends malicious strings to a site, hoping 
that the site will repeat the same strings in the output on the page. For example, if a news 
site lets you search for words in articles, it might return “Cannot find an article containing 
Jane Doe” if you search for Jane Doe. But if a visitor searches for <script>alert(0) 
</script>, they’ll get a result page saying “Cannot find an article containing” and at 
the same time cause the server to run some JavaScript that pops up an alert box. This 
doesn’t sound so alarming, but an XSS attack might do something much nastier, like 
installing a keylogger, sending cookies to a remote server, or worse.

Unfortunately, even logs can be used as the starting point of an attack, and a brows-
er-based admin tool used for viewing logs might have a vulnerability for specific formats. 
In that case, an attacker can cause an attack string to be logged and then wait for the 
admin to look at that log entry using the vulnerable tool. This is called a second-order 
attack because the attacker isn’t attacking the system they face, but rather a second 
system behind it.

9.4.1 Don’t repair data before validation

Picture a webshop where users sign up for a membership to get better deals. The reg-
istration form asks them to enter their name, address, and other information that’s 
needed to create a membership. The domain model is well defined, and each term in 
the membership context has a precise meaning and definition. For example, in listing 
9.10, you see that a name has a tight definition and is restricted to alphabetic charac-
ters (a-z and A-Z) and spaces, and a length between 2 and 100 characters. This seems 
a bit strict, but names containing special characters, such as Jane T. O’Doe or William 
Smith 3rd, are considered rare enough that the business has decided to require users to 
drop special characters instead of loosening the contracts; for example, Jane T. O’Doe 
needs to be registered as Jane T ODoe.

Listing 9.10  The name domain primitive

import static org.apache.commons.lang3.Validate.inclusiveBetween;
import static org.apache.commons.lang3.Validate.matchesPattern;
import static org.apache.commons.lang3.Validate.notBlank;

public final class Name {
   private final String value;

   public Name(final String value) {
      notBlank(value);                             
      inclusiveBetween(2, 100, value.length(),     
          "Invalid length. Got: " + value.length());
      matchesPattern(value,"^[azAZ ]+[azAZ]+$",
                     "Invalid name. Got: " + value);
      this.value = value;
   }
   ...
}

A name can’t be empty or null.

A valid name contains  
between 2 and 100 characters.

A name can only contain 
alphabetic characters (a-z 
and A-Z) and spaces.



246 chapter 9 Handling failures securely

But restricting names this way only worked well until it was decided to expand the 
membership database with data from another system, then the Name contracts blew up 
like fireworks on New Year’s Eve. A failure investigation revealed that the quality of the 
new data was poor: some names were empty, others had special characters, and some 
contained < and > characters originating from an XML import that went bad a few 
years ago.

The preferred solution is to address this at the source, but modifying data to fit the 
membership context isn’t as simple as it seems. This is because data is consumed by 
several systems, and making adjustments for one system (for example, removing special 
characters in a name) might not be acceptable for another. Consequently, the business 
decides to leave the data as it is in the database and apply a repair filter before it’s val-
idated in the membership context. This strategy turns out to be a great success, as it 
significantly reduces the frequency of unnecessary rejections in the membership con-
text. In fact, the result is so good that it’s decided to apply the filter for all types of input 
sources, as illustrated in figure 9.6.

Unfortunately, this is also when things start to get bad from a security perspective. To 
see how, you need to understand the relationship between the repair logic, validation, 
and failures, as shown in figure 9.7.

As illustrated, input is mutated every time it passes through the filter, and validation 
failures are echoed in the browser and log files. Although the data mutation is inten-
tional, it also means the repair filter creates a derivative from the original input that could 
become dangerous. For example, consider the problem of cleaning up names with spo-
radic < and > characters. Applying a filter to remove them seems like the right thing to 
do; it creates a win-win situation by minimizing unnecessary rejection and avoiding XSS 
attacks by dismantling the <script> tag. Or at least, that’s what many tend to believe. The 

User input Import Poor
membership

data

Filters out all
bad characters
regardless of
input source

Membership
context

Repair filter

Figure 9.6  Bad characters filtered out for all data sources

D D' Exception
with D' in
payload

Original data

Repair
filter

Name
validation

fails

D' rendered
in browser

D' written
to log files

Mutated data

Interpreted by
browser-based

log analysis tool

Figure 9.7  Relationship between repairing data and validation



247Handling bad data

truth is, dropping < and > only adds a false sense of security—it’s still possible to launch an 
XSS attack. Consider injecting

%3<Cscript%3>Ealert("XSS")%3<C/script%3>E

to the repair filter.8 Dropping the < and > characters yields

%3Cscript%3Ealert("XSS")%3C/script%3E

which is the same JavaScript code as <script>alert("XSS")</script>. The only dif-
ference is that < and > are expressed in hexadecimal. But passing JavaScript code to 
the membership context isn’t dangerous per se unless it gets executed!

9.4.2 Never echo input verbatim

In listing 9.11, you see the validation logic applied in the Name constructor. When 
%3Cscript%3Ealert("XSS")%3C/script%3E is validated, the regular expression of 
matchesPattern fails and an error message is created. As developers, we often want 
to know why a contract failed—was it because of a programming error or invalid 
input? Consequently, many choose to echo input verbatim in error messages because 
it facilitates the failure analysis, but it could also expose vulnerabilities such as XSS 
and second-order attacks.

Listing 9.11  Validation applied in the Name constructor

Validate.notBlank(value);
Validate.inclusiveBetween(2, 100, value.length(),
             "Invalid length. Got: " + value.length());

8 <script>alert("XSS")</script> is the classic way of testing if a system interprets input as 
data or code (JavaScript).

But restricting names this way only worked well until it was decided to expand the 
membership database with data from another system, then the Name contracts blew up 
like fireworks on New Year’s Eve. A failure investigation revealed that the quality of the 
new data was poor: some names were empty, others had special characters, and some 
contained < and > characters originating from an XML import that went bad a few 
years ago.

The preferred solution is to address this at the source, but modifying data to fit the 
membership context isn’t as simple as it seems. This is because data is consumed by 
several systems, and making adjustments for one system (for example, removing special 
characters in a name) might not be acceptable for another. Consequently, the business 
decides to leave the data as it is in the database and apply a repair filter before it’s val-
idated in the membership context. This strategy turns out to be a great success, as it 
significantly reduces the frequency of unnecessary rejections in the membership con-
text. In fact, the result is so good that it’s decided to apply the filter for all types of input 
sources, as illustrated in figure 9.6.

Unfortunately, this is also when things start to get bad from a security perspective. To 
see how, you need to understand the relationship between the repair logic, validation, 
and failures, as shown in figure 9.7.

As illustrated, input is mutated every time it passes through the filter, and validation 
failures are echoed in the browser and log files. Although the data mutation is inten-
tional, it also means the repair filter creates a derivative from the original input that could 
become dangerous. For example, consider the problem of cleaning up names with spo-
radic < and > characters. Applying a filter to remove them seems like the right thing to 
do; it creates a win-win situation by minimizing unnecessary rejection and avoiding XSS 
attacks by dismantling the <script> tag. Or at least, that’s what many tend to believe. The 

User input Import Poor
membership

data

Filters out all
bad characters
regardless of
input source

Membership
context

Repair filter

Figure 9.6  Bad characters filtered out for all data sources

D D' Exception
with D' in
payload

Original data

Repair
filter

Name
validation

fails

D' rendered
in browser

D' written
to log files

Mutated data

Interpreted by
browser-based

log analysis tool

Figure 9.7  Relationship between repairing data and validation



248 chapter 9 Handling failures securely

Validate.matchesPattern(value, "^[azAZ ]+[azAZ]+$",
                    "Invalid name. Got: " + value);

By echoing the input verbatim in the validation failure message, the webshop practi-
cally allows attackers to control the output of the application, especially if exception 
payload is logged or displayed to the end user. It can seem harmless to log

%3Cscript%3Ealert("XSS")%3C/script%3E

but if log data is analyzed in a browser-based tool without proper escaping, 
%3Cscript%3Ealert("XSS")%3C/script%3E could be interpreted as code and exe-
cuted. This simple example only results in an alert box popping up, but the mere fact 
that JavaScript is allowed to execute is extremely dangerous—an attacker could take 
advantage of this to install a keylogger, steal credentials, or hijack a session.

Although it sounds far-fetched, this kind of attack isn’t unlikely. In chapter 3, you 
learned about the importance of context mapping and semantic boundaries. Injecting 
data with the intention of targeting vulnerabilities in a second system (a second-order 
attack) builds on the behavior of a broken context map, where data is misinterpreted 
only because it enters a different context. For instance, in our example, the JavaScript 
string only becomes harmful when interpreted as code in the log analyzer tool. Because 
of this, it can be difficult to determine whether it’s OK to echo input or not—if you’re 
unsure, play it safe and avoid doing so completely.

XSS Polyglots
Cross-site scripting (XSS) is an interesting type of attack because an attack vector can 
be crafted in an almost infinite number of ways. This makes it difficult to identify and to 
remove XSS flaws from a web application. The general recommendation is to do a secu-
rity audit to find places where user input could end up in the HTML output, but the com-
plexity of XSS makes it hard to guarantee that all places are found.* A complement could 
therefore be to test an application using an XSS polyglot, which is an attack vector that’s 
executable in multiple contexts (places in the HTML where input is rendered as output). 
To illustrate, let’s consider the following injection contexts:

¡	<div class="{{input}}"></div>
¡	<noscript>{{input}}</noscript>
¡	<!{{input}}>

An XSS polyglot is an attack vector that successfully executes a JavaScript (for example, 
alert('XSS')) in all three contexts, so let’s see how to do this.

The first context is a class attribute in a div element. To allow script execution, you need 
to break out of the class attribute and close the div using a double quote and a greater 
than character (">). This is possible with a string that starts with "> followed by a script. 
For example, injecting

"><svg onload=alert('XSS')>

results in an HTML string that looks like

<div class=""><svg onload=alert('XSS')>"></div>

Input is echoed verbatim 
in the validation failure 
message.



249Summary

This in turn creates an alert box with the message XSS when rendered in a browser. But 
to be an XSS polyglot, the attack vector must also apply to all other contexts as well.

The second context is a <noscript> block into which the attack vector is inserted. To 
allow for script execution, you need to break out of the context using a </noscript> tag. 
This results in

"></noscript><svg onload=alert('XSS')>

which is a slightly more complex attack vector that successfully executes the JavaScript.

The third context is within a comment block. To allow for script execution, the attack vec-
tor must contain > before the script. Adding this to the existing vector results in

"></noscript>><svg onload=alert('XSS')>

which is an XSS polyglot that allows for script execution in all three contexts.

You’ve now learned how to create an XSS polyglot for three contexts presented by the 
XSS Polyglot Challenge (a contest that challenges you to create an XSS polyglot for up to 
20 contexts using as few characters as possible).† But XSS polyglots are actually part of a 
bigger class of attacks called polyglot injections.‡

Polyglot attacks exploit the fact that many applications are implemented using several 
languages (for example Java, SQL, and JavaScript), which potentially makes them sus-
ceptible to attack vectors that combine these languages. For example, the attack vector

/*!SLEEP(1)/*/alert(1)/*/*/

combines SQL and JavaScript, which could exploit weaknesses in systems using these 
languages.§

By now, you’ve learned why failures need to be considered and how failure handling 
affects security. In the next chapter, we’ll shift focus and explore several design con-
cepts used in the cloud that use security; for example, immutable deployments, exter-
nalized configuration, and the three R’s of enterprise security.

Summary
¡	Separating business exceptions and technical exceptions is a good design strat-

egy because technical details don’t belong in the domain.
¡	You shouldn’t intermix technical and business exceptions using the same type.
¡	It’s a good design practice to never include business data in technical exceptions, 

regardless of whether it’s sensitive or not.

* See “OWASP Cross-Site Scripting (XSS)” at https://www.owasp.org/index.php/Cross-site_
Scripting_(XSS).

† See “XSS Polyglot Challenge” at https://polyglot.innerht.ml.
‡ See “Polyglots: Crossing Origins by Crossing Formats” at https://research.chalmers.se/ 

publication/189673.
§ See “Polyglot Payloads in Practice,” by Mathias Karlsson, at https://www.slideshare.net/ 

MathiasKarlsson2/polyglot-payloads-in-practice-by-avlidienbrunn-at-hackpra.

Validate.matchesPattern(value, "^[azAZ ]+[azAZ]+$",
                    "Invalid name. Got: " + value);

By echoing the input verbatim in the validation failure message, the webshop practi-
cally allows attackers to control the output of the application, especially if exception 
payload is logged or displayed to the end user. It can seem harmless to log

%3Cscript%3Ealert("XSS")%3C/script%3E

but if log data is analyzed in a browser-based tool without proper escaping, 
%3Cscript%3Ealert("XSS")%3C/script%3E could be interpreted as code and exe-
cuted. This simple example only results in an alert box popping up, but the mere fact 
that JavaScript is allowed to execute is extremely dangerous—an attacker could take 
advantage of this to install a keylogger, steal credentials, or hijack a session.

Although it sounds far-fetched, this kind of attack isn’t unlikely. In chapter 3, you 
learned about the importance of context mapping and semantic boundaries. Injecting 
data with the intention of targeting vulnerabilities in a second system (a second-order 
attack) builds on the behavior of a broken context map, where data is misinterpreted 
only because it enters a different context. For instance, in our example, the JavaScript 
string only becomes harmful when interpreted as code in the log analyzer tool. Because 
of this, it can be difficult to determine whether it’s OK to echo input or not—if you’re 
unsure, play it safe and avoid doing so completely.

XSS Polyglots
Cross-site scripting (XSS) is an interesting type of attack because an attack vector can 
be crafted in an almost infinite number of ways. This makes it difficult to identify and to 
remove XSS flaws from a web application. The general recommendation is to do a secu-
rity audit to find places where user input could end up in the HTML output, but the com-
plexity of XSS makes it hard to guarantee that all places are found.* A complement could 
therefore be to test an application using an XSS polyglot, which is an attack vector that’s 
executable in multiple contexts (places in the HTML where input is rendered as output). 
To illustrate, let’s consider the following injection contexts:

¡	<div class="{{input}}"></div>
¡	<noscript>{{input}}</noscript>
¡	<!{{input}}>

An XSS polyglot is an attack vector that successfully executes a JavaScript (for example, 
alert('XSS')) in all three contexts, so let’s see how to do this.

The first context is a class attribute in a div element. To allow script execution, you need 
to break out of the class attribute and close the div using a double quote and a greater 
than character (">). This is possible with a string that starts with "> followed by a script. 
For example, injecting

"><svg onload=alert('XSS')>

results in an HTML string that looks like

<div class=""><svg onload=alert('XSS')>"></div>

Input is echoed verbatim 
in the validation failure 
message.



250 chapter 9 Handling failures securely

¡	You can create more secure code by designing for failures and treating failures as 
normal, unexceptional results.

¡	Availability is an important security goal for software systems.
¡	Resilience and responsiveness are traits that add security by improving the avail-

ability of a system.
¡	You can use design patterns like circuit breakers, bulkheads, and timeouts to 

design for availability.
¡	Repairing data before validation is dangerous and should be avoided at all costs.
¡	You should never echo input verbatim.



251

10Benefits of cloud thinking

This chapter covers
¡	How externalizing configuration improves 

security

¡	Structure as separate, stateless processes

¡	How centralized logging improves security

¡	Structuring admin functionality

¡	The three R’s of enterprise security

To successfully run applications in a cloud environment, you need to design them in 
a way that enables you to fully take advantage of the possibilities the cloud can give 
you. This means your applications are required to adhere to certain principles and 
display certain properties, such as being stateless or environment-agnostic. Cloud 
environments bring a new set of standards for building applications. An interesting 
observation is that this new way of building applications and systems has proven 
to be beneficial regardless of whether you’re running them in the cloud or not. 
Even more interesting is that we’ve found there are also benefits from a security 
perspective.

This chapter starts by introducing the twelve-factor app and cloud-native con-
cepts. We’ll then go on to show you cloud design concepts for handling things such 



252 chapter 10 Benefits of cloud thinking

as logging, configuration, and service discovery. Moreover, you’ll learn why and how 
they improve security. What you’re not going to learn about in this chapter is how to 
manage security on cloud platforms, how to harden cloud platforms, or whether a pub-
lic cloud environment is more secure than an on-premise setup (or vice versa). Those 
are all interesting topics, but they are topics for another book. The focus here is design 
concepts with security benefits.

Once you’ve learned about the fundamental cloud concepts with security benefits, 
you’ll see how they all come together and work as enablers for something called the 
three R’s of enterprise security. The three R’s —rotate, repave, repair—is an approach 
for creating secure systems that is radically different from traditional approaches but 
will allow you to (equally) radically improve your security to a level where only the 
cloud—sorry, the sky—is the limit.

10.1 The twelve-factor app and cloud-native concepts
If you’re new to building and designing software for the cloud, there are two concepts 
we recommend looking at: the twelve-factor app methodology and cloud-native devel-
opment. Together, these provide a condensed, easy-to-consume compilation of several 
design concepts that have turned out to be important and useful in the cloud era. In 
this chapter, we’ll use the twelve-factor app methodology and the cloud-native concepts 
as a base for discussing the security benefits you can gain by applying cloud design 
concepts to your software, regardless of whether you’re running it in the cloud or 
on-premise. We’re not going to give you a full explanation of these concepts, because 
that would be beyond the scope of this book, but in order to understand where the 
topics in this chapter come from, you’ll get a brief introduction here.

The twelve-factor app is “a methodology for building software-as-a-service” applica-
tions.1 It was first published somewhere around 2011, and its main purpose was to pro-
vide guidance to avoid common problems in modern application development, as well 
as providing a shared terminology.2 The twelve factors include3

1 Codebase—One codebase tracked in revision control, many deploys

2 Dependencies—Explicitly declare and isolate dependencies

3 Config —Store configuration in the environment

4 Backing services—Treat backing services as attached resources

5 Build, release, run —Strictly separate build and run stages

6 Processes—Execute the app as one or more stateless processes

7 Port binding—Export services via port binding

8 Concurrency—Scale out via the process model

9 Disposability—Maximize robustness with fast startup and graceful shutdown

1 For more, see https://12factor.net.
2 This methodology was published by employees at the cloud company Heroku.
3 As of Git commit edc6406, March 21, 2016. The public repository can be found at https://github.

com/heroku/12factor/blob/master/content/en/toc.md.



253Storing configuration in the environment

10 Dev/prod parity —Keep development, staging, and production as similar as 
possible

11 Logs—Treat logs as event streams

12 Admin processes—Run admin/management tasks as one-off processes

These twelve factors are all interesting design concepts in and of themselves, and if you 
aren’t familiar with them, we recommend taking the time to read up on them to fully 
understand them. But there are some that we’ve found are of special interest from a 
security perspective because they promote the security of a system when applied cor-
rectly (even if that’s not why they were chosen to be one of the twelve factors). You’ll 
learn exactly how they relate to security later in this chapter.

The twelve-factor app methodology provides easy-to-follow guidelines for building 
applications that behave well in the cloud. The twelve factors are good design practices, 
but they aren’t all-encompassing. Because of this, there was a need for a more general 
term to describe applications that are designed to behave well in the cloud, and that 
term is cloud-native. You’d be hard-pressed to find one single definition of this term, 
because it can mean slightly different things to different people. We think the defini-
tion put forward by Kevin Hoffman in his book Beyond the Twelve-Factor App (O’Reilly, 
2016, p. 52) is a reasonable one:

A cloud-native application is an application that has been designed and implemented to 
run on a Platform-as-a-Service installation and to embrace horizontal elastic scaling.

From the perspective of this chapter, the interesting part of this definition is that a 
cloud-native application is designed to be run on a Platform-as-a-Service (PaaS).4 The 
implication of this is that, as a developer, you’re focusing on functional requirements 
and leaving the nonfunctional ones to the platform. As you’ll see in this chapter, a 
good PaaS provides you with tools you can use to create a higher level of security when 
designing your systems. Once you understand the concepts behind these tools, you 
can apply those concepts to your design regardless of whether you’re using a PaaS or 
running on barebone hardware.

Now that you understand the background of the topics in this chapter, let’s start by 
looking at how the design practice of moving application configuration to the environ-
ment can help promote better security.

10.2 Storing configuration in the environment
Most applications depend on some sort of configuration to run properly, such as a 
DNS name or a port number. Although configuration management is important, it’s 
often seen as trivial compared to writing code. But if you consider it from a security 
perspective, it suddenly becomes a challenge. This is because configuration isn’t always 

4 A cloud-based platform that allows you to focus on building and running applications rather than 
spending time managing infrastructure.



254 chapter 10 Benefits of cloud thinking

about nonsensitive data. Sometimes you need to include secrets as well—for example, 
credentials, decryption keys, or certificates—and that’s a lot more complicated.

In the cloud, it’s recommended to externalize configuration because an application 
often needs to be deployed in different environments, like development, user accep-
tance testing, or production. Unfortunately, externalizing configuration increases the 
overall complexity of a system because it needs to dynamically load configuration at 
runtime. Consequently, not many use this pattern for applications running on-premise, 
because the environments seldom change. But seen from a security perspective, code 
and configuration should always be separated, regardless of whether you’re running 
on-premise or not. This makes it possible to automatically rotate keys and apply the 
concept of ephemeral secrets. To visualize this, it’s important to understand why config-
uration that varies between deployments belongs to the environment and not in code. 
Let’s look at an example where the anti-pattern of storing environment configuration 
in code is used.

10.2.1 Don’t put environment configuration in code

Picture an application connected to a database. (It’s not important what the applica-
tion does—it could be anything from a full-blown webshop to a microservice. What’s 
important is that it uses the anti-pattern of storing environment configuration in code, 
which becomes a security issue if you store sensitive data.) The application is a proto-
type, but the code is in pretty good shape, and management decides to proceed with 
a full-scale project. There’s no time to redo all the work, and the team is instructed to 
polish things up to ensure it’s ready for production. Because the application is a proto-
type and only deployed in the development environment, configuration data has been 
implemented as hardcoded constants all over the codebase.

The strategy of placing environment configuration in code sounds naive, but in 
our experience, many developers choose this approach, especially when prototyping, 
because it’s easy to start with. The problem is that when things get more complicated 
(for example when adding secrets), the strategy tends to remain. In listing 10.1, you see 
an example of how credentials have been added as constants in code. This should raise 
a warning flag, because it allows anyone with access to the codebase to read the secrets. 
But it follows the same pattern as other configuration values, so why bother to do any-
thing different?

Listing 10.1  Content management system connector class with secret values

public class CMSConnector {
   private static int PORT_NUMBER = 34633;
   private static long CONNECTION_TIMEOUT = 5000;
   private static String USERNAME = "service-A";   
   private static String PASSWORD = "yC6@SX5O";    
   ...
}

Username hardcoded as 
a configuration value

Secret password hardcoded 
as a configuration value



255Storing configuration in the environment

From a development perspective, it makes sense to add credentials the same way as 
other configuration values, because a username or password isn’t much different from 
a port number; it’s just a configuration value. But from a security perspective, it’s a 
disaster, because placing credentials in code makes them more or less public. Unfortu-
nately, the security aspect isn’t what tends to trigger the need for a redesign. Instead, 
it’s the need to deploy to multiple environments, because each environment has a 
different configuration. Consequently, many choose to group configuration values 
by environment and move them into resource files—a strategy that works but makes 
things worse from a security perspective because now secrets also end up on disk.

10.2.2 Never store secrets in resource files

By placing configuration in resource files, you allow code and configuration to be 
separated. This turns out to be a key component in allowing deployment to multiple 
environments without changing any code, because an application can then load envi-
ronment-specific configuration data like an IP address or port number at runtime. But 
although this sounds great, it’s unfortunately an anti-pattern from a security perspec-
tive because it yields the same problems as storing secrets in code. The only difference 
is that sensitive data now also ends up on disk, which means that anyone with server 
access could potentially access the information—not good! But nevertheless, this pat-
tern is a common choice in many applications, so let’s have a deeper look at it.

In listing 10.2, you see a resource file (written in YAML) with two environments, dev
and prod, where each has a unique set of configuration values for the content man-
agement system (CMS).5 This file is bundled with the application, and the appropriate 
set of configuration values is loaded at runtime. This way, the same codebase can be 
deployed in dev and prod without the need to rebuild the application.

Listing 10.2  Resource file with configuration for all environments

environments:
    dev:                              
      cms:
          port: 34633                 
          connection-timeout: 5000    
          username: dev-service-A     
          password: spring2019        
    prod:                             
      cms:
          port: 34633                 
          connection-timeout: 1000    
          username: service-A         
          password: yC6@SX5O          

5 YAML Ain’t Markup Language is a human-readable data serialization language. For more informa-
tion, see http://yaml.org.

Defines the start of the 
dev environment group Configuration values that belong 

to the dev environment

Defines the start of the prod 
environment group

Configuration values that belong 
to the prod environment



256 chapter 10 

Application
v. 3.0.1

Application
v. 3.0.1

Same application build
but different deployments

Configuration data is
provided by the environment.

CMS port: 34633 IP address

Certificates
CMS connection
timeout: 5000

CMS credentials

CMS port: 34633 IP address

Certificates
CMS connection
timeout: 1000

CMS credentials

Development
environment

Production
environment

- Username: dev-service-A
- Password: spring2019

- Username: service-A
- Password: YC6@SX50

Figure 10.1  Configuration data provided by the environment

Benefits of cloud thinking

At first glance, this makes perfect sense because it separates the environments, but it 
makes the security situation worse. To start with, as with storing secrets in code, anyone 
with access to the codebase is able to read the sensitive data without creating an audit 
trail. This sounds like a small problem, but accessing sensitive data without creating an 
audit trail makes it impossible to know how data has been shared—and that’s certainly 
a big problem! Unfortunately, this can’t be addressed adequately when storing secrets 
in code or in resource files, and the problem is therefore often ignored.

WARNING  Never store sensitive data in resource files unless it’s encrypted. Oth-
erwise, it can be accessible even after the application has terminated.

Another security problem with storing sensitive data in resource files is that data is 
stored on disk while the application is running. Secrets such as passwords and decryp-
tion keys can then become accessible outside of the application, regardless of whether 
the application is running or not, which requires you to encrypt all resource data. This 
seems acceptable at first, but it does add significant complexity; for example, where do 
you store the decryption key, and how do you provide it to the application? It almost 
sounds like the chicken-and-egg problem, doesn’t it?

A third issue, which is less obvious, is that secrets are shared with everyone in the 
development team, regardless of whether they’re stored in code or in resource files. 
Ideally, you shouldn’t need to care about credentials, certificates, or other sensitive 
information when designing an application. Secrets should be provided at runtime, 
and the responsibility for managing them should rest with a limited set of people, not 
everyone with access to the codebase. Unfortunately, not many developers realize the 
problems with this approach until the day they need to share code with an external 
party or choose to go open source, then it suddenly becomes extremely important that 
secrets aren’t leaked. But addressing this at a late stage could be a costly operation. Let’s 
see how you can solve this and the other problems up front by using a better design.

10.2.3 Placing configuration in the environment

The security problems discussed so far have in common that code and configuration 
values haven’t been fully separated, which becomes a problem when dealing with 
secrets—so what’s the best way to separate code and configuration? Well, the idea is 
simple. Any configuration value that changes between deployments should be pro-
vided by the environment instead of placed in source code or in resource files. This 
makes your application environment-agnostic and facilitates deployments in different 
environments without changing any code.

There are several ways to do this, but a common practice used in the cloud and 
suggested by the twelve-factor app methodology is to store configuration data in envi-
ronment variables; for example, in env variables if you’re using UNIX. That way, an appli-
cation only needs to depend on a well-defined set of environment variables that exists in 
all environments to retrieve the necessary configuration values at runtime (figure 10.1).

The concept is indeed elegant, but how does it affect the security issues identified 
earlier: audit trail, sharing secrets, and the need for encryption?



257Storing configuration in the environment

audit trail

Moving sensitive data into the environment doesn’t solve the problem of change man-
agement per se. But from a development perspective, using this pattern makes life a 
whole lot easier because it reduces implementation complexity. This is because the 
responsibility of creating audit trails shifts from the application code to the infrastruc-
ture layer, which means it becomes an identity and access management (IAM) prob-
lem. For example, only authorized accounts are allowed to access the environment, 
and doing so should create an audit trail that contains every operation performed.

sharing secrets

The strategy of storing secrets in environment variables is an interesting alternative to plac-
ing them in code or in resource files. This is because development and configuration man-
agement can be separated by design, which in turn allows secrets to be shared only among 
those responsible for an environment. Application developers can then focus on using 
secrets rather than managing them, which definitely is a step forward. But unfortunately, 
this doesn’t solve the security problem completely. In most operating systems, a process’s 
environment variables can be flushed out, which becomes a security problem if secrets are 
stored in clear text. For example, in most Linux systems, it’s possible to inspect environ-
ment variables using cat /proc/$PID/environ (where $PID is your process ID). The ques-
tion is, therefore, how to address this—perhaps using encryption is a way forward?

encryption

Storing encrypted secrets in environment variables certainly minimizes the risk of leak-
ing sensitive data, but the general problems with decryption remain. For example, how 
do you provide the decryption key to the application? Where do you store it? And how do 
you update it? These are questions that must be considered when choosing this design. 
Another strategy, which we prefer, is to use ephemeral secrets that change frequently in 

At first glance, this makes perfect sense because it separates the environments, but it 
makes the security situation worse. To start with, as with storing secrets in code, anyone 
with access to the codebase is able to read the sensitive data without creating an audit 
trail. This sounds like a small problem, but accessing sensitive data without creating an 
audit trail makes it impossible to know how data has been shared—and that’s certainly 
a big problem! Unfortunately, this can’t be addressed adequately when storing secrets 
in code or in resource files, and the problem is therefore often ignored.

WARNING  Never store sensitive data in resource files unless it’s encrypted. Oth-
erwise, it can be accessible even after the application has terminated.

Another security problem with storing sensitive data in resource files is that data is 
stored on disk while the application is running. Secrets such as passwords and decryp-
tion keys can then become accessible outside of the application, regardless of whether 
the application is running or not, which requires you to encrypt all resource data. This 
seems acceptable at first, but it does add significant complexity; for example, where do 
you store the decryption key, and how do you provide it to the application? It almost 
sounds like the chicken-and-egg problem, doesn’t it?

A third issue, which is less obvious, is that secrets are shared with everyone in the 
development team, regardless of whether they’re stored in code or in resource files. 
Ideally, you shouldn’t need to care about credentials, certificates, or other sensitive 
information when designing an application. Secrets should be provided at runtime, 
and the responsibility for managing them should rest with a limited set of people, not 
everyone with access to the codebase. Unfortunately, not many developers realize the 
problems with this approach until the day they need to share code with an external 
party or choose to go open source, then it suddenly becomes extremely important that 
secrets aren’t leaked. But addressing this at a late stage could be a costly operation. Let’s 
see how you can solve this and the other problems up front by using a better design.

10.2.3 Placing configuration in the environment

The security problems discussed so far have in common that code and configuration 
values haven’t been fully separated, which becomes a problem when dealing with 
secrets—so what’s the best way to separate code and configuration? Well, the idea is 
simple. Any configuration value that changes between deployments should be pro-
vided by the environment instead of placed in source code or in resource files. This 
makes your application environment-agnostic and facilitates deployments in different 
environments without changing any code.

There are several ways to do this, but a common practice used in the cloud and 
suggested by the twelve-factor app methodology is to store configuration data in envi-
ronment variables; for example, in env variables if you’re using UNIX. That way, an appli-
cation only needs to depend on a well-defined set of environment variables that exists in 
all environments to retrieve the necessary configuration values at runtime (figure 10.1).

The concept is indeed elegant, but how does it affect the security issues identified 
earlier: audit trail, sharing secrets, and the need for encryption?

Application
v. 3.0.1

Application
v. 3.0.1

Same application build
but different deployments

Configuration data is
provided by the environment.

CMS port: 34633 IP address

Certificates
CMS connection
timeout: 5000

CMS credentials

CMS port: 34633 IP address

Certificates
CMS connection
timeout: 1000

CMS credentials

Development
environment

Production
environment

- Username: dev-service-A
- Password: spring2019

- Username: service-A
- Password: YC6@SX50

Figure 10.1  Configuration data provided by the environment



258 chapter 10 Benefits of cloud thinking

an automatic fashion, but this requires a different mindset—we’ll get back to this at the 
end of the chapter, where we talk about the three R’s of enterprise security.

You’ve now learned why code and configuration should be separated and why secrets 
shouldn’t be stored in environment variables. But what about building and running 
an application—are there any security benefits you can learn from the cloud? There 
certainly are, so let’s see why you should run your application as separate stateless pro-
cesses in your execution environment.

10.3 Separate processes
One of the main pieces of advice on how to run your application in a cloud environ-
ment is to run it as a separate stateless process. To our delight, this design guideline has 
security benefits as well.

The main direct security advantage is improving the availability of the service; for 
example, by easily spinning up new service instances when needed to meet a rise in 
client traffic. You also get some improvement in integrity because you can easily decom-
mission a service instance with a problem, be it memory leakage or a suspect infection. 
Later in this chapter, you’ll see how this ability also lays the foundation for other designs 
that improve confidentiality, integrity, and availability. The three R’s of enterprise secu-
rity use this ability to its pinnacle, as you’ll see in the closing section of this chapter.

Let’s elaborate a little about the practice of separate processes. A cloud application 
should be run as a specific process (or processes), separated from the activity of building 
it or deploying it to the execution environment. These processes shouldn’t keep the client 
state between requests and should only communicate via backing services, like a database 
or a distributed cache, that are plugged in. Let’s dive a little deeper into what that means.

10.3.1 Deploying and running are separate things

First, let’s consider the separation of deploying the service and running the service. 
Deploying the service is most often done by an operating system user with high priv-
ileges, enough to install dependent packages or reconfigure directories. Root access 
(or similar) can even be needed for deploying new versions of the software. Most of 
these privileges aren’t needed to run the application. A web application might only 
need privileges for opening a socket for incoming HTTP requests, opening a socket to 
connect to the database, and writing to some temporary directory it uses while process-
ing requests. The system user running the web application doesn’t need to have the 
broad privileges required for deployment and installation.

Principle of least privilege
The principle of least privilege says that it’s unnecessary for a process or component to 
have more privileges than it needs and uses during normal operation:*

Every program and every privileged user of the system should operate using the least 
amount of privilege necessary to complete the job.

—Jerome Saltzer

* Jerome H. Saltzer, “Protection and the Control of Information Sharing in Multics,” Commun. ACM 
17, 7 (July, 1974), pages 388-402.



259Separate processes

To take it a step further, it’s not only unnecessary, it’s even harmful to have higher priv-
ileges than necessary. If the process or component is hacked, then the hacker can do 
things there’s no need to allow. The principle also leads to practices such as sandboxing 
or bulkheading, where the reach of what a component can do is limited by some security 
mechanism.

10.3.2 Processing instances don’t hold state

Second, an application process shouldn’t depend on state from one request being 
available to another. Sometimes applications assume that two requests from the same 
client end up at the same server process. For example, in an online bookstore appli-
cation, the customer might first add a copy of Hamlet to the shopping cart and later 
add a copy of Secure by Design. The requests are handled by a set of active instances. In 
figure 10.2, you can see some ways they are handled and end up in the database.

New Decommissioned

Backing database of orders

Figure 10.2  Processes serving stateless requests, only communicating via backing services

an automatic fashion, but this requires a different mindset—we’ll get back to this at the 
end of the chapter, where we talk about the three R’s of enterprise security.

You’ve now learned why code and configuration should be separated and why secrets 
shouldn’t be stored in environment variables. But what about building and running 
an application—are there any security benefits you can learn from the cloud? There 
certainly are, so let’s see why you should run your application as separate stateless pro-
cesses in your execution environment.

10.3 Separate processes
One of the main pieces of advice on how to run your application in a cloud environ-
ment is to run it as a separate stateless process. To our delight, this design guideline has 
security benefits as well.

The main direct security advantage is improving the availability of the service; for 
example, by easily spinning up new service instances when needed to meet a rise in 
client traffic. You also get some improvement in integrity because you can easily decom-
mission a service instance with a problem, be it memory leakage or a suspect infection. 
Later in this chapter, you’ll see how this ability also lays the foundation for other designs 
that improve confidentiality, integrity, and availability. The three R’s of enterprise secu-
rity use this ability to its pinnacle, as you’ll see in the closing section of this chapter.

Let’s elaborate a little about the practice of separate processes. A cloud application 
should be run as a specific process (or processes), separated from the activity of building 
it or deploying it to the execution environment. These processes shouldn’t keep the client 
state between requests and should only communicate via backing services, like a database 
or a distributed cache, that are plugged in. Let’s dive a little deeper into what that means.

10.3.1 Deploying and running are separate things

First, let’s consider the separation of deploying the service and running the service. 
Deploying the service is most often done by an operating system user with high priv-
ileges, enough to install dependent packages or reconfigure directories. Root access 
(or similar) can even be needed for deploying new versions of the software. Most of 
these privileges aren’t needed to run the application. A web application might only 
need privileges for opening a socket for incoming HTTP requests, opening a socket to 
connect to the database, and writing to some temporary directory it uses while process-
ing requests. The system user running the web application doesn’t need to have the 
broad privileges required for deployment and installation.

Principle of least privilege
The principle of least privilege says that it’s unnecessary for a process or component to 
have more privileges than it needs and uses during normal operation:*

Every program and every privileged user of the system should operate using the least 
amount of privilege necessary to complete the job.

—Jerome Saltzer

* Jerome H. Saltzer, “Protection and the Control of Information Sharing in Multics,” Commun. ACM 
17, 7 (July, 1974), pages 388-402.



260 chapter 10 Benefits of cloud thinking

As you see in the figure, a well-designed cloud application shouldn’t assume a specific 
instance is linked to a specific client. Each and every call from each client should end 
up at any of the instances that are on duty at the moment.

Let’s think about those two consecutive requests from the same customer: one for 
Hamlet and the other for Secure by Design. These two requests might be served by the 
same instance, but a well-designed cloud application shouldn’t rely on that. The second 
request might be served by another instance, and it should work equally well. The sec-
ond instance might not have even existed when the first request was processed; it might 
be a new instance that has been spun up to meet a surge in load. Similarly, the instance 
that served the request for Hamlet might not still be around when the request for Secure 
by Design comes in. That first instance might have been killed in the meantime because 
of some administrative routine. Whatever happens to the instances, it shouldn’t matter 
which route the request takes—the result should be the same. For this reason, the pro-
cesses shouldn’t save any client conversation state between calls. Any result of process-
ing a client request must either be sent back to the client or stored in a stateful backing 
service, usually a database.

Backing services
A backing service is an external resource your application uses, typically by accessing 
it over the network. This can be a database for persistent storage, a message queue, a 
logging service, or a shared cache.

An important aspect of backing services is that they should be managed by the  
environment—not by the application. An application shouldn’t connect to a database 
specified in code. Instead, which database to use should be part of the deployment, 
as mentioned in the previous section on storing configuration in the environment. 
When the connection to the database is managed by the environment, it’s possible to 
detach the database and attach another to replace it during runtime.

If the process is doing some heavy or long-running processing, we advise you to split 
the work into smaller steps and keep a status flag that says something to the effect of 
“This piece of work has been imported but not structured or analyzed yet.” Also, the 
flag should be updated by each process that advances the computation a step.

A process might well use a local filesystem to temporarily save a result during its pro-
cessing, but the filesystem should be treated as ephemeral and unreliable as primary 
memory. You can’t consider the work permanently saved before the processing is com-
pleted and the result committed to the backing database. At that point, it’s advisable 
to update any status flag about how far the processing has proceeded (for example, 
“Imported and structured, but not analyzed”). Bear in mind that a process might be 
interrupted or killed at any moment, even in the middle of long-running processing.

The filesystem shouldn’t be relied on as a safe, longtime storage in the way you’re 
used to from computing on a machine with a local filesystem. Some cloud environ-
ments even forbid using local files, and any attempt to use APIs to reach them throws an 
exception.



261Avoid logging to file

10.3.3 Security benefits

Separating installation and deployment from running the application works well 
with the principle of least privilege. We’ve too often seen applications running client 
requests in a process where the system user has root privileges. If an intruder is able to 
compromise such a process, it can cause severe damage. But if the process can do only 
what the application is intended to do—contact the database or write to a log file, for 
example—the effects will be contained. The attacker can’t compromise the integrity of 
the system itself.

When processes are stateless and share nothing (except backing services), it’s easy 
to scale capacity up or down according to need. Obviously, this is good for availabil-
ity: fire up a few more servers, and they immediately share the load. You can even do 
zero-downtime releases by starting servers with a new version of the software at the same 
time you kill the old servers.

The ability to kill any server at any time is also good for protecting the integrity of the 
system. If there’s any suspicion that a specific server has been infected, it can immedi-
ately be killed and replaced. Any work in progress on the server will be lost, but the data 
will still be in a consistent state, and the new server will be able to redo the work. In the 
section on the three R’s of enterprise security, you’ll see how to elevate this ability to 
effect a drastic increase in security.

Now that you’ve seen the security benefits of running an application as separate pro-
cesses and having resources as attached backing services, let’s have a closer look at one 
of those resources—logging.

10.4 Avoid logging to file
Logging is a fundamental part of most applications because it helps in understanding 
why something has happened. Logs can contain anything from user interactions to 
debug information to audit data, information that most people would consider boring 
and irrelevant but that, from a security perspective, is like El Dorado.6 This is because 
log data tends to include invaluable information, like sensitive data and technical 
details that could be useful when exploiting a system.

From a security perspective, logs should be locked away and never looked at; but in 
practice, logs are consumed in a completely different way. For example, when unex-
pected behavior or bugs are analyzed, logs are used as the primary source of informa-
tion. This means logs must be accessible at all times, but the data they contain must also 
be locked away because of its sensitive nature—a contradiction in terms, it seems.

But great security and high accessibility aren’t mutually exclusive features. In fact, 
there’s a design pattern used by cloud-native applications that addresses this dichot-
omy; it’s called logging as a service. Not many see it as a universal pattern though, and 
people often choose to log to a file on disk, favoring the needs of development and 

6 El Dorado is a mythical city of gold with immense wealth that legend says exists somewhere in   
South America. See https://www.nationalgeographic.com/archaeology-and-history/archaeology/ 
el-dorado/.



262 chapter 10 Benefits of cloud thinking

failure investigation only. Before learning more about why logging as a service is prefer-
able, you need to understand what security issues logging to a file on disk brings, so let’s 
analyze it from a CIA perspective.7

10.4.1 Confidentiality

Many choose to log to a file on disk for several reasons. One is reduced code com-
plexity: logging can be implemented using standard output stream (stdout) or your 
favorite logging framework. Another is the ease of access during development or fail-
ure investigation, because logs can be accessed via remote login to a server. The first 
reason, in fact, yields better security, because reduced complexity is always good, but 
the latter is where the security problems start. Allowing logs to be easily fetched is the 
key to high accessibility, but it also introduces the problem of confidentiality.

Many choose to log massive amounts of data when the trace or debug logging level is 
enabled. This certainly helps during failure investigations, but the logged information 
could be sensitive and be used to identify someone; for example, it might reveal a per-
son’s political standpoint, geographical location, or financial situation.8 This certainly 
isn’t acceptable, and implementing an audit trail and restricting access to log data is a 
must, but applying this process to a file on disk is difficult, if not impossible.

Another issue along the same lines is the need to prevent illegal access. Storing log 
data on disk and accessing it using remote login makes log access an IAM problem. At 
first this sounds like a good strategy, because it lets you apply authorization roles and 
limit overall access, but the strategy only holds as long as no one is able to download any 
files. If logs can be downloaded, it becomes extremely difficult to uphold access rights, 
which more or less defeats the purpose of IAM.

10.4.2 Integrity

Maintaining the integrity of log files is extremely important, but this requirement is 
often forgotten when discussing logging strategies. One reason could be that logs are 
typically only used to help out during development or failure investigations. Preventing 
modification of log data isn’t then a top priority, because why would you modify log data 
in the first place? A system behaves the same way no matter what you write in the logs.

This certainly makes sense, but if you consider logs as evidence or proof, then integrity 
suddenly becomes important. For example, if logs are used in a court case claiming that a 
transaction has been made, then you want to be sure the logs haven’t been tampered with. 
This becomes important when logging to a file. If you allow remote access, you need to 

7 Review the section “Designing for availability” in chapter 9 to freshen up on the CIA concept and why 
availability is important.

8 This is one of the concerns of the General Data Protection Regulation (GDPR) in the European 
Union, but that topic is too big for this book to cover. For more information about the GDPR, see 
https://ec.europa.eu/info/law/law-topic/data-protection_en.



263Avoid logging to file

ensure that no one other than the application is able to write to the log files. Otherwise, 
you could end up in a difficult situation the day you need to prove log integrity.

10.4.3 Availability

It seems that guaranteeing the availability of log data should be an easy task when log-
ging to a file on disk, but there are, in fact, several implicit problems that emerge. 
Storing data on disk is convenient, but it introduces the problem of state. For example, 
when a server needs to be decommissioned and replaced by a new instance, you need a 
process to ensure logs are preserved and moved to the new server. Otherwise, critical 
log data can be lost, and you’ll have a gap in the transaction timeline—and that’s not 
good if your logs contain audit data.

Another subtle issue relates to limited disk size. When logging to a file on disk, you 
need to ensure that the log file doesn’t become too large, or you might run out of disk 
space. A classic dilemma is when the logging process of your application crashes due to 
lack of available disk space and fails to report it in the logs because there’s no space. A 
common way to mitigate this is to have an admin process that automatically rotates logs. 
This adds some complexity that we’ll get back to in section 10.5, but let’s take a quick 
look at how log rotation works.

Suppose you have a log file called syslog. When that file reaches a certain size or age, 
the rotation process renames it (say, syslog.1) and creates a new log file called syslog. 
This way, syslog.1 can be moved, stored, and analyzed without affecting the current log 
file. This sounds easy, but a common pitfall is that the rotated logs aren’t moved and fill 
up the disk anyway.

You do, indeed, need to consider several security issues when logging to a file on 
disk. Some are harder and some are easier to resolve than others, but one can’t help 
thinking that there must be a better way to do this—and there is. The solution is found 
in the cloud, and it involves logging as a service rather than logging to a file on disk.

10.4.4 Logging as a service

When running an application in the cloud, you can’t depend on external infrastruc-
ture, such as a local server disk. This is because a server instance can be replaced at 
any time, which makes logging to a file on disk problematic. Figure 10.3 illustrates a 
logging strategy that takes this into account by centralizing all logging to a backing 
service.

From a code perspective, logging to a service rather than a file doesn’t make much 
difference; you’re still able to use your favorite logging framework, but instead of writ-
ing to a local disk, data is sent over the network. Conceptually this makes sense, but it’s 
not clear why using a centralized logging service is preferable from a security stand-
point—so let’s put our CIA glasses on again.



264 chapter 10 Benefits of cloud thinking

Logging
service API

Network

public void cancel(final ReservationId reservation) {
notNull(reservation);

reservationRepository.cancel(reservation);
loggingService.log(new ReservationCancelled(reservation, Type.AUDIT));

}

Logging
service
storage

Figure 10.3  Every log call is sent over the network to the logging service.

confidentiality

From a confidentiality perspective, you want to ensure that only authorized consumers 
get access to log data. This is a challenge when logging to a file on disk, mostly because 
it’s difficult to restrict access to specific data, but also because it’s hard to create an 
audit trail of what data was accessed when and by whom. Using a centralized logging 
service lets you address this, but only if you choose the proper design. For example, 
restricting access to the logging system isn’t enough on its own to solve the sensitive 
data access problem, but if you choose to separate log data into different categories, 
such as Audit, System, and Error, then the logging system could easily restrict users 
to seeing only log data of a certain category. And, as a developer, this makes perfect 
sense, because you’re probably interested in technical data only (for example, debug 
or performance data) and not sensitive audit information. How to do this in practice is 
a topic of its own though, so we’ll get back to this in chapter 13.

Another interesting challenge is how to establish a proper audit trail. In comparison 
to file-based logging, establishing an audit trail is a whole lot easier when using ser-
vice-based logging. Each time you access log data, the system registers your actions and 
fires an alarm if you’re trying to do anything illegal. This in turn improves the overall 
credibility of how log data is handled and consumed, even after an application has ter-
minated or been decommissioned.



265Avoid logging to file

As a final note, there’s one more significant distinction between file-based and ser-
vice-based logging to remember. When logging to disk, you might consider the disk to 
be within the same trust boundary as your application. If so, you don’t need to worry 
about protecting data while in transit (from your application to the disk). But if you 
use a logging service, data is sent over a network, which opens up the possibility of 
eavesdropping on log traffic. This means that using service-based logging requires data 
protection while in transit, which is often done using TLS (Transport Layer Security) or 
end-to-end encryption.

integrity

Preventing unauthorized access to data is indeed important, but so is ensuring its 
integrity, especially if you view logs as evidence or proof. Many logging strategies strug-
gle with this, but if you choose service-based logging, the task becomes more or less 
trivial. This is because the logging system can easily be designed to separate read and 
write operations, where writes are only performed by trusted sources. For example, 
if you set up your application to be the only one authorized to write data and give all 
other consumers read access, then your logs can only contain data written by your 
application. If you also choose an append-only strategy, then you ensure that log data 
is never updated, deleted, or overwritten, but only appended to the logs. This way, you 
can easily ensure a high level of integrity at a low cost.

The need for log aggregation is also an aspect to consider when running a system 
with multiple instances. When logging to a file on each server instance, logs become 
separated, and you need to aggregate them manually or run them through a processing 
tool to get a complete picture of a transaction. This opens up the risk of integrity prob-
lems if the aggregation process allows modification—how do you know that data hasn’t 
changed in the aggregated view compared to its individual parts? The solution lies in 
using a centralized logging service that appends and aggregates data by design. (We’ll 
get back to this when covering logging in a microservice architecture in chapter 13.)

availability

Availability is perhaps the most interesting security aspect to analyze. When you intro-
duce the idea of using a logging service, you’re most likely going to be asked, “What if 
the logging service is down or can’t be accessed over the network?” This is a fair ques-
tion that sounds complex, but the answer is surprisingly easy.

The way to address access failures of the logging service is the same as how you’d deal 
with disk failures. For example, if transaction rollback is your preferred strategy to han-
dle disk failures, then you’d do the same when failing to access the logging service—it’s 
as simple as that. But if the network is less reliable than disk access and the service can’t 
be accessed, then log data might need to be buffered in local memory to minimize roll-
backs if the risk of losing data is acceptable.

Another interesting aspect is the ability to scale. When logging to a file on disk, 
you’re bounded by disk size, and logging can’t scale beyond the disk storage capacity. 
For example, if you need to log a massive amount of data over a long period of time, 
chances are you’ll run out of disk space at some point. But if you choose to use a logging 



266 chapter 10 Benefits of cloud thinking

service, then you can adapt the storage capacity based on need and improve overall 
availability. This is particularly easy if the service is running in the cloud.

A final important comment is that when using a central logging service, you implic-
itly know where all your log data is; it isn’t spread out over hundreds of servers, where 
some have been decommissioned and some are up and running. This might sound 
irrelevant, but in a situation where you need to retrieve or remove all the data that 
you’ve stored about a person or when you need to run advanced analysis algorithms, it 
becomes invaluable to know where all your log data is.

10.5 Admin processes
A system is not complete without administrative tasks, such as running batch imports or 
triggering a resend of all messages from a specific time interval. Unfortunately, these 
admin tasks are often treated as second-class citizens compared to what is seen as the 
real functionality that customers directly interface with. Sometimes the admin func-
tionality isn’t even given the basic standards of version control or controlled deploys, 
but exists as a collection of SQL and shell command snippets in a file somewhere that’s 
copied over to the server when needed and executed in an ad hoc manner.

Admin functionality should be treated as a first-class citizen; it should be developed 
together with the system, version controlled on par with the rest of the functionality, 
and deployed to the live system as a separate interface (API or GUI). You get several 
security benefits from this (we’ll elaborate on how these benefits manifest themselves 
later in this section):

¡	You get better confidentiality, because the system can be locked down.
¡	Integrity is improved, because the admin tools are ensured to be well synchro-

nized with the rest of the system.
¡	Availability of admin tasks is improved even under system stress.

Administration tasks can be understood as the functionality that isn’t the primary pur-
pose of the system but is needed to fulfill that purpose over time. You might have a 
system whose primary purpose is to sell items to customers over the web. But in doing 
so, the system interacts with the product catalogue, warehouse, pricing, and so forth. 
Admin tasks that need to be done might include:

¡	Auditing the number of warehouse updates that have been executed
¡	Rerunning failed imports of pricing updates
¡	Triggering a resend of all messages to the warehouse

Unfortunately, such functionality is often forgotten or overlooked during system devel-
opment. This might be because these tasks aren’t often perceived as value-adding user 
stories, at least not if you restrict user to mean only customer end users, and they aren’t 
given priority.



267Admin processes

10.5.1 The security risk of overlooked admin tasks

Overlooking admin tasks often opens up security vulnerabilities. All these tasks need 
to be done anyway, and if there aren’t built-in tools for this, the system administrator is 
forced to use other tools (perhaps overgeneral ones) to get the job done.

To perform admin tasks, the sysadmin might use ssh to log on to the server or to con-
nect directly to the database using a GUI. The tasks might be performed directly in bash 
using UNIX/Linux commands or SQL commands sent to the database. Some of these 
scripts and commands will be used more often, and after a while, there will emerge 
some file of usable scripts, command lines, and SQL that’s maintained as part of the sys-
admin lore—but those handy scripts won’t be maintained together with the rest of the 
codebase. The security risk is twofold.

First, having such a means of general access as ssh opens up the attack surface more 
than is necessary. If ssh access is allowed, there’s a risk of it being used by the wrong 
people for the wrong reasons. An attacker that happens to get their hands on root-level 
ssh access can do almost unlimited harm. The risk might be reduced by closing down 
access to the machines and only allowing it via bastion hosts or jump hosts that are set 
up with more strict auditing and so forth. But the risk is further reduced if you have no 
ssh access at all. Problems might also happen by mistake; for example, during a system 
emergency, a sysadmin might attempt to clear up space on a partition that becomes full 
but accidentally erase important data.

The second risk is that if (or rather when) the system and the admin scripts get out of 
sync, bad things can happen. For example, if the development team refactors the data-
base structure, and the sysadmin SQL commands aren’t updated accordingly, applying 
the old SQL commands on the new table structure can cause havoc and potentially 
destroy data.

Actually, there’s a third risk. Having system code maintained separately from system 
admin scripts by different groups of people tends to contribute to a strained diplomatic 
relationship between the two groups of people—something that’s not beneficial in the 
long run.

We’d rather keep the use of such general-purpose and highly potent system adminis-
tration tools as a last resort. Root-level ssh access or SQL GUIs can definitely get the job 
done, but they can be used to do almost anything. Explicitly providing the administra-
tion functionality that’s needed ensures that the attack surface is kept minimal and that 
the functionality is available when needed.

10.5.2 Admin tasks as first-class citizens

The functionality needed for administrative tasks should be developed and deployed 
as part of the rest of the system. It will reside on the nodes, ready to be called via its API, 
as seen in figure 10.4.



268 chapter 10 Benefits of cloud thinking

OS

Clients

No direct
access to
database

API or GUI
for "usual"
functionality

No direct
ssh access

API or GUI
for admin

functionality

Sysadm

Figure 10.4  Administrative 
tasks deployed to the server, 
ready to run via a separate 
API

In the figure, note how the admin functionality exists on the nodes already; you have 
to trigger it from the outside. Even if an attacker gains access to the admin API, they’ll 
only be able to trigger the predefined functionality, not any general OS or SQL com-
mand—the attack surface is kept low.

Another consideration is that even if admin functionality is part of the deployed 
system, you’ll still want it as a separate process. In particular, you’ll probably want to 
have the admin parts available when things are getting slow and unresponsive. If the 
admin functionality is embedded in the same process as the usual functionality, there’s 
a risk that it’ll become unavailable at the wrong time. For example, if your web server 
is clogged down by lots of queued-up and waiting requests, you don’t want to put your 
admin requests into the same queue. The solution to this, as indicated in figure 10.4, is 
to have admin functionality run as a separate process, called via a separate API. One way 
of doing this is to put it in a separate runtime container.

If you’re developing in Java, the admin functionality could be put in a separate JVM 
of its own, or your admin might be written in Python and deployed separately. If you 
want to increase availability further, you can put the sysadmin API on a separate net-
work, making it completely independent from what happens with the usual clients.



269Service discovery and load balancing

Admin of log files
A classic admin task is rotating logs. More than one server in the history of computing has 
stopped working because the disk partition where logs were written suddenly became 
full (the famous “no space left on device” error). In this situation, it usually becomes the 
task of operations to log in via ssh and remove some old log files.

If you follow some or all of the advice given here, your log file admin will be much easier. 
If logs are sent to a connected backing service, and you avoid logging to file (see sec-
tion 10.4), there will be no logs at all on the instances. But if there are, there’s no need to 
delete old logs to get the instance up and running again. All you have to do is decommis-
sion that instance and spin up a new one (as they are separate processes, as described 
in section 10.3). Should you want to keep some logs before deleting the instance, you 
can do that by having an admin task for retrieving the logs from a specific instance.

If you structure your admin functionality according to the guidelines in this section, 
you get all three kinds of security benefits:

¡	Confidentiality increases because the system is locked down to only provide spe-
cific admin tasks and not, for example, a general SQL prompt.

¡	Integrity is better because you know that the administration tools are in sync with 
the application, so there’s no risk of those tools working on old assumptions and 
causing havoc.

¡	Availability is higher because it’s possible to launch administration tasks even 
under high load.

The ability to dynamically launch new instances is a key feature both for admin tasks 
and the usual functionality. To make this work, clients need to be able to access those 
new instances. Also, you need to ensure that instances that have been decommissioned 
don’t get client calls. For this, you need some kind of service discovery and load balanc-
ing, so let’s continue on with how to do that.

10.6 Service discovery and load balancing
Service discovery and load balancing are two central concepts in cloud environments 
and PaaS solutions. They also share a common trait in that they both enable continu-
ous change in an environment. It might not be obvious at first, but service discovery 
can improve security, because it can be used to increase the availability of a system. As 
you learned in chapters 1 and 9, availability is part of the CIA triad and is an important 
security property for a system.

Service discovery also increases security by allowing a system to stay less static, which 
is a topic we’ll talk about in more detail in the next section. Let’s start by looking at some 
common patterns for implementing load balancing with and without service discovery.

10.6.1 Centralized load balancing

Although load balancing in itself is an old concept, it’s performed on a different scale 
in cloud environments. The basic purpose of load balancing is to distribute workloads 



270 chapter 10 Benefits of cloud thinking

across multiple instances of an application. Traditionally, this was commonly done by 
using dedicated load-balancing hardware, configured to spread requests across a set 
number of IP addresses (see figure 10.5). Configuring such load balancers is more 
often than not a manual and brittle process that also involves the risk of downtime if 
something goes wrong. This approach of spreading load doesn’t always work well in a 
cloud environment.

Cloud-native applications are stateless and elastic by definition, which means individual 
instances come and go, and they should be able to do so without the consumer of a ser-
vice being affected. The number of instances and the IP addresses and ports used by each 
instance are constantly changing. Because of this, the management of load balancing is 
transferred to the PaaS you deploy your applications on. The platform is then responsi-
ble for constantly keeping track of what instances it should use to spread the workload. 
This turns load balancing management into a fully automated and more robust task.

When you’re using centralized load balancing, the consumer, or the caller, is unaware 
of how many instances of an application are sharing the load and which instance will 
receive a specific request. The distribution of the load is managed centrally.

10.6.2 Client-side load balancing

An alternative approach to centralized load balancing is client-side load balancing (figure 
10.6). As the name implies, this puts the decision of which instance to call on the caller.

You might want to use client-side load balancing instead of centralized load balanc-
ing for several reasons, one being that it can simplify your architecture and deployment 
processes. Another reason is that it allows the caller to make informed decisions on 
how to distribute the load. In order to do client-side load balancing, you need some-
thing called service discovery. Service discovery allows one application (the client) to dis-
cover, or look up, where the instances of another application are located. Once the 
client knows about the instances, it can use that information to perform load balanc-
ing. Because the discovery is performed at runtime, service discovery works well in 
ever-changing cloud environments.

Hardware load
balancer spreading
requests across

servers

Load balancer

10.0.0.1210.0.0.1110.0.0.10 10.0.0.1410.0.0.13

Figure 10.5  Centralized load balancing

Client discovers
services and spreads

requests across
services

lookup

Client Service

Service

Service
discovery

Service

Figure 10.6  Client-side load balancing using service discovery



271The three R’s of enterprise security

10.6.3 Embracing change

If you can deploy your application in an environment that supports dynamic load bal-
ancing and service discovery, be it a PaaS or a homegrown infrastructure, you’ll have 
the basic tools to support an environment that’s constantly changing and where indi-
vidual instances come and go. Change can happen because of elasticity (increasing or 
decreasing the number of instances), application updates, infrastructure changes, or 
changes in operating systems.

What’s interesting is that from a security perspective, change is good for several rea-
sons. From a pure load balancing point of view, spreading load across multiple instances 
can increase the availability of a system, and, therefore, it’ll also increase the secu-
rity of the system. Another aspect is that a system, application, or environment that’s 
constantly changing is far more difficult to exploit than one that stays static. Taking 
advantage of continuous change to improve security is what the three R’s of enterprise 
security are all about.

10.7 The three R’s of enterprise security
If you design your applications and systems based on the twelve-factor app and 
cloud-native ideas, you’ll not only be able to run them in a cloud environment, but 
they’ll also behave well. Once you’re able to run your systems on a cloud platform, you 
can use the tools provided by the platform to take the security of those systems to the 
next level. The way to do this is by using the three R’s of enterprise security.

The tools and possibilities available to you in a cloud environment are often radically 
different from those in traditional infrastructure and applications. It shouldn’t seem 
too far-fetched that the approach used to create secure systems in the cloud is equally 
different from the more traditional approaches of enterprise security. Justin Smith took 

across multiple instances of an application. Traditionally, this was commonly done by 
using dedicated load-balancing hardware, configured to spread requests across a set 
number of IP addresses (see figure 10.5). Configuring such load balancers is more 
often than not a manual and brittle process that also involves the risk of downtime if 
something goes wrong. This approach of spreading load doesn’t always work well in a 
cloud environment.

Cloud-native applications are stateless and elastic by definition, which means individual 
instances come and go, and they should be able to do so without the consumer of a ser-
vice being affected. The number of instances and the IP addresses and ports used by each 
instance are constantly changing. Because of this, the management of load balancing is 
transferred to the PaaS you deploy your applications on. The platform is then responsi-
ble for constantly keeping track of what instances it should use to spread the workload. 
This turns load balancing management into a fully automated and more robust task.

When you’re using centralized load balancing, the consumer, or the caller, is unaware 
of how many instances of an application are sharing the load and which instance will 
receive a specific request. The distribution of the load is managed centrally.

10.6.2 Client-side load balancing

An alternative approach to centralized load balancing is client-side load balancing (figure 
10.6). As the name implies, this puts the decision of which instance to call on the caller.

You might want to use client-side load balancing instead of centralized load balanc-
ing for several reasons, one being that it can simplify your architecture and deployment 
processes. Another reason is that it allows the caller to make informed decisions on 
how to distribute the load. In order to do client-side load balancing, you need some-
thing called service discovery. Service discovery allows one application (the client) to dis-
cover, or look up, where the instances of another application are located. Once the 
client knows about the instances, it can use that information to perform load balanc-
ing. Because the discovery is performed at runtime, service discovery works well in 
ever-changing cloud environments.

Hardware load
balancer spreading
requests across

servers

Load balancer

10.0.0.1210.0.0.1110.0.0.10 10.0.0.1410.0.0.13

Figure 10.5  Centralized load balancing

Client discovers
services and spreads

requests across
services

lookup

Client Service

Service

Service
discovery

Service

Figure 10.6  Client-side load balancing using service discovery



272 chapter 10 Benefits of cloud thinking

some of the most important concepts of enterprise security in cloud environments and 
summarized them in what he called the three R’s:9

1 Rotate secrets every few minutes or hours

2 Repave servers and applications every few hours

3 Repair vulnerable software as soon as possible (within a few hours) after a patch 
is available

In this section, you’ll learn what these concepts mean and how they improve security. 
You’ll also see how the concepts discussed previously in this chapter work as enablers 
for the three R’s.

10.7.1 Increase change to reduce risk

Applying the three R’s to create secure systems is in many aspects fundamentally dif-
ferent from the traditional approaches used to mitigate security risk in IT systems. 
One common traditional rationale is that change increases risk. Therefore, in order 
to reduce risk, rules are made to prevent change in systems or in software in various 
ways. For example, limitations are put on how often new versions of applications are 
allowed to be released. Protocols and processes are introduced that turn the cycle time 
for getting new updates and patches on the OS level out to production into months. 
Secrets such as passwords, encryption keys, and certificates are rarely or never changed, 
because the risk of something breaking when doing so is considered to be too high. 
Reinstalling an entire server is almost unheard of, because not only would it take weeks 
to get all the necessary configuration in place, it’d also take a significant amount of 
testing to verify that everything was done correctly. Suffice it to say that this traditional 
approach to IT security is largely based on preventing change.

The purpose of the three R’s is the total opposite—reduce risk by increasing change. 
The observation that Justin Smith makes is that many attacks on IT systems have a 
greater chance of succeeding on systems that rarely change. A system that stays largely 
static is also the perfect target for advanced persistent threat (APT) attacks, which usu-
ally result in significant damage and data loss. If your system is constantly changing, you 
effectively reduce the time an attacker will have to inflict any significant damage.

Advanced persistent threats
In an APT attack, the adversary is usually highly skilled and targets a specific system. The 
results of these attacks are often costly and can hurt a company to the point of bank-
ruptcy. Some characteristics of an APT are that it’s performed over a long period of time 
and involves advanced techniques to allow the attacker to gradually work further into the 
system, searching for the targeted data. The techniques used often involve finding sev-
eral vulnerabilities or flaws in software that, in combination, can be used to gain access 
to new parts of the system.

9 Smith, J., “The Three Rs of Enterprise Security: Rotate, Repave, and Repair” (2016), https://builtto-
adapt.io/the-three-r-s-of-enterprise-security-rotate-repave-and-repair-f64f6d6ba29d.



273The three R’s of enterprise security

Now that you’re familiar with the general concept, let’s take a closer look at each of the 
three R’s.

10.7.2 Rotate

Rotate secrets every few minutes or hours. If your application is using passwords to 
access various systems, make sure they’re changed every few minutes and that every 
application has its own user to access the system with. This might sound like some-
thing that’s complicated to set up, but if you’ve designed your application in line with 
the twelve-factor app methodology and placed your configuration in the environment, 
your application can remain unaware of the rotation. All it needs to know is how to 
read the password from the environment.

The PaaS running the application will take care of rotating the passwords on a regu-
lar basis and injecting the new values into the environment for the application to con-
sume (figure 10.7). Most solutions for cloud environments, both public and private, 
have the ability to perform these tasks, and, if not, it’s usually not that hard to set up.

Another benefit of this practice is that passwords can be treated as ephemeral by the 
platform. They’re generated on demand and then injected directly into the environ-
ment of a running container or host. They will only ever live in nonpersistent RAM. This 
helps reduce possible attack vectors, because they’re not placed in some file or central 
configuration management tool that can be more easily compromised. You also don’t 
have to deal with the hassle of encrypting the passwords placed in the configuration file.

Once you understand this concept of ephemeral credentials and how the cloud plat-
form enables you to use unique passwords that don’t live for more than a couple of 
minutes, there’s no reason why you shouldn’t do the same with other types of secrets. 
Certificates, for example, can be rotated in a similar fashion. Because you can rotate 
them instead of renewing them, you’re reducing the time frame for which a certificate 
is valid. If someone were to steal it, they wouldn’t have much time to use it. In addi-
tion, you’ll never again have a problem with a certificate expiring because you forgot to 
renew it. (Expired certificates are an all too common reason for security issues caused 
by system unavailability.) The same goes for API tokens used to access various services 
and any other type of secret used.

Password

Certificate

Environment Injected by
platform

Application

Figure 10.7  The platform 
injecting ephemeral secrets 
into the environment



274 chapter 10 Benefits of cloud thinking

TIP  Keep secrets short-lived and replace them when they expire.

Sometimes the application needs to be aware of how the credentials are being rotated, 
perhaps because it involves details better encapsulated in the application rather than 
making the platform aware of application-specific details. In these cases, the applica-
tion itself will receive the ephemeral secrets by directly interacting with a service pro-
viding these features (figure 10.8).

With this approach, the application is now responsible for retrieving updated secrets 
before they expire. In terms of responsibility, this approach is similar to client-side load 
balancing in that it puts more responsibility on the application.

Rotating secrets doesn’t improve the security of the secrets themselves, but it’s an 
effective way of reducing the time during which a leaked secret can be misused—and, 
as you’ve learned, time is a prerequisite for APTs to succeed. Reduce the time a leaked 
secret can be used, and you’ve made it a lot harder for such an attack to be successful.

10.7.3 Repave

Repave servers and applications every few hours. Recreating all servers and containers 
and the applications running on them from a known good state every few hours is an 
effective way of making it hard for malicious software to spread through the system. A 
PaaS can perform rolling deployments of all application instances, and if the applica-
tions are cloud-native, you can do this without any downtime.

Instead of only redeploying when you’re releasing a new version of your application, 
you can do this every other hour, redeploying the same version. Rebuild your virtual 
machine (VM) or container from a base image and deploy a fresh instance of your 
application on it. Once this new instance is up and running, terminate one of the older 
ones (see figure 10.9). By terminate, we mean burn it down to the ground and don’t 

Ask for
password.

Use password
to connect to DB.

Secret
service

Application

Figure 10.8  The client retrieves secrets from a 
dedicated service.



275The three R’s of enterprise security

reuse anything. This includes erasing anything put on a file mount used by the server 
instance. (This is where it comes in handy that you learned not to put logs on disk ear-
lier in this chapter.) By repaving all your instances, you not only erase your server and 
application but also any possible malicious software placed on the instance, perhaps as 
part of an ongoing APT attack.

Repaving server instances can be difficult if you’re running on bare-metal servers, 
but if you’re using VMs, you can do this even if you’re not using a PaaS. If you’re run-
ning containers, it becomes even easier to spin up a new instance from a base image. If 
you can, consider repaving both the containers and the host running the containers. 
The application deployed must also be a completely fresh instance, so don’t reuse any 
application state from a previous instance.

Containers and virtual machines
A virtual machine is a software representation of hardware. It’s an emulation of a spe-
cific set of hardware that lets you put a separating layer between an operating system 
(OS) and the underlying hardware. That way, you can run multiple VMs on a single phys-
ical machine, usually with full separation between them, and each VM can pretend to 
have different hardware and run different operating systems.

A container, on the other hand, is a virtualization on the OS level, rather than a full virtu-
alization of the hardware. This reduces the overhead of consumed resources compared 
to virtual machines, because each container doesn’t need a full hardware emulation. 
Instead, multiple containers can share the kernel of the host OS. This is an advantage 
containers have over virtual machines, but, at the same time, it’s also a disadvantage 
and puts limitations on the container. For example, you can’t run a container dependent 
on a kernel that’s different from that of the host OS. This is why you’ll have trouble run-
ning a container with Windows on *nix, or a *nix container on a *nix host with a different 
kernel.

It’s a common practice to run containers on virtualized machines. Because both are vir-
tualizations, these are perfect tools for repaving servers and applications.

PaaS controller

Start new
instances.

Terminate old
instances.

Stopped
instance

Stopped
instance Instance New

instance
New

instance

Figure 10.9  Repaving instances by rolling deployment



276 chapter 10 Benefits of cloud thinking

10.7.4 Repair

Repair vulnerable software as soon as possible after a patch is available. This goes for 
both operating systems and applications. What this means is that as soon as a patch is 
available, you start the process of rolling out the new software into production. When 
you do this, you don’t incrementally apply the patch to an existing server; instead, you 
create a new known good state and then repave the server and application instances 
from the new state.

Again, this might sound like an incredibly difficult thing to do, but it’s not if your 
platform and applications are designed for it. All the tools and technologies needed to 
do this are already available and widely adopted, so there’s nothing stopping you from 
doing so. To give you an idea of what’s needed, if you’re not running in a cloud environ-
ment, you probably need to at least be running virtual servers, and it’ll be even easier 
if you’re using containers (although it’s not necessary). If you’re running on a cloud 
platform, you should already have all the tools at your disposal.

NOTE  Think of repairing as a variant of repaving. If you’ve got repaving down, 
it’s not that different to start repairing.

You should also apply the repair concept to your own software. When there’s a new ver-
sion of your application ready to be released, it should be deployed as soon as possible. 
You should make new versions available as often as you can. If you’re familiar with con-
tinuous delivery and continuous deployment, you might already be applying the repair 
concept on your own applications, even if you don’t know it.

The reason for repairing as often as you can is that for every new version of the soft-
ware, something will have changed. If you’re constantly changing your software, an 
attacker constantly needs to find new ways to break it. Say you have a vulnerability in 
your software that you’re unaware of. If you rarely change your software, the vulnerabil-
ity remains for a long time, allowing for an APT to continue to do its job. But if you’re 
continuously making small changes to your software and deploying it often, you might 
remove the vulnerability—again, without knowing it.

Don’t forget to also repair your application any time a new security patch for a third-
party dependency you use becomes available. To keep track of vulnerable dependen-
cies efficiently, you should make it part of your delivery pipeline (go back to chapter 8 
for tips on how to leverage your delivery pipeline for security).

In order to deploy new versions of operating systems and applications soon after a 
patch is available without causing downtime, your applications need to adhere to the 
twelve-factor app methodology and be cloud-native. Your processes and procedures for 
releasing updates also need to be streamlined. If they aren’t, you’ll most likely struggle 
to smoothly repair servers and applications.

Setting up everything needed to start applying the three R’s is a lot easier if you’re 
running on a cloud platform, whether it’s a public cloud or a PaaS hosted in-house. 
But even if you’re running on dedicated servers, you can still make the three R’s a 
reality with tools already available to you. It all starts by creating applications that are 



277Summary

cloud-native and follow the twelve-factor app methodology. Then you can learn from 
the design ideas used when architecting for the cloud and apply them in your own envi-
ronment to reap the same benefits.

If you’re working with existing applications and can’t start from scratch, a step-by-
step process of slowly transforming your applications toward the twelve factors is usu-
ally a viable approach. When working with existing IT systems, the biggest challenge is 
often coming to terms with a completely new way of handling enterprise security.

Summary

¡	The twelve-factor app and cloud-native concepts can be used to increase the 
security of applications and systems.

¡	You should run your application as stateless processes that can be started or 
decommissioned for any occasion.

¡	Any result of processing should be stored to a backing service, such as a database, 
log service, or distributed cache.

¡	Separating code and configuration is the key to allowing deployment to multiple 
environments without rebuilding the application.

¡	Sensitive data should never be stored in resource files, because it can be accessed 
even after the application has terminated.

¡	Configuration that changes with the environment should be part of the 
environment.

¡	Administration tasks are important and should be part of the solution; they 
should be run as processes on the node.

¡	Logging shouldn’t be done to a local file on disk, because it yields several security 
issues.

¡	Using a centralized logging service yields several security benefits, regardless of 
whether you’re running an application in the cloud or on-premise.

¡	Service discovery can increase security by improving availability and promoting 
an ever-changing system.

¡	Applying the concept of the three R’s—rotate, repave, and repair—significantly 
improves many aspects of security. Designing your applications for the cloud is a 
prerequisite for doing this.



278

11Intermission: An 
insurance policy for free

This chapter covers
¡	A broken system where no parts were broken

¡	Context mapping to understand what’s going on

¡	Risk of myopic views of microservices

So far, we’ve covered lots of different ways to use design to make software more 
secure. We’ve collected designs from different areas, like cloud architecture, 
Domain-Driven Design (DDD), and reactive systems, where security wasn’t the orig-
inal focus. The nice thing is that all these designs can be used in ways that increase 
security as a beneficial side effect. All in all, we’ve covered a lot of ground, and we’ll 
soon turn to applying these fundamentals to some different scenarios, such as leg-
acy systems and microservices architectures. But before doing that, let’s take a quick 
break and look at how a system of systems can break without any specific part being 
broken. We’ll do that by examining a case study of a real-life system.

If you’re in a hurry, you can safely skip this chapter. Otherwise, hang on, it’s a fun 
story with some interesting details. This is a real-life story about how an insurance 
company came to give away policies without payment. It’s also about how that disas-
ter could have been avoided.

Like many companies today, the company in question decided to split its mono-
lithic system into several smaller parts, changing the architecture to more of a 



279Over-the-counter insurance policies

11
microservices style. Splitting the system was probably the right thing to do at the time, 
but some subtle yet important points were missed when the systems were developed sep-
arately. During this development, the meaning of the term payment shifted slightly, and 
separate teams came to interpret it in different ways. In the end, some systems thought 
the company had been paid the premium, when it had not.

One way to avoid this disaster would have been to model the different contexts more 
consciously and make the effort to draw out the context map in combination with 
active refactoring to more precise models. To make this happen, it’s important to bring 
together experts early on from all the adjacent domains and have them discover subtle 
issues together. This becomes even more important when developing a microservices 
architecture, where a fragmented understanding can have severe consequences.

We’ll take a brief look at a possible solution here and dive more deeply into these top-
ics in later chapters (especially chapter 12 on legacy code and chapter 13 on the micro-
services architecture). This story serves as an introduction to those ideas, however.

Let’s start with the story of a good old-fashioned, brick-and-mortar insurance com-
pany and how it began its digital journey. The name and location of the company have 
been withheld for obvious reasons, and the details of the court case have been changed 
so that it can’t be traced.

11.1 Over-the-counter insurance policies
We’ll start at the beginning. The insurance company has been in business for quite 
some time. Historically, its main business has been providing insurance policies for real 
estate (housing as well as business) and cars. The company has always worked locally 
with a branch office in every city in the part of the state where it conducts business. All 
business is done over the counter. When a new customer signs up for a policy, they sign 
a document at the office and pay over the counter, and the company mails a policy let-
ter proving a valid policy. Likewise, when a customer renews an insurance contract, they 
show up at the office and pay over the counter, and a policy renewal letter is mailed. 
In recent years, the back-office system has started using a print-and-mail service so the 
personnel at the branches don’t need to worry about printing and mailing. The system 
automatically mails the policy letter as soon as the payment is registered (figure 11.1).

I need a
car policy.

Coming
right up.

Policy

Figure 11.1  When a 
payment is made, the 
insurance system mails 
a new policy letter.



280 chapter 11 Intermission: An insurance policy for free

Under the hood, the system couples a Payment with a new PolicyPeriod, which is what 
triggers a new mailing. This is all part of one codebase, developed and deployed as a 
monolith—but that’s soon to change. If you were to make a context map at this point, 
it’d look something like figure 11.2.

Granted, this isn’t much of a map right now, but we’ll see how it evolves as our story 
unfolds.

11.2 Separating services
The team that develops the system grows over time. Many different policy plans need 
to be supported, and more are being added at regular intervals. At the same time, 
there’s a lot of functionality around finance: keeping track of payments from custom-
ers, reimbursements, payments to partners, such as car repair shops, and so on. Even 
though the team has grown, they feel overwhelmed by the amount of functionality to 
develop and support. Because of this, it’s decided to split the team and the system into 
two parts: one system for finance and one system for policies.

The finance team will keep track of payments, handle contracts with partners, and 
deal with reimbursements. The policy team will concentrate on the ever-increasing 
plenitude of policy variations. In this way, each smaller team will be better able to focus 
on its domain. If you draw the context map again now, you’ll see that it’s slightly more 
interesting than before the separation (figure 11.3).

The transition to separate the monolith into two systems goes pretty smoothly, per-
haps because everybody is still familiar with the full domain and pretty clear about 
what’s a Payment and what’s a PolicyPeriod. But that’s also soon to change.

These systems depend on each other in many ways. One of the main connections is 
that when a Payment is made in the finance system, that event is reported to the policy 
system, which reacts by creating a new PolicyPeriod and, subsequently, automatically 
prints and mails a policy letter. It’s clear that the policy system reacts when the finance 
system registers a payment. The policy system is aware of Payment as a concept, but the 
team doesn’t need to understand the intricacies of how such a payment is made.

Payment Policy
period

Figure 11.2  A context map showing the one single 
context of the monolith

Payment Payment

Policy
period

A new pa yment...

Finance context Policy context

is detected and leads
to a new policy period
(and a new policy letter

being mailed out).

Figure 11.3  Payment for an insurance policy, across the two domains of finance and policy



281A new payment type

Under the hood, the system couples a Payment with a new PolicyPeriod, which is what 
triggers a new mailing. This is all part of one codebase, developed and deployed as a 
monolith—but that’s soon to change. If you were to make a context map at this point, 
it’d look something like figure 11.2.

Granted, this isn’t much of a map right now, but we’ll see how it evolves as our story 
unfolds.

11.2 Separating services
The team that develops the system grows over time. Many different policy plans need 
to be supported, and more are being added at regular intervals. At the same time, 
there’s a lot of functionality around finance: keeping track of payments from custom-
ers, reimbursements, payments to partners, such as car repair shops, and so on. Even 
though the team has grown, they feel overwhelmed by the amount of functionality to 
develop and support. Because of this, it’s decided to split the team and the system into 
two parts: one system for finance and one system for policies.

The finance team will keep track of payments, handle contracts with partners, and 
deal with reimbursements. The policy team will concentrate on the ever-increasing 
plenitude of policy variations. In this way, each smaller team will be better able to focus 
on its domain. If you draw the context map again now, you’ll see that it’s slightly more 
interesting than before the separation (figure 11.3).

The transition to separate the monolith into two systems goes pretty smoothly, per-
haps because everybody is still familiar with the full domain and pretty clear about 
what’s a Payment and what’s a PolicyPeriod. But that’s also soon to change.

These systems depend on each other in many ways. One of the main connections is 
that when a Payment is made in the finance system, that event is reported to the policy 
system, which reacts by creating a new PolicyPeriod and, subsequently, automatically 
prints and mails a policy letter. It’s clear that the policy system reacts when the finance 
system registers a payment. The policy system is aware of Payment as a concept, but the 
team doesn’t need to understand the intricacies of how such a payment is made.

Payment Policy
period

Figure 11.2  A context map showing the one single 
context of the monolith

Payment Payment

Policy
period

A new pa yment...

Finance context Policy context

is detected and leads
to a new policy period
(and a new policy letter

being mailed out).

Figure 11.3  Payment for an insurance policy, across the two domains of finance and policy

As time goes by, the teams drift further and further apart. Keeping track of different 
financial flows seems to be work enough in and of itself, especially with the company 
signing new partner programs with both car repair shops and craftspeople, such as 
plumbers and carpenters. Keeping track of unusual policies is also a full-time occupa-
tion, with salespeople inventing combo deals and rebates to attract and keep custom-
ers. The two teams spend less and less time together and get less and less insight into 
each other’s domains. On a few occasions, they even get hostile when one of the teams 
changes some event that the other subscribes to and breaks the other team’s code. 
Still, things work out. But that’s also soon to change.

11.3 A new payment type
The organization continues to grow, and there are now two product managers: one 
for the policy system and the team working on it and one for the finance system and 
the team working on that. Each of the product managers governs their own backlog, 
and they communicate little. Management takes the lack of communication as a good 
sign—obviously, it has managed to cut the development organization into parts that 
can work independently of each other. But now a new payment type is introduced, and 
a fatal mistake is made.

At the top of the finance team’s backlog is a story to allow a new way of paying through 
bank giro instead of cash over the counter. Bank giro is a method of transferring money 
where the customer instructs their bank to transfer funds from one of their accounts 
to the insurance company without writing a check. The customer doesn’t even need to 
know the insurance company’s bank account number; instead, they use a special bank 



282 chapter 11 Intermission: An insurance policy for free

giro number. The insurance company can restructure its bank accounts or even change 
to a different bank without the customers needing to know or care.1

The businesspeople at the insurance company settle the deal with the bank that 
provides the giro service. The finance system product manager adds a story called 
“implement bank giro payment” high on the backlog. Within a few sprints, it’s time for 
implementation, and the finance development team is provided with documentation 
on how to integrate with the giro payment system at the bank. They learn that with 
giro payments, there are three different messages that they can retrieve from the bank: 
Payment, Confirm, and Bounce. The documentation for Payment states that a giro pay-
ment has been registered. The finance team starts fetching these messages from the 
bank. When they receive a Payment message from the bank, they consider it to be a 
Payment in the finance system. Figure 11.4 shows what this looks like.

It seems logical that a payment is a payment, but it’s crucial to pay attention to context, 
as the teams will find out. Doing system integration by matching strings to each other 
is a dangerous practice. Just as an order in the military isn’t the same as an order in a 
warehouse, the finance team will eventually realize that something that’s a payment 
in one context shouldn’t automatically be interpreted as a payment in another con-
text. But to be honest, the documentation doesn’t help much (table 11.1), unless you 
already know the ins and outs of a bank giro transfer.

The finance team is careful not to disturb the integration point with the policy sys-
tem. As we mentioned, there were some debacles when one team broke the other team’s 
system. The finance team takes care to send Payment messages to the policy team in the 
same way as before.

1 You can read more details on bank giro transfers at https://www.investopedia.com/terms/b/ 
bankgirotransfer.asp.

A bank giro pa yment... is interpreted as
a pa yment from
a policy holder.

Payment

Confirm

Bounce

Payment

Bank Giro Finance Policy

Figure 11.4  A Payment message arrives from the bank and is interpreted as a Payment by the finance 
system.



283A new payment type

Table 11.1  Bank giro payment process

Message Documentation
Spontaneous 
interpretation

What it means

Payment Giro payment has been 
registered

OK, payment is ready. No money has been transferred 
yet; we’ve registered that we’ll try 
to transfer it.

Confirm Confirmation of pay-
ment processing

Oh? OK, whatever. Money has been transferred.

Bounce Confirmation still pend-
ing, will try again

No worries… Failed to transfer money; if 
remaining attempts are zero, the 
failure is permanent.

In their system, the policy team continues to listen for Payment messages from finance. 
When they receive such a message, they create a corresponding PolicyPeriod, which 
triggers a new policy letter being mailed to the purchaser. They don’t know whether 
it’s a cash payment or a bank giro payment—and that’s the beauty of it, isn’t it? They 
can’t know and don’t need to know—separation of concerns in action. But there’s a 
catch. If you now draw the context map again, as shown in figure 11.5, you’ll see all 
three contexts and how they have been mapped to each other: the external bank con-
text, the finance context, and the policy context.

You might be familiar with both the bank giro domain and the insurance domain. 
In that case, you’ll see the subtle mistake that was made. A bank giro Payment from 
the external bank is mapped to a Payment of the internal finance system, which is then 
mapped to a PolicyPeriod. It seems natural enough—a payment is a payment. But due 
to two subtleties, one in the insurance domain and one in the bank giro domain, this 
approach isn’t sound.

The subtlety in the insurance domain is that insurance policies aren’t like most 
goods. If you buy a necklace, a seller might agree to get paid later. If you don’t pay on 

A bank giro pa yment... is interpreted as
a pa yment from
a policy holder...

and results in a
renewed policy period.

Payment

Confirm

Bounce

Payment Payment

Policy period

Bank Giro Finance Policy

Figure 11.5  Mapping of a bank giro payment through the three domains: bank, finance, and policy



284 chapter 11 Intermission: An insurance policy for free

time, the seller can cancel the purchase and request to have the necklace back. This is 
customer trade practice. But for some goods, it doesn’t work (figure 11.6).

An insurance policy is a kind of good where it doesn’t work to cancel the purchase if 
the buyer doesn’t pay. The buyer will have already enjoyed the benefit of the policy in the 
meantime; you can’t take it back. Selling an insurance policy is like selling a lottery ticket; 
the seller must ensure the buyer pays for the ticket before the drawing, because few would 
afterward bother to pay for a ticket that turned out to be a loser. In the same way, who’d 
pay for a car insurance policy after a period when there were no accidents?

An insurance company (or a lottery ticket seller) could accept payment from a trust-
worthy, recurring customer in the form of an outstanding debt—a bond, debenture, 
or similar. In doing so, it would be trusting the customer to clear the debt later. But 
most insurance companies, including the one in our story, require customers to pay the 
money before the policy goes into effect. This leads to the second subtlety, the one in 
the bank giro domain, where a payment isn’t a payment (see figure 11.7).

A lottery ticket,
please. I’ll pay later. Damn,

no luck.
If you don’t pay, I

want the ticket back.

Figure 11.6  For some goods, it makes sense to take them back if payment isn’t made; for others, not  
so much.

Tricky Terminology in Bank Giro Domain

Payment

Confirm

Bounce

Payment Payment

Policy period

A “pa yment” in the bank
giro context does not
mean that a payment
is made, just that

it’s registered.

This is what really
indicates that a

pa yment has been
completed.

Bank Giro Finance Policy

Figure 11.7  A bank giro payment isn’t what you expect it to be.



285A crashed car, a late payment, and a court case

As you might recall, the Payment message from the bank means a giro payment has 
been registered, but this doesn’t mean that the money has been transferred. In bank 
giro lingo, it signals that a request for the payment has been made, and it’ll be pro-
cessed at the appropriate time (for example, during the coming night’s large batch-job 
window). When the money is transferred, the bank giro payment is said to be complete 
and can be confirmed (hence the message Confirm). If the transfer can’t be completed, 
perhaps because of lack of funds in the paying account, the giro payment is said to have 
bounced and will typically be retried a couple of times (hence the message Bounce).

You’ll soon see how these two subtleties together can make for a disastrous 
combination—a customer who enjoys the protection of a car insurance policy before 
paying for it. But in our story, the finance and policy teams, the policy holders, and the 
company at large are still in ignorant bliss about future events. The company rolls out 
this new payment method.

11.4 A crashed car, a late payment, and a court case
Existing customers start using the hassle-free payment method, and new customers 
sign on. Things go fine until one day when a customer makes a claim on his car insur-
ance policy. To provide evidence, the customer shows an insurance letter that was 
mailed to him (figure 11.8). That letter has an extended date to cover a new period. 
The problem is, he didn’t pay his fee for this period.

What had happened was that the bank giro payment was registered in due order. 
But on the payment date, the customer didn’t have sufficient funds in his account, so 
the bank giro withdrawal was rejected. During the following week, there were a few 
follow-up attempts, but as there were never enough funds, the payment was never com-
pleted. Still, the policy system sent him a policy renewal letter. Happy not to pay, the cus-
tomer let this continue month after month. Well, that’s until he crashed his car. Then 
the customer hurried to pay the outstanding debt, after the fact. What happened wasn’t 
anything strange. The system worked as designed.

For customers who choose to pay by bank giro, when a policy comes up for renewal, 
the finance system issues a new payment request, which is sent to the customer’s bank. 
On receiving this request, the bank sends a Payment message back to the finance sys-
tem. The finance system treats this in the same way as a cash payment over the counter 
because they are conceptualized as the same thing. When it receives the Payment 

Good thing I got
that policy letter....

Policy

Figure 11.8  A customer with a 
valid policy letter



286 chapter 11 

Your Honor,
it was just

a bug!

A bug? Not at all!
It is your de facto
established business

practice!

Figure 11.9  What a system does can be 
interpreted as what it’s intended to do.

Intermission: An insurance policy for free

message, it sends it on to the policy system, which reacts by prolonging the policy period 
and sending out a renewal letter to the policy holder.

The interesting thing is what didn’t happen. Because there weren’t sufficient funds 
in the policy holder’s account, there never was a transfer and never a Confirm mes-
sage. But because the finance system only listened for Payment messages, the missing 
Confirm went unnoticed. What happened was that the bank system issued a Bounce 
{remaining_attempts: 3} message, saying that it wasn’t able to do the transfer but 
would try again later, three more times. The finance system could safely ignore those 
messages until there was a Bounce{remaining_attempts: 0} message, meaning that the 
bank had finally given up on its attempts to draw money from the customer’s account.

When the insurance company first started accepting giro payments, the bounce-and-
give-up scenario was completely ignored. There were other (but cumbersome) manual 
processes in place that would catch these cases. Later, the finance system was developed 
to detect these situations and put the customers on a watch list. The company then con-
tacted the defaulting customers, starting with mailing out a reminder. Unfortunately, 
the functionality to do this was seen as a pure financial issue. The policy system never 
learned about this final Bounce and continued to believe the customers had paid.

And here you see the glitch. Even though we use the word payment for both things, a 
bank giro payment isn’t the same as a cash over-the-counter payment. In the latter case, 
the insurance company gets the money in its possession immediately. But in the former 
case, the insurance company doesn’t get the money until the giro payment is processed 
by the bank. If there’s no money in the account after three retries, then no money is 
transferred, and the insurance company won’t get paid, but the policy system will never-
theless have sent out a new policy letter.

The company claimed that the owner of the crashed car wasn’t entitled to compensa-
tion—he hadn’t paid his bill on time. The policy letter that was sent was due to a bug in 
the system. And paying the fee after a crash didn’t count as a valid payment; it was clearly 
an attempt to try to cover himself. Although the customer had finally made a payment 
after the incident, this didn’t entitle him to backdated coverage for the period during 
which he had not paid for the policy. On the other hand, the car owner claimed that he 
had a valid policy letter on the day of the crash, and that he had fulfilled his monetary 
duties by paying. Neither party would budge, so the case finally ended up in court.

In the trial, the judge ruled in favor of the policy holder. He interpreted the policy 
renewal letter as proof that the company had accepted a continued agreement: if the 
payment hadn’t yet been made in full, then the company had clearly accepted payment 
in the form of an outstanding debt. Legally, the company was bound by the issued pol-
icy letter.

We can only speculate how the judge would have interpreted the situation other-
wise, but it stands to reason that had there not been a renewal letter, then the company 
could’ve argued that it didn’t accept an outstanding debt as a payment. Most probably 
the ruling would have gone in favor of the company instead. The essence here is that 
the way the company did business de facto defined how its intentions were interpreted 
legally (figure 11.9).



287Seeing the entire picture

Even if the conceptualization that put bank giro and cash payments on par was a mis-
take, it was the way the company did business and, therefore, was interpreted as inten-
tional. The court didn’t care whether issuing the policy letter was a bug, a mistake, or 
a bad business decision. The company had acted as if it treated a bank giro payment 
(order) as a cash payment, and it needed to stand by that.

11.5 Understanding what went wrong
This situation, where the company hands out policies when it shouldn’t, is clearly a 
bug. But where is that bug located? In fact, going back to the individual systems, none 
of them does anything that’s unreasonable according to its domain. The bank giro 
system does what it should—arguably, it has some strange namings, but what domain 
doesn’t? We might claim that the finance system contains a bug because it takes some-
thing that’s not a completed money transfer (a bank giro payment) and considers it 
to be a payment from a customer. From a strict financial domain perspective, this is 
perfectly reasonable. Payments can be made in many forms, and cash is only one of 
them; in many contexts, it’s normal to accept a payment in the form of an IOU (I owe 
you) note or some other outstanding debt. The policy system also does exactly what it 
should. It detects a policy payment and reacts by issuing a new policy.

It’s hard to claim that the bug is in any one of the system integrations (for example, 
the integration between the external bank and the finance system). A registered but 
uncompleted bank giro payment can certainly be interpreted as the customer having 
declared the intention to pay, and the company, having accepted this, being in debt until 
the money is transferred. It takes gathering our collective understanding of the subtle-
ties, looking at all three domains at the same time, to see that this situation isn’t sound.

11.6 Seeing the entire picture
Avoiding this situation would have required collaboration and communication 
between people with expertise in all three domains: bank giro transfer, finance, and 
insurance policies. Let’s take a closer look at what went wrong and what could have 
been done differently. How could we have ensured those people talked to each other, 
sooner (preferable) or later?

message, it sends it on to the policy system, which reacts by prolonging the policy period 
and sending out a renewal letter to the policy holder.

The interesting thing is what didn’t happen. Because there weren’t sufficient funds 
in the policy holder’s account, there never was a transfer and never a Confirm mes-
sage. But because the finance system only listened for Payment messages, the missing 
Confirm went unnoticed. What happened was that the bank system issued a Bounce 
{remaining_attempts: 3} message, saying that it wasn’t able to do the transfer but 
would try again later, three more times. The finance system could safely ignore those 
messages until there was a Bounce{remaining_attempts: 0} message, meaning that the 
bank had finally given up on its attempts to draw money from the customer’s account.

When the insurance company first started accepting giro payments, the bounce-and-
give-up scenario was completely ignored. There were other (but cumbersome) manual 
processes in place that would catch these cases. Later, the finance system was developed 
to detect these situations and put the customers on a watch list. The company then con-
tacted the defaulting customers, starting with mailing out a reminder. Unfortunately, 
the functionality to do this was seen as a pure financial issue. The policy system never 
learned about this final Bounce and continued to believe the customers had paid.

And here you see the glitch. Even though we use the word payment for both things, a 
bank giro payment isn’t the same as a cash over-the-counter payment. In the latter case, 
the insurance company gets the money in its possession immediately. But in the former 
case, the insurance company doesn’t get the money until the giro payment is processed 
by the bank. If there’s no money in the account after three retries, then no money is 
transferred, and the insurance company won’t get paid, but the policy system will never-
theless have sent out a new policy letter.

The company claimed that the owner of the crashed car wasn’t entitled to compensa-
tion—he hadn’t paid his bill on time. The policy letter that was sent was due to a bug in 
the system. And paying the fee after a crash didn’t count as a valid payment; it was clearly 
an attempt to try to cover himself. Although the customer had finally made a payment 
after the incident, this didn’t entitle him to backdated coverage for the period during 
which he had not paid for the policy. On the other hand, the car owner claimed that he 
had a valid policy letter on the day of the crash, and that he had fulfilled his monetary 
duties by paying. Neither party would budge, so the case finally ended up in court.

In the trial, the judge ruled in favor of the policy holder. He interpreted the policy 
renewal letter as proof that the company had accepted a continued agreement: if the 
payment hadn’t yet been made in full, then the company had clearly accepted payment 
in the form of an outstanding debt. Legally, the company was bound by the issued pol-
icy letter.

We can only speculate how the judge would have interpreted the situation other-
wise, but it stands to reason that had there not been a renewal letter, then the company 
could’ve argued that it didn’t accept an outstanding debt as a payment. Most probably 
the ruling would have gone in favor of the company instead. The essence here is that 
the way the company did business de facto defined how its intentions were interpreted 
legally (figure 11.9).

Your Honor,
it was just

a bug!

A bug? Not at all!
It is your de facto
established business

practice!

Figure 11.9  What a system does can be 
interpreted as what it’s intended to do.



288 chapter 11 

Payment

Confirm

Bounce Policy period

Payment
Cash payment

Cash payment

Bank Giro Finance Policy

We’d better change name from
payment to cash payment now
that there are others around.

These are
obviously not

the same.

Figure 11.10  A map of the three domains after renaming Payment to CashPayment

Intermission: An insurance policy for free

The focus on not breaking the technical dependencies was clearly a hampering fac-
tor. It encouraged the finance team to reuse the same technical construct, Payment, even 
though its meaning had diverged: the word payment had come to mean both immediate 
payment over the counter and a payment request sent to the bank for clearance. But in 
their unwillingness to disturb the policy team, the finance team continued to use the term 
payment for both cases. The sad part is that this is exactly what messed things up for the pol-
icy team, because to them, the two types of payment weren’t the same. To the policy team, 
immediate payment over the counter was a sound foundation for issuing a policy renewal 
letter, but a payment request sent to the bank for clearance wasn’t.

What should have been done instead? The obvious answer is that the finance team 
should have listened for the bank giro message Confirm instead of Payment. The Con-
firm message marks that a transaction has been completed, which is what the insurance 
company regards as a sound foundation for issuing a policy. But, how would that hap-
pen? What would have caused the finance team to do a different mapping?

Let’s play out a different scenario. Suppose you’re the project manager or technical 
lead in the finance team at the time the new payment option is introduced. You decide 
to guide the team in implementing it using deliberate context mapping. You stop to 
think about what the team thus far has called a payment. The concept was specific 
enough when cash payments were the only payments that existed, but now that you’re 
about to add giro payments, this is no longer the case.

After some discussion with your team, you muster up the courage to refactor the 
domain and call the original type of Payment a CashPayment instead, because that’s 
what it is. In the best interest of both worlds, you make a note that you need to talk 
about this with the policy team that sits downstream, and who’ll need to handle the 
name change. And if you forget, or if it doesn’t occur to you to talk to the policy team, 
perhaps you don’t know that they listen for that specific Payment message? After you 
refactor Payment to CashPayment and deploy the change to production, it’ll only be a 
matter of time until someone from the policy team approaches you and asks what has 
happened to their expected Payment messages. If nothing else, this will cause a discus-
sion to happen; now you’ll have to rely on your diplomatic skills! Jokes aside, it’s not 
desirable to break a technical dependency. But if that’s what it takes to ensure that a 
crucial domain discussion happens, then it’s worth it.

Back to the story: now that your team has renamed Payment to CashPayment, you 
can draw the context map of the finance domain and the neighboring domains that it’s 
about to integrate with: bank giro and policy. The map will look like figure 11.10.

Looking at the map, you can consider what should be mapped to what. It’s pretty 
obvious that there’s nothing in the finance domain that a bank giro payment can be 
mapped to—a CashPayment certainly doesn’t suit. There’s the temptation to abstract 
CashPayment to something that could accommodate a bank giro payment as well. But 
you fight that urge because it’s much better to first gain a deeper insight and then do 
the abstractions than it is to make a premature abstraction that might be less insightful.

Preferring to be specific first, you add a new type to the finance domain, Giro
Payment. But you’re still stuck on what it should map to. The Payment in the bank giro 



289Seeing the entire picture

The focus on not breaking the technical dependencies was clearly a hampering fac-
tor. It encouraged the finance team to reuse the same technical construct, Payment, even 
though its meaning had diverged: the word payment had come to mean both immediate 
payment over the counter and a payment request sent to the bank for clearance. But in 
their unwillingness to disturb the policy team, the finance team continued to use the term 
payment for both cases. The sad part is that this is exactly what messed things up for the pol-
icy team, because to them, the two types of payment weren’t the same. To the policy team, 
immediate payment over the counter was a sound foundation for issuing a policy renewal 
letter, but a payment request sent to the bank for clearance wasn’t.

What should have been done instead? The obvious answer is that the finance team 
should have listened for the bank giro message Confirm instead of Payment. The Con-
firm message marks that a transaction has been completed, which is what the insurance 
company regards as a sound foundation for issuing a policy. But, how would that hap-
pen? What would have caused the finance team to do a different mapping?

Let’s play out a different scenario. Suppose you’re the project manager or technical 
lead in the finance team at the time the new payment option is introduced. You decide 
to guide the team in implementing it using deliberate context mapping. You stop to 
think about what the team thus far has called a payment. The concept was specific 
enough when cash payments were the only payments that existed, but now that you’re 
about to add giro payments, this is no longer the case.

After some discussion with your team, you muster up the courage to refactor the 
domain and call the original type of Payment a CashPayment instead, because that’s 
what it is. In the best interest of both worlds, you make a note that you need to talk 
about this with the policy team that sits downstream, and who’ll need to handle the 
name change. And if you forget, or if it doesn’t occur to you to talk to the policy team, 
perhaps you don’t know that they listen for that specific Payment message? After you 
refactor Payment to CashPayment and deploy the change to production, it’ll only be a 
matter of time until someone from the policy team approaches you and asks what has 
happened to their expected Payment messages. If nothing else, this will cause a discus-
sion to happen; now you’ll have to rely on your diplomatic skills! Jokes aside, it’s not 
desirable to break a technical dependency. But if that’s what it takes to ensure that a 
crucial domain discussion happens, then it’s worth it.

Back to the story: now that your team has renamed Payment to CashPayment, you 
can draw the context map of the finance domain and the neighboring domains that it’s 
about to integrate with: bank giro and policy. The map will look like figure 11.10.

Looking at the map, you can consider what should be mapped to what. It’s pretty 
obvious that there’s nothing in the finance domain that a bank giro payment can be 
mapped to—a CashPayment certainly doesn’t suit. There’s the temptation to abstract 
CashPayment to something that could accommodate a bank giro payment as well. But 
you fight that urge because it’s much better to first gain a deeper insight and then do 
the abstractions than it is to make a premature abstraction that might be less insightful.

Preferring to be specific first, you add a new type to the finance domain, Giro
Payment. But you’re still stuck on what it should map to. The Payment in the bank giro 

Payment

Confirm

Bounce Policy period

Payment
Cash payment

Cash payment

Bank Giro Finance Policy

We’d better change name from
payment to cash payment now
that there are others around.

These are
obviously not

the same.

Figure 11.10  A map of the three domains after renaming Payment to CashPayment

domain certainly looks like a good candidate, but you have limited insight into the sub-
tleties of bank giro payments and risk jumping to conclusions.

TIP  Start by being specific, solve the domain problem, and then do abstrac-
tion when you have deep insight.

You now feel that you have moved as far as you can on your own. Your context map 
looks like figure 11.11, but you can’t make the mapping between the bank giro con-
cepts and your newly created GiroPayment.

Payment

Confirm

Bounce Policy period

Cash payment

Bank Giro Finance Policy

Cash payment

Giro payment

Shall we
send these
as well?

Are these
two the same?

Figure 11.11  A map of the three domains with the newly created GiroPayment. What should it map to?



290 chapter 11 Intermission: An insurance policy for free

You decide it’s time to meet with experts in all the affected fields. You invite domain 
experts from the policy team and from the finance department (or the bank), one of 
whom is knowledgeable about bank giro payments, to a small workshop. What you’re 
looking for at this time is the deliberate discovery of how the external bank giro domain 
maps to your finance domain, taking the policy domain into account. This isn’t a trivial 
thing, and therefore you deliberately set the stage to support these discoveries.

The sound of a deliberate discovery is when an expert in one domain says “Oh, OK, I 
get it” to an expert in another domain when gaining insight into that person’s domain. 
On the other hand, the sound of a late discovery might be “Aaahhhh, no, that can’t be 
true!” uttered by someone who spotted a fundamental mistake close to a deadline and 
will need to work day and night to fix it (see figure 11.12).2

To see how deliberate discovery might play out, consider the following hypotheti-
cal conversation between the policy expert, Polly; Ann from finance; and Bahnk, who 
really knows banking systems.

“What happens when we get a new payment?” asks policy expert Polly.

“Well, I guess we get a payment through giro,” says Ann from finance.

“That’s when we get a Payment message from the bank?” Polly enquires.

“Yep, that’s when a payment is registered,” says Bahnk, who’s the expert on the 
bank systems.

“OK, so we have the money, and we can issue a new policy letter,” Polly concludes.

“Wait. I didn’t say we have the money,” Bahnk protests.

“Yes, you did,” Ann challenges, perplexed.

2 Credit to Dan North for making this distinction between early deliberate discovery and late accidental 
discovery. Read his article “Introducing Deliberate Discovery” at https://dannorth.net/2010/08/ 
30/introducing-deliberate-discovery/.

A crucial insight
late in the project.

Often a discovery that
it cannot be built the

way it has been.

Area of sa ved angst

Time

Necessary level

Ac
qu

ir
ed

 in
si

gh
t

Start level

A surprising
insight early

in the project

Path of accidental discovery

Oh, ok, I get it.

Oh, no!

Pa
th

of

deli
berate

discovery

Figure 11.12  The difference between early deliberate discovery and late ignorant discovery



291Seeing the entire picture

“No, I said the payment was registered, not that it’s confirmed,” Bahnk explains.

“Does that mean we haven’t got the money?” Polly wonders out loud.

“Right. The bank has just registered the request to make a payment; the money 
hasn’t been transferred yet. It’ll probably transfer at the next nightly batch run if 
there are sufficient funds in the sending account,” Bahnk clarifies.

“Oh, but that shouldn’t be a problem,” says Ann from finance. “It means that the 
customer will owe us money until the money is transferred. It’s still a transfer of 
assets. It will do.”

“No, it won’t!” Polly protests vividly, airing her policy expertise. “We can’t start a 
policy until we are really paid-paid, not just promise-to-pay-paid.”

“In that case, it’s the Confirm message you should wait for,” says Bahnk.

“Oh, OK, I get it,” concludes Ann, who has learned something subtle about the 
interaction between the domains of bank giro and insurance policies.

During this meeting, you manage to facilitate a deliberate discovery about how the 
domains should map to each other. The new domain mapping will look like figure 11.13.

At this point, you’ve developed a deep knowledge about the business. You under-
stand that for a policy to be renewed, there needs to be confirmation that the money 
has been transferred. You are now ready to define your abstractions—something you 
earlier decided to defer until you had a better understanding. One option might be to 
add a new abstraction, PolicyPayment, which is created when the finance system has 
received a payment for a new policy period. For a CashPayment, this happens imme-
diately because you know the amount has been paid in full over the counter. For a 
GiroPayment, it occurs only when the finance system receives a Confirm message from 
the bank indicating that the payment has been completed. The policy system would 
then listen for this new message type instead of the old Payment messages, and create a 
new PolicyPeriod when it receives a PolicyPayment message.

Payment

Confirm

Bounce

Policy period

Cash paymentCash payment

Giro payment Giro payment

Aha! This is
what really

maps.

Do we really need
to listen to all
payment types?

Bank Giro Finance Policy

Figure 11.13  A map of the three domains with complete mappings



292 chapter 11 Intermission: An insurance policy for free

The key takeaway from this story is that none of these systems were broken if you 
looked at each domain in isolation. But the holistic effect was that a subtle mistake was 
introduced—a mistake that had serious consequences and at a different scale could 
have become catastrophic. The remedy is to not rely on expertise about a single system 
or a single domain when you want to ensure security. Instead, bring together experts 
from all the adjacent domains to gain a rich understanding.

11.7 A note on microservices architecture
Finally, we’d like to set this story in the context of a microservices architecture. In this 
story, there were only three systems involved. In a microservices architecture, there 
might be several hundred systems, each a service and each a domain. Many times we’ve 
seen the microservices architecture sold with the promise that when you need to make 
changes, you can do so surgically within one single service. Often this is coupled with 
the promise that if the service is maintained by a team, that team doesn’t need to dis-
turb (talk to) any other team. We think that this is a dangerous misrepresentation!

Don’t misunderstand us. We’re not opposed to using microservices; in fact, we think 
it’s a good idea. We’re opposed to the misconception that you can safely make myopic 
changes to a single service without taking the holistic picture into account. Thankfully, 
you seldom need to take all the services into account, but we definitely recommend that 
you always have a look at the neighboring services when you make a change.

Summary

¡	Do deliberate discovery early to get deep insights into subtle aspects of the 
domain.

¡	Start specific, then abstract later.
¡	Collect expertise from all adjacent domains.
¡	Refactor names if they change semantics, especially if they change semantics out-

side the bounded context.



Part 3

Applying the fundamentals

In the previous part, you learned about the fundamentals of secure by design. 
The tools and mindset certainly allow you to craft secure software, but, for some 
reason, applying this in legacy code is something many find challenging. Where 
should you start? What should you look for, or which strategy should you use? 
This is exactly what we’ll address in this part.

The focus will therefore be a bit different than in previous parts. We won’t 
explain security problems in depth, but rather focus on how legacy code can be 
improved using what you’ve learned so far in this book. We’ll start by looking 
at common problems found in monolithic architectures and then progress to 
microservices, which pose their own unique set of security challenges. Then we’ll 
finish this part with some last words about why you still need to think about secu-
rity, before we let you go on your journey towards a world of more secure software.





295

12Guidance in legacy code

This chapter covers
¡	How to deal with ambiguous parameters

¡	Security issues caused by logging

¡	How DRY is about ideas, rather than text

¡	Absence of negative tests as a warning sign

¡	Introducing domain primitives in legacy code

Once you’ve grokked the fundamentals of the secure by design approach, you can 
start applying the concepts when writing code. This is usually easier when you’re 
doing greenfield development, but you’ll most likely spend a lot of time working 
on legacy codebases—codebases that weren’t created with a secure by design mindset. 
When working on such codebases, it can be difficult to know how to apply the con-
cepts you’ve learned in this book and where to start.

In this chapter, you’ll learn how to identify some problems and pitfalls that we’ve 
found are common in legacy codebases. Some of them are easy to spot, and others 
are more subtle. We also provide you with tips and advice on how to rectify them. 
Some issues require more effort than others, so you need to choose your approach 
based on your situation. Hopefully this chapter will provide you with enough guid-
ance to make that choice easier.



296 chapter 12 Guidance in legacy code

You’ll start by learning why ambiguous parameters in methods and constructors are 
a common source of security flaws. Then you’ll learn what to look out for when logging 
and why defensive code constructs are problematic. We then show you how seemingly 
well-designed code can have subtle issues that cause security issues. At the end of this 
chapter, you’ll learn about some mistakes that are commonly made when introducing 
domain primitives in legacy code and what to watch out for when you start implement-
ing domain primitives.

12.1 Determining where to apply domain primitives in legacy code
In chapter 5, you learned about the concept of domain primitives and how they exist 
if and only if they are valid. This characteristic enabled you to apply domain primitives 
in several situations to either enable stronger security or completely remove the pos-
sibility of an attack—but there’s a catch to all of this. Most agree that using domain 
primitives makes sense and is an intuitive design pattern, but to satisfy the invariant of 
validity, you must also identify the context in which the domain primitive applies. Oth-
erwise, you won’t be able to decide which domain rules to use, making it impossible to 
reject invalid data—this is a common pitfall when introducing domain primitives in 
legacy code.

To illustrate, picture the worst possible scenario: a homogeneous mass of code where 
strings, integers, and other generic data types are passed around. The only way to know 
what the developer’s intentions are is to look at variable names, method signatures, and 
class hierarchies, but sometimes not even that makes it clear. All in all, the codebase is a 
mess that would benefit from using domain primitives—but where do you start?

Because the concept of domain primitives is easy to grasp, many start by wrapping 
generic types such as integers and strings in explicit data types, but doing so often ends 
up being a mistake. As we’ll elaborate further in section 12.8, a domain primitive must 
encompass a conceptual whole, and wrapping generic data types only results in an 
explicit type system, not in the design that you want. Instead, what you should do is 
to start by identifying a bounded context and the semantic boundary, because this is 
where you’ll start creating your domain primitives.

TIP  Start by identifying a bounded context and the semantic boundary, 
because this is where you should introduce domain primitives.

In chapter 3, we talked about bounded contexts and how a domain model captures the 
semantics of the ubiquitous language within a context. As part of this, you also learned 
that the semantic boundary can be implicit and hard to see in code, but it can be iden-
tified by testing the semantics of the domain model. As soon as the semantics of a term 
or concept change, the model breaks, which means that a semantic boundary is found.



297Ambiguous parameter lists

A good starting point when identifying a bounded context is therefore to group con-
cepts that belong together. A common pattern is to use a package or a module for your 
classes and methods, but how you organize them doesn’t matter. What’s important is 
that all concepts that share the same semantic model should be grouped together. For 
example, if there’s a method with the signature

public void cancelReservation(final String reservationId)

then every class or method that uses a reservationId or operates on a Reservation
object must share the same understanding of what they mean, or it could result in mis-
understandings and bugs. But a discrepancy in semantics isn’t only a source of errors, 
it’s also an indicator that the concept should be moved out of that grouping, which 
sometimes is a painful experience because it requires heavy redesign.

Grouping concepts that belong together is only the first step toward creating a 
bounded context. The next step is to introduce domain primitives to express the 
semantic boundary. But this is also when things could go seriously wrong unless you’re 
careful, so let’s proceed by investigating how you deal with ambiguous parameter lists.

12.2 Ambiguous parameter lists
One easily recognizable design flaw in code is ambiguous parameter lists in methods 
and constructors. An example of such a method is shown in the following listing, where 
the shipItems method takes two integers and two addresses as input parameters.

Listing 12.1  Method with ambiguous parameter list

public void shipItems(int itemId, int quantity,     
                     Address billing, Address to) { 
  // ...
}

public class Address {
  private final String street;
  private final int number;
  private final String zipCode;

  public Address(final String street, final int number,
                 final String zipCode) {
    this.street = street;
    this.number = number;
    this.zipCode = zipCode;
  }

   // ...
}

In chapter 5, you learned that ambiguous parameters are common sources of secu-
rity issues for a couple of reasons. One problem is that generic types lack the level of 

The parameters itemId and 
quantity are of the primitive 
type int.

The billing address and shipping 
address are of the same 
composite type, Address.



298 chapter 12 Guidance in legacy code

input validation that you should strive for to create robust code. Another is that it’s 
common to accidentally swap the parameters with each other. We’ve kept the ship-
Items method fairly short to make it concise as an example, but you might encounter 
parameter lists much longer than this. If you have a method with 20-plus parameters, 
all of type String, it’s hard not to mess up the order. When you see this type of code 
construct, you should see it as an opportunity to change your code to be more secure.

As you can see in listing 12.2, it’s easy to get the parameters mixed up when calling 
the shipItems method. Both itemId and quantity are of the primitive type int, and 
accidentally swapping them when calling the method is a mistake that can go unno-
ticed. The billing address and the shipping address are both complex types that look 
like domain objects. But they’re of the same type, and there’s nothing preventing you 
from making the mistake of mixing them up.

Listing 12.2  Accidentally swapping parameters

int idOfItemToBuy = 78549;
int quantity = 67;
Address billingAddress = new Address("Office St", 42, "94 102");
Address shippingAddress = new Address("Factory Rd", 2, "94 129");

service.shipItems(quantity, idOfItemToBuy,         
                  shippingAddress, billingAddress);

Accidentally swapping any of these parameters can have severe side effects. For 
example, sending 78,549 packages of an item with ID 67 is different from sending 67 
packages of an item with ID 78549. It’s also highly unlikely that a company’s finance 
department would appreciate having a handful of pallets of industrial grease dumped 
at its entrance, while the factory gets an invoice in its mailbox.

The solution for ambiguous parameter lists is to replace all of the parameters, or as 
many as you can, with domain primitives (see chapter 5) or secure entities (see chapters 
5, 6, and 7). By doing so, you’ll not only make the parameters unambiguous but also 
make the code more secure, as you learned in chapters 5–7. The way you go about doing 
this refactoring depends on the codebase at hand and how much time is available.

In this section, you’ll learn three different approaches and when they’re a good fit 
and a less good fit. The approaches we’ll discuss, together with a summary of their pros 
and cons, are shown in table 12.1. It’s worth noting that these approaches are also appli-
cable when trying to introduce domain primitives in general, not only when replacing 
ambiguous parameters; for example, after you’ve identified a context boundary using 
the tips in section 12.1.

The item ID and the quantity are mixed up, resulting in 
too many items of the wrong kind being sent.

The shipping and billing addresses 
are swapped, resulting in goods 
being sent to the wrong place.



299Ambiguous parameter lists

Table 12.1  Approaches to dealing with ambiguous parameter lists

Approach Pros Cons

Direct approach —Replace all 
ambiguous parameters at once

■ Solves everything right away

■ Works well with smaller code-
bases and few developers

■ Can be performed quickly if 
codebase is of reasonable size

■ Too much refactoring in large 
codebases

■ Not well suited if data quality is 
a big issue

■ Best performed by a single 
developer

Discovery approach—Find and 
fix the problems before changing 
the API

■ Works well if data quality  
is poor

■ Works with larger codebases 
and multiple teams

■ Takes a long time to complete

■ May not be able to keep up 
with a fast-changing codebase

New API approach—Create a new 
API and then gradually refactor 
away the old API

■ Allows for incremental 
refactoring

■ Works well with both small and 
large codebases

■ Works with multiple develop-
ers and teams

■ If data quality is an issue, 
combine it with the discovery 
approach

What about builders?
We often get asked if using the builder pattern can solve the issues with ambiguous 
parameters. We believe it’s not so much a solution to the security issues but rather a 
band-aid. Using the builder pattern partially solves the problem with accidental swap-
ping, because the builder makes it a bit easier to see that you’re passing in the right 
argument. It’s still entirely possible to swap parameters of the same type, and you’re not 
getting the benefits of exact invariants and crisp definitions that you get by using domain 
primitives. The builder pattern is definitely useful for other purposes, especially uphold-
ing advanced constraints on creation, which we discussed in section 6.2.6.

12.2.1 The direct approach

The direct approach is to first introduce domain primitives and secure entities to 
replace all ambiguous parameters. After that, you perform the change and alter the 
method signature, typically one parameter at a time.

Listing 12.3 shows how the shipItems method looks with the parameters replaced 
with domain primitives. As soon as you do the swap, you’ll most likely run into every-
thing from compilation errors to test failures. You tackle this by solving one issue at 
a time. Once you have fixed all the problems and can build the application, you can 
deploy it to a test environment and let it process data. Because you’ve introduced 



300 chapter 12 Guidance in legacy code

domain primitives with more strict validation, bad data that used to flow through your 
system is now going to be rejected. Therefore, you need to monitor it for any errors that 
can pop up.

Listing 12.3  The direct approach: replace all at once

public void shipItems(final ItemId itemId,
                      final Quantity quantity,
                      final BillingAddress billing,
                      final ShippingAddress to) {  
  // ...
}

An advantage of the direct approach is that it solves everything right away. When you’re 
finished with the refactoring, there’s no more work to be done. This approach is typi-
cally well suited for smaller codebases owned by a single team, where it tends to be the 
fastest approach. It’s also worth noting that you don’t have to refactor the code behind 
the method API immediately; instead, you can choose to gradually refactor it.

If the codebase is large, then this might not be a viable solution, because it can leave 
the code in a broken state for a long period of time before you manage to fix all the 
errors—it becomes a big-bang refactoring exercise. Even if you manage to fix all compi-
lation errors and failing tests, it can take a while before you’ve ironed out possible run-
time errors caused by poor data quality. Also, if the changes affect more than one team, 
it can be difficult or impossible to sync the work, and it needs to happen simultaneously.

You should also be aware that introducing domain types with strict invariants that 
reject bad data can lead to heated discussions about how domain primitives break 
the code instead of improving it. In those situations, it’s important to remember that 
domain primitives and secure entities didn’t create the problem. The bad data was 
already there, and what you should do is address the data quality at the source.

12.2.2 The discovery approach

Another approach is one we like to call the discovery approach. As the name implies, 
the tactic of this approach is to introduce domain primitives and secure entities behind 
the public API without changing the API. After you’ve done that, you’ll discover and 
fix possible problems before swapping and replacing the ambiguous parameters. This 
approach is especially good if data quality is a big issue.

An example of how to apply the discovery approach on the shipItems method is 
shown in listing 12.4. You keep the method signature as is, and for each ambiguous 
parameter, you try to create the corresponding domain primitive. For the integer value 
itemId, you try to create a domain primitive ItemId; for the generically typed billing 
address, you try to create a domain primitive called BillingAddress; and so on. For 
each domain primitive you instantiate, you catch and log any exceptions that can occur. 
When you’re done, you can start running your test suites and even deploy the code to 
production. Monitor the logs for errors and address the problems as they occur. Ana-
lyze each exception to find the root cause and fix the problem.

Replaces all parameters 
with either domain 
primitives or secure entities



301Ambiguous parameter lists

Listing 12.4  The discovery approach: fix the problems first

public void shipItems(final int itemId, final int quantity,
                      final Address billing, final Address to) {
  tryCreateItemId(itemId);                          
  tryCreateQuantity(quantity);                      
  tryCreateBillingAddress(billing);                 
  tryCreateShippingAddress(to);                     

   // ...
}

private void tryCreateItemId(final int itemId) {
  try {
      new ItemId(itemId);
  } catch (final Exception e) {
      logError("Error while creating ItemId", e);   
  }
}

private void tryCreateQuantity(final int quantity) {
  try {
      new Quantity(quantity);
  } catch (final Exception e) {
      logError("Error while creating Quantity", e); 
  }
}

// other tryCreate methods...

import static org.apache.commons.lang3.Validate.isTrue;

public class ItemId {                               
   private final int value;

   public ItemId(final int value) {
      isTrue(value > 0, "An item id must be greater than 0");
      this.value = value;
   }

   public int value() {
      return value;
   }

   // domain operations, equals(), hashcode(), toString(), and so on
}

// other domain primitives...

Remember that the purpose of the tryCreate methods isn’t to prevent bad data from 
entering, but to discover it. Common sources for errors include bad data at runtime 
and invalid stubs or mocks used in tests. Once you feel confident that you’ve fixed 
the majority of issues, you can start replacing the parameters the same way as with the 
direct approach.

For each ambiguous parameter, try to create 
the corresponding domain primitive.

Log errors that occur 
while creating the 
domain primitives.

An example of one of the 
domain primitives created



302 chapter 12 Guidance in legacy code

The discovery approach works well if data quality is a major problem and you want 
to avoid disruption. If the domain rules you’re introducing with domain primitives and 
secure entities are so strict (albeit correct) that a lot of the data you’re processing fails 
to meet those rules, then a defensive approach like this is a good choice. It also works 
well on both small and large codebases.

The downside of the discovery approach is it’ll take longer to perform the transition 
to the new API. You first need to introduce the creation of secure domain types, then 
monitor logs for a period of time, and then address data quality problems. It isn’t until 
all these steps are done that you can make the API change. Another challenge is when 
active development is occurring while you’re performing the transition. New code can 
be written using the old API, adding to the technical debt on one side while you’re try-
ing to clean up the data on the other side. If a fast-moving codebase is a challenge, then 
you might want to combine this approach with the approach you’ll learn about next—
the new API approach.

12.2.3 The new API approach

The third and last approach we’ll discuss is called the new API approach. The core 
idea in this approach is to create a new API alongside the existing one, as shown in 
listing 12.5. This new API only uses domain primitives and secure entities but still pro-
vides the same functionality. You ensure that the functionality is the same, either by 
delegating to the old API or by first extracting the logic from the old API and then 
reusing the extracted logic in the new API. Once the new API is in place, you can grad-
ually refactor calling code to use the new API instead. Eventually all references to the 
old API will be gone, and you can delete it.

Listing 12.5  The new API approach: incremental refactoring

import static org.apache.commons.lang3.Validate.notNull;

public void shipItems(final ItemId itemId,          
                      final Quantity quantity,
                      final BillingAddress billing,
                      final ShippingAddress to) {
   notNull(itemId);
   notNull(quantity);
   notNull(billing);
   notNull(to);

   shipItems(itemId.value(), quantity.value(),      
             billing.address(), to.address());
}

@Deprecated
public void shipItems(int itemId, int quantity,
                     Address billing, Address to) { 
   // ...
}

New method with only 
domain primitives or secure 
entities as parameters

The new method delegates to 
the old method to ensure the 
same functionality.

The old method is marked 
as deprecated but 
remains as long as  
there are references to it.



303Logging unchecked strings

This approach has several advantages. One is that it lets you do the transition to the 
new hardened API in small steps. Because you refactor one part of the codebase at 
a time, you get smaller commits and fewer data issues to deal with. Another is that 
because of the gradual refactoring, it also works well when dealing with large code-
bases or multiple teams. But if data quality is an issue, you’ll still need to use the ideas 
from the discovery approach you learned about earlier.

You’ve now learned that ambiguous parameter lists are a common source of security 
problems. You’ve also looked at three different approaches for dealing with the prob-
lem once you’ve found it. When replacing generic parameters with domain primitives 
and secure entities, it’s common that you’ll expose issues with poor data quality. If this 
is the case, you might need to fix those problems first before you can completely intro-
duce the new strict types in your API.

12.3 Logging unchecked strings
In chapter 10, we talked about the importance of using a centralized logging service 
instead of writing to a file on disk. Changing the logging strategy in legacy code sounds 
like a big operation at first, but often it’s enough to replace the backend of the log-
ging framework with one that sends data across the network instead of writing to a 
file on disk. This could, in fact, be done in a seamless fashion, but, unfortunately, that 
only takes you halfway from a secure logging perspective. What you still need to do 
is ensure that unchecked strings never get logged—which is addressed using domain 
primitives—because this can open up potential security vulnerabilities, such as data 
leakage and injection attacks.

When bringing this up, we often hear that most logging frameworks only accept 
strings, and avoiding strings isn’t an option. We certainly agree, but there’s a big differ-
ence between not logging strings and logging unchecked strings. Unchecked strings 
are, in fact, the root cause of many attack vectors and should be avoided at all cost. 
Unfortunately, not many realize this, and the mistake is often repeated over and over 
again regardless of experience level. Let’s dive into an example and learn what to look 
for in a codebase so you don’t make the same mistake.

12.3.1 Identifying logging of unchecked strings

The problem of logging unchecked strings isn’t restricted to only legacy code. It can 
appear in any codebase, regardless of quality. The problem is often hidden in plain 
sight, and what you need to look for is the logging of unverified String objects (for 
example, logging of user input or data from another system). In the following listing, 
you see an example where an unchecked string is logged. The fetch method is part 
of a table reservation service in a restaurant system that lets you fetch table reserva-
tions by ID.



304 chapter 12 Guidance in legacy code

Listing 12.6  Logging of unchecked input when fetching a table reservation

public TableReservation fetch(final String reservationId) {
   logger.info("Fetching table reservation: " +
                                  reservationId);  
   // fetch table reservation logic
   return tableReservation;
}

It’s not important why the reservation ID is logged. What’s important is that the input 
argument is logged without being checked. Even though a reservation ID has strict 
domain rules (for example, it must start with a hash sign followed by seven digits), the 
developer decided to represent it as a String. This means that even though you expect 
it to be a valid reservation ID, an attacker could inject anything that matches the rules 
of a String object, which literally could be anything (for example, 100 million char-
acters or a script). Another serious issue is the possibility of a second-order injection 
attack, as we discussed in chapter 9 when talking about handling bad data. If there’s a 
weakness in the log parsing tool, an attacker could exploit it by injecting a malicious 
string that pretends to be a reservation ID and have it written to the logs—not good!

WARNING  Never log unchecked user input, because it opens up the risk of 
second -order injection attacks.

The solution is to use a domain primitive instead of a String object, because it lets 
you control the input instead of the attacker having control. But, as you learned in 
section 12.2, how you introduce domain primitives in an API could cause a whole 
set of new problems, and choosing a strategy that doesn’t cause too much fuss is 
recommended.

12.3.2 Identifying implicit data leakage

Another issue related to logging unchecked strings is leakage of sensitive data in logs 
due to an evolving domain model. This problem is somewhat hard to recognize unless 
you know what to look for, so let’s turn back to our previous example, but with a slight 
modification, as seen in the following listing. What’s been added is the logic for fetch-
ing the corresponding table reservation from a repository and a log statement, where 
the internal data of the matching reservation object is serialized as a String before it’s 
written to the logs.

Listing 12.7  Serializing the table reservation object as a String

public TableReservation fetch(final String reservationId) {
   logger.info("Fetching table reservation: " + reservationId);
   final TableReservation tableReservation =
            repository.reservation(reservationId); 
   logger.info("Received " + tableReservation);    
   return tableReservation;
}

Logging of an unchecked 
reservation ID that could 
contain anything

Fetches a table 
reservation from 
the repository

Implicitly serializes the table 
reservation object as a String  
before being written to the log



305Defensive code constructs

Logging a table reservation can seem harmless because it only contains data such as the 
table number, reservation ID, number of guests, and time slot. But what if the domain 
model evolves? For example, imagine that someone decides to include member infor-
mation in a reservation to allow for better service. Then the  TableReservation object 
suddenly contains sensitive data (for example, name, contact information, and mem-
bership number) that implicitly leaks when logging a reservation. But keeping track of 
how data is consumed in a large system is close to impossible, so how do you prevent 
this from happening?

As it turns out, preventing implicit data leakage is hard, but detecting it isn’t that 
difficult. In chapter 5, we discussed how to deal with sensitive values and the read-once 
object pattern. This pattern lets you decide how many times a value is allowed to be 
read, and if this limit is exceeded, a contract violation occurs. That way, you only need to 
identify sensitive data in your system and model it as such to prevent it from being read 
more often than you allow, as would be the case when doing an unknown log operation.

TIP  Always limit the number of times a sensitive value can be accessed in your 
code. That way, you’ll be able to detect unintentional access.

But there’s another subtle problem in the statement logger.info("Received " +   
table Reservation). Concatenating the string "Received " with the tableReservation  
object using the + operator creates an implicit call to the toString method of   
tableReservation, which allows it to be represented as a String object. This opera-
tion is more or less harmless if you haven’t overridden the toString method in java 
.lang.Object, because it only results in a string containing the class name and an 
unsigned hexadecimal representation of the hash code. But toString is frequently 
overridden because it’s an easy way to debug the contents of an object.

To avoid updating toString every time a field is added or modified, many choose 
to use reflection to dynamically extract all the data. This implies that sensitive data can 
implicitly leak through the toString implementation. You should, therefore, never 
rely on toString when logging. What you should do is use explicit accessor methods 
for data that you want to log, because then new fields never end up in logs by accident.

TIP  Always use explicit accessor methods for data that you want to log. Other-
wise, new fields can end up in logs by accident.

Logging unchecked strings is certainly problematic, but avoiding it isn’t that hard if you 
put some thought into it. Another issue that often appears in legacy code is defensive 
code constructs—so let’s proceed and see how you can deal with this in an efficient way.

12.4 Defensive code constructs
To make your system stable and robust is indeed an honorable thing, and chapter 9 was 
devoted to this quest. A well-designed system should never crash with a NullPointer-
Exception. But we often see code riddled with != null checks, even deep in the code 
where it wouldn’t be sensible that a null value should show up at all. Repeated checks 



306 chapter 12 Guidance in legacy code

of null, of formats, or of boundary conditions isn’t good design in itself. Rather, it’s an 
expression that one piece of the code dare not trust the design of the rest of the code, 
so it feels the need to recheck just in case. Instead of having clear contracts of what the 
parts can expect from each other, the code becomes riddled with defensive code con-
structs of unclear purpose.

The problem here is twofold. First, the code becomes convoluted, hard-to-read, and 
bloated because of unnecessary repetition—also making it hard to refactor. This is bad 
in itself, but it leads to a second problem. When such code is maintained over time, it 
risks becoming incoherent. And code with incoherent checks is a great opportunity 
for attackers to exploit in creative ways. One way to turn this around is to clarify the 
contracts between different parts of the code (as described in chapter 4) and introduce 
appropriate domain primitives (as described in chapter 5).

12.4.1 Code that doesn’t trust itself

Let’s start by looking more closely at some code that doesn’t trust itself. The code in 
listing 12.8 is taken from an online bookstore, where the ShoppingService adds books 
to an Order using the public method addToOrder. The public method has several pri-
vate helper methods, such as putInCartAsNew and isAlreadyInCart. Note the prevail-
ing checks of non-null and of formats, even deep inside the private methods. Take a 
particular look at the numerous checks inside isAlreadyInCart at the bottom of the 
Order class. Also note the irony of ShoppingService, which checks the format of isbn
before sending it as an argument in order.addBook(isbn, qty). Although the format 
check is done, that check isn’t trusted by the code inside Order. Compare this with the 
use of domain primitives, where you can rely on the fact that the value wrapped in an 
ISBN domain primitive adheres to the format rules for ISBNs.

Listing 12.8  Code with repeated non-null and format checks

class ShoppingService {

   public void addToOrder(String orderId, String isbn, int qty) {
      Order order = orderservice.find(orderId);
      if (isbn.matches("[0-9]{9}[0-9X]")) {         
         order.addBook(isbn, qty);
      }
   }
}

class Order {
   private Set<OrderLine> items;

   public void addBook(String isbn, int qty) {
      if (isbn != null && !isbn.isEmpty()           
            && !isAlreadyInCart(isbn)) {
         putInCartAsNew(isbn, qty);
      } else {
         addToLine(isbn, qty);
      }

Checks format before 
calling public method

Checks isbn on entering 
the public method



307Defensive code constructs

   }

   private void putInCartAsNew(String isbn, int quantity) {
      if (isbn != null && isbn.matches("[0-9]{9}[0-9X]")) {
         items.add(new OrderLine(isbn, quantity));
      }
   }

   private void addToLine(String isbn, int quantity) { ... }

   private boolean isAlreadyInCart(String isbn) {
      boolean result = false;
      for (OrderLine item : items) {
         String itemISBN = item.isbn();
         if (itemISBN != null
               && isbn != null                      
               && isbn.matches("[0-9]{9}[0-9X]")) { 
            if (itemISBN.equals(isbn)) {
               result = true;
            }
         }
      }
      return result;
   }
   // other methods
}

At first glance, it might seem wise to ensure that isbn is not null before matching it 
against a regexp (regular expression). You don’t want a NullPointerException to be 
thrown arbitrarily, do you? The problem is that these kinds of checks don’t make the 
code much safer or more robust—they make it harder to understand.

The code seems to distrust itself; it’s not sure what rules are in play. Is it OK to send 
in an isbn that is null? If so, how should the code handle it? If not, has anyone stopped 
it before? It does make sense that the public method addBooks checks the input thor-
oughly, and it certainly ensures no null value or empty string enters the code. But it 
doesn’t check the format:

isbn.matches("[0-9]{9}[0-9X]")

That particular check is instead done in other places. The following two methods obvi-
ously don’t trust the null checks in addBook and repeat them, even deep in loops:

private void putInCartAsNew(String isbn, int quantity)

private boolean isAlreadyInCart(String isbn)

On the other hand, the same methods don’t repeat the check !isbn.isEmpty(). It’s 
fundamentally unclear what promises each part of the code can rely on from other 
parts of the code.

This is a condensed example, but it’s not uncommon to find if (value != null)
checks deep down in the code, sometimes in the middle of methods with several hun-
dred lines. In the defense of the programmers who wrote that extra null check, their 

How can itemISBN be null when it 
comes from an OrderItem?

Another deep check 
of isbn format



308 chapter 12 Guidance in legacy code

ambition was probably to ensure the program wouldn’t crash. And, in many cases, those 
extra checks are put in place because the program has crashed with a NullPointer-
Exception at that specific point. But here (in listing 12.8), instead of clarifying the design 
to ensure that null wouldn’t show up, a simple if was patched as a band-aid over the spot.

Another problem with this code is the coping strategy. In this example, if the code finds 
an item.isbn() that doesn’t follow the required format, it reacts by doing nothing! The 
code doesn’t stop executing, throw an exception, or even report the fault through logging. 
It ignores the situation. Of course, in the long run, this leads to nothing ever getting cor-
rected, and the data continues to be riddled with bad stuff. To make things worse, these 
kinds of sprinkled-out checks don’t just bloat the code, they also get in the way of doing 
refactorings that would let the code state its functionality in a more concise way.

12.4.2 Contracts and domain primitives to the rescue

Instead of plastering null checks all over the code to protect it from null data, you 
should ensure that data is not null. In the same way, to avoid format checks being 
repeated, you want to encapsulate that such a check has already been done. The tools 
for this are contracts (as described in section 4.2) and domain primitives (as described 
in chapter 5).

Going back to our example from listing 12.8, there are two domain primitive types, 
ISBN and Quantity, that become part of the interface for Order. We’re not going to 
describe the transformation in full because that was done in chapter 5, but will roughly 
sketch out the differences. When ShoppingService calls Order, it needs first to cre-
ate the corresponding domain primitive objects to pass to the addToOrder method, as 
shown in the following listing. The code calling the Order object takes on the burden of 
validation by creating domain primitive objects.

Listing 12.9  Calling the Order object

    public void addToOrder(String orderId, String isbn, int qty) {
        Order order = orderservice.find(orderId);
        order.addBook(new ISBN(isbn), new Quantity(qty));
    }

When the Order.addBook receives ISBN and Quantity, the values are well wrapped, 
and you can rely on them having been properly checked. There’s no need to do the 
same check again. The Order ensures it isn’t sent null values, as seen in the next listing.

Listing 12.10  Order only upholds the contract notNull for the arguments

    public void addBook(ISBN isbn, Quantity qty) {
        notNull(isbn);
        notNull(qty);
        if (!isAlreadyInCart(isbn)) {
            putInCartAsNew(isbn, qty);
        } else{
            addToLine(isbn, qty);
        }
    }



309Defensive code constructs

With validated domain primitive objects coming in as arguments, there’s no longer any 
need for Order to revalidate the format of the ISBN, for example. Also, by checking 
for notNull in the public method addBook, you avoid the need to repeat null checks 
in the private methods, such as putInCartAsNew and isAlreadyInCart. Take a look 
at the latter after cleanup in the following code listing. You’ll see that the updated 
isAlready InCart method trusts that format checks are ensured by the design.

Listing 12.11  Updated isAlreadyInCart

    private boolean isAlreadyInCart(ISBN isbn) {
        boolean result = false;
        for (OrderLine item : items) {
            if (item.isbn().equals(isbn)) {
                result = true;
            }
        }
        return result;
    }

With all the confusing rechecks gone, it’s much more obvious what the code does. 
You also can see ways to make it simpler. The if statement inside the for-each can be 
replaced with

result = result && item.isbn().equals(isbn)

Now it’s clear that you sieve through the list to see if any of the items match the ISBN 
searched for, as seen in the following listing. If any existing item matches the searched-
for ISBN, then it’s already in the cart. Obviously, this can be done more smoothly with 
the Stream API.

Listing 12.12  Searching for the ISBN

    private boolean isAlreadyInCart(final ISBN isbn) {
        return items.stream().anyMatch(item -> item.isbn().equals(isbn));
    }

The design flaw to watch out for is deep checks of null, format, or ranges. What it hides 
is that the code isn’t designed in such a way that it can trust itself. Also, the messy code 
can hamper clarifying refactorings. Introducing appropriate contracts and domain 
primitives is a way to get to a better state.

12.4.3 Overlenient use of Optional

There’s a modern variant of this design flaw when working with optional data types, 
such as Optional<T> in Java. Instead of having data lying around as null values, those 
values are transformed to Optional.EMPTY. If there sometimes are missing addresses, 
the address field of an order might be written as Optional<Address>, although an 
order must have an address in the long run. When it’s time to use the data, the flaw 
shows up by taking a detour using Optional.map.



310 chapter 12 Guidance in legacy code

Compare how anAddr and perhapsAddr are treated in listing 12.13. The code for 
perhapsAddr becomes much more convoluted. Instead of asking for the zip code using 
the method zip, it takes a detour using the method map, which is a higher-order func-
tion that accepts the function Address::zip as an argument and applies that function 
to each Optional<Address> in the stream, which is one in this case. This is a cumber-
some detour to get one zip code out of one address just to take into account that the 
address might be missing.

Listing 12.13  Taking account for Optional.EMPTY gives convoluted code

Address anAddr;
Optional<Address> perhapsAddr;

Zip anZip = anAddr.zip();
Optional<Zip> perhapsZip = perhapsAddr.map(Address::zip);

Watch out for Optional<Address> in cases where the address is mandatory and the use 
of Optional carries no domain insight but is a cover-up for the code not trusting the 
rest of the design. Whether they’re old-school repetitions of null and format checks or 
new-school overuse of Optional, defensive code constructs are a clear signal that some-
thing isn’t right with the code. These parts of the code are a great place to start your 
quality and security work by applying contracts and domain primitives.

We’ve covered three problems that often show up in legacy code: ambiguous param-
eter lists, logging unchecked strings, and defensive code constructs. We’ll now turn 
to three other problems that are somewhat subtler. These are situations where good 
design principles have been applied, but in a way that is incomplete or slightly beside 
the point. At first sight, these applications might even look good, but upon closer 
inspection, you realize that there are problems nevertheless. Let’s start with how the 
design principle Don’t Repeat Yourself (DRY) can be misapplied.

12.5 DRY misapplied—not focusing on ideas, but on text
The design principle Don’t Repeat Yourself (DRY) was coined by Andy Hunt and Dave 
Thomas in their seminal book, The Pragmatic Programmer.1 It states that when we cap-
ture our knowledge into code, we shouldn’t repeat the same codification in several 
places.

Every piece of knowledge must have a single, unambiguous, authoritative representation 
within a system.

Unfortunately, the principle of DRY has often been misunderstood as applying not 
to knowledge and ideas, but to the code as text. Programmers search their codebases 
for repeated text and try to get rid of the duplication. This misconception is enhanced 
by the helpful tools of modern IDEs that can automatically identify duplicated code 

1 Andrew Hunt and David Thomas, The Pragmatic Programmer: From Journeyman to Master (Addison-Wesley 
Professional, 1999).



311DRY misapplied—not focusing on ideas, but on text

and even suggest automatic transforms that remove the duplication. Those tools are 
an excellent help when applying DRY correctly, but at the same time a speedy road to 
dependency hell if misapplied.

It’s definitely true that duplicated text often is due to a duplication of ideas. And cer-
tainly, you can use “look for duplicated text” as a quick test to find DRY violations. (Note 
that we are using the word test in the sense of a medical test that checks for indicators of 
a disease, not a system development unit test or similar.) But “look for duplicated text” 
isn’t a fault-free test. There are both false positives and false negatives: false positives look 
like repetition but aren’t; false negatives don’t look like repetition but are. False positives 
might lead you to link together parts of the code that aren’t related, creating unneces-
sary dependencies. A false negative, on the other hand, risks inconsistent functionality 
evolving, raising the risk of security vulnerabilities.

12.5.1 A false positive that shouldn’t be DRY’d away

In listing 12.14, you see part of the constructor for a class representing a delivery of 
books that’s sent from an online bookstore to a customer, so naturally it contains both 
the order number and the zip code. A zip code is a five-digit string, and that happens 
to be the format for the order number as well.

Listing 12.14  No repetition of knowledge, although same regexp used twice

    BookDelivery(String ordernumber, String recipient,
                String streetaddress, String zipcode) {

        this.ordernumber = notNull(ordernumber);
        matchesPattern(ordernumber, "[0-9]{5}");   
        this.zipcode = notNull(zipcode);
        matchesPattern(zipcode, "[0-9]{5}");       
        ...
    }

It might look as if you’re repeating yourselves, because the same regexp occurs twice. 
But you aren’t repeating yourselves in the sense of DRY, because those two regexps 
encode different pieces of knowledge: the knowledge about what order numbers look 
like and the knowledge about what zip codes look like. The occurrence of the same 
regexp is coincidental.

12.5.2 The problem of collecting repeated pieces of code

The problem starts when someone thinks, “There are two regexps that look the same; 
this is repetition and a violation of DRY,” and then sets out to fix it by refactoring those 
two unrelated regexps to some common technical construct, such as a utility method. 
Those methods often end up as static methods in classes named Util and are then col-
lected in packages named util, common, or misc. Needless to say, virtually every piece 
of code in the rest of the codebase will have a dependency on that common or util
library. That might be acceptable briefly as a temporary state during cleanup, but it’s 
certainly not desirable as a long-term solution.

Regexp representing one thing: 
format of order numbers

Regexp representing something 
else: format of zip codes



312 chapter 12 Guidance in legacy code

TIP  A Util class might be a handy place to collect small domain-logical helper 
methods, but it shouldn’t be the end state, rather a temporary resting place on 
the road to further refactorings instead.

The problem escalates when you then start separating the codebase into different 
parts, perhaps into microservices. Microservices should be standalone. It’s reasonable 
to have a small amount of dependencies to some common concepts, but here there’s 
a massive dependency to a large util package from all the other parts. Now, whenever 
anything changes in any part of the humongous util package, everything needs to be 
recompiled and redeployed. You don’t have a system of independent microservices, 
you have a tightly coupled distributed monolith dependency hell.

12.5.3 The good DRY

Instead of packing things because the pieces of code look the same, you should focus 
on what knowledge is captured. In our example, you’ll note that we have two separate 
but primitive domain concepts: the concept of zip codes and the concept of order 
numbers. Those make two fine domain primitives: ZipCode and OrderNumber, respec-
tively. Each of their constructors will have a regexp check that, code-wise, will look the 
same, but that’s OK. If they’re unrelated, then leave them apart. The obvious thought 
experiment is, “If we change the format of order numbers, will the format of zip codes 
then change accordingly?”

TIP  Let unrelated things move independently. Repeated code in unrelated 
concepts is fine and not a violation of DRY.

12.5.4 A false negative

A false negative shows up the other way around: when the code doesn’t look like a rep-
etition, but really is. Look at listing 12.15 and note how there are two ways to check that 
a string is a zip code. One way uses a regexp to check the format; the other checks that 
the string has length five and parses to an integer.

NOTE  Look out for small pieces of code that have the same purpose but are 
written differently.

Listing 12.15  Expressing the same idea in two different ways

    if((input.length() == 5)    
        && Integer.parseInt(input) > 0) {
         ...
     }

    if(zipcodeSender.matches("[0-9]{5}")) { 
        ...
    }

A string of length five that correctly 
parses as an integer

A string of five digits, from 0 to 9



313Insufficient validation in domain types

These two code snippets need not be in the same method, nor even in the same class. 
One of them might be a helper method for CustomerSettingsService and the other 
in the middle of a method 400 lines long; LogisticPlanningsService, for example. 
These pieces of code might be written at completely different times, and the program-
mer writing the first expression might even have quit before the programmer writing 
the second expression started on the project.

No text is repeated, and it won’t be found by a duplication tool. Nevertheless, these 
snippets are a violation of DRY because they encode the same knowledge—the under-
standing of what a zip code looks like. Remember, “Every piece of knowledge must have 
a single… representation.” Unfortunately, it’s hard to spot this kind of repetition.

The problem with having two different encodings of the same knowledge is when 
things change. You might remember to change these two places, but there might easily 
be 37 other places that also encode the same knowledge. Probably, you’ll remember (or 
find) 35 at most. The changes might also be small, but several are needed for consis-
tency, so one or a few might easily be missed.

Official zip code formats don’t change often, but a format for an order number 
might. In an order number, you might first restrict what the first digit might be; then 
you allow a trailing letter; then you restrict those that start with an odd digit to have 
some special meaning; and so on. And in each of these updates, you miss a few of the 
code sites, but not the same few every time. After a while, you have a lot of inconsistency 
in your business rules, and inconsistency is what attackers love.

Fortunately, the remedy is easy. Create appropriate domain primitives that capture 
formatting. If you have no obvious domain primitive to start with, then start turning all 
these snippets into small helper methods that you collect into some utility class. In one 
of our projects, we managed to get over 200 methods into such a class, which was a gold 
mine for creating domain primitives. As mentioned earlier, these kinds of utility classes 
are nothing you want in the long run, but as a temporary step they can be valuable. 
Now let’s move on to another subtle issue; one where things look fine because we have 
domain types, but they lack sufficient validation.

12.6 Insufficient validation in domain types
Sometimes you’ll find yourself working on a codebase with a well-designed domain 
model that has important concepts represented as explicit types, maybe even as value 
objects and entities.2 The type of code we’re talking about is typically well structured 
and easy to read, but there might be some lurking design flaws that can lead to security 
vulnerabilities.

One such flaw you should learn to spot is when there’s insufficient domain validation 
of the data encapsulated by the domain types. This means that there’s either no valida-
tion at all, or the validation that’s performed is insufficient from a domain perspective. 
In chapters 4 to 7, you learned why strict domain validation is important for mitigating 
security flaws. When you spot domain types like this, you should seize the opportunity 
to improve them.

2 Go back to chapter 3 for a primer on basic concepts in Domain-Driven Design (DDD).



314 chapter 12 Guidance in legacy code

To illustrate this, listing 12.16 shows an example of a value object, Quantity, that’s 
missing relevant domain validation. The value object validates the input data for not 
being null, and it’s even immutable. But from a business domain perspective, a quan-
tity is more precise in its definition than just being an integer. In our imaginary business 
domain, it’s defined as an integer between 1 and 500.

Listing 12.16  A domain type with insufficient validation

import static org.apache.commons.lang3.Validate.notNull;

public final class Quantity {

   private final Integer value;

   public Quantity(final Integer value) {
      this.value = notNull(value);
   }

   public int value() {
      return value;
   }

   // ...

}

If you apply what you learned about domain primitives in chapter 5 and enforce all the 
domain rules you know about a quantity in the constructor, the Quantity class ends up 
looking something like the following listing.3 You have now taken a well-defined value 
object and increased the overall security by turning it into a domain primitive.

Listing 12.17  Quantity turned into a domain primitive

import static org.apache.commons.lang3.Validate.inclusiveBetween;

public final class Quantity {

   private static final int MIN_VALUE = 1;
   private static final int MAX_VALUE = 500;

   private final int value;

   public Quantity(final int value) {
      inclusiveBetween(MIN_VALUE, MAX_VALUE, value);
      this.value = value;
   }

   public int value() {

3 If you don’t already know the domain rules in your business domain, then you should discover them 
together with the domain experts. Go back to chapter 3 for how to develop a deep understanding of 
your domain.



315Only testing the good enough

      return value;
   }

   // ...

}

You can use the same approach when it comes to entities. Make it a habit to always 
look closer when you see domain types with insufficient validation. Most likely, you’ll 
find an opportunity to make your code more secure by design and, at the same time, 
deepen your domain knowledge through collaboration with the domain experts.

12.7 Only testing the good enough
When writing tests, developers tend to focus on two things: that the production code 
follows the intended behavior and that a safety net is established to prevent bugs from 
slipping through. Because of this, many use tests as documentation to learn how a 
system behaves when given a certain input and how the implementation supports dif-
ferent business requirements—but this isn’t the only thing that tests reveal. They also 
show where the weak spots are in the code, which could be exploited by an attacker.

In chapter 8, you learned about how to secure your code using tests. Many times, 
developers stop writing tests after creating normal and boundary tests because they cap-
ture intended behavior and establish a safety net that’s good enough. But as you know 
by now, to promote security in depth, you also need to test with invalid and extreme 
input, because it pushes your code to the limit.4 Unfortunately, not many developers 
think of this when writing tests. Studying how code is tested is therefore a clever way to 
detect potential security weaknesses.

To illustrate this, we’ll revisit the code example from section 12.3, but this time, we’ll 
shift focus and analyze potential security weaknesses that can be exploited by looking at 
how the code is tested.

In listing 12.18, you see the table reservation method that allows you to fetch table 
reservations by ID. As you’ve learned, the reservation ID should be implemented as a 
domain primitive, but we’ve kept it as a String because this is how code tends to look 
before applying the secure by design mindset.

Listing 12.18  A table reservation is fetched by ID

public TableReservation fetch(final String reservationId) {
   logger.info("Fetching table reservation: " + reservationId);
   final TableReservation tableReservation =
            repository.reservation(reservationId); 
   logger.info("Received " + tableReservation);
   return tableReservation;
}

4 Go back to chapter 8 if you need a refresher on the concept of normal, boundary, invalid, and extreme 
input testing.

The table reservation is fetched 
from the repository by ID.



316 chapter 12 Guidance in legacy code

Let’s analyze this from a secure testing perspective. Because many weaknesses are 
flushed out using invalid and extreme input, you should look for tests that exercise this 
kind of data. If there aren’t any, then there’s a high probability that the code will break 
if provided such input. For example, the table reservation ID is represented as a String, 
which means that you could inject any input that satisfies the rules of a String, such as 
100 million random characters. Obviously, this isn’t a valid reservation ID and might 
seem absurd to test, but that’s not the point. The point is, if the code can’t  handle this 
type of input efficiently, then an attacker could craft an exploit that potentially affects 
the overall availability of the system. Consider what happens to the log implementation 
if it receives extreme input, or how input of 100 million characters would affect the 
search algorithm in the database. It probably would break things. The solution is to use 
a domain primitive—say, ReservationId—to reject any input that doesn’t satisfy the 
domain rules.

But using domain primitives can lull you into a false sense of security, unless you’re 
careful. The design of a domain primitive certainly takes care of invalid input, but 
there’s no guarantee that it protects against failures and unexpected behavior caused 
by a dependency. You should, therefore, also look for tests that exercise failure sce-
narios even if the input is valid; otherwise, you might end up with implicit weaknesses 
caused by your dependencies. For example, if the table reservation repository is backed 
up by a Mongo database, then a MongoExecutionTimeoutException could be thrown, 
regardless of whether the reservation ID is correct or not. This means that it’s necessary 
to provide proper exception handling (as you learned in chapter 9) to avoid sensitive 
data leaking out.

Up to this point, you’ve learned how to identify several potential security problems 
in legacy code (for example, ambiguous parameter lists, logging of unchecked strings, 
and defensive code constructs) that seem to benefit from using domain primitives. But, 
unless you’re careful, applying them incorrectly could create a whole set of new prob-
lems. Let’s see what happens if you end up creating partial domain primitives.

12.8 Partial domain primitives
Another pitfall when creating domain primitives is to not encompass a complete con-
ceptual whole. When designing domain primitives, it’s a good idea to keep them as 
small as possible—perhaps only wrapping a value in a thin shell of domain terminology. 
But sometimes that wrap can be too small. When not enough information is captured 
in the domain primitive, there’s a possibility of it being used in the wrong context. This 
might constitute a security risk.

Let’s look at an example: using a monetary amount with the wrong currency. Imag-
ine you have an online bookstore, and most of your book suppliers are situated in 
the United States and are paid in U.S. dollars. How do you represent the prices you 
pay? Most currencies have a unit and subunit: the U.S. dollar is divided into 100 cents, 
the Mexican peso into 100 centavos, and the Swedish krona into 100 öre. Monetary 
amounts look like real numbers, such as 12.56 or 5.04, but they’re not.



317Partial domain primitives

No double money
Never represent money using a double, because 1/100th can’t be represented exactly 
using powers of 2. The only cent values that can be represented exactly are 25¢, 50¢, 
and 75¢. All others will result in rounding errors that sooner or later will come back and 
bite you. There are other options.

One option is the Java SDK class BigDecimal, which is designed to represent decimal 
values exactly and is a much better option than double. Unfortunately, its API is some-
what of an acquired taste.

Another option is to represent dollar and cent values as two integers, splitting a dollar 
into cents when necessary and collecting cents to dollars when there are enough of 
them.

A third interesting option is to represent each amount as the amount in cents, a single 
long. In this way, a dollar is represented by 100, and $12.54 is represented as 1254. 
When you display the amount, you show it as dollars and cents, not the internal number-
of-cents representation.

Floating-point language primitives like float and double are for representing real num-
bers, like physical measurements of length or weight. Don’t use them for decimal values 
like dollars and cents.

Whatever representation you use for amount (BigDecimal, two ints, a single long, or 
anything else), you realize that you shouldn’t have that representation floating around 
in the code. You need to form a domain primitive. What about Amount? It seems like a 
good idea, even if we’ll shortly show you that it’s too small.

You form a domain primitive Amount using some internal representation. On the 
outside, it has methods for adding (public Amount add(Amount other)), comparing 
(public boolean isGreaterThan(Amount other)), and perhaps splitting an amount 
into a number of piles (public Amount[] split(int piles))—the latter ensuring that 
no cent is lost if $10 is split three ways.

12.8.1 Implicit, contextual currency

What we’ve unfortunately not taken into account yet is the concept of currency. 
Remember that most of your suppliers trade in U.S. dollars? That’s most, not all. There 
has to be a currency somewhere. Right now, it’s obviously implicit—by looking at a 
supplier, you can figure out what currency to use. Each supplier will be paid in the cur-
rency of its respective country: U.S. suppliers in U.S. dollars, the few French suppliers 
in euros, and the odd Slovenian suppliers in Slovenian tolars. If you want to know the 
total sum of your trade with a specific supplier, you can sum it up as shown in the fol-
lowing listing.



318 chapter 12 Guidance in legacy code

Listing 12.19  Summing up the purchase orders for a specific supplier

        List<PurchaseOrder> purchases =
                procurementService.purchases(supplier);
        Amount total = purchases.stream().         
                map(PurchaseOrder::price).         
                reduce(Amount.ZERO, Amount::add);  

The pitfall here is that the information about currency is contextual—you have to keep 
track of it outside the handling of monetary amounts. In this example, because a sup-
plier is linked to a country that’s linked to a currency, the linking of implicit, contex-
tual information worked out fine. But that’s not always the case.

12.8.2 A U.S. dollar is not a Slovenian tolar

Most suppliers are paid in U.S. dollars, but not all. And the code has to be aware of that 
fact. Imagine that this takes place in an organization where developers and business-
people are strictly separated into different departments and never meet, and where all 
communication is mandated to go via business analysts and project managers. Yes, we 
know that sounds bizarre, but bear with us for the sake of the example.

Suppose a developer gets the task to sum up the value of all purchases for all sup-
pliers. The developer might not know about the odd non-U.S. suppliers, and so might 
write code like that in the following listing. Notice how the method add is used in the 
same way as when summing purchase orders for a single supplier.

Listing 12.20  Summing up the purchase orders for all suppliers

        List<PurchaseOrder> purchases =
                procurementService.allPurchases(); 
        Amount sum = purchases.stream().
                map(PurchaseOrder::price).
                reduce(Amount.ZERO, Amount::add);  

The design deficiency here is that the developer has summed up all the amounts. The 
result is something that’s almost correct, because a U.S. dollar is approximately as 
much as a euro, and the purchases in tolars are so few that they disappear in the mass. 
But it isn’t correct.

The problem is that it doesn’t make sense to add 10 U.S. dollars and 15 euros. (Well, 
both are monetary values, so it might make some sense, but it won’t add up to 25 of any-
thing sensible.) The class Amount isn’t aware of the difference between 10 U.S. dollars 
and 10 euros because currency is a concept that’s implicitly understood, not explicitly 
stated. You should either convert one of those values to the other or say, “Can’t add 
different sorts of money.” But the class Amount isn’t designed to capture that domain 
subtlety.

All purchase orders

Gets the prices

Adds them up using the add method in 
Amount, starting with ZERO

All purchases, all suppliers

Adding up the amounts, even 
if different currencies



319Partial domain primitives

This discrepancy between explicit and implicit usually shows up when the implicit 
concept is suddenly explicitly needed, often in the case of interacting with external rep-
resentations. In the following listing, you see this happening when trying to initialize a 
payment at a bank, which suddenly requires a currency. The currency is then fetched 
from a central service that keeps track of which supplier is in which country and, there-
fore, uses appropriate currency.

Listing 12.21  Sending off a payment to a bank, fetching currency out of thin air

public void payPurchase(PurchaseOrder po) {
    Account account = po.supplier().account();
    Amount amount = po.price();                     
    Currency curr =
        supplierservice.currencyFor(po.supplier()); 
    bankservice.initializePayment(account, amount, curr);
}

This code works because a supplier is bound to a country, and a country is bound to a 
currency. But that connection is contextual—the currency information is transmitted 
out-of-band with respect to the amount to be paid.

TIP  Stay alert and keep an eye open for contextual information that’s trans-
mitted out-of-band; it might be what’s needed to make a domain primitive that 
wraps a conceptual whole.

Things get even worse when Slovenia decides to leave the tolar behind and start using 
euros instead. This happened in 2007, and the code in listing 12.21 is roughly what we 
found at one of our clients. Suddenly Slovenian suppliers didn’t have one well-defined 
currency, but two different ones, depending on the transaction date. A supplier with a 
purchase order for 100,000 tolars signed in late 2006 would probably get paid in early 
2007, but at that point, the code

supplierservice.currencyFor(po.supplier())

would no longer return tolars but euros instead. The supplier would instead be paid 
100,000 euros, a significantly larger sum. Fortunately, our client realized this in time 
and was able to take precautions, but it caused a significant amount of extra work.

12.8.3 Encompassing a conceptual whole

If Amount isn’t enough, what concept would be big enough to form a conceptual whole? 
If you wrap both the amount and the currency, you get a concept you might call Money. 
The PurchaseOrder wouldn’t have had an amount only and simply relied on implicit 
currency information. Rather, it’d have the currency explicitly embedded in the price 
in the form of a Money object.

The code for paying a supplier using Money would look like the following listing. 
Notice that po.price() no longer returns an Amount, but a Money object that contains 
the currency. The currency information is no longer obtained out-of-band but from the 
purchase order itself.

Amount is part of the purchase order.

Currency is fetched as an 
afterthought at the last moment.

Listing 12.19  Summing up the purchase orders for a specific supplier

        List<PurchaseOrder> purchases =
                procurementService.purchases(supplier);
        Amount total = purchases.stream().         
                map(PurchaseOrder::price).         
                reduce(Amount.ZERO, Amount::add);  

The pitfall here is that the information about currency is contextual—you have to keep 
track of it outside the handling of monetary amounts. In this example, because a sup-
plier is linked to a country that’s linked to a currency, the linking of implicit, contex-
tual information worked out fine. But that’s not always the case.

12.8.2 A U.S. dollar is not a Slovenian tolar

Most suppliers are paid in U.S. dollars, but not all. And the code has to be aware of that 
fact. Imagine that this takes place in an organization where developers and business-
people are strictly separated into different departments and never meet, and where all 
communication is mandated to go via business analysts and project managers. Yes, we 
know that sounds bizarre, but bear with us for the sake of the example.

Suppose a developer gets the task to sum up the value of all purchases for all sup-
pliers. The developer might not know about the odd non-U.S. suppliers, and so might 
write code like that in the following listing. Notice how the method add is used in the 
same way as when summing purchase orders for a single supplier.

Listing 12.20  Summing up the purchase orders for all suppliers

        List<PurchaseOrder> purchases =
                procurementService.allPurchases(); 
        Amount sum = purchases.stream().
                map(PurchaseOrder::price).
                reduce(Amount.ZERO, Amount::add);  

The design deficiency here is that the developer has summed up all the amounts. The 
result is something that’s almost correct, because a U.S. dollar is approximately as 
much as a euro, and the purchases in tolars are so few that they disappear in the mass. 
But it isn’t correct.

The problem is that it doesn’t make sense to add 10 U.S. dollars and 15 euros. (Well, 
both are monetary values, so it might make some sense, but it won’t add up to 25 of any-
thing sensible.) The class Amount isn’t aware of the difference between 10 U.S. dollars 
and 10 euros because currency is a concept that’s implicitly understood, not explicitly 
stated. You should either convert one of those values to the other or say, “Can’t add 
different sorts of money.” But the class Amount isn’t designed to capture that domain 
subtlety.

All purchase orders

Gets the prices

Adds them up using the add method in 
Amount, starting with ZERO

All purchases, all suppliers

Adding up the amounts, even 
if different currencies



320 chapter 12 Guidance in legacy code

Listing 12.22  Fetching currency and amount from the same conceptual whole

public void payPurchase(PurchaseOrder po) {
    Account account = po.supplier().account();
    Amount amount = po.price().amount();    
    Currency curr = po.price().currency();  
    bankservice.initializePayment(account, amount, curr);
}

When the currency and the amount travel together in Money, they form a conceptual 
whole and make up a neat domain primitive. This also fixes another issue.

Recall the broken code for summing up all purchase orders for all suppliers in 
listing 12.20. The mistake was to add U.S. dollars, tolars, and euros without discrim-
ination. Using Money as a domain primitive, as seen in the following listing, that 
wouldn’t be possible. The add method in Money checks that the two amounts to be 
added refer to the same currency.

Listing 12.23  Summing up the purchase orders for a specific supplier

class Money {
    public static final Money ZERO = ...
    private Amount amount;
    private Currency currency;

    public Money add(Money other) {
        isTrue(this.currency
                .equals(other.currency));   
        ...
    }
}

        List<PurchaseOrder> purchases =
                procurementService.allPurchases();
        Money sum = purchases.stream().
                map(PurchaseOrder::price).
                reduce(Money.ZERO, Money::add);    
}

NOTE  When designing your domain primitives, ensure that they encompass 
an entire conceptual whole.

In this chapter, we’ve covered some situations that you might encounter during your 
work with making designs more secure. We’ve looked at some sources for potential 
security weaknesses in the code—ambiguous parameter lists, logging of unchecked 
strings, and defensive code constructs—and what you can do about them. We’ve also 
looked at situations where things are better, and the code might look fine at first glance, 
but where there are hidden issues if you think more deeply about it: the principle of 
DRY misapplied, insufficient validation in domain types, and only positive tests. Finally, 

Amount is part of the purchase order.

Currency is fetched from the 
same source as amount.

Checks that you’re not trying 
to add different currencies

Breaks with exception when trying 
to add tolar purchase order to U.S. 
dollar purchase order



321Summary

we’ve covered two pitfalls where things are hard to get right when starting out: where 
to apply domain primitives and the risk of creating domain primitives that are partial.

These tricks also apply well in traditional codebases and are a great way to get started. 
But what about a system with a microservice architecture? What can be done, and what 
should you think about? That’s the topic of the next chapter.

Summary

¡	Introducing domain primitives should be done at the semantic boundary of your 
context.

¡	Ambiguous parameters in APIs are a common source of security bugs.
¡	You should be on the lookout for ambiguous parameters when reading code and 

address them using the direct approach, the discovery approach, or the new API 
approach.

¡	Never log unchecked user input, because it opens up the risk of second-order 
injection attacks.

¡	Limit the number of times a sensitive value can be accessed, because it allows you 
to detect unintentional access.

¡	Use explicit accessor methods for data that you want to log. Otherwise, new fields 
can end up in logs by accident.

¡	Because defensive code constructs can be harmful, clarify them using contracts 
and domain primitives.

¡	The DRY (Don’t Repeat Yourself) principle is about repeated representation of 
knowledge, not about repeated text.

¡	Trying to reduce repeated text that isn’t repeated knowledge can cause unneces-
sary dependencies.

¡	Failing to reduce repeated knowledge because the text differs can cause vulnera-
ble inconsistencies.

¡	Tests reveal possible weaknesses in your code, and you should look for invalid 
and extreme input tests.

¡	Ensure that your domain primitives encompass an entire conceptual whole.
¡	Be on the lookout for domain types lacking proper validation and address them 

with domain primitives and secure entities.



322

13Guidance on microservices

This chapter covers
¡	How to design secure APIs for microservices

¡	Sensitive data in a microservice architecture

¡	Integrity of log data

¡	Traceability across services and systems

¡	A domain-oriented logging API

In chapter 12, we looked at challenges in legacy code that often appear in mono-
lithic architectures and how to apply secure by design fundamentals. In this chap-
ter, we’ll focus on microservices, an architectural style that has grown in popularity 
in recent years. The topic is too large to cover fully in a single chapter, but we’ve 
selected an interesting set of challenges that are essential from a security stand-
point. For example, you’ll learn how to deal with sensitive data across services, and 
why it’s important to design service APIs that enforce invariants. In addition, we’ll 
revisit logging one more time and explore challenges like traceability of transac-
tions across services and systems, how to avoid tampering of log data, and how to 
ensure confidentiality using a domain-oriented logger API. But before we dive into 
the world of microservices, let’s establish what a microservice is.



323What’s a microservice?

13
13.1 What’s a microservice?

Microservice architecture is an architectural style of building systems that has become pop-
ular as an alternative to and a reaction against the monolithic style. Monolithic systems 
are built as a single logical unit. They can consist of various technical parts, such as an 
application, a server, and a database, but those parts depend logically on each other, 
both during development and at runtime. If any of them are down, the system doesn’t 
work. Similarly, any nontrivial change will likely affect several if not most of the parts 
and needs to be deployed simultaneously to work properly.

There’s no single, authoritative definition of microservice architecture. Still, there’s 
some common understanding about what the term means, as we can see by looking 
at the following quotes from Martin Fowler and Chris Richardson, respectively. Most 
people agree that microservice architecture describes a style of structuring the system 
around loosely dependent, relatively small, business-oriented services, each executing 
in its own runtime environment.

[T]he microservice architectural style is an approach to developing a single application 
as a suite of small services, each running in its own process and communicating with 
lightweight mechanisms, often an HTTP resource API. These services are built around 
business capabilities and independently deployable by fully automated deployment 
machinery.

—Martin Fowler, https://www.martinfowler.com/articles/microservices.html

Microservices—also known as the microservice architecture—is an architectural style 
that structures an application as a collection of loosely coupled services, which implement 
business capabilities. The microservice architecture enables the continuous delivery/
deployment of large, complex applications.

—Chris Richardson, https://microservices.io

A complete description of the microservice architecture style is beyond the scope of 
our security-focused discussion, but we certainly recommend reading up on it. These 
two websites are good places to start, together with Chris Richardson’s book, Micro-
services Patterns (Manning, 2018), and Sam Newman’s book, Building Microservices
(O’Reilly, 2015). Executed well, it’s a style that can return huge benefits.

A distributed monolith
Unfortunately, we’ve seen several examples of systems that were believed to be 
designed in the microservice style but that had severe shortcomings. One example was 
a previous monolith that had been split into seven separate services, running as sepa-
rate processes. The trouble was that they all needed to be up and running for anything 
to work. If one of them went down, none of the others could do their jobs. Also, it was 
impossible to restart only one of them, because all seven services had to be started in a 
particular order. Needless to say, any isolated update was a complete impossibility. Even 
if the system was thought to be built as microservices, it certainly didn’t match the archi-
tectural style, apart from superficial aspects.



324 chapter 13 Guidance on microservices

Let’s briefly sketch out three aspects of microservices that we think are important but 
that are, unfortunately, often overlooked: independent runtimes, independent update 
capability, and being designed for down.

13.1.1 Independent runtimes

A microservice should run in its own runtime, independent of the other services. A 
runtime in this sense could be a process, a container, a machine of its own, or some 
other way to separate the services from each other. That the runtimes are indepen-
dent also means that there should be no dependencies of the type this one has to start 
before that one, and services shouldn’t make assumptions about the particulars of other 
services. For example, if you need to move one of your services from one machine to 
another, you should be able to do so without the other services malfunctioning or ceas-
ing to work completely. Although there are several ways of achieving this goal, follow-
ing the advice on cloud-native concepts and the twelve-factor app methodology that we 
covered in chapter 10 provides a good starting point (in particular, see sections 10.2, 
10.3, and 10.6).

13.1.2 Independent updates

Having independent runtimes makes it possible to take down a service and restart it 
without restarting the rest of the system. This ability is a prerequisite for independent 
updates. But it’s not enough to be able to restart the service—you have to be able to do 
it with updated functionality.

A change in functionality should be isolated to a few services at most. The ideal case 
is that you only need to touch one single service for a functional update. But it makes 
sense that if you extend the functionality one service provides, then you’ll most prob-
ably want to change some of the calling code in another service to make that change 
usable and valuable—and that’s perfectly fine. What you want to avoid is a change that 
ripples from one service to the next, then over to a third, and so on. A huge help in this 
is orienting each service around a business domain. We’ve touched on this in earlier 
chapters (for example, in sections 3.3 and 3.4), and in this chapter, we’ll elaborate on it 
further. (See section 13.2.)

13.1.3 Designed for down

With independent runtimes and independent updates, it’s normal for one service to be 
up while another is down. To work well in this situation, a service needs to be designed 
both so that it behaves well when the other service is down and it recovers to normal 
operation when the other service is up again. The service isn’t only designed for the 
happy case when every service is up, but also designed for when services it depends on 
are down. The techniques that we covered in chapter 9, especially the use of bulkhead-
ing to contain a failure and circuit breakers to avoid domino failures, will take you a 
long way towards this goal.

A neat trick when developing is to start with implementing what the service should 
do in case a service it depends on is down. This is easier if each service is designed as 



325Each service is a bounded context

a bounded context of a business domain. Even if the other service isn’t available, you 
can try to make the best of the situation in the context you’re in. Another powerful 
approach is to design your architecture as event-driven, where the services communi-
cate by passing messages. In that case, the services pull incoming messages from a queue 
or topic at their own discretion, so the sender makes no assumption about whether the 
receiver is up or down.

Now that we’ve looked at some characteristics of microservices, let’s look at how to 
design such services. We’ll start with designing each service so that it captures a model 
in a bounded context.

13.2 Each service is a bounded context
A common challenge when designing microservices is figuring out how to split func-
tionality between different services. Whether feature X should go in service Y or service 
Z isn’t always an easy question to answer, and it’s one you shouldn’t answer in haste. 
Slicing the feature set incorrectly can lead to multiple architectural challenges. One 
is that instead of independent services, you might end up with a distributed monolith, 
leading to the overhead of managing multiple services but without the benefit of them 
being independent. Cramming too much functionality into a single service is another 
challenge, because then you’re working with a monolith again. A good way to tell if 
your microservices are inappropriately sliced is when you’re experiencing testing diffi-
culties or witnessing tight dependencies between different development teams that, in 
theory, should be independent.

You can design microservices in many ways, but we believe a good design principle is 
to think of each service as a bounded context.1 Doing so provides several benefits:

¡	If you treat each service as a bounded context with an API that faces the rest of 
the world, you can use the various design principles and tools you’ve learned in 
this book to build more secure services.

¡	It’ll help you decide where a certain feature belongs, because it’s easier to reason 
about the home of the feature when you’re thinking in terms of bounded con-
texts instead of technical services or APIs. This helps you with the challenge of 
slicing the feature set.

Our experience is that designing microservices this way leads to better defined APIs, 
less complex dependency graphs between services, and, most importantly, more secure 
services. When you think of each microservice as its own bounded context, it’ll become 
clear that each service has different concepts and semantics, even if some concepts 
might share the same names (such as customer or user). With that understanding, 
you most likely won’t miss that you need to perform explicit translations when you’re 
moving across services. Each time you translate between different bounded contexts, 
you’ll use techniques learned in part 2 of this book to improve security. For example, 

1 Go back to chapter 3 if you need a refresher on the concept of bounded contexts in Domain-Driven 
Design (DDD) and how to identify context boundaries.



326 chapter 13 Guidance on microservices

you can use domain primitives and secure entities to enforce invariants in the receiv-
ing service. You can also make sure to handle exceptions in a secure way so that bad 
data doesn’t lead to security issues. And it’s more likely that you’ll spot the (sometimes 
subtle) semantic differences between services that can lead to security problems. Let’s 
take a look at three cases that we’ve found are common and that we think you should 
pay some extra attention to when designing microservices: API design, splitting mono-
liths, and evolving services.

13.2.1 The importance of designing your API

Designing the public API of a microservice is probably one of the most important steps of 
building microservices, but unfortunately, it’s commonly overlooked. Each service should 
be treated as a bounded context, and the public API is its interface to the rest of the world. 
In chapter 5, we talked about how to use domain primitives to harden your APIs and the 
importance of not exposing your internal domain publicly. You should also apply those 
concepts when designing the API of your microservice to make it more secure.

Another important aspect of API design is that you should only expose domain oper-
ations. If the API only exposes domain operations, the service can enforce invariants 
and maintain valid states. This, as you learned in part 2, is an essential part of building 
secure systems. Don’t fall for the temptation of exposing inner details of your domain 
or the underlying technology you happen to be using—free for anyone to perform 
operations on. A service isn’t just a bunch of CRUD (create, read, update, and delete) 
operations; it provides important business functionality, and only that functionality 
should be exposed.

The following listing shows a customer management API designed in two different 
ways. The API is described as an interface because it’s a concise way of expressing an API. 
The implementation doesn’t matter, because the focus of this discussion is API design.

Listing 13.1  Designing the API: CRUD operations versus domain operations

public interface CustomerManagementApiV1 {         

   void setCustomerActivated(CustomerId id, boolean activated);

   boolean isActivated(CustomerId id);

}

public interface CustomerManagementApiV2 {         

   void addLegalAgreement(CustomerId id, AgreementId agreementId);

   void addConfirmedPayment(ConfirmedPaymentId confirmedPaymentId);

   boolean isActivated(CustomerId id);

}

CRUD-style API

API with only domain 
operations exposed



327Each service is a bounded context

The purpose of the customer management API is to provide the functionality of 
activating a customer. In this particular system, a customer is considered activated 
once a legal agreement has been signed and an initial payment has been confirmed. 
What’s interesting is how the two different versions, CustomerManagementApiV1 and 
Customer ManagementApiV2, handle how a customer becomes activated.

In the first version of the API, two methods, setCustomerActivated(CustomerId, 
boolean) and isActivated(CustomerId), are exposed. This might seem like a flexible 
solution, because anyone that wants to can activate a customer and check if a customer 
is activated. The problem with this design is that the service owns the concept of a cus-
tomer and the definition of an activated customer, but the way the API is designed, 
it’s unable to uphold the invariants for it (having a signed legal agreement and a con-
firmed payment). There might also be other invariants for when a customer should be 
deactivated, which the service also is unable to enforce.

In the second, redesigned version, the API no longer exposes a method to directly 
mark a customer as activated. Instead, it exposes two other methods: addLegalAgreement 
(CustomerId, AgreementId) and addConfirmedPayment(ConfirmedPaymentId). Other 
services that handle legal agreements or payments can call these methods to notify the cus-
tomer service when a legal agreement is signed or when a payment has been confirmed. 
The isActivated(CustomerId) method only returns true if both a legal agreement and a 
payment for the customer exist.

TIP  Services that only expose domain operations in the API can enforce invari-
ants and maintain a valid state.

Only exposing domain operations in the API means the service is now in full control 
of maintaining a valid state and upholding all applicable invariants, which is a corner-
stone for building secure systems. Because the service now owns all operations related 
to activating a customer, this design also makes it possible to add more prerequisites 
without changing any client code. The following listing shows a third version of the 
API, where a new requirement has been added for a customer to be activated: a cus-
tomer service representative must have made a welcoming call to the new customer.

Listing 13.2  Introducing a new requirement in the API

public interface CustomerManagementApiV3 {

   void addLegalAgreement(CustomerId id, AgreementId agreementId);

   void addConfirmedPayment(ConfirmedPaymentId confirmedPaymentId);

   void welcomeCallPerformed(CustomerId id);       

   boolean isActivated(CustomerId id);             

}

Adds notification method for 
the new requirement to the API

Returns true only if all three 
preconditions are satisfied



328 chapter 13 Guidance on microservices

To implement the new requirement, all you need to do is add a third method, welcome
CallPerformed(CustomerId), that notifies the customer service that the call has been 
made and makes sure the isActivated(CustomerId) method also checks for the new 
requirement before returning true. There’s no need to make changes to all other 
services calling the isActivated method, because the logic for determining whether 
a customer is activated or not is now owned by the customer service. This would have 
been impossible to do with an anemic CRUD API like the one you saw in listing 13.1.

13.2.2 Splitting monoliths

Often, you’ll find yourself in a situation where you’re splitting a monolith into multiple 
smaller services. This might be because you’re refactoring an existing system toward 
a microservice architecture, or perhaps because you started with a microservice that 
has grown too big and needs to be split. The tricky part can be to figure out where to 
split the monolith. If you identify the semantic boundaries in your monolith (as you 
learned in section 12.1), you can then use those boundaries to split the monolith into 
smaller microservices, each with a well-designed API.

In terms of API design, one thing to watch out for when splitting a monolith is that 
you must also discover and enforce the translation between the different contexts—
contexts that are now in different microservices. Because the context boundaries you 
discovered were most likely hidden in the monolith, there’s not going to be any existing 
translation in the code. When you’re creating your microservice, possibly by extracting 
existing code from the monolith, it’s easy to forget to add explicit translations between 
the contexts.

TIP  Make sure to discover and enforce translation between the different con-
texts when splitting a monolith, using explicit translation between services.

Always be wary when making calls across services and make it a habit to add explicit 
translation to and from the context you’re talking to. A good way of doing this is by 
thinking carefully about the semantics and using code constructs like domain primi-
tives. As soon as you receive incoming data in your API, immediately validate it, inter-
pret the semantics, and create domain primitives from it. Doing this will take you a 
good way toward creating APIs that are hardened by design. To give you an example, 
let’s go back to section 12.1 and this method:

public void cancelReservation(final String reservationId)

Say you’ve found that this method is part of a context boundary, and you want to split 
the monolith at this point to create a new microservice. A good first step before extract-
ing the code to the new service is to introduce a domain primitive for the reservation 
ID. This way, you’ll enforce explicit translation to and from the bounded context. Once 
you have that in place, you can go ahead and extract the code to the new microservice.



329Sensitive data across services

13.2.3 Semantics and evolving services

If you already have a microservice architecture, you should pay extra attention as 
services evolve, especially when there are semantic changes in the APIs. The reason 
for this is that subtle changes in semantics can lead to security issues if appropriate 
changes aren’t also made in the translation between the different bounded contexts; 
in other words, broken context mappings can cause security problems.

The story in chapter 11, where evolving APIs led to insurance policies being given 
away for free, is a perfect example of how evolving microservices can cause serious 
trouble. Context mapping, taking nearby microservices into account, and thinking 
carefully about how to evolve semantics in the APIs are some effective ways of handling 
evolving services in a safe way.

When you evolve microservices and either introduce new concepts, change  existing 
ones, or in other ways change the semantics, always try to avoid redefining existing 
terminology. If you feel an existing term has changed in meaning, then replace it 
with a new term and remove the old one. Another approach is to leave the old term 
unchanged and instead introduce a new term that’ll let your domain model express the 
new meaning.

TIP  Avoid redefining existing terminology when semantics change. Introduce 
new terms that let you express the new semantics.

Changes in semantics are something that usually requires some degree of domain 
modeling and context mapping to get right.2 Sometimes the changes in semantics 
can lead to a change of context boundaries, and, because each service is a bounded 
context, the change of boundaries leads to a change in the microservices you have. 
New services get created or existing ones get merged as a result of evolving semantics. 
Remember that even if you’re using various secure code constructs in your APIs, you 
still need to invest time in the soft parts of API design in order to avoid security pitfalls 
like the one you saw in chapter 11.

Now you know that API design is an important aspect of microservice architectures 
(not only from a security perspective) and that putting time into it is an investment 
that’ll pay off in many ways—improved security being one of them. In the next section, 
you’ll learn about some pitfalls when sending data between different services.

13.3 Sensitive data across services
When thinking about security in any architecture, it’s important to ask yourself what 
data is sensitive. In a microservice architecture, it’s easier to make mistakes because the 
architectural style encourages developers to work by looking at one service at a time, 
and, when doing so, it becomes harder to keep track of cross-cutting concerns like 
security. In particular, to ensure that sensitive data is handled well, you need to see the 

2 You can always go back to chapter 3 on how to identify context boundaries and how to use context maps 
to understand how contexts interact.



330 chapter 13 Guidance on microservices

entire picture. For a start, let’s elaborate a bit on the classic security attributes in the 
context of a microservice architecture.

13.3.1 CIA-T in a microservice architecture

Information security classically focuses on the security triad of CIA: confidentiality 
(keeping things secret), integrity (ensuring things don’t change in bad ways), and 
availability (keeping things…well, available when needed). Sometimes traceability 
(knowing who changed what) is added to this triad, creating the acronym CIA-T. In 
chapter 1, we elaborated a little on these concepts under the section on security fea-
tures and security concerns.

The microservice architecture doesn’t help us when addressing cross-cutting con-
cerns like security concerns. In the same way that you can’t rely on a single service to 
provide fast response times (because the bottleneck might be elsewhere), you can’t 
look at a single service to ensure security (because the weakness might be elsewhere). 
On the contrary, most security concerns become harder to satisfy because a micro-
service architecture consists of more connected parts—more places and connections 
where things could go wrong.

Ensuring confidentiality gets trickier because a request for data might travel from com-
ponent to component. In many microservice architectures, the identity of the original 
requester is lost by the time the request finally arrives at the end component. The situa-
tion doesn’t get easier when the request is done (in part) asynchronously, for example, 
via message queues. To keep track of this, you need some token to be passed with the 
request, and when a request reaches a service, the service needs to check whether the 
requester is authorized. Security frameworks like OAuth 2.0 can help because they are 
built to provide such tokens. For example, in OAuth 2.0, the first request is given a 
token (the JSON Web Token, or JWT) based on the caller. The JWT is carried along 
with the downstream requests, and each service that processes the request can consult 
the authorization server to see if it should be allowed.

When guaranteeing integrity across multiple services, two things are important. The 
first is that every piece of information should have an authoritative source, typically a 
specific service where the data lives. Unfortunately, often data is copied from one place 
to the next, aggregated, and copied further. Instead of copying it, go directly to the 
source as often as possible. The second important thing is that the data hasn’t been tam-
pered with. Here, classical cryptography can help by providing some sort of checksum 
or signature to ensure integrity.

For availability, a microservice architecture needs to ensure that a service is respond-
ing or that some sensible value can be used if the service is down; for example, a cached 
value from a previous call or a sensible default. In chapter 9, we discussed circuit break-
ers and other tools that are useful to design for availability.

Ensuring traceability also becomes more complicated in a microservice environment. 
As with confidentiality, you need to be able to track the original requester, but you 
also need to be able to correlate different calls to different services to see the bigger 



331Sensitive data across services

pattern of who accessed what. The term auditability is sometimes used as a synonym for 
traceability. Later, in this chapter, we’ll elaborate on how this property can be achieved 
through well-structured logging. CIA-T is a great way to reason about security, but what 
do we mean by sensitive data?

13.3.2 Thinking “sensitive”

Often sensitive is confused with confidential or classified. Sometimes this is indeed the 
case; for example, personal data like health records is considered sensitive and should 
be kept confidential. But the term sensitive is broader than that.

Take the license plate number of your car. Is that sensitive? It’s surely not confiden-
tial, as it’s on public display. But take the plate number and combine it with a geoloca-
tion and a timestamp, and suddenly there’s information on where you were at a certain 
point in time—information that you might want to stay confidential. The challenge 
becomes even greater in a microservice architecture, where data travels from service 
to service and from context to context. (Remember the discussion about each service 
being a bounded context earlier in this chapter.)

Let’s look at another example. A hotel room number such as 4711 isn’t something 
that’s confidential in and of itself. But who is staying in room 4711 on a certain night 
certainly is. After the guest has checked out, there’s nothing confidential about the 
room number any longer, and the hotel goes into the regular housekeeping routine of 
cleaning, replenishing the minibar, and so on. This isn’t security-sensitive. But suppose 
during housekeeping, a coat is found and is marked “found in room 4711” and placed 
in the lost-and-found. When the guest shows up to claim the coat, you suddenly have 
a connection between that customer and the room again—something that should be 
confidential. You can see that when moving in and out of different contexts, the same 
data (the room number) might merit being confidential or not.

The requirement for confidentiality isn’t an absolute but something that depends 
on context. That’s why you reason about sensitive data—data that could have security 
concerns. In this case, we looked at confidentiality, but a similar line of reasoning could 
apply to data that has integrity or availability concerns. A similar situation arises when 
a service is an aggregator of data. Such services are sometimes underestimated because 
they create no new data and therefore can’t be more sensitive than their parts. This is 
a mistake. If you add together several different pieces of data, there might arise a com-
plete picture that says a lot more than the parts did individually. This is basically the way 
any intelligence agency works, so you should pay attention to those harmless aggregat-
ing services in your architecture.

To us, sensitive is a marker that indicates we should pay attention to security con-
cerns to stop us from focusing on one service at a time. What is sensitive or not is some-
thing that needs to be understood by considering the entire system.



332 chapter 13 Guidance on microservices

To identify sensitive data, you can ask yourself the following questions:

¡	Should this data be confidential in another context?
¡	Does the data require a high degree of integrity or availability in another con-

text? How about traceability?
¡	If combined with data from other services, could this data be sensitive? (Recall 

the example of the license plate number together with a time and geolocation.)

While thinking about this, you need to have the entire range of services in scope. 
Unfortunately, cross-cutting concerns like security can’t be addressed by myopically 
looking at one or a few services at a time, any more than issues of response time or 
capacity can be solved by a single service.

Passing data over the wire
In a microservice architecture, data is more exposed. In a monolith, you might have 
everything encapsulated inside one single process, and data is passed by method calls 
from one piece of code to another. In a microservice architecture, you’ll pass information 
between parts over a network connection—most probably HTTP or some message-passing 
protocol. This raises the question of how protected your network is.

¡	Are the network messages routed over an open network that is part of the internet 
and publicly available?

¡	Are they routed inside a closed subnet?
¡	How big is the risk, and what happens if the firewall is compromised?

You might need to protect the data in transit with TLS/SSL. Perhaps client certificates 
are needed. Perhaps you need authorization based on the user, and you need to dive 
into OAuth. This is the realm of classical network security, and unfortunately, we haven’t 
yet found any design-based pieces of advice that can help. We do recommend you get a 
book on network security.

Now let’s move over to the tricky field of ensuring traceability in a microservice   
architecture—the call for structured logging from multiple sources.

13.4 Logging in microservices
We’ve brought up logging several times in previous chapters and analyzed how it 
impacts the overall security of an application. For example, in chapter 10, we discussed 
the importance of avoiding logging to a file on disk, and in chapter 12, we talked about 
the danger of logging unchecked strings. The key takeaway is that logging contains lots 
of hidden complexity, and things can go seriously wrong if done naively; for example, 
logging could open up the risk of second-order injection attacks or implicitly cause 
leakage of sensitive data due to an evolving domain model. Although this has been 
discussed extensively in this book, there’s one more aspect of logging we need to cover 
before closing the topic: the importance of traceability and how to ensure the integrity 
and confidentiality of log data.



333Logging in microservices

13.4.1 Integrity of aggregated log data

In a monolithic architecture, you tend to get away with using remote login to access log 
data on a server when needed. In chapter 10, you learned that logging shouldn’t be 
done to a local disk, but rather to an external logging system. This might have seemed 
like overengineering at the time, but when using microservices, it definitely starts to 
make sense. If you run multiple instances of a service that scale dynamically and use 
the same logging strategy as with a monolith, you never know which instance contains 
the log data you need, because a transaction could span multiple instances, depending 
on load. This means that log data will be scattered throughout the system, and to get a 
complete picture of what has happened, you need to aggregate data—but fetching it 
manually quickly becomes a painful experience.

Aggregating log data from multiple services is therefore preferably done through an 
automatic process—but there’s a catch. To effectively aggregate data, you need to store 
it in a normalized, structured format (for example, as JSON), which means it needs to 
be transformed somewhere in the logging process. Consequently, it’s common to find 
solutions where each service logs data in natural language and later transforms it into a 
structured format using a common external normalization step before passing it to the 
logging system (as illustrated in figure 13.1).

The upside to this, ironically, is also its downside. By having a normalization step, you 
encourage a design with great flexibility in terms of logging, but it opens up logging of 
unchecked strings as well—and that’s a security concern! It’s also common that nor-
malization is implemented using a temporal state on the local disk, which is problem-
atic because it complicates the repavement phase of the three R’s of enterprise security 
(which we talked about in chapter 10). The third issue is less obvious and involves integ-
rity of data during the normalization step.

“Unable
to cancel
booking”

“Pa yment
completed”

{”Message”: “Unable to cancel booking”}

JSONNatural
language

JSON

{”Message”: “Pa yment completed”}

Booking
service

Common
normalization

step

Logging
system

Payment
service

Figure 13.1  Log data is transformed into JSON in an external normalization step.



334 chapter 13 Guidance on microservices

When normalizing data, you restructure it into a key-value format that, by definition, 
is a modification of its original form—but does that violate the integrity of the data? 
Not necessarily; you only need to ensure the data hasn’t changed in an unauthorized 
way. In theory, this should be simple, but in practice, it’s hard, because validating the 
transformation logic from natural language to a structured format isn’t trivial and is 
something you probably want to avoid. Another solution is to therefore structure data 
in each service before passing it to the logging system, as illustrated in figure 13.2. This 
way, you avoid using third-party normalization software.

The downside to this approach is that every microservice needs to implement explicit 
normalization logic, which adds complexity, but avoiding third-party dependencies also 
reduces complexity, so it probably evens out in the long run. Two other aspects are also 
interesting from a security perspective. First, by explicitly normalizing log data in each 
service, it becomes possible to digitally sign each payload using a cryptographic hash func-
tion (for example, SHA-256) before passing it to the logging system. This implies that the 
integrity of log data can be verified explicitly in the logging system, and you know it hasn’t 
been tampered with. Second, normalization is often tightly coupled with categorization 
of data, which requires extensive domain knowledge (especially when you’re dealing with 
sensitive data). The natural place for this isn’t in a common normalization step but rather 
within each service. We’ll talk more about this later on in this chapter when analyzing how 
confidentiality is achieved using a domain-oriented logger API.

Choosing the right logging strategy is important from an integrity standpoint, 
regardless of whether you have a monolith or microservice—but that’s not all that mat-
ters when it comes to logging. The next topic to consider is traceability in log data.

13.4.2 Traceability in log data

When logging in a monolithic architecture, the presumption is that the source is 
always the same. Unfortunately, this simplification is no longer valid when using micro-
services because you might need to identify which particular service instance took part 
in a transaction. For example, consider two payment services, A and B, where A has 

{”Message”: “Unable to cancel booking”}

JSON

JSON
{”Message”:

“Pa yment completed
”}

Booking
service

Logging
system

Payment
service

Figure 13.2  Log data is structured into JSON before being passed to the logging system.



335Logging in microservices

version 1.0 and B has version 1.1. The services use semantic versioning, which means 
that service B contains some additional functionality compared to A but is fully back-
ward compatible with version 1.0. The only problem is that service B contains a bug that 
causes a rounding error that doesn’t exist in service A, and consequently, several finan-
cial transactions fail in production. At this point, you want to be able to tell whether 
service A or service B was used in a transaction—but if the logs don’t contain enough 
traceability, it becomes a guessing game.

Semantic versioning
The semantic versioning specification was created by Tom Preston-Werner, the inventor 
of Gravatars and cofounder of GitHub. His idea was to create a simple set of rules and 
requirements that dictates how version numbers should be used in an ecosystem of soft-
ware. Although there are many special cases to consider and the list of rules is extensive, 
here’s the gist of it to help you understand the essence of semantic versioning:

¡	Software using semantic versioning must declare a public API. This API must de-
fine a version of the form X.Y.Z, where X is the major version, Y is the minor version, 
and Z is the patch version.

¡	Once a version has been released, the contents of that version must not change. If 
modification is needed, then a new version must be released.

¡	A change in major version means that incompatible changes have been intro-
duced to the public API.

¡	A change in minor version means that changes have been made in a backward- 
compatible manner.

¡	A change in patch version means that only backward-compatible bug fixes have 
been introduced.

For further information about semantic versioning, visit https://semver.org.

The solution to the payment service problem is to add traceability to your system, but 
there’s some hidden complexity to consider. For example

¡	A service must be uniquely identifiable by its name, version number, and 
instance ID.

¡	A transaction must be traceable across systems.

Let’s see why this is important.

uniquely identifying a service

In a microservice architecture, you’ll often choose to follow the rules of semantic ver-
sioning for your service APIs. This means it should be safe to invoke any service within 
the same major version range because all versions are backward compatible. But when 
it comes to traceability, you can’t make this assumption, because even if a version is 
fully backward compatible, there might be differences (bugs or unintended behavior) 
that distinguish one service from another. It might even be the case that instances with 
the same version number behave differently because of installment issues or because 



336 chapter 13 Guidance on microservices

they’ve been compromised. Being able to uniquely identify a service is therefore 
important from a security standpoint. A common way to achieve this is to add the ser-
vice name, version number, and a unique instance ID to each log statement.

NOTE  Make sure to add the service name, version number, and a unique 
instance ID in your digital signature of a log statement. Otherwise, you can’t 
tell if the origin of the data has been tampered with.

identifying transactions across systems

Uniquely identifying a service certainly allows you to achieve traceability on a micro 
level, but transactions seldom interact with one system alone. Instead, they span across 
multiple systems, and to fully support traceability, you also need to identify which ser-
vices and external systems take part in a transaction. One way to do this is to use a trac-
ing system, such as Dapper by Google3 or Magpie by Microsoft, 4 but it might be overkill 
if you only need to identify which services and systems participated in a transaction. 
What you need to do is ensure that each transaction has a unique identifier and that 
it’s shared between services and external systems, as illustrated in figure 13.3.

Every time system A initiates a transaction in system B, it needs to provide a unique 
trace ID that identifies the transaction in system A. System B appends this ID to a 
newly created, (probabilistically) unique, 64-bit integer and uses this as the trace ID. 
This lets you identify all services in B that took part in the transaction initiated by A. 
System B then passes the trace ID to system C, and a new ID is created in a similar 
fashion. This way, you can easily identify all services that participated in a transaction 
spanning several systems.

3 Benjamin H. Sigelman, et al., “Dapper, a Large-Scale Distributed Systems Tracing Infrastructure.”   
Google Technical Report dapper-2010-1, April 2010.

4 Paul Barham, et al., “Magpie: Online Modelling and Performance-Aware Systems,” Microsoft Research 
Ltd., May 2003.

Trace ID: Unique 64-bit value

Trace ID A: Trace ID from A
B: Unique 64-bit value

Trace ID
A: Trace ID from A
B: Trace ID from B
C: Unique 64-bit value

System A System B

System C

Figure 13.3  The unique trace ID is shared between systems A, B, and C.



337Logging in microservices

13.4.3 Confidentiality through a domain-oriented logger API

In chapter 10, we talked about confidentiality and how to ensure only authorized con-
sumers get access to data. The solution proposed was to separate log data into different 
categories (for example, Audit, Behavior, and Error) and restrict access to each cate-
gory, but doing this in practice requires some additional thought.

Logging data with different logging levels, like DEBUG, INFO, and FATAL (pro-
vided by a logging framework), is a common design pattern used in many systems. At 
first glance, it might seem as if this could solve the confidentiality problem in chap-
ter 10, but unfortunately, logging levels tend to focus on response actions rather than 
confidentiality of data. For example, if you see a log statement marked as INFO, you 
tend not to worry, but if there’s a statement marked as FATAL, you’ll probably respond 
instantly—regardless of whether the data is confidential or not. Another more business-
oriented example is that of a bank withdrawal, where sensitive information such as 
account number, amount, and timestamp needs to be logged. In a design using logging 
levels, this might be categorized as INFO because it’s nothing out of the ordinary, but 
that level is also used for nonsensitive data such as average processing time. This diver-
sity implies that all log entries marked as INFO must have restricted access because they 
can contain sensitive information—a confidentiality problem you don’t want.

A better solution, based on our experience, is to treat logging as a separate view of 
the system that needs explicit design, similar to what you’d do for a user interface. How 
data is presented on the web, on mobile devices, or in some other consumer context 
must always be well designed, because otherwise you’ll get a bad user experience. The 
same applies to logging, but with the difference that the consumer isn’t your normal 
user. Instead, it’s an automated analysis tool, developer, or some other party interested 
in how the system behaves. This means that structure and categorization of data need to 
be considered, but so does sensitive information.

How to classify information as sensitive or not is therefore an important part of your 
system design. But how to do this in practice isn’t a trivial task, because the classification 
depends on context and is an overall business concern. This implies that classification 
of data requires extensive business domain knowledge and should be part of your ser-
vice design, not something you delegate to a third-party application. To illustrate, we’ll 
use an example from the hospitality domain.

Consider a web-based hotel system that handles everything a hotel needs to keep its 
business running from day to day: from bookings to housekeeping to financial transac-
tions. The system is designed on a microservice platform, where each service defines 
a bounded context—but what’s interesting from a logging perspective is how services 
address the confidentiality problem using a logger with domain-oriented API. In list-
ing 13.3, you see the cancellation logic of the booking service, where domain-oriented 
actions such as cancelBooking, bookingCanceled, and bookingCancellationFailed
are expressed in the logger API. These actions are customized for this context only 
and are achieved by wrapping the raw logger implementation with a cancel booking 
interface.



338 chapter 13 Guidance on microservices

Listing 13.3  Cancel booking logic using a logger with a domain-oriented API

import static org.apache.commons.lang3.Validate.notNull;

public Result cancel(final BookingId bookingId, final User user) {
    notNull(bookingId);
    notNull(user);

    logger.cancelBooking(bookingId, user);         

    final Result result = bookingsRepository.cancel(bookingId);

    if (result.isBookingCanceled()) {
        logger.bookingCanceled(bookingId, user);  
    } else {
        logger.bookingCancellationFailed(
                        bookingId, result, user);  
    }
    return result;
}

The main upside to the logger API is that it guides developers in what data they need in 
each step of the process. This certainly minimizes the risk of logging incorrect data, but 
it also separates data in terms of confidentiality—so let’s pop the hood of the booking
CancellationFailed method to see how it’s implemented.

The bookingCancellationFailed method in listing 13.4 is interfacing directly with 
the raw logger API, where the log method only accepts String objects. This implies 
that the logger doesn’t care about what data it logs, just that it meets the requirements 
of a String. Categorizing data must therefore be made explicitly before invoking the 
log method,  because the logger won’t make that distinction.

Listing 13.4  Logging categorized data to the logging system

import static org.apache.commons.lang3.Validate.notNull;

private final Logger logger ...                    

public void bookingCancellationFailed(final BookingId id,
                                      final Result result,
                                      final User user) {
    notNull(id);
    notNull(result);
    notNull(user);

    logger.log(auditData(id, result, user));       
    logger.log(behaviorData(result));              

    if (result.isError()) {
        logger.log(errorData(result));             
    }
}

Logs that the booking is 
about to be canceled

Logs that the booking 
has been canceled

Logs that the cancel booking 
operation has failed

Logger that interfaces 
with the logging system

Sends audit data to the logging system

Sends behavior data to 
the logging system

Sends error data to 
the logging system



339Logging in microservices

Only accepting strings in the logger API does indeed make sense because how you 
distinguish between audit, behavior, and error data is specific to your domain. In list-
ing 13.5, you see the auditData method, which translates audit data into JSON, rep-
resented as a String. The map contains an explicit entry for the audit category. This 
shouldn’t be necessary because this is audit data by definition, but it allows the logging 
system to detect invalid data on an endpoint (such as audit data sent to the behavior 
log endpoint) or to separate data based on category if the same endpoint is used for all 
categories. The status field in the Result object indicates why the booking couldn’t 
be canceled (for example, because the guest has already checked out).

Listing 13.5  Method that extracts audit data to be logged as JSON

import com.fasterxml.jackson.core.JsonProcessingException;
import com.fasterxml.jackson.databind.ObjectMapper;
import static java.lang.String.format;

private String auditData(final BookingId bookingId,
                         final Result result,
                         final User user) {
    final Map<String, String> data = new HashMap<>();
    data.put("category", "audit");                 
    data.put("message","Failed to cancel booking");          
    data.put("bookingId", bookingId.value());      
    data.put("username", user.name());             
    data.put("status", result.status());           
    return asJson(data,                            
            "Failure translating audit data into JSON");
}

private final ObjectMapper objectMapper ...        

private String asJson(final Map<String, String> data,
                      final String errorMessage) { 
    try {
      return objectMapper.writeValueAsString(data);
    } catch (JsonProcessingException e) {
      return format("{\"failure\":\"%s\"}",        
                       errorMessage);
    }
}

Behavior and error data are extracted in similar fashion, but with the exception of 
sensitive data. Only the audit category is allowed to contain confidential or sensitive 
information. This might require special attention in other categories when extracting 

Explicitly defines the category as audit 
(although it might not be needed)

Message explaining why 
this is in the audit log

Booking that couldn’t 
be canceled

User attempting 
cancellation

Reason why 
cancellation failed

Translation to a 
structured format

Object mapper that 
translates data into JSON

Error message to be used if 
translation to JSON fails

Translation of data into JSON 
represented as a String

Error message to be logged 
if JSON translation fails



340 chapter 13 Guidance on microservices

data; for example, when dealing with error data from a stack trace. Some frameworks 
or libraries choose to include the input that caused the exception in the stack trace 
message. This means that you could end up with information like an account number 
or Social Security number in the error log if an exception is thrown during the parsing 
process. Consequently, you want to exclude the stack trace message from the error log; 
otherwise, you might need to place it under restrictive access similar to the audit log.

Categorizing data this way certainly enables you to meet the confidentiality require-
ments, but one question still remains: should you store everything in the same log and 
have different views (audit, behavior, and error) or have one log per category? Both 
strategies seem to facilitate confidentiality, but there’s a subtle difference in security to 
consider. Let’s explore both alternatives.

Assume you choose to store everything in the same master log and have different 
views with restricted access. Then the log would contain intermixed JSON entries, as 
illustrated in the following listing.

Listing 13.6  Master log with intermixed JSON entries

{
  "category":"audit",
  "message":"Failed to cancel booking",
  "bookingId":"#67qTMBqT96",
  "username":"jane.doe01@example.com",
  "status":"Already checked out"
}
{
  "category":"behavior",
  "message":"Failed to cancel booking",
  "status":"Already checked out"
}

The upside to this is that the solution is fairly easy to reason about and to implement 
in code. You only need to categorize data in each service and store it in the master log. 
Aggregation of data into a view is then a product of your access rights; for example, audit 
data and error data could be shown in the same view if you’re granted access to both.

But this flexibility also results in a drawback that makes the solution unviable. By 
storing everything in the same master log and allowing categories to be intermixed, 
you open up the possibility of leaking sensitive data in a view, hence violating the con-
fidentiality requirement. For example, audit data can accidentally become intermixed 
in a view with behavioral data. Even though this is highly unlikely, you need to ensure 
this never happens every time a view is generated, which adds significant complexity 
to the solution. As a side note, depending on what domain your system operates in, 
the logging system might need to comply with various data protection regulations (for 
example, the GDPR in the European Union), and violating confidentiality could then 
become a costly experience.

WARNING  Never intermix sensitive and nonsensitive data in the same log, 
because it can lead to accidental information leakage in a view.



341Summary

A better alternative is to categorize data in the same way, but have each category stored 
as separate log streams. This has the benefit of making log data separated by design, 
which in turn reduces the risk of accidental leakage between categories in an aggre-
gated view, but there’s another upside to this as well. By favoring a design that enables 
log separation, you also open up the possibility of storing audit logs in a separate sys-
tem with strict access control and traceability. This certainly seems to increase the com-
plexity when accessing data, but the cost is justifiable when seeing it from a security 
perspective. For example, because audit logs could carry sensitive information, you 
must ensure they never end up in the wrong hands. This implies that strict access con-
trol and traceability are needed; otherwise, you don’t know how sensitive data has been 
consumed.

The life cycle of audit data is also important from a security standpoint. When a 
system is decommissioned, you tend not to care about logs anymore; except for audit 
logs, because there might be legal requirements that demand audit data be persisted 
for a long time (for example, financial transactions). Treating audit logs with care and 
storing them in a separate system is therefore a good strategy, both from a security and 
operational perspective.

You have now read about how to deal with sensitive data in a microservice architec-
ture, how to design your APIs, and what complexity logging brings from a security stand-
point. We’ve nearly reached the end of our journey toward making software secure by 
design. In the next and final chapter, we’ll talk about techniques that you should use in 
combination with what you’ve learned in this book. For example, we’ll discuss why it’s 
still important to run security penetration tests from time to time, and why explicitly 
thinking about security is necessary.

Summary

¡	A good microservice should have an independent runtime, allow independent 
updates, and be designed for other services being down.

¡	Treating each microservice as a bounded context helps you design more 
secure APIs.

¡	Secure design principles such as domain primitives and context mapping are 
also applicable when designing microservice APIs.

¡	In order to avoid common security pitfalls, only expose domain operations in 
APIs, use explicit context mapping between services, and pay extra attention to 
evolving APIs.

¡	It’s important to analyze confidentiality, integrity, availability, and traceability 
(CIA-T) across all services.

¡	Identify data that’s sensitive and possibly needs to be secured across services.
¡	The integrity of log data is important from a security standpoint.
¡	Normalization and categorization of log data requires extensive domain knowl-

edge and should be part of the service design.



342 chapter 13 Guidance on microservices

¡	A service must be uniquely identifiable by its name, version number, and 
instance ID.

¡	A transaction must be traceable across systems.
¡	Using a logger with a domain-oriented API facilitates a design that considers the 

confidentiality of log data.
¡	Don’t intermix sensitive and nonsensitive data in the same log, because that can 

lead to accidental information leakage.



343

14A final word: Don’t 
forget about security!

This chapter covers
¡	Code security reviews

¡	Vulnerabilities in a large-scale tech stack

¡	Running security penetration tests from time 
to time

¡	Following security breaches and attack vectors

¡	Incident handling and the team’s role

By now, you’ve been with us throughout the course of a pretty long book. We’ve spent 
much time talking about how to not think about security, but still get security anyway. 
Surprising as it might seem, we’d like to close this book by talking about how import-
ant it is to think about security. We started this book by noting a few things:

¡	Developers find it difficult and distracting to explicitly think about security 
while coding.

¡	Developers like and find it natural to think about design while coding.
¡	Many security problems arise from bugs, misbehaving code that happens to 

open up security vulnerabilities.
¡	Good design reduces bugs; some designs prevent some kinds of bugs, while 

other designs prevent other bugs.



344 chapter 14 A final word: Don’t forget about security!

In our approach, we suggest thinking more about design, thereby gaining security as 
a side benefit. In this book, we’ve presented a collection of designs that, in our experi-
ence, work well to counter weak security, making the code secure by design. Even if you 
use all the design patterns in this book and come up with a few yourself, there’s still a 
need for explicitly thinking about security. The secure by design approach certainly 
reduces a lot of the cumbersome security work, but there’ll still be aspects that are best 
addressed by explicit security work.

A detailed account of security practices is outside the scope of this book, but it 
wouldn’t do to completely leave out a discussion of some things that we’ve found are 
pretty effective in lowering the security risk. These things are close to the development 
work that you do by yourself or with your team and have a positive impact on security, 
compared to the effort required. And that’s what this chapter is about. Unfortunately, 
a detailed account would fill a book in and of itself. We’ll keep our discussion brief and 
focus on the what and why, rather than digging into the details of how to do it.

Not that long ago, there was a deep divide between coders and testers. That divide 
has now been bridged, and we think of both coding and testing as natural parts of 
development. We have testers together with coders on our development team, and we 
perform testing during the run of a sprint, not as a separate phase after. In the same 
way, the historical divide between developers and operations has been bridged in many 
organizations with the advent of the DevOps culture, where teams work with both devel-
opment and operational aspects in mind. Extending the idea of DevOps, we’d like the 
whole team to embrace the security aspects of their products and services as well. Most 
probably, there’ll still be external security experts, but we’d like to sketch out how to get 
your existing team to become more self-supporting when it comes to security.

With security, there are no guarantees, and following the practices in this chapter 
won’t get you 100% secure. But the secure by design approach takes you most of the 
way, and the tips here will get you close to where you need to be. Let’s start with some-
thing close to the code and related to something you hopefully already do to some 
degree: code security reviews.

14.1 Conduct code security reviews
Code reviews are an effective way to get feedback on solutions, find possible design 
flaws, and spread knowledge about the codebase. If you aren’t already conducting 
code reviews, we recommend you try it.

The exact format of the code review (what to focus on, which people should partic-
ipate, and so on) depends on your specific needs, and there are many resources avail-
able to guide you in getting started. Just as regular code reviews are beneficial for the 
software development process, in both the short and the long run, code security reviews 
are equally beneficial, especially from a security perspective.

TIP  Use recurrent code security reviews to enhance the security of your code 
and to share knowledge. Make them a natural part of your development 
process.



345Conduct code security reviews

Code security reviews are much like regular code reviews, but with the purpose of 
reviewing the security properties of the code. A code security review helps you find 
possible security flaws, share knowledge of how to design secure code, and improve the 
overall design. Because a code security review is, by definition, performed after the code 
has been written, it complements all the other techniques and tools you use to make 
your software secure, including the ones you’ve learned in this book. Keep in mind that 
there’s no reason to wait until the entire application is finished before conducting code 
reviews. Instead, it’s usually more beneficial to perform code reviews continuously and 
often while developing your code.

There’s more than one way of doing a code security review. You can, for example, 
choose to focus primarily on the overall design of the code, while paying extra attention 
to things like the implementation or absence of secure code constructs. This approach 
works well with the concepts in this book. Another option could be to focus on more 
explicit security aspects, such as the choice of hash algorithms and encodings or how 
HTTP headers are used. You could also use a combination of different approaches. 
Which approach you choose depends largely on what type of application you’re build-
ing and the dynamics of your team and organization. Pick an approach you feel com-
fortable with and then evaluate, refine, and experiment. Eventually, you’ll find a way 
that suits your specific needs.

14.1.1 What to include in a code security review

If you’re unsure what to include in a security review, an approach that can be helpful 
is to use a checklist as a guide. Write down a list of things you want to include in the 
review, then each person performing the review can check off the items they complete. 
If all items in the list have been checked, you know you’ve at least achieved a baseline.

The following list is an example of how a checklist for code security reviews might 
look. We’ve tried to include items with different perspectives to inspire you about what 
to include in your own checklist.

¡	Is proper encoding used when sending/receiving data in the web application?
¡	Are security-related HTTP headers used properly?
¡	What measures have been taken to mitigate cross-site scripting attacks?
¡	Are the invariants checked in domain primitives strict enough?
¡	Are automated security tests executed as part of the delivery pipeline?
¡	How often are passwords rotated in the system?
¡	How often are certificates rotated in the system?
¡	How is sensitive data prevented from accidentally being written to logs?
¡	How are passwords protected and stored?
¡	Are the encryption schemes used suitable for the data being protected?
¡	Are all queries to the database parameterized?
¡	Is security monitoring performed and is there a process for dealing with detected 

incidents?



346 chapter 14 A final word: Don’t forget about security!

Remember that this is just an example of what to include in a checklist. There’s no 
be-all, end-all checklist for us to present. When creating your own list, you should focus 
on including the things that are most important and beneficial for you. It might also be 
that you start out with a long list to make sure you cover everything, and after a while, 
you remove items that are nonissues, making the list more concise and relevant for 
your particular team.

14.1.2 Whom to include in a code security review

Another aspect to think about is which people should take part in the code security 
review. Should you only involve people within the team, or should you also include 
people from outside the team? We think it’s good to include both because they’ll bring 
slightly different perspectives when performing the review. Outside developers, testers, 
architects, or product owners will all have slightly different views on security, and it can 
all be valuable input.

One thing to watch out for is that because people from outside the team can bring 
such different feedback, it might become difficult to keep the review focused and effi-
cient. If that’s the case, you can try to split the process up and conduct two separate 
reviews: one with team members only and one with external reviewers. Experiment and 
find out what works best for you.

14.2 Keep track of your stack
In chapter 8, you learned how to use your delivery pipeline to automatically check 
for vulnerabilities in third-party dependencies. Whenever a vulnerability is found, you 
can stop the pipeline; the issue then needs to be addressed before the pipeline can 
be continued or restarted. Chapter 10 talked about the three R’s of enterprise secu-
rity (rotate, repave, repair) and taught you to repair vulnerable software as soon as 
possible after a patch is available. The concept of repairing should also be employed 
when pushing out new versions of your application caused by an update of a vulnera-
ble dependency.

Managing security issues in delivery pipelines and getting security patches out into 
production quickly is fairly straightforward when dealing with a moderate number of 
applications. If you operate at a large scale and have hundreds or thousands of appli-
cations, you need a strategy for efficiently handling monitoring and management of 
vulnerabilities in your tech stack. Otherwise, you’ll soon find yourself with more infor-
mation than you can handle. Some aspects you need to consider are how to aggregate 
information and how to prioritize work.

14.2.1 Aggregating information

Once you have the tooling to automatically find security vulnerabilities (as discussed in 
chapter 8), you need to figure out a way to aggregate all that information to create an 
overarching view of your tech stack. A number of tools can perform such aggregation, 



347Run security penetration tests

both open source and proprietary.1 Keep in mind that if an issue found in an applica-
tion can be handled directly by the team responsible for that application, it’s usually 
easier to work with the detailed information generated for that specific application, 
rather than working with an aggregated view.

TIP  Overarching views of security vulnerabilities are essential when operating 
at large scale. Invest in tooling for aggregating and working with large amounts 
of information across the company.

Being able to work with aggregated views of information is necessary when dealing 
with issues that need to be addressed at a company level. Aggregated views are also an 
indispensable tool for any type of high-level reporting. Setting up the tools and infra-
structure to make it effortless and automatic to get a bird’s-eye view of vulnerabilities 
in your tech stack is a worthwhile investment. As with many other things, it’s usually a 
good idea to start small and move to more complex tooling as you grow.

14.2.2 Prioritizing work

When you operate at scale, there’ll probably always be multiple known vulnerabilities 
at any point in time. Most likely, you won’t have the time to address them all at once, so 
you need to prioritize.

TIP  Set up a process for how to prioritize and distribute work when vulnera-
bilities are discovered. Doing this beforehand will save you headaches later on.

As early as possible, figure out a process for dealing with vulnerabilities. Decide how to 
prioritize vulnerabilities against each other and against other development activities. 
You also need to decide who should perform the work of fixing a vulnerability and how 
to prioritize the work against other types of development activities. Thinking through a 
process or strategy for dealing with prioritization might seem like overkill, but security 
work usually competes with regular development work. Having a clear strategy for how 
to balance security work against other work can help speed up the process, as well as 
avoiding potential heated discussions and possible hurt feelings.

The process doesn’t need to be complex and rigid. Sometimes it’s more appropriate 
to have a lightweight and adaptable process, if that fits your way of working better. The 
takeaway is that it’s better to have thought about how to handle vulnerabilities before 
they happen.

14.3 Run security penetration tests
As you’ve learned by reading this book, security weaknesses can reside anywhere in 
a system; for example, in the deployment pipeline, in the operating system, or in the 
application code itself. Consequently, many choose to run security penetration tests 

1 The OWASP Dependency-Track project (https://dependencytrack.org) is an example of an open 
source tool that can aggregate vulnerability reports for multiple applications.



348 chapter 14 A final word: Don’t forget about security!

(pen tests) to identify weaknesses such as injection flaws, sensitive data leakage, or bro-
ken access control.

You might have wondered whether the secure by design approach renders pen tests 
obsolete, because good design should have taken care of all the security problems. This 
certainly is an appealing thought, but good design isn’t a substitute for pen tests. In fact, 
the idea of using secure by design as an argument to cut pen tests out of the loop reveals 
an underlying misconception about the purpose of pen tests.

Many believe pen tests should be used to prove whether a system is hackable or not, 
but that’s not their purpose. The main objective is to help developers build and design 
the best possible software without security flaws. Regardless of what design principles 
you follow, running pen tests from time to time is a good practice to challenge your 
design and prevent security bugs from slipping through.

14.3.1 Challenging your design

When designing software, you always end up making trade-offs. These could be in any-
thing from how you interact with legacy systems to how you design your service APIs, 
or whether domain primitives are used or not. Regardless, there’s always a chance 
that your design contains flaws you might have missed or that overall domain evolu-
tion has caused exploitable microlesions in your code, similar to what you learned in 
chapter 12, where you learned how sensitive data leaked through logging caused by an 
evolving domain model.

Effective pen testing should therefore include the technical aspects of a system (such 
as authentication mechanism and certificates), as well as focusing on the business rules 
of a domain. This is because security weaknesses can be caused by a combination of 
design flaws and valid business operations.

TIP  Run pen tests on a regular basis to detect exploitable microlesions in your 
design caused by evolving domain models and new business features.

In general, business rules are meant to be used with good intentions. For example, if 
you make a table reservation at a restaurant, you intend to show up. But if the same res-
ervation rules are used together with a too generous cancellation policy (for  example, 
cancellation without charge), then it’s possible for someone with malicious intent to 
craft a denial-of-service attack, as we talked about in chapter 8. Although this might 
seem unlikely, there are, in fact, lots of businesses suffering from this without even 
realizing it. This is because logs and monitoring show normal usage and nothing is 
out of the ordinary, except that financial reports might indicate a drop in revenue or 
market share. Understanding how to attack a system using business rules is therefore 
an important part of system design and something you should encourage in a pen test. 
Unfortunately, not many pen testers realize this because they’re not trained in exploit-
ing domain rules, but our experience is that pen tests that include this are far more 
efficient at  identifying weaknesses in a system than tests only focusing on technical 
aspects.



349Run security penetration tests

14.3.2 Learning from your mistakes

Challenging your design using pen tests is certainly important, but there’s another side 
to running these tests on a regular basis. Every time you receive feedback from a pen 
test team (this could be in a formal report or just when talking by the coffee machine), 
you have the opportunity to see it as a learning experience. It doesn’t matter how big 
the findings are; what’s important is that you see it as a chance to improve your design 
and not as criticism of what you’ve built. Our experience is that security flaws often can 
be addressed as normal bugs, which means it should be possible to add tests in your 
delivery pipeline that fail if you ever introduce the same problem again. This makes 
your system robust and secure over time.

Another aspect of pen test feedback is the chance to discuss it within your team and 
learn from your mistakes. Unfortunately, not many organizations reason this way: they 
think security flaws should be kept secret and be handled by as few individuals as pos-
sible. This means that most developers don’t get a chance to address security flaws or 
learn why certain design choices open up exploitable weaknesses. Analyzing results 
together is therefore a good opportunity to raise overall security awareness, as well as 
a chance for developers to learn how to address security in code. Also, if you don’t run 
pen tests on a regular basis, there’s often lots of ceremony associated with a test, simi-
lar to what you get when only releasing to production a few times a year. By discussing 
results within your team and seeing it as a chance to learn, you reduce overall anxiety 
about finding serious flaws or that someone has made a mistake.

14.3.3 How often should you run a pen test?

A question that often comes up when discussing pen testing is whether there’s a best 
practice to follow regarding how often you should run a test. The short answer is no, 
because it all depends on the current situation and context. But from our experience, 
a good interval tends to be as often as you think it brings value to your design. For 
example, if you’ve added several new business features, changed your external APIs, 
or integrated with a new system, then it’s probably a good idea to run a pen test, but 
there’s no best practice dictating this. Instead, let the current situation and context 
determine whether it makes sense to run a pen test or not, like in context-driven test-
ing, where the current situation and context guide you in choosing a testing strategy. 
This might seem more complex than just coming up with a fixed schedule, but our 
experience is that this lets you establish a good rhythm that makes pen testing a natural 
part of your design process.

Context-driven testing (CDT)
The context-driven approach was initially developed by James Bach, Brian Marick, Bret 
Pettichord, and Cem Kaner in 2001. The essence of CDT is that testing practices com-
pletely depend on the current situation and context in which an application resides. For 
example, if you have two applications, one of which has strict regulatory requirements 
and one where only time-to-market matters, then the testing practices will completely 



350 chapter 14 A final word: Don’t forget about security!

differ between them. A bug slipping through in the first application can lead to serious 
consequences; whereas in the other, you need to release a patch.

The school of CDT considers good software testing as a challenging intellectual process 
that depends on the current situation and context rather than a set of best practices to 
be followed when choosing testing objectives and techniques. The seven basic principles 
of context-driven testing follow:

¡	The value of any practice depends on its context.
¡	There are good practices in context, but there are no best practices.
¡	People working together are the most important part of any project’s context.
¡	Projects unfold over time in ways that are often not predictable.
¡	The product is a solution. If the problem isn’t solved, the product doesn’t work.
¡	Good software testing is a challenging intellectual process.
¡	Only through judgment and skill, exercised cooperatively throughout the entire 

project, are you able to do the right things at the right times to effectively test your 
products.

For more information on CDT, see http://context-driven-testing.com.

14.3.4 Using bug bounty programs as continuous pen testing

One issue with pen testing is that it’s often carried out during a limited period of 
time. This opens up the possibility of sophisticated vulnerabilities going undetected, 
which makes it difficult to trust the pen test report—how do you know if you’ve tested 
enough? There’s no way to know, but the use of bug bounty programs or vulnerability 
reward programs allows you to increase your confidence by simulating a continuous, 
never-ending pen test. There are, however, significant differences between bug bounty 
programs and pen tests.

A pen test is normally conducted by a highly trained pen test team, whereas a bug 
bounty program can be seen as a challenge to the community to find weaknesses in a 
system. The length of the challenge can vary, but it’s not uncommon to have programs 
running without an end date, which makes them similar to eternal pen tests. Anyone 
can join the program and take on the challenge, as long as they follow certain rules—
for example, you can’t interrupt normal usage or damage user data, because all testing 
is carried out in production. Findings are then usually rewarded by a monetary amount 
that varies by severity level. For example, identifying a way to extract credit card num-
bers or personal data is probably worth a lot more than spotting a misconfigured HTTP 
header or cookie. It’s also important to follow the rules of disclosure, because many 
companies don’t want vulnerabilities to be publicly announced before having a chance 
to address them.

As you probably agree, the idea behind bug bounty programs certainly makes sense, 
but one thing many forget is that running such a program requires a great deal from 

(continued)



351Study the field of security

an organization. For example, you need to handle enrollment, provide feedback, and 
properly document how to reproduce a problem. You also need a mechanism to assess 
the value of a finding:

¡	How serious is it?
¡	How much is it worth?
¡	How soon do you need to address it?

All these questions need answers before you can start a bug bounty program. Because 
of this, we recommend that you don’t fire up a challenge without properly analyzing 
what it requires of your company. A good starting point might be to look at existing 
programs to get an idea of what they entail from an organizational point of view. For 
example, look at Hack the Pentagon by the U.S. Department of Defense or at a program 
hosted by the Open Bug Bounty Community. This way, you might be able to take inspi-
ration from someone else’s rule book and learn what it’ll mean for your organization.

WARNING  Make sure you understand what it means to run a bug bounty pro-
gram before you announce a challenge.

Using pen tests to improve your design and make software robust over time is definitely 
a good idea. But reacting to the result of a pen test can be reacting too late, because 
the field of security is constantly changing. This brings us to the next topic: why it’s 
important to study the field of security.

14.4 Study the field of security
Security is a field in constant motion: new vulnerabilities, attack vectors, and data 
breaches are discovered at a pace that makes it hard to keep up as a developer. As 
you know, addressing security issues with proper design is an efficient way to achieve 
implicit security benefits, but this doesn’t mean you can forget about security as a 
field. In fact, learning about the latest security breaches and attack vectors is as import-
ant as studying new web frameworks or programming languages. Unfortunately, not 
many developers realize this, probably because they’re interested in building software 
rather than breaking it, which makes it important for security to be a natural part of 
development.

14.4.1 Everyone needs a basic understanding about security

Over the years, we’ve seen many organizations that treat security as a separate activity 
that doesn’t fall within the normal development process. This division is unfortunate 
because it makes it difficult to promote security in depth. Luckily, the secure by design 
mindset mitigates this to some extent, but to make security part of your daily work, you 
also need to ensure everyone has a basic understanding of security. For example, when 
developing a web application and onboarding a new team member, you could make 
learning about the OWASP Top 10 a requirement.2 This way, it becomes natural to 

2 See https://www.owasp.org/index.php/Top_10-2017_Top_10.



352 chapter 14 A final word: Don’t forget about security!

talk about new findings and how to address weaknesses like SQL injection or cross-site 
scripting in your codebase.

Learning how to exploit weaknesses in a system is also important to gain a deeper 
understanding about security as a whole. Our experience is that many developers never 
get the chance to attack a system, which might explain why sometimes it’s difficult for 
developers to see weaknesses in their designs. To mitigate this, we’ve seen several exam-
ples where organizations encourage developers and other team members to attend 
basic pen test training. This can be overkill, but developers often get a real eye-opener 
about the consequences of designing insecure software—and that’s worth a lot. In addi-
tion, learning more about pen testing and understanding its purpose makes it easier to 
establish a culture where pen tests are seen as a vital part of the development process.

14.4.2 Making security a source of inspiration

In figure 14.1, you see an illustration of how input from various security sources (for 
example, conferences, meetups, and blog posts) is used together with knowledge from 
other domains to inspire solutions that address security problems by design. As it turns 
out, this strategy has been one of our main drivers to find new patterns that address 
security problems by design.

New design
pattern

Domain
primitives

Design
by contract

DDD
Immutability

Injection
flaws

Strings

Figure 14.1  Combining knowledge from different sources yields new solutions.



353Develop a security incident mechanism

For example, think about the general problem of an injection attack. The reason why 
it’s possible to trick an application is because the type of the input argument is too 
generic: if it’s a String, then it can be anything! The classic way to address this is to 
apply input validation, but it doesn’t solve the problem completely because it brings 
up the issues of separating data and validation logic, plus the need for defensive code 
constructs. This made us combine knowledge from Domain-Driven Design, functional 
programming, and Design by Contract to establish the design pattern called domain 
primitives (see chapter 5). Attending conferences and meetups and reading about the 
latest findings in the security industry are therefore important activities in learning 
more about how to develop secure software.

14.5 Develop a security incident mechanism
Whether we like it or not, security incidents happen. When they do, someone will have 
to clean up the mess—that’s what a security incident mechanism is all about. Let’s dis-
cuss what needs to be done, and how you and your team are involved.

First, it pays to reason that the development team should be involved when there are 
security incidents, because no one better knows the intricate details of how the system 
might behave or misbehave. Some organizations have separate units for handling secu-
rity incidents. In those cases, it’s important that the security incident unit closely coop-
erate with the developers, as well as with operations people.

Preferably, security issues should be as instinctive a part of the development team’s 
work as operational aspects are. Cooperation and cross-pollination between develop-
ment and operations has made DevOps something that feels natural today. We hope 
that security will merge into that in the same way—that we’ll see SecDevOps as an 
in-team practice for a lot of things and a heartfelt cooperation between development 
teams and specialists.

Distinguishing between incident handling and problem resolution
Security processes often distinguish between incident handling and problem resolution. 
This is a distinction that’s in no way unique to these processes, but it’s also found in 
more general frameworks for software management.

¡	Incident handling is what you do when there is a security incident; for example, 
when data is leaked or someone has hacked their way into your system. What can 
you do to stop the attack and limit the damage?

¡	Problem resolution is what you do to address the underlying problem that made 
the incident possible. What were the weaknesses that were exploited? What can 
you do about them?

Keeping these two apart helps keep an organization from panicking when under attack 
and aids in focusing on those things that are most important to be done at the time.



354 chapter 14 A final word: Don’t forget about security!

14.5.1 Incident handling

Your system is under attack. Someone is stealing the data out of the database. Should 
someone do something? Certainly! That’s why you need incident handling. The ques-
tion is rather in what way the team should be involved and why.

The development and operations team (or teams) are those with the best insights 
into the details of how the system works. In our experience, you get the best results 
from incident handling when developers are directly involved in the process. During an 
attack, you typically want to find out:

¡	What channel are the attackers using to get access to the system? How can you 
shut that channel? For example, you might be able to cut a database connection 
or shut a port.

¡	What further assets (databases, infrastructure, and so on) are at risk? What can 
the attackers do with the assets they have gained access to? For example, can they 
elevate their privileges on the machine or use credentials they’ve obtained to 
reach a new machine?

¡	What data did the attackers get access to—customer records, financial information?
¡	Can you limit the amount of data the attacker has access to? For example, you 

might empty a database while leaving it open, giving the attacker the impression 
that they’ve gotten all there is to get.

¡	Can you limit the value of the data; for example, by mixing it with false data?
¡	Can you limit the damage of the data loss; for example, by notifying or warning 

customers, partners, agencies, or the public?

The development team gives deep and important insights when considering these and 
similar questions. The most important task at hand is to stop the bleeding, but stop-
ping the attack doesn’t mean the incident is over. Investigation and damage control 
are part of handling the incident, so you should also capture forensic evidence to be 
used after the fact. During a security incident, you should focus on what needs to be 
done to handle the immediate situation, but later on, you can dig deeper to fix the 
underlying problems.

The rest of the organization must be prepared too. A security incident is by its nature 
unplanned and gets the highest priority. No one can assume that the team will continue 
to work as planned at the same time as they’re saving the business assets of the company. 
No stakeholder should complain that their favorite feature was delayed because the 
team was preoccupied with a security incident.

14.5.2 Problem resolution

When the emergency phase of the incident is over, it’s time to resolve the underly-
ing problem. Problem resolution is the work that’s done to understand why the incident 



355Develop a security incident mechanism

occurred and to fix it so that it can’t happen again (or at least make it more unlikely). 
The questions the team asks itself during problem resolution are slightly different:

¡	What vulnerability did the attacker exploit? For example, was there a bug in the 
code or a weakness in a library that was used?

¡	Were there several vulnerabilities that, when taken together, made the attack pos-
sible? For example, one machine with a weakness might have been protected by 
another mechanism until a vulnerability was found in the other mechanism.

¡	How could the attacker have gained information about the existence of the vul-
nerabilities? For example, they got information about the infrastructure because 
of exceptions carrying unnecessary details being exported to the caller.

¡	How did the vulnerabilities end up in the code? For example, a vulnerability in 
a third-party library might have gone unnoticed, so the version wasn’t patched.

Problem resolution should cover both product and process. It should fix the problem 
in the product (for example, patching a broken version of a third-party library), but it 
should also address the problem in the process (for example, reasoning around why 
the team didn’t know the version was broken and how they could have avoided the sit-
uation by patching earlier).

The work of resolving the problem differs a little from incident handling. In incident 
handling, the situation is most often drop everything else. Even if it’s not all hands on 
deck, for those that are involved, there’s nothing more important. In problem resolu-
tion, this isn’t always the case. Once you’ve identified what the problem is, it’s back to 
assigning priorities. For every feature you normally develop, there’s a business value 
that motivates it. That value might be the mitigation of a risk. The same goes for prob-
lem resolution; you spend effort on mitigating a risk and securing a business asset, but 
the value of that effort must be weighed against all other efforts that could be expended 
instead. You’re back to good old-fashioned priorities.

Exactly how problem resolution gets prioritized in the backlog is outside the scope 
of our discussion. The backlog might reside in a digital tool or be represented by sticky 
notes on a physical wall. Regardless, this is where the problem resolution goes—into 
the backlog to compete with everything else.

We are aware of the problem that not all product owners have a broad view of the 
product and the priorities around it. Too many product owners are stakeholders who 
only see one perspective—often, what’s directly facing the customer or the user. A good 
product owner should balance features and quality work, ensuring capabilities such as 
response time, capacity, and security. We all know that security has a hard time getting 
to the top of the priorities list, but at least a backlog item that’s about fixing a security 
problem that has already caused an incident has a somewhat better chance of getting 
to the top.



356 chapter 14 A final word: Don’t forget about security!

14.5.3 Resilience, Wolff’s law, and antifragility

Earlier in this book, we talked about the resilience of software systems; for example, 
how a system that loses its connection to the database recovers by polling and recon-
necting. After a while, the system is healed and is back to its normal operation as if 
the disturbance hadn’t occurred. This is a desirable system property, but with security, 
you’ll want to take it one step further.

We’d like to see systems that not only resume normal operation after an attack but 
actually grow stronger after recovering from one. That kind of phenomenon is nothing 
new to humanity; in medicine, it’s well known and goes under the name Wolff’s law. The 
nineteenth-century German surgeon Julius Wolff studied how the bones of his patients 
adapted to mechanical load by growing stronger. Later, Henry Gassett Davis did simi-
lar studies on soft tissues, like muscles and ligaments. Just as muscles and bones grow 
stronger when they’re put under load, we’d like our systems to grow stronger when put 
under attack.

Even if it would be cool to have software that automatically adapted to and evolved 
after attacks, this isn’t what we’re after. We need to change what we mean by system, 
moving away from the computer science sense to what it means in system theory; we 
need to zoom out a little and talk about the system that consists of the software, the pro-
duction environment, and the team developing the software.

System theory
System theory studies how a system of connected parts reacts to external input and 
how the parts react to each other, where the parts can be man-made or natural (even 
human). Often such systems display interesting emergent behaviors. For example, think 
of a queue of cars at a stoplight. When the light turns green, each driver waits until the 
car in front of them has moved enough to give them a comfortable safety margin and 
then starts driving. Seen from the side, it looks like there is a wave going through the 
queue, starting at the stoplight and traversing back through the queue.

Taking a system theory view of a software system under attack, we’d probably view the 
software as one part, the attacker as another part, and the development team as a third 
part. Thereafter, we’d look at how those parts affect and react to one another.

Unfortunately, many systems grow weaker after attacks, when problem resolution con-
sists of making a quick patch (as small as possible) before the team goes back to devel-
oping the next story from the backlog. The system over time becomes a patchwork 
of inconsistent design and becomes more vulnerable to attacks. But with insightful 
product ownership that also takes security seriously, the team and the system have the 
potential to improve after attacks. If each attack is met with incident handling, a post-
mortem analysis, learning, and structured problem resolution of both the product and 
the processes, it’s possible for a system to follow Wolff’s law and grow stronger when 
attacked. In 2012, Nassim Taleb coined the term antifragile to describe this phenome-
non in the field of software development.3

3 Nassim Nicholas Taleb, Antifragile: Things That Gain from Disorder (Random House, 2012).



357Develop a security incident mechanism

One specific example of how the system grows stronger is through the security code 
review checklist that we mentioned earlier. The power of checklists has been proven 
by professionals in many fields. For example, the World Health Organization’s Surgi-
cal Safety Checklist was shown to reduce complications by 40%,4 and aviation preflight 
checklists have been used to improve safety since the 1930s. If you’re interested, take a 
deeper look in The Checklist Manifesto: How to Get Things Right by Atul Gawande (Henry 
Holt, 2009). By adding carefully crafted checks to your list, you’re using this power.

The tragedy of penetration tests and going antifragile
Security penetration tests provide valuable information about the vulnerabilities of your 
system. But the true value of the information depends on how the information is used 
as feedback to improve the product and the process. The results of security penetration 
tests can be in different formats: some more helpful with recommendations, some less 
helpful. The minimum is a list of what vulnerabilities were found and, often, how they 
could be exploited. For example, such a report might contain the following:

Quantity field in order form vulnerable with SQL Injection.
Attack vector ̀ 'OR 1=1--` gives access to all data in database.

The development team can react to this kind of information on three (or four) different levels:

¡	Level 0: Ignore the report completely. Do nothing. Obviously, this leads to no ben-
efits, neither short-term nor long-term. The product is released with all the flaws.

¡	Level 1: Fix what is explicitly mentioned. The report is interpreted as a list of bugs 
that are to be fixed. This provides some short-term effect on the product, at least 
fewer of the obvious flaws. But there might be more vulnerabilities of the same 
kind. Also, the same kind of mistakes will probably be repeated in the next release.

¡	Level 2: Find similar bugs. The report is treated as a set of examples. The devel-
opment team searches for similar weaknesses, perhaps by devising some grep 
commands and running them. There’s a good short-term benefit for the product. If 
the grep commands are included in the build pipeline, there’ll also be some small 
long-term benefit as well.

¡	Level 3: Systemic learning. The report is treated as a pointer for learning. Apart 
from fixing and searching for similar bugs, the team also engages in understand-
ing how vulnerabilities could happen. One way is running a themed retrospective 
with the security penetration test report as underlying data.* The insights are in-
cluded in code review checklists and build pipeline steps and become part of the 
everyday work of the team.

Clearly, level 0 (ignore) is a complete waste of time and effort. Level 1 (fix) is not much 
better: it’s a good fix, but security penetration testing is such a time- and effort-consuming 
activity that testers often only have the time to find some weakness of each kind, not all 

4 Haynes, A., et al., “A Surgical Safety Checklist to Reduce Morbidity and Mortality in a Global Popula-
tion,” New England Journal of Medicine 360 (2009): 491-499.

* The Queens of Retrospectives, Esther Derby and Diana Larsen, recommend themed retrospectives 
at regular intervals. Read their Agile Retrospectives: Making Good Teams Great (Pragmatic Bookshelf, 
2006) for excellent advice on how to do good retrospectives.



358 chapter 14 A final word: Don’t forget about security!

of them. So, fixing just the reported problem provides a poor payoff for the efforts. And the 
payoff is only short-term, not long-term at all.

At level 2 (find and fix similar), you at least get some substantial value worth the money. 
You can be pretty sure that the product has a certain level of quality; there are no (or few) 
security weaknesses left of the kind that has been found. But the payoff is still mainly 
short-term. At level 3 (learning), you’re actually improving the system, both product and 
process, in a way that is antifragile. This is where you get both the short-term and long-
term benefits.

For security testers, the most saddening scenario is when a report is completely ignored. 
But a close second is when the organization fixes exactly the weaknesses that were 
reported and nothing else. Of course, what these specialists want is to be part of a genu-
ine learning process where everybody improves.

Making systems grow stronger when attacked is hard, but not impossible. The aviation 
industry through structured learning has increased the security of air travel by over a 
thousandfold.5 Their methods are not rocket science: structured incident investiga-
tions and reports that are shared within the profession—an impressive case of group 
learning. Structural engineers have done similarly with the design of elevators.

If the engineering branch of computer science is immature in any regard with 
respect to other disciplines, it’s in our lack of structured learning and sharing with our 
peers. But there’s hope. The OWASP Builders’ community focuses on shared learning 
on security among software builders, and you can do a lot for your system with your 
peers on your team.6

Summary

¡	You should use code security reviews as a recurring part of your secure software 
development process.

¡	As your technology stack grows, it becomes important to invest in tooling that 
provides quick access to information about security vulnerabilities across the 
entire stack.

¡	It can be beneficial to proactively set up a strategy for dealing with security vul-
nerabilities as part of your regular development cycle.

¡	Pen tests can be used to challenge your design and detect microlesions caused by 
evolving domain models.

¡	Feedback from a pen test should be used as an opportunity to learn from your 
mistakes.

5 Annual deaths per billion passenger miles have dropped from 200 in the 1930s to 0.1 in the 2010s.
6 For more on this community, see https://www.owasp.org/index.php/Builders.

(continued)



359Summary

¡	Bug bounty programs can be used to simulate a continuous, never-ending pen 
test, but bug bounty programs are complex and require a great deal from an 
organization.

¡	It’s important to study the field of security.
¡	Knowledge from different domains can be used to solve security problems.
¡	Incident handling and problem resolution have different focuses.
¡	Incident handling needs to involve the whole team.
¡	The security incident mechanism should focus on learning to become more 

resistant to attack.





361

A
admin processes, in twelve-factor app 253
admin tasks, in cloud environments 266–269
advanced constraints

catching 149–151
invariants 149
ORM frameworks and 155
upholding, builder pattern for 151–154

aggregate 73–77
ambiguous parameter lists, replacing 297–303

direct approach 299–300
discovery approach 299–302
new API approach 299, 302–303

antifragility 356
APIs

hardening with domain primitive  
library 119–120

application-focused tests 211–212
APT attacks 272, 274
audit trails 257, 264
auditability. See traceability
automated testing 210–213
availability 9, 90–92, 213, 265–266, 269.  

See also CIA-T
avoid logging to file 263
defined 237
designing for 237–244
in microservices 330
logging as a service and 263–266
testing for 213–215

estimating headroom 213–215
exploiting domain rules 215

B
backing services 252, 260
backtracking, regular expression 200–201
bad data 244–249

echoing input verbatim, avoiding 247–248
never repair 245–247
overview 244
XSS Polyglots 248–249

bank robbery example 5–6
Bees with Machine Guns 214
Billion Laughs attack 23–29
boundary behavior testing 194–197
boundary input testing 191, 194–197
bounded contexts 77–85

context mapping 83–85, 329
identifying 78–81
identifying in legacy code 296
interactions between 81–85
language, model and 78
microservices as 325–329

API design 326–328
semantics and evolving services 329
splitting monoliths 328

ubiquitous language and 77–78
bug bounty programs 350–351
builder pattern

ambiguous parameters and 297–299
for upholding advanced constraints 151–154

bulkheads 241–243
business concerns, security concerns equal  

priority as 19–20
business exceptions 225–232

index



362 index

C
centralized load balancing, in cloud 

environments 269–270
change, increasing to reduce risk 272
checklist, security code review 345
checksums 109–110
CIA-T (confidentiality, integrity, availability, and 

traceability) 8–9, 213, 237, 330–331
circuit breakers 238–241
classes, explicit concepts as 45
client-side load balancing, in cloud 

environments 270–271
closed state, of circuit breakers 239
cloud environments

admin tasks 266–269
configuration, storing 253–258

in code, avoiding 254–255
in environment 256–258
in resource files, avoiding 255–256

load balancing 269–271
centralized 269–270
client-side 270–271

logging in 261–266
as a service 263–266
to file on disk, avoid 261–263

overview 251–252
running apps as separate processes 258–261

processing instances don’t hold state 259–260
security benefits 261

Three R’s, enterprise security 271–277
increase change to reduce risk 272–273
repairing vulnerable software 276–277
repaving servers 274–275
rotating secrets 273–274

cloud-native applications, defined 253
code security reviews 344–346
codebase, in twelve-factor app 252
collections, securing integrity of 160–163
Command Query Responsibility Segregation 

(CQRS) 178
command-query separation (CQS) principle 148
concurrency, in twelve-factor app 252
confidentiality 7, 213, 264, 266, 269. See also CIA-T

in microservices 330
logging as a service and 264–265
logging to file and 262
through domain-oriented logger API 337–341

configuration
storing (cloud environments) 253–258

encryption 257–258
in code, avoiding 254–255
in environment 256–258
in resource files, avoiding 255–256

validating 216–221
automated tests 218–219
causes of configuration-related security 

flaws 216–218
overview 216
verifying implicit behaviors 219–221

configuration hot spots 218
confirmation bias 129
constructors

number of 154
upholding invariants in 99–101

containers 242, 275
context-driven testing 349–350
context mapping 83–85, 329
contracts. See also Design by Contract

as solution to defensive code constructs 308–309
Conway’s Law 84
CQRS (Command Query Responsibility 

Segregation) 178
CQS (command-query separation) principle 148
credentials

ephemeral 273–274
in code 255

credit card numbers, respresented by strings 42
critical complexity 52
cross-site scripting (XSS) attacks 12, 245, 247, 

248–249
cryptographic hash function 334

D
data integrity. See integrity
data leaks

caused by evolving code 125–127
implicit, identifying 304–305

data syntax, checking 109–110
data transfer objects (DTOs) 120
DDD (Domain-Driven Design)

bounded contexts 77–85
context mapping 83–85, 329
identifying 78–81
interactions between 81–85



363index

language, model and 78
ubiquitous language and 77–78

models in 51–77
as simplifications 53–56
building blocks for 65–77
capturing deep understanding 59–61
choosing 61–62
forming ubiquitous language 63–65
strictness of 56–59
terminology 56

overview 49–51
DDoS (distributed denial of service)  

attacks 213–215
decision-making 11
deep modeling 43–46
deep understanding, capturing 59–61
defensive code constructs 305–310

contracts and domain primitives as solution 
to 308–309

example 306–308
optional data types in 309–310

delivery pipelines 190–191, 346, 349
denial of service (DoS) attacks 109, 213–215
dependencies

DRY principle and 311–312
hidden 242
in twelve-factor app 252

Dependency Inversion Principle 10
design, defining 9–11
design approach to security 14–21

advantages of 18–21
example 15–18

Design by Contract
coining of term 95
example 95–97

DevOps culture 344, 353
direct approach, to replacing ambiguous parameter 

lists 299–300
discovery approach, to replacing ambiguous 

parameter lists 300–302
disposability, in twelve-factor app 252
distilling models 61–62
distributed denial of service (DDoS)  

attacks 213–215
distributed monolith 323
Document Type Definition (DTD) 22–23

domain, defined 56
domain DoS attacks 215
domain exceptions 236
domain focus 20
domain language 63–64
domain model

as simplifications 53–56
building blocks for 65–77

aggregates 73–77
entities 66–70
value objects 70–73

capturing deep understanding 59–60
circuit breakers and 240–241
choosing 61–62
defined 56
forming ubiquitous language 63–65
strictness of 56–59
terminology 56

domain primitives 17, 114–136
advantages of using 132
as smallest building blocks 114–118
as solution to defensive code constructs 308–309
context boundaries and 116–118
in entities, when to use 132–133
library of

hardening APIs with 119–120
overview 118–119

overview 114
partial, in legacy codebases 316–321

encompassing conceptual whole 319–321
implicit, contextual currency 317–319

read-once objects as 121–127
replacing ambiguous parameters with 298
where to apply in legacy code 296–297

domain rules 192, 215
DoS (denial of service) attacks 109, 213–215
DRY (Don’t Repeat Yourself) principle 82

defined 82
misapplications of 310–313

false negatives 312–313
false positives 311
problems caused by 311–312

syntactic duplication 81–83
DTD (Document Type Definition) 22
DTOs (data transfer objects) 120
dynamic tests 193



364 index

E
echoing input verbatim, avoiding 247–248
eclectic approach to software security 21
Eiffel programming language 97
encryption 257–258
Enterprise Resource Planning (ERP) 57
enterprise security, in cloud environments  

(three R’s) 271–277
increasing change to reduce risk 272
repairing vulnerable software 276–277
repaving servers 274–275
rotating secrets 273–274

entities 66–70
consistent on creation 140–146

catching advanced constraints 149–151
construction with fluent interface 147–149
example when not 140
mandatory fields as constructor 

arguments 143–146
no-arg constructors, problems with 140–143
ORM frameworks and advanced 

constraints 155
upholding advanced constraints, builder 

pattern for 151–154
decluttering 129–132
domain primitives in 132–133
general discussion 127–129
integrity of 156–163

getter and setter methods 156–157
mutable objects, avoiding sharing of 158–160
securing integrity of collections 160–163

locked 178–179
managing mutable states using 138–139
partially immutable 166–168, 187
security vulnerabilities and 127

entity expansion, XML 23–25, 28. See also Billion 
Laughs Attack

entity relay 181–188
example 181–183
splitting state graph into phases 183–186
when to form 186–188

entity snapshots 174–180
changing state of underlying entity 177–180
entities represented with immutable 

objects 175–177
overview 174–175
when to use 180

entity state graphs, complicated 181
entity state objects 168–174

implementing entity state as separate 
object 172–174

overview 168
upholding entity state rules 168–172

ERP (Enterprise Resource Planning) 57
estimating headroom 213–215
Evans, Eric 50, 74, 147
exceptions

handling failures without 232–237
intermixing, business and technical 226–227
using for failures 224–232

exception payload 231–232
handling exceptions 227–230
overview 224–225
throwing exceptions 225–227

explicit domain exceptions 229–230
externally unique identifiers 68
extreme input testing 191, 200–201

F
failures

as different from exceptions 232–234
fail-fast approach 101–102, 240
handling without exceptions 232–237
using exceptions for 224–232

exception payload 231–232
handling exceptions 227–230
overview 224–225
throwing exceptions 225–227

fallback answers 240
feature toggles 201–210

as developmental tool 202–205
auditing 209
example of mishap with 201–202
testing 205–209

automatically 205
multiple toggles 209

features, vs. security concerns 5–8
findFirst method 227
flow-of-materials systems 57
fluent interface 147–149

G
gambling sites, online 172
getter methods 156–157



365index

global exception handlers 228, 231
globally unique identifiers 68

H
Hack the Pentagon program 351
half-open state, of circuit breakers 239
headroom, estimating 213–215

I
IaC (infrastructure as code) 212
identity , of entities 66–69
immutability 88–95

immutable entities, partially 166–168
immutable objects entities represented 

with 174–177
implicit behaviors,  verifying configuration 219–221
implicit concepts

making them explicit 45–46
shallow modeling 40–43

incident handling 354
independent runtimes, microservices 324
independent updates, microservices 324
indirect coupling, between feature toggles 209
infinite timeouts 240
infrastructure as code (IaC) 212
infrastructure-focused tests 211–212
injection attack, See  <script>alert('pwned')</script> 
input, echoing verbatim 247–248
input validation 102
integrity 8, 90, 92–94, 266, 269. See also CIA-T

in microservices 330
logging as a service and 265
logging to file and 262
of aggregated log data 333–334

internal XML entities 22–23
invalid input, testing for 191, 197–200
invariants 73

advanced constraints as 149–151
domain primitives and 114–116
internal, in entities 67
upholding in constructors 99–101

J
JavaBeans specification 146
java.util.Date class 159
JPA (Java Persistence API) 142–143. See also ORM

K
keywords, synchronized 89, 166, 174

L
least privilege principle 258
legacy codebases

ambiguous parameter lists in, replacing 297–303
direct approach 299–300
discovery approach 300–302
new API approach 302–303

defensive code constructs in 305–310
contracts and domain primitives as solution 

to 308–309
example 306–308
optional data types in 309–310

defined 295
domain primitives in 296–297
domain primitives in, partial 316–321

encompassing conceptual whole 319–320
implicit, contextual currency 317–319

DRY principle misapplied in 310–313
false negatives 312–313
false positives 311
problems caused by 311–312

insufficient testing in 315–316
insufficient validation in domain  

types in 313–315
logging unchecked strings in 303–305

identifying 303–304
identifying implicit data leakage 304–305

length check, validation 103, 105–106
lexical content, check 

validation 103, 107–109
Billion Laughs attack 25–29

load balancing, in cloud environments 269–271
centralized 269–270
client-side 270

logging
in cloud environments 261–266

as a service 263–266
to file on disk, avoid 261–263

in microservices 332–341
confidentiality through a domain-oriented 

logger API 337–341
integrity of aggregated log data 333–334
traceability in log data 334–337

in twelve-factor app 253



366 index

levels 337
unchecked strings in legacy codebases 303–305

identifying 303–304
identifying implicit data leakage 304–305

login page 7

M
mandatory fields, as constructor arguments 143–146
message queues 242
microservices

as bounded context 325–329
API design 326–328
semantics and evolving services 329
splitting monoliths 328

designed for down 324
independent runtimes 324
independent updates 324
logging in 332–341

confidentiality through a domain-oriented 
logger API 337–341

integrity of aggregated log data 333–334
traceability in log data 334–337

overview 323
sensitive data across 329–332

broad meaning of sensitive 331–332
CIA-T in microservice architecture 330–331

microservices architecture 292, 323
models. See domain model
monoliths, splitting 328
mutability, issues with 88–94
mutable objects, avoiding sharing of 158–160
mutable states

managing using entities 138–139
overview 137–138

N
network security 332
new API approach, to replacing ambiguous 

parameter lists 302–303
no-arg constructors 140–143
normal input testing 191, 193–194
normalizing log data 334

O
object management systems 57
object-relational mapper framework 142–143, 155
online gambling sites 172
open state, of circuit breakers 239
Open Web Application Security Project. See OWASP
operational constraints 28
optional data types 309–310
origin of data, checking 103–105
ORM frameworks

no-arg constructors 142–143
advanced constraints 155 

Öst-Götha Bank robbery 5–6
overcluttered entity methods

decluttering 129–132
general discussion 127–129

OWASP (Open Web Application Security 
Project) 24

Builders’ community 358
Top 10 12, 351

P
PaaS (Platform-as-a-Service) 253, 270, 273
parameter lists, ambiguous , replacing

direct approach 299–300
discovery approach 299–302
new API approach 299, 302–303

parser configuration 23–24
parsers, as target of DoS attacks 109
partially immutable entities 166–168
passwords

as domain primitive 124–125
in code 255
treated as ephemeral 273–274

penetration testing 12, 21, 347–351
challenging design using 348
context-driven testing 349–350
frequency of 349
learning from feedback from 349
reports of results from 357–358

Platform-as-a-Service (PaaS) 253, 270, 273
port binding 252
Postel’s Law 27

logging (continued)



367index

preconditions 95–99
prioritizing work, on vulnerabilities 347
problem resolution 353–355
processes, in twelve-factor app 252
propagation policy, tainting 134

Q
queues 238

R
race condition 165–166
Reactive Manifesto 243–244
reactive systems 243–244
read-once objects 121–127

detecting unintentional use 123–125
domain primitives as 121–127
example 121–123
overview 121

read-once pattern. See read-once objects
repairing vulnerable software 276–277
repaving servers 274–275
resilience 237, 356–358
responsiveness 238
robbery example 5–6
root of aggregates 75
rotating

logs 269
secrets 273–274

S
SAX parser (Simple API for XML) 25
second-order attacks 245
secrets

rotating 273–274
sharing 257
storing

in code, avoiding 254–255
in resources files, avoiding 255–256

secure entities, replacing ambiguous parameters 
with 298

security
studying field of 351–353
thinking explicitly about 14
traditional approach to 11–14

security code review checklist 345
security concerns

categorizing 8–9
vs. features 5–8

security in depth 28–29
security incident mechanism 353–358

incident handling 354
problem resolution 354–355

semantic versioning 335–336
semantics 78

changing, between microservices 329
checking, validation 103, 110–111

sensitive data, across microservices 329–332
broad meaning of sensitive 331–332
CIA-T in microservice architecture 330–331

servers, repaving 274–275
service discovery 270
service methods, rules embedded in 169
services, separating 280–281
set/get naming convention 146
setter-based initialization 141
shallow modeling 40–43

how emerges 41–42
implicit concepts 42–43

single-threaded shielding environment 166
Single Writer Principle 178
size of data, validation 103, 105–106
slow systems 238
Social Security numbers (SSNs), represented by 

strings 42
ssh access 267
standard systems 57
stateless requests, processes serving 259–260, 261
strictness of domain models 56
strings

credit card numbers respresented by 42
Social Security numbers respresented by 42
unchecked, in legacy codebases 303–305

identifying 303–304
identifying implicit data leakage 304–305

structs, entities as  169
synchronized keywords 89–94, 125–126, 166, 

174–175, 180
syntax, validation 103, 109–110
system theory 356



368 index

T
taint analysis 133–136
technical exceptions 225–227, 236
testing 191–201. See also penetration testing

automated 210–213
boundary behavior 194–197
feature toggles 205–209
for availability 213–215

estimating headroom 213–215
exploiting domain rules 215

multiple toggles 209
normal behavior 193–194
of the extreme 200–201
only good enough, in legacy code 315–316
overview 191–192
with input that causes eventual harm 199
with invalid input 197–198

thread contention 89
Three R’s of Enterprise Security 271–277
timeouts 239
toggles. See feature toggles
tokenizers 107
Tolerant Reader pattern 27
traceability 9. See also logging

in log data 334–337
in microservices 330–331

traditional approach to security 11–14
transactions, identifying across system 336–337
twelve-factor app, defined 252

U
ubiquitous language 63–65, 77–78
unchecked strings in legacy codebases, 

logging 303–305
identifying 303–304
identifying implicit data leakage 304–305

untainting 133–135
use cases 6

V
Validate utility class 98, 101
validation 102

configuration 216–221
automated tests 218–219
causes of configuration-related security 

flaws 216–218
overview 216
verifying implicit behaviors 219–221

data semantics 110–111
data syntax 109–110
insufficient, in legacy code 313–315
lexical content of data 107–109
origin of data, checking 103–105
overview 102
repairing data, never before 245–247
size of data 105–106

value objects 17, 70–75, 114–115, 121, 159, 314. See 
also domain primitives

VMs (virtual machines) 242, 274–275
vulnerable software, repairing 276–277

W
Wolff’s law 356–358
work queues 238

X
XML (Extensible Markup Language) 22–29

Billion Laughs attack 23–29
internal XML entities 22–23
lexical content check 107–108

XSS (cross-site scripting) attacks 12–13,199–200, 
245–249

XSS polyglots 248–249



Bergh Johnsson ●  Deogun ●  Sawano

S
ecurity should be the natural outcome of your develop-
ment process. As applications increase in complexity, it 
becomes more important to bake security-mindedness 

into every step. The secure-by-design approach teaches best 
practices to implement essential software features using design 
as the primary driver for security.

Secure by Design teaches you principles and best practices for 
writing highly secure software. At the code level, you’ll dis-
cover security-promoting constructs like safe error handling, 
secure validation, and domain primitives. You’ll also master 
security-centric techniques you can apply throughout your 
build-test-deploy pipeline, including the unique concerns of 
modern microservices and cloud-native designs. 

What’s Inside
●  Secure-by-design concepts
●  Spotting hidden security problems
●  Secure code constructs
●  Assessing security by identifying common design fl aws
●  Securing legacy and microservices architectures

Readers should have some experience in designing applica-
tions in Java, C#, .NET, or a similar language.

Dan Bergh Johnsson, Daniel Deogun, and Daniel Sawano are 
acclaimed speakers who often present at international con-
ferences on topics of high-quality development, as well as 
security and design.

To download their free eBook in PDF, ePub, and Kindle formats, owners 
of this book should visit www.manning.com/books/secure-by-design

$49.99 / Can $65.99  [INCLUDING eBOOK]

Secure by Design

SOFTWARE DEVELOPMENT 

M A N N I N G

“A practical, actionable 
handbook. Not just a call to 
arms about treating security 

seriously as a design activity ... 
it also provides a raft of real 
examples, worked through 
from design considerations 
  to actual code listings.” 

—From the Foreword by 
Daniel Terhorst-North

“An eye-opening look into 
how good design can be 
the best form of security. 

A brilliant introduction to 
domain-driven design and 
 great design principles.” 

—Jeremy Lange, Sertifi 

“Creating secure applications 
is a must, and it’s not a simple 

task. With this book, you 
learn a set of tools and 
a way of thinking that 
 makes it a lot easier.”—Eros Pedrini, Everis 

See first page

ISBN-13: 978-1-61729-435-8
ISBN-10: 1-61729-435-7


	Secure by Design
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	about the authors
	about the cover illustration
	Part 1: Introduction
	1 Why design matters 
	1.1	Security is a concern, not a feature
	1.1.1	The robbery of Öst-Götha Bank, 1854
	1.1.2	Security features and concerns
	1.1.3	Categorizing security concerns: CIA-T

	1.2	Defining design
	1.3	The traditional approach to software security and its shortcomings
	1.3.1	Explicitly thinking about security
	1.3.2	Everyone is a security expert
	1.3.3	Knowing all and the unknowable

	1.4	Driving security through design
	1.4.1	Making the user secure by design
	1.4.2	The advantages of the design approach
	1.4.3	Staying eclectic

	1.5	Dealing with strings, XML, and a billion laughs
	1.5.1	Extensible Markup Language (XML)
	1.5.2	Internal XML entities in a nutshell
	1.5.3	The Billion Laughs attack
	1.5.4	Configuring the XML parser
	1.5.5	Applying a design mindset
	1.5.6	Applying operational constraints
	1.5.7	Achieving security in depth


	2 Intermission: 
	2.1	An online book store with business integrity issues
	2.1.1	The inner workings of the accounts receivable ledger
	2.1.2	How the inventory system tracks books in the store
	2.1.3	Shipping anti-books
	2.1.4	Systems living the same lie
	2.1.5	A do-it-yourself discount voucher

	2.2	Shallow modeling
	2.2.1	How shallow models emerge
	2.2.2	The dangers of implicit concepts

	2.3	Deep modeling
	2.3.1	How deep models emerge
	2.3.2	Make the implicit explicit



	Part 2: Fundamentals
	3 Core concepts of 
	3.1	Models as tools for deeper insight
	3.1.1	Models are simplifications
	3.1.2	Models are strict
	3.1.3	Models capture deep understanding
	3.1.4	Making a model means choosing one
	3.1.5	The model forms the ubiquitous language

	3.2	Building blocks for your model
	3.2.1	Entities
	3.2.2	Value objects
	3.2.3	Aggregates

	3.3	Bounded contexts
	3.3.1	Semantics of the ubiquitous language
	3.3.2	The relationship between language, model, and bounded context
	3.3.3	Identifying the bounded context

	3.4	Interactions between contexts
	3.4.1	Sharing a model in two contexts
	3.4.2	Drawing a context map


	4 Code constructs 
	4.1	Immutability
	4.1.1	An ordinary webshop

	4.2	Failing fast using contracts
	4.2.1	Checking preconditions for method arguments
	4.2.2	Upholding invariants in constructors
	4.2.3	Failing for bad state

	4.3	Validation
	4.3.1	Checking the origin of data
	4.3.2	Checking the size of data
	4.3.3	Checking lexical content of data
	4.3.4	Checking the data syntax
	4.3.5	Checking the data semantics


	5 Domain primitives
	5.1	Domain primitives and invariants
	5.1.1	Domain primitives as the smallest building blocks
	5.1.2	Context boundaries define meaning
	5.1.3	Building your domain primitive library
	5.1.4	Hardening APIs with your domain primitive library
	5.1.5	Avoid exposing your domain publicly

	5.2	Read-once objects
	5.2.1	Detecting unintentional use
	5.2.2	Avoiding leaks caused by evolving code

	5.3	Standing on the shoulders of domain primitives
	5.3.1	The risk with overcluttered entity methods
	5.3.2	Decluttering entities
	5.3.3	When to use domain primitives in entities

	5.4	Taint analysis

	6 Ensuring integrity of state
	6.1	Managing state using entities
	6.2	Consistent on creation
	6.2.1	The perils of no-arg constructors
	6.2.2	ORM frameworks and no-arg constructors
	6.2.3	All mandatory fields as constructor arguments
	6.2.4	Construction with a fluent interface
	6.2.5	Catching advanced constraints in code
	6.2.6	The builder pattern for upholding advanced constraints
	6.2.7	ORM frameworks and advanced constraints
	6.2.8	Which construction to use when

	6.3	Integrity of entities
	6.3.1	Getter and setter methods
	6.3.2	Avoid sharing mutable objects
	6.3.3	Securing the integrity of collections


	7 Reducing complexity 
	7.1	Partially immutable entities
	7.2	Entity state objects
	7.2.1	Upholding entity state rules
	7.2.2	Implementing entity state as a separate object

	7.3	Entity snapshots
	7.3.1	Entities represented with immutable objects
	7.3.2	Changing the state of the underlying entity
	7.3.3	When to use snapshots

	7.4	Entity relay
	7.4.1	Splitting the state graph into phases
	7.4.2	When to form an entity relay


	8 Leveraging your delivery pipeline for security
	8.1	Using a delivery pipeline
	8.2	Securing your design using unit tests
	8.2.1	Understanding the domain rules
	8.2.2	Testing normal behavior
	8.2.3	Testing boundary behavior
	8.2.4	Testing with invalid input
	8.2.5	Testing the extreme

	8.3	Verifying feature toggles
	8.3.1	The perils of slippery toggles
	8.3.2	Feature toggling as a development tool
	8.3.3	Taming the toggles
	8.3.4	Dealing with combinatory complexity
	8.3.5	Toggles are subject to auditing

	8.4	Automated security tests
	8.4.1	Security tests are only tests
	8.4.2	Working with security tests
	8.4.3	Leveraging infrastructure as code
	8.4.4	Putting it into practice

	8.5	Testing for availability
	8.5.1	Estimating the headroom
	8.5.2	Exploiting domain rules

	8.6	Validating configuration
	8.6.1	Causes for configuration-related security flaws
	8.6.2	Automated tests as your safety net
	8.6.3	Knowing your defaults and verifying them


	9 Handling failures securely
	9.1	Using exceptions to deal with failure
	9.1.1	Throwing exceptions
	9.1.2	Handling exceptions
	9.1.3	Dealing with exception payload

	9.2	Handling failures without exceptions
	9.2.1	Failures aren’t exceptional
	9.2.2	Designing for failures

	9.3	Designing for availability
	9.3.1	Resilience
	9.3.2	Responsiveness
	9.3.3	Circuit breakers and timeouts
	9.3.4	Bulkheads

	9.4	Handling bad data
	9.4.1	Don’t repair data before validation
	9.4.2	Never echo input verbatim


	10 Benefits of cloud thinking
	10.1	The twelve-factor app and cloud-native concepts
	10.2	Storing configuration in the environment
	10.2.1	Don’t put environment configuration in code
	10.2.2	Never store secrets in resource files
	10.2.3	Placing configuration in the environment

	10.3	Separate processes
	10.3.1	Deploying and running are separate things
	10.3.2	Processing instances don’t hold state
	10.3.3	Security benefits

	10.4	Avoid logging to file
	10.4.1	Confidentiality
	10.4.2	Integrity
	10.4.3	Availability
	10.4.4	Logging as a service

	10.5	Admin processes
	10.5.1	The security risk of overlooked admin tasks
	10.5.2	Admin tasks as first-class citizens

	10.6	Service discovery and load balancing
	10.6.1	Centralized load balancing
	10.6.2	Client-side load balancing
	10.6.3	Embracing change

	10.7	The three R’s of enterprise security
	10.7.1	Increase change to reduce risk
	10.7.2	Rotate
	10.7.3	Repave
	10.7.4	Repair


	11 Intermission: An insurance policy for free
	11.1	Over-the-counter insurance policies
	11.2	Separating services
	11.3	A new payment type
	11.4	A crashed car, a late payment, and a court case
	11.5	Understanding what went wrong
	11.6	Seeing the entire picture
	11.7	A note on microservices architecture


	Part 3: Applying the fundamentals
	12 Guidance in legacy code
	12.1	Determining where to apply domain primitives in legacy code
	12.2	Ambiguous parameter lists
	12.2.1	The direct approach
	12.2.2	The discovery approach
	12.2.3	The new API approach

	12.3	Logging unchecked strings
	12.3.1	Identifying logging of unchecked strings
	12.3.2	Identifying implicit data leakage

	12.4	Defensive code constructs
	12.4.1	Code that doesn’t trust itself
	12.4.2	Contracts and domain primitives to the rescue
	12.4.3	Overlenient use of Optional

	12.5	DRY misapplied—not focusing on ideas, but on text
	12.5.1	A false positive that shouldn’t be DRY’d away
	12.5.2	The problem of collecting repeated pieces of code
	12.5.3	The good DRY
	12.5.4	A false negative

	12.6	Insufficient validation in domain types
	12.7	Only testing the good enough
	12.8	Partial domain primitives
	12.8.1	Implicit, contextual currency
	12.8.2	A U.S. dollar is not a Slovenian tolar
	12.8.3	Encompassing a conceptual whole


	13 Guidance on microservices
	13.1	What’s a microservice?
	13.1.1	Independent runtimes
	13.1.2	Independent updates
	13.1.3	Designed for down

	13.2	Each service is a bounded context
	13.2.1	The importance of designing your API
	13.2.2	Splitting monoliths
	13.2.3	Semantics and evolving services

	13.3	Sensitive data across services
	13.3.1	CIA-T in a microservice architecture
	13.3.2	Thinking “sensitive”

	13.4	Logging in microservices
	13.4.1	Integrity of aggregated log data
	13.4.2	Traceability in log data
	13.4.3	Confidentiality through a domain-oriented logger API


	14 A final word: Don’t forget about security!
	14.1	Conduct code security reviews
	14.1.1	What to include in a code security review
	14.1.2	Whom to include in a code security review

	14.2	Keep track of your stack
	14.2.1	Aggregating information
	14.2.2	Prioritizing work

	14.3	Run security penetration tests
	14.3.1	Challenging your design
	14.3.2	Learning from your mistakes
	14.3.3	How often should you run a pen test?
	14.3.4	Using bug bounty programs as continuous pen testing

	14.4	Study the field of security
	14.4.1	Everyone needs a basic understanding about security
	14.4.2	Making security a source of inspiration

	14.5	Develop a security incident mechanism
	14.5.1	Incident handling
	14.5.2	Problem resolution
	14.5.3	Resilience, Wolff’s law, and antifragility



	index

