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Preface

Mission of the text
Assembly Programming and Computer Architecture for Software Engineers is an educational
examination of Assembly programming and computer architecture. We approach these topics from a
practical point of view, addressing why and how questions throughout the text. We begin by laying the
foundation of computer language and computer architecture, and then we delve into Assembly
programming as a mechanism for gaining a better understanding of computer architecture, and how
Assembly can be used for software development.

Most of the existing books on computer architecture have one or more of the following
disadvantages: (1) based on a non-mainstream architecture; (2) written for computer and electrical
engineers as opposed to computer scientists and software engineers; (3) focused on a single platform-
specific development environment; (4) over-priced; and (5) lacking in practical content. We wanted
to give our students something better.

Audience
Assembly Programming and Computer Architecture for Software Engineers is primarily intended
for undergraduate students in computer science and software engineering programs. Prerequisites for
this book include introductory computing courses and a solid programming foundation up to and
including data structures, preferably in C/C++. Working professionals are also likely to find this book
helpful for independent learning and for writing both low-level and high-level code.

Book Development and Pedagogical Approach
The notion to write a book arises every so often in an academic career, with one driver for book
ideas being the courses we teach. Both of us teach a course on computer architecture, which has been
a staple of computer science and software engineering programs for decades. We also teach in
programs where applied and practical skills are foremost.

During our doctoral studies, we made passing comments about writing a book together and at
some point we decided that doing so was a real possibility. Writing a book takes a lot of effort, thus
our collaboration was essential. So after several years teaching computer architecture and discussing
ideas with our wonderful Prospect Press partner, Beth Golub, we arrived at a basic but unique
concept. We would write a book for teachers, students, and professionals seeking educational content
for computer architecture that overcomes the previously stated disadvantages. Our book is based on
mainstream architecture(s), written for computer scientists and software engineers, written for



multiple development environments, well priced, and loaded with practical content.
Many hours, days, and weeks have been poured into this text and, in particular, the programs.

Writing Assembly code can be infuriating, compelling, and fun, as you are about to discover. Writing
about such a complex topic in a clear and efficient manner was also a particular challenge, as was
choosing what aspects to cover and when—a classic issue with computing content.

For many computing students, learning about computer architecture via Assembly programming is
an advantageous approach. While learning about architecture, useful programming skills are fostered.
We knew that a book based on such an approach would help in our courses and was likely to provide
a much-needed resource for similar institutions, educators, and students. We did our best and we hope
you enjoy learning about Assembly programming and computer architecture the way we enjoy
teaching the topics.

Organization and Objectives
CHAPTERS 1 AND 2 discuss computer language and computer architecture fundamentals.
CHAPTERS 3 THROUGH 5 introduce x86 and x86_64 Assembly syntax and a variety of instructions.
CHAPTERS 6 THROUGH 8 cover the more complex topics of functions, structures, and floating-point
operations.
CHAPTERS 9 AND 10 show advanced ways to use Assembly with high-level languages and system
software, as well as introduce other advanced aspects of computer and system architecture.
CHAPTER 11 explores architectures other than x86
CHAPTER 12 introduces basic hardware principles and components.

Chapter Objectives
Chapter 1: Describe computer language translation
Chapter 2: Identify computer and processor components
Chapter 3: Distinguish between Assembly syntaxes
Chapter 4: Perform basic arithmetic
Chapter 5: Control program flow
Chapter 6: Follow function calling conventions
Chapter 7: Use strings and structures
Chapter 8: Execute floating-point operations
Chapter 9: Integrate low-level and high-level code
Chapter 10: Issue system calls
Chapter 11: Compare computer architectures
Chapter 12: Build simple circuits and devices

Supplements
Chapters 1 and 2, Chapter 6, Chapter 8, and Chapter 10 have additional supplements that provide



programs and content for the respective chapters.

Appendices
The INTRODUCTION TO THE APPENDICES and APPENDICES A THROUGH I provide practical
information such as resources, translating between Assembly syntaxes, development environment
setup, disassembling, debugging, linking Assembly and C++, following calling conventions, using
CPUID, performing Decimal and ASCII arithmetic, and using intrinsics.

Resources
•    Book website: http://www.prospectpressvt.com/titles/hall-assembly-programming/
•    Book repository: https://github.com/brianrhall/Assembly
•    Instructor resources: http://prospectpressvt.com/titles/hall-assembly-programming/instructor-

resources/
•    Student resources: http://prospectpressvt.com/titles/hall-assembly-programming/student-

resources/
•    Brian’s website: http://www.brianrhall.net
•    Kevin’s website: http://www.kevinslonka.com
•    For content-specific resources see the APPENDICES (particularly the INTRODUCTION TO THE

APPENDICES) and the WEB RESOURCES links at the beginning of each chapter.

Acknowledgements
We owe a debt of thanks to the people who have been supportive of our efforts in writing this book.
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for giving us the opportunity to publish with Prospect Press and for her wonderful guidance
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CHAPTER 1

Language and Data Fundamentals

Objectives
•    Distinguish between computing languages
•    Identify uses of Assembly programming
•    Convert values between number systems
•    Solve basic arithmetic problems
•    Describe character storage methods
•    Evaluate Boolean expressions
•    Explain the basics of computer operation

Outline
1. Web Resources
2. Welcome
3. Introduction
4. Computing Languages

a. Language Relationships
b. Translation Pipeline
c. File and Utility Relationships
d. Why Assembly?

5. Data Representation
a. Number Systems
b. Integer Storage
c. Unsigned Integer Storage
d. Signed Integer Storage
e. Character Storage

6. Boolean Expressions
7. 3-bit Computer Example
8. Summary
9. Key Terms
10. Code Review



11. Questions
a. Short Answer
b. True/False

12. Assignments

Web Resources

Wikis
•    https://en.wikibooks.org/wiki/X86_Assembly (Assembly Programming Overview)
•    https://en.wikibooks.org/wiki/X86_Disassembly (Assembler and Disassembler Overview)

Developer
•    http://www.unicode.org
•    http://www.unicode.org/charts/PDF/U0000.pdf (ASCII)
•    http://devimages.apple.com/llvm/videos/LLVM_Assembler_Infrastructure.mov (LLVM-MC

Overview)

Videos
•    Video 1.1: Welcome (https://youtu.be/HBwgXY88hyc)
•    Video 1.2: Signing Integers (https://youtu.be/vHijiZMbj9E)
•    Video 1.3: A 3-bit Computer Example (https://youtu.be/gYczcmDywag)

Welcome (Video 1.1: https://youtu.be/HBwgXY88hyc)

Welcome to Assembly Programming and Computer Architecture for Software Engineers! The
purpose of this book is to provide an educational examination of Assembly programming and
computer architecture. Our goal is to approach these topics from a practical point of view. We
address questions of why and how throughout the text. The first two chapters lay the foundation of
computer language and computer architecture. The rest of the book uses Assembly programming to
help you gain a better understanding of computer architecture, and guides you in using Assembly for
software development. What makes this book unique is our multifaceted approach.

•    This book is based on a dominant architecture in the computing market—x86 and x86_64—and
what you learn will be transferable to other architectures.

•    The programming examples are unique in that we provide code for three common assemblers:
GAS, MASM, and NASM. This allows for learning on any OS platform: Mac, Windows, and
Linux. This approach also ensures code examples in both AT&T and Intel syntax.

•    We provide context and examples in both 32 and 64-bit, both of which are useful for a
programmer.

•    The Appendices provide practical information to help you learn and use the technologies
associated with Assembly and architecture.

•    Chapter Supplements provide a deeper dive into topics as necessary.

https://en.wikibooks.org/wiki/X86_Assembly
https://en.wikibooks.org/wiki/X86_Disassembly
http://www.unicode.org
http://www.unicode.org/charts/PDF/U0000.pdf
http://devimages.apple.com/llvm/videos/LLVM_Assembler_Infrastructure.mov
https://youtu.be/HBwgXY88hyc
https://youtu.be/vHijiZMbj9E
https://youtu.be/gYczcmDywag
https://youtu.be/HBwgXY88hyc


•    We provide links to wikis, developer resources, and videos to assist in further exploration of
topics.

•    We use Attention notes, Programming notes, and Learning notes throughout the text to guide the
reader in beneficial ways.

 ATTENTION  PROGRAMMING  LEARNING

ATTENTION: The GNU Assembler (GAS) is primarily a Linux-based assembler used by the
GNU project and has been developed since 1987. GAS is part of the GNU Binutils package and is
used to assemble the Linux kernel amongst other software. The Netwide Assembler (NASM) is a
Linux-based open-source assembler/disassembler for x86 and x86_64 that has been developed
since 1996 by very small team of developers. The Microsoft Macro Assembler (MASM) is a
proprietary assembler for Microsoft’s operating systems, which is packaged with Visual Studio.
MASM has been developed since 1981.

•    For the sake of our students, we have focused on keeping this text educational, useful, and
affordable.

We hope you enjoy this book and find it beneficial in your education and career. Happy learning
and coding!

Brian



Kevin

Figure 1.1 Chapter roadmap

Introduction
The purpose of this chapter is to introduce fundamental concepts of computer programs and computer
architecture. We cover relationships between computing languages and Assembly language’s place in
the language hierarchy. We discuss the basics of data representation, number systems, and Boolean
expressions. Additionally, we illustrate chapter concepts with a 3-bit computer system. This chapter
will prepare you for a deeper dive into a specific architecture, x86/x86_64 in CHAPTER 2, and for
understanding Assembly fundamentals beginning in CHAPTER 3.

Computing Languages



Language Relationships
As programmers, we live in a world of computer languages. Understanding where Assembly fits in
the computer language hierarchy is important. Typically, we write code in a high-level language,
which simply means that the statements are roughly English-like. Throughout this text we use the high-
level language C++ in examples. An example of the English-likeness of a high-level language would
be the if…else control structure.

Example 1.1 if…else control structure

High-level languages and the abstraction they provide are great for humans, but the statements
must be translated from high-level to machine-level for execution by a computer. Modern computer
processors are made up of billions of transistors that switch between allowing (1) or not allowing (0)
the flow of electrical current. A system based on two states is called a binary system. Processors
must be fed instructions in numeric binary form; so how do we get from high-level to Assembly to
machine-level?

Translation Pipeline

At this point, we want to illustrate the process of moving from high to low level. Using a practical
approach, we accomplish this by thinking of the process as a translation pipeline (Figure 1.2).



Figure 1.2 Translation pipeline

ATTENTION: The “virtual machine” concept is a more abstract way of thinking about levels in
machine organization and is used in classical examples. You may encounter the term in other texts
and explanations of multilevel design. Virtual machines can be implemented in hardware or
software.

A program written in a high-level language must be translated in order to run at a lower level.
Translation has two forms: (1) interpreting, which is translating line-by-line as the program executes,
and (2) compiling, which is translating all the code in a single step before execution. An example of a
high-level interpreted language is Python. An example of a high-level compiled language is C++.

A high-level language statement such as int x = y + 2; has a one-to-many relationship
with machine language; that is, each high-level statement corresponds to multiple Assembly and
machine instructions.

Assembly is an intermediate form in the translation pipeline. A high-level program is translated
into Assembly and the Assembly is further translated into machine language based on a processor’s
instruction set architecture. The process of Assembly code being translated into machine language is
often called encoding. The inverse process of machine language being translated into Assembly is
often called decoding.

Assembly language statements have a one-to-one relationship with machine language; that is, each
Assembly language instruction corresponds to a single machine language instruction. Machine



language instructions are typically represented in an intermediate numeric form such as hexadecimal,
which is then translated and implemented physically as binary on the hardware, what we call digital
logic.

PROGRAMMING: Some compilers, such as Microsoft’s C compiler, translate high-level code
directly to machine language, and creating Assembly is an option. Other compilers, such as GCC,
translate to Assembly first, then the Assembly code is translated to machine code.

Figure 1.3 Instruction set architecture

An instruction set architecture (ISA) is the programming-related aspect of computer architecture.
The ISA specifies the instructions, registers, memory architecture, data types, and other attributes
native to a particular processor that are available to a programmer. Think of an ISA as the language a
computer speaks. As shown in Figure 1.3, an ISA facilitates communication between software and
hardware.

We can think of instruction set architectures as complex or reduced. Complex instruction set
computing (CISC) architectures have instructions that are of varying length (in bytes) and are complex
in the sense that a single instruction may perform more than one task (e.g., access a memory location
and perform arithmetic). An alternative ISA design is reduced instruction set computing (RISC) in
which all instructions are the same length and perform only one task (e.g., access a memory location).

x86 and x86_64 are CISC architectures, while the majority of other ISAs are RISC architectures.
CISC attributes of x86 will be shown when instructions are discussed in more detail in CHAPTERS 4
AND 5. Also, when disassembly examples are provided, such as in CHAPTERS 6 and 11, the varying
length and complexity of instructions will be evident. You can also see variable length instructions in
the CHAPTER 1 PAGE 7 PROGRAMMING note on relocatable machine language.



PROGRAMMING: Disassembly is the Assembly code output produced by a disassembler after
decoding an object file containing machine language (i.e., decoding machine language bit
sequences into Assembly instructions). Most assemblers, compilers, debuggers, and development
environments, such as NASM (ndisasm), GDB, LLVM, Xcode, and Visual Studio provide
disassembly options. Independent disassemblers are also available such as Capstone, IDA,
objdump, and otool. To learn how to disassemble object files, see APPENDIX C:
DISASSEMBLY.

Common 32-bit x86 ISA names Common 64-bit x86 ISA names

x86
IA-32
i386

 

x64
x86_64

Intel: IA-32e (past), Intel 64 (current)
AMD: AMD64

ATTENTION: The 32-bit version of the x86 instruction set is commonly known as IA-32 (Intel
Architecture 32-bit). IA-32 is synonymous with i386. The 64-bit version of the x86 instruction set
is commonly known as x64 or x86_64, but other names are used depending on manufacturer. The
64-bit version of x86 should not be confused with the 64-bit Intel Architecture (IA-64) used in the
Itanium line of processors as it is a completely different instruction set architecture. IA-32 and x64
are not compatible with IA-64.

Table 1.1 provides an example of the translation process. The high-level C++ statement sum =
5; assumes that an integer called sum exists. In Table 1.1, the statement is translated into Assembly
using the GNU Assembler (GAS), which uses AT&T syntax. The statement is further encoded into
machine language based on the instruction set architecture for an Intel 32-bit (IA-32) processor. The
machine language instruction is in hexadecimal form, which is digitally (physically) implemented in
binary.



Table 1.1 The translation process

Level Language Code

High-level
language

C++ sum = 5;

Assembly
language

GNU Assembler, AT&T
syntax

movl $0x5, -0x8(%ebp)

Machine
language

IA-32 C745F805000000

Digital logic Binary (physical
implementation)

1100 0111 0100 0101 1111 1000 0000 0101 0000 0000
0000 0000 0000 0000

Next, we reinforce the translation process by presenting three encoded Assembly instructions in
Example 1.2. Here, the specifics are not the focus, but rather the concept. CHAPTERS 4 and 5 discuss
instructions in further detail.

Assume we have the 32-bit Assembly instruction: MOV eax, 5. If abstracted to a higher-level
statement, this is similar to saying something like variable = 5; but more specifically we are
saying to move (copy) the immediate value 5 to the eax register in Intel Assembly syntax. The MOV
instruction is an opcode and eax is a register, both of which are specified as part of the IA-32
instruction set architecture. The operation of moving an immediate value to the eax register has a
specific machine language counterpart, which encoded in hexadecimal is B8. The immediate value
operand becomes part of the instruction.

Example 1.2 Assembly instructions encoded into Intel 32-bit machine language

Machine language is numeric, so it is helpful to understand number systems, specifically hexadecimal
and binary. Machine language is also specific to a processor. Processor families understand a
common machine language, so code written for x86 or x86_64 processors will run on any processor
that is part of that family.

PROGRAMMING: Assembly code is not portable across processor families. For example, code
written for the x86 processor family will not run on processors such as SUN Sparc, IBM 370, and
ARM Cortex.



The x86/x86_64 processor family includes Intel processors such as Pentium, Core-Duo, and Core
i7, and AMD processors such as Athlon, Phenom, and Opteron. Both Intel and AMD implement the
x86 instruction set as part of their processor design, but the processor design techniques used to
implement the instruction set, also known as the microarchitecture, are very different.

Figure 1.4 File and utility relationships

File and Utility Relationships
Considering file and utility relationships in relation to the translation pipeline is also helpful. Figure
1.4 illustrates the language levels in relation to files, and also the role of computer utilities that
translate one language into another.

The role of a compiler is to translate high-level source code into the intermediate form of
Assembly based on the processor’s instruction set. The role of the assembler is to encode Assembly
code into object code, which is relocatable machine language formatted for a specific operating
system (OS) platform. Table 1.2 lists common object file formats by OS platform. The role of the
linker is to combine multiple object files and static libraries into a single executable file. The role of
the loader is to take the executable instructions contained in the executable file produced by the
linker, along with dynamic libraries, and load the machine code into memory for execution by the
central processing unit (CPU).



PROGRAMMING: What do we mean by “relocatable” machine language? When Assembly code
is assembled into object code, the code is in a generic form with the first instruction starting at
address 0x0h and subsequent instruction addresses are offsets based on the preceding instructions’
sizes in bytes. When the program is actually loaded into memory, the first instruction will have a
legitimate address, with the subsequent instruction addresses based on the offsets.

Table 1.2 Common object file formats by OS platform

Windows macOS Linux

COFF, PE, Win32, Win64 Mach-o ELF, a.out (deprecated)

Why Assembly?
An important and reasonable question that we must ask and answer is “Why learn Assembly?” What
is the benefit of knowing low-level details if we can write code in high-level languages? The answer
to these questions is multifaceted.

•    Learning Assembly will enhance your understanding of computer operation. Assembly is a
mechanism by which a programmer can learn details of computer hardware, CPU components,
memory organization, and the interactions among these elements of computer architecture.

•    Programmers make extensive use of a debugger, a utility for troubleshooting code, when
writing programs. Debuggers provide Assembly, disassembly, register, and memory
information so that the programmer can step through programs at a low level. Understanding
Assembly language and computer architecture will help with identifying and fixing code bugs.

•    Knowledge of Assembly and computer operation helps a programmer make informed decisions
about implementation at high and low levels. A programmer can take advantage of the
hardware and optimize for efficiency.

•    Knowledge of Assembly removes layers of abstraction from tasks such as bit manipulation and
function (procedure) calls.

•    Some areas of software development rely on intimate knowledge of Assembly, such as
programming for embedded devices, programming device drivers, and system (OS)
programming.

Learning Assembly will give you a fuller understanding of how computers operate and how code



executes, which you can use to your advantage. Additionally, from the vantage point of an engineer
there is nothing quite as satisfying as talking directly to the processor.

LEARNING: Refer to the BUBBLE SORT EXAMPLE at the end of the chapter to consider
differences in file sizes and memory footprint for comparable programs written in Assembly and
C++.

Data Representation
Number Systems
Most computers operate physically in binary form. For example, a memory cell is either charged or
not charged, a location on disk is magnetized or not magnetized, a transistor in a CPU is either
allowing current flow or not allowing current flow. Therefore, binary (1s and 0s) is used to represent
data at the lowest level. However, binary is typically difficult for humans to interpret quickly, so
other number systems serve as shorthand representations of binary.

LEARNING: Fundamentally, binary is the only number system a computer understands with regard
to execution of machine language. So why is binary the number system of computing?
Answer: The reliability of binary representation and bi-stable environments.
Physical characteristics of binary hardware components:

•    The component has two stable energy states, representing 0 and 1. Examples: full on/full
off, fully charged/fully discharged, positively charged/negatively charged, magnetized/non-
magnetized, reflects light/does not reflect light;

•    The two states are separated by an energy barrier (they cannot become each other or be
confused);

•    Possible to sense the state of the component;
•    Possible to switch between the states.

Imagine the complexity of storing a value in a computer based on the decimal or hexadecimal
system. A component would have to be able to represent 10 or 16 different states. Using two states
makes it much easier to represent physical properties, which in a typical computer are electrical.

Reading and writing low-level code requires programmers to be adept at number systems and
formats. The most common formats are binary, octal, decimal, and hexadecimal. Each number system
has a base, which indicates the number of symbols available for a digit. Table 1.3 shows details of



common number systems. Decimal and hexadecimal are the most common number system formats
used in Assembly code.

Table 1.3 Number systems

Number System Base Digits

Binary 2 0 1

Octal 8 0 1 2 3 4 5 6 7

Decimal 10 0 1 2 3 4 5 6 7 8 9

Hexadecimal 16 0 1 2 3 4 5 6 7 8 9 A B C D E F

Integer Storage
To programmers, the binary number system means 0/1 or false/true. A binary digit is a bit. Bits are
combined into bytes to store data like integer (whole number) values. Table 1.4 presents the bits,
bytes, terms, and ranges associated with unsigned and signed integer storage. Unsigned means only
positive integers are represented, while signed means positive and negative integers are represented.

Table 1.4 Integer storage sizes

Bits Bytes Term Unsigned range Signed range

8 bits 1 byte byte 0 to 28 – 1 -27 to 27 – 1

16 bits 2 bytes word 0 to 216 – 1 -215 to 215 – 1

32 bits 4 bytes doubleword 0 to 232 – 1 -231 to 231 – 1

64 bits 8 bytes quadword 0 to 264 – 1 -263 to 263 – 1

80 bits 10 bytes tenbyte 0 to 280 – 1 -279 to 279 – 1

128 bits 16 bytes double quadword 0 to 2128 – 1 -2127 to 2127 – 1

When multiple bits are combined, the leftmost bit is the most significant bit (MSB) and the rightmost
bit is the least significant bit (LSB). In the 1-byte example below, if the LSB (bit 0) is changed the
value is only altered by 1, but if the MSB (bit 7) is changed the value is altered by 128.



Unsigned Integer Storage
Two useful skills when dealing with number systems is the ability to convert between systems and the
ability to perform basic arithmetic like addition. Table 1.5 shows unsigned integer equivalents in
decimal, binary, and hexadecimal.

Table 1.5 Number system unsigned equivalents

Decimal Hex Binary

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

10 A 1010

11 B 1011

12 C 1100

13 D 1101

14 E 1110

15 F 1111

The following nine examples demonstrate ways to perform a variety of unsigned conversions and
additions:

1. Binary ↔ decimal: using a scale of 2n, where n = bits -1
2. Binary → decimal: using positional notation
3. Decimal → binary: using division
4. Calculating number of bits for a decimal value
5. Binary addition
6. Hexadecimal ↔ binary ↔ decimal
7. Hexadecimal → decimal: using positional notation
8. Decimal → hexadecimal: using division



9. Hexadecimal addition

ATTENTION: Decimal values can be converted to any other base in one of the following ways:
•    Scale of basen (see Examples 1.3 and 1.8)
•    Positional notation: decimal = (D(n-1) × B(n-1)) + (D(n-2) × B(n-2)) + … + (D1 × B1 )+(D0 × B0)

where B = base, D = digit, and n = number of digits (see Examples 1.4 and 1.9)
•    Division (see Examples 1.5 and 1.10)

In Example 1.3, we show how to convert an 8-bit value between binary and decimal using a Base
2 scale. The conversion is 000101112 = 2310. Essentially, you add up the decimal values based on the
scale where a 1 exists in the binary sequence.

Example 1.3 Binary ↔ decimal (scale 2n)

In Example 1.4, we show how to convert from binary to decimal using positional notation. The
conversion is 000101112 = 2310.

Example 1.4 Binary → decimal (positional notation)

In Example 1.5, we show how to convert from decimal to binary using division. The conversion
is 4210 = 1010102. First, divide the decimal number (42) by the base (2), which results in a quotient
of 21 and a remainder of 0. Place the remainder (0) out to the right. The first remainder is the LSB.
Then, keep dividing the quotient by the base until nothing is left, placing the remainder to the right
after every division. The quotient of the final division (which will be a 0 or 1) is the MSB. The
binary sequence is constructed by concatenating the values in reverse order starting with the final
quotient as the MSB and the first remainder as the LSB.



Example 1.5 Decimal → binary (division)

In Example 1.6, we show how to calculate the number of bits needed to store a given decimal
value. For example, the value 4210 needs 6 bits of storage.

Example 1.6 Calculating bits for a decimal value

LEARNING: When calculating the number of bits needed to store a decimal value, you may be
tempted to use bits = ceiling(log2n), which would work for most values (like Example 1.6).
However, ceiling will result in an incorrect value when n is a power of 2, like the value 3210. So,
ceiling(log2 32 ) = 5 bits, which is incorrect. We would need 6 bits to store 3210, which is
1000002.

In Example 1.7, we show binary addition. The rules are simple.

0 + 0 = 0 0 + 1 or 1 + 0 = 1 1 + 1 = 0, carry the 1 1 + 1 + 1 = 1, carry the 1



Example 1.7 Binary addition

In Example 1.8, we show how to convert between hexadecimal, binary, and decimal.
Hexadecimal to binary is based on the rule that each hexadecimal digit is comprised of four bits. The
hexadecimal to decimal conversion can be accomplished using a Base 16 scale of 16n (like Example
1.3). The conversion is 00011010101101112 = 683910 = 1AB716.

Example 1.8 Hex ↔ binary ↔ decimal

In Example 1.9, we show how to convert from hexadecimal to decimal using positional notation.
The conversion is 1AB716 = 683910.

Example 1.9 Hexadecimal decimal (positional notation)

In Example 1.10, we show how to convert from decimal to hexadecimal using division. The
conversion is 803910 = 01F6716. The process is exactly the same as in Example 1.5, except we divide
by 16.



Example 1.10 Decimal → hexadecimal

In Example 1.11, we show hexadecimal addition using the following formula, which applies to any
base.

if xi + yi ≥ base(b), then zi = (zi MODb) and carry 1

The addition is 4B216 + 6A416 = B5616. We have denoted xi, yi, and zi in the left column.

Example 1.11 Hexadecimal addition

Signed Integer Storage

ATTENTION: One of the reasons for signing integers is for the purpose of subtraction. Addition
circuits are straightforward and easy to implement from an electrical engineering perspective.
Three of the basic arithmetic operations are forms of addition: (1) addition, (2) subtraction
(adding a negative value), and (3) multiplication (repetitive addition). Therefore, many CPU
circuits are addition circuits.



Integers can be signed several ways in a system. Some examples are sign (magnitude) notation, one’s
complement, and two’s complement. In all three methods, the MSB indicates positive (0) or negative
(1). Many modern architectures, such as x86 and x86_64, use two’s complement for signing integers.
Example 1.12 shows two cases of signed binary values and their decimal equivalents.

Example 1.12 Signed binary

LEARNING: Refer to Video 1.2: Signing Integers (https://youtu.be/vHijiZMbj9E) for a
comparison of the three signing methods mentioned.

Sign notation and one’s complement are problematic because both systems have a two zero
problem; that is, two forms of zero exist (non-negative and negative), and the methods are more
difficult to implement in hardware. Two’s complement solves the two zero problem and is based on
the additive inverse principle: if you add a number to its additive inverse the sum is zero.

Two’s complement is a two-step process: (step 1) flip the bits, and (step 2) add 1. Examples 1.13
and 1.14 are two examples of using two’s complement to represent positive and negative integer
values in binary.

Example 1.13 Two’s complement of +2310

If we were to perform two’s complement on the binary value for -2310, we would arrive back at
+2310.

https://youtu.be/vHijiZMbj9E


Example 1.14 Two’s complement of -10510

PROGRAMMING: Understanding signed binary is useful, but even more useful is understanding
signed hexadecimal, which is what a programmer will typically see in registers and memory when
debugging programs.

Signed hexadecimal values using two’s complement follows a similar two-step process to that of
signing binary values: (step 1) reverse the digits by subtracting each digit from 15 and (step 2) add 1.
The quick way to tell if a hexadecimal value is positive or negative is according to the following
rule:

If Most Significant Digit (MSD) ≤ 7, then value is positive; if MSD ≥ 8, then value is negative.

Example 1.15 shows the process of calculating the two’s complement of +1AB716.

Example 1.15 Two’s complement of +1AB716

Here are some other processes for converting signed values between number systems:
•    Signed decimal → binary: (1) convert absolute decimal value to binary, and (2) if signed

decimal was negative, then calculate two’s complement.
•    Signed decimal → hexadecimal: (1) convert absolute value to hex, and (2) if signed decimal

was negative, then calculate two’s complement.
•    Signed hexadecimal → decimal: (1) if hexadecimal value is negative calculate two’s



complement, (2) convert to decimal, and (3) if original hexadecimal value was negative, then
append the negative sign.

When subtracting hexadecimal values, it is much easier to reverse the sign of the value being
subtracted by calculating its two’s complement and then add the two values.

Character Storage
Characters such as 'A'and '$' are logical symbols that have to be represented in a numeric way for
low-level uses. The guidelines for mapping between characters and their integer representations are
defined by character sets, also called character maps or code maps. We will briefly review several
of the most common character sets and their relationships to each other.

One of the oldest and most common character sets is the American Standard Code for Information
Interchange (ASCII). ASCII is 7-bit (27), which means it can be used to represent 128 unique
characters. Much of the ASCII map represents the English alphabet. ASCII is the default character
map for high-level languages such as C++. The complete ASCII map can be found on many websites,
such as https://en.wikipedia.org/wiki/ASCII.

Table 1.6 ASCII character ranges

ASCII Range Characters

0 – 31 Non-printable control characters

32 – 126 Printable characters

127 Delete (control character)

A code map such as ASCII is what facilitates the translation from character to integer. For
example, look at the ASCII translation from 'A' and '$'to their binary equivalents in Example 1.16.

Example 1.16 ASCII character translation

ASCII has been extended in several ways to allow for other Latin-based alphabets and symbols. One
of the most common standardized character sets developed by the International Organization for
Standardization (ISO) and the International Electrotechnical Commission was called ISO/IEC 8859.
ISO-8859 extended ASCII by using the eighth bit, which meant 256 (28) characters. Other examples of
extending ASCII to eight bits were IBM Code page 437, Windows-1252, and Mac OS Roman. In all
of these character maps the standard ASCII range is the same, but they have different encodings for
symbols 128-255.

https://en.wikipedia.org/wiki/ASCII


Eventually, around 2008, mapping schemes such as ISO/IEC 10646 and Unicode became more
common character sets. These more complex map schemes support more symbols and are backward
compatible with standard ASCII. The Unicode character set can be encoded any number of ways. One
of the most common encodings is the Unicode Transformation Format (UTF) called UTF-8, which
dominates character encoding for the World Wide Web. UTF-8 encodes 1,112,064 characters using
one to four octets (a group of 8 bits; a byte). Other Unicode character encodings are UTF-16, which
maps characters with one or two 16-bit words, and UTF-32, which maps characters with one 32-bit
value.

ATTENTION: A character set such as Unicode defines a list of characters (symbols) with unique
numbers, sometimes called “code points” (e.g., A = U+0041). A character encoding, such as UTF-
8, is an algorithmic translation for characters to a binary sequence (e.g., U+0041 = 01000001).

The Unicode character set maps a unique logical symbol to a code point comprised of the letter U
plus a hexadecimal value as seen in Example 1.17. The UTF encoding then transforms the Unicode
character into a binary sequence. The encodings can be expressed using any number system. Notice in
Example 1.17 that when using UTF-8, the copyright symbol requires two bytes, which is different
than the number sequences in UTF-16 and UTF-32. The example illustrates just how different
character encodings (UTFs) can be even when based on the same character set (Unicode).

Example 1.17 Unicode and UTF character translation

Standard 7-bit ASCII can be thought of as a subset of ISO-8859 and UTF encodings. For example,
ASCII encodings are valid UTF-8 when prefixed with a zero in the seventh bit (assuming 0-bit
numbering). The first 128 characters of UTF-8 correspond one-to-one with ASCII.

Strings are typically presented as a sequence of characters, which can be based on ASCII or
Unicode. For example, the ASCII string “ABC123” is the hexadecimal ASCII sequence 41h, 42h,
43h, 31h, 32h, 33h, 0h. The 0h at the end is the NULL character indicating the end of the string. Keep
in mind that when programming and debugging, characters and character sequences will typically be
shown as their hexadecimal equivalents. We will discuss strings further in CHAPTERS 3 and 7.

Boolean Expressions
Boolean logic is a foundational topic in computing and programming. Understanding Boolean
fundamentals is important for content in later chapters. Boolean expressions allow a programmer to
write specific tests for decision structures and provide ways to perform bitwise operations. Boolean



expressions define operations on the values 0/1 or false/true. We cover the four Boolean expressions
NOT, AND, OR, and XOR. Different symbols can be used to denote Boolean expressions (Table 1.7),
but for our purposes, we will simply use the terms.

Table 1.7 Boolean symbols

Expression AND OR NOT XOR

Math ∧   ∙   & ∨   +   | ¬  '   ~   ! ⊕

C++ & (bitwise), && (logical) | (bitwise), || (logical) ~ (bitwise), ! (logical) ∧ (bitwise)

Assembly AND OR NOT XOR

Boolean expressions operate as follows.
•    NOT: reverses (negates) a value
•    AND: only true if both (all) values are true, else false
•    OR: only false if both (all) values are false, else true
•    XOR: true if one or the other are true, false if both are true or false

Table 1.8 NOT Boolean expression

x NOT x

F T

T F

Table 1.9 AND Boolean expression

x y x AND y

F F F

F T F

T F F

T T T



Table 1.10 OR Boolean expression

x y x OR y

F F F

F T T

T F T

T T T

Table 1.11 XOR Boolean expression

x y x XOR y

F F F

F T T

T F T

T T F

In binary, 0 is false and 1 is true. Example 1.18 provides some examples of Boolean operations
on binary values.

Example 1.18 Boolean binary expressions
Given

Result

Each of the Boolean expressions are useful in terms of Assembly programming, as we will see in
later chapters. Some examples we cover include using NOT to compute one’s complement; AND to
align stack and to change letters from uppercase to lowercase; OR to determine if a number is greater
than, less than, or equal to zero; and XOR to clear values and determine parity.

Also, AND can be used to turn bits off (0) and OR can be used to turn bits on (1) by using a mask.
A mask is a value used to manipulate a bit field in a desired way. Example 1.19 shows three ways to
use a mask. The first shows how to turn all bits on in a value by using OR. The second example
shows how to turn all bits off using AND. The third is a more practical use of a mask in which we
want to query if bit 2 is set (assuming 0-bit numbering); we AND all the bits with 0 except for the



bit(s) we want to test.

Example 1.19 Masking

3-bit Computer Example

LEARNING: Refer to Video 1.3: A 3-bit Computer Example (https://youtu.be/gYczcmDywag) for
a demonstration of this section’s content.

Programmers mostly work in a world of 32-bit and 64-bit systems, but visualizing a system with less
bits can be helpful in understanding computing. Therefore, we provide an example of a 3-bit
computer system.

Table 1.12 3-bit computer

Some general rules apply no matter how many bits are in a two’s complement system.
•    0 is always all zeros
•    -1 is always all ones
•    The smallest negative number is always 1 with trailing zeros
•    The largest positive number is always 0 with trailing ones

We can examine how computation works in our 3-bit computer with the two’s complement
representation of integers. The following examples illustrate different scenarios.

https://youtu.be/gYczcmDywag


Example 1.20 3-bit computation examples

In #1, we add two positive numbers and achieve the expected result. In #2, we perform a subtraction
by adding a negative. The arithmetic in #2 results in a carry that is dropped because it exceeds the
capacity of a 3-bit integer in our 3-bit computer, leaving the expected result. In #3, we subtract again
to achieve a negative result within the bounds of the system. In #4, we add two numbers that exist in
our 3-bit system but result in a value beyond the bounds of the system. We can detect the overflow
scenario by noticing that two positive values result in a negative value (see the leading bits). An
overflow scenario causes the overflow bit to be set in the CPU’s status register (which will be
introduced in CHAPTER 2). In #5, we subtract two negatives that exist in the system but again result in
overflow as indicated by two negative values with a positive result. We discuss how overflow
conditions are handled beginning in CHAPTER 4.

PROGRAMMING: How does a CPU know an integer is signed or unsigned? Answer: The CPU
does not know! The CPU uses Boolean logic to set status flags after arithmetic operations
regardless of the scenario. The programmer must decide what flags to interpret or ignore based on
the operation. Status flags and related topics are covered further in future chapters, particularly in
CHAPTERS 2 and 4.

Summary
In this chapter we presented the basics of computing via an exploration of computing languages, data
representation, Boolean expressions, and a 3-bit computer example. Computing languages form a
hierarchy, which we illustrated as a translation pipeline. Assembly language is an intermediate
language that allows us to better understand and explore low-level details in computer operations. We
also presented methods of data representation for integers and characters using number systems and
character sets, respectively. We discussed Boolean expressions, which are a building block for more
complex tasks. Lastly, we showed how binary two’s complement computation works within a 3-bit
computer system. These foundational concepts will prepare you for more advanced topics presented
throughout this book.

Key Terms
American Standard Code for Information Interchange (ASCII)



assembler
bit
byte
character encoding
character set
compiler
compiling
complex instruction set computing (CISC)
computer architecture
debugger
disassembly
high-level language
instruction set architecture (ISA)
interpreting
linker
loader
machine-level
mask
microarchitecture
object code
one’s complement
reduced instruction set computing (RISC)
signed
translation pipeline
two’s complement
Unicode
unsigned

Code Review
The reason for this Bubble Sort Example and comparison is twofold: (1) to show that Assembly is
not as daunting a language as might be initially thought, and (2) to show that well-written Assembly
can provide some size and performance gains (keep in mind this is a very simple example).

Bubble sort example – comparison

Notice the size difference between the Assembly .s file and the .s file produced by the C++ compiler.



The executable code in the C++ compiler’s .s file is about 3kb of the 21kb total, which translates to
the sizes seen in the .o file comparison. However, the resulting executable files are comparable, with
the Assembly version’s memory footprint being slightly smaller.

Bubble sort example – code

Questions
Short Answer

1. x86 and IBM 370 are examples of processor __________.
2. Assembly language statements have a one-to- __________ relationship with machine language

statements.
3. A high-level language statement has a one-to- __________ relationship with machine language

statements.
4. Translating between language layers has two forms: __________ and __________.
5. x86 and x86_64 are examples of __________ instruction set architecture.
6. A “word” is __________ bits, in terms of x86 architecture.
7. __________ is the fundamental number system of computing due to its reliability.
8. __________ is the formula for calculating the number of bits needed to store a given decimal

value.



9. __________ to __________ is the numeric range for an unsigned byte.
10. When converting from hexadecimal to binary, each hexadecimal digit is represented by

__________ bits.
11. On x86 processors, a most significant bit of 1 indicates that the number is __________.
12. In a two’s complement system, a hexadecimal value with a leading 7 would indicate the value is

__________.
13. __________ to __________ is the numeric range for a signed byte.
14. Character storage is achieved via the use of __________.
15. __________ is the Boolean expression that results in a false if both inputs are true.
16. An __________ condition is when a computed result goes beyond what can be stored given the

computer’s architecture.

True/False
1. Assembly is portable across processor families. (T/F)
2. Two’s complement has the problem of two zeros. (T/F)
3. The x86_64 architecture is not synonymous with IA-64. (T/F)
4. An assembler encodes high-level statements into object code. (T/F)
5. A CPU inherently understands whether an integer is positive or negative. (T/F)

Assignments
1.1  Explain one practical reason for learning Assembly programming.

1.2  Two’s complement is based on what mathematical principle and what does the principle mean?

1.3  Complete the CHAPTER 1 ACTIVITY SUPPLEMENT.

1.4  Challenge Assignment: Disassemble an object file from a high-level language. You may use an
object file from an existing C++ project. Use your chosen platform and disassembler. Review
APPENDIX C: DISASSEMBLY for help. Examine the output. What are the shortest and longest
instructions in bytes?



CHAPTER 2

Processor and System Architecture

Objectives
•    Recognize components of computer architecture
•    Distinguish between memory types and location
•    Identify CPU sub-components
•    Describe CPU register use in Assembly programming
•    Evaluate various Input and Output methods.

Outline
1. Web Resources
2. Introduction
3. Architecture Overview
4. Processors

a. Cache and Registers
b. 64-bit Processors
c. Instruction Execution
d. Pipelining

5. Input and Output
6. Summary
7. Key Terms
8. Questions

a. Short Answer
b. True/False

9. Assignments

Web Resources

Wiki
•    https://en.wikipedia.org/wiki/X86

https://en.wikipedia.org/wiki/X86


•    https://en.wikipedia.org/wiki/X86-64

Developer
•    http://www.intel.com/content/www/us/en/processors/architectures-software-developer-

manuals.html
•    http://developer.amd.com/resources/documentation-articles/developer-guides-manuals/

Introduction
This chapter provides a general overview of the x86 and x86_64 architectures. To become an
efficient Assembly programmer, you must have a solid understanding of the hardware on which your
programs run. Even more crucial is your understanding of the processor and how it handles data at
each step of the execution cycle. As was introduced in CHAPTER 1 and as you will learn in future
chapters, Assembly instructions map directly to specific operations implemented in a processor, thus
writing Assembly programs requires an understanding of architecture. Although the bulk of CHAPTER
2 is dedicated to the processor, we also cover other major components to ensure that you understand
the flow of data from input to processing to output.

By the end of this chapter you will have a firm grasp on the underlying hardware that executes the
Assembly programs you will be learning and writing throughout future chapters.

ATTENTION: Although many different processor architectures exist (x86, x86_64, IA-64, ARM,
Alpha, Sparc, PowerPC, etc.), this book focuses on the x86 and x86_64 architectures as they are
common platforms for the computing market and Assembly programmers.

Architecture Overview
By looking at a computing system from a high level, we can see the major components that comprise a
typical computer. Though the central processing unit (CPU) is the brain of the computer, it could not
function without other components such as the motherboard, memory, and various Input/Output (I/O)
devices. Figure 2.1 depicts the general layout of common components.

https://en.wikipedia.org/wiki/X86-64
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://developer.amd.com/resources/documentation-articles/developer-guides-manuals/


Figure 2.1 Motherboard components

The motherboard is the ground that connects the primary components that comprise a computer;
the motherboard is the highway system for data travelling from component to component. The
motherboard is comprised of a series of connections for computing components: slots for main
memory, a socket for the CPU, connections for hard drives and optical drives, slots for expansion
cards, as well as external connections for the keyboard, mouse, and other various I/O devices. In
order for any components to communicate, they must send their data across the communication
channels (buses) of the motherboard.

Figure 2.2 Underside of a motherboard

A bus is a group of wires, or conductive channels on a motherboard, that is used to transfer data
from one component to another. We can see buses by examining the underside of a motherboard, as



shown in Figure 2.2, where the conductive channels appear as a lighter color due to the presence of
copper between the layers of fiberglass.
The main bus in a computer, shown in Figure 2.3, is the system bus, which is actually a collection of
three separate buses: the data bus, the address bus, and the control bus. The system bus is how the
CPU communicates with memory and other I/O devices in a computer. Such components connect to
each of the three buses so proper communication can occur. The data bus is the bus that transfers
instructions (such as load from memory, store in memory, read from the optical drive, etc.) and data
between components. In order for information to be transferred, the correct memory address of the
instructions and/or data must also be sent. Communication of addresses is the purpose of the address
bus. The control bus has an equally important role in the communication of system components; it
transfers signals between components to ensure that they are synchronized for appropriately timed
communication (e.g., one component does not try to read from a device that is busy).

Figure 2.3 System bus

In addition to the system bus, component communication requires another puzzle piece. Without a
component acting as an operational metronome (a metronome is a device that helps musicians keep a
consistent rhythm while performing by “ticking” the beat), components could send data across the
buses at random intervals whether or not the component on the other end is ready or able to
communicate. The system clock, a motherboard component, solves the communication problem by
pulsing at a constant rate, essentially keeping time for computer components.



Figure 2.4 Clock cycle

The base unit for the system clock is a clock cycle, which consists of an up-tick (the first half of the
cycle, where the voltage goes from low to high, or in binary 0 to 1) and a down-tick (the second half
of the cycle, where the voltage goes from high to low, or in binary 1 to 0). Figure 2.4 shows a clock
cycle.

Data transfer operations raise the issue of data and instruction storage. In order to store data and
instructions, a computer must have memory. When discussing memory, we must be clear about which
type of memory is under consideration. We can think of the different kinds of memory in a computer as
a hierarchy, as depicted in Figure 2.5.

Figure 2.5 Memory hierarchy

At the top of the hierarchy is the memory physically closest to the arithmetic circuits of the CPU
(usually residing on the CPU itself), while the bottom of the hierarchy is the memory physically
farthest from the CPU. As memory is located farther from the CPU, the size grows, the cost shrinks,
and the speed drastically slows. Consequently, memory types closer to the CPU are smaller in size
and more expensive, but much faster. The relationship of speed, size, and cost is due to the type of
memory in use at each location.



PROGRAMMING: Due to memory speed decreasing with distance from the CPU, we encourage
programmers to be conscious of memory use in Assembly programs. If a program can be written
so that the amount of data used is small enough to not exceed the size of cache, then the program
will execute faster than if data must overflow into RAM. Likewise, writing to disk should be
avoided unless absolutely necessary, due to the amount of time needed to read and write to disk.

Closest to the CPU (on the chip itself) is static random access memory (SRAM). As we will
discuss in the next section, SRAM is commonly referred to as cache. SRAM is the fastest of the
memory types. Next is dynamic RAM (DRAM). DRAM is the memory found on “sticks” that plug into
the motherboard near the CPU. When someone speaks about a computer’s main memory, typically
they are referring to the DRAM (or RAM for short). The slowest form of memory, which falls into the
category of storage more so than memory, is a magnetic or solid-state disk. Disk memory, commonly
referred to as a hard drive and discussed in a later section, is used for long-term storage as opposed
to temporary storage like cache and RAM. Just like transferring data to/from the CPU, data accesses
to any type of memory must abide by the ticking of the system clock.

The process of accessing main memory (DRAM) is typically four steps. Each step takes at least
one clock cycle (sometimes more), so the total time in clock cycles will be four clock cycles at a
minimum.

1. Place the address of the data to be read onto the address bus.
2. Change the value of the processor’s Read (RD) pin, which is an assertion. Instruction execution

will halt if the RD pin value is not properly changed.
3. Wait for the memory controller to respond (minimum one clock cycle).
4. Copy the data from the data bus to the destination location.

When interacting with memory, a programmer must be aware of the storage method. Computers
typically store data in memory in architecture-specific chunks (32 and 64 bits for x86 and x86_64,
respectively), with values being composed of bytes. If we were to store the 32-bit hexadecimal value
12345678h into a computer’s memory, the 32-bit value is split into byte-sized chunks, as shown in
Table 2.1. Remember, each hexadecimal digit is four bits, so two hexadecimal digits are one byte.

Table 2.1 32-bit value split into bytes

Value

Byte 1 Byte 2 Byte 3 Byte 4

12 34 56 78

To store the value, we have to find the next available memory location. For the sake of clarity, let
us assume that the next available memory location is 0x00000000h. Most likely you would place



the data into memory as demonstrated in Table 2.2, with the values read from top to bottom in order
(i.e., lowest memory address to highest memory address).

Table 2.2 Big-Endian byte order

Memory Address Data

0x00000000 12

0x00000008 34

0x00000010 56

0x00000018 78

As the memory addresses increase by 8-bits (1 byte), the data is stored in left-to-right order in the
way most people are used to writing values. However, instead of thinking of the data being in left-to-
right order we should think of the data in terms of byte order. In Table 2.2, the most significant byte of
data is stored first, at the lowest memory address, which is known as Big-Endian byte order: the “big
end” is stored first. Some computing systems do the reverse and store the least significant byte, or
“little end”, first. Little-Endian byte order for the value 12345678h is demonstrated in Table 2.3.

Table 2.3 Little-Endian byte order

Memory Address Data

0x00000000 78

0x00000008 56

0x00000010 34

0x00000018 12

PROGRAMMING: When accessing data stored in memory using typical methods (i.e., basic
variables), you do not need to be concerned with whether your computer architecture uses Big-
Endian or Little-Endian byte ordering. However, when you access or view memory locations by
using memory addresses, you need to be aware of your architecture’s byte ordering so that you
access the correct data in the correct location.

Architectures such as Intel’s x86 and x86_64 use Little-Endian ordering. Motorola’s 68XX[X]
series processors, along with IBM’s Z series, use Big-Endian ordering. Some processors can use
either, coined bi-endian, such as the Sun SPARC, ARM, and PowerPC.



Processors
Think of the CPU, or processor, as the brain of the computer. The CPU is the system component that
handles the main arithmetic and logical operations. At a high level, as shown in Figure 2.6, the CPU
has four major components: the arithmetic logic unit (ALU), the control unit (CU), the CPU clock, and
memory (cache and registers).

The ALU is the mathematical sub-component of the CPU. The ALU performs arithmetic and
logical operations on integer operands. (Integer operands is a key distinction, since a different
component is responsible for operations on floating-point operands.) The CU is responsible for
directing the flow of data within the CPU, ensuring that all other CPU sub-components receive the
correct data at the correct time and act accordingly. CPU instructions, which rely on many sub-tasks
in order to properly execute, follow the Instruction Execution Cycle as orchestrated by the CU. The
CPU clock, different from the system clock, is a clock on the CPU itself that keeps time for CPU
operations.

Another word for the speed of the CPU clock is frequency, which is measured in Hertz. Keeping
the math simple, if a processor has a frequency of 1 Hertz (Hz), this means that the clock ticks one
time per second. The ticking, as previously shown in Figure 2.4, is a full oscillation (an up-tick and
down-tick). Modern processors are measured in megahertz (MHz) or gigahertz (GHz), which indicate
1 million ticks per second and 1 billion ticks per second, respectively. To express speed in terms of
the clock cycle rate rather than the processor frequency, we take the reciprocal of the frequency. So, if
the frequency is 1 GHz (1 billion ticks per second), each clock cycle would be 1 billionth of a second
in duration. An important note is that the speed at which the CPU clock ticks is a multiple of the
system clock speed, which is determined by the multiplier. For example, if a system clock is running
at 800MHz and the multiplier is 4, then the frequency of the CPU will be 3.2GHz. The CPU clock is
running four times faster than the system clock and can perform four times the number of operations in
the same amount of time.

Figure 2.6 CPU components



Cache and Registers
As a processor is performing operations on data, a place must exist for the processor to store
operands, results, and addresses. We previously explained that in the memory hierarchy, the farther
away from the ALU the memory exists, the slower data access becomes. In order for the CPU to
execute operations as quickly as possible, it has to be able to access and store instructions and data
as quickly as possible. Thus, the location of instructions and data needs to be as close to the ALU and
CU as possible. Close proximity memory, which is actually on the CPU die along with the logic
circuits, is known as cache. While cache can be viewed in terms of the aforementioned memory
hierarchy, cache also has a hierarchy of its own.

In modern processors, cache typically is divided into three tiers: level 1 (L1), level 2 (L2), and
level 3 (L3). The cache hierarchy follows the same principles as the memory hierarchy: The farther
from the ALU, the slower, larger, and cheaper it becomes. Both L1 and L2 cache are very close to the
ALU, with L2 being slightly farther away and larger in capacity. L3 cache has become typical on
multi-core processors. L1 and L2 cache are present for each core, while the L3 cache is shared
amongst all cores, as shown in Figure 2.7. L3 cache provides the last layer of static memory before
data must be sent to RAM for storage.

One example of the cache hierarchy is the Intel Core i7 processor. The Core i7 has an L1 cache of
64kb per core (32kb for instructions and 32kb for data). The L2 cache is 256kb per core. The L3
cache ranges from 4mb to 24mb shared amongst the cores, depending on how much you want to pay.

Figure 2.7 CPU cache

Usually, programmers do not access or manipulate cache with code in a non-automatic way,
though some cache instructions do exist. Cache accesses are abstracted from programmers because
the caches are managed by complex algorithms that ensure the data we need is available as quickly as
possible. For example, if our code references a certain variable multiple times, the processor will
likely assume that piece of data is important. The data is likely to be prefetched and kept in cache for
quick retrieval by future operations. Such behavior happens dynamically throughout the execution of a
program.

However, memory locations do exist on the processor that we can easily access in code. The



locations are known as registers, and they are the fastest memory locations on a processor. Registers
are the top of the memory hierarchy, even smaller and faster than cache. Registers are small storage
areas closest to the ALU that are used for holding operands, addresses, and results during the
execution of instructions.

ATTENTION: Just as each processor core has separate caches, each core has its own set of
registers. When writing Assembly code, we do not have to specify the core to which a register
belongs. We simply reference the register name, as presented in Table 2.4, and the processor
handles the execution.

Table 2.4 x86 and x86_64 registers

The registers presented in Table 2.4 can be grouped into four distinct categories: general purpose,
segment, flags, and instruction pointer. Most register use in Assembly programs revolves around the
general purpose registers, of which there are eight in 32-bit and sixteen in 64-bit. General purpose
registers are used for tasks such as calculations and data movement. Because 64-bit processors were
built upon the preceding 32-bit design, and 32-bit processors were built upon the preceding 16-bit
design, not only can you use the 64-bit registers, but you can also use the 32-bit and 16-bit registers.
Additionally, if you only need to use eight bits for data or a calculation, you can address a 16-bit
register as two 8-bit registers. Figure 2.8 takes the 64-bit rax register and shows the addressing
available from 8-bit up to 64-bit.

One issue register overlapping raises is how it affects stored data. For example, if you store a 32-
bit value into eax and then store a 16-bit value in ax, is the original 32-bit value maintained or
overwritten? Figure 2.9 provides the answer; each bit-variant of a register is comprised of the same
bits. The rax register only occupies 64 bits of space in total, not 128 bits as if you added the sizes of
rax, eax, ax, ah, and al (64+32+16+8+8). So, when a value is stored in ax, the existing value in eax
is irrecoverably overwritten because ax occupies the lower bits of eax. The same is true for any
register that shares space with smaller-sized registers.



Figure 2.8 Register addressing

Figure 2.9 Writing AX destroys EAX

In Figure 2.9 you see that when a value was copied to ax, the lower 16 bits of eax were
overwritten, destroying the original value in eax. Again, the two registers share memory space. Not
all registers share space with sub-registers, and even the ones that do may share a different amount of
space. The four general purpose 64-bit registers rax-rdx have a sharing relationship with their 32-bit,
16-bit, and 8-bit counterparts as shown in Table 2.5. Table 2.6 lists the remaining general purpose
registers, rsi, rdi, rbp, and rsp, which only have a sharing relationship with their 32-bit and 16-bit
counterparts.

Table 2.5 Register overlapping for RAX, RBX, RCX, and RDX



Table 2.6 Register overlapping for RSI, RDI, RBP, and RSP

Although you are able to use all of the aforementioned registers in your programs, some of the
registers have special purposes of note. You can store data in a register such as rax/eax only to have
it overwritten (perhaps unknowingly) after the next operation. Here we list some of the special uses
of 64-bit and 32-bit registers so you can avoid errors when programming.

•    rax/eax is commonly used as the default accumulator register. Operations such as
multiplication will automatically place part of the result in rax/eax. Function calls use rax/eax
for the return value. Do not use rax/eax for data storage when performing such operations.

•    rcx/ecx is used to hold the loop counter value for executing loops. So, avoid using rcx/ecx to
hold data inside of loops.

•    rbp/ebp is used as the frame pointer for stack frames, which will be discussed in CHAPTER 6.
The register is used to reference data on the stack. We recommend only using rbp/ebp for its
intended purpose.

•    rsp/esp, the stack pointer register, is also used for stack management and typically points to the
top of the active stack frame. Again, it is best to use rsp/esp for its intended purpose.

•    rsi/esi and rdi/edi are index registers used with string operations such as STOSB, MOVSB,
and SCASB to store, load, and scan large amounts of data. Such operations essentially put the
CPU into an automatic loop mode that is more efficient than having the programmer write a
loop.

•    rip/eip is the extended instruction pointer register. The register is used to point to the memory
address containing the next instruction to be fetched, decoded, and executed in a program and is
adjusted automatically. Do not modify this register programmatically.

•    rflags/eflags, discussed in more detail next, is the status and control register. Special
instructions such as LAHF and SAHF can be used to load and store the CPU flags from and to
the ah register. Do not modify rflags/eflags directly. Bits in the rflags/eflags register are set
automatically according to a set of Boolean rules after each arithmetic operation. Although
rflags is 64-bits, only the lower 32-bits are utilized. Status flags are the same for both x86 and
x86_64 processors.

CPU flags are individual bits that either control CPU operations in some way or reflect the status of
CPU operations. The eight flags listed in Table 2.7 are usually viewable in most development
environments. Some flags can be edited by the programmer using the LAHF and SAHF instructions,
which are listed in Table 2.8. Set means the bit is 1 and clear means the bit is 0.



Table 2.7 Viewable flags

Flag Symbol Bit Description

Carry CF 0 Set as a result of unsigned carry or borrow out of the most significant bit. For example, the result of an
operation is too large for the destination (e.g., 255 + 5 using 8-bit registers would yield a carry into a 9th bit).

Parity PF 2 Set if the number of set bits in the result is even. Used in error correction operations.

Auxiliary
carry or
adjust

AF 4
Used primarily for binary-coded decimal (BCD) arithmetic. The flag indicates when a carry or borrow occurs
out of the low nibble (4 least significant bits).

Zero ZF 6 Set if the result of the operation is zero.

Sign SF 7 Set if the result of an operation is negative (i.e., the most significant bit is set in Two’s complement notation).

Interrupt IF 9 Enables the processor to handle maskable hardware interrupts, also known as interrupt requests (IRQ).

Direction DF 10
When clear, strings are processed left-to-right by the incrementing of the string index registers rsi/esi and
rdi/edi after each string operation (e.g., MOVS). When set, strings are processed right-to-left and the
registers are decremented after each string operation.

Overflow OF 11

Set if a Two’s complement result will not fit into the number of bits used for the operation. Unlike the Carry
flag, the Overflow flag is for signed integers and would be set when the result’s sign is different from the
operands’ signs (e.g., 127+127 using 8-bits results in a Two’s complement result that is negative because the
high-order bit is 1).

PROGRAMMING: In Table 2.8, bits 1, 3, and 5 are marked as ‘U’, which means the bits are
unused/reserved. The bits will always be 0 and should not be set to 1 when using SAHF to save
the flags back into the flags register.

Table 2.8 Editable flags in bit order for LAHF/SAHF

7 6 5 4 3 2 1 0

SF ZF U AF U PF U CF

64-bit Processors
Although some specifics of 64-bit processors have already been discussed, a few more important
details need to be covered. The x86_64 instruction set is an extension of the x86 (32-bit) instruction
set. So, 32-bit operations are possible on x86_64 processors. While the 64-bit nature of an x86_64
processor means that data and addresses can be stored with 64 bits, current x86_64 processors only
utilize the lower 48 bits for addresses. The result is that x86_64 processors address 248 bytes of
memory instead of the theoretical 264 bytes. The 48-bit physical address space allows the processor



to address up to 256TB of RAM, a huge improvement over the 4GB maximum of a 32-bit processor.
In addition to being able to address more RAM, x86_64 processors also have eight more general
purpose registers, r8 through r15.

Instruction Execution
In order for an instruction to be executed (e.g., ADD), a sequence of steps known as the instruction
execution cycle is followed. Although the ADD instruction is only one instruction and might seem like
a one-step process to a programmer, many smaller sub-tasks, or stages, comprise instruction
execution. The number of stages can vary from as few as three stages at an abstract level (Figure
2.10) to upwards of 20 or more stages in modern high-end processors.

Figure 2.10 3-Stage instruction execution cycle

So, when a programmer writes the ADD instruction to compute the sum of two values, 20 steps may
occur behind the scenes to proceed through the execution cycle in order to produce the sum.

A common high-level view of the cycle is seen as three steps: Fetch, Decode, and Execute.
During the Fetch stage the CPU retrieves the next instruction to be executed (i.e., where rip/eip is
pointing in memory). In the Decode stage, the CPU determines what the instruction is and on what
data it operates. During the Decode stage, the CPU looks at the bits of the instruction (0s and 1s) and
is able to determine the type of operation (e.g., ADD, SUB, MOV) and whether or not the operation
includes operands. If the operation includes operands, the CPU may need to fetch those as well. Once
all necessary data is fetched and decoded, the CPU can Execute the instruction. Should the operation
produce a result, as with the ADD and SUB instructions, the CPU will store the result in the
appropriate place (e.g., register, memory).

Pipelining
In modern processors, each part of the 3-stage cycle can contain sub-steps. Processor architects have
found over the years that overlapping the stages of the cycle results in better performance because the
processor can work on fetching a second instruction when moving onto decoding the first instruction
and so on. The overlapping design is known as pipelining as depicted in Figure 2.11.

A common analogy for better understanding pipelining is washing clothes. The typical process of
washing clothes is to gather the clothes, wash them in a washing machine, dry them in a dryer, and
then put them away. Is it more efficient to wait until you have completed all four stages for a single
load of laundry before starting the next load? Or is it more efficient to gather the second load while
the first load is washing, wash the second load while the first load is drying, and so on? Clearly, the



second method is the best use of your time. The laundry example illustrates the concept of pipelining.
A CPU with separate Fetch, Decode, and Execute units may not be able to perform three fetches at the
same time, but it can perform a Fetch, a Decode, and an Execute simultaneously. Doing so is a better
use of a processor’s time and results in better performance.

ATTENTION: Modern processors actually contain multiple Fetch, Decode, and Execute units to
maximize throughput of instruction execution.

Figure 2.11 Pipelined instruction execution cycle

As previously mentioned, a pipeline could have upwards of 20 stages, which is known as a
superpipeline. A CPU could be working on 20 different steps simultaneously, with instructions in
different stages. The more pipeline stages the CPU uses, the more work can be performed by the CPU
in a specific time frame. With a 20-stage Instruction Execution Cycle in a non-pipelined processor, a
minimum of 200 clock cycles would be needed to complete 10 operations because each instruction
would have to wait for all 20 stages of the previous instruction to finish. With a 20-stage pipelined
processor, such as in Figure 2.12, the number of required clock cycles is reduced to 29, a 690%
improvement. The improvement percentage grows as the number of operations performed increases.



Figure 2.12 20-stage superpipeline

Input and Output
Up to this point we have discussed the processor in some detail and how it communicates with other
major components located on the motherboard. But how does the processor communicate with
external devices? External devices such as keyboards, monitors, and network adapters connect to the
computer via an input/output (I/O) module. I/O modules connect to the system bus so that external
devices can communicate with components in the computer, such as the CPU. In addition to providing
a means of buffered communication between the processor and the I/O device, an I/O module also
handles some critical actions, such as data transfer, command decoding, and device status
interrogation.

Just as the processor needs a control unit to act as a traffic control agent that ensures instructions
execute exactly when they should without interfering with other operations, an I/O module must
coordinate communication between the computer’s internal components and the external device
connected to the module. As previously explained, the farther away that components are located from
the CPU, the slower they become. External devices are the farthest away; they are the slowest devices
in a computing ecosystem. Due to speed differences, an I/O module needs to act as a data buffer to
ensure that neither the processor is slowed down nor the external device is overrun with too much
data. Different external devices operate at different speeds (e.g., compare saving data to a CDRW
versus a USB thumb drive). So each I/O module needs to be aware of the attached device’s data rate
and adjust accordingly.

LEARNING: Many error detection and correction algorithms exist. Search the Web for different
methods such as checksums, Cyclic Redundancy Checks (CRC), Hamming Code, and parity bits to
learn more.



Another critical action I/O modules perform is error detection. Ensuring that the data sent to an
external device is the same data received by the external device is crucial. Various methods of error
detection may be used, but the goal is always the same: to ensure integrity of the data.

When discussing methods by which processors execute I/O operations, generally four methods
exist: programmed I/O (PIO), interrupt-driven I/O, direct memory access (DMA), and I/O channels.
Programmed I/O (PIO), depicted in Figure 2.13, is the simplest of the four techniques to implement,
but it creates the most overhead, thus making it the most inefficient of the choices. When a processor
executes an I/O operation in PIO mode, the CPU sends a command to the specified I/O module and
waits. The I/O module is responsible for executing the command and setting the appropriate bits in
the I/O status register to signify the completion of the command. The processor must periodically
check the I/O status register to see if the I/O module has completed the operation. Overhead is caused
by the periodic checking, especially in the case of very long I/O operations where the processor must
check multiple times.

The processor could be much more efficient if, after sending a command to an I/O module, it
could continue with other operations instead of waiting for the I/O command to finish. Such is the
concept of interrupt-driven I/O, depicted in Figure 2.14. Once the processor has delivered a
command to an I/O module, it moves on to other instructions and only returns to the external operation
when the I/O module sends an interrupt. The interrupt pauses other operations so that the processor
can finish the I/O operation at hand. The processor checks for interrupts at the end of every instruction
cycle, so the I/O module will never have to wait longer than one full instruction cycle after delivering
an interrupt message for the transaction to complete. Although it seems like the processor is
completely hands-off during the I/O module’s execution of a command, the processor still has to be
used each time data is moved to/from main memory (RAM).

Figure 2.13 Programmed I/O

Both Programmed I/O and interrupt-driven I/O require constant involvement of the processor.
Since many I/O operations are straightforward data transfers between external devices and RAM, the
processor is wasting clock cycles on mundane tasks. Such overhead needs a remedy to further
increase the efficiency of the processor and direct memory access (DMA), depicted in Figure 2.15, is
the answer. Using DMA requires an additional module on the motherboard strictly for DMA
operations. When the processor needs to execute an I/O operation, the CPU sends the information to
the DMA module instead of directly to the device’s I/O m. In a sense, the DMA module emulates the
processor by taking control of the I/O operation by pausing the processor for one cycle at a time so
the DMA module can gain unfettered access to the system bus (a process called cycle stealing). When
the DMA module has completed the I/O operation, it sends an interrupt to the processor to signify
completion. The processor is only responsible for non-data transfer instructions related to the I/O
operation, which saves clock cycles and makes the computer’s usage of the processor more efficient.



Figure 2.14 Interrupt-driven I/O

Figure 2.15 Direct memory access

Although DMA appears to solve the problem of the CPU dealing with I/O operations, the DMA
module itself is not a complete processor; it must steal cycles from the CPU to accomplish DMA
tasks. Thus, the CPU is still doing more work than is optimal. A solution to the cycle-stealing problem
is to have a module dedicated to I/O operations that is, in fact, a real processor. Such a technique
eliminates the need for a module to steal cycles from the CPU. The solution is an I/O channel.
Different I/O channels exist; some handle I/O with one device at a time, and others can multiplex (i.e.,
handle I/O with multiple devices at a time). When I/O channels are present, the CPU is relieved of
every I/O instruction except the very first instruction that tells the I/O channel to perform a task. After
the first instruction, the I/O channel takes over and controls the I/O module, completing the I/O
operation without using any more CPU cycles.

Summary
Now that you have finished this chapter, you should have a basic understanding of processor and
system architecture. We have covered important aspects of architecture that are necessary for learning
of Assembly programming, including the CPU, memory, instruction execution, and I/O. Although no
Assembly code was discussed in this chapter, all of the concepts are crucial for what you will learn
in subsequent chapters. You will find yourself referring to this chapter, specifically the sections on
memory and CPU registers, as you read future chapters and write your first Assembly programs.

Key Terms
address bus



arithmetic logic unit (ALU)
Big-Endian
bus
cache
central processing unit (CPU)
clock cycle
control bus
control unit (CU)
CPU Clock
data bus
Decode
direct memory access (DMA)
disk
dynamic RAM (DRAM)
Execute
Fetch
flags
frequency
I/O channel
input/output (I/O) module
instruction execution cycle
interrupt-driven I/O
Little-Endian
memory
motherboard
multiplier
pipelining
programmed I/O (PIO)
registers
static random access memory (SRAM)
superpipeline
system bus
system clock

Questions
Short Answer

1. The processor is more commonly known by the abbreviation ___________.
2. A group of wires that connects components allowing them to communicate is known as a



___________.
3. The ___________ bus transmits signals that enable components to know where in memory

instructions and data exist.
4. The up-tick of the system clock is when the voltage changes from ___________ to ___________.
5. As memory gets physically closer to the CPU it can be accessed ___________.
6. ___________ byte ordering is when the hexadecimal number “1984” would appear sequentially

in memory as “8419.”
7. The ___________ is responsible for directing the flow of data in the CPU.
8. The speed of a CPU is determined by two factors: the ___________ and the ___________.
9. ___________ cache is the slowest form of CPU cache.

10. The lower 8 bits of the RCX register is the ___________ register.
11. The ___________ register is the 32-bit stack pointer register.
12. The Instruction Execution Cycle’s ___________ stage is when the CPU determines the

operation denoted by the instruction/opcode.
13. A ___________ processor is able to perform multiple operations at the same time as long as

each operation is in a different execution stage.
14. ___________ will take the processor away from its current sequence of operations in order to

attend to another matter.
15. The I/O method with the least amount of CPU overhead is ___________.

True/False
1. The motherboard has connections for RAM, expansion cards, and external I/O devices.
2. Moving a value into the edx register will overwrite the ds register.
3. A value of 1 in the SF bit of the rflags register indicates a positive value resulted from the

previous operation.
4. PIO is the fastest of the I/O methods.
5. I/O channels require a minimum of two CPU cycles to complete an I/O operation.

Assignments
2.1  Memory

Given the equation: taxableIncome = salary - exempts - percent401k
/ 100 * salary and the variables: salary = 50000, exempts = 7000,
percent401k = 4.5

Show how the value in taxableIncome will be stored in memory (in hexadecimal format)
on a system with an Intel Core i7 processor if the next available memory address is
0x013A32A8h.

2.2  Instruction Execution

A program contains a total of 220 instructions. Calculate the number of clock cycles it would



take to complete execution on systems with the following processors:

•    Non-pipelined 3-stage processor
•    3-stage pipelined processor
•    15-stage superpipelined processor

2.3  Input/Output (Challenge Assignment)

When performing a long listing (ls -la) in the /dev/ directory of a Linux system, you will
see the special files for all connected devices and important information about each. Use the
Web to research the different classes of I/O devices and how they are represented in the long
listing.



CHAPTERS 1 AND 2 SUPPLEMENT

More Architecture Details

Program Loading
As discussed in CHAPTER 1, programs are loaded by a utility called the program loader. After a
program is loaded, the CPU (eip/rip) points to the program’s entry point (e.g., main, start). Here we
generally describe the steps of starting a program; what happens when we open a program (e.g.,
double-click).

1. The OS retrieves program information such as file size and physical location on disk.
2. The OS determines an appropriate location in memory, allocates the space, and places necessary

information in a descriptor table (descriptors are discussed in CHAPTER 10).
3. The OS begins execution of the first instruction (entry point), thus becoming a process, which is

assigned an ID.
4. The process runs independently, and the OS responds to the process’s requests for resources.
5. When the process ends, the memory is relinquished.

Memory Access Improvements
As discussed in CHAPTER 2, reading from main memory (RAM) is slower than reading from registers
due to proximity to the ALU and the process required to read values from memory. Over time,
improvements have been made in instruction and data access.

•    Cache memory helps relieve the speed of memory accesses. If the instruction or data being
fetched is found in cache, a cache hit occurs. If not found, a cache miss occurs. Instructions can
also be moved in bulk to and from cache.

•    Prefetching algorithms examine memory access patterns with the intent to fill cache and
prefetch buffers with instructions and data likely to be needed soon. Most modern CPUs also
have predecoding as part of the pipeline.

•    Integrated memory controllers eliminate CPU to RAM hops via the front side bus
(Northbridge) by integrating the memory controller onto the CPU die.

•    Multi-core/multi-processor systems allow the workload of executing instructions to be
distributed.



Support Processors
A computer system has many processors and components that support the work of the CPU by
performing special tasks. Here are a few worth mentioning.

•    Floating-point unit (FPU) — typically integrated with the CPU (CHAPTER 6).
•    Clock generator — the CPU clock
•    Programmable interrupt controllers (PICs) — handles interrupts from keyboards, hard

drives, and other hardware devices (CHAPTER 10)
•    Programmable interval timer — interrupts the system 18.2 times/sec, updates the system time

and clock, and controls the system speaker; responsible for refreshing main memory (RAM)
•    Graphical processing unit (GPU) — a specially designed processor that efficiently processes

matrices and vectors and displays visual data to screens

Pipelining and Multi-unit Processing
As discussed in CHAPTER 2, pipelining is the overlapping of instruction processing to increase speed
of execution. CPUs generally contain the following units: fetch unit, decode unit, execution control,
addressing unit, memory controller, multiplier, bit shifter, ALU, FPU, etc. Modern CPUs typically
have multiples of some units per processor and core. So, given the hardware environment, pipelining
can take on many forms.

Scalar processing is when only one datum, an instruction in this case, is processed at a time. Thus
average instruction execution is approximately equal to the clock speed.

Superscalar processing is when multiple instructions are fetched and dispatched to separate
functional units in a single processor in parallel to achieve a higher throughput than the clock speed.

Consider the following examples of multi-unit processors. The examples are just a sampling of
the thousands of variations, past, present, and future.

•    Example 1: The PowerPC 970 has two ALUs, two FPUs, two load/store units, two SIMD
units, with varying pipelines between ten and sixteen stages, depending on the unit.

•    Example 2: The Pentium 3 has three ALUs, while the Pentium 4 has two ALUs (but each runs at
twice the clock rate of the P3 ALUs), and both have one FPU.

•    Example 3: The AMD Athlon has three ALUs, three AGUs (address-generation units), and one
FPU.

•    Example 4: An Intel Core i7 (Haswell) with four cores supports HyperThreading, meaning two
logical processors per core. Each execution unit has eight “ports” for eight micro-ops per
clock tick and four ALUs.

Input/Output System
A deeper knowledge of hardware and devices can allow a programmer to take advantage of features
and optimize code. Generally, I/O is available at three levels.



•    Application level: High-level libraries and application programming interfaces (APIs)
•    System level: System calls using Assembly instructions
•    UEFI level: Unified Extensible Firmware Interface (UEFI) is low-level software that

communicates directly with hardware and provides boot and runtime services; UEFI is the
modern and more sophisticated replacement of basic input/output system (BIOS).

Device Drivers contain routines that allow the OS to communicate directly with hardware.
To illustrate an I/O hierarchy exchange consider the following example.

1. A high-level statement in a C++ program calls on a library function to write a string to standard
output (e.g., cout << "This is string";)

2. The library function calls a system routine (OS) function and passes relevant parameters such as
the address of the string and the size.

3. The system call uses a loop to call a Driver or UEFI subroutine, passing the ASCII/Unicode
value and color of each character.
a. The Driver or UEFI subroutine receives a character, maps it to a font, and sends the character

to a hardware port attached to a video controller.
b. The video controller prints the character by using timed hardware signals to the screen that

control the displaying of pixels.
c. The system calls another Driver or UEFI subroutine to advance the cursor.

Assembly programs have the power and flexibility to access all I/O levels. At the application level, a
programmer can call on library functions to perform console and file-based I/O. At the OS level, a
programmer can call on the kernel to perform console and file-based I/O. At the UEFI/Driver level, a
programmer can call on functions to control device-specific features. When coding, a programmer
should consider tradeoffs between the I/O levels concerning efficiency, results, and portability. This
topic is discussed further in CHAPTER 10, along with application-level and system-level calls.



CHAPTER 3

Assembly and Syntax Fundamentals

Objectives
•    Distinguish differences in Assembly syntaxes
•    Identify sections of Assembly code and explain the use of each
•    Construct semantically correct data definitions
•    Create working Assembly programs

Outline
1. Web Resources
2. Introduction
3. Basic Elements

a. Pillars of Assembly Code
b. Literals
c. Labels and Comments

4. Data Definition
5. Working Examples
6. Summary
7. Key Terms
8. Code Review
9. Questions

a. Short Answer
b. True/False

10. Assignments

Web Resources
•    https://sourceware.org/binutils/docs/as/ (GAS Reference)
•    https://msdn.microsoft.com/en-us/library/afzk3475.aspx (MASM Reference)
•    http://www.nasm.us/doc/nasmdoc0.html (NASM Reference)

https://sourceware.org/binutils/docs/as/
https://msdn.microsoft.com/en-us/library/afzk3475.aspx
http://www.nasm.us/doc/nasmdoc0.html


Introduction
This chapter introduces x86 and x86_64 Assembly language. Because software engineers often work
in various operating systems depending on the type of problem needing solved, this chapter and
subsequent chapters examine Assembly language using three prominent assemblers—GAS, MASM,
and NASM. The approach offers examples and preparedness for common operating systems (Mac,
Windows, and Linux) and development environments. Development environments you might use to
write Assembly include Apple Xcode, Microsoft Visual Studio, and command-line assembling within
Linux.

We take great care to show the differences in assembler syntaxes, when such differences exist, by
denoting code snippets with a border and a title of the assembler for which the code is written. In
some instances, the purpose of a code snippet is not to teach syntax specifics but rather to explain a
concept. Such code snippets do not have a border or a title. Because different assemblers can use
different Assembly syntaxes, we use the convention detailed in Table 3.1.

Table 3.1 Syntax conventions

Assembler Syntax Development environment

GAS AT&T Apple Xcode

MASM Intel Microsoft Visual Studio

NASM Intel Command-line in Linux

ATTENTION: Xcode does not use the standard GNU Assembler (GAS). Instead, Xcode uses an
integrated assembler with Clang as the front end and LLVM as the back end. While minor
differences exist between GAS and the Clang/LLVM integrated assembler, Clang was designed to
be a replacement for the GNU toolchain. Thus, Assembly code written in Xcode will also
assemble with current versions of GAS (2.27 as of this writing). The version of GAS that ships
with macOS (1.38 as of this writing) should be avoided. All GAS code in this book has been
tested in Xcode on macOS and GAS 2.x on Linux to ensure compatibility. For consistency, we
refer to the assembler as GAS throughout the text.

By the end of this chapter, you will be familiar with the basic structure and syntax of x86 and x86_64
Assembly programs. A solid understanding of Assembly syntax fundamentals is necessary for the
remainder of the book.

Basic Elements
Unlike higher-level programming languages, Assembly language operates at a level where each line



of code performs a single operation. Assembly cannot be written without knowledge of the
computer’s architecture, such as CPU registers, flags, floating-point capabilities, etc. Low-level
details and coding can be daunting for the novice programmer and the experienced programmer alike,
but knowledge of low-level details allows a programmer to write code with control and efficiency
unmatched by high-level languages. As you master Assembly language, you will likely find that your
programs written in higher-level languages benefit in design.

Pillars of Assembly Code
In order to begin the journey of Assembly programming, five pillars found in Assembly programs are
important to discuss: reserved words, identifiers, directives, sections (segments), and instructions. A
clear understanding of the five pillars is paramount for your ability to follow future sections of this
chapter and book. Let us examine a simple Assembly program in which we will identify the five
pillars. Program 3.1 defines a 32-bit variable, adds two numbers, and saves the result in the
aforementioned variable.

Reserved words, as in any programming language, are words that can only be used for their
defined purpose. For example, MOV is a reserved word because it is an instruction. MOV cannot be
used as a variable name or in any other way except to execute the MOV instruction. In Assembly
language, reserved words are case-insensitive. Examples of reserved words include instructions
(e.g., MOV), directives (e.g., PROC), registers (e.g., eax), and attributes (e.g., FLAT for the .MODEL
directive).

Table 3.2 shows the sample program with the reserved words appearing in black. Notice that
most of the program consists of reserved words. Some of the reserved words are also other pillars,
such as directives and code sections.



Program 3.1 Sample Assembly program

Table 3.2 Sample reserved words

Identifiers are programmer-defined names given to items such as variables, constants, and
procedures. The length of identifiers is limited to 247 characters and cannot begin with a number.
Also, in order to be a valid identifier the name must begin with a letter (A-Z, a-z), underscore
(_), question mark (?), at-symbol (@), or dollar sign ($), though we do not recommend using ?, @, or
$ as part of standard identifiers. Numbers may be used in identifiers as any character after the first



character. The following list shows valid identifiers using characters we recommend.

•    userInputValue
•    sum_of_values
•    weight1

Table 3.3 highlights the identifiers in the sample program.

Table 3.3 Sample identifiers

Directives are assembler-specific commands not related to the instruction set that allow you to define
variables, indicate memory segments, and many other things. Directives direct the assembler to do
something. For example, in the following code snippet the directive DWORD tells the assembler to
reserve 32 bits of memory (a doubleword), which we initialize with a value of 42, and assign the
name “answer” to that specific memory block for future programmer use.

Table 3.4 shows the sample program with the directives highlighted.



Table 3.4 Sample directives

At this point we need to discuss some major differences with MASM directives. You may have
noticed that the beginning of the MASM sample program has a few lines of code that GAS and NASM
do not have, before the data section. The MASM directives used are necessary for 32-bit programs;
they configure specific environment settings for the program. Table 3.5 lists and describes the
MASM-specific directives.

Table 3.5 32-bit MASM-specific directives

Directive Description

.386 Enables the 80386 processor instructions and disables newer instructions. Other valid settings to enable additional
instructions are .486, .586, .686, .MMX, and .XMM, among others.

.MODEL Sets the memory model. The only valid parameter for 32-bit programs is FLAT (protected mode). The .MODEL directive
also takes a second parameter to set the function-calling convention, which is discussed in CHAPTER 6.

.STACK
Sets the size of the stack memory segment for the program. The directive cannot be used without the .MODEL directive.
While the default value is 1024, we recommend using 4096 to make stack the same size as a memory page in 32-bit
Windows.

The directives in Table 3.5 are not used in 64-bit MASM programs. The beginning of a 64-bit MASM
program starts similarly to GAS and NASM programs with the data section.

Program sections, also called segments, are denoted with directives that specify the segment for
the assembler. Segments are special sections pre-defined by the assembler. Table 3.6 lists the
common Assembly sections for use in programs.



Table 3.6 Assembler-specific program sections

Directive Description

GAS MASM NASM

.bss .data SECTION .bss Uninitialized variables

.data SECTION .data Initialized variables

.text .code SECTION .text Executable code/instructions

Table 3.7 shows the sample program with the section directives highlighted.

Table 3.7 Sample program sections

The section on Data Definition later in this chapter further explains how program segments are used
and what information they contain.

Instructions are the executable statements in a program that we begin covering in detail in
CHAPTER 4; however, a preliminary explanation is warranted here. Instructions are comprised of two
basic parts defined by the following syntax.

mnemonic [operands]

The mnemonic is the instruction name a programmer uses to refer to a particular instruction in the
architecture’s instruction set. A mnemonic is an abbreviation or acronym that identifies the action of
the instruction and in reality is an English-like representation of a numeric opcode (as shown in
CHAPTER 1). Table 3.8 highlights the instructions in the sample program.



Table 3.8 Sample instructions

Some instructions do not require any operands, some require one, some two, and some three. The
following lines of code are examples of instructions that require a different number of operands.

LEARNING: At this point it will be helpful to use Appendices B and D to write, execute, and
debug Program 3.1 to ensure that you have a working programming environment and get a feel for
the basics. Before continuing through the chapter, make sure the sample program assembles, and
use a breakpoint to watch register values change as you step through the program line by line.
Then, you can modify the program as you learn new concepts throughout the chapter and reinforce
your understanding of each concept.

Literals

Literal values, often called immediates, are explicit values specified by the programmer, such as
integers, real numbers, characters, and strings. For example, the following line of code would add the



literal value 5 to the current contents of the 32-bit register eax.

add eax, 5

PROGRAMMING: Immediates are used in cases where the programmer knows the exact value to
be used in an instruction. Many programs rely on user input for data, but in other cases constant
values are useful. For example, consider a simple program that converts a person’s weight from
pounds to kilograms. The program would expect one piece of data from the user (weight in
pounds) and would multiply pounds by a conversion factor (2.2) in order to convert the weight to
kilograms. The conversion factor is a constant value that can be specified as a literal value.

By default, integer literals are whole-number decimal (base-10) values. In some situations, using a
different base for literal values is useful or even necessary. In MASM and NASM, writing numbers in
other bases can be done by appending a radix (numeric base) character to the literal value, as shown
in Table 3.9.

Table 3.9 MASM/NASM integer radix characters

Radix Base

b Binary (base-2)

d Decimal (base-10)

h Hexadecimal (base-16)

q, o Octal (base-8)

The following examples show how to encode the base-10 value 31 in each of the supported bases
with MASM and NASM.

MASM/NASM

A case worth noting is when a hexadecimal value begins with a character, such as memory addresses.
When a literal value begins with a character, the assembler interprets it as an identifier instead of a
value. The conflict can be overcome by prefixing the hexadecimal value with a zero.



MASM/NASM

GAS takes a different approach to integer literals depending on the program section (sections were
discussed in Pillars of Assembly Code). As shown in Table 3.10, literal values in the .data section
must be prefixed with radix characters to delineate the base, while literal values in the .text section
must be prefixed with the dollar sign ($) in addition to the radix characters. Base-10 numbers are the
exception, which are written without radix characters.

Table 3.10 GAS prefix and radix characters

.data Prefix .text Prefix Base

0b $0b Binary (base-2)

n/a $ Decimal (base-10)

0x $0x Hexadecimal (base-16)

0 $0 Octal (base-8)

The following examples show how to encode the base-10 value 31 in both the .data and .text sections
using GAS syntax.

GAS

Real numbers (floating-point values) are much more complex than integers and so we cover real
numbers in CHAPTER 8.

Character literals are single character values that, like integer literals, are explicit values
specified by the programmer. Single quotes or double quotes can be used to enclose a character
literal in MASM and NASM, thus making the following two values equivalent.

MASM/NASM

In GAS, character literals are specified differently depending on the section. In the .data section,
characters are surrounded by single quotes while in the .text section characters are also prefixed with
the dollar sign ($).



GAS

ATTENTION: As described in CHAPTER 1, characters are stored in memory as ASCII-encoded
values (integers). For example, the letter 'A' is stored in memory as 65 decimal (41
hexadecimal).

String literals are multiple character literals grouped together, typically forming a word or phrase.
Like characters, strings can be enclosed in either single or double quotes in MASM and NASM, but
GAS requires double quotes. Sometimes you may want quotes to be part of a string. In MASM and
NASM, you must use the opposite type of quotes to enclose the string. With GAS, you must escape the
inner quote(s) with a backslash (\) so the string is not prematurely ended.

GAS

MASM/NASM

Strings are usually stored as a byte array, with each byte containing an ASCII-encoded value of an
individual character in the string. The following example shows a string literal and the individual
array elements stored in memory as ASCII decimal values.

Labels and Comments
Labels give you the ability to partition code for programmatic or design purposes. Labels not only
allow for greater clarity when reading code, but more importantly they facilitate jumping or looping
to different parts of a program when necessary. Labels are created by using an identifier followed by
a colon.

 identifier:



Labels can be created on their own line or on the same line as an instruction. Depending on the
assembler, labels are either case-sensitive and used in the .text section (GAS and NASM), or case-
insensitive and used in the equivalent .code section (MASM).

userLoop:

inc counter

otherLoop: inc counter2

CHAPTER 5 discusses using labels to implement loops in Assembly language.
Comments are an integral part of every program. Comments allow you to explain the why and

how of the code (as opposed to the what, which is usually more obvious). Comments are very
important with Assembly code since more abstract objectives are not always easily comprehendible
when reading a sequence of primitive instructions.

Two types of comments exist in Assembly: single-line comments and multi-line comments.
Single-line comments begin with a hash (#) in GAS or a semi-colon (;) in MASM and NASM. A
comment can be on its own line or be appended to any existing line of code.

GAS

MASM/NASM

Multi-line comments can only be used in GAS and MASM. In GAS, multi-line comments are
identical to C-style multi-line comments, beginning with /* and ending with */ and they can appear
anywhere in the code. In MASM, multi-line comments must be separate from other lines of code and
they consist of four parts: the word COMMENT, a beginning character, the comment text, and an ending
character, which must be the same as the beginning character. One caveat to MASM multi-line
comments is that the character used to begin and end the comment cannot be found within the comment
text. Traditionally, the exclamation point (!) is used for multi-line comments in MASM.

GAS

MASM



Data Definition
Data types in Assembly language are indicative of their size (8 bits, 16 bits, 32 bits, etc.) rather than
their contents (integer, double, string, etc.) as in high-level programming languages. Data, no matter
the contents, is defined using a default set of data types. Table 3.11 lists the data type naming
conventions by assembler.

Table 3.11 Default data type directives

Directive Description

GAS MASM NASM

.byte, .ascii DB, BYTE DB 1 byte (8-bit) integer

 SBYTE  1 byte (8-bit) signed integer

.word DW, WORD DW 2 byte (16-bit) integer

 SWORD  2 byte (16-bit) signed integer

.long DD, DWORD DD 4 byte (32-bit) integer

 SDWORD  4 byte (32-bit) signed integer

.quad DQ, QWORD DQ 8 byte (64-bit) integer

 DT, TBYTE DT 10 byte (80-bit) integer

.octa   16 byte (128-bit) integer

Table 3.11 appears to suggest that MASM can work with more data types than GAS or NASM, but
that is not the case. MASM performs many of its operations by assuming the data type from context,
whereas GAS and NASM do not make assumptions. You can work with all of the same data in all
three assemblers. However, as you will learn in future chapters, in GAS and NASM you must
explicitly tell the assembler what data types (size) are being used when executing an instruction.



PROGRAMMING: Choosing the correct size for variables is important. A programmer should
anticipate the possible values that will be stored in a variable to avoid semantic errors. Semantic
(logic) errors will not halt the assembling or execution of a program, but they can produce
incorrect results when the program runs. For example, if you create two 8-bit variables and ask
the user to enter two values to be multiplied together, the result of the multiplication could be
larger than 8 bits. So, you would need at least a 16-bit variable for the result. Using variables that
are too small for their intended use could result in the loss of data, and thus an incorrect result.

A variable definition has the following syntax.

GAS/NASM

MASM

All variables defined in the .data section (for all assemblers) must be initialized (given an initial
value). The following examples show valid variable definitions.

GAS

MASM

NASM

Notice the examples that use multiple initializers separated by commas. Using multiple initializers for
an identifier is the method for creating an array. An array is a sequence of same-size values
referenced by a single name that identifies the first location/value in the sequence. Instead of creating
four separate identifiers, we created one identifier that represents the start of a four-value sequence,
each one doubleword (32 bits) in size. Each array identifier is actually the memory reference of the
first value. We address methods of accessing values in an array in CHAPTER 4.

Sometimes uninitialized variables are necessary in a program. Uninitialized variables are



variables that are not given an initial value; they simply reserve a certain amount of memory for
programmer use. Different assemblers accomplish uninitialized memory allocation in very different
ways. MASM offers the question mark (?) as an initializer so that uninitialized variables can be
created in the .data section, which is only meant for initialized variables in GAS and NASM.

MASM

The DUP directive can be used in MASM to create duplicate values of a specified size and initializer
in sequence. Any valid initializer can be used, including the question mark. In the MASM example,
myArray is an array of 10 byte values each initialized to 1, and in myUArray each is initialized to
? (uninitialized).

GAS and NASM require that all uninitialized variables be created in the .bss (Block Started by
Symbol) program segment. Both GAS and NASM require you to use data type directives specifically
for uninitialized data, which are listed in Table 3.12.

Table 3.12 Uninitialized data type directives

The following examples show valid uninitialized variable definitions in GAS and NASM. Note how
defining uninitialized variables in GAS differs from the syntax rule of [identifier:
directive initializer]. Instead, the format is [directive identifier,
reserved_bytes]. You can use the uninitialized data type directives in GAS and NASM to
reserve memory for a single variable or an array. For example, in the NASM code we create a 64-
byte buffer, which can be used as an array containing 64 values.

GAS



NASM

As previously explained, strings are stored as BYTE arrays. Strings need to be null-terminated,
which means that the last byte must be ASCII-zero. Null-terminating a string is achieved differently
depending on the assembler. GAS uses the \0 sequence to add the null terminator to the end of a
string, while MASM and NASM just use the literal value 0 as the last byte. GAS also has an .ASCIZ
directive that automatically adds a zero byte to the end of a string.

Line breaks are also an important aspect of strings. Inserting line breaks is different depending on
the assembler. In GAS, the escape sequence \n will insert a newline (line-feed) character. In
MASM, the CR/LF (carriage-return / line-feed) hexadecimal codes 0Dh and 0Ah need to be inserted
where a line break is desired. In NASM, only the LF (line-feed) hexadecimal code 0Ah needs to be
inserted.

GAS

MASM

NASM

Symbolic constants can be used in MASM in lieu of variables when you have certain values in a
program that never change as a result of the program’s execution. Symbolic constants hold 32-bit
integers in x86 and 64-bit integers in x86_64 and are defined with the equal sign (=). Symbolic
constants are for integer-based data.

MASM



Symbolic constants have some advantages. If you are going to use a value multiple times throughout a
program, such as an employee’s hourly wage, assigning the value to a regular identifier has two
distinct advantages: (1) use of a name, such as HOURLY_WAGE, throughout a program makes the code
more readable, and (2) having the numeric value in a single place makes changes easier should the
hourly wage go up or down. Symbolic constants in MASM provide the same two advantages plus one
more: symbolic constants do not use any memory. At assembly time, MASM replaces all instances of
a symbolic constant with the programmer-defined value.

MASM

When assembled, the above code will be transformed automatically and instances of the symbolic
constant will be replaced with the literal value.

The symbolic constant example using the equal sign only works with the MASM assembler. Symbolic
constants can also hold string values in MASM.

All assemblers can make use of symbolic constants when they hold expressions. In order to
define a symbol that holds an expression, the EQU directive must be used. Unlike the previously
explained methods of defining variables, symbols can be created with EQU in both the data and code
segments (i.e., .data and .text for GAS, .data and .code for MASM, and SECTION .data and
SECTION .text for NASM). The assemblers will replace every occurrence of a symbol with the
expression at assembly time.

GAS

MASM

NASM



As demonstrated in the examples, symbolic constant syntax and behavior is very different in the
assemblers. We recommend limiting the use of EQU to numeric expressions.

EQU can also be useful for creating a constant symbol for the length of an identifier’s memory
space. The GAS and NASM examples below show how to use an expression to get the size of a string
in bytes. The current location counter, the period (.) in GAS and the dollar sign ($) in MASM and
NASM, represents the memory address of where the counter symbol exists in code. The current
location counter can be used to subtract the starting memory address of the previous string from the
current location, resulting in the size of the string in bytes. In MASM, the equal sign (=) can be used
with the current location counter.

GAS

MASM

NASM

Another feature MASM offers is a way to create a symbol that is dynamic, called a text macro.
The TEXTEQU directive is used to create such symbols, which can be expressions using other
symbols and even instructions.

MASM

Note how the instructions in the following example are not enclosed in quotes but are enclosed in



angled brackets, since instructions are non-integer expressions.

MASM

With the movFreq text macro created, you could use it at any point in your code to execute the
instruction (mov eax, freq).

MASM

Working Examples
The basic information explained in this chapter is crucial to comprehending subsequent chapters.
Although CHAPTERS 4 AND 5 cover instructions in detail, it is important to see this chapter’s content
used in the context of a working Assembly program. The Program 3.2 examples are the same
Assembly program written for the three assemblers. For brevity, the GAS version is fully commented,
while the MASM and NASM programs are shown with just the code. Fully commented versions for
all three assemblers are available for download (https://github.com/brianrhall/Assembly).

LEARNING: Using your preferred development environment, write and execute one of the
following code examples and ensure you have a working program. Then, purposefully create
syntax errors in the program to see how those errors are described by the system. Errors such as
mistyping variable names, using mismatched sizes with variables and registers, and forgetting a
colon with program sections are typical errors that a programmer might make. Knowing what you
did to cause an error and seeing the error message can help you decipher error messages you
encounter in the future.

Program 3.2 Working example

https://github.com/brianrhall/Assembly




PROGRAMMING: Program 3.2 demonstrates how to properly terminate (exit) an assembly
program for the given environments (i.e., 32-bit Mac, Windows, and Linux) via system calls.
Other exit routines are necessary in different environments (e.g., GAS on Linux, 64-bit, etc.).
APPENDIX A includes 32-bit and 64-bit exit routines for GAS, NASM, and MASM, while system
calls are covered in CHAPTER 10.

Summary
In this chapter we covered the basic elements of Assembly programs. You should now understand
Assembly structure and program sections. You should also be able to define and initialize data in an
Assembly program. We discussed important differences between the assembler syntaxes, from
creating variables to making comments. The two working programs for each assembler in this chapter
helped you get started with writing and assembling code. The programs can serve as templates for
future programs.

Key Terms
array



character literals
comments
current location counter
directives
DUP
EQU
identifiers
immediate
instructions
integer literals
labels
mnemonic
multi-line comments
program sections
real numbers
reserved words
single-line comments
string literals
strings
symbolic constants
TEXTEQU
uninitialized variables
variable

Code Review
.ASCIZ GAS data directive that automatically adds a zero byte to the end of a string

ADD Instruction that adds the value in one register/variable to another register/variable

ADDL GAS instruction that adds the value in one register/variable to another register/variable (long integer)

DUP MASM directive to create duplicate values of a specified size and initializer in sequence

EQU, .equ Directive to create a new symbol containing the result of an expression

INC Instruction that increments the value in a register/variable

MOV Instruction that copies the value in one register/variable to another register/variable

MOVL GAS instruction that copies the value in one register/variable to another register/variable (long integer)

STC Instruction that sets the processor’s carry flag

TEXTEQU MASM directive that creates a new symbol containing the resulting value of a text substitution



Questions
Short Answer

1. A ___________ value is a value directly specified by the programmer rather than the result of an
expression.

2. By default, integer literals are in base ___________.
3. In order to use the base-10 value 50 as a hexadecimal value in NASM, you would specify it as

___________.
4. In order to use the hexadecimal value 0x34 as a binary value in GAS, you would specify it as

___________.
5. Character literals are stored as ___________ in memory.
6. This book recommends only using the following characters in identifier names: ___________,

___________, and ___________.
7. ___________ are assembler-specific commands that allow you to do many things, such as define

variables, indicate memory segments, and so on.
8. Labels must be followed by a ___________.
9. ___________ and ___________ are the only assemblers that make use of multi-line comments.

10. The ___________ character signifies a single-line comment in MASM.
11. The ___________ directive is used to declare a 32-bit signed integer variable in MASM.
12. The ___________ directive is used to reserve 64-bits of uninitialized memory in NASM.
13. In MASM, a newline in a string is represented by the ___________ hexadecimal value(s). In

NASM, a newline in a string is represented by the ___________ hexadecimal value(s).
14. The EQU directive can be used with the ___________ to determine the length of a string.
15. An abbreviated version of a longer word or words that explains the action of an instruction is

a(n) ___________.

True/False
1. The semicolon represents a single-line comment in GAS.
2. Instructions may not use any operands.
3. The current location symbol in NASM is the dollar sign.
4. The .octa directive is used to declare an 80-bit variable in GAS.
5. Uninitialized variables are declared in the .bss section of a program in MASM.

Assignments
Assignments 1 and 2 require you to use a specific assembler. Since one of the purposes of this
chapter is to introduce you to differences in assemblers, we ask you to demonstrate what you have
learned. Assignment 3 does not have any specific assembler requirement; solve the problem using the
assembler with which you are most comfortable.

3.1  Defining variables



Create a program for GAS that contains the following items:

• A sum variable of the appropriate size to hold the initializer 0x10000
• A message variable that holds the text (preserving line breaks):

Welcome to Assembly programming.
Your grade will be randomly assigned
by the Intel 8086 processor!

• An input variable that does not contain an initial value and is able to hold the values
0-255

• An instruction to assign the base-10 value 200 to the input variable as a binary literal

3.2  Using expressions with symbols

Create a program for NASM that contains the following items:

• A message variable that holds the text (preserving line breaks):
You already know what the next
variable will be, don’t you?

• A length variable that holds the size of the message variable
• A length5 variable (also in the data section) that holds the result of adding 5 to length

(use EQU)
• A one-operand instruction that adds 1 to the value in the length5 variable (think outside the

box for this requirement)

3.3  Syntax translation

Translate the following GAS program into either MASM or NASM. Refer to APPENDIX A.

# Syntax translation - GAS
.data
 
.bss
.lcomm letter, 1
.lcomm r, 4
.lcomm s, 4
.lcomm t, 4
.lcomm x, 2
.lcomm y, 2
.lcomm z, 2
 
.text
.globl _main
_main:
 
movb $0x77, letter
movl $0x5, r
movl $0x2, s



movw $0xa, x
movw $0x4, y
 
movw x, %ax
addw y, %ax
movw %ax, z
 
movw x, %ax
subw y, %ax
movw %ax, z
 
movl $0x0, %edx
movl r, %eax
movl s, %ecx
divl %ecx
movl %eax, t
 
movl $0x0, %edx
movl r, %eax
movl s, %ecx
divl %ecx
movl %edx, t
 
pushl $0
subl $4, %esp
movl $1, %eax
int $0x80
.end

3.4  Order of operations (Challenge Assignment)

Create a program that calculates the following expression: answer = (A + B) – (C
+ D)

• The answer must be stored in a variable of the correct data type given your data
(A, B, C, D).

• The values for your data (A, B, C, D) must be stored in registers (e.g., eax, ebx), not
variables.

• You must supply the initial values for the data (A, B, C, D).
• Create a string that could accompany the answer in an output statement

(e.g., "The answer is:"). You do not have to output the string.
• Comment each line of code, as demonstrated in the Working Examples Section Program 3.2

for GAS, to briefly describe each line’s meaning.



CHAPTER 4

Basic Instructions

Objectives
•    Perform integer arithmetic
•    Manipulate data at the bit level
•    Explain different addressing modes
•    Construct arrays
•    Convert data to different data sizes and types
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b. Data Addressing
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d. Changing Data Sizes and Types
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Web Resources

Assembler References
•    https://sourceware.org/binutils/docs/as/ (GAS Reference)
•    https://msdn.microsoft.com/en-us/library/afzk3475.aspx (MASM Reference)
•    http://www.nasm.us/doc/nasmdoc0.html (NASM Reference)

x86 Instruction Set Listings
•    http://www.intel.com/content/www/us/en/processors/architectures-software-developer-

manuals.html (Volume 1, Chapter 5 Instruction Set Summary, Section 5.1)
•    http://www.felixcloutier.com/x86/
•    http://x86.renejeschke.de
•    https://en.wikipedia.org/wiki/X86_instruction_listings
•    http://www.nasm.us/doc/nasmdocb.html

Introduction
Chapter 4 covers basic Assembly instructions that will enable you to begin writing simple programs.
Since arithmetic is a foundational component of any piece of software, we begin by explaining basic
arithmetic instructions. After covering some arithmetic, we break down instructions to explain exactly
how data is used in operations: how data can be referenced and transferred. We address topics such
as manually accessing memory locations based on byte offsets, creating and using arrays, and working
with pointers.

ATTENTION: The x86 and x86_64 instruction sets are fairly complex. Throughout this chapter
and book, we present an overview. We do not present and explain every single instruction. We do
provide enough instruction information to cover important concepts, facilitate learning, and
prepare you for programming in x86 Assembly. We expect that you will explore the instruction set
further as necessary.

Due to the fact that not all instructions can accept every type of operand, we provide a naming
convention that will be used in the syntax definitions throughout this chapter and subsequent chapters.
Table 4.1 defines three different operand types and assigns shorthand notation for each.

https://sourceware.org/binutils/docs/as/
https://msdn.microsoft.com/en-us/library/afzk3475.aspx
http://www.nasm.us/doc/nasmdoc0.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.felixcloutier.com/x86/
http://x86.renejeschke.de
https://en.wikipedia.org/wiki/X86_instruction_listings
http://www.nasm.us/doc/nasmdocb.html


Table 4.1 Operand definitions

Operand Description

L A literal (immediate) value (e.g., 42).

M A memory (variable) operand (e.g., numOfStudents).

R A register (e.g., eax).

Some instructions accept multiple types of operands. In such cases the operand list will have multiple
operands from Table 4.1 separated by slashes (e.g., M/R). In addition to accepting multiple types of
operands, some instructions are limited by the size of the operands they can accept. In such cases you
will see the operand appended with a number denoting the size, in bits, of the operand (e.g., L8,
M16,  M32/R32).

PROGRAMMING: In many cases MASM, and sometimes NASM, infers from context the data
types of the operands used with an instruction. GAS does not assume data types. Consequently,
GAS instructions are usually appended with a letter indicating the size of the operand(s) being
used. The letter appended is the first letter of the data types detailed in CHAPTER 3, TABLE 3.11
(e.g., ADDB for byte, ADDL for long, etc.).

For NASM, dereferenced variables require the size to be specified when used as the
destination operand. In such cases you must specify the size before the variable using a size
directive (e.g., BYTE for byte, WORD for word, DWORD for doubleword, etc.). An example is
mov DWORD [test], eax.

By the end of this chapter you will understand and be able to perform basic Assembly arithmetic,
data addressing, and data transfer operations.

Data Movement and Arithmetic
CHAPTER 3 introduced you to the concept of one line of code being one operation, as opposed to
high-level languages where more complex statements translate into multiple low-level operations.
The C++ code result = (var1 + 5) / (var2 – 4); looks like a single operation to
a programmer since it is a single line of code. In reality, the processor performs at least three distinct
operations (addition, subtraction, and division) to arrive at the result. Storing the value in result is
a fourth operation. When programming in Assembly you must be aware of the difference and write
code accordingly.

A common mistake for a novice Assembly programmer is writing an incorrect order of
operations. High-level languages typically perform arithmetic operations in the proper order
automatically. Assembly language requires the programmer to write the instructions in the proper



order to arrive at the correct result.

Data Movement
In order to complete most sequences of instructions, data must be copied from one location to another
location. For example, the C++ code above needs to copy the result of the equation into the result
variable. But first, values would have been copied into the var1 and var2 variables. Moving data
between registers and memory is an important part of Assembly programming. Most data movement is
accomplished via the MOV instruction. MOV copies data from the source location to the destination
location. In our GAS examples, the italic 'S', as in MOVS, should be replaced with the letter
representing the operand size.

GAS

MASM

NASM

The MOV instruction has some specific rules:
•    Both operands must be the same size (although this is flexible via directives as we will see

later);
•    Both operands cannot be memory operands (must use a register as an in-between);
•    The instruction pointer register (ip/eip/rip) cannot be a destination operand.

A unique situation arises when data in two locations needs to be swapped. A data swap can be
accomplished using the MOV instruction, but a swap requires an in-between step to save data to a
temporary location. For example, swapping the data in eax with the data in ebx requires three steps:
(1) temporarily copying the data in ebx to another location, such as edx; (2) copying the data in eax to
ebx; and (3) copying the data temporarily moved to edx into eax. Such an approach requires three
instructions to properly swap data between eax and ebx. A simpler approach is using the XCHG
instruction, which performs a swap in a single instruction.

GAS

MASM



NASM

As with MOV, the XCHG instruction cannot be executed with two memory operands.
More instructions exist for moving data that are for specific types of data moves. Such

instructions are for more advanced scenarios and they will be covered later in this chapter.

LEARNING: Write a program that attempts to copy data into each register discussed in CHAPTER
2. Beware of the registers not allowed as either the source or destination operand with the MOV
instruction.

Addition and Subtraction
Before jumping into addition and subtraction with literals and variables, we will start with the
simplest forms: adding one and subtracting one. Anyone who has written software knows that adding
and subtracting one are important operations due to their varied use (e.g., loop counters, keeping track
of user input, and array referencing). Just as high-level languages have operators to increment and
decrement variables, Assembly language has increment and decrement instructions.

The INC and DEC instructions can be used on any memory (variable) or register operand. INC
and DEC have a singular purpose: adding or subtracting one.

GAS

MASM

NASM



PROGRAMMING: NASM treats variables similar to the way pointers are treated in C++. Just
using the identifier results in a memory address. If you want to refer to the data stored in the
memory address, which is aliased by the identifier, you need to dereference the variable with
brackets (e.g., [sum]), similar to using the asterisk in C++.

The ADD and SUB instructions allow you to perform addition and subtraction using literal values
as well as values that exist in memory or registers.

GAS

MASM

NASM

PROGRAMMING: A key difference between AT&T syntax (used by GAS and Clang) and the Intel
syntax (used by MASM and NASM) is that the source and destination operands are switched.
GAS always uses the first operand as the source, while MASM and NASM always use the first
operand as the destination.

Another useful instruction is the NEG instruction, which gives you the ability to reverse the sign of a
value, thus converting the value into its Two’s Complement representation, which was discussed in
CHAPTER 1.

GAS
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Program 4.1 is a program that uses the INC, DEC, ADD, SUB, and NEG instructions. The program
begins by creating two 32-bit variables—sum and val—and assigning each an initial value. The eax
register is initialized to 0 and is immediately incremented by 1. Next, the literal decimal value 200
is added to the current value in eax and the result is stored back into eax. Then, the value stored in
another variable val is subtracted from the value in eax and the result is stored back into eax. The
value in eax is then stored in the sum variable, which is then decremented by 1. The final value in the
sum variable at the end of Program 4.1 is -175 (11111111111111111111111101010001 in
32-bit binary Two’s Complement).

Program 4.1 Addition and subtraction

Multiplication and Division
Performing multiplication and division is slightly more complicated than addition and subtraction.
You might assume that the multiplication and division instructions would accept two operands and
calculate the result, but that is not necessarily the case in x86 Assembly. The number of operands
depends on whether the instruction is for unsigned or signed data. Unique multiplication and division



instructions exist for unsigned and signed data. We examine the unsigned version first and the signed
version second, since signed is more complex.

The MUL instruction performs unsigned integer multiplication. MUL accepts a single operand,
the multiplier; but what about the multiplicand and the result? The multiplicand is a value that is
stored in the accumulator register based on the multiplier size (8, 16, 32, and 64-bit), as shown in
Table 4.2. Also, because MUL only accepts a single operand, the programmer does not specify the
result destination, it is implicit.

Table 4.2 Unsigned multiplication operands

Multiplier Multiplicand Product

M8/R8 al ax

M16/R16 ax dx:ax

M32/R32 eax edx:eax

M64/R64 rax rdx:rax

Both the multiplicand and product locations are implied based on the multiplier size. Consider the
example of multiplying 8096 by 64 (Example 4.1). The largest value is 8096, which uses 13 bits of
storage; so we are forced to store the value in at least a 16-bit location. A good chance exists that the
product of two 16-bit values could exceed 16 bits of storage. Consequently, the product of a 16-bit
multiplication will be stored in a 32-bit destination: dx:ax (the high 16 bits of the product in dx and
the low 16 bits of the product in ax). The product of 8096 * 64 is 518144, which requires 19
bits of storage. The result fits in dx:ax, but would have overflowed a 16-bit destination.

Example 4.1 Unsigned 16-bit multiplication

PROGRAMMING: Check the status of the CPU flags after a multiplication. After unsigned
multiplication, the Carry Flag (CF) will be set if the product has carried into the high bits. After
signed multiplication, CF will be set unless all the high bits are just the sign extension of the most
significant bit of the low bits.

GAS
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To perform signed multiplication, use the IMUL instruction. IMUL allows the same one-operand
format as MUL and in such cases uses the same locations shown in Table 4.2. The main difference
between IMUL and MUL is that IMUL also has two-operand and three-operand formats. With the two-
operand format, IMUL operates much like ADD and SUB, where both operands serve as sources and
one is also the destination. So just like ADD and SUB, the value in the destination operand gets
overwritten with the result of IMUL.

If you do not want operands to be overwritten, you can use the three-operand format of IMUL,
which allows you to specify the multiplier, multiplicand, and product. In the following examples, pay
particular attention to the sequence of possible operands given the assembler when using the two-
operand and three-operand formats. Both formats store the product in a single register, and the three-
operand format requires the use of a literal (immediate) value.

GAS
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PROGRAMMING: Ensure that you choose the proper size registers for both multiplication and
division. Choosing small registers to conserve space may result in carry or overflow if the
product or quotient is too big for the destination register(s).

Similar to MUL, division has both unsigned and signed versions. The DIV instruction performs
unsigned integer division and produces a two-part result: the quotient and the remainder.

Table 4.3 Unsigned division operands

Divisor Dividend Quotient Remainder

M8/R8 ax al ah

M16/R16 dx:ax ax dx

M32/R32 edx:eax eax edx

M64/R64 rdx:rax rax rdx

When using DIV, the programmer only specifies the divisor (bottom number in standard division
notation). The dividend (top number) must be pre-loaded into the correct register based on the size of
the divisor, as shown in Table 4.3. Also, the sign of the dividend value must extend into the high-bit
register. For example, when performing signed division, storing a negative value in dx:ax requires the
sign bit (1) to be extended from ax through dx, so that the value retains the sign. Sign extension is
discussed later in this chapter.

Let us examine how 32-bit unsigned division might work to solve the problem 32 / 3
(Example 4.2). We must pre-load the dividend into edx:eax, but because the positive value 32 does
not extend past the 32 bits of eax, we need to ensure that edx contains 0. In other words, we need to
extend the sign bit (0) for positive. Next, we choose a 32-bit register, ecx, to hold the divisor. After
performing the division, eax contains the quotient 10 and edx contains the remainder of 2.



Example 4.2 Unsigned 32-bit division
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Signed division requires the use of the IDIV instruction. Unlike the IMUL instruction, IDIV does
not have two-operand and three-operand formats. You still only provide one operand to the IDIV
instruction, the divisor.

ATTENTION: Division overflow is an event where the quotient of a division operation is too
large for the destination. Division overflow causes a processor exception and halts the program.
To account for all possible results, ensure that appropriately sized operands are used.
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PROGRAMMING: Unlike the multiplication instructions, neither of the division instructions set
any status flags to indicate information about the result (the flags are undefined).

Program 4.2 is an example program that uses the MUL, IMUL, DIV, and IDIV instructions. The
program performs the multiplication of 664751 and 8 using the MUL instruction and all three forms
of the IMUL instruction. The program then performs both unsigned and signed division using
5318008 as the dividend and 8 as the divisor.



Program 4.2 Multiplication and division

Bit Shifting
Even though dedicated multiplication and division instructions exist, a programmer should know that
alternative and historically faster methods exist to perform such operations. Understanding that the



processor manipulates values as a sequence of bits can direct us to manipulate data in our programs
as a sequence of bits. For example, multiplication and division can be performed without the use of
the MUL or DIV instructions via bit manipulation.

Assume that we have a variable val with the value 20.

    val BYTE 20

If we examined val at the bit-level, we would see the representation in Example 4.3.

Example 4.3 Bit representation of the value 20

If we were to shift the bits in Example 4.3 one digit to the left, our value would change from 20 to
40. If we were to shift the bits two digits to the left, the value would change from 20 to 80. The
result of each left shift is multiplication by two. Shifting bits left is multiplication by powers of two,
as shown in Table 4.4.

Table 4.4 Multiplier values for shifting left

Bits shifted left Multiplier

1 2

2 4

3 8

4 16

Based on Example 4.3, shifting the value 20 left two bits performs a multiplication by four,
producing a result of 80 (Example 4.4).

Example 4.4 Shift left

Notice how each bit has been moved left two places, with new bits being zero. Example 4.4 works.
But what would happen if we tried to shift the value 64 left two bits?

Example 4.5 Incorrect shift result

What is the product of 64 * 4? Will the product fit into our 8-bit variable? The answers are 256



and no, respectively. The maximum unsigned value that an 8-bit location can hold is 255 (i.e., every
bit set to 1). The value 256 would “overflow” into the 9th bit, leaving our variable with a result of 0.
We have essentially lost the two bits that were shifted outside of our memory location.

Yet, all is not lost. Every time a shift is performed, a minimum of one bit is lost. In Example 4.5,
we lost the most significant (left-most) bit on the first shift, which was 0, so 1 became the most
significant bit. On the second shift, we again lost the most significant bit, the 1. The last bit that is
“lost” as a result of each shift is actually saved in the Carry Flag (CF). The first shift moved the
leading 0 to CF and the second shift set CF to 1. We always have one bit of protection with CF when
performing shifts, although you are responsible for ensuring that no data is lost when performing
arithmetic.

While shifting left performs multiplication in powers of two, shifting right performs division in
powers of two. The same rules apply, plus one more rule: right-shift division of an odd number will
always lose data. Odd numbers always have the least significant bit set to 1. Performing a shift right
of any number of bits will lose the least significant bit and result in an incorrect calculation.

Shift left and shift right instructions, SHL and SHR, can shift a memory operand or register by a
literal number of bits.
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LEARNING: CHAPTER 5 covers branching, the ability of programs to follow different paths, such
as executing certain instructions based on the state of the Carry Flag or the result of a mathematical
operation.

The method of bit shifting shown in the preceding examples is known as logical bit shifting. As
explained, bits are lost when shifted outside the bounds of the storage location, and the new bits are
filled with zeros. Logical bit shifting generally works for unsigned data but damages signed data.
Imagine the scenario where a negative value is shifted to the right, changing the sign bit from a 1 to a
0 and thus changing the value.



In order to perform multiplication or division on signed integers using bit shifting, we must use
arithmetic bit shifting, which preserves the sign. The arithmetic shift instructions are SAL (Shift
Arithmetic Left) and SAR (Shift Arithmetic Right). Example 4.6 illustrates the results of both
arithmetic shift instructions on an 8-bit variable val containing the value -32 (11100000b) in
NASM.

Example 4.6 Arithmetic shifts in NASM

PROGRAMMING: SAL and SHL are identical (synonyms). Because of the way negative numbers
use the most significant bits to denote the sign, shifting to the left will implicitly preserve the sign
bit.

The syntax for SAL and SAR is similar to the logical shift instructions. A memory operand or
register is shifted left or right a literal number of bits.

GAS
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Working with Negative Values
Now that we have covered some basic arithmetic in both unsigned and signed formats, we will focus
on signed values. An Assembly programmer needs to ensure that they have the correct values with the
correct signs in the correct registers before executing any arithmetic instructions.

All assemblers allow you to store negative values in registers and variables without much effort,
as shown in Example 4.7. The assembler automatically stores values in their Two’s Complement



representation.

Example 4.7 – Simple negative value usage

One challenge of working with negative values arises when pre-loading specific registers with
negative values before executing the IDIV instruction. Assuming we want to perform a 32-bit signed
division, the dividend is a 64-bit value split across edx and eax, as shown in Table 4.3. If our goal is
to perform the division of -534 by 15, we need to convert -534 into a 64-bit Two’s Complement
value with the high 32 bits in edx and the low 32 bits in eax. We can easily store -534 into eax, but
how do we extend the sign (binary 1 in this case) into the upper bits so that edx contains all binary
1s?

Table 4.5 lists four instructions available to perform sign extension: CBW (Convert BYTE to
WORD), CWD (Convert WORD to DWORD), CDQ (Convert DWORD to QWORD), and CQO
(Convert QWORD to OCTA).

Table 4.5 Sign extension instructions

Instruction From To

Register Size Register Size

CBW al 8 ax 16

CWD ax 16 dx:ax 32

CDQ eax 32 edx:eax 64

CQO rax 64 rdx:rax 128

Let us look at a simple example of using 8-bit (byte) to 16-bit (word) sign extension before we apply
the concept to the problem of -534 divided by 15.

Example 4.8 CBW sign extension

In Example 4.8, we first move 0 to the 16-bit ax register to ensure a blank slate. Next, we store the
value -5 into the 8-bit al register. Notice how the lower 8 bits of ax, the al register, contain the



Two’s Complement representation of -5. If we were to perform signed division at this point, the
IDIV instruction would use ax as the dividend. But because the upper 8 bits of ax are zeros, the value
would be interpreted as 251 (the highest bit of ax is 0, thus positive). To overcome this problem, we
must sign extend al into ax. Sign extension fills the bits of ax with the leading bit of al, which in this
case is 1 (negative), resulting in a 16-bit Two’s Complement value of -5.

Now back to the division of -534 / 15. Program 4.3 presents the Assembly code. Once
-534 has been moved into eax, the sign must be extended into edx. The CDQ instruction converts a
doubleword to a quadword, extending the sign of eax into edx. The divisor is then set using ebx and
the division is performed. After execution of the IDIV instruction, the results are stored in eax
(quotient) and edx (remainder) with eax containing FFFFFFDDh (-35), and edx containing
FFFFFFF7h (-9).

Program 4.3 Negative division

Data Addressing and Transfer
Data Alignment
One of the benefits of writing Assembly code is that you can ensure programs are operating in an
efficient manner. An important aspect of efficiency is memory accesses. CPUs are much faster at
accessing data stored at even-numbered addresses than odd-numbered addresses. For example,
memory accesses in a 32-bit system are much simpler operations if data is in 32-bit slots and
structures are on 16-byte boundaries. So storing program data at even-numbered addresses is
beneficial.
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Each assembler has one or more directives that alter the location counter. GAS uses the .balign
directive, MASM uses the ALIGN directive, and NASM uses the ALIGN or ALIGNB directive,
depending on the program section. In each case, the alignment parameter is an integer that is a power
of two. The alignment directive advances the location counter until the address is a multiple of the
integer provided. As previously suggested, a useful example is making sure that data exists at even-
numbered memory locations.

Example 4.9 Data alignment in MASM

Manual alignment using align directives or automatic alignment using assembler or compiler
commands is not particularly necessary or required for the programs in this book until we get to
CHAPTERS 6 AND 8, when we deal with function calls and vector data.

PROGRAMMING: GAS has different variants of the alignment directive. The standard .align
directive works exactly like the .balign directive on x86 and x86_64 architectures. But when
writing code for other architectures, such as ARM or PPC, the .align directive has a different
behavior. So we recommend using .balign for more consistent behavior across target architectures.

Data Addressing
Having wandered into the territory of memory addresses, we need to discuss how to use addresses as
operands. All of the variable use we have demonstrated in code so far is considered direct



addressing, meaning directly accessing a value stored at a memory location, which is aliased by an
identifier. But sometimes we need to work with memory addresses the way we work with pointers in
high-level languages like C++. Indirect addressing is when we use a memory address to point to
another address that contains a value. Figure 4.1 depicts the difference between direct and indirect
addressing.

Figure 4.1 Direct and indirect addressing

While Figure 4.1 uses main memory for simplicity, direct and indirect addressing also applies to
registers. A register operand can either directly reference a value stored in a register or it can
indirectly reference a value stored in main memory via the address stored in a register. In either case,
the principle illustrated in Figure 4.1 applies: one access for a direct value and multiple accesses for
an indirect value.

With addressing methods in mind, we can start working with memory addresses. One important
step is determining the memory address of a variable in relation to the beginning of the data segment
in an Assembly program. In NASM, a variable name directly refers to the memory address, not the
value stored in the address (to refer to the value use brackets, such as [sum]). To get the address of
an operand in MASM, you can use the OFFSET directive along with the MOV instruction. In GAS,
prefix a variable with the dollar sign ($) to refer to the address of the variable rather than the value.

The following code snippets in the template comments store the memory address of a 32-bit
variable sum into the esi register for GAS and MASM and into a different variable for NASM.

GAS
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PROGRAMMING: If you refer to a memory address in GAS when using the MOV instruction, the
size character must match the destination operand, which in 32-bit mode is a long data type
(MOVL). The variable could be anything (e.g., byte, word, long), but if the code is assembled in
32-bit mode, the variable would be stored at a 32-bit memory address. If coding in 64-bit mode,
use the MOVQ instruction since all addresses are quadwords (64-bits).

The LEA (Load Effective Address) instruction in 32-bit and 64-bit modes loads an operand
address into the destination. LEA must be used for all runtime operations since actual addresses are
not known until runtime.
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The key difference between the MOV and LEA instructions regarding addresses is that the
destination operand of the LEA instruction must be a register.

Arrays
The usefulness of storing a memory address becomes particularly evident in more advanced
scenarios. A common scenario for using indirect addressing is array manipulation. An array, as in
high-level languages, is a collection of data spaced equally at memory addresses based on the data
type, and is aliased to the first element. Assume we have created two arrays: the first is an array of
bytes and the second is an array of doublewords.

Example 4.10 Arrays in MASM

Each array contains four items, but accessing either arrayA or arrayB will only give us the
first item in each array. How do we access the subsequent items? The answer is by using a
combination of instructions previously introduced. When working with arrays in high-level languages,
we use an index to access elements starting at index 0 (e.g., arrayA[0], arrayA[1], etc.). The



compiler does the difficult work of determining the size of array items and moving the location
counter the appropriate number of bytes for each index. In Assembly, you are responsible for
determining element size and performing index calculations.

In order to access array data, we must understand how to calculate the address of each element.
Recall from CHAPTER 2 that memory is addressed per byte. Figure 4.2 depicts a segment of main
memory and the memory addresses of each element in our two arrays (arrayA and arrayB).

Figure 4.2 Array addressing

Since arrayA is a BYTE array, each value is located one byte away from the previous value.
However, arrayB is a DWORD array (DWORDs are four bytes), which means each value in
arrayB is four bytes away from the previous value.

PROGRAMMING: When accessing array elements, be sure to calculate the proper byte offset. No
automatic bounds checking exists in Assembly. The assembler will not produce an error if you add
three bytes instead of four to access the next element of a DWORD array. You would access data
that is not what you expect.

Recall calculating the size of a string (an array of characters) from CHAPTER 3. The size of any
array, which is measured in bytes, can be calculated by using the current location counter.
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Now we revisit the LEA and MOV instructions, taking into account the need to load memory
addresses at specific byte offsets. An offset is specified by using a byte constant. The following code
examples show how to access elements [1] and [3] in both arrays and how to use the array elements
as both a source and destination operand.
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PROGRAMMING: As with the MOV instruction in GAS when dealing with memory addresses,
the LEA instruction’s appended size character (e.g., leal for 32-bit, leaq for 64-bit) is the size
of what the LEA instruction returns (a memory address). The character is not indicative of the size
of the array elements.



LEARNING: In your preferred development environment, define differently sized arrays and
practice calculating byte offsets to access elements. Use a debugger to examine the results of
correct and incorrect byte offsets.

Some programmers might prefer to keep array notation as similar to high-level languages as
possible, which means using an index number in the instructions rather than using a constant to
calculate a byte offset. You can modify the previous examples to accommodate index numbers. In the
following examples we show how to access the last element (index 3) of arrayB. If using GAS,
first load the starting address of the array, as in previous examples. Then store the index you wish to
access into a register. Finally, use the MOV instruction and specify the size of the array elements in
bytes (1, 2, 4, or 8) along with the array address and index number.
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The cost of making Assembly code feel similar to high-level languages by using array indices is an
additional instruction. You can decide which approach is most appropriate for your programs.

Lastly, for arrays, we introduce some MASM-specific directives that may be of use when
working with arrays. We have covered combinable instructions for determining the size (in bytes) of
each element in an array, the number of elements in an array, and the total size (in bytes) of an array.
However, three MASM directives exist that assist in dynamically determining array (or variable)
characteristics. The TYPE directive returns the number of bytes a variable occupies; the LENGTHOF
directive returns the number of elements in an array; and the SIZEOF directive returns the total
number of bytes an array occupies (equivalent to multiplying the results of the TYPE and
LENGTHOF directives).

MASM



Program 4.4 creates an array with four values, reads two of the values, and overwrites the other
two values.

Program 4.4 Array

Changing Data Sizes and Types
Sometimes, moving data from one location to another when memory sizes are different is necessary
or optimal. For example, you may have a value in a 32-bit variable named val but wish to copy the
lower 16 bits into a 16-bit register, such as ax, as we do in the examples below. Most instructions
error (the program will not assemble) when source and destination operands are different sizes, so
we need a solution. GAS handles size changes particularly easily since all MOV instructions are
appended with the size of the data being copied. In the GAS example, we simply use the MOVW
instruction because the destination is a WORD (16 bits). Using NASM is also relatively easy because
you can specify the size of the source operand, similar to the way we have been specifying the size of
the destination operand. MASM requires the use of a new directive, PTR, which allows us to



override the defined size and treat a variable as a pointer of a specific size.
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Taking data from a larger location and storing it in a smaller location is efficient, but sometimes
the opposite is necessary. We presented something similar with convert instructions (CBW, CWD,
CDQ, CQO), but they are only for use with the accumulator register (al, ax, eax, rax). When storing
data into the low bits of a register (e.g., the ax portion of eax), the high bits may contain data from
previous operations. If pre-existing data is not taken into account, using the whole register (e.g., eax)
can lead to incorrect results.

Two instructions, MOVZ/MOVZX (move with zero extend) and MOVS/MOVSX (move with sign
extend), are able to copy a value into the low bits of a register and simultaneously extend zeros or the
sign into the high bits of the register, respectively. In the following examples we use both instructions
to assign the value of a 16-bit variable (sum) to a 32-bit register (eax).

GAS

MASM

NASM

While the usage of MOVS and MOVZ needs little explanation, the GAS version may cause some
confusion. Notice that the GAS instructions have two size suffixes. MASM assumes sizes based on
the register(s) used and a variable’s definition (e.g., sum defined as a WORD is being moved to a
32-bit register eax). NASM determines sizes based on the register(s) used and the use of a size
directive with a variable (e.g., WORD [sum]). GAS needs both sizes specified as part of the
instruction. The first suffix is the size of the source (left) operand and the second suffix is the size of



the destination (right) operand. For example, the MOVZWL instruction copies a value from a 16-bit
(WORD) location to a 32-bit (LONG) location and extends zeros into the high bits.

The extension instructions are also one of the few times in x86 Assembly when an instruction
mnemonic is different, depending on the syntax. GAS uses AT&T syntax, which uses MOVZ and
MOVS plus the size suffixes to zero or sign extend a value. MASM and NASM use Intel syntax,
which uses MOVZX and MOVSX.

Summary
The big-picture topic of this chapter is how to manipulate data. We covered basic arithmetic
instructions with examples in both unsigned and signed formats. We provided comparisons of data
accesses using direct and indirect addressing, the latter being important when working with arrays.
We explored examples that demonstrated shifting data and moving data between differently sized
locations. At this point, you should be able to write Assembly programs that complete basic tasks
such as temperature conversion, square footage calculations, or even emulating a basic classroom
gradebook.

Key Terms
.balign
ADD
ALIGN
ALIGNB
arithmetic bit shifting
array
CBW
CDQ
CQO
CWD
DEC
direct addressing
DIV
IDIV
IMUL
INC
indirect addressing
LEA
LENGTHOF
logical bit shifting
MOV
MOVS/MOVSX



MOVZ/MOVZX
MUL
NEG
OFFSET
PTR
SAL
SAR
SHL
SHR
SIZEOF
SUB
TYPE
XCHG

Code Review
.balign GAS directive that moves the instruction counter to the next memory address that is a multiple of the given

parameter

ADD Performs addition of two operands

ALIGN MASM and NASM directive that moves the instruction counter to the next memory address that is a multiple of
the given parameter

ALIGNB Same as ALIGN, but for NASM’s .bss section

CBW Converts the value in al to ax

CDQ Converts the value in eax into edx:eax

CQO Converts the value in rax into rdx:rax

CWD Converts the value in ax into dx:ax

DEC Decrements the operand by 1

DIV Performs unsigned division producing a quotient and a remainder

IDIV Performs signed division producing a quotient and a remainder

IMUL Performs signed multiplication

INC Increments the operand by 1

LEA Loads the effective address of a variable into a register

LENGTHOF MASM directive that returns the number of elements in an array

MOVS/MOVSX Copies a value from one location to another and sign extends

MOVZ/MOVZX Copies a value from one location to another and zero extends

MUL Performs unsigned multiplication

NEG Negates an operand (Two’s Complement representation)



OFFSET MASM directive that returns the memory location of a variable relative to the data program section

PTR MASM directive that treats the operand as a pointer so it can be accessed as a different size

SAL Bit shift arithmetic left for signed integers

SAR Bit shift arithmetic right for signed integers

SHL Bit shift left for unsigned integers

SHR Bit shift right for unsigned integers

SIZEOF MASM directive that returns the total number of bytes used by an array

SUB Performs subtraction on two operands

TYPE MASM directive that returns the number of bytes used by a variable

Questions
Short Answer

1. The INC instruction takes a maximum of ___________ operands.
2. Finish the instruction to decrement 1 from a 16-bit val variable using NASM: DEC

___________.
3. When using GAS, the first operand is the ___________ operand.
4. When using MASM, the first operand is the ___________ operand.
5. The NEG instruction changes a value from positive to negative by converting it into its

___________ representation.
6. When using a QWORD value as an operand for the MUL instruction, the result will be stored in

___________.
7. The IMUL instruction can accept ___________ operand(s).
8. Performing division with DIV using a 32-bit dividend implies that the dividend must be stored in

___________.
9. When using the DIV instruction and a 64-bit divisor, the quotient is stored in ___________ and

the remainder in ___________.
10. The IDIV instruction can accept ___________ operand(s).
11. CBW, CWD, CDQ, and CQO will allow you to ___________ extend the ___________

register.
12. Aligning data to ___________ memory addresses can help the processor access data faster.
13. A variable that contains a memory address is an example of ___________ addressing.
14. Storing the address of a variable in GAS is accomplished using the ___________ instruction.
15. The ___________ instruction copies a value and extends the sign, while the ___________

instruction copies a value and extends zeros.

True/False
1. IDIV can accept 1, 2, or 3 operands.



2. Specifying the data size of a variable in NASM is only necessary when the variable is a source
operand.

3. A value stored in the ebx register can be sign extended into edx:ebx with the CDQ instruction.
4. The ALIGNB directive can only be used in the .bss section of NASM code.
5. When using an extension instruction in GAS, you must append two characters to indicate the

sizes of the source and destination operands.

Assignments
4.1  Will my breaker trip?

Write a program that determines the amperage that would be pulled from a standard 120-volt
wall outlet by a computer with a 1200-watt power supply running at maximum power. Use the
standard equation W=VA (Watts = Volts * Amperage).

4.2  Passing the class

Write a program that computes the final percentage grade of a student in a Computer
Architecture class based on the following scores. The result should be a whole number (e.g., 75
to represent 75%).
The student took four exams (points earned/points possible).
• 25/30
• 89/100
• 49/50
• 80/150

4.3  Differently sized arrays (Challenge Assignment)

Write a program that multiplies each element of a WORD array by 8 and stores the new value
in the same element of a DWORD array.
• The initial array should contain the values 5, 10, 15, and 20.
• The result array should contain 40, 80, 120, and 160.



CHAPTER 5

Intermediate Instructions

Objectives
•    Identify efficient uses of bitwise Boolean instructions
•    Create control and decision structures for branching
•    Create repeatable code blocks
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Web Resources

Assembler References
•    https://sourceware.org/binutils/docs/as/ (GAS Reference)

https://sourceware.org/binutils/docs/as/


•    https://msdn.microsoft.com/en-us/library/afzk3475.aspx (MASM Reference)
•    http://www.nasm.us/doc/nasmdoc0.html (NASM Reference)

x86 Instruction Set Listings
•    http://www.intel.com/content/www/us/en/processors/architectures-software-developer-

manuals.html (Volume 1, Chapter 5 Instruction Set Summary, Section 5.1)
•    http://www.felixcloutier.com/x86/
•    http://x86.renejeschke.de
•    https://en.wikipedia.org/wiki/X86_instruction_listings
•    http://www.nasm.us/doc/nasmdocb.html

Introduction
Chapter 5 presents concepts and Assembly instructions that enable a programmer to manipulate the
flow of programs. We revisit the Boolean expressions covered in CHAPTER 1 and introduce you to
using Boolean algebra in Assembly code. We present various methods of constructing conditional
statements and loops in Assembly. The combination of Chapter 5 knowledge with content learned in
previous chapters will give you a solid foundation for writing low-level solutions for computing
tasks.

Boolean Bitwise Operations
Recall the Boolean expressions from CHAPTER 1: NOT, AND, OR, and XOR. We have already
covered the concepts of Boolean logic, but Assembly programmers must understand how to use the
expressions in the context of a program. Although we typically deal with numbers in decimal (base
10) or hexadecimal (base 16) form in Assembly, we can also operate at the binary (base 2) level by
performing Boolean bitwise operations on individual bits that comprise a value. Bit-level instructions
have many uses in Assembly such as encryption, updating values (e.g., clearing a register), masking
(e.g., CPU and FPU control, network protocols), and controlling hardware peripherals.

The first bitwise operation we will cover is NOT, which simply inverts the bits in a given
operand. Effectively, NOT computes a value’s One’s Complement. The Boolean NOT operation is
reviewed in Table 5.1.

Table 5.1 NOT binary operation

x NOT x

0 (F) 1 (T)

1 (T) 0 (F)

The Assembly instruction is also NOT and takes a single operand, which means that the operand
value is overwritten with the One’s Complement value.

https://msdn.microsoft.com/en-us/library/afzk3475.aspx
http://www.nasm.us/doc/nasmdoc0.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.felixcloutier.com/x86/
http://x86.renejeschke.de
https://en.wikipedia.org/wiki/X86_instruction_listings
http://www.nasm.us/doc/nasmdocb.html
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Next, review the truth table (Table 5.2) for the AND instruction, which performs the Boolean
AND on each pair of bits in two operands.

Table 5.2 AND truth table

x y x AND y

F F F

F T F

T F F

T T T

We can rewrite the truth table using binary values (0/1) instead of Boolean values (F/T) so the effect
at the bit level is more apparent, as shown in Table 5.3.

Table 5.3 AND binary operations

x y x AND y

0 0 0

0 1 0

1 0 0

1 1 1

Understanding how the AND operation works with two single-bit operands (x and y) is a great
start, however the benefits become more clear when the operands are numeric values you might see in
a program. A relatively common use of AND is detecting if a value is even or odd. We can detect
even or odd by verifying if the Least Significant Bit (LSB) is zero or one.



Visually, even or odd is obvious. A code-based approach could be more complex, like writing an IF
statement to determine if the LSB is 1 or if a remainder exists after dividing by 2. Referring to the
AND tables, we can see that the only way to get a result of True (1) is if both operands are True (1).
If we are looking for a 1 in the LSB of a value, we can AND the bit with a 1 in the LSB of a second
operand to determine the result. But what about the rest of the value?

We are dealing with 8-bit values in our example. For an odd number, the goal is for the result to
have a 1 in the LSB and zeros in the remaining bits. Again, referring to the AND tables we see that
having a 0 anywhere in the second operand will result in a 0, regardless of the value in the first
operand. So we can write a Boolean statement to determine if the decimal value 47 is odd.

By using the AND operation with a 1 in the proper location and 0s in the others, we have verified that
the value is odd.

Another scenario where the AND operation is an efficient solution is changing the case of an
ASCII character. Performing a case change in high-level languages typically involves using functions
that understand character case. But upon close examination of the bits that comprise a single
character, a pattern emerges: the fifth bit (zero-bit indexing) controls character case and all other bits
are the same, as shown in Table 5.4 regarding the letter a/A.

Table 5.4 Character cases

Using the AND operation, we can mask the bits we want left unchanged with 1, and mask the fifth bit
with 0 so it becomes a 0. Changing cases can also be achieved using OR and XOR, with XOR
working both directions.

Bit masking is more efficient than testing to determine if the numeric value of the ASCII character is



in the specific range of ASCII values that represents the alphabet and then either adding or subtracting
32, depending on which case is desired.

To execute the Boolean AND in Assembly, we use the AND instruction. The following examples
perform the AND operation of a decimal value stored in the al register with 1. The result will be
stored in the al register. In the examples, we use three different representations of the literal 1 (i.e.,
decimal, binary, and hexadecimal).

GAS

MASM

NASM

When we want to do the logical opposite of AND (e.g., to set bits as opposed to clear bits), we
can use the OR instruction, which performs the Boolean OR operation on each pair of bits in two
operands. Before exploring applications of the OR instruction, review the table of binary OR
operations (Table 5.5).

Table 5.5 OR binary operations

x y x OR y

0 0 0

0 1 1

1 0 1

1 1 1

From Table 5.5 we can see that as long as one of the operands in an OR operation is True (1) the
result will be True (1). OR is useful when setting individual control bits or flags. Consider a simple
application that allows a user to order a pizza with specific toppings. If we want to allow a choice of
four toppings, we might consider using four separate 8-bit variables, which is 32 bits in total. But we
could also use a single 8-bit variable and set individual bits in the variable as yes/no (1/0) to store
topping choices.



Beginning with the TOPPINGS variable clear (0s) indicating a cheese pizza, we can use OR to set
bits based on the toppings a customer prefers. Assume that a customer wants pepperoni and onion.
The topping options correspond to 1 (00000001b) and 8 (00001000b), respectively. One at a
time, we can OR the topping values (e.g., PEPPERONI = 00000001b) with the TOPPINGS
variable to end with an 8-bit variable that contains all toppings requested by the customer. Such an
approach saves 24 bits of storage space compared to the four 8-bit variable approach.

After both OR operations, TOPPINGS has the zero and third bits set, indicating that the customer
requested both pepperoni and onion.

LEARNING: Using the information in this chapter, write an algorithm that can parse a TOPPINGS
variable to determine toppings requested by a customer.

The following templates and examples show the OR instruction in x86/x86_64 Assembly.
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A second scenario where OR is efficient is determining if a value is positive, negative, or zero.
ORing a number with itself allows a programmer to test for all three conditions. Testing for positive,
negative, or zero is possible because both the OR and AND instructions set various processor flags
(e.g., CF, OF, PF, SF, and ZF). The following code ORs a variable (var) with itself and lists



processor flags a programmer could test (assume var = 13).

A similar instruction to OR is the exclusive OR (XOR) instruction, which performs a Boolean
XOR operation between each pair of bits in two operands. But a key distinction exists between OR
and XOR. Reviewing the XOR Boolean operations shown in Table 5.6, we see that the result of an
XOR operation is True (1) if one of the operands is True (1), but the result is False (0) when both
operands are True (1) or False (0).

Table 5.6 XOR binary operations

x y x XOR y

0 0 0

0 1 1

1 0 1

1 1 0

The XOR operation is a key component of many symmetric encryption and data storage algorithms
due to its reversible nature. XORing an original value with a different value (key) twice will produce
the original value.

A second scenario for the XOR operation is hard drive technology, specifically RAID (i.e.,
Redundant Array of Independent Disks). RAID is a technique whereby a system has multiple hard
drives joined together into a RAID set, of which varying types exist (e.g., RAID0, RAID1, RAID5,
etc.). The major benefit of RAID is data redundancy. A drive can fail and the system can still continue
operation by rebuilding the lost data. Data recovery can be accomplished by using XOR.

Assume a system has five hard drives. Four drives are used to store data and one drive is used to
store parity information, similar to how RAID3 functions. Bits on the parity drive are calculated by
XORing corresponding bits on the four data drives (i.e., all bit [0]s, all bit [1]s, etc.). Once parity
data exists on the fifth drive, the system can suffer the loss of any of the data drives without losing
data. Assume the loss of drive1. The remaining data drives 0, 2, and 3 will have their
corresponding bits XORed with the parity drive. The result is the same sequence of bits lost on
drive1, and thus the data is rebuilt.



The following templates and examples show the XOR instruction in x86/x86_64 Assembly.
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Branching
The concept of branching is that a program can follow different code paths, even skip instructions,
based on a programmer’s implementation. Execution can either unconditionally follow a code path or
can follow a code path based on the result of a conditional test. Before discussing conditional
branching, we must first examine unconditional branching.

Unconditional Jumps
In CHAPTER 3, we introduced labels and the ability to segment code into blocks.

The above code contains four instructions and two labels. Recall that labels are simply ways to mark
locations in our code without using any additional memory. Two instructions are found after the
computePay label and two instructions are found after the addToList label.

One reason labels are useful is because of the JMP instruction in Assembly, which allows us to
jump to a label at any given time.



In the above code, the instructions would not be executed in consecutive top-down fashion. After
adding 5 to the al register (add al, 5), the program unconditionally jumps to the "bottom"
label, skipping the "middle" section. The value 32 is never added to the register, so al contains
10 at the end of the program.

The unconditional jump instruction behaves the same in all three assemblers.

GAS/MASM/NASM

Conditional Jumps
Now we can proceed to learning about jumping to code blocks based on conditional testing. First, we
will discuss methods of executing a conditional test, and then we will discuss methods of branching
based on the result of the conditional test.

In Assembly, we have multiple ways to perform conditional tests. One method is using the TEST
instruction. The TEST instruction performs an implied AND operation on two operands without
modifying either operand. But the processor flags (e.g., PF, SF, ZF) are modified to denote the would-
be result. PF is set if the number of set (1) bits in the result is even, SF reflects the most significant bit
of the result, and ZF is set if the result is zero.

ATTENTION: CF and OF are also modified by the TEST instruction, but they are always cleared
(0).

GAS
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A second method of performing a conditional test on two operands is by using the compare
(CMP) instruction. CMP allows us to implement conditional tests similar to those we implement in
high-level languages (e.g., equality, greater than, less than or equal to, etc.). In high-level languages,
one example of a decision structure that uses a conditional test is the if statement.

Assembly requires at least two distinct instructions for a conditional jump: one instruction to perform
the comparison of operands, and one or more instructions to act on the result of the comparison. Basic
conditional tests in Assembly begin with CMP, which performs an implicit subtraction of the source
operand from the destination operand and modifies the CPU flags accordingly.

ATTENTION: As with the TEST instruction, the CMP instruction does not modify either operand.
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Once we have compared two operands, many options exist for condition tests. As previously
mentioned, the TEST and CMP instructions set various CPU flags. Almost all of the conditional jump
instructions operate by testing one or more of the CPU flags. A few instructions operate based on the
cx/ecx/rcx registers. Table 5.7 lists common conditional jump instructions, the CPU flags tested with
each, and whether or not the instruction operates on signed or unsigned operands.

Table 5.7 Conditional jump instructions

Sign Flag Instruction Description

OF = 1 JO Jump if overflow



Signed and unsigned

OF = 0 JNO Jump if not overflow

PF = 1 JP Jump if parity

PF = 0 JNP Jump if not parity

SF = 1 JS Jump if sign

SF = 0 JNS Jump if not sign

ZF = 1 JE Jump if equal

JZ Jump if zero

ZF = 0 JNE Jump if not equal

JNZ Jump if not zero

CX = 0 JCXZ Jump if CX register is zero

ECX = 0 JECXZ Jump if ECX register is zero

RCX = 0 JRCXZ Jump if RCX register is zero

Signed

SF != OF JL Jump if less

JNGE Jump if not greater or equal

SF = OF JGE Jump if greater or equal

JNL Jump if not less

ZF = 1 or
SF != OF

JLE Jump if less or equal

JNG Jump if not greater

ZF = 0 and
SF = OF

JG Jump if greater

JNLE Jump if not less or equal

Unsigned

CF = 1 JB Jump if below

JC Jump if carry

JNAE Jump if not above or equal

CF = 0 JAE Jump if above or equal

JNB Jump if not below

JNC Jump if not carry

CF = 1 or
ZF = 1

JBE Jump if below or equal

JNA Jump if not above

CF = 0 and
ZF = 0

JA Jump if above

JNBE Jump if not below or equal



PROGRAMMING: When choosing a conditional jump instruction, be certain to select the
appropriate instruction for testing based on the signage of the operands. For example, selecting JA
instead of JG when working with signed operands can result in an incorrect sequence of
instructions being executed.

Consider the following if statement translated from a high-level language to Assembly using the
correct conditional jump statements.

Program 5.1 shows one of the possible translations of the high-level code into Assembly for each
assembler.

Program 5.1 Conditional jump (32-bit)

Notice in Program 5.1 that we did not use multiple conditional jumps since doing so would be
more processor-intensive than necessary by requiring a second check of processor flags. Instead, we
arranged the instructions so the logic of the else statement follows the conditional jump to higher
if wages is above or equal to $50000. After the compare, we perform the conditional test for the



if. Should the test fail, which is the case in Program 5.1, execution simply moves to the next
instruction, the logic for the else section. Then, we unconditionally jump to the done section,
skipping the logic in the if section. We could have written the code in such a way that we check both
cases: using JAE to check for higher taxes and JB to check for lower taxes. But the “below” check
was unnecessary because of some clever instruction organization.

Compound Conditionals

Having discussed conditionals, we can perform slightly more complex logic by using compound
conditionals. In C++, compound conditionals use Boolean logical expressions: the && (logical
AND) and || (logical OR) operators.

The C++ code demonstrates an if statement that performs a logical AND operation and another if
statement that performs a logical OR operation. Performing compound conditionals in Assembly can
be achieved via the short-circuit evaluation method (also used in C++) as shown in Example 5.1.
This method only tests the second conditional if the first conditional is not sufficient to determine the
outcome of the entire compound Boolean expression.

Example 5.1 Compound conditionals (Intel syntax)

For the logical AND example, both conditionals must evaluate to True for the entire compound
expression to be True (recall the Boolean AND tables). So if the value in ax is below or equal to the
value in bx, the initial expression (a > b) fails. Since both expressions must be True, if the first
expression fails, we skip the rest of the conditional code and jump to the next label. The second
expression is only checked if the value in ax is above the value in bx.

The code for the logical OR is slightly different. Instead of testing for a False expression as we
did with the logical AND, we check for a True expression. The approach allows our program to jump
to the L1 label, which sets x = 1, if the first expression is True. If a condition in an OR expression
is True, then the entire expression is True and we do not need to spend time testing any other
conditions. In both the logical OR and logical AND scenarios, the instructions are arranged as
efficiently as possible such that the minimal number of instructions are executed to accomplish the
goal.

Repetition



The concept of repetition, or looping, is to write a sequence of instructions once but have the
instructions execute a given number of times in succession. The number of times a sequence of
instructions repeats is usually controlled by either a counter variable or a conditional test. For
example, in high-level languages, we know repetitive control structures as for loops and while
loops.

While such constructs (directives) do not consistently exist in Assembly language, we can achieve the
same control using only x86 instructions.

Using CX/ECX/RCX
The concept of a counter-controlled loop is easily implemented in Assembly with the LOOP
instruction, which uses the value in the “C” register as a decrementing counter. Each iteration of the
loop will decrement the cx/ecx/rcx counter by 1. When the counter reaches 0, the loop stops and
execution continues with the first instruction after the loop.

PROGRAMMING: In 16-bit mode the loop counter is the cx register. In 32-bit mode the counter is
the ecx register. In 64-bit mode the counter is the rcx register.

The LOOP instruction is consistent across assemblers, with the instruction followed by a label.

GAS/MASM/NASM

Consider Program 5.2, a 64-bit program that implements a high-level for loop in Assembly.
First, note that we use the bitwise XOR instruction to clear rax, so its value is 0 (XOR is a common
method for clearing values in Assembly). Upon reaching the LOOP instruction, some implicit
operations happen: (1) rcx is decremented by 1; (2) rcx is tested to determine if it is greater than zero;
(3) if rcx is greater than zero the program jumps to the specified label, otherwise execution continues
to the next instruction. Program 5.2 loops five times and adds 1 to rax in each iteration. The final
value in rax is 5.



Program 5.2 Looping (64-bit)

LEARNING: Watching an Assembly loop execute step-by-step is a great way to learn how LOOP
operates. In your preferred programming environment, set a breakpoint prior to the XOR
instruction in Program 5.2 and step through the program while watching the contents of rax and
rcx. Refer to APPENDICES B AND D for debugging help.

Writing a single loop is simple enough, but great care must be taken when writing a nested loop (a
loop inside a loop). Each time a LOOP instruction executes, the “C” register is decremented, which
means the translation of the C++ loop to Assembly shown in Example 5.2 will produce incorrect
results.

Example 5.2 Incorrect loop translation

After executing the C++ code, the value variable contains 6. The Assembly code behavior is very
different due to two issues. First, the outer loop needs a counter of 2, but we immediately
overwrite the ecx register with 3 for the inner loop counter. Second, after the inner loop runs three



times, value will be 3 and ecx will be 0. Consequently, the loop inner test if ecx is greater
than zero fails, ending the inner loop. The next instruction is loop outer, which subtracts 1 from
ecx, causing the value to roll over from 0x0h to 0xFFFFFFFFh, then checks if ecx is greater than
zero and loops back to the outer label. The Assembly code is an infinite loop (and a nasty bug that
has caused problems before).

LEARNING: When subtractions happen on low values such as 0, nothing prevents a rollover to
-1. As we learned in CHAPTER 1, -1 is all 1’s in binary (or 0xFh), which if interpreted as an
unsigned integer is the maximum number possible. One prominent example of this bug is Gandhi in
the classic game Civilization, where Gandhi has the propensity to become very aggressive and
bomb cities with nukes. Read more about the bug (or feature) here:
http://civilization.wikia.com/wiki/Mohandas_Gandhi_(Civ1).

To fix the Assembly code in Example 5.2, we need to save the value of ecx once we reach the
inner loop. Then we can overwrite ecx with the inner loop counter without worrying about losing the
outer loop’s state. At the end of the inner loop we can restore the outer loop’s counter value so it can
proceed as desired. Example 5.3 shows the correct translation of the C++ nested loop. The Assembly
code assumes a counter variable has been defined in the data segment.

Example 5.3 Correct loop translation

The loop translation examples demonstrate that care needs to be taken when using the LOOP
instruction. In addition to issues with nested loops and implicit LOOP operations, other issues can
arise when using instructions inside a loop that automatically store results in the “C” register, or if
you need to use the counter register for another purpose within the logic of a loop. An alternative
approach is to write loops using a counter of your choosing and the CMP instruction.

Using Programmer-defined Counters
Another way to translate the C++ for loop in Example 5.3 into Assembly without using the LOOP
instruction is shown in Example 5.4. We use programmer-defined counter variables (x and y) and the

http://civilization.wikia.com/wiki/Mohandas_Gandhi_(Civ1)


CMP instruction to test whether to continue or discontinue iteration of each loop. The Assembly code
in Example 5.4 assumes the existence of the variables x, y, and value. Within each loop iteration
we decrement the proper counter variable (y for the inner loop and x for the outer loop) and
eventually the counters will become 0, ending each loop due to the JNE (Jump if Not Equal)
conditional instructions.

Example 5.4 Loop translation using CMP

Two specific items in Example 5.4 deserve clarification. The first item is that the Assembly and
C++ code act on the counters in an opposite manner. While the C++ code increments the counters, the
Assembly code decrements the counters. The code can be written various ways depending on
programmer preferences.

The second item is the use of variables as counters. One of the major benefits of programming in
Assembly is that processor registers are available to store data instead of wasting memory by
creating variables. Using processor registers instead of memory variables can also speed up the
execution of programs; recall from CHAPTER 2 that accessing data stored in memory requires more
clock cycles. Although compilers and CPU algorithms may automatically perform optimizations
behind the scenes, you should not assume optimizations. Programming in Assembly gives a
programmer the ability to ensure effective optimizations.

Example 5.5 shows the same Assembly code as Example 5.4 with the optimization of replacing
variables with registers.



Example 5.5 Optimized loop translation

After executing the Assembly code in Example 5.5, the eax register will contain the result of 6 as
opposed to the value variable in Example 5.4.

LEARNING: Another method of temporarily saving values is to use the stack via the PUSH and
POP instructions, which is covered in CHAPTER 6.

Another high-level loop we can implement is the while loop. Example 5.6 presents two
Assembly examples that show how the C++ while loop might be implemented with multiple jump
instructions.

Example 5.6 while loop translations

Version 1 (v1) is not a synonymous translation of the C++ code. Instead of doing a less-than
comparison we do the inverse, an above-or-equal comparison. Doing so results in a more efficient
loop. Version 2 (v2) is synonymous, using a below (less-than) comparison. But using JB required a
second comparison for the inverse condition (i.e., JAE) due to the sequential flow of instructions,
which results in slightly longer code.



Since the Assembly code in Examples 5.3–5.6 was just partial code (and written for 32-bit),
Program 5.3 presents a nested for loop and Program 5.4 presents a while loop for each of the
assemblers in 64-bit. In Program 5.3, the final value in rax is 6 and in Program 5.4 the final value in
rax is 50 (before the exit routines).

Program 5.3 – Nested for loop (64-bit)

Program 5.4 while loop (64-bit)



As is always the case with programming, cleverly organizing instructions leads to finished code that
is concise and optimized.

Summary
In this chapter we discussed how to manipulate data at the bit level using Boolean instructions. We
also examined different ways of adding more complex logic to programs, such as executing different
sequences of instructions based on conditions. Many programming tasks can be accomplished by
combining conditional logic with repeating sequences of instructions. We demonstrated various
implementation methods to manipulate program flow with jump instructions. You should now have the
knowledge necessary to write moderately complex Assembly programs. In future chapters, we tackle
more complex topics and techniques that require a strong understanding of CHAPTERS 1–5.

Key Terms
AND
Boolean bitwise operations
Boolean logical expressions
branching
CMP
counter
JMP
LOOP
NOT
OR
repetition (looping)
short-circuit evaluation
TEST
XOR

Code Review
AND Bitwise AND operation

CMP Performs an implicit subtraction of the source operand from the destination operand

JA Jump if above (unsigned)

JAE Jump if above or equal (unsigned)

JB Jump if below (unsigned)

JBE Jump if below or equal (unsigned)



JC Jump if carry (unsigned)

JCXZ Jump if CX register is zero

JE Jump if equal

JECXZ Jump if ECX register is zero

JG Jump if greater (signed)

JGE Jump if greater or equal (signed)

JL Jump if less (signed)

JLE Jump if less or equal (signed)

JMP Unconditional jump

JNA Jump if not above (unsigned)

JNAE Jump if not above or equal (unsigned)

JNB Jump if not below (unsigned)

JNBE Jump if not below or equal (unsigned)

JNC Jump if not carry (unsigned)

JNE Jump if not equal

JNG Jump if greater (signed)

JNGE Jump if not greater or equal (signed)

JNL Jump if not less (signed)

JNLE Jump of not less or equal (signed)

JNO Jump if not overflow

JNP Jump if not parity

JNS Jump if not sign

JNZ Jump if not zero

JO Jump if overflow

JP Jump if parity

JRCXZ Jump if RCX register is zero

JS Jump if sign

JZ Jump if zero

LOOP Loop using CX/ECX/RCX as counter

NOT Bitwise NOT operation

OR Bitwise OR operation



TEST Performs an implied AND operation on two operands

XOR Bitwise XOR operation

Questions
Short Answer

1. Using the bitwise AND operation, the result of 1 AND 0 is ___________.
2. 10100100 ___________ 11010101 = 01110001.
3. A common way to detect whether a value is even or odd is to use the ___________ operation to

test if the least significant bit is set.
4. Combining multiple flags into a single variable can be accomplished via the ___________

operation.
5. In order to implement branching in an Assembly program, you must use ___________ to identify

blocks of code.
6. The ___________ instruction will move execution to a different section of code regardless of

any conditions.
7. Before any conditional tests can be executed, two operands must be compared using the

___________ instruction.
8. A comparison operation sets processor flags based on an implied ___________ of two

operands.
9. The JNGE instruction means to jump to a label if the first operand is ___________ the second

operand.
10. Only ___________ operands should be used when executing the JNA instruction.
11. In order to jump if the Sign Flag is set to 0 after a compare instruction, use the ___________

instruction.
12. Counter-based loops can be quickly written using the LOOP instruction, which uses

___________ as the counter.
13. In 32-bit mode, the LOOP instruction automatically ___________ ecx when executed.
14. Programmers can use a combination of the ___________ instruction and a ___________

instruction to create their own counter-controlled loops.
15. Using ___________ instead of ___________ to store data can help a program execute faster.

True/False
1. The AND bitwise operation is commonly used for setting bits in a value.
2. The JMP instruction does not require any specific processor flags to be set.
3. The JNZ instruction can be used with signed operands.
4. The LOOP instruction preserves the counter value automatically so the programmer is free to use

the counter register (cx/ecx/rcx) within the loop.
5. In Assembly, you must always use two conditional jump instructions to test both the if case and

the else case.



Assignments
5.1  Fibonacci’s revenge

Write a program that calculates the sum of all odd numbers in the Fibonacci sequence between
0 and 1,000,000.

5.2  Letter frequency

Write a program that counts the number of times the letter “a” (lowercase or uppercase)
appears in the following sentence: Assembly is the best programming
language!

5.3  Prepare for output! (Challenge Assignment)

Write a program that takes a normal 32-bit numeric value (e.g., 0xFFFFh) and converts it to a
byte array such that it can be printed to the screen using a system call method. A loop is
necessary for converting the numeric value to ASCII for output. Again, use a system call (e.g.,
int 80h) to print the value to the console (see CHAPTER 10). Calling external functions
(e.g., printf) is not allowed for this assignment.



CHAPTER 6

Functions
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•    Deconstruct function implementations
•    Compare function calling conventions
•    Manipulate stack memory
•    Create functions in Assembly
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Web Resources

Wikis



•    http://en.wikipedia.org/wiki/Calling_convention
•    http://en.wikipedia.org/wiki/X86_calling_conventions
•    http://en.wikibooks.org/wiki/X86_Disassembly/Calling_Conventions
•    http://wiki.osdev.org/Calling_Conventions

Developer
•    https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/LowLevelABI/000-

Introduction/introduction.html (OS X ABI Function Call Guide)
•    https://msdn.microsoft.com/en-us/library/k2b2ssfy.aspx (x86 Calling Conventions)
•    https://msdn.microsoft.com/en-us/library/ms235286.aspx (x64 Calling Convention)
•    http://refspecs.linuxfoundation.org/elf/x86-64-abi-0.99.pdf (AMD64 ABI)
•    http://www.agner.org/optimize/calling_conventions.pdf (Calling Conventions)

Introduction
The purpose of this chapter is to introduce you to the implementation details of functions. We
illustrate how registers and memory are used in the execution of procedures. This exploration
provides a significant peek “under the hood” for a software developer seeking to better understand
how functions—a foundational building block of modern programming languages—are implemented
at a low level. Although many technical details exist that we could spend hundreds of pages covering,
we will generally discuss the most common calling conventions and provide learning examples. This
chapter will help you better understand how functions work, how to program functions in Assembly,
and the implications of high-level programming decisions.

ATTENTION: The terms procedures and functions are sometimes used interchangeably. Some
texts may indicate a difference in that a procedure does not return a value, but a function does
return a value.

Stack Memory Primer
Prior to learning function calling conventions, you need a basic understanding of stack memory. To
review what you likely learned in fundamental programming courses, stack memory is an area of
memory used for automatic variables (i.e., local, non-dynamic). When a function is called, the stack
is used to store variables local to the function. When a function ends, the local variables (now out of
scope) are dereferenced and the memory locations become available for other uses. A significant
feature of high-level languages is that stack memory (sometimes called the run-time stack) is managed
for you; such is not the case in Assembly.

When diving into low-level Assembly programming you will be actively involved in managing
stack memory. Also, understanding the instructions that manipulate stack memory can help you when

http://en.wikipedia.org/wiki/Calling_convention
http://en.wikipedia.org/wiki/X86_calling_conventions
http://en.wikibooks.org/wiki/X86_Disassembly/Calling_Conventions
http://wiki.osdev.org/Calling_Conventions
https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/LowLevelABI/000-Introduction/introduction.html
https://msdn.microsoft.com/en-us/library/k2b2ssfy.aspx
https://msdn.microsoft.com/en-us/library/ms235286.aspx
http://refspecs.linuxfoundation.org/elf/x86-64-abi-0.99.pdf
http://www.agner.org/optimize/calling_conventions.pdf


debugging programs. The following list suggests important points to remember about stack memory.
•    The stack grows and shrinks as functions are called and return.
•    The stack grows and shrinks as local variables are created (pushed) and dereferenced

(popped).
•    The stack has an OS-dependent size limit per process/thread (e.g., Linux/Mac default is 8MB,

Windows default is 1MB).
•    Every function call, including main() and recursive calls, has a stack frame (an area of stack

memory that is supplied as a result of each function call).
•    A stack frame is used to store a function’s local variables.
•    Stack memory grows down, with addresses descending.
•    Every memory slot holds 4 bytes in 32-bit mode or 8 bytes in 64-bit mode.
•    Values are stored by default in Little-Endian form. (See CHAPTER 2 for details on Endianness.)

The least significant byte is stored at the start of the address (higher) and the most significant
byte is stored at the end (lower). For example, if we store the 32-bit hex value 0x9BFB3701
in memory, the value is stored as 01 37 FB 9B.

•    In x86_64, all functions must be 16-byte aligned (all platforms).
In the next section, we discuss the finer details of stack and further explain the aforementioned

points within the context of calling conventions and a working Assembly program example.

x86 and x86_64 Calling Conventions
Calling conventions, sometimes called protocols, define the process of how a function call is
implemented at a low level. A convention defines how parameters are passed, how stack memory is
managed, and how values are returned. As we discuss calling conventions, we will use the terms
caller and callee. The caller is the calling function and the callee is the called function. In the C++
Example 6.1, main() is the caller and sum() is the callee.

Example 6.1 Sum program in C++

cdecl (32-bit) – Function Overview



ATTENTION: We use a 32-bit example to provide a detailed overview of function calls. Doing so
allows us to examine differences between different 32-bit calling conventions and changes made
in 64-bit. Since both architectures are widely used, coverage of both is beneficial and important.

The cdecl (C declaration) calling convention is the most common across 32-bit platforms because
it is based on the C standard. Cdecl is typically the default convention in compilers such as GCC,
Clang, and Visual Studio’s C compiler. Some development environments, such as Visual Studio,
allow you to set the default convention in a project’s properties, as seen in Figure 6.1. Cdecl has four
primary characteristics.

•    Parameters are passed in reverse order (from right to left) via the stack.
•    eax, ecx, and edx are caller-saved (volatile), while the rest of the general purpose registers are

callee-saved (non-volatile). Consequently, if you want to save eax, ecx, and edx, you need to
do so in the calling function because they will likely be overwritten during function execution.

•    eax is used as the return register in most cases. st(0) is used for a floating-point return.
•    The caller is responsible for cleaning up the stack.
C supports variadic/varargs functions (variable argument lists), which means the callee does not

know how many arguments it has received. Therefore, the caller must clean up the stack and cleanup
code is necessary every time a function is called. A prime example of a variadic C function is
printf().

Program 6.1 demonstrates the cdecl calling convention in x86. The program is an Assembly
implementation of the C++ Sum program in Example 6.1. We use the GAS version to discuss cdecl in
greater detail.

The Sum program pseudocode is as follows.

1. Declare and initialize variables (num1 and num2)
2. Simulate computational activity pre function call
3. Call the sum function, which adds num1 and num2
4. Simulate computational activity post function call



Figure 6.1 Set calling convention in Visual Studio

PROGRAMMING: Understanding function implementations at a low level is important for code
optimization and debugging. When using x86, you may independently chose calling conventions for
functions. When using x86 or x86_64, you can better choose when implementing a function is
appropriate and when repetitive operations are appropriate. Low-level function details highlight
the pros and cons of recursive, inline, static, and template functions. Most development
environments present disassembled code when debugging, so understanding what is happening and
when helps in finding and fixing bugs.



Program 6.1 Sum program x86 implementations

LEARNING: One way to explore this chapter is to code Program 6.1; and as you write each code
section, refer to the following breakdown to explain the reasoning and behavior of the code.



The first section of the GAS code, the .data segment, defines two variables: num1 with a value of
2 and num2 with a value of 4, both 32-bits. Next is the .text segment, which contains the
executable instructions for the program. Two global functions are declared: _main and _sum, with
_main being the entry point of the program.

The next three lines are meant to simulate other activities going on in the program and to set up a
register-saving scenario. We move the value 10 to eax, decrease eax by 1, and move the value 5 to
ebx. The status of the registers is eax = 9 and ebx = 5. If we wanted to save the value in eax (a
caller-saved register), we would need to push eax to the stack prior to the function call so the value
could be restored upon returning to _main. We do want to save ebx (a callee-saved register), so we
will push ebx to the stack once we are inside the _sum function.

Next is the function call. Remember, cdecl parameters are passed in reverse order (from right to left)
via the stack. Given the function call
answer = sum(num1, num2);
num2 will be pushed first and num1 pushed second. For pass-by-value, push the value. For pass-by-
reference, push the address of the value (see Example 6.2). The call is then made to _sum. After
the _sum function has completed, the stack needs to be cleaned up in _main. Since two 4-byte
values were pushed on the stack, 8 bytes is added to esp to “remove” the values.

Example 6.2 32-bit pass-by-reference



LEARNING: Refer to the CODE REVIEW section at the end of the chapter for details on new
instructions introduced in this chapter (PUSH, POP, CALL, RET, and NOP). The chapter programs
and code examples provide syntax specifics and we discuss operational details as we go along.

At this point, it will be helpful to take a look at the disassembly, stack, registers, and instructions
with corresponding memory locations of Program 6.1 when running. The memory addresses will vary
when running the program, but the process is consistent. Also, remember that stack grows down with
addresses descending.

Figure 6.2 illustrates the state of the Sum Program before the parameters are pushed to stack.
Notice that eip holds the address 0x1f86, which is the next instruction to be executed (pushl
0x2004). When we step forward and execute the instruction, several things will happen.

1. eip will be incremented to 0x1f8c, the next instruction to be fetched and executed.
2. The value contained in address 0x2004 will be pushed to the stack. If we were to look in

memory location 0x2004, we would find the value 04 00 00 00, which is num2.
3. esp will be decremented 4 bytes to account for the 32-bit value pushed on the stack.

Figure 6.3 illustrates the state of the program after the two parameters have been pushed to the
stack.



Figure 6.2 Before parameters pushed



Figure 6.3 After parameters pushed

The next instruction to execute (see eip in Figure 6.3) is stored in 0x1f92 and is calll
0x1fa9. The CALL instruction will do several things.

1. Push the location of the next instruction on the stack. Upon completing the _sum function, we
need to pick up where we left off in _main, which means saving the address of the first
instruction after the calll. In this example that means the value (address) 0x1f97 is pushed
on the stack.

2. Execution then transfers to the address called, in this case 0x1fa9.
3. eip and esp are updated accordingly.

Figure 6.4 illustrates the state of the program after the CALL instruction has been executed.



Figure 6.4 After CALL instruction

Upon entering the _sum function, the stack frame for _sum needs to be established. As previously
stated, a stack frame is where local variables for a function are located, and the ebp register points to
the beginning of the currently executing stack frame. The role of ebp is important because it provides
a point of reference for the parameters passed and for local variables; ebp is how we will access
values in the function. In x86, avoid using esp to reference parameters because its purpose is to
always be pointing to the top of the stack and esp will change as values are pushed and popped. ebp
gives us a constant reference point and it should not be changed throughout a function.

PROGRAMMING: The way local variables are referenced varies from 32-bit to 64-bit. In 32-bit,
ebp typically serves as the constant point of reference for accessing parameters. In 64-bit, ebp
referencing is less common for several reasons: (1) registers are used more often than stack for
passing parameters, (2) rip-relative addressing is available (see APPENDIX F and CHAPTER 6
SUPPLEMENT), and (3) default allocation of scratch space in stack memory enables use of rsp for
referencing local variables. We discuss 64-bit implementations later in this chapter.



The first two lines of the _sum function are the function prologue, which is entry code that exists for
every function call. The frame pointer for the calling function (_main) needs saved so it can be
restored later, therefore ebp is pushed to the stack (pushl %ebp). Then, ebp is set to the same
value as the current top of the stack (movl %esp, %ebp). In effect, the two lines setup the new
stack frame.

In our example, we want to use ebx, a callee-saved register, for the calculation in _sum so we save
its current value (to be restored later) by pushing ebx on the stack.

Figure 6.5 After establishing frame and saving ebx

Figure 6.5 illustrates the state of the program after setting up the stack frame and saving ebx.



Now the calculation can happen, which can be accomplished in many ways. In our example, we copy
the two values from their memory locations within the stack frame to registers and then add the
registers. Remember, ebp is our point of reference for the stack frame. The two parameters were
pushed in reverse order prior to the CALL, and the CALL implicitly pushes the next address on the
stack. Then, ebp was realigned for the stack frame.

Therefore, if we add 4 bytes to ebp, we will get the memory address of the instruction after the
CALL. The first parameter is 8 bytes back up the stack and the second parameter 12 bytes back. In our
case, we save the result in eax since it is the return register for integers. Consult APPENDIX F and the
WEB RESOURCES for more complex return types.

Next, we prepare for the return to _main. Having previously saved ebx to the stack, we perform a
POP to restore 5 to ebx. Then comes what is often called the function epilogue, which is code always
written upon exiting a function. Since we are returning to _main, we must restore the frame pointer
for _main to ebp. The two POPs, in effect, remove the items off the stack and add a total of 8 bytes
(4 bytes each) back to esp.

Then we arrive at the RET instruction. RET implicitly pops a value from the top of the stack into eip,
which should be the address of the instruction that was pushed on the stack by the related CALL
instruction. So, retl pops 0x1f97 off the stack and into eip, which will be the next instruction
executed by the CPU.

Figure 6.6 illustrates the state of the program after the RET instruction. Meanwhile, eax = 6, the
sum of the two values, and ebx = 5, its value prior to the function call.



Figure 6.6 After RET instruction

The cdecl convention requires the calling function (_main) to clean up the stack, which means
dereferencing the parameters previously pushed in _main for the _sum procedure. We pushed two
4-byte parameters on the stack, so to clean up we must add 8 bytes to esp. Pushing values on the stack
moves esp in descending memory (like subtracting), so adding to esp does the opposite by ascending
and effectively removing (dereferencing) values off the stack.



The last few lines continue more instructions in _main. ebx is added to eax and then eax is
decremented by 1, for a final value of 10.

We conclude the GAS version of the program by pushing the exit parameter on the stack, padding the
stack an extra 4 bytes, placing the exit system code in eax, and issuing an interrupt to the kernel. For
more information on exit routines see CHAPTER 10.

stdcall (32-bit)
Another common calling convention is stdcall, which is best known for its use by the Windows API.
Generally, stdcall follows the same rules as cdecl, with one difference (the last bullet point).

•    Parameters are passed in reverse order (from right to left) via the stack.
•    eax, ecx, and edx are caller-saved, while the rest of the general purpose registers are callee-

saved.
•    eax is used as the return register in most cases. st(0) is used for a floating-point return.
•    The callee is responsible for cleaning up stack.

The advantage of stdcall is that the called function can perform stack cleanup as part of the return
instruction, which means fewer lines of code in calling functions. Cleanup code is written once in the
callee instead of every time a particular function is called. Callee cleanup is possible because stdcall
does not allow variadic functions, so the callee can know how many parameters it received, and thus
can perform the cleanup.

Stdcall uses an alternative form of the RET instruction that includes the number of bytes to be
removed from stack. If we were to re-write Program 6.1 in MASM to use stdcall, two changes would
be necessary.

1. Remove the line “add esp, 8” in _main
2. Modify the return in _sum to “ret 8”

We discussed function implementation in detail using cdecl because cdecl is the default calling
convention for most C/C++ compilers. The advantage of cdecl is the availability of variadic
functions. Though stdcall’s use beyond the Windows API is uncommon, stdcall can be used on other
platforms by defining a function as __stdcall (syntax varies by platform) as illustrated in
Example 6.11 later in this chapter.

x86_64 (64-bit)
With the advent of 64-bit architecture, calling conventions have become more standardized, with one
convention in two flavors: Microsoft x64 and System V AMD64 (AMD64). The x86_64 conventions
attempt to increase the speed of function execution by passing some parameters in registers instead of
on the stack (similar to fastcall in 32-bit mode). Table 6.1 shows the characteristics of the two 64-bit
calling conventions.



ATTENTION: Fastcall (see Example 6.11) is another 32-bit calling convention that attempts to
pass values in registers if possible, as opposed to using the stack. Further information about
fastcall can be found in the WEB RESOURCES.

Table 6.1 x86_64 Calling conventions

Convention Parameter
registers

Caller-saved
registers

Callee-
saved

registers

Attributes

Microsoft x64 rcx/zmm0
rdx/zmm1
r8/zmm2
r9/zmm3

rax, rcx, rdx,
r8 – r11,
st(0) – st(7),
k0 – k7,
xmm0 – xmm5,
All ymm regs,
All zmm regs
except lower 128
bits
(xmm0 – xmm5)

rbx, rsi,
rdi, rbp,
r12 – r15,
xmm6 –
xmm15,
and only
the
lower 128
bits of
zmm regs

Stack aligned by 16 bytes.
32 bytes of shadow space reserved on the stack following
the return address and preceding local variables.
4 parameters can be sent in parameter registers.

System V AMD64
(Linux, BSD, Mac, Gnu)

rdi
rsi
rdx
rcx
r8
r9
zmm0-7

rax, rcx, rdx, rsi,
rdi,
r8 – r11,
st(0) – st(7),
k0 – k7,
xmm0 – xmm15,
ymm0 – ymm15,
zmm0 – zmm31

rbx, rbp,
r12 – r15

Stack aligned by 16 bytes.
128-byte red zone reserved on the stack following the
return address.
14 parameters can be sent in parameter registers.

In Windows 64-bit, a maximum of four parameters can be sent via registers in the order indicated
in Table 6.1. If a function call has three parameters in the order of (int, float, int), the
values will be passed in rcx, zmm1, and r8. In systems using AMD64, a maximum of 14 parameters
can be sent via registers. Note that the order of parameter registers differs between the two
conventions.

In both cases, if more parameters exist than parameter registers, the remaining parameters are
passed via the stack in right-to-left order. Consider Example 6.3 given the Microsoft x64 convention.



Example 6.3 Parameter passing in Microsoft x64

Functions in 64-bit mode must be 16-byte aligned. x86_64 supports Streaming SIMD Extensions
(SSE), the instructions behind parallel processing. SSE operations are typically 128 bits, which when
divided by 8 bytes (the instruction length in x86_64) is 16, meaning use of such operations
necessitates 16-byte alignment. To make sure any functions using SSE do not have stack alignment
errors, all stack frames should be 16-byte aligned. Also, the CALL instruction pushes an 8-byte
address on the stack, so in many cases the stack will need to be realigned by another 8 bytes.

ATTENTION: A good reference for understanding optimization and alignment is the Intel 64 and
IA-32 Architectures Optimization Reference Manual
(http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-
architectures-optimization-manual.pdf). Section 4.4.2 covers stack alignment for SIMD
operations. We discuss alignment and SSE instructions in more detail in CHAPTER 8.

Aligning the stack in code can be achieved a number of ways, each with subtle differences, such
as speed. One method is to subtract 8 from rsp upon entry into a function, but that also requires adding
8 back to rsp upon exiting. Another common method is to perform rsp AND -16 (0xF0). Doing so
lowers rsp to the next multiple of 16 (an address that always ends in 0). For example, if we have the
address 0x44 and we perform 0x44 AND 0xF0, the result is 0x40.

Another way to ensure alignment in GCC and Clang/LLVM is to pass the -mstackrealign
flag to the compiler, which generates alternate prologue and epilogue code that aligns the stack as
necessary.

Figure 6.7 mstackrealign flag in Xcode project settings

http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf


As we will notice in the IMPLEMENTATIONS section of this chapter, functions typically begin at an
address ending in 0, indicating 16-byte alignment. Compilers achieve alignment in various ways. In
Example 6.4, which is disassembly of the C++ Sum Program on macOS, notice that the compiler
(Clang/LLVM) is using the NOP instruction (nopl) to align the stack (line 23), which is yet another
option for a programmer. However, we do recommend allowing the compiler to align the stack
automatically when possible.

LEARNING: Code the Sum Program in C++ (Example 6.1) using your preferred IDE and compile
for 64-bit. Disassemble the object file and determine how your chosen compiler has performed
16-byte alignment. Refer to APPENDIX C: DISASSEMBLY.



Example 6.4 Stack alignment using NOP

PROGRAMMING: The NOP instruction in Example 6.4 is a multi-byte variant. Specifically,
0F1F440000 is the 5 byte NOP sequence (instruction). Note that _main and __Z3sumii
begin on addresses ending in zero—0x00 and 0x50, respectively. The _main function ends on
0x4b, and the NOP instruction takes up 5 bytes so that __Z3sumii begins on 0x50 (0x4b +
0x05 = 0x50). The variants of NOP are detailed in Intel’s Instruction Set Reference, Volume
2B, Page 4-8, Table 4-9. The variants are also detailed in online sources
(http://www.felixcloutier.com/x86/NOP.html).

http://www.felixcloutier.com/x86/NOP.html


Another important aspect of x86_64 conventions is extra space that is reserved on the stack. In
Microsoft x64, the space is referred to as shadow (home) space, is 32 bytes in length, and is used to
save parameter register values. You must reserve the space even if no parameters are passed. Shadow
space is scratch space to store the values passed in r8, r9, rcx, and rdx if the registers are needed for
subsequent function calls within a called function, though the space could be used for other purposes.

Example 6.5 provides an abstract description of stack contents in Microsoft x64 regarding
shadow space.

Example 6.5 Microsoft x64 shadow space

Example 6.6 shows the MASM prologue and epilogue disassembly for the x64 Sum Program’s
main() function when written in C++ in Visual Studio.

Example 6.6 x86_64 Sum program disassembly in MASM

As for AMD64, 32 bytes of shadow space does not exist, but rather 128 bytes beyond the return



address (where rsp is pointing) is called the red-zone. The red-zone is temporary storage for function
use and will not be tampered with by the system. If no PUSH, POP, or CALL instructions are used in
the red-zone, and rsp is not modified, then rsp can be used to reference local variables and identifiers
(for jumps and loops). The reason for the red-zone is to potentially optimize execution due to less
adjustments of rsp for local variables, which saves clock cycles. Another use is the implementation
of leaf functions, functions that make no calls, whose caller can use the red-zone to perform whatever
computations are needed instead of actually issuing a call and dealing with the overhead.

Unlike Microsoft x64 shadow space, the AMD64 red-zone is not reserved by the programmer or
compiler. The red-zone is simply a guarantee that system signals or interrupt handlers will not touch
128 bytes past rsp. However, function calls do clobber (destroy) the red-zone of a calling function.
Thus, red-zone use is mainly limited to scratch space for leaf functions.

Some Useful Details
•    If the Floating-Point Unit (FPU) stack is used, it must be clear upon entry into a function and

upon exit, except for st(0), which may be holding the return value. The FPU is discussed in
CHAPTER 8.

•    In 32-bit, addresses for pass-by-reference are passed on the stack. Registers serve as an
intermediary to obtain the parameter address at run-time using the LEA instruction, which is
then moved or pushed to the stack.

   In 64-bit, the address can be moved directly to a register for pass-by-reference.

•    In 64-bit, if using varargs functions such as printf(), the al register, which is the low 8 bits
of rax, is used to store the number of SSE registers used.

•    Refer to the WEB RESOURCES for further detail on calling conventions. In particular, the
reference by Agner Fog (http://www.agner.org/optimize/calling_conventions.pdf) and the
application binary interface (ABI) documents such as
http://refspecs.linuxfoundation.org/elf/x86-64-abi-0.99.pdf are the most useful in terms of
comparing calling conventions and providing detailed overviews.

ATTENTION: An application binary interface (ABI) document is a formal document that defines
low-level interfacing requirements for software. ABIs are published by companies and
manufacturers such as Intel, AMD, and Microsoft.

Implementations

http://www.agner.org/optimize/calling_conventions.pdf
http://refspecs.linuxfoundation.org/elf/x86-64-abi-0.99.pdf


Throughout this chapter we have discussed the Sum Program (Example 6.1) and shown
implementations of the program in different assemblers (Program 6.1). Examining and comparing the
disassembly of C++ implementations in 32-bit versus 64-bit is also helpful. In this section, we
compare cdecl, stdcall, and fastcall conventions in 32-bit. All code examples in this section were
written in C++ using Xcode.

Program 6.2 Sum program in C++

PROGRAMMING: If you are developing platform-specific code in Assembly or inline Assembly,
you have the flexibility to implement functions in a way that is optimal, given your scenario. You
may be able to write a sequence of instructions that is more efficient than what a high-level
compiler can produce. For example, you can use registers to pass function parameters in 32-bit
programs. You can minimize the instructions used to move values between memory locations and
perform arithmetic. Depending on the data being passed, you can use one register to pass two
values. The key is that you are in control.



Example 6.7 Sum Program main() Disassembly

Different compilers will produce different low-level code to accomplish high-level statements, but
notice that the 32-bit and 64-bit code in Example 6.7 is quite comparable. The 64-bit code is slightly
more efficient, and both examples follow the calling conventions. Also, notice that the main()
functions are 16-byte aligned, beginning on 0x1f50 and 0x100000f60, respectively (line 2).

In both scenarios, upon entry into main(), space is reserved for the three local parameters with
SUB (line 4). Then the values are assigned with MOVs (lines 5–7) as shown in Example 6.8.

Example 6.8 Sum program main() disassembly, lines 4–7

Leading up to the CALL is the first difference, as shown in Example 6.9. In 32-bit (lines 8–11),
value1 and value2 are copied into registers (eax, ecx) and then copied from the registers to
stack. The double move is required because MOV cannot transfer data from memory to memory.
However, using PUSH could simplify the process. Comparatively, the 64-bit version (lines 8–9)
simply moves the values to registers according to the AMD64 convention by using the first two
parameter registers edi and esi. Since the values were declared as integers, which are 4 bytes in C++,
edi and esi are used instead of rdi and rsi.



Example 6.9 Sum program main() disassembly, passing parameters

Next are the implementations of the sum() function.

Example 6.10 Sum program sum() disassembly

First, notice that in both cases shown in Example 6.10 the sum() functions are 16-byte aligned,
beginning on 0x1f90 and 0x100000fa0, respectively (line 2). Then, take note of the customary
prologue and epilogue code for the sum() stack frames (lines 2–3). Next, in both examples the
values are copied to stack again within the sum() stack frame because the parameters are pass-by-
value.

32-bit (lines 4–8)
•    Space is reserved for local copies of the parameters (line 4).
•    The values passed in main() via the stack are copied to registers (lines 5–6).
•    The values are copied to the reserved space in sum()’s stack frame (lines 7–8).

64-bit (lines 4–5)
•    The values are copied from parameter registers to stack within the red-zone.

Again, the 32-bit code has some inefficiencies/redundancies, which are partially due to the
parameters being pass-by-value. One big difference between the two implementations is that in the
64-bit version of sum(), rsp is not adjusted with a SUB instruction. The red-zone has plenty of
space for the computation and also no subsequent calls are made.

The values are then added and placed in the return register eax (lines 9–10 in 32-bit and lines 6–
8 in 64-bit). Lastly, the local copies of the parameters are cleaned up in 32-bit by ADDing 8 bytes
back to esp (line 11), followed by the POP of ebp/rbp and the RET instruction (lines 12–13 and lines



9–10, respectively).
Example 6.11 presents Program 6.2 when implemented using 32-bit stdcall and fastcall calling

conventions. The implementations can be compared with the 32-bit (cdecl) and 64-bit (AMD64)
conventions.

In stdcall, notice the retl $0x8 instruction (line 14) in sum(). However, if you look closely
at how Xcode chooses to handle the stdcall implementation (i.e., how values are pushed, esp
adjustments) you may also notice that collectively the code negates the intended behavior of stdcall.
Fastcall is essentially identical to the x86_64 example, with registers being used to pass the
parameters (ecx and edx).

Example 6.11 Sum program stdcall versus fastcall

Summary



You should now have a better understanding of how functions are implemented at a low level. Calling
conventions help standardize the use of registers and stack memory related to functions. We presented
the most common calling conventions on x86 and x86_64; however, the insight you have gained into
function implementation is transferable to other platforms. Understanding low-level details of
functions will help you to optimize high-level code, adapt code based on resources available on a
given system, and write efficient function calls.

Key Terms
application binary interface (ABI)
callee
caller
calling conventions
cdecl
epilogue
fastcall
functions
leaf functions
Little-Endian
Microsoft x64
procedures
prologue
red-zone
shadow (home) space
stack frame
stack memory
stdcall
Streaming SIMD Extensions (SSE)
System V AMD64 (AMD64)

Key Registers (32-bit, 64-bit)
ebp/rbp base frame pointer: points to beginning of currently executing stack frame

esp/rsp stack pointer: should always point to top of stack (most recently pushed value)

eax/rax accumulator: used for function return value in most cases (not all cases; float return is one exception)

eip/rip instruction pointer: points to next instruction to be executed

Code Review



PUSH copies a value (memory or register) into the memory location pointed to by esp/rsp and decrements esp by
4 or rsp by 8

POP copies the value pointed to by esp/rsp into a given destination (memory or register) and increments esp by 4
or rsp by 8

Push/Pop the flags
register on/off the
stack

PUSHF/POPF is for the 16-bit flags register; PUSHFD/POPFD (Intel) and PUSHFL/POPFL (AT&T) is
for the 32-bit eflags register; and PUSHFQ/POPFQ is for the 64-bit rflags register

Push/Pop all general
purpose registers
on/off the stack

PUSHA/POPA is 16-bit; PUSHAD/POPAD (Intel) and PUSHAL/POPAL (AT&T) are 32-bit ordered eax,
ecx, edx, ebx, esp (prior to push), ebp, esi, edi; no equivalent instruction exists for 64-bit so push/pop
registers individually

CALL pushes the address of the instruction directly following the CALL on the stack and transfers control to the
called destination (usually indicated by a label)

LEA Load Effective Address; calculates and loads the address (offset) of a memory operand at run-time

NOP No Operation; takes up space in memory and uses clock cycles; has single-byte and multi-byte variants

RET
 
 
 
 

pops value from top of stack into eip/rip, which should be the location (address) of the instruction that was
pushed on the stack by the related CALL instruction. Has two forms in 32-bit based on the calling
convention used (1. cdecl, 2. stdcall):

 1. RET
 2. RET count

Count is the number of bytes added to esp after completion of the return.

Platform Specific Notes
•    Windows programmers make use of the PROC and ENDP directives to indicate the beginning

and end of a procedure.
•    In MASM on Windows, the calling convention (C, STDCALL) can be set via the .MODEL

directive for the entire program or for individual PROC declarations for more granular control.

•    In MASM on Windows, the USES directive is available in both 32-bit and 64-bit modes,
which tells the assembler to generate PUSH and POP instructions for registers stated with the
USES directive. The automatically generated instructions become part of the prologue and
epilogue code on procedure entry and exit.

•    In macOS, function calls are 16-byte aligned in 32-bit and 64-bit.



Questions
Short Answer

1. A __________ is where a function’s local variables are stored.
2. __________ define the process of low-level procedure implementation.
3. Using __________, the caller is responsible for cleaning up stack memory.
4. __________ registers are considered to be volatile because they will likely be used and

overwritten in a function.
5. The __________ instruction implicitly pushes the subsequent instruction on the stack.
6. The __________ register points to the most recent item pushed on the stack.
7. __________ and __________ code are common lines of code upon entry to and exit from a

function.
8. __________ and __________ instructions implicitly add and subtract from the stack pointer

register as values are moved on and off the stack.
9. In 32-bit stdcall, the number of bytes to remove from the stack are stated with the __________

instruction.
10. The __________ register is typically used as the return register.
11. __________ is a 32-bit calling convention that uses registers to pass values if possible.
12. The x86_64 calling convention(s) attempt to pass some or all parameters via __________

instead of the stack.
13. Microsoft x64 reserves __________ bytes of shadow space, while AMD64 preserves

__________ bytes of red-zone space.
14. __________ functions are functions that make no calls.
15. An __________ defines low-level (i.e., machine level) interfacing requirements for software.

True/False
1. Stack memory is allocated in increasing address space. (T/F)
2. In cdecl and stdcall, parameters are passed in right-to-left order. (T/F)
3. All procedure calls in 64-bit must be 16-byte aligned. (T/F)
4. The FPU stack must be clear upon function entry and exit. (T/F)
5. All x86_64 operations are 64-bits. (T/F)

Assignments
Use APPENDIX E: LINKING ASSEMBLY AND C++ to complete Assignments 6.1 and 6.2.



LEARNING: Learning how to integrate Assembly with C++ will reinforce Chapter 6 concepts,
while also helping you develop a useful programming skill. The assignments can be completed
using your preferred calling convention.

In Assignments 6.1 and 6.2, the flow of the program should be driven by the _main function in the
Assembly code. For example, in Assignment 6.1 you should call C++ functions from the Assembly
code to get integer input and print integer output. Values entered on the C++ side are returned to the
Assembly side, the calculation takes place, and then the sum is sent to a C++ function for output.

6.1  Sum (or any chosen arithmetic operation or set of operations)

Write a program that prompts the user for two integers, adds the integers, and displays the sum.
Use C++ functions only to prompt for input and display output. Assembly code should control
program flow, function calls, and arithmetic. Use appropriate accompanying text for the prompt
and output statements.

6.2  Arithmetic and flags

Write a program that performs a series of three simple calculations (e.g., addition, subtraction,
incrementing) using programmer-defined data. After each calculation, output the contents of the
eflags register in hexadecimal (or binary) notation. Use a C++ function for the output and use
Assembly for everything else. Use appropriate accompanying text for the output statements. To
extend this assignment, interpret the eflags bits for relevant computation results (CF, OF, SF,
ZF).

6.3  Sorting function in x86_64 (Challenge Assignment)

Write an x86_64 Assembly program that sorts a programmer-defined array. The size of the
array and address of the array should be passed to the called sort function via registers. You
can choose the sorting algorithm to be implemented. A simple example would be Bubble Sort.
Test using 5 or 10 elements.



CHAPTER 6 SUPPLEMENT

Program 6.3 x86_64 Implementation

The following implementations are examples of x86_64 Assembly for the Sum Program. The
examples illustrate a few of the many possibilities in terms of implementation details. For example,
the implementations are pass-by-reference. Also, in 64-bit GAS and NASM, we are taking advantage
of RIP-Relative Addressing. In MASM, we also reserve 32 bytes of home space per the Microsoft
x64 convention.



Program 6.3 Sum program x86_64 implementations



CHAPTER 7

String Instructions and Structures

Objectives
•    Demonstrate string manipulation using string primitive instructions
•    Apply repetition constructs to string primitive instructions
•    Create composite datatypes using structures

Outline
1. Web Resources
2. Introduction
3. Accessory Instructions
4. String Primitive Instructions

a. MOVS
b. CMPS
c. SCAS
d. STOS
e. LODS

5. Structures
6. Summary
7. Key Terms
8. Code Review
9. Questions

a. Short Answer
b. True/False

10. Assignments

Web Resources
•    http://www.intel.com/content/www/us/en/processors/architectures-software-developer-

manuals.html (Volume 1, Chapter 5 Instruction Set Summary, Section 5.1)
•    http://www.nasm.us/doc/nasmdoc4.html#section-4.11.10 (NASM struct)

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.nasm.us/doc/nasmdoc4.html#section-4.11.10


•    https://msdn.microsoft.com/en-us/library/tydf8khh.aspx (MASM struct)
•    https://sourceware.org/binutils/docs/as/Struct.html#Struct (GAS struct)

Introduction
The focus of Chapter 7 is strings and structures. We cover accessory instructions to string operations
and five string primitive instructions that process string data, which exists in memory as byte arrays.
Although you can complete most of the tasks using material presented in earlier chapters, the
instructions presented here will allow you to accomplish the tasks with greater efficiency and less
code. We also describe the composition and use of structures in Assembly.

Accessory Instructions
Before discussing string instructions, we must introduce two categories of instructions that you can
use alongside the string instructions: direction and repetition instructions. Without an understanding of
direction and repetition instructions, use of the string instructions may seem confusing and may even
produce incorrect results.

The direction instructions, shown in Table 7.1, are for clearing and setting the direction flag. As
mentioned in CHAPTER 2, the direction flag controls the left-to-right or right-to-left processing of
strings when using string instructions, due to the automatic incrementing or decrementing of memory
addresses.

Table 7.1 Direction flag instructions

Instruction Description Effect

CLD Clears the direction
flag

When repeating string operations, read characters in a left-to-right fashion (i.e., low-to-high memory
addressing).

STD Sets the direction
flag

When repeating string operations, read characters in a right-to-left fashion (i.e., high-to-low memory
addressing).

The CLD and STD instructions are most useful when used as control instructions to prepare for
repetition. Repetition with string instructions works similarly to the JCXZ/JECXZ/JRCXZ
instructions mentioned in CHAPTER 5. The REP (repeat) instruction has three forms, shown in Table
7.2, each using the C register as a counter.

https://msdn.microsoft.com/en-us/library/tydf8khh.aspx
https://sourceware.org/binutils/docs/as/Struct.html#Struct


Table 7.2 Repetition instructions

Instruction Description Effect

REP Repeat while
cx/ecx/rcx ≠ 0

A simple counter-based repetition that repeats while the C register is not zero.

REPE/REPZ Repeat while
cx/ecx/rcx ≠ 0 and ZF
= 1

A counter-based repetition, but also requires ZF to be set for each repetition. The
repetition stops when ZF is clear or the C register reaches zero.

REPNE/REPNZ Repeat while
cx/ecx/rcx ≠ 0 and ZF
= 0

A counter-based repetition, but also requires ZF to be clear for each repetition. The
repetition stops when ZF is set or the C register reaches zero.

The combination of a direction flag instruction and a repeat instruction sets up the process of
automated data processing without the need for manually writing a loop. In order to better understand
how repeat instructions work, the following list details the steps that occur automatically when REP
or a variant is executed along with a string instruction.

1. The repeat instruction checks if the C register value is greater than zero. If the value is zero, the
repeat process ends. If the value is greater than zero, the repeat process continues.

2. The string instruction executes, sets related flags depending on the result, and increments or
decrements si/esi/rsi and di/edi/rdi, depending on the instruction and the direction flag.

3. In the case of REPE/REPNE and REPZ/REPNZ, the repeat instruction checks the flags to
determine if a repeat should occur. If the flags indicate a repeat should not occur, the process
ends.

4. If steps 2 and 3 (if applicable) were successful, the C register is decremented and return to step
1.

Before exploring the specific string instructions, consider the following scenario. Assume we
have some data stored temporarily in memory and we wish to move (copy) the data to another
location for further processing. Knowing that the data is 10 characters long, we can load the counter
register, source memory address, and destination memory address accordingly. Then we can set the
direction to process our text and finally execute the move. We cover the specifics in greater detail in
the next section.

Example 7.1 Repetition in NASM

A more visual way of understanding the action of REP in Example 7.1 is shown in Example 7.2.
We use the MOVS instruction due to its use of both esi and edi. As the REP instruction iterates



through 10 characters, specified by the initial value in ecx, MOVSB increments esi and edi (because
DF is clear) by 1 byte each iteration (the “b” suffix on MOVS is for BYTE). Once ecx becomes zero,
the REP ends.

Example 7.2 Iterations of REP

String Primitive Instructions
Now that we have covered the basics of repetition, we examine five instructions for processing string
data. String primitive instructions are similar to instructions discussed in earlier chapters (e.g., MOV,
CMP), but string instructions are designed to deal with character arrays. Table 7.3 details each of the
instructions.



Table 7.3 String primitive instructions

Instruction Description

MOVS MOVS is similar to the MOV instruction but is specifically for copying characters from one location to another. MOVS
implicitly copies data starting at the memory location referenced by si/esi/rsi to the memory location referenced by
di/edi/rdi.

CMPS CMPS is similar to the CMP instruction but is specifically for comparing strings referenced by si/esi/rsi and di/edi/rdi.
CMPS is best used with REPE/REPZ so that the comparison fails when a character in the source is not equal to the
corresponding character in the destination.

SCAS SCAS scans a string referenced by di/edi/rdi searching for the character stored in al/ax/eax/rax, depending on the
instruction size suffix. SCAS is best used with REPNE/REPNZ so that the scan stops when the character is found.

STOS STOS stores a value from al/ax/eax/rax into the location referenced by di/edi/rdi. STOS is best used to initialize arrays
(of any kind) with default values by using REP.

LODS LODS loads a value from the location referenced by esi into al/ax/eax/rax. LODS should not be used with a repeat
instruction due to the repetitive overwriting of the accumulator register.

PROGRAMMING: Each of the string instructions use the direction flag (DF) to either increment
or decrement memory addresses in (r/e)si and (r/e)di by the specified number of bytes, so that the
string instruction progresses through the array in the desired direction. An increment or decrement
occurs even when REP does not accompany a string instruction.

MOVS
The MOVS (move string) instruction is similar to MOV with two differences: MOVS source and
destination operands are assumed (e.g., esi and edi) and MOVS is suffixed with a size identifier no
matter the Assembler. The registers (r/e)si and (r/e)di should contain memory addresses pointing to
the data to be copied and the copy destination, respectively. In order for multiple characters to be
copied in succession, MOVS increments or decrements (depending on DF) the memory addresses by
the number of bytes indicated by the size suffix so that REP can continue to the next character.

Because string instructions can operate on data from 1 to 16 bytes in size, string instructions need
to know how many bytes to read each repetition in order to address each character properly. So string
instructions are accompanied by a size suffix in all Assemblers. Programmers using GAS are used to
appending size suffixes to most instructions. Recall from CHAPTER 3 the instruction suffix letters that
signify operand size, shown again in Table 7.4.



Table 7.4 String instruction suffixes

Size Suffix letter

byte (8 bits) B

word (16 bits) W

dword (32 bits) D

qword (64 bits) Q

octa (128 bits) O

The basic invocation of MOVS is MOVSS (e.g., MOVSQ). But as previously described, MOVS is
most useful when repeated. The REP MOVS combination is shown in Example 7.3 with the necessary
accessory instructions.

Example 7.3 MOVS

The code in Example 7.3 assumes the existence of the src and dst variables, which are to be
used for the data transfer. The first two instructions load the memory addresses of the variables into
esi and edi, respectively. Next, the counter is set by storing 10 in ecx, signifying 10
repetitions/characters to be copied. Then, DF is cleared, signaling left-to-right data movement.
Finally, MOVSD is executed accompanied by the REP instruction, which will execute MOVSD until
ecx is zero. Remember, REP decrements ecx each iteration.

Figure 7.1 illustrates the steps taken by rep movsd in the code from Example 7.3.

CMPS
The CMPS (compare string) instruction is similar to the CMP instruction. Like MOVS, CMPS does
not take operands but implicitly uses (r/e)si and (r/e)di for the memory addresses of the data to
compare. Similarly, the CMPS instruction is most valuable when used in conjunction with REP.
Executing CMPS without REP only compares a single character, not an entire string.

While MOVS uses REP in order to repeat sequential moves, CMPS acts like a sequential access
algorithm you might implement with a high-level language in a programming class. CMPS needs to be
repeated to move character by character through strings, but CMPS also must perform a check each
iteration to determine whether or not the characters in the strings are equal. The REP instruction does
not assist in any such comparisons, it simply repeats. To perform comparative checks, we must use



one of the repeat variants (REPE/REPZ or REPNE/REPNZ).
For example, REPE/REPZ will only continue repeating if the characters are equal (i.e., ZF is set

by the CMPS instruction). CMPS compares each corresponding character by performing an implicit
subtraction of the character referenced by (r/e)di from the character referenced by (r/e)si, which
modifies the processor flags, specifically ZF.

Figure 7.2 illustrates repe cmps comparing the strings, "Johanna" and "Johnnie".

PROGRAMMING: REPE and REPZ are synonymous instructions as they perform the same check.
The same is true for REPNE and REPNZ.

Figure 7.1 MOVSD step-by-step



Figure 7.2 CMPSD step-by-step

Notice in Figure 7.2 how the CMPS instruction is executed first and cx/ecx/rcx is only decremented if
the result of the string instruction indicates equality (ZF = 1). On the fourth iteration, CMPS sets ZF to
0, indicating inequality, and so the repetition ends and REPE does not decrement ecx to 3.

Immediately after the REPE CMPS operation you need to verify whether the two strings were
equal or not equal. For strings of the same length, just ensure that ZF is set after the last iteration. You
might mistakenly check the status of (r/e)cx in order to determine whether or not CMPS was
successful: (r/e)cx being zero, indicating that the entire string was iterated and thus equal; or (r/e)cx
being greater than zero, indicating that CMPS exited due to a non-equal comparison. Checking the
counter register works for every instance except one: when the last character of the string is different.
The counter will be zero because it has reached the last character, so a counter value of zero does not
necessarily mean success. A set ZF does indicate success.

Using CMPS to determine if two strings are equal becomes slightly more difficult if the strings
are different lengths. You can avoid the difficulty by testing the lengths prior to performing the
comparison. Should you want to continue and execute CMPS on strings of different lengths, use the
shorter of the two lengths as the counter value. Doing so ensures that the repetition does not exceed
the memory bounds of the shorter string into neighboring data, which would lead to incorrect results.
Remember, Assembly does not perform automatic bounds checking.

The basic invocation of CMPS is CMPSS (e.g., CMPSD). Program 7.1 demonstrates the use of
CMPS with necessary precautions.



Program 7.1 CMPS

In Program 7.1, two strings and symbols containing their lengths are declared. The lengths are first
used to determine if both strings are the same number of bytes. If the lengths are not equal, we can
immediately assert that the strings are not equal. If the lengths are equal, we begin preparing for the
CMPS instruction. We load esi and edi with the memory addresses of the strings, copy the length to
ecx, clear DF for left-to-right processing, and execute the CMPS instruction. CMPS iterates through
each byte of the arrays and compares corresponding characters. If at any point the characters in
corresponding slots do not match, CMPS will exit with ZF = 0. The subsequent JNZ instruction also
ensures the final characters are equal by jumping to notequal if ZF = 0. However, the code in
Program 7.1 will see CMPS finish successfully (ZF = 1) and fall through to jmp done because
both strings are equal.

SCAS



The SCAS (scan string) instruction does not have a non-string counterpart as do the MOVS and
CMPS instructions. SCAS is essentially a built-in sequential search algorithm. One potential
difference between SCAS and a sequential search algorithm written in a high-level language is that
SCAS only operates on a single character at a time as it iterates through a string. High-level
implementations sometimes search for multi-character substrings within strings. But many high-level
algorithms also search a character at a time.

The normal operation of SCAS is to iterate through a string, referenced by (r/e)di, until a target
character stored in al/ax/eax/rax is found and then exit. The execution of SCAS is basically the
opposite of CMPS. We want CMPS to repeat as long as each character pair is equal and thus use the
REPE or REPZ instruction. SCAS needs to repeat as long as character pairs are not equal, which
indicates the search character has not been found. So SCAS is usually executed with the REPNE or
REPNZ instruction.

Figure 7.3 SCASD step-by-step

Figure 7.3 illustrates the step-by-step execution of SCAS searching for the letter 'r' in the string
"Moore".

PROGRAMMING: With CMPS, REPE/REPZ does not decrement (r/e)cx when CMPS fails. But
with SCAS, REPNE/REPNZ decrements (r/e)cx in both cases, success and failure.

The last step when scanning is determining whether or not SCAS found a match, which is
accomplished in the same manner as with CMPS. If SCAS iterates through an entire string and does
not find a match, the counter value is zero and ZF is clear (ZF = 0). If SCAS did find a match (e.g.,
Figure 7.3), the counter value could be zero or greater than zero, depending on the location of the
match, but ZF will be set (ZF = 1). Similar to CMPS, use ZF as the sole indicator of success.

The basic invocation of SCAS is SCASS (e.g., SCASW). Program 7.2 demonstrates use of the



SCAS instruction.

Program 7.2 SCAS

Program 7.2 is a simple sequential search for the character 's' in the string "Test sentence".
Three variables are the string, the length of the string, and the search character. Because the search
character must reside in the appropriate accumulator register (e.g., al for 8-bit, ax for 16-bit, etc.),
we first clear eax with XOR. Since we are performing a byte search, the search character is loaded
into al.

Unlike the previous string instructions, only edi is used with SCAS, as the source index. After the
length of the string in bytes is loaded into ecx, we clear DF and execute SCASB. As discussed, once
SCAS has finished we need to check ZF to determine if the search character was found or not. So
we use the JNZ instruction to jump to the notfound label if ZF is clear (ZF = 0). In Program 7.2,
the character 's' is found, so ZF is set (ZF = 1), JNZ fails, and execution falls through to the found
section where we could notify the user or perform other tasks, but we simply jump to the done label.

STOS
The STOS (store string) instruction is useful for array initialization. STOS takes the value in the
accumulator register and copies it into the memory location referenced by (r/e)di. In order to



initialize more than one memory location (i.e., an entire array), use STOS in conjunction with REP.
Figure 7.4 illustrates using STOS to initialize a 5-element array with zeros.

Figure 7.4 STOSD step-by-step

PROGRAMMING: STOS cannot use different values when initializing an array. The same value
will be copied into each element of the array.

The basic invocation of STOS is STOSS (e.g., STOSO). Example 7.4 demonstrates use of the STOS
instruction.

Example 7.4 STOS

The code in Example 7.4 initializes a 10-element array, identified by dst, with the value zero. Since
we execute STOS with the 'b' suffix, indicating bytes, we use al (a byte-sized register) to hold the
value that will be copied into each element of the dst array.

LODS



The LODS (load string) instruction does the opposite of the STOS instruction. Instead of copying a
value from the accumulator register into the address referenced by (r/e)di, LODS takes the value
referenced by (r/e)si and copies it into the accumulator register. Unlike STOS and the other string
instructions, you will likely never use LODS in conjunction with any of the repetition instructions due
to repeated overwriting of the accumulator register. STOS is illustrated in Figure 7.5, which shows
how eax is overwritten with each repetition.

The basic invocation of LODS is LODSS (e.g., LODSB). Example 7.5 shows a simple LODS
example.

Example 7.5 LODS

Figure 7.5 LODSD with REP step-by-step

The code in Example 7.5 copies the starting memory address of the src string to esi and then, via the
LODSD instruction, copies the 32-bit (DWORD) character into eax. LODS was not executed with the
REP instruction, therefore Example 7.5 only executes once and does not iterate through the entire src
string.

Structures
A structure, or struct as it is commonly called, is a composite datatype. Just like structs in high-level
languages, structs in Assembly are user-defined datatypes that contain multiple fields, or values,
which can be different datatypes. Unlike arrays, where each element must be the same size, elements
of a struct can be different sizes, as demonstrated in Example 7.6.



Example 7.6 Assembly structure in NASM

In Example 7.6, the name field is a 255-BYTE array, and the age field is a single DWORD. Of
particular note is the size field. Having an empty label at the end of a STRUC definition in NASM
facilitates space reservation for a structure in the uninitialized program section. When reserving
space for uninitialized variables, NASM needs to know how much space to reserve. Usually, space is
reserved by indicating the number of bytes with a size directive (e.g., DB, DD, etc.), as is the case for
primitive datatypes. But structs are not primitive.

Because structures do not have a single size directive telling the Assembler how many bytes the
struct occupies as a whole, the Assembler needs to know both the starting position in memory (the
struct’s label, person) and the ending position in memory (the ending label, size). Just like using
the current location counter with EQU to determine the length of an array, the empty size label
allows NASM to determine the total size of a structure.

Given our basic overview of a structure, we can examine how to implement structs in a program.
Because structs are not a built-in datatype, you must define them before you can declare any instances
of the struct. The same is true in high-level languages. Definition of structs must be done outside of
the code and data sections in what we might call the absolute section, or in a separate file to be
included (using the INCLUDE directive, see CODE REVIEW for syntax). Doing so ensures that the
structure is defined before instantiation.

Glaring differences exist in the Assembler syntaxes presented in Example 7.7. Both MASM and
NASM have the ability to define and use structs in a similar fashion to high-level languages.
However, GAS has no such construct. The .struct directive in GAS is simply used to define an
absolute expression and assign it to the subsequent label (e.g., name = 0 and age = 10). The
labels can then be used in GAS code as normal identifiers by prefixing the label name with the dollar
sign ($). Because GAS structs do not behave like structs in MASM or NASM, we do not discuss the
GAS .struct directive any further.

Example 7.7 Structure definitions

Both MASM and NASM implement the structure in Example 7.7 with an empty 255-byte array for
name and an empty doubleword for age. When instantiating and manipulating structs in Assembly,
use the same dot notation found in high-level languages. MASM uses dot notation implicitly, but



NASM does not. In order to use dot notation in NASM, each member must be prefixed with a dot, as
seen in Example 7.7 (do not confuse NASM STRUC member declarations with GAS directives).
Without the dot prefixes, NASM cannot assemble the STRUC code.

With the structure defined in Example 7.7, we show an instantiation of the struct in Example 7.8.
For MASM and NASM, we declare the employee1 instance. Note the NASM syntax of ISTRUC
and IEND to signify an instance of a structure.

Example 7.8 Structure declarations

With both Assemblers, the instance is declared in the data section like other variables. MASM has a
more compact syntax, but the same rules apply to both Assemblers: field values must be initialized in
the order they were defined. In Example 7.8, two aspects of the NASM syntax are worth highlighting.
First, the field specification that directly follows the AT macro must use
struct_name.member_name. Second, the size directives used when declaring an ISTRUC are
the data section size directives (e.g., DB, DD, etc.) instead of the bss-style (uninitialized) size
directives used in the STRUC definition (e.g., RESB, RESD, etc.).

With the structure definition and declaration complete, we can discuss struct usage. The code in
Example 7.9 copies the value in the age field to a register, which demonstrates dot notation in both
Assemblers.

Example 7.9 Structure usage

MASM uses the same notation as high-level languages, while NASM uses a method similar to that of
arrays in Assembly. In order to access the value stored in a member field of a struct, NASM must
dereference the appropriate memory location. As with arrays, the value is located by specifying a
[label + offset]. The offset must be an absolute expression that results in a size in bytes.
Therefore, we use person.age as the offset from the employee1 label instead of
employee1.age. The identifiers are simply referencing memory locations. The Assembler does
not know the size of employee1.age without first determining employee1 is of type person
and then determining the size of person.age. Indirect referencing is not absolute and will produce
an Assembly error. In NASM, use the definition label for the offset, not the declaration label.



PROGRAMMING: Alignment directives (e.g., ALIGN, ALIGNB) are useful and sometimes
necessary to ensure structures and structure members are aligned on appropriate boundaries.

The last example we consider with structures is declaring uninitialized structs. Example 7.10
shows code for an uninitialized array of structs, which in NASM requires using the size field and a
variable (empSize) to contain the number of elements in the array.

Example 7.10 Array of uninitialized structures

While NASM needs a symbol declared with EQU and/or the current location counter immediately
after the array declaration, 32-bit MASM does not. MASM can determine the number of elements in
an array dynamically by using the LENGTHOF directive (32-bit mode only). If using 64-bit MASM,
you can use the same method as NASM (EQU and current location counter).

Summary
In this chapter we discussed various instructions for efficiently manipulating strings. String primitive
instructions are most useful when combined with the appropriate accessory instructions to iterate
through multi-character strings. Working with arrays of data, but specifically character arrays, should
now be relatively straightforward. Furthermore, understanding how to work with structures in
Assembly language provides an option for more complex object-oriented scenarios. Structs illustrate
a point of similarity that MASM and NASM share with high-level languages, while GAS maintains a
primitive approach.

Key Terms
CMPS (compare string)
direction flag
instance
LODS (load string)
MOVS (move string)
REP (repeat)
SCAS (scan string)



STOS (store string)
string primitive instructions
structure

Code Review
CLD Clear the direction flag (DF)

CMPS Compare strings (uses si/esi/rsi and di/edi/rdi)

INCLUDE Preprocessor directive to include support files in a program.

GAS: .include "file.inc", NASM: %include "file.inc"
MASM: INCLUDE file.inc

LODS Load from a string (uses si/esi/rsi)

MOVS Copy string (uses si/esi/rsi and di/edi/rdi)

REP Repeat until cx/ecx/rcx = 0

REPE Repeat as long as cx/ecx/rcx is not 0 and the character at si/esi/rsi is equal to the character at di/edi/rdi

REPNE Repeat as long as cx/ecx/rcx is not 0 and the character at si/esi/rsi is not equal to the character at di/edi/rdi

REPNZ Repeat as long as cx/ecx/rcx is not 0 and ZF is not set. Synonymous with REPNE.

REPZ Repeat as long as cx/ecx/rcx is not 0 and ZF is set. Synonymous with REPE.

SCAS Scan (search) for a character within a string (uses di/edi/rdi)

STD Set the direction flag (DF)

STOS Store to a string (uses di/edi/rdi)

Questions
Short Answer

1. Using STD before a repeat instruction ensures that the characters will be read ___________.
2. In order to repeat while ZF is clear, you should use the ___________ instruction.
3. When executing string instructions, you must append a size identifier, which is similar to how

instructions are written when assembling with ___________.
4. To work with characters 8 bytes in size, you must append the ___________ character to a string

primitive instruction.
5. The data required to be stored in esi and/or edi for string primitive instructions is ___________.
6. Repeating CMPS with REPZ rather than REP is necessary because REPZ will only repeat if ZF is

___________.
7. When using CMPSW, the address in edi will be incremented by ___________ each iteration.



8. When repeating a string instruction, you must load the C register with the number of
___________.

9. ZF will equal ___________ each iteration that SCAS does not find the target character.
10. After executing SCAS, the most efficient way to proceed is to use the ___________

instruction, which will execute the code branch for when the target character is not found.
11. Only one register is implicitly used for indirect addressing when executing STOS:

___________.
12. LODS copies the value referenced by ___________ and stores it in ___________.
13. The ___________ instruction(s) is/are the instruction(s) that is/are typically called with one of

the repeat instructions.
14. Instead of using LEA when assembling with GAS, you can use the MOV instruction and prefix

the variable with ___________.
15. Calling MOVS with REPZ or REPNZ could have unintended effects such as exiting early

because MOVS does not modify ___________.

True/False
1. CLD clears the zero flag (ZF).
2. REPNE will repeat as long as ZF is set.
3. When repeating, the counter is decremented before the string instruction is executed.
4. When repeating CMPS, use REPNZ to continue repeating while the characters are equal.
5. STOS will initialize an array with whatever value is in the appropriate accumulator register.

Assignments
7.1  Copy cat

Write a program that compares two strings: "Try harder" and "Try harder
still". Determine if the strings are exactly the same, the same to a certain index, or
completely different. The code must handle all three scenarios.

7.2  LOUD NOISES!

Write a program using the appropriate string primitive instructions that iterates through the
string "I DON’T KNOW WHAT WE’RE YELLING ABOUT!" and converts each
character to its lowercase counterpart and stores the resulting string in another location.

7.3  strstr() Disassembled

The C programming language has a function, strstr(), which searches for a substring inside
of a string and returns the memory location of the first occurrence where the substring was
found. Write a program that accomplishes the same goal, but returns the character index (the nth

element) of the substring instead of the memory location.



CHAPTER 8

Floating-Point Operations

Objectives
•    Distinguish between floating-point representations
•    Convert values to IEEE floating-point representation
•    Explain characteristics of floating-point storage
•    Examine floating-point implementations/instruction sets
•    Use floating-point instructions and manipulate floating-point values.

Outline
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2. Introduction
3. Floating-Point Representation

a. IEEE Representation
b. Special Values
c. Subnormal Numbers
d. Rounding

4. Floating-Point Implementations
a. x87
b. MMX – A Tangent
c. Streaming SIMD Extensions (SSE)
d. XOP, FMA3/4, F16C – A Division
e. Advanced Vector Extensions (AVX)

5. Summary
6. Key Terms
7. Key Registers
8. Code Review
9. Questions

a. Short Answer
b. True/False

10. Assignments



Web Resources

Wikis
•    https://en.wikipedia.org/wiki/X87
•    https://en.wikipedia.org/wiki/Streaming_SIMD_Extensions
•    https://en.wikipedia.org/wiki/X86_instruction_listings#SSE_instructions
•    https://en.wikipedia.org/wiki/Advanced_Vector_Extensions

Developer
•    http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-

architectures-software-developer-vol-1-manual.pdf
•    http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-

architectures-software-developer-instruction-set-reference-manual-325383.pdf
•    https://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions

Floating-Point Arithmetic
•    https://docs.oracle.com/cd/E19957-01/806-3568/ncg_math.html (IEEE Arithmetic)
•    http://babbage.cs.qc.cuny.edu/IEEE-754/ (IEEE 754 Analysis)

Introduction
This chapter provides an overview of floating-point operations on x86 and x86_64 architectures. We
begin by discussing floating-point representation and storage with a focus on IEEE floating-point
representation. Then, we present the development of floating-point implementations in chronological
fashion using working examples. Included in the implementations are the x87 Floating-Point Unit,
Streaming SIMD Extensions, and Advanced Vector Extensions. The content presented in this chapter
provides a foundation for understanding floating-point architecture and for using floating-point
instructions in programs.

LEARNING: The programs in this chapter, Programs 8.1–8.8, are 32-bit programs. The CODE
REVIEW section at the end of the chapter provides a 64-bit example of an investment calculator
program.

Floating-Point Representation
In computing, floating-point values are data representations that approximate real numbers and are
typically represented as a value with digits before and after a decimal point. A floating-point number
is composed of the significand that represents a fixed number of significant digits, a base for scaling

https://en.wikipedia.org/wiki/X87
https://en.wikipedia.org/wiki/Streaming_SIMD_Extensions
https://en.wikipedia.org/wiki/X86_instruction_listings#SSE_instructions
https://en.wikipedia.org/wiki/Advanced_Vector_Extensions
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-1-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
https://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_math.html
http://babbage.cs.qc.cuny.edu/IEEE-754/


an exponent, and an exponent.

The idea is that a value can be represented by moving the “point” while scaling based on a number
system such as decimal (base 10).

This book assumes the reader is generally familiar with floating-point nomenclature and the
mathematics related to floating-point arithmetic and fractions.

IEEE Representation
In 1985, the Institute of Electrical and Electronics Engineers (IEEE) published the technical standard
IEEE 754 for floating-point computation. The standard was updated in 2008 as IEEE 754-2008.
Although other companies such as IBM and Cray have developed standards, IEEE 754 has remained
the dominate floating-point representation in computing. IEEE 754 defines arithmetic formats for
finite numbers, infinites, and special values such as “Not-a-Number” (NaN). The standard also
defines rounding rules, operations, conditions for exception handling, and interchange formats among
other specifics.

Table 8.1 shows common IEEE floating-point formats. Single precision, double precision, and
double extended precision are the most common formats. Quadruple precision is defined in the IEEE
standard but is generally not supported in hardware, while software support is sporadic and varied.
For example, quadruple precision can be implemented as two double-precision values, but it is
implemented as a double in Visual C++, a long double in GCC for PowerPC, and as non-
standard types such as __float128 in GCC or _quad in Intel’s C/C++ compiler.

Table 8.1 IEEE 754 floating-point formats

As part of the IEEE binary formats, the exponent is stored with a bias. For example, single-precision



exponents are 8 bits and the bias is 127. The bias is added to the actual exponent to ensure that the
exponent is always stored as a positive value (unsigned). For single precision, the exponent range is
-126 to 127, but with the bias added the exponent is stored as 1 to 254.

Floating-point values are also stored in normalized form. Normalization is achieved by moving
the point until a single digit remains to the left of the point. The exponent then expresses the number of
positions the point was moved left (positive) or right (negative). The result of normalization is that
the first bit of a non-zero binary significand is always 1 and thus “implicit.” The implicit bit is not
stored in most formats, which makes one more bit available for precision. For example, in single-
precision format, 23 bits are available for the significand, but 24 bits worth of precision can be
stored. Double-extended format deviates from the pattern by keeping the leading significand bit
explicitly stored.

To better understand IEEE representation and formats, we will walk through an example. Assume
we wish to store the floating-point value 78.375 in binary single-precision format. Example 8.1
shows the steps for converting the value to IEEE 754 single-precision format.

Example 8.1 IEEE 754 conversion to single-precision format

Table 8.2 Negative powers of 2

example decimal place values . 3 7 5 0

negative powers of 2 (2-n) 2-1 2-2 2-3 2-4

decimal fraction 1/2 1/4 1/8 1/16

binary 0.1 0.01 0.001 0.0001



Special Values
In IEEE floating-point representation, special values exist that are worth noting. Special values
include signed zeros, infinites, and Not-a-Number (NaN). In IEEE 754, the value zero is signed,
which means two representations of zero exist: positive zero and negative zero. For most operations
both zeros return equal results, but in some cases the results are different, such as 1/-0 (returns -∞),
1/+0 (returns +∞), and log(x). Table 8.3 shows the precision values in hexadecimal.

Not-a-Number (NaN) is a data type that represents undefined or imaginary values. NaNs fill
various roles in floating-point computation. NaNs may be returned as the result of invalid operations,
such as dividing by zero or computing the square root of a negative value. Most operations involving
a NaN return a NaN. Technically, two types of NaNs exist: signaling and quiet. Signaling NaNs raise
invalid operation exceptions as they propagate through floating-point operations, while quiet NaNs
do not raise such exceptions. Exceptions are exceptional conditions that require special hardware or
software processing. For example, compilers may fill uninitialized floating-point variables with
signaling NaNs so operations prior to initialization result in exceptions. NaNs can have various
encodings defined by compilers or programs, so the NaN values shown in Table 8.3 are only
examples.

Table 8.3 IEEE 754 special values

Special value Decimal value Single precision Double precision Double extended

+0 0.0 0000 0000 00000000 00000000 00000000 00000000
00000000 00000000

-0 -0.0 8000 0000 80000000 00000000 80000000 00000000
00000000 00000000

+∞ Inf 7F80 0000 7FF00000 00000000 7FFF0000 00000000
00000000 00000000

-∞ -Inf FF80 0000 FFF00000 00000000 FFFF0000 00000000
00000000 00000000

NaN NaN 7FC0 0000 7FF80000 00000000 7FFF8000 00000000
00000000 00000000

Subnormal Numbers
Subnormal numbers, sometimes called denormalized numbers, provide the ability to store values
beyond the normal range of the data type. For example, in single-precision format the smallest number
in the normal range is 2-126 or 1.175 × 10-38. If an operation such as a subtraction or division of small
numbers near the boundary results in a number smaller than what can be stored, an underflow occurs.
In the past, a harsh way of dealing with such a small number was to flush the value to zero. However,
the IEEE 754 standard chose an alternative method called gradual underflow, which fills the gap
toward zero beyond the smallest normal number. Such numbers are known as denormalized or
subnormal numbers. In single-precision format, gradual underflow supports values as small as 2-149 or
1.401 × 10-45. In other words, very small numbers can be stored. The tradeoff is that some precision



is lost, but not as much as a round-off to zero.
In Example 8.2, the binary floating-point value 1.01011111000000000001111 × 2-128 is in the

subnormal range. Using gradual underflow, the number can still be stored by moving the point until
the number is in the valid range. The new value 0.01010111110000000000011 × 2-126 is a
denormalized value that has lost some precision (note the two least significant 1s are lost), but it is
closer to the original value than rounding to zero.

Example 8.2 Denormalized value

Each precision format has maximum and minimum normal and subnormal values. For each precision
format, Table 8.4 presents the normal range and Table 8.5 presents the subnormal range.

Table 8.4 Normal floating-point value range

Precision Largest normal value Smallest normal value

Single 3.40282347 × 10+38 1.17549435 × 10-38

Double 1.7976931348623157 × 10+308 2.2250738585072014 × 10-308

Double extended 1.189731495357231765085759326628

0070 × 10+4932
3.362103143112093506262677817321

7526 × 10-4932

Table 8.5 Subnormal floating-point value range

Precision Largest subnormal value Smallest subnormal value

Single 1.17549421 × 10-38 1.40129846 × 10-45

Double 2.2250738585072009 × 10-308 4.9406564584124654 × 10-324

Double extended 3.362103143112093506262677817321

7520 × 10-4932
6.475175119438025110924438958227

6466 × 10-4966

Rounding
Technically, all floating-point values adhering to a format for computer storage are rational numbers
with a terminating expansion (a finite series of digits right of the point). The fact that each format only
has so many bits for precision means the expansion must terminate. So irrational numbers like π and
non-terminating rational numbers must be approximated. If a number cannot be represented exactly in
a given floating-point format, then the value must be rounded to another floating-point value that can
be represented. An example is a value with more digits than available in the significand.



ATTENTION: Whether or not a floating-point (fractional) value has a terminating expansion
depends on the base. For example, in decimal (base 10) 1/2 (0.5) terminates, whereas 1/3
(0.333…) does not terminate. In binary (base 2), values that are powers of 2 are terminating,
while everything else has an infinite binary expansion.

IEEE 754 specifies several rounding modes that we examine with examples. If we want to store
the value 2.1234567890987654321 in 32-bit single-precision format, the value will have to be
approximated since it has more digits than available in the format. Therefore, the value would be
stored as 2.12345671653747559. Example 8.3 shows common rounding methods and the results of
rounding the floating-point values π, 3.5, and -3.5, using a round-to-integer approach.

Example 8.3 Rounding modes

The rounding method is taken into account when floating-point values are calculated or converted
between formats. Round to nearest is the default rounding method on most systems. We discuss how to
set the rounding method in the FLOATING-POINT IMPLEMENTATIONS section of this chapter for x87.

Floating-Point Implementations
The 8086 line of processors was not designed to perform floating-point arithmetic; stand-alone
processors such as the 8086 and 80386 only handled integer arithmetic. To provide floating-point
functionality, Intel developed coprocessor floating-point units (FPU), such as the 8087 and 80387,
which worked alongside the CPU. The FPU coprocessors implemented what is known as the x87
instruction set architecture. Beginning with the 80486/487, the FPU was integrated with the CPU. The
FPU has continued to evolve beyond the x87 design with advancements like Streaming SIMD
Extensions and Advanced Vector Extensions. This section provides a chronological overview and
code examples of the major floating-point implementations for the x86 architecture.

x87
The x87 instruction set is the floating-point architecture originally designed to work alongside the x86
architecture, though the designs are fundamentally different. x87 defines the instructions, registers,
and floating-point formats available for floating-point computation. Table 8.6 introduces the x87



registers. This section only covers a small selection of x87 instructions in the code examples.

ATTENTION: Refer to the IA-32 Intel Architecture Software Developer’s Manual Volume 1
Chapter 8 for further reading, implementation details, and instruction details on x87.

Table 8.6 x87 Registers

The general purpose registers for floating-point calculations are registers R0–R7. After an FPU
instruction is executed, the memory addresses of the instruction and its operand (if used) are placed in
the Last Instruction Pointer and Last Data Pointer, respectively. The purpose of storing the
addresses of the last instruction and operand is to provide state information for exception handlers.
Table 8.7 shows the length, purpose, and bit patterns for R0-7 and the pointer registers.

Table 8.7 x87 General purpose, last instruction, and last operand registers



PROGRAMMING: The control instructions in x87 are FINIT/FNINIT, FCLEX/FNCLEX,
FLDCW, FSTCW/FNSTCW, FSTSW/FNSTSW, FSTENV/FNSTENV, FLDENV,
FSAVE/FNSAVE, FRSTOR, and WAIT/FWAIT. Any other instructions are non-control
instructions. The instructions that interact with the Last Instruction Pointer and Data/Operand
Pointer are FINIT/FNINIT (clears the registers), FSAVE/FNSAVE (clears the registers),
FXSAVE, FSTENV/FNSTENV, FLDENV, FRSTOR, and FXRSTOR.

Two other FPU registers are particularly important to understand prior to reviewing code
examples: the Status Register and the Control Register. The Status Register (Table 8.8) holds the
current state of the FPU. A very important part of the Status Register is the top-of-stack bits (11-13)
called TOP.

Table 8.8 x87 Status Register

The FPU data registers (R0-7) behave as a circular stack. Any of the registers can serve as top-of-
stack. If a value were to be loaded into R0, the next value loaded would wrap around to R7.
Wrapping also happens in reverse when removing values from the stack. To enable such behavior, the
data registers are not referenced by the programmer as R0-7, but rather ST0-7 with ST0 being top-of-
stack (can be any of the R registers). The register currently serving as top-of-stack is maintained in
the TOP field of the FPU Status Register.

Status Register bit specifics are as follows.
•    FPU busy (bit 15): set while the FPU is executing an instruction
•    Condition codes (bits 8–10 and 14): indicate results of floating-point arithmetic
•    TOP (bits 11–13): R register currently serving as top-of-stack
•    Error status (bit 7): set while an FPU exception is being handled
•    Stack fault (bit 6): FPU stack overflow or underflow has occurred (attempt to load a value

into a register not free or store from a free register).
•    Exceptions (bits 0–5): P = precision, U = underflow, O = overflow, Z = zero divide, D =

denormalized operand, I = invalid operation. P, U, and O are detected after an operation. Z, D,
and I are detected prior to an operation.

Example 8.4 shows a snippet of x87 code (taken from Program 8.1) to demonstrate the use of
FPU registers in code. Note that ST# is used instead of R#.



Example 8.4 FPU Register use in code

The FPU Control Register (Table 8.9) has control bits for infinity, rounding, and precision. The
register also contains exception mask bits. Each exception mask bit directly corresponds to an
exception bit in the Status Register. The default state after an FPU initialization (FINIT) is that all
mask bits are set (1) so that the FPU handles floating-point exceptions. If a mask bit is clear (0) and
that interrupt is generated, the program must handle the exception. Bits 6, 7, 13, 14, and 15 are
reserved/unused, and bit 12 (infinity control) is non-useful for modern x87 processors.

Table 8.9 x87 Control register

Exception Masks: PM = precision, UM = underflow, OM = overflow, ZM = zero divide, DM =
denormalized operand, IM = invalid operation.

The x87 FPU accepts values in seven different formats: single precision, double precision,
double extended precision, word integer, doubleword integer, quadword integer, and packed binary
coded decimal (BCD) integer. Table 8.10 shows the x87 datatypes by Assembler.

LEARNING: Binary coded decimal (BCD) and some of its uses are presented in APPENDIX H:
ASCII AND DECIMAL ARITHMETIC.



Table 8.10 x87 Datatypes by Assembler

x87 FPU formats GAS MASM NASM Bits

Single precision .float or .single REAL4 DD 32

Double precision .double REAL8 DQ 64

Double extended .tfloat (support varies) REAL10 DT 80

Word integer .word WORD DW 16

Doubleword integer .long or .int DWORD DD 32

Quadword integer .quad QWORD DQ 64

Packed BCD integer not supported TBYTE DT (e.g., DT 42p) 80

By default, when a value is loaded into the FPU, the value is converted to double-extended format
to take advantage of maximum precision. When values are stored to memory, they can be left as
double extended or converted to a shorter format. The format can be controlled by altering the
Precision Control field (PC) in the Control Register (Table 8.11).

PROGRAMMING: Support for double-extended and packed BCD values can vary by platform
and Assembler versions. For example, Clang’s integrated assembler (used in Xcode) does not
support the .tfloat directive, but modern versions of the GNU Assembler (GAS) do support the
directive. The space needed for any of the floating-point types could be reserved in uninitialized
space (.bss section). Some compilers create a “set” for a 10-byte value by using two longs and a
short. And even though packed BCD does not have a supported datatype in GAS, it could be
handled manually.

Table 8.11 Precision control

PC bits Precision

00 single precision

01 reserved (not used)

10 double precision

11 double extended precision

The x87 FPU operates using postfix notation (like some calculators). With addition, for example,
two values are placed on the stack and then the values are added. Another example is the expression
(5 * 6) + 4, which would be evaluated as 5 6 * 4 +, meaning 5 and 6 are placed on the



stack, multiply and pop, place 4 on the stack, then add and pop. Example 8.5 illustrates the expression
using postfix notation.

Example 8.5 Postfix notation

x87 FPU instructions start with the letter F. The second letter (B or I) indicates if the memory operand
should be interpreted as packed BCD (B) or an integer (I). If neither is specified, then a floating-point
format is assumed. For example, the load instruction FLD loads a real number, FILD an integer, and
FBLD a packed BCD integer. To demonstrate the behavior of the x87 FPU and some basic floating-
point instructions, consider Program 8.1, which assumes the Assembly code is linked to C++ code
with implementations for _printFloat and _printDouble (see APPENDIX E: LINKING
ASSEMBLY AND C++).



Program 8.1 x87 FPU

We discuss Program 8.1 using the GAS version. The order of instructions we discuss is FINIT,
FLDPI, FLDS, FADD, FISTS, FSTPS, and FSTPL. The FINIT instruction initializes the FPU and
should be used when you want to set the FPU to its default state. Our example begins with R3 as the
current top-of-stack (Example 8.6), which will help to illustrate the circular nature of the FPU stack.
So the TOP bits (11–13) in the Status Register are binary 011.



Example 8.6 x87 FPU stack

FPU load instructions decrement TOP by one and place the value in the new top-of-stack register.
FLDPI is an example of a load instruction, so TOP is decremented by one, then the value of π is
placed in ST0 (Example 8.7).

Example 8.7 x87 FPU stack after FLDPI



Example 8.8 x87 FPU stack after FLDS

FLDS (FLD) decrements TOP by one, then loads a floating-point value on the stack. Specifically,
flds value loads a single-precision (float) of 1.2 using the value variable. Notice in Example
8.8 that the closest approximation of 1.2 that can be stored in double-extended format is the value on
the stack in ST0.

FADD is an arithmetic instruction that adds the contents of two FPU registers. fadd %st(1),
%st adds the contents of ST(1) and ST(0) and saves the result in ST(0) (Example 8.9). The top-of-
stack register can be referenced in GAS code as ST or ST(0).

PROGRAMMING: GAS and MASM require the stack register number to be in parentheses, while
NASM does not require parentheses.

Example 8.9 x87 FPU stack after FADD



fists r_value is an example of a store instruction. Store instructions take the value in the
current top-of-stack register and store it in memory. FST (fst) is the generic form of the store
instruction. The second letter 'i' tells the system to interpret the value as an integer. In GAS, the
's' at the end indicates single precision since the destination is 32 bits.

Table 8.12 shows examples of differences between store instructions in the Assemblers. GAS
requires a suffix at the end of the instruction that corresponds to the datatype: 's' for single
precision, 'l' double precision (long), and 't' for double extended (ten-byte). Many FPU
instructions have two versions: a version that just stores (copies), and a version that performs a store-
and-pop (copy then increment TOP by one).

Table 8.12 x87 FPU store instruction comparison

Instruction GAS MASM NASM

Store integer fists r_value fist r_value fist DWORD [r_value]

Store float fsts f_value fst f_value fst DWORD [f_value]

Store float and pop fstps f_value fstp f_value fstp DWORD [f_value]

Store double and pop fstpl d_value fstp d_value fstp QWORD [d_value]

fists r_value copies ST(0), rounds to nearest, and stores in memory (r_value = 4).
FSTPS (FSTP) is an example of a store-and-pop instruction. Store-and-pop instructions store the

value in the current top-of-stack register to memory, and then increment TOP by one. So, fstps
f_result stores ST(0) to memory (f_result) in single-precision format, then increments TOP
by one (pop). Notice that the pop does not actually delete the value, the register is just tagged as
empty and TOP is incremented. A subsequent store would overwrite the value.

Example 8.10 x87 FPU stack after FSTPS

fstpl d_result stores ST(0) to memory (d_result) in double-precision format, then
increments TOP by one (pop), as shown in Example 8.11.



Example 8.11 x87 FPU stack after FSTPL

In the ROUNDING section of this chapter, and in this x87 section, we have mentioned the default
rounding method of rounding to nearest (even). The Rounding Control (RC) bits (10–11) in the
Control Register are 00 by default, which rounds to nearest (even). A programmer can manually set
the bits to change the rounding method.

ATTENTION: The rule for nearest (even) means the rounded result is closest to the infinitely
precise result. But if two values are equally close, then the result is the even value, which will
have a least significant bit of zero.

Program 8.2, written in GAS and commented, shows one way the rounding method could be
changed programmatically. Comparable MASM and NASM versions can be found in the CHAPTER 8
SUPPLEMENT. Program 8.2 also introduces a few more x87 instructions: FSTCW (store control
word), FLDCW (load control word), and FRNDINT (round to integer).



Program 8.2 x87 FPU rounding control

LEARNING: The MASM and NASM versions of the GAS programs found throughout the rest of
this chapter can be found in the CHAPTER 8 SUPPLEMENT. We only show one version in the main
text so we can use inline comments to help explain instructions.

The x87 FPU has two more registers that hold information related to the FPU. The Tag Register
(Table 8.13) indicates the contents of the FPU data registers (R0-R7). Tag registers can be useful to a



programmer for checking contents without more complex instructions or decoding. The contents of the
FPU Tag Register can be saved to memory with the FSTENV/FNSTENV or FSAVE/FNSAVE
instructions. Software cannot directly modify the Tag Register.

Table 8.13 x87 Tag register

If the tag bits are 00, the register contains a valid non-zero value. If the tag bits are 01, the register
contains a zero or equivalent. If the tag bits are 10, the register contains a special value such as NaN,
inf, -inf, and denormalized. If the tag bits are 11, the register is empty. FINIT and pop instructions tag
registers as empty.

The final x87 FPU register is the Opcode Register (Table 8.14), which stores the opcode of the
last non-control instruction executed. Only the first and second bytes of an instruction are used. An
instruction’s upper five bits of the first byte are the same for all FPU operations, so only the lower
three bits of the first opcode byte are stored.

Table 8.14 x87 Opcode register

As with the Last Instruction and Last Data Pointer Registers, the Opcode Register provides state
information for a programmer and exception handlers.

MMX – A Tangent

The reason we refer to this section as a Tangent is because MMX technology is not for floating-point
operations, instead MMX uses the FPU registers for integer operations. Intel introduced MMX
technology in 1996 with the P55C (80503) processor. A common misconception is that MMX is an
acronym for terms such as MultiMedia eXtension, but it is simply an Intel Trademark. Processors
with MMX capability have eight 64-bit registers available for integer operations and 47 additional
instructions. The eight 64-bit registers, denoted by MM0-7, are aliases for the significand portion of
the 80-bit FPU data registers R0-7.



LEARNING: Refer to APPENDIX G: USING CPUID for information and code examples for
determining what capabilities, and more specifically what floating-point capabilities, a processor
supports.

Two major features introduced with MMX were packed integer data and the single instruction,
multiple data (SIMD) model. The 64-bit MMX registers can hold packed bytes, words, and
doublewords. Table 8.15 presents the MMX data formats.

Table 8.15 MMX data formats

Data movement in and out of the MMX registers happens sequentially or in 64-bit chunks
(quadwords), but arithmetic can be performed in parallel on the packed data. Operations in parallel
on multiple data points with a single instruction is the SIMD model. For example, MOVQ (move
quadword) can be used to move packed data into MMX registers, and then arithmetic instructions
such as PADDSW (parallel add signed words) can add pairs of data with one instruction in one clock
cycle.

Examine the GAS code in Program 8.3.



Program 8.3 MMX

movq w1, %mm0 moves a quadword (64 bits) to mm0 starting at the identifier w1, which means
w1–w4 is moved into mm0.

We then do the same for w5–w8.

We then add the packed signed word integers using PADDSW with mm0 as the destination. Since the
instructions only have two operands, one register serves as both a source and the destination.



We can then move the packed data from mm0 to memory if desired (movq %mm0, result).

PROGRAMMING: MMX and FPU instructions can be used in the same program even though they
both use the same registers, but doing so introduces some overhead. When an MMX instruction is
used, the FPU is set to accept MMX data and marks the entire x87 Tag Register as valid: each
register tag is set to valid (00). Transitions between MMX and FPU operations can lead to data
loss or meaningless results unless preventative steps are taken. The MMX state can be saved using
the FPU instructions FSAVE/FXSAVE if you want to restore after a switch to FPU operations. To
safely transition back to FPU operations, execute the EMMS instruction to set the FPU to accept
FPU data and to set all the tags in the Tag Register to empty (11). Switching between MMX and
FPU operations is costly in terms of clock cycles, so transition sparingly.

Much more could be said about MMX operations, but we have provided a brief introduction. For
further reading, implementation, and instruction details refer to Chapter 9 in the IA-32 Intel
Architecture Software Developer’s Manual Volume 1 (see Developer links at beginning of this
Chapter).

Streaming SIMD Extensions (SSE)
The next generation of floating-point architecture came with Streaming SIMD Extensions (SSE) and
the Pentium III, which built upon MMX technology. The extension of MMX and the SIMD model to
floating-point computation enabled improvements in graphics and networking applications. Where
MMX handles packed integer data in 64-bit registers, SSE handles packed and scalar floating-point
data in 128-bit registers. Keep in mind that packed operations provide implicit parallelism in
programs. SSE has evolved over the years as computational capabilities have increased. Generations
include SSE, SSE2, SSE3, SSSE3, and SSE4.

SSE instructions fall into four general categories.
•    Packed and scalar floating-point instructions
•    SIMD integer instructions
•    State management instructions
•    Cache control and instruction/memory ordering instructions



In this section we only briefly introduce a few SSE instructions. For further detail, see Chapters 10
and 11 in the IA-32 Intel Architecture Software Developer’s Manual Volume 1.

The 128-bit SSE registers available in 32-bit mode are the XMM registers xmm0–xmm7. In 64-
bit mode, eight more registers become available, xmm8–xmm15. We must note that the XMM
registers are not aliased to any other registers, they are independent registers in SSE-compatible
processors. XMM registers can only hold data, they cannot be used to address memory.

SSE also has a 32-bit control and status register called MXCSR (Table 8.16) that is similar to the
x87 Control and Status Registers. MXCSR contains flag and mask bits for floating-point exceptions
and rounding control, and various flags for controlling SIMD operations.

Table 8.16 SSE MXCSR (control and status) register

Bits (32)

31................16 15 14–13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved FZ RC PM UM OM ZM DM IM DAZ PE UE OE ZE DE IE

•    Exception flags (bits 0–5): IE = invalid operation, DE = denormalized operand, ZE = zero
divide, OE = overflow, UE = underflow, PE = precision

•    DAZ (bit 6): denormalized operands are zeros; denormalized operands are converted to zero,
maintains sign, not IEEE 754 compatible

•    Exception masks (bits 7–12): see Exception flags
•    Rounding Control (bits 13–14): similar behavior to x87 rounding control
•    FZ (bit 15): FZ = flush to zero; underflow results in a flush to zero, not IEEE 754 compliant

SSE only supports one data type: single-precision floating point (Table 8.17).

Table 8.17 SSE single-precision data

SSE2 expanded the datatypes to include double-precision floating point, quadword integers,
doubleword integers, word integers (shorts), and byte integers, as shown in Table 8.18.



Table 8.18 SSE2 data formats

Datatype 128 bits

Double quadword (1) 128

Packed double-precision floating point (2) 64 64

Packed quadword integers (2) 64 64

Packed single-precision floating point (2) 32 32 32 32

Packed doubleword integers (4) 32 32 32 32

Packed word integers (8) 16 16 16 16 16 16 16 16

Packed byte integers (16) 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

Consider a common graphics example. Assume we want to add two vectors (e.g., vectorA and
vectorB), each with four single-precision floating-point values, and we want to store the result in
one of the vectors.

To do the vector addition a traditional way in C++ would take at least four sequential lines of code or
a loop, which is still four sequential addition operations.

Example 8.12 C++ Vector addition

Using SSE, a vector addition can happen in parallel with one instruction. In Program 8.4, we use the
ADDPS instruction (add packed single precision) to perform a SIMD addition of two vectors.



PROGRAMMING: Be careful with vector declarations in the context of a program. Vector data
may need to be manually aligned on a 16-byte boundary using an ALIGN directive or else a
memory access violation may occur. As mentioned in CHAPTER 6, functions in 64-bit mode
require 16-byte alignment due to the use of 128-bit SSE operations. The same requirement is true
for memory accesses with SSE.

Program 8.4 SSE packed operations

Program 8.4 produces the following result in xmm0: [9.0, 9.0, 9.0, 9.0].
SSE also introduced the ability to do scalar operations. Scalar operations were designed to

replace x87 FPU functionality, so SSE scalar capabilities are similar to x87 FPU capabilities, but
they are not identical. SSE did not provide constants like π or dedicated operations such as logs,
sines, and cosines. SSE scalar instructions use the lower doubleword or quadword portions of the
XMM registers to perform floating-point operations. For example, if xmm0 is holding four 32-bit
single-precision values and we use the MOVSS (move scalar single-precision) instruction to load a
float value, only the lower doubleword of xmm0 is modified.

Drawing from Program 8.5, the MOVSS (move scalar single-precision) and ADDSS (add scalar
single-precision) instructions are only modifying the lower 32 bits of xmm0. Likewise, the MOVSD
(move scalar double-precision) instruction is only modifying the lower 64 bits of xmm0.



PROGRAMMING: As exemplified in Programs 8.4 and 8.5, most SSE instructions have two
forms: scalar and packed. Examples are MOVSS and MOVPS, ADDSS and ADDPS, and so on.
Most modern C++ compilers use SSE scalar instructions for floating-point computation, but do not
automatically use SSE packed instructions to parallelize operations. Intel’s C++ compiler is an
exception. C++ compiler intrinsics (mentioned in CHAPTER 9 and covered in APPENDIX I:
INTRINSICS) can be used to utilize low-level SSE instructions to parallelize operations. If we
were to examine the disassembly of the C++ code in Example 8.12, we would most likely find a
loop with scalar operations instead of a SIMD packed operation.

Program 8.5 SSE scalar operations

In MMX, SSE, and SSE2, all arithmetic and comparison operations happen vertically across
registers. For example, if we had four values in both xmm0 and xmm1 and wanted to add the values
and then store the result in xmm0, the operation would work as shown in Table 8.19 and as
demonstrated in Program 8.4.



Table 8.19 Vertical packed operations

xmm0 A3 A2 A1 A0

xmm1 B3 B2 B1 B0

operation ↓ ↓ ↓ ↓

xmm0 C3 C2 C1 C0

SSE3 added the ability and instructions to compute horizontally across registers, as shown in
Table 8.20 and demonstrated in Program 8.6.

Table 8.20 Horizontal packed operations

xmm xmm1 xmm0

packed data B3 B2 B1 B0 A3 A2 A1 A0

operation ↓ ↓ ↓ ↓

xmm0 C3 C2 C1 C0

Program 8.6 SSE3

Program 8.6 produces the following result in xmm0: [4.6, 13.4, 13.4, 4.6].
SSSE3 was a minor update that added new instructions, most of which optimize discrete

operations. SSE4 was a major update that branched away from instructions only geared toward
multimedia applications. Program 8.7 provides a few instructions to demonstrate the variety of
operations available for floating-point and integer operations in SSE4.

In Program 8.7, the ROUNDPS instruction uses the immediate values (e.g., 1 and 2) to set the
desired rounding mode: 1 rounds down and 2 rounds up. Also of particular interest is CVTPS2DQ,



which is a convert instruction that converts (CVT) packed single-precision floats (PS) to (2) packed
signed doubleword integers (DQ).

SSE and its evolution provided a new implementation for floating-point operations and
established parallelism in multimedia applications. SSE, and more specifically SSE4, became the
foundation upon which the next generation of floating-point operations would be built.

Program 8.7 SSE4

Program 8.7 produces the following result in xmm5: [8, 18, 20, 14].

ATTENTION: Rely on the Intel manuals and other sources we have provided for lists and details
of SSE instructions through the generations. Another good source with listings of SIMD
instructions by generation is
https://en.wikipedia.org/wiki/X86_instruction_listings#SIMD_instructions.

XOP, FMA3/4, F16C – A Division
After SSE4, Advanced Micro Devices (AMD) set about proposing the next SIMD extension dubbed
SSE5. However, Intel decided to move to a new implementation, which we discuss in the next
section. With the two microchip companies working on floating-point implementations, this section
highlights a Division, a Wild West moment, for floating-point instructions.

Beginning in 2009, eXtended OPerations (XOP), fused multiply–add (FMA) operations, and

https://en.wikipedia.org/wiki/X86_instruction_listings#SIMD_instructions


F16C (half-precision conversion) operations became integrated in processor lines such as AMD
Bulldozer, AMD Piledriver, Intel Haswell, and Intel Broadwell.

XOP introduced instructions such as horizontal integer addition, multiply-accumulate, and a slew
of vector instructions (e.g., compares, moves, shifts, rotates).

FMA added instructions for fused multiply–add, which means an expression such as (a * b
+ c) can happen in a single step. The difference between FMA3 and FMA4 is the number of
operands in the instruction, with FMA3 having three operands and FMA4 having four operands. The
full FMA operation is destination = round(a * b + c). In FMA3, one of the
registers used for a, b, or c is also used for the destination. In FMA4, the destination can be a fourth
register.

ATTENTION: Do not confuse fused multiply–add (FMA) with Intel’s Fast Memory Access
feature.

F16C instructions allow for converting between half-precision floating point (16 bits) and single-
precision floating point (32 bits). Sometimes precision is not particularly important, so to save space,
floating-point values can be stored with half precision, but must be converted to single precision for
computation in SSE registers.

A lot of overlap exists between the above operations and what would eventually become the
Advanced Vector Extensions (AVX) implementation. Thus, we move on from this relatively brief
Division.

Advanced Vector Extensions (AVX)
Advanced Vector Extensions (AVX) was a major update to the x86 architecture based on the
preceding SSE implementation. Processor support of AVX started around 2011. AVX is backward
compatible with SSE. Three advanced extensions have been made thus far: AVX, AVX2, and AVX-
512. The Advanced Vector Extensions considerably increase the register space and available
instructions.



Table 8.21 AVX Register space

AVX AVX-512 AVX2/AVX

Bits 511....256 255....128 127....0

x86 ZMM0  YMM0  XMM0  

ZMM1 YMM1 XMM1

ZMM2 YMM2 XMM2

ZMM3 YMM3 XMM3

ZMM4 YMM4 XMM4

ZMM5 YMM5 XMM5

ZMM6 YMM6 XMM6

ZMM7 YMM7 XMM7

x86_64 ZMM8 YMM8 XMM8

ZMM9 YMM9 XMM9

ZMM10 YMM10 XMM10

ZMM11 YMM11 XMM11

ZMM12 YMM12 XMM12

ZMM13 YMM13 XMM13

ZMM14 YMM14 XMM14

ZMM15 YMM15 XMM15

AVX-512 ZMM16 – 31 YMM16 – 31 XMM16 – 31

AVX extended the register space to include 256-bit YMM registers. In 32-bit mode, ymm0-7, and
in 64-bit mode, ymm0-15 (Table 8.21). Another new feature of AVX was a three-operand format. In
SSE, most of the instructions, such as arithmetic, have two operands. In the case of SSE addition, as
shown in our example programs, the two operands both serve as sources, but one operand also serves
as the destination, so one operand is overwritten (a = a + b). In AVX, three operands are
supported, so a third operand can serve as the destination, which leaves the sources intact (c = a
+ b).

AVX2 added more instructions, expanded instructions specifically for integers, and expanded
three-operand support for FMA3 and FMA4 (d = a * b + c), bit manipulation, and
multiplication.

AVX-512 further extends the register space to 512-bit ZMM registers and extends the number of
registers zmm0-31 (Table 8.21). AVX-512 also allows the legacy SSE and AVX instructions to
operate on the additional sixteen registers zmm16-31, which are only available in 64-bit mode.

Datatype support in AVX extends the packed single-precision and double-precision floating-point
types. For example, an AVX 256-bit YMM register can hold 8 single-precision floats or 4 double-



precision floats. Although AVX is backward compatible with SSE, not all AVX instructions are
available in all size combinations.

Program 8.8 provides a short example of AVX operations. Note that AVX instructions begin with
the letter 'v'. For further information on AVX instructions, see the WEB RESOURCES.

Program 8.8 produces the following results in ymm2: [9, 9, 9, 9, 9, 9, 9, 9] and xmm4: [-1, -1, -1,
-1].

Program 8.8 AVX

Summary
In this chapter we presented an overview of floating-point representation and implementation related
to the x86 architecture. IEEE 754 serves as the standard of choice in computing for representation
formats like single, double, and double-extended precision. We discussed and demonstrated the
evolution of floating-point implementations from the x87 FPU to Streaming SIMD Extensions to
Advanced Vector Extensions. Implementations for floating-point computation continue to evolve and
do so at an accelerated pace. With a knowledge of floating-point architecture, writing low-level
floating-point code can be a viable route when seeking efficiency and performance in areas of
scientific computing, graphics, and game programming, among other areas.

Key Terms
Advanced Vector Extensions (AVX)



binary coded decimal (BCD)
exceptions
eXtended Operations (XOP)
F16C
floating point (values)
floating-point unit (FPU)
fused multiply–add (FMA)
IEEE 754
MMX technology
normalized
not-a-number (NaN)
packed (data and operations)
postfix
real numbers
round to nearest
scalar (data and operations)
significand
single instruction, multiple data (SIMD)
Streaming SIMD Extensions (SSE)
subnormal numbers
top-of-stack (TOP)
underflow
x87

Key Registers (32-bit, 64-bit)
st0-7 x87 floating-point stack registers

mm0-7 MMX packed integer registers

xmm0–7, 8–15 SSE registers for 32-bit and 64-bit

ymm0–7, 8–15 AVX registers for 32-bit and 64-bit

zmm0–15, 16–31 AVX-512 registers for 32-bit and 64-bit; includes xmm and ymm register expansion

Code Review
Three generations of floating-point implementations were introduced in this chapter: x87, SSE, and
AVX. Most modern compilers are tuned to use SSE scalar instructions for basic floating-point
arithmetic. The programs throughout CHAPTER 8 are 32-bit, so this CODE REVIEW presents an
investment calculator using SSE instructions in 64-bit mode. Program 8.9 is more similar to 64-bit



floating-point code produced by C++ compilers.
The MASM and NASM versions of Program 8.9, as well as the C++ functions and investment

formula, can be found in the CHAPTER 8 SUPPLEMENT.

Program 8.9 x86_64 investment calculator



Questions
Short Answer



1. x86 processors use __________ format for floating-point representation.
2. In floating-point representation, the digits to the left and right of the “point” are known as the

__________.
3. Exponent storage adds a __________ to an exponent because they are stored as __________

integers.
4. Floats are __________, which means the binary point is shifted until a single “1” is left of the

point.
5. The 8087 FPU performs arithmetic using __________ format.
6. __________ is when a floating-point result is computed beyond the valid range.
7. The FPU coprocessor is denoted as __________.
8. The FPU Control Register dedicates two bits for rounding methods, meaning __________

possible rounding methods exist.
9. The FPU register stack has __________ registers that are __________ bits wide.

10. Streaming SIMD Extensions allow for __________ instructions to operate on __________
data.

11. MMX technology introduced __________ datatypes.
12. Advanced Vector Extensions have added __________ and __________ registers.
13. AVX allows for __________ operand instructions.
14. The hardware implementation of destination = a + (b * c) is known as

__________.
15. The SIMD "movss" instruction indicates the instruction is the __________ version.

True/False
1. The FPU can perform operations on non-numbers (NaNs). (T/F)
2. All exceptions detected by the FPU are always handled automatically. (T/F)
3. SSE added XMM registers 128 bits wide. (T/F)
4. AVX is backward compatible with SSE. (T/F)
5. Generally, floating-point implementations can also operate on integers. (T/F)

Assignments
The following C++ code is provided for Assignments 8.1 and 8.2. The C++ code should not be
modified in completing the assignments.



8.1  Computing the volume of a cylinder (x87)

Given the C++ code, write a program to compute the volume of a cylinder using the x87 FPU.
Prompt the user for the radius and the height; then compute and display the volume. Link your
Assembly code with the C++ functions to prompt for input and to display output. The Assembly
code should control program flow, function calls, and floating-point arithmetic. All variables
must be declared in Assembly. Use appropriate accompanying text for the prompt and output
statements; the strings must also be declared in Assembly.

Volume of a cylinder: V=πr2h

8.2  Computing orbital velocity (SSE scalar)

Given the C++ code, write a program to compute the orbital velocity of an object orbiting Earth
using SSE scalar instructions. Prompt the user for the distance (in meters) of the object from the
surface of the earth; then compute and display the orbital velocity in both meters/sec (m/s) and
miles per hour (mph). Link your Assembly code with the C++ functions to prompt for input and
to display output. Assembly code should control program flow, function calls, and floating-
point arithmetic. All variables must be declared in Assembly. Use appropriate accompanying
text for the prompt and output statements; the strings must also be declared in Assembly.

Orbital velocity (v): 

Where:

Gravitational constant (G) ≈ 6.6741 × 10-11 (N m2 kg-2)
Mass of Earth (me) ≈ 5.9722 × 1024 (kg)



Radius (r) is the distance in meters to the object from the center of Earth. The distance from the
center of the Earth to the surface is about 6.371 × 106 meters, which must be added to the
distance of the object from the surface of the Earth. Given the units, the orbital velocity (v) is in
meters/sec (m/s).

Miles per hour (mph) = m/s ÷ 0.44704

8.3  Normalizing vectors (Challenge Assignment)

Write a 32-bit or 64-bit stand-alone Assembly program that defines a 2d vector and a 3d
vector, then normalizes both vectors. This is a task that could be accomplished any number of
ways, but we encourage the use of MMX, SSE, and/or AVX instructions to parallelize
operations. You can choose the values of the vectors. This assignment could be expanded by
also computing a reflection vector.

Formula to normalize a vector:  where |V| is the length of vector V.

Formulas for computing vector length: 2D: |V| =  and 3D: |V| = 



CHAPTER 8 SUPPLEMENT



Chapter 8 Programs

The following programs are comparative MASM and NASM versions of the GAS programs
presented in CHAPTER 8. Program 8.1 assumes the Assembly code is linked to C++ code with
implementations for _printFloat and _printDouble. Note in Program 8.1 that the C++
functions are prefixed with an underscore for Windows/Visual Studio and Linux/g++. Programs 8.2
through 8.8 are stand-alone Assembly programs. Also, take note of the processor and extension
directives in the MASM programs (e.g., .686, .MMX, .XMM).



Program 8.1a C++ Functions



Program 8.1b x87 FPU



Program 8.2 x87 FPU Rounding control



Program 8.3 MMX

Program 8.4 SSE Packed operations



Program 8.5 SSE Scalar operations

Program 8.6 SSE3



Program 8.7 SSE4



Program 8.8 AVX

Program 8.8 GAS and NASM versions use aligned data and thus the VMOVAPS (vector move
aligned packed single-precision) instruction for moving vectorA and vectorB to ymm registers.
The MASM version uses unaligned data and thus the VMOVUPS (vector move unaligned packed
single-precision) instruction. The MASM program also demonstrates storing the address of a vector
in a register and then using the YMMWORD and XMMWORD directives to move data. Alignment
requirements, available directives, and data manipulation approaches will vary by platform. Consult
the documentation for your chosen platform for specific details.

Investment Calculator (x86_64)
This section presents Program 8.9 – x86_64 Investment Calculator as shown in the CHAPTER 8 CODE
REVIEW section for GAS. To link the C++ and Assembly code, see the 64-bit notes in APPENDIX E:
LINKING ASSEMBLY AND C++ for your chosen development environment.



Investment formula: monthlyPayment = 

Program 8.9a x86_64 Investment calculator, C++ functions



Take special note of some unique differences in the MASM version.
•    The first message (amountMessage) starts with a carriage return and line feed (13, 10).
•    The _asmMain and _pow functions must reserve 32 bytes of shadow space or an exception

occurs.
•    rip-relative addressing is not explicitly used in MASM code.

Program 8.9b x86_64 Investment calculator, GAS



Program 8.9c x86_64 Investment calculator, MASM



Program 8.9d x86_64 Investment calculator, NASM



CHAPTER 9

Inline Assembly and Macros

Objectives
•    Examine usefulness of inline Assembly
•    Create inline Assembly statements
•    Compare macros with function calls
•    Create Assembly macros

Outline
1. Web Resources
2. Introduction
3. Inline Assembly

a. Compiler Specifics
b. Inline Statements
c. Assembly Dialects
d. Cautions

4. Macros
a. Macros versus Functions
b. Defining and Calling Macros

5. Summary
6. Key Terms
7. Questions

a. Short Answer
b. True/false

8. Assignments

Web Resources

Wikis
•    http://wiki.osdev.org/Inline_Assembly

http://wiki.osdev.org/Inline_Assembly


•    https://en.wikipedia.org/wiki/Memory_ordering

Developer
•    https://msdn.microsoft.com/en-us/library/4ks26t93.aspx (Microsoft Inline Assembler)
•    https://gcc.gnu.org/onlinedocs/gcc/Using-Assembly-Language-with-C.html (Clang/GCC)
•    https://gcc.gnu.org/onlinedocs/gcc/Machine-Constraints.html (x86 Machine Constraints)
•    http://www.ibm.com/developerworks/library/l-ia/ (Inline Assembly for x86 in Linux)
•    https://sourceware.org/binutils/docs/as/Macro.html (GAS Macros)
•    https://msdn.microsoft.com/en-us/library/d4chx59e.aspx (MASM Macros)
•    http://www.nasm.us/doc/nasmdoc4.html (NASM Macros)

Introduction
The purpose of this chapter is to familiarize you with the programming concepts of inline Assembly
and macros. First, we discuss the usefulness of inline Assembly followed by some code examples
and cautions associated with inline Assembly. Second, we compare macros with functions and then
present examples of writing Assembly macros. The techniques presented in this chapter give a
programmer more options when writing and fine-tuning programs.

Inline Assembly
Inline Assembly is a way of embedding Assembly code into a high-level language. Throughout this
book we have used C++ for high-level context and examples, which remains the same for this chapter.
Although a language like C++ is extremely flexible and powerful, sometimes a programmer wants or
needs to code closer to the metal. Example situations are programmer-controlled optimizations and
hardware control.

One way to integrate Assembly with high-level code is to follow the process discussed in
CHAPTER 6 and APPENDIX E: LINKING ASSEMBLY AND C++: to create an Assembly file with the
desired Assembly code written as functions and then call the functions from C++. However, the
function and linking approach has some overhead in terms of setup and function calls. Writing inline
Assembly is an alternative and potentially simpler approach, depending on the situation. It always
depends.

Compiler Specifics

Writing inline Assembly assumes we are working with a high-level codebase, so we are dealing with
compilers as opposed to assemblers. Compiler support and available features for inline Assembly
vary from compiler to compiler. When discussing Assembly throughout this book, we have provided
examples for the three most common assemblers: GAS, MASM, and NASM. As we move the
discussion to compilers, we provide inline Assembly examples for Clang, GCC, and Visual C++.
Doing so provides useful examples for most OS platforms. In most cases, Clang and GCC are
identical in form and function.

https://en.wikipedia.org/wiki/Memory_ordering
https://msdn.microsoft.com/en-us/library/4ks26t93.aspx
https://gcc.gnu.org/onlinedocs/gcc/Using-Assembly-Language-with-C.html
https://gcc.gnu.org/onlinedocs/gcc/Machine-Constraints.html
http://www.ibm.com/developerworks/library/l-ia/
https://sourceware.org/binutils/docs/as/Macro.html
https://msdn.microsoft.com/en-us/library/d4chx59e.aspx
http://www.nasm.us/doc/nasmdoc4.html


ATTENTION: Clang is the default compiler in Xcode as of version 4.2. Clang also can be used on
Linux and Windows. Clang and GCC use the AT&T Assembly syntax by default (can be switched
to Intel syntax), while Visual C++ uses Intel syntax.

Inline Assembly code is assembled differently depending on the compiler. In Xcode, Clang is
paired with the LLVM integrated assembler, which handles inline Assembly statements. GCC, as part
of the translation pipeline (see CHAPTER 1), creates an Assembly file from the high-level code before
translation to machine code. So assuming the inline Assembly code is not modified or optimized out
during compilation, GCC copies inline Assembly code to the Assembly output (.s) file, which is then
passed along to the GNU assembler (GAS) with the rest of the code. In Microsoft’s Visual Studio,
Visual C++ has and uses a built-in assembler to handle inline Assembly statements, as opposed to
using a separate assembler such as MASM.

LEARNING: Microsoft’s x64 C/C++ compiler does not support inline Assembly and instead uses
compiler intrinsics that map to low-level instructions. Intrinsics are discussed in APPENDIX I:
INTRINSICS.
https://msdn.microsoft.com/en-us/library/wbk4z78b.aspx

Inline Statements
C++ compilers often provide a keyword for inline statements such as asm or __asm. Let us start
with a simple inline Assembly statement. Example 9.1 sends an interrupt to set a debugging
breakpoint at runtime.

Example 9.1 Inline Assembly interrupt

Like Assembly more generally, inline Assembly has many subtle complexities. Examine the inline
Assembly templates in Table 9.1 and the comparative examples in Table 9.2.

https://msdn.microsoft.com/en-us/library/wbk4z78b.aspx


Table 9.1 Inline Assembly templates

Clang/GCC basic asm ("instruction 1 \n\t instruction 2");
 
asm ("instruction 1 \n\t"
     "instruction 2");

Clang/GCC extended asm ("instruction 1 \n\t"
      "instruction 2"
       : output operands
       : input operands
       : clobbers);

Visual C++ single statement __asm instruction 1

Visual C++ block __asm {instruction 1
          instruction 2};

Table 9.2 Inline Assembly examples

Clang/GCC basic asm ("movl $42, %eax \n\t inc %eax");
 
asm ("movl $42, %eax \n\t"
        "inc %eax");

Clang/GCC extended asm ("movl $42, %%eax \n\t"
        "inc %%eax"
         :
         :
         : "%eax");

Visual C++ single statement __asm mov eax, 42

Visual C++ block __asm {mov eax, 42
           inc eax};

In Clang/GCC, the asm keyword is followed by parentheses, the code is in quotes as a string, and the
semicolon is required. The newline and tab characters (\n\t) separate statements in the string. In
Visual C++, the __asm keyword can be followed by braces if it contains multiple statements or
omitted if a single statement, quotes are not used, and the semicolon is optional.

PROGRAMMING: In Clang/GCC, the asm keyword has the alternate form __asm__ for
situations when compile options such as –ansi and –std disable keywords such as asm and
inline.



Notice that Clang and GCC have basic and extended forms. Basic asm should be avoided
whenever possible as it may behave inconsistently when accessing global variables, and it assumes
no changes are made to general purpose registers. However, basic asm does not have to be in a
C/C++ function, so it can be used to issue assembler directives and write global Assembly functions.
Also, C/C++ functions declared as naked (no prologue and epilogue code is generated by the
compiler) require use of basic asm in order write the custom prologue and epilogue code for such
functions. Extended asm allows for more fine-tuned control of outputs, inputs, and register usage. For
consistency, the remainder of this section uses extended asm for Clang/GCC. Extended asm in
Clang/GCC and all inline Assembly in Visual C++ must exist inside a C/C++ function.

ATTENTION: GCC does not parse inline Assembly instructions and does not even know if
statements are valid. Clang/LLVM is better at issuing debug information about invalid inline
Assembly syntax, but decrypting error messages or locations can be difficult due to the template
design of asm statements and the fact that debuggers (e.g., GDB, LLDB) do not step through inline
Assembly instructions; the entire asm statement is treated as a single step. To step through inline
statements, you can manually add “int $3” instructions anywhere you want a breakpoint for
debugging. Visual Studio does allow for stepping through x86 inline Assembly without the use of
INT.

Program 9.1 Simple inline Assembly

Program 9.1 is a short program for comparing how access to variables is handled and several other
specifics of inline Assembly.



PROGRAMMING: Comments in inline Assembly can follow either stand-alone Assembly or C++
formats, though we highly recommend the latter for consistency.

First, recognize that the inline Assembly statement is inside a C++ function, the main function.
Parameter access varies by compiler. In Visual C++, you can directly refer to accessible C variables
(e.g., var1 is simply var1). In Clang/GCC, parameter access is more complex. Input and output
(I/O) variables used in inline statements must be stated in the input and output lists in the assembler
template. I/O lists can be empty and are maxed at 30 total.

Clang/GCC format for inputs and outputs

The asmSymbolicName can be any valid identifier name, including already defined variables
such as the C variable name that the I/O operand references. Constraints provide information related
to the use and placement of the operand. Constraints are a letter or series of letters (see Machine
Constraints in the WEB RESOURCES). Output constraints start with a modifier, which is then followed
by a letter or a series of letters. The two most common modifiers are '=' (meaning the operand will
be overwritten) and '+' meaning the operand will both be read from and written to (the parameter is
both an input and an output). Use '&' to avoid overlapping use of registers for inputs and outputs
throughout the inline Assembly.

Another part of the Clang/GCC inline Assembly template is the clobbers list. The clobbers list
identifies registers that will be used as part of the inline Assembly instructions, and for which
instructions are generated to save the initial values and restore them upon asm statement completion.
Compilers also avoid using clobbered registers when selecting registers for input and output
operands. Not listing registers used in inline Assembly statements is likely to lead to unintended
consequences and problems in your code!

LEARNING: Refer to the GCC documentation on extended asm for more specific content on
material presented in this section. For example, special clobber arguments such as "cc" and
"memory".
https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html

Examine the code snippets in Example 9.2 and assume the line of code int var1 = 1234,
var2; precedes each asm statement. The code moves the input parameter (var1) to eax, adds 2,
and stores the value in the output parameter (var2).

https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html


Example 9.2 Inline parameter access in Clang/GCC

In Examples 9.2.1 and 9.2.2, we use zero-based position, meaning no symbolic names are used
for the parameters in the Assembly and so parameters are referred to beginning with %0 for the first
output parameter. The number increases by one for each output parameter and continues until the last
input parameter. In Example 9.2.3, we use a symbolic name that differentiates between the parameters
as referenced in the inline Assembly (asm_var#) and the C instance of the variables (var#). In
Example 9.2.4, we use the same symbolic C names in the Assembly.

In Examples 9.2.1 and 9.2.2, we identify the parameter constraints as 'r', meaning the
parameters should be placed in a general purpose integer register prior to statement execution. As
shown in the disassembly, the compiler chose edx as the register to satisfy the constraints. In Example
9.2.3, we use the 'm' constraint, indicating memory access will suffice, so a register is not used as
an in-between. As shown in the disassembly for 9.2.3, the value is moved directly from its memory
location to eax. In example 9.2.4, we identify both register and memory as constraints, which again
the disassembly reveals.

Table 9.3 presents common x86 constraints (support of listed and non-listed constraints is
machine dependent and will vary).



Table 9.3 Common x86 inline constraints

Constraint Meaning

r or R a general purpose register

q lower 8 bits of supported registers (e.g., al)

Q upper 8 bits of supported registers (e.g., ah)

a, b, c, d ax/eax/rax, bx/ebx/rbx, cx/ecx/rcx, dx/edx/rdx

S si/esi/rsi

D di/edi/rdi

A ax/eax/rax and dx/edx/rdx for doubleword results

f any x87 FPU stack register

t Top of x87 FPU stack (st0)

u second from Top of x87 FPU stack (st1)

y any MMX register

x any SSE register

m any memory operand

o offsettable memory operand

V not offsettable memory operand

g any general register, memory, or immediate allowed

X any operand whatsoever

p an operand that is a valid memory address (pointer)

i an immediate constant integer operand (e.g., "i" (5))

F an immediate constant floating-point operand

In Examples 9.2.1 and 9.2.3, we state that eax will be clobbered, overwritten, in the Assembly
instructions. As a result, instructions are generated to save the value of eax so it can be restored after
execution.

In AT&T Assembly syntax, registers begin with %. Notice in the inline Assembly that parameters
start with a single percent sign (%) and registers with two (%%). The % character outputs specific
other characters in inline Assembly code (i.e., a form of escape character). "%%" outputs a single
'%' in code; "%=" outputs a unique number for every instance of the asm statement in the codebase
(useful for creating and referring to labels); while "%{", "%|", and "%}" output the trailing
characters to the Assembly code, since the characters have reserved meaning regarding assembler
dialects. So, to produce "%eax" the inline equivalent is "%%eax". As for registers in the clobbers



list, only one % is required.
With regard to floating-point inline Assembly, we have provided Program 9.2, which presents

x87 and SSE scalar examples to help you get started.

Program 9.2 Floating-point inline Assembly

Assembly Dialects
As already mentioned, Clang and GCC use the AT&T syntax by default, and Visual C++ uses the Intel
syntax. However, both Clang and GCC support multiple Assembly dialects for inline Assembly. The
advantage of switching from AT&T to Intel syntax is that you may find the code more readable.
Compare the two inline Assembly statements in Example 9.3.



Example 9.3 Clang/GCC inline Assembly dialects

As Example 9.3 illustrates, an easy way to use a particular syntax for an inline Assembly statement is
to identify the syntax you want to use with the first directive (.att_syntax or
.intel_syntax).

PROGRAMMING: The Assembly dialect (att or intel) can be set as a compile option for
Clang and GCC by using the –masm option control.

For x86 targets, Clang/GCC supports multiple dialects, which is useful if your code needs to
support both AT&T and Intel syntaxes. The code takes on the form {dialect0 | dialect1…}
and samples are shown in Example 9.4.

Example 9.4 Multiple dialects in Clang/GCC

A couple of other possibilities are evident in Example 9.4. First is the use of the size suffix 'l' for
long in AT&T syntax. Second is the use of the '\t' between parts of an instruction (in the xchg
instruction).

Cautions



The use of inline Assembly demands some caution. First and most important is portability. One
purpose of a language like C++ is cross-platform development. But as soon as you write an inline
Assembly statement, compatibility becomes an issue. If cross-platform support is necessary for a
program, the code must be architected in a way that it handles inline Assembly components correctly
(via use of defines, includes, headers, etc.).

A second caution is that of directive support. While the x86 instruction set is generally supported
in inline Assembly, assembler directive support varies. For example, remember Visual C++ uses an
integrated assembler, not MASM, so the directives supported are different. Data directives (e.g.,
DB/BYTE, DD/DWORD) are not supported since data must be declared in the C++ code. Other
MASM directives such as MACRO, REPT, DUP, and STRUCT are not supported by the Visual C++
inline assembler, while directives such as EVEN and ALIGN are supported. Consult the
documentation for your specific compiler and integrated assembler for information on directive
support.

A third major caution is that of optimization. Optimization generally has two forms: software
(compiler optimizations) and hardware (CPU optimizations). Regarding compiler optimization,
running inline Assembly code in Debug mode may look and behave close to what you are expecting,
though the compiler may add steps such as saving register data, creating variable copies based on
constraints, and aligning the stack. But in Release mode, sophisticated optimizers often reorganize
code and eliminate what the compiler considers to be unnecessary steps and outputs.

Several measures can be taken to limit optimizations and keep your inline Assembly intact and
executing as written. One measure is to declare the asm statement as volatile, as shown in Example
9.5. This disables some compiler optimizations, however CPU optimizations may still take place. For
Clang/GCC, basic inline Assembly is implicitly volatile, whereas extended Assembly is not.

Example 9.5 asm volatile

Another measure is to use what are known as memory barriers or fences, which are most applicable
to modern processors with multi-threading. The purpose of barriers/fences is to prevent reordering of
instructions by the compiler or CPU. An in-depth discussion of volatile and barriers is beyond the
scope of this chapter, but we have provided some formal and informal online sources in a
LEARNING note to get you started.

Inline Assembly can be a useful tool for a programmer, but its use does warrant careful
consideration.



LEARNING: This list contains links to volatile and memory barrier documentation. The sources
are meant to provide a starting point.

•    https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html#Volatile
•    https://brooker.co.za/blog/2013/01/06/volatile.html
•    https://en.wikipedia.org/wiki/Memory_barrier
•    https://www.kernel.org/doc/Documentation/memory-barriers.txt
•    http://bruceblinn.com/linuxinfo/MemoryBarriers.html
•    http://yarchive.net/comp/linux/memory_barriers.html
•    https://msdn.microsoft.com/en-us/library/f20w0x5e(v=vs.140).aspx

Macros
Assembly macros are another coding technique that can be useful to a programmer. A macro can be
thought of as a module, a sequence of instructions, that is invoked by name. Assembly macros work
like C++ inline functions (not to be confused with inline Assembly statements), which, when called,
replace the original call line with the sequence of statements/instructions that comprise the macro.
Such is the case for every instance the macro is invoked.

Macros versus Functions
What is the difference between a function (CHAPTER 6) and a macro? Functions are best for long
sequences of repeatable code. Only one instance of a function exists and when the function is called,
control transfers to the function in memory. The overhead of passing parameters, setting up and
cleaning up stack space, and so on is more efficient than having multiple instances of long or complex
functions.

Macros are best for short and simple sequences of repeatable code. When a program is
assembled, the assembler replaces every instance of the macro name with the sequence of instructions
the macro represents. The result is multiple instances of the same code sequence, but the overhead of
a function call is alleviated. What macros and functions have in common is that they both allow
arguments (parameters). In the case of a function, arguments are passed at runtime. In the case of a
macro, arguments are placed at assembly time.

Defining and Calling Macros
Table 9.4 shows the general macro syntax for the three assemblers. It is worth noting how the
arguments are referenced within a macro. GAS prefixes arguments with a \ as in \arg1, NASM
uses [%#] with the # starting at 1, while in MASM the argument name is unmodified.

https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html#Volatile
https://brooker.co.za/blog/2013/01/06/volatile.html
https://en.wikipedia.org/wiki/Memory_barrier
https://www.kernel.org/doc/Documentation/memory-barriers.txt
http://bruceblinn.com/linuxinfo/MemoryBarriers.html
http://yarchive.net/comp/linux/memory_barriers.html
https://msdn.microsoft.com/en-us/library/f20w0x5e(v=vs.140).aspx


Table 9.4 Assembly macro syntax

GAS

.macro identifier arg1, arg2...
# instructions
# args referenced as \arg1, \arg2...
.endm

MASM

identifier MACRO arg1, arg2...
; instructions
; args referenced as arg1, arg2...
ENDM

NASM
%macro identifier argCount
; args referenced as [%1], [%2]...
%endmacro

In Program 9.3, we demonstrate a simple addition macro.

Program 9.3 Addition macro

In Program 9.3, the only lines of code in _main are the calls to the intAdd macro. When
assembled and executing, the code would look like the instructions shown in Example 9.6 within
_main.



Example 9.6 Expanded program 9.3 addition macros

Macros can be placed outside or inside segments, but stay consistent with the style. Another good
way to handle macros is to place all macros or related macros in a separate file and then include the
file via the INCLUDE Assembly directive (see CHAPTER 7 CODE REVIEW).

An additional characteristic of macros in MASM is that arguments can be set as required.

MASM

Macros are useful for a variety of purposes, but some good examples are custom prologue and
epilogue routines, parameter passing for functions, and a simple way of naming and writing repetitive
but complex single-line instructions.

Summary
In this chapter we showed how to use inline Assembly in C++ programs and macros in Assembly
programs. Inline Assembly and macros are techniques that can offer programming solutions for
specific tasks. As with all programming techniques, it is important to consider pros and cons, such as
compatibly and overhead. To maintain your programmer dignity, do not confuse C++ inline functions
with inline Assembly, as the former is the C++ equivalent of Assembly macros.

Key Terms
AT&T syntax
basic asm
Clang
clobbers
constraints
extended asm
GCC
inline Assembly
Intel syntax
macro



memory barriers (fences)
Visual C++
volatile

Questions
Short Answer

1. Many compilers use __________ assemblers to handle inline Assembly.
2. Inline Assembly statements generally begin with the __________ prefix.
3. Clang and GCC support two forms of inline Assembly: __________ and __________.
4. __________ provide information related to the use and placement of I/O operands.
5. In Clang/GCC inline Assembly, output operands require a __________ that indicates read/write

status.
6. An "rm" constraint indicates that both a __________ and __________ are constraints of the

operation.
7. The __________ constraint is necessary to indicate an SSE register placement.
8. With regard to Assembly code, AT&T and Intel are formally known as __________.
9. While generally supportive of the x86 instruction set, integrated assembler support of

__________ is more limited.
10. Compiler optimizations can potentially be limited by the use of __________.
11. The Assembly equivalent of an inline C++ function is a __________.
12. Functions and macros both allow for __________.
13. Assembly macros are invoked in GAS, MASM, and NASM by stating the macro __________

followed by comma-separated arguments.
14. Macros can be placed inside or outside of Assembly program __________.
15. The REQ attribute can be used to require a macro argument in the __________ assembler.

True/False
1. The interrupt code for a debugging breakpoint is 1. (T/F)
2. In Visual C++ inline Assembly, registers used must be listed as clobbered. (T/F)
3. A variable name used in C++ code also can be used as a symbolic name in Clang/GCC inline

Assembly. (T/F)
4. The use of the volatile keyword in an asm statement guarantees that absolutely no

optimizations will happen regarding that portion of the code. (T/F)
5. The MACRO directive is allowed in Visual C++ inline Assembly. (T/F)

Assignments
9.1  Inline Assembly and floating-point arithmetic



Write a C++ program with inline Assembly. The C++ code should get two floating-point values
from the user. Then with inline Assembly, perform three different arithmetic operations using a
combination of the user parameters and FPU/SSE/AVX instructions. After each computation,
save the result in a programmer-defined variable. Print the results to the console using C++.
You can choose the arithmetic operations. You also are encouraged to use constants such as π,
and instructions such as FSQRT, SQRTSS, and SQRTSD.

9.2  Macros and floating-point arithmetic

Write an Assembly program that defines three macros and tests (invokes) each. Macro #1
should perform floating-point subtraction on two parameters. Macro #2 should perform
floating-point multiplication on two parameters. Macro #3 is your choice. You can use
programmer-defined data for the parameters, and the results should either be stored in memory
or printed to the console. All code should be written in Assembly.

9.3  Encryption with inline Assembly (Challenge Assignment)

Write a C++ program that takes a text file as input, allows the user to select whether to encrypt
or decrypt, then uses inline Assembly to encrypt or decrypt the data, and finally prints the
desired version of the file. The encryption/decryption process must be a minimum of five steps.
Consider using techniques such as XOR and bit shifting as possibilities for character
encryption.



CHAPTER 10

Advanced Processor and System Architecture

Objectives
•    Examine relevant connections between computer architecture and OS architecture
•    Identify system management registers
•    Distinguish between processor modes
•    Distinguish between memory models
•    Generate system calls using Assembly instructions, libraries, and APIs
•    Use varying paths for handling system calls

Outline
1. Web Resources
2. Introduction
3. Processor and System Capabilities

a. System Registers
b. Processor Modes
c. Memory Models
d. Code Example

4. Interrupts and System Calls
a. Software Interrupts
b. Hardware Interrupts
c. Using INT (Old School)
d. SYSENTER, SYSCALL, and Libraries/APIs (New School)

5. Summary
6. Key Terms
7. Code Review
8. Questions

a. Short Answer
b. True/False

9. Assignments



Web Resources

Wikis
•    https://en.wikipedia.org/wiki/X86#Operating_modes
•    https://en.wikipedia.org/wiki/X86_memory_segmentation
•    https://en.wikipedia.org/wiki/System_call
•    https://en.wikipedia.org/wiki/Global_Descriptor_Table
•    http://wiki.osdev.org/GDT_Tutorial
•    https://en.wikipedia.org/wiki/Interrupt
•    http://wiki.osdev.org/Interrupt_Descriptor_Table

Developer
•    http://www.intel.com/content/www/us/en/processors/architectures-software-developer-

manuals.html (Intel Developer Manuals)
•    https://github.com/hjl-tools/x86-psABI/wiki/X86-psABI (AMD64 ABI)
•    https://msdn.microsoft.com/library/windows/desktop/hh920508.aspx (Windows API Index)

Introduction
Chapter 10 satisfies two objectives and is crucially important to the overall understanding of
Assembly programming and computer architecture. The first objective is to supplement other content
in the book (especially CHAPTER 2) with further detail on processor and system architecture. We
introduce system registers, processor modes, and memory models. The second objective is to
introduce the programming topics of interrupts and system calls (alluded to in CHAPTER 9), which
enhance your ability to accomplish low-level tasks. The programs and examples illustrate how
system calls can be invoked in a variety of ways on a variety of platforms. Get ready to enter a rabbit
hole and beware the acronyms.

Processor and System Capabilities
System Registers
In CHAPTER 2 we introduced the registers available in x86 and x86_64 architectures. However, we
did not discuss certain registers that are specifically for system needs. In this section, we briefly
introduce some of the x86 system registers and re-introduce segment registers. Knowledge of system
registers will help you understand other portions of this chapter.

System registers include the following:

•    Control registers – indicate the processor mode and characteristics of executing tasks
º  cr0 through cr4; cr1 is reserved
º  cr8 aka Task Priority Register (tpr) – used to prioritize external interrupts, 64-bit only

•    Memory-management registers – specify locations of descriptor tables used in Protected Mode

https://en.wikipedia.org/wiki/X86#Operating_modes
https://en.wikipedia.org/wiki/X86_memory_segmentation
https://en.wikipedia.org/wiki/System_call
https://en.wikipedia.org/wiki/Global_Descriptor_Table
http://wiki.osdev.org/GDT_Tutorial
https://en.wikipedia.org/wiki/Interrupt
http://wiki.osdev.org/Interrupt_Descriptor_Table
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
https://github.com/hjl-tools/x86-psABI/wiki/X86-psABI
https://msdn.microsoft.com/library/windows/desktop/hh920508.aspx


º  gdtr – Global Descriptor Table Register
º  ldtr – Local Descriptor Table Register
º  idtr – Interrupt Descriptor Table Register
º  tr – Task Register

•    Machine-specific registers (MSRs) – used to control and report processor performance. Some
are specifically related to system calls (more on MSRs later).

PROGRAMMING: Each of the memory management registers has corresponding load and store
instructions: LGDT/SGDT, LLDT/SLDT, LIDT/SIDT, and LTR/STR. The load instructions are
only used by system software to load the registers with the linear memory addresses of the
descriptor tables. At startup, all memory management registers default to 0x0h and have a size
limit of 0xFFFFh. Once gdtr and idtr are loaded with actual values as part of processor
initialization, they do not change, whereas ldtr and tr can change as tasks are switched. The store
instructions are also for use by system software, but they can be used by application software if
necessary.

Segment registers are 16 bits wide and include the code segment (cs), data segment (ds), stack
segment (ss), extra segment (es), and two other general segment registers—fs and gs—that were
added with the Intel 80386. es is the default segment for string operations (e.g., MOVS, CMPS,
SCAS), while fs and gs have no formal hardware-defined use.

For the system and segment registers, we discuss some of their uses within the context of
processor modes, memory models, and system calls. Access to system registers is meant for system
software, not application software. The same is generally true for segment registers, but the segment
registers do have some uses in application software.

Processor Modes
Throughout the x86 era, processor modes have evolved along with the instruction set and system
capabilities. Table 10.1 shows the primary processor modes for x86/x86_64, the first processor to
support the mode, and addressable memory space. Some other x86 modes exist, such as System
Management mode and Virtual 8086 mode. However, we focus on attributes of the primary modes,
namely Real Mode, Protected Mode, and Long Mode. Intel documentation usually refers to Long
Mode as IA-32e.



Table 10.1 Processor modes

Mode Real Mode Protected Mode 386 Protected Mode Long Mode

First Processor Intel 8086 Intel 80286 Intel 80386 AMD Opteron

Addressable Memory 220 (1 megabyte) 224 (16 megabytes) 232 (4 gigabytes) 248 (256 terabytes)
264 (16 exabytes)*

The Intel 8086 was the 16-bit processor that introduced the x86 ISA. The 8086 operated in Real
Mode, which means the physical memory space, I/O channels, and hardware peripherals allow direct
software access. Such unfettered access is necessary when software needs to directly communicate
with hardware for tasks such as system startup (booting).

ATTENTION: Modern x86 and x86_64 processors start the boot process in Real Mode as a way
of dealing with backward compatibility, but then quickly switch to Protected Mode or Long Mode.
Most modern processors use UEFI for hardware setup, but are backward compatible with BIOS.

All x86 processors beginning with the Intel 80286 offer Protected Mode, which is the default
mode for 32-bit x86 systems. The protected mode introduced with the i286 had some limitations.
Once in Protected Mode, the processor could not be switched back to Real Mode. Memory accesses
were complicated, which consumed clock cycles, making it slow. And addressable memory was still
fairly limited. Protected Mode was enhanced for the Intel 80386, which solved the aforementioned
issues and is the protected mode used by modern processors, with occasional improvements.

Long Mode, introduced with the AMD Opteron, is the processor mode that enables access to the
x86_64 instruction set and registers. Long Mode requires a 64-bit operating system. *Currently,
memory addresses only use 48 of the available 64 bits, so up to 256 terabytes of memory can be
addressed even though the theoretical limit is 16 exabytes. Long Mode has sub-modes; one is 64-bit
Mode for 64-bit programs, and the other is Compatibility Mode, which is an enhanced Protected
Mode for 32-bit and 16-bit programs. When not in Long Mode, x86_64 processors still support Real
and Protected Modes.

LEARNING: APPENDIX G: USING CPUID discusses extended attributes, which programs can use
to determine if a processor supports Long Mode.

Memory Models



The memory model used in a computer system is determined by the processor modes available and
what the operating system supports. Two general models are segmented and flat. The segmented
memory model divides the address space into segments (sections). The segments can be used for
different parts of a program, such as a segment for data and a segment for code. Addresses are
referred to by indicating the segment base address and then adding an offset.

The flat memory model presents the memory space to the programmer and program as a single
contiguous space. The flat model is sometimes called the linear model. All memory addresses can be
referred to directly in a linear fashion, as opposed to indicating a segment and an offset within the
segment. Most computer architectures use a flat model, while the x86 architecture has transitioned
between models over time.

In both models, the goal is to map a logical address (an abstracted reference) to a physical
address (the actual location). x86 16-bit systems use a segmented memory model, as do 32-bit
systems in Real Mode. x86 systems in Protected Mode use a segmented model that is presented as a
flat model. And x86_64 systems use a flat memory model.

Example 10.1 illustrates how segmented addressing works in x86 Real Mode. Assume we are in
16-bit, we have a memory data segment that starts at 1234h, and the location of the item we want to
refer to is offset 5678h from the beginning of the data segment. The first part of the address is
known as the segment selector, and the second part is the offset. In code, we could refer to the item’s
address as 1234h:5678h, but that is not the physical address.

Example 10.1 Real Mode addressing

Recall from CHAPTER 1 that each hexadecimal digit is four bits. So, 1234h = 0001 0010
0011 0100b. Recall from Table 10.1 that the address space in Real Mode is 220, and thus a
physical address is 20-bits. The segment selector is only 16-bits, so the last four bits are
automatically set to zeros. Another way to think about it is that the selector is multiplied by 16,
resulting in 12340h. The value is then added to the 16-bit offset—in our example 5678h, resulting
in the physical address 179B8h.

In x86, the segment selector is typically not stated as an explicit value (1234h), but is usually
one of the 16-bit segment registers that holds the segment base address. So assuming 1234h is a
segment base address, we might store the value in the gs register and then refer to the address above
as gs:5678h.

Addressing in 32-bit x86 Protected Mode has some similarities and differences with Real Mode
segmented memory. First, the segmented memory model is still used in Protected Mode, but
additional layers of abstraction present the memory space more like a linear model. One abstraction
is the use of descriptors, and a second abstraction is paging.

As mentioned in the first ATTENTION note, more modern x86 processors start in Real Mode and
then switch to Protected Mode. As part of the boot process, the system sets up descriptors, such as the



Interrupt Descriptor Table (IDT), Global Descriptor Table (GDT), Local Descriptor Table (LDT),
Task State Segment (TSS) descriptor, a Code Segment Descriptor, and a Data Segment Descriptor.
The GDT and LDTs are data structures that detail memory segments: base addresses, sizes, and
access privileges. The GDT is intended for global and shared segments, while running
programs/processes may have their own LDT. The TSS is where data such as register values, I/O
permissions, and stack pointers for tasks are stored to support multitasking (suspending and switching
tasks). We discuss the IDT and TSS in later sections.

LEARNING: For detailed information on the boot process and mode switching for x86/x86_64,
see the Intel Developers Manual Volume 3A sections 9.8, 9.9, and 9.10. After the tables are set up,
Protected Mode is enabled in the cr0 register. The cr0 register is 32 bits wide in 32-bit mode, and
64 bits wide in 64-bit mode. The two cr0 bits relevant to our discussion are Protected Mode
Enable (PE, bit 0) and Paging (PG, bit 31).

To illustrate Protected Mode segmented addressing, let us assume we have the same setup as
Example 10.1, with a logical address of 1234h:5678h. The segment selector in this case does not
refer to a segment, but rather an index in the GDT. Every entry in the GDT is 8 bytes in 32-bit and 16
bytes in 64-bit.

Example 10.2 Protected Mode addressing

Example 10.2 is in 16-bit, so keep in mind that in 32-bit the base addresses and offsets are 32 bits.
Also, as in Example 10.1, the segment selector is contained in one of the segment registers. A
Protected Mode segment selector contains three pieces of information as shown in Table 10.2.

Table 10.2 Segment selector contents

Bits 15…3 2 1…0

Contents index table indicator (TI) requested privilege level (RPL)

The RPL will either be 0 for kernel access or 3 for user (application) access. The TI will be 0 for
GDT or 1 for LDT. The index is the location to look up in either the GDT or LDT.



The values stored in segment registers are set by the system and depend on the memory model in
use, the operating system in use, and the currently executing program. In 32-bit, typically the ds, ss,
and es registers all point to the same location. That is, they all contain the same segment selector as
they are all types of data storage organized in the same segment by the system. fs and gs are for
programmer use and so are usually 0x0h by default, indicating the beginning of the address space,
although they also may be set to the same selector as ds. cs holds the selector for the code segment,
which is the segment where currently executing instructions are stored.

LEARNING: As mentioned in previous chapters, the Instruction Pointer register (ip/eip) points to
the address of the next instruction to be fetched and executed. But in x86, ip/eip actually contains
an offset to an instruction inside the code segment. So the actual address fetched by the processor
is a combination of cs:ip/eip, where cs is the code segment selector and ip/eip is the offset.

Paging adds another layer of abstraction and translation in x86 systems. We do not intend to go
into extreme detail on paging mechanisms, but here are the basics. Almost all modern operating
systems use paging, which means the PG bit (31) in cr0 is set (1). When paging is enabled, cr3 is
used to translate linear virtual addresses into physical addresses. One of the items cr3 contains is the
physical address of the first page directory for the current task. Figure 10.1 presents how x86 paging
is organized and 32-bit virtual addresses are constructed.

32-bit x86 uses a multi-level paging mechanism. A page is usually 4 kilobytes that appears to the
system as continuous memory space. Page sizes of 2mb and 4mb are also supported if the Page Size
Extension (PSE), bit 4 in cr4, is set. A page table is an array of 1,024 32-bit entries, meaning a page
table fits into a page. Each of the entries in a page table points to the physical address of a page. The
third level is a page directory, which is also 1,024 32-bit entries, each of which points to a page
table.



Figure 10.1 x86 Paging

When an address is fetched, the data is accessed in the following manner. cr3 points to the base
address of the active page directory. The upper 10 bits of the 32-bit virtual address point to the
indexed location in the page directory. Bits 12 through 21 are used to index into the page table
pointed to by the entry in the page directory. Bits 0 through 11 are used to index into the page file
pointed to by the entry in the page table.

The virtual address, along with cr3 and the 32-bit entries, allows data for programs to be stored
in files using the flat model that represents the entire address space 232 (4gb). Page files are stored in
secondary storage (disk) and are moved to main memory (RAM) and cache as needed. If the data is
not found in cache or RAM, then a page fault occurs and the page is retrieved from secondary storage.
When paging is enabled, segmentation has little purpose. Every program has its own space separate
from other programs, but each has virtual access to the full address space, a clever and powerful
illusion.

ATTENTION: Paging is transparent to programs and the user. In a flat model with paging enabled,
a virtual address is essentially seen as a linear address in a linear address space. In reality, the
linear space is divided into pages mapped to virtual memory mapped to physical memory frames
(which hold a page).

Addressing in 64-bit x86_64 removes segmentation almost entirely. Segmentation is not used in
Long Mode, and segment register use varies. The cs, ds, ss, and es segment registers will either be



forced to 0x0h or will be treated as zero (regardless of associated segment descriptors) and the
addressable space limit will be extended to 264. The result is a flat address space for code, data, and
stack. Debuggers may not even show the segment registers. But fs and gs can be used for special
purposes. On Microsoft Windows, gs is used to point to thread blocks for running threads, and the
Linux kernel uses gs to store CPU data. Segment registers are still used for tasks running in
Compatibility Mode.

Paging in x86_64 also changes by adding another level. cr3 points to a page directory pointer
table, which contains page directory entries to page directories. A bit is taken from the page table,
and the page directory indexes to create a 2-bit index value for the pointer table.

Code Example
Typically, x86 Assembly instructions implicitly use the appropriate segment register based on the
instruction, which means in most cases we do not have to indicate the segment. For example, stack
instructions such as PUSH and POP implicitly use the stack segment selector in the ss register, and
data access instructions such as MOV use the data segment selector in the ds register.

Program 10.1 shows a variety of ways segment selectors can be used to address memory in x86
Assembly. Again, segment selectors are usually not required, but Program 10.1 illustrates their
explicit use. Similar NASM and MASM versions are in the CHAPTER 10 SUPPLEMENT.

Program 10.1 Using segment selectors

Line #1 moves the address of the first array element to eax. In line #2 we show the typical way a
value might be moved by using the address contained in eax plus an offset. Since the array is in the



data segment, we can prefix the identifier (array) with the segment register that contains the data
segment selector (ds) as shown in #3 and #4.

PROGRAMMING: If using the MASM Assembler, a data move based on a linear address is one
of the occasions when a segment selector is required. An example of a move with a linear address
would be mov eax, ds:[0Fh]. See the MOV comparison with GAS and NASM syntax in
APPENDIX A.

Lines #5 through #9 show some ways the gs register could be used in macOS and are purely
illustrative of syntax. Such use is not recommended since Linux and Windows use fs and gs for system
purposes. Line #5 moves the default value stored in gs to esi. Though the two registers contain the
same binary value, in line #6 we move the immediate value 42 to the segment location stored in gs
plus the offset stored in esi. We then grab the value as it exists (42) and move it to the edi register in
line #7. Lines #8 and #9 show how to do the same thing, but with a literal offset value (0x04h).
Again, the code is just simple examples of syntax and use.

ATTENTION: Throughout the remainder of this chapter we refer to masOS and BSD operating
systems collectively. Although the macOS kernel, XNU, is a hybrid of Mach and FreeBSD, the
code examples provided for macOS also generally apply to BSD systems.

Interrupts and System Calls
Software Interrupts
An interrupt is a signal to the processor that something needs immediate attention. Broadly, there are
two types of interrupts: hardware and software. Our primary focus is on software interrupts. One
form of a software interrupt is when an application sends a signal to the processor. Using the INT
instruction in an application is an explicit way of generating a software interrupt. Another form of
software interrupt is called an exception (trap), which happens as a processor is executing
instructions and situations occur that are not or cannot be handled by the executing application.



LEARNING: Learning about interrupts is most important if you intend to write system software
(OSs, drivers, utilities). As for application developers, knowledge of interrupts helps with
understanding the evolution of system calls. On older 16/32-bit x86 systems, an interrupt was the
primary way of asking the OS to do something hardware or software related. Newer 32/64-bit x86
systems have moved away from using interrupts for system tasks and instead use more efficient
x86/x86_64 instructions. Read on …

A good example of a software exception is division by zero. Multiple possibilities exist for
handling this circumstance. Look at the following C++ code examples.

Example 10.3 Division by zero without exception

Example 10.3 shows a simplistic and relatively meaningless way to handle a potential exception:
an if statement that outputs a statement to the console, but provides no real indication to the system
that an exception took place. Example 10.4 shows a better way to deal with the situation in C++ by
using a try-catch block and throwing an exception. A message is still sent to the console, but having an
exception handler (catch) deal with the situation has meaning for the system.

Example 10.4 Division by zero with exception



But what if we do not handle division by zero with our own software exception handler? When
the processor attempts to execute the division instruction with a zero as denominator, the processor
generates an interrupt and handles the exception itself, since division by zero is a standard processor
exception (Table 10.3).

Table 10.3 x86 Interrupts

ATTENTION: Exception handling may differ depending on whether the CPU or FPU is handling
the computation. If the data types are integers as in Example 10.3, the CPU will throw an
arithmetic division exception with code 0x0h, and the program will terminate/crash. If the data
types are floats, the FPU may handle the exception more smoothly by returning infinity (INF) and
then continuing processing.

In the MEMORY MODELS section, we introduced the Interrupt Descriptor Table. In Real Mode, the
IDT is known as the Interrupt Vector Table (IVT), but we will focus on how interrupts work in 32-bit
and 64-bit modes. Traditionally, the IVT is the first structure in physical memory ranging from
address 0x0000h to 0x03FFh in 16-bit, 0x07FFh in 32-bit, and 0x03FFFh in 64-bit. However,
in 32-bit and 64-bit modes, the IDT may reside anywhere, and the idtr register stores the physical
base address and the length in bytes of the IDT.

Table 10.4 IDTR contents



The IDT in 32-bit mode is an array of 8-byte descriptors known as interrupt gates, trap gates, and task
gates (we will just use the general term interrupt). The standard IDT is 256 entries, meaning the IDT
size is 2kb (256 * 8). In 64-bit modes (Long Mode and Compatibility Mode), the IDT descriptors are
16-bytes with some contents changed and added. The size increase is mostly to maintain alignment for
rip-relative addressing.

An 8-byte interrupt descriptor in 32-bit Protected Mode has the structure presented in Table 10.5.
The Descriptor Privilege Level (DPL), similar to the RPL for segment selectors, is 0 for kernel
access or 3 for application access. D (bit 11 in byte 6) is the size of the interrupt gate; 1 meaning 32-
bit and 0 meaning 16-bit. P (bit 15 in byte 6) is the segment present flag. The Target Segment
Selector (bytes 3–4) is the segment selector for the destination code segment where the Interrupt
Service Routine (ISR) is located. The Offset in Target Segment (bytes 7–8) is the offset to the ISRs
entry point within the target segment.

Table 10.5 32-bit IDT descriptor contents

Servicing an interrupt is a somewhat complex operation. When an interrupt is generated in a 32-bit
mode, the following process takes place.

1. The CPU multiplies the interrupt number (e.g., int 3) times 8 since each descriptor is 8 bytes
wide (e.g., 3 * 8) and adds the value to the base address of the IDT (stored in idtr).

2. A compare takes place between the value from Step 1 and the size of the IDT, which is stored in
idtr. The test verifies that the interrupt is valid. If the interrupt is invalid a General Protection
(GP) exception is generated.

3. If the interrupt is valid, the 8-byte descriptor stored at the address calculated in Step 1 is
fetched. As shown in Table 10.5, the descriptor contains all the information related to the ISR
(handler).

32-bit Scenario 1

If the handler is to be executed at a lower Privilege Level (PL) (e.g., the application running is at PL
3 and the interrupt is to execute at PL 0):

4. The stack segment selector (ss) and stack pointer (esp) used by the ISR are fetched from the
TSS in the GDT.



5. The processor pushes the stack segment selector (ss) and stack pointer (esp) of the interrupted
procedure on the newly active stack.

6. The processor pushes the current state of eflags, cs, and eip on the active stack.
7. Some interrupts (8, 10-14, 17-18) contain an error code and if so the code value is pushed to

the active stack after eip.

32-bit Scenario 2

If the handler is to be executed at the same privilege level (e.g., the application and interrupt are both
at PL 3):

4. The processor pushes the current state of eflags, cs, and eip on the active stack.
5. Some interrupts (8, 10–14, 17–18) contain an error code, and if so the code value is pushed to

the active stack after eip.

Then the interrupt routine executes. Upon completion, the IRET instruction is used to return from an
interrupt. The IRET instruction is a special form of RET that restores (POPs) the register states such
as eip, cs, and eflags so the interrupted task can pick up exactly where it left off. The number of pops
performed by IRET matches the pushes based on the privilege level scenarios.

Figure 10.2 32-bit stack scenarios for interrupts

Figure 10.2 illustrates the stack scenarios for handling interrupts in 32-bit x86. In Scenario 1, the
interrupted process and the interrupt routine have different stacks. In Scenario 2, the interrupted
process and the interrupt routine share the same stack.

When a software interrupt is generated in one of the 64-bit modes, the process is similar but with
some differences. The interrupt routines are 64-bit code. The IDT entries are 16 bytes each with some
content changes, the most significant being a 3-bit field representing the Interrupt Stack Table (IST),
which is discussed further in 64-bit Scenario 4.



ATTENTION: Interrupts serviced in Compatibility Mode, an enhanced 32-bit mode that is a sub-
mode of 64-bit Long Mode, are defined as 64-bit interrupt gates and routines.

When an interrupt occurs in 32-bit, the amount of data pushed on the stack depends on whether a
change in privilege level takes place as shown in Figure 10.2. 64-bit mode interrupts are more
consistent as ss:rsp is always pushed to the stack and a placeholder is used for the error code if none
accompanies the interrupt. As with procedure calls in 64-bit, interrupt calls and returns maintain 16-
byte alignment for optimal use of xmm registers.

IRET in 64-bit generally has the same behavior except that the POPs are 64-bit values. One
difference is that because ss:rsp is always pushed to the stack for 64-bit interrupts, IRET always
pops ss:rsp in 64-bit Mode, but will only pop ss:rsp in Compatibility Mode in the case of a privilege
level change. Thus, backward compatibility is maintained.

64-bit processors have four possible stack scenarios when servicing interrupts.

64-bit Scenario 1

When the processor is in a legacy 32-bit mode, stack switching behaves as described previously in
the 32-bit scenarios.

64-bit Scenario 2

In 64-bit Compatibility Mode, stack switches in the case of a change in privilege level are slightly
different than 32-bit Scenario 1, specifically Step 4 is different. rsp is updated with a new value from
the TSS, but ss is set to NULL and its RPL field is set to the interrupt’s privilege level so nested
interrupts can be handled. Upon returning, the interrupted values of ss and rsp are restored.

64-bit Scenario 3

In 64-bit Mode, if the IST 3-bit index is zero (000b), 64-bit Scenario 2 is followed.

64-bit Scenario 4

In 64-bit Mode, if the IST index is not zero (001b–111b) the IST switching mechanism is used.
Operating on a known good stack is important for certain interrupts. In 32-bit mode, the switch to a
known good stack is achieved via task gates in the IDT; in 64-bit mode the switch is achieved via the
IST.



LEARNING: Task gates are a form of interrupt that are handled like an ordinary task switch by
using the interrupt’s corresponding entry in the TSS. The link back to the interrupted task is stored
in the Previous TSS link field of the handler’s TSS entry. Other interrupts are disabled in task
gates. Examples of task gates are Non-Maskable Interrupt (NMI), Double Fault, and Machine
Check.

The IST is a section within the TSS specifically for 64-bit stack switching. The IST field is 3 bits
in a 64-bit IDT entry, so the max value is 111b, and seven corresponding pointers in the TSS’s IST
exist. Each pointer in the IST points to a valid stack location that can be loaded into rsp as the new
stack location for handling the interrupt. Figure 10.3 offers a simplified visual of the 64-bit IST
implementation.

Figure 10.3 – 64-bit interrupt stack table (IST) implementation

The Task Register (tr) holds the address of the TSS descriptor in the GDT. The TSS descriptor
contains the address of the Task State Segment. Within the TSS is the IST, which is a collection of
good stack addresses, one of which will be loaded into rsp if the IST field in an interrupt descriptor
entry is not zero.

Aside from the IST aspect, the steps in 64-bit Scenario 4 resemble 64-bit Scenario 2. With the
good stack location in rsp, the ss register is set to NULL and the RPL is set to the current privilege
level. The interrupted process’s ss, rsp, rflags, cs, and rip values are pushed to the new stack, and the
interrupt is processed.

Hardware Interrupts
A hardware interrupt also sends a signal to the processor, but the signal is from a device in
communication with the system via an interrupt request line (IRQ). IRQ lines provide a means of
communication between the processor and hardware devices. A processor has a limited number of
IRQ lines for hardware interrupts. The hardware lines to the processor are connected through a
Programmable Interrupt Controller (PIC). Older x86 systems used two of Intel’s 8259 PICs, which
supported eight IRQ lines each and were noted as IRQ0–IRQ15.



Modern x86 systems use Intel’s Advanced Programmable Interrupt Controller (APIC), which is
much more flexible in terms of routing interrupts in multi-processor systems. APICs theoretically
support up to 255 interrupt lines, though most systems currently support 24 IRQs. The older PICs had
set IRQ lines, such as IRQ0 for the system clock and IRQ14 as the primary ATA channel for disks.
The newer APICs are fully programmable. But most operating systems maintain the standard IRQ
numbering scheme.

Using INT (Old School)
Beginning with the Bubble Sort example in CHAPTER 1 CODE REVIEW all the way through Program
10.1 in this chapter, the last instruction in all stand-alone 32-bit GAS and NASM programs is "int
$0x80" and "int 80h", respectively. The first inline assembly code example in Chapter 9
(Example 9.1) was "int $3" for Clang/GCC and "int 3" for Visual C++. Here we present
more examples of using INT.

As mentioned in the LEARNING note at the beginning of the SOFTWARE INTERRUPTS section,
using an explicit interrupt is an older way of performing system tasks on 16/32-bit x86 systems. So a
lot of code examples found online and elsewhere use INT for system calls. A system call is a request
to the operating system kernel to do something, sometimes via an application programming interface
(API) as in Windows. System calls can be made on 32-bit Unix/Linux systems by using "int
80h". Microsoft DOS used "int 21h" and later iterations of Windows (e.g., 2000, XP) used
"int 2Eh".

LEARNING: We use macOS and Linux to illustrate the INT instruction since its use has remained
consistent and straightforward over time. For the Windows examples, we use the Windows API
for consistency and because it is the practical and modern approach.

The process of handling a system call via "int 80h" is as follows.

1. INT is executed.
2. The processor switches from running at PL3 (application) to PL0 (kernel).
3. The INT 80h routine is located via an IDT descriptor.
4. Control transfers to the kernel to handle the request indicated by the system call number.
5. The task is performed.
6. The privilege level is reset to PL3.
7. Control is returned to the calling program.

Program 10.2 shows examples of INT in GAS. A similar program for NASM is in the CHAPTER 10
SUPPLEMENT.

We start Program 10.2 by signaling the processor with a debug breakpoint (int $3). When



running the program in Debug mode, execution will halt at int $3, and then we can step through
the program. In graphical development environments such as Xcode and Visual Studio, you can set a
breakpoint visually, while in command-line debuggers such as GDB and LLDB, a breakpoint can
easily be set at any label. Using INT 3 is a programmatic way of setting a breakpoint, but it is for
debugging use only.

Program 10.2 prints the string "Computer Architecture" twice: first by using a system call, and
second by using a system call implemented as a function. A system call must be accompanied by what
you want the system to do, such as write to console or read from a file. The desired action is
indicated by a system call number. The call number and necessary arguments are placed in registers,
on the stack, or a combination of both, depending on the system.

LEARNING: The CHAPTER 10 SUPPLEMENT contains information on system call tables and
relevant links to online sources.

When using INT in 32-bit mode on macOS/BSD, arguments go on the stack and the call number
goes in eax. On Linux, registers are used for arguments and the call number.

•    macOS/BSD: push arguments on the stack in reverse order; move call number to eax; send
INT.

•    Linux: move arguments to registers in the order ebx, ecx, edx, esi, edi, and ebp; move call
number to eax; send INT.



Program 10.2 Debug and system write interrupts

Example 10.5 System write with INT

Example 10.5 shows how system calls are similar to function calls. System calls are calls to
routines (functions) via an interrupt gate. The Linux example is similar to the 32-bit fastcall
convention. The macOS/BSD example is similar to the cdecl convention: stack is used and



parameters are passed in reverse order, which is clear when looking at the system write prototype in
the syscalls.master file for BSD.

Referring to Program 10.2 and Example 10.5, we first push the length of the string on the stack;
second, the location of the string; third, the file descriptor for STDOUT (1); fourth, the stack is
aligned (a macOS 32-bit requirement); and then we place the value for the system call to perform a
write in eax. With the arguments and call number set, we issue the system call with "int $0x80".
The string prints to the console and in code we adjust the stack pointer 4 bytes for every argument
passed for cleanup.

Notice the return value (user_ssize_t) in the system write prototype. Most system calls
return a value, usually in eax/rax. If you check the state of eax after the interrupts in Program 10.2,
you will notice the value 0x16h (22d), which means 22 characters were printed. Other system
calls, such as a request for the system time, will place the days, hours, minutes, and so on in various
registers. For specifics on system call return values, refer to the system call information for your
chosen platform (again, see the CHAPTER 10 SUPPLEMENT).

In Program 10.2, the _kernel function shows how to issue a system call via a function, which
is useful in any system but is how system calls are expected in macOS/BSD. Notice that if the
interrupt is issued via a function that contains the INT and a RET, the extra PUSH to align the stack is
not needed.

Program 10.3 provides another example of using INT. In Program 10.3, we get the process ID of
the program and print it to the console. The system call number to query for the process ID (0x14h)
is loaded into eax, the interrupt is issued, and the process ID is returned in eax. We then go through a
loop converting the numeric value into printable ASCII characters. Then we use INT as we did in
Program 10.2 to print the process ID to console.

INT has some necessary and positive uses for low-level programming, but methods evolve. Using
INT to achieve system calls is possible, but there is some considerable overhead.



Program 10.3 Print process ID with INT

SYSENTER, SYSCALL, and Libraries/APIs (New School)
Beginning with the Pentium II processor, Intel introduced instructions to perform fast system calls.
SYSENTER and its counterpart SYSEXIT were the first instructions, and they are supported in 32-bit
and 64-bit modes. SYSCALL and its counterpart SYSRET were introduced with 64-bit mode (Long
Mode) and are supported in 64-bit modes. The instructions are referred to as “fast calls” because of
the intention to handle privilege level (PL) switches more efficiently.



PROGRAMMING: SYSENTER/SYSCALL and their counterparts SYSEXIT/SYSRET are not
used as a CALL/RET pair. The instructions are counterparts for switching to privilege level 0 and
switching back to privilege level 3.

This topic, like many advanced architecture topics, is a deep and twisted rabbit hole that you can
explore further via the Resources in the CHAPTER 10 SUPPLEMENT. Responsibility for handling the
PL switch context lies with the operating system. So what does that mean? In some cases, fast calls
are faster than the INT method and in some cases fast calls are slower. The implementation is mostly
OS-dependent, but the processor pipeline also affects the speed.

If you look into system call methods online or elsewhere, you will find many examples (most
outdated) and opinions on what method is best. Keep in mind that the way system calls work in one
version of an OS (and its myriad of context details) probably differs from how it works in past or
future versions.

For example, although past versions of the Linux kernel (e.g., 2.6, 3.x.y) had very different
methods for handling INT, SYSENTER, and SYSCALL, more modern releases (e.g., 4.x.y., as of this
writing) have merged the implementations such that they are essentially interchangeable. The kernel
provides one path for handling system calls whether it is initiated with INT, SYSENTER, or
SYSCALL.

The same is true in Windows-land, but the implementation is different. The INT instruction is
rarely directly used anymore in user space since system calls can easily be issued in Assembly code
through the Windows API. The Windows API is actually built on top of the Windows Native API
(ntdll.dll). The Native API routines for system calls are low-level routines written in C and
Assembly using INT, SYSENTER, and SYSCALL. The point is that whether in Windows, Linux, or
macOS/BSD-land, system calls are usually achieved with wrapper functions in libraries or APIs that
have multiple layers of abstraction. The abstractions are not just between the user code and the
processor, but also between the user code and the kernel.

All of the example Windows (MASM) programs throughout this book have used a Windows API
call to exit (similar to exiting with INT in GAS and NASM). Recall the following 32-bit MASM
code snippets.

ExitProcess is a function in the Windows API that exists as a system call in
Kernel32.lib/dll and ends the calling process. The first line in the snippet is the function
prototype, which signals our intent to use the method. The second line is where we INVOKE (a form
of CALL) the system procedure.

Program 10.4 shows 32-bit examples of using the Windows API to achieve output similar to
Programs 10.2 and 10.3. Program 10.4 also shows the difference between CALL and INVOKE, the



latter being a simpler way of writing the call and passing arguments. Three Windows API functions
we use are MessageBox, GetCurrentProcessId, and ExitProcess. Example 10.6 shows
the C++ prototypes for the methods. All methods are invoked via the WinAPI, but the routines exist in
different libraries.

Program 10.4 Windows API calls



Example 10.6 Windows API C++ prototypes

PROGRAMMING: The INVOKE directive is available in MASM 32-bit but not available in
MASM 64-bit. When programming for Microsoft x64 you must use the CALL instruction after
placing the parameters in the appropriate locations. See CHAPTER 6 TABLE 6.1 and CHAPTER 10
PROGRAM 10.8.

One subtle difference in converting the PID to ASCII for output is that in MASM (and NASM) we
shift 3 bytes, whereas in Program 10.3 for GAS we shifted 4 bytes. Be aware that the values and
ways to handle the output string can vary since the length of process IDs is system dependent.

ATTENTION: Use libraries or APIs when possible for system calls, as opposed to Assembly
instructions. Two major advantages of doing so are consistency and portability.

The general low-level process for invoking a system call is consistent.
1. Save the current context.
2. Change the privilege level (to PL0).
3. Load and execute the system routine.
4. Reset the privilege level (to PL3).
5. Return to a valid location (usually where the calling procedure left off).

But what if we could perform a system call without having to switch PLs and save context? We can
and often do, though it is transparent to the programmer. In Linux-land, the kernel creates a virtual
memory page known as the virtual dynamic shared object (VDSO), which is linked to all user
processes in memory. The VDSO contains common system call routines. When an application in user
space makes a system call, whether through a library (e.g., libc, glibc, unistd) as is typically the case,



or directly via an Assembly instruction, what is actually invoked (__kernel_vsyscall) is fairly
abstracted. The VDSO is a clever solution in that it is provided to the user space by the kernel, so it
can execute the system routines like normal function calls and does not require a context or PL switch.
But keep in mind that not all system routines are in the VDSO.

ATTENTION: Methods of speeding up system calls vary by platform and version. Older Linux
kernels have vsyscall, which is more limited than VDSO. macOS has traditionally had
commpage, but has moved to other mechanisms for handling system routines (libraries and the
x86_64 ABI). Windows uses dynamic libraries (DLLs). System routines are abstracted in many
ways and this changes over time.

Operating systems do use machine-specific registers (MSRs)—mentioned at the beginning of the
chapter—in the kernel initialization process. MSRs are used to facilitate fast system calls and have
their own instructions for reading and writing to the registers (RDMSR/WRMSR). Do not mess with
the MSRs.

Machine-specific registers include the following registers.

•    32-bit
º  IA32_SYSENTER_CS – holds the segment selector for the PL0 (kernel) code segment;
º  IA32_SYSENTER_EIP – holds the address of the first instruction of the desired system

routine;
º  IA32_SYSENTER_ESP – holds the address of the PL0 stack.

•    64-bit
º  IA32_STAR – holds cs and ss for both the PL0 code (target) and the PL3 code (caller);
º  IA32_LSTAR – holds the address of the first instruction of the desired system routine;
º  IA32_FMASK – holds an rflags mask value.

As detailed in the MSR list, MSRs hold addresses and relevant information used in context switching
for routines. Operating systems query the MSRs during initialization to formulate the system call path
that will be used once the system is up and running.

With the different system call approaches in mind, we present the following programs. Note that
argument passing with SYSENTER is similar to INT, but SYSCALL is different.

Program 10.5: a 32-bit program using SYSENTER for Ubuntu Linux (NASM).
32-bit SYSENTER: Move arguments to registers in the order ebx, ecx, edx, esi, edi, and
ebp; move call number to eax, issue SYSENTER; value returned in eax.

Program 10.6: 64-bit programs using SYSCALL for macOS/BSD (GAS) and Ubuntu Linux
(NASM).



64-bit SYSCALL (AMD64): Move arguments to registers in the order rdi, rsi, rdx, r10,
r8, and r9; move call number to rax; issue SYSCALL; value returned in rax (negative
value indicates error).

Program 10.7: a 32/64-bit program in C++ using the unistd and libc libraries for macOS/BSD and
Linux; and the Windows API for Windows.

Program 10.8: a 64-bit MASM Assembly implementation of Program 10.7 using the Windows API.
Microsoft x64: Move parameters to registers in the order rcx, rdx, r8, and r9; additional
parameters passed on the stack in reverse order; issue CALL; value typically returned in
rax.

PROGRAMMING: Refer to APPENDIX G: USING CPUID for detecting processor support for
SYSENTER.

Program 10.5 shows how SYSENTER works on 32-bit Linux. Program 10.5 prints a message to
console just like Program 10.2, however SYSENTER has replaced INT. SYSENTER introduces a
different kind of overhead: we must save register and stack context to stack so we can restore the
context upon return, and we must create a return point (sysenter_ret).

Program 10.5 SYSENTER

Program 10.6 shows how SYSCALL works on 64-bit macOS/BSD and Linux by writing to a file.
Unlike our 32-bit Programs 10.2 and 10.5, in 64-bit avoid use of the EQU directive. Important
differences between the macOS/BSD and Linux versions are (1) the system call numbers are



different, (2) rip-relative addressing syntax is different regarding the len variable, and (3) the
number systems are different for file flags as macOS/BSD uses hexadecimal and Linux uses octal.

The CHAPTER 10 SUPPLEMENT contains commented versions of Program 10.6 and more specifics
on the system call numbers and the system call classes used in XNU (e.g., 0x2000001 for
Unix/BSD, 0x1000001 for Mach).

Program 10.6 – SYSCALL on 64-bit systems

Program 10.7 shows how libraries and APIs can be used to make system calls in C++. On the
Unix-like side, we show how to use unistd and libc to initiate system calls. The functions open(),
read(), write(), and close() are wrapper functions that will be processed as deemed
appropriate by the kernel. We assume a file exists called input.txt, which contains characters.
We set the number of characters to be read and written to 13. So if the file contained the phrase
“Computer Architecture,” the phrase “Computer Arch” would be printed. The Windows version of
Program 10.7 is an example of using the Windows API in C++.



Program 10.7 Library and API system calls

Program 10.8 shows a Windows version of Program 10.7, but written in MASM 64-bit
Assembly. Refer to the CHAPTER 6 discussion on Microsoft x64 for a deeper explanation of calling
functions in Windows 64-bit. We have fully commented the program and broken down the steps to
assist learning, such as the allocation of stack space and why (e.g., could do "sub rsp, 48h"
instead of 3 SUB steps) and the arithmetic for parameter locations on the stack.

Summary
Well, you made it to the other end of this particular rabbit hole. A lot more detail exists in the world
of processor and system architecture, but this overview should provide you with the necessary
information to get you started with system calls and low-level systems programming. We also broadly
discussed system capabilities regarding processor modes and memory models. If you are interested in
exploring the topics further, start with the CHAPTER 10 SUPPLEMENT, but do not hold us accountable
for where you end up or the mental toll the paths may take.



Program 10.8 Windows API calls in Microsoft x64 Assembly

Key Terms
64-bit mode



application programming interface (API)
code segment descriptor
compatibility mode
control registers
data segment descriptor
descriptor privilege level (DPL)
exception (trap)
exception handler
fast system calls
flat (linear) memory model
frame (memory)
general protection (GP) exception
Global Descriptor Table (GDT)
hardware interrupt
interrupt
Interrupt Descriptor Table (IDT)
interrupt request line (IRQ)
interrupt service routine (ISR)
interrupt stack table (IST)
interrupt vector table (IVT)
kernel
Local Descriptor Table (LDT)
long mode (IA-32e)
machine-specific registers (MSRs)
memory management registers
page (paging)
page directory
page directory pointer table
page fault
page size extension (PSE)
page table
privilege level (PL)
protected mode
real mode
segment selector
segment registers
segmented memory model
software interrupt
system call
system call number



task gates
task state segment (TSS)
virtual dynamic shared object (VDSO)

Code Review
INT Signal a software interrupt

IRET Special form of RET for returning from an interrupt routine

SYSENTER Intel’s initial fast system call instruction

SYSEXIT Counterpart to SYSENTER

SYSCALL Fast system call for x86_64

SYSRET Counterpart to SYSCALL

CALL Used to issue a call to a routine

INVOKE MASM32 directive used to simplify writing Windows API calls

Questions
Short Answer

1. The typical x86 32-bit system runs in __________ mode.
2. x86_64 systems use the __________ memory model.
3. The __________ register holds an offset to an instruction location within the Code Segment.
4. Two forms of abstraction in modern memory architecture are __________ and __________.
5. Virtual memory pages are designed to fit into equally sized physical memory __________.
6. __________ is a signal initiated by the processor caused by a situation that cannot be handled by

the current application.
7. Interrupts are slowed by saving context and switching __________.
8. Certain interrupts require a known good __________, for which locations are maintained in the

IST.
9. IRQ lines are used for __________ interrupts.
10. The INT instruction is one way a system call can be issued to the __________.
11. The __________ instruction can only be used in 64-bit mode to make system calls.
12. Libraries and APIs offer a more consistent and __________ way to issue system calls.
13. __________ are used in kernel initialization to facilitate abstracted management of system

routines.
14. Unix-like systems adhere to the __________ ABI for the implementation of 64-bit system calls.
15. The __________ calling convention uses the rcx register for passing parameters.



True/False
1. System registers do not have corresponding load and store instructions in order to limit access.

(T/F)
2. Real Mode is no longer used in x86 and x86_64 systems. (T/F)
3. Exception handlers are functions (software routines). (T/F)
4. All 64-bit interrupts are executed as 64-bit routines, including in Compatibility Mode. (T/F)
5. The INVOKE directive is available in all Assemblers. (T/F)

Assignments
10.1 Working with Files

Create a file somewhere on your system with read-only permissions for users (444o). Using
your preferred platform and Assembler, write a program that uses system calls to copy the file
to a new location. Retrieve the file handles of both files, copy the contents, and set the new file
permissions to read/write for users (666o). Do not change the original file. Display a message
to let the user know the copy was successful. You may use any of the system call methods
discussed in the chapter, but the entire program must be written in Assembly.

10.2 Date and Time

Using your preferred platform and Assembler, write a program that uses system calls to
retrieve the current date and time and then print the date and time to screen (console or message
box). You are allowed to use any of the system call methods discussed in this chapter, but the
entire program must be written in Assembly. Libraries and APIs in high-level languages make
this task fairly simple, however retrieving and formatting time in Assembly is more
challenging. In other words, this is not as simple as it sounds.

10.3 CPUID and Vendor ID (Challenge Assignment)

The last PROGRAMMING note in the chapter says to refer to APPENDIX G: USING CPUID for
detecting processor support for the SYSENTER instruction. However, before using CPUID it
might be best to detect if CPUID itself is supported on a system. This assignment will give you
a better understanding of detecting CPU features.

Using your preferred platform and Assembler, write a program that determines if your system
supports the CPUID instruction and then prints whether CPUID is supported or not to screen
(console or message box). The entire program must be written in Assembly (whereas
APPENDIX G mixes CPUID and C++).

Any modern system will support CPUID, so along with the statement of support include the
vendor ID as part of the output statement. An example of a vendor ID is “GenuineIntel.” We
recommend three sources for help.

• APPENDIX G: USING CPUID



• https://en.wikipedia.org/wiki/CPUID
• http://wiki.osdev.org/CPUID

Remember, you can always refer to the formal Intel documentation on the CPUID instruction.

https://en.wikipedia.org/wiki/CPUID
http://wiki.osdev.org/CPUID


CHAPTER 10 SUPPLEMENT



Chapter 10 Programs and Resources

Programs
Program 10.1 Using segment selectors



Program 10.2 Debug and system write interrupts



Program 10.3 Print process ID with INT



Program 10.6a SYSCALL on 64-bit systems



Program 10.6b SYSCALL on 64-bit systems

Resources
Formal Documentation
The formal documentation for Intel and AMD can also be found via the book website. The formal
documentation is the best place to start for help in understanding registers and instructions related to
interrupts and system calls. Relevant information is scattered throughout multiple volumes and
chapters of the Intel manual, so we recommend downloading the combined volume and doing text



searches for the desired topic.

Intel 64 and IA-32 Architectures Software Developer’s Manual
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

System V Application Binary Interface, AMD64 Architecture Processor Supplement
https://github.com/hjl-tools/x86-psABI/wiki/X86-psABI

Microsoft Windows API Index
https://msdn.microsoft.com/library/windows/desktop/hh920508.aspx

System Call Tables
The location of system call tables and numbers varies by system. Here is a list of file names and
potential locations on macOS/BSD and Linux systems.

MacOS/BSD
Files: syscalls.h, fcntl.h
Found at: /usr/include/sys

File: syscalls.master
http://opensource.apple.com/source/xnu/xnu-3248.50.21/bsd/kern/syscalls.master

File: syscall_sw.h
Purpose: code defining the system call classes (e.g., 0x2000001 for Unix/BSD, 0x1000001
for Mach)
http://opensource.apple.com/source/xnu/xnu-3248.50.21/osfmk/mach/i386/syscall_sw.h

64-bit System Call Table Reference
https://sigsegv.pl/osx-bsd-syscalls/

Other References
https://www.freebsd.org/doc/en_US.ISO8859-1/books/developers-handbook/x86-system-
calls.html

Linux
Files: syscall_32.tbl, syscall_64.tbl
Found at: /arch/x86/entry/syscalls

File: fcntl.h
Found at: /usr/include/ or /usr/include/bits

System Call Table References:
http://lxr.linux.no/linux+v4.6.4/arch/x86/entry/syscalls/

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
https://github.com/hjl-tools/x86-psABI/wiki/X86-psABI
https://msdn.microsoft.com/library/windows/desktop/hh920508.aspx
http://opensource.apple.com/source/xnu/xnu-3248.50.21/bsd/kern/syscalls.master
http://opensource.apple.com/source/xnu/xnu-3248.50.21/osfmk/mach/i386/syscall_sw.h
https://sigsegv.pl/osx-bsd-syscalls/
https://www.freebsd.org/doc/en_US.ISO8859-1/books/developers-handbook/x86-system-calls.html
http://lxr.linux.no/linux+v4.6.4/arch/x86/entry/syscalls/


http://syscalls.kernelgrok.com (32-bit only)
http://www.escapin.it/assembler/asm_syscall.pdf (32-bit only)

Windows
DOS API: https://en.wikipedia.org/wiki/MS-DOS_API
Porting DOS calls to WinAPI: https://msdn.microsoft.com/en-us/library/aa984837(v=vs.71).aspx
Native API 32-bit: http://j00ru.vexillium.org/ntapi/
Native API 64-bit: http://j00ru.vexillium.org/ntapi_64/

Other Online Resources

Linux Inside – Interrupts
https://0xax.gitbooks.io/linux-insides/content/interrupts/

Linux Inside – System Calls
https://0xax.gitbooks.io/linux-insides/content/SysCall/

The Definitive Guide to Linux System Calls
http://blog.packagecloud.io/eng/2016/04/05/the-definitive-guide-to-linux-system-calls/

Virtual Dynamic Shared Object (VDSO) man page
http://man7.org/linux/man-pages/man7/vdso.7.html

LKML.ORG thread on merging system call paths in Linux
https://lkml.org/lkml/2015/9/1/562

LKML.ORG thread on sysenter and performance in Linux
https://lkml.org/lkml/2002/12/9/13

https://lkml.org/lkml/2002/12/18/218

Sysenter Based System Call Mechanism in Linux 2.6 (outdated, but useful explanation)
http://articles.manugarg.com/systemcallinlinux2_6.html

Nt vs. Zw – Clearing Confusion on the Native API
http://www.osronline.com/article.cfm?id=257

http://syscalls.kernelgrok.com
http://www.escapin.it/assembler/asm_syscall.pdf
https://en.wikipedia.org/wiki/MS-DOS_API
https://msdn.microsoft.com/en-us/library/aa984837(v=vs.71).aspx
http://j00ru.vexillium.org/ntapi/
http://j00ru.vexillium.org/ntapi_64/
https://0xax.gitbooks.io/linux-insides/content/interrupts/
https://0xax.gitbooks.io/linux-insides/content/SysCall/
http://blog.packagecloud.io/eng/2016/04/05/the-definitive-guide-to-linux-system-calls/
http://man7.org/linux/man-pages/man7/vdso.7.html
https://lkml.org/lkml/2015/9/1/562
https://lkml.org/lkml/2002/12/9/13
https://lkml.org/lkml/2002/12/18/218
http://articles.manugarg.com/systemcallinlinux2_6.html
http://www.osronline.com/article.cfm?id=257


CHAPTER 11

Other Architectures

Objectives
•    Contrast CISC and RISC architectures
•    Explore alternative architecture designs
•    Analyze Assembly programs for architectures other than x86
•    Identify future trends in computer architecture

Outline
1. Web Resources
2. Introduction
3. CISC versus RISC
4. More Architectures

a. ARM
b. AVR
c. RISC-V
d. System – z/Architecture

5. Quantum Architecture
6. Summary
7. Key Terms
8. Questions

a. Short Answer
b. True/False

9. Assignments

Web Resources

Wikis
•    https://en.wikipedia.org/wiki/Category:Instruction_set_architectures
•    https://en.wikipedia.org/wiki/ARM_architecture

https://en.wikipedia.org/wiki/Category:Instruction_set_architectures
https://en.wikipedia.org/wiki/ARM_architecture


•    https://en.wikipedia.org/wiki/Atmel_AVR
•    https://en.wikipedia.org/wiki/RISC-V
•    https://en.wikipedia.org/wiki/Z/Architecture
•    https://en.wikipedia.org/wiki/Quantum_computing

Developer and Research
•    https://developer.arm.com/products/architecture (ARM Developer)
•    http://infocenter.arm.com/help/index.jsp (ARM Reference Manuals)
•    http://www.atmel.com/images/Atmel-8271-8-bit-AVR-Microcontroller-ATmega48A-48PA-

88A-88PA-168A-168PA-328-328P_datasheet_Complete.pdf (ATmega Datasheet)
•    https://riscv.org/specifications/ (RISC-V Specification)
•    https://github.com/riscv (RISC-V GitHub)
•    https://www.kernel.org/doc/Documentation/s390/Debugging390.txt (s/ and z/Architecture)
•    http://www.ibm.com/developerworks/library/l-basics-inline-assembly/index.html (z/Arch

Assembly)
•    http://www.cs.ucsb.edu/~chong/QC/ (Quantum Computing Overview)

Introduction
Throughout this text we have used the x86 and x86_64 architectures to teach Assembly programming
and architecture concepts. The desired outcome is not only learning about architecture, but also
learning an architecture that dominates the personal computer market. However, many other
architectures exist and processor design will continue to change. In this chapter, we discuss CISC and
RISC in more detail, introduce examples of other architectures, and present evolving modifications
and future directions of computer architecture.

CISC versus RISC
In CHAPTER 1, we briefly mentioned CISC and RISC while discussing instruction set architectures.
As a reminder, instruction set architectures are generally complex or reduced. Complex instruction set
computing (CISC) architectures have instructions that vary in length and are complex in the sense that
a single instruction may perform more than one task (e.g., access a memory location and perform
arithmetic). In reduced instruction set computing (RISC) architecture, typically all instructions are the
same length and perform one task (e.g., access a memory location, add two registers).

The characteristic of whether instructions access memory as part of another operation (such as
ADD) is known as load/store design. RISC architectures are load/store, meaning operands are loaded
and stored from and to memory with specific instructions. To perform an ADD, first each operand is
retrieved from memory and placed in registers; next the two registers are added; and then the result is
stored in memory. The practical result of load/store design is that RISC systems typically have more
registers than CISC systems. More static (S)RAM and less dynamic (D)RAM means more efficient
operation in terms of space and power, hence RISC’s popularity in the mobile and embedded markets.

CISC is non-load/store since memory access can happen as part of an operation. In the ADD

https://en.wikipedia.org/wiki/Atmel_AVR
https://en.wikipedia.org/wiki/RISC-V
https://en.wikipedia.org/wiki/Z/Architecture
https://en.wikipedia.org/wiki/Quantum_computing
https://developer.arm.com/products/architecture
http://infocenter.arm.com/help/index.jsp
http://www.atmel.com/images/Atmel-8271-8-bit-AVR-Microcontroller-ATmega48A-48PA-88A-88PA-168A-168PA-328-328P_datasheet_Complete.pdf
https://riscv.org/specifications/
https://github.com/riscv
https://www.kernel.org/doc/Documentation/s390/Debugging390.txt
http://www.ibm.com/developerworks/library/l-basics-inline-assembly/index.html
http://www.cs.ucsb.edu/~chong/QC/


example, a CISC instruction can add two values, with one operand being a register and the other
being a memory location. Since CISC processors more frequently access dynamic memory, high-
speed cache becomes an increasingly important key to speed and efficiency. In modern architecture
design, both RISC and CISC have plenty of transistors for decoders, logic, and microcode. A quickly
blurring line in manufacturing is the emphasis on using transistor space for registers or cache. Both
designs offer parallelism via split instruction and data caches along with multiple cores and logical
units.

Table 11.1 CISC and RISC architecture examples

CISC RISC Enhanced RISC

x86, x86_64, IBM 360 – Z, Motorola 68k, PDP ARM, RISC-V, MIPS, SPARC PowerPC, ATmega AVR, PIC

ATTENTION: Microcode is processor-specific logic that usually resides in reserved high-speed
memory. Microcode translates machine instructions and system operations into sequences of
circuit-level operations. Think of microcode as a programmed layer that defines how a specific
instruction is executed on the hardware.

If we take pipelining out of the equation, instruction length differences and memory access differences
become more evident. In a RISC system, the instructions are usually fixed at the same length, and most
execute in one clock cycle. In a CISC system, instruction length is variable, and many instructions can
take multiple clock cycles to complete due to their complexity. However, due to other processor
enhancements, the reality is that both designs can achieve execution of multiple instructions in a single
clock cycle.

Reduced does not mean fewer instructions and complex does not mean more instructions. For
example, one of the Programmable Data Processor (PDP) systems produced by Digital Equipment
Corporation (DEC) in the 1960s was the PDP-8: a 12-bit CISC computer with eight instructions.
Most of the complexity was in two instructions: IOT (input/output transfer) and OPR (micro-coded
operations). As an example, the OPR instruction used 9 of the 12 bits to achieve grouping and
sequencing of multi-step operations. On the flip side, the PowerPC RISC architecture developed by
Apple, IBM, and Motorola has about 230 instructions.

ATTENTION: In the computing market, the x86 CISC architecture has dominated the personal
computer space for decades, and IBM CISC designs have held strong in the mainframe market.
RISC processors such as ARM have found a stronghold in the mobile market, and most other
embedded and specialty devices have also leaned toward RISC design.



RISC systems also tend to reduce datatype-specific instructions. RISC system datatypes and
counterpart instructions are fairly primitive: integers, floating-point, really just a sequence of bits.
CISC systems usually have instruction support for more complex datatypes such as strings. We have
seen this in x86 with instructions like MOVS (move string) and CMPS (compare string).

The comparison of CISC versus RISC is not about which architecture design is better, but rather
about which is best suited for a particular device or application. Up to this point in the book, we have
used a CISC architecture. The next section introduces several RISC designs along with one other
CISC design.

More Architectures
The goal of this section is to briefly introduce you to several other architectures that are popular in
various computing markets. For each architecture we provide a short history, an overview of the
instruction set architecture (ISA) and registers, and a code example. Throughout the text we provide
resource links for further reading. We also draw comparisons between the architectures and x86.

ARM
ARM originally stood for Acorn RISC Machines but is now the name for ARM Holdings, which as a
company develops numerous RISC architectures for processors. ARM mainly develops architectures
and core designs, then licenses the designs to other companies for production. As mentioned earlier,
RISC designs are generally more efficient due to less instruction complexity and thus fewer
transistors are used for logic and memory accesses. The result is that ARM’s RISC designs have
come to dominate the mobile industry. Some examples of devices that use ARM processors are
Microsoft Surface, Apple iPhones/iPads, Canon digital cameras, Nintendo DS, and various GPS
navigation systems.

ARM has had many evolutions in design, but we focus on two major areas: the ARM 32-bit
architecture (AArch32) and the ARM 64-bit architecture (AArch64). ARM’s architectures have three
distinct profiles: Application (A), Real-time (R), and Microcontroller (M). The A-series is the most
prevalent profile as it comes in both 32-bit and 64-bit variations and is used in devices running user
applications. The R-series is 32-bit and is for real-time and safety-critical systems like vehicles and
medical devices. The M-series is 32-bit, and it is intended for microcontrollers and is usually found
on microcontroller boards from manufacturers such as Arduino and NXP.

Just as the x86 architecture has processor modes such as Protected and Long, ARM processors
have various modes. User Mode is the primary mode for non-privileged processing, while up to 10
different privileged modes exist for tasks such as interrupts and exceptions. Most ARM processors
have a traditional three-stage pipeline for fetch, decode, and execute, while more recent versions
such as ARM8 and ARM9 have more complex pipelines.

The ARM ISA is load/store, has a uniform register set, typically uses a fixed instruction width,
and most instructions execute in one clock cycle. Design differences from x86 that enhance speed
include not altering the condition codes after arithmetic unless desired, a dedicated register for the
return address for function calls, and most instructions are implicitly conditional, meaning no



branching overhead. The latter is very different from other architectures. Most instructions in
AAarch32 use four bits as a predicate (condition code selector) that indicates the circumstances for
which the instruction should be executed, such as unconditional. So instead of a branching mechanism
along with its overhead, some ARM architectures sacrifice a clock cycle for a non-executing
instruction. ARM did change the use of predication for AArch64, which uses it much less. Branch
prediction does vary by profile and core.

Registers available depends on whether the core is 32-bit or 64-bit, whether the core supports the
Thumb instruction set (a 16-bit encoding of the ARM instruction set), the processor mode, and which
variant of the vector floating-point unit (VFP) is present. Here we just present common configurations
in user mode.

•    AArch32: 16 32-bit registers r0–r15 where r13 serves as the Stack Pointer (SP), r14 serves
as the Link Register (LR) to hold the return address for function calls, and r15 is the Program
Counter (PC). A separate 32-bit register serves as the Current Program Status Register
(CPSR), which contains processor management bits and arithmetic flags. Many of the 32-bit
ARM cores use a variant of the VFP that has 16 or 32 64-bit floating-point registers that can
hold single- or double-precision values.

•    AArch64: 31 64-bit general purpose registers x0–x30 with 32-bit forms w0–w30 where x29 is
used as the Frame Pointer (FP) and x30 is the LR; a dedicated SP register; a dedicated PC
register; 32 128-bit FPU registers; and with the Advanced SIMD extension (NEON) support
for 8, 16, 32, and 64-bit integers along with single- and double-precision SIMD operations.

The memory space and addresses in AArch64 are 64 bits, but instructions are still 32 bits.
Operands in instructions can usually be either 32 or 64 bits. Many other design variations and
enhancements exist, depending on the specific ARM core.



Program 11.1 Arduino Due Blink program in ARM Assembly

To illustrate the ARM architecture, we present Program 11.1 written for the Arduino Due
microcontroller, which features an ARM Cortex-M3 32-bit processor running at 84MHz. Arduinos
use a C-variant language and the AVR-GCC compiler, so Program 11.1 shows the code written as
inline ARM Assembly, which is very similar to the GCC inline examples in CHAPTER 9. Although
Program 11.1 is a working example of the Arduino Blink program, our purpose is to visualize
similarities and differences in instruction mnemonics, registers, and syntax as compared to other
architectures. Program 11.1 makes the onboard LED blink.

Instruction mnemonics similar to x86 are MOV, PUSH, and POP, while different mnemonics are
LSL (logical shift left), STR (store register), and BL (branch with link). Register names follow the r#
convention discussed earlier in this section, and numeric immediates start with #. Since AVR-GCC is
a variant of GCC, the same inline Assembly template is used, including inputs, outputs, and clobbers.
The comments explain more program specifics.



Example 11.1 Disassembly of program 11.1 setup()

If we look at the disassembly of the Program 11.1 setup() function in Example 11.1, we notice
ARM AArch32 attributes. The instruction length is consistent at 32 bits (e.g., f04f 0101), with
some abbreviated 16-bit Thumb instructions (e.g., 4b03) for code density. Word length is 32 bits.
The compiler placed prologue and epilogue code using the PC and LR registers and rewrote the LSL
instruction to a version of the MOV instruction that performs a shift as part of the move (a feature of
ARM that still executes in one clock cycle). To disassemble the Arduino ARM code, we ran the
contents of the temporary .elf file created during compilation through a version of objdump for
ARM included with the Arduino hardware tools.

LEARNING: Information about the Arduinos used for Programs 11.1 and 11.2 can be found via the
links:

•    https://www.arduino.cc/en/Main/ArduinoBoardDue
•    https://www.arduino.cc/en/Main/ArduinoBoardUno

AVR
AVR is an advanced (enhanced) RISC 8-bit architecture developed by Atmel. We have chosen to
introduce AVR architecture because of its simplistic 8-bit design, simple instruction set, and
popularity on microcontroller boards such as the Arduino Uno. The AVR design is a modification of
another architecture known as the Harvard architecture. Harvard architecture physically separates
instruction and data storage. AVR’s modification is that although the program and data are stored in
separate memory spaces (albeit on the same chip), special instructions allow program memory to be
accessed as if it were data.

As with many architectures, several classifications of AVR exist. We focus on the very popular 8-
bit ATmega AVR design. A 32-bit version known as AVR32 does exist and is used on some
microcontroller boards to compete with ARM, and is similar to more sophisticated cores, including
SIMD support. However, the ATmega series has found a high-volume niche in the microcontroller
market and is especially suited for prototyping. As an example, we describe the features of the
ATmega328p, which as of this writing is the most current design. All versions of the ATmega series
are generally the same, just the memory sizes vary.

https://www.arduino.cc/en/Main/ArduinoBoardDue
https://www.arduino.cc/en/Main/ArduinoBoardUno


LEARNING: The Harvard architecture was introduced with the Harvard Mark I computer in the
early 1940s for making war-related computations. Being one of the first major computer systems,
the Mark I is often discussed in introductory computer science courses as part of computer history.
But remnants of the design remain in modern architectures.

As mentioned, AVR designs have separate program and data memory. All memory spaces are
linear (flat). The program memory on the ATmega328p is 32k of flash memory, with 0.5k reserved for
the bootloader. Although the ATmega is 8-bit, program instructions are 16 or 32 bits, so the memory
space is 16-bit with addresses ranging from 0x0000 to 0x3FFF. The data memory is 2k of static
RAM (SRAM), which is composed of the general purpose register file, I/O registers, extended I/O
space, and main data memory that serves as stack space for the program. Data memory accesses
happen in two clock cycles, but the 32 general purpose registers are directly connected to the ALU,
so register-only operations happen in one clock cycle. An additional 1k of EEPROM is also
available for data uses.

Table 11.2 ATmega328p SRAM data memory layout

SRAM components Address range

32 general purpose registers 0x0000 – 0x001F

64 I/O registers 0x0020 – 0x005F

160 extended I/O registers 0x0060 – 0x00FF

Data memory 0x0100 – 0x08FF

The registers are 8 bits and can be used for 8-bit input and output operands. They can also be
used in combination for 16-bit operands. The general purpose registers are denoted as r0–r31. AVR
features an 8-bit status register (SREG) and two 8-bit registers—SPL (stack pointer low) and SPH
(stack pointer high)—that comprise the Stack Pointer for addressing the 16-bit address space. SREG
(Table 11.3) is similar to the flags register in x86.

Table 11.3 AVR status register (SREG)

Bit 7 6 5 4 3 2 1 0

Purpose interrupt (I) bit copy (T) half carry (H) sign (S) overflow (V) negative (N) zero (Z) carry (C)

Since registers are implemented as 16-bit memory locations in SRAM, registers r26–r31 can be
doubled up to serve as register pointers (registers that point to other registers). The register pointer
registers are denoted as X, Y, and Z.



Table 11.4 AVR X, Y, and Z registers

Register pointer X Y Z

Registers used R27 (XH) R26 (XL) R29 (YH) R28 (YL) R31 (ZH) R30 (ZL)

To illustrate the AVR architecture, we present Program 11.2 written for the Arduino Uno
microcontroller, which features an ATmega328p 8-bit processor running at 16MHz. Similar to
Program 11.1, Program 11.2 shows the code written as inline AVR Assembly. Again, the purpose of
Program 11.2 is to visualize similarities and differences in instruction mnemonics, registers, and
syntax as compared to other architectures. Program 11.2 makes the onboard LED blink.

In Program 11.2 we chose to define several constants to showcase some AVR features. One is that
C code easily mixes with inline Assembly (as it does with ARM and x86). The setup() function
shows the use of system constants, which is the same approach in Program 11.1. The loop()
function shows use of programmer-defined constants that give the system constants more explanatory
names. Program 11.2 could be rewritten to be more efficient, but our implementation and expanded
steps are focused on features and clarity.

ATmega registers are 8-bit, but notice that the DelayTime variable is a 32-bit integer. Even
though the DelayTime value we provided only requires 24 bits, we have a 32-bit operand at our
disposal if we want to increase the delay time of blinks. We can operate on the 32-bit integer in an 8-
bit environment by chopping the integer into 8-bit chunks and using the appropriate subtraction
instructions. Recall from CHAPTER 9 that in GCC inline Assembly, the I/O parameters are referred to
as %0, %1, %2 … if no symbolic names are defined. AVR allows movement of 16-bit and 32-bit
parameters by using the letters A, B, C, and D to refer 8-bit chucks of a 32-bit value. So for example,
%D2 is the least significant byte (LSB) of %2, which is DelayTime in the input variable list. In the
mainLoop, we use the DelayTime constant twice and set up two distinct timers (r16–r19 and
r20–r23) and for on and off.

The use of input parameters and clobbers shows similar syntax to x86 inline Assembly, although
the constraint letters vary from architecture to architecture (e.g., I, n, and d). We can use symbolic
names for parameters instead of numeric values (e.g., %[port] instead of %0). AVR shares some
mnemonics with x86 and ARM, such as MOV, but subtraction, branching, and I/O instructions are
different. The comments in Program 11.2 explain more program specifics.



Program 11.2 Arduino Uno Blink program in AVR assembly

RISC-V
Though a large portion of software is proprietary, the software industry continues to experience
significant movement toward open software. In similar fashion, throughout computing history most
ISAs have been proprietary, but the concepts of open hardware design and instruction set architecture
are becoming more prevalent. For example, Arduino microcontrollers are an open-source hardware
design. In the ISA space, RISC-V (risk-five) is an example of a modern and leading-edge open-source
RISC architecture.

The RISC-V architecture was born out of research and educational activities led primarily at the
University of California at Berkeley. RISC-V mostly remains in research and specialty environments,



but the RISC-V Foundation (organization) and the offering of an open-source architecture are
catalysts for future growth in the computing industry. Processor designs that implement RISC-V can
be open source or proprietary.

LEARNING: The design features, specification, news, and information about RISC-V can be
found at the following links:

•    https://riscv.org/
•    https://riscv.org/risc-v-foundation/

As with the other architectures presented in this chapter, our goal is to merely whet your appetite
and encourage you to look into RISC-V. The ISA features a scalable address space (e.g., 32, 64, 128-
bit) and scalable variable instruction-length encoding. The base RISC-V instruction format (RV32I) is
32 bits, but it can be encoded in any number of 16-bit chunks (16, 32, 48, 64-bit, etc.). The 32 general
purpose registers are denoted as x0–x31, with x0 hardwired to contain zero. Each thread has its own
register state and Program Counter (PC) register. A control and status register (CSR) also exists.
Since each program thread executes independently and sequentially, specific instructions like FENCE
help with synchronizing operations given the flexible memory model.

The general purpose registers serve in various roles when it comes to the RISC-V calling
convention (RVG). Uses include x1 serving as the link register that holds the return address (RA), x2
is the stack pointer (SP), x10–x17 serve as parameter registers (a0–a7), among other specific uses
for other registers.

LEARNING: Why might we want a register to always contain a constant zero? Answer: doing so
facilitates implementing operations with fewer instructions and thus fewer logic gates. For
example, an add instruction can be used in place of a MOV instruction. In RISC-V, a register-to-
register move is actually the addi instruction expressed as addi rd, rs, r0. A move is
accomplished by adding zero to the source register and saving the result in the destination register.

The base RISC-V implementation is only basic integer operations. Extensions can be implemented for
more sophisticated operations. To do multiplication and division, the “M” extension must be
implemented. Atomic operations require the “A” extension. Manufacturers can choose to implement
the “F” extension for single-precision floating-point operations, which adds 32 floating-point
registers f0–f31 and a control and status register (FCSR). The “D” extension adds double-precision
support by expanding the f# registers to 64 bits. Other extensions exist or are planned for RISC-V
(e.g., “Q” for quad precision, “C” for compressed 16-bit format, etc.).

Program 11.3 provides a copy of a RISC-V unit test program found on the RISC-V GitHub

https://riscv.org/
https://riscv.org/risc-v-foundation/


account (https://github.com/riscv) with modified comments. You should notice the similarities with
x86 GAS code since the RISC-V toolchain is a standard GNU cross compiler for RISC-V. RISC-V
code can be compiled, assembled, and linked using the riscv-{gcc, as, ld} tools. So
directives such as .data, .align, and .dword are familiar, as is the label syntax (e.g., fail:).
The in-code comments explain what the specific RISC-V instructions do. Remember the word length
is 32 bits.

ARM, AVR, and RISC-V are all examples of RISC architectures. They provide relevant examples
and insight into the competitive architecture design to CISC. Another popular RISC architecture we
have chosen not to cover, but encourage you to look into, is the Power Architecture family of RISC
designs (https://www.power.org). Variants of the Power Architecture are used in a significant portion
of high-end systems, including game systems, servers, and supercomputers.

Program 11.3 RISC-V unit test

System – z/Architecture
If we were to directly compare the number of RISC versus CISC ISA designs, many more are RISC.
But the x86 ISA has dominated the computer market, and IBM’s System – z/Architecture has
dominated the mainframe market. IBM’s powerful 32-bit mainframe System/ architecture was
introduced in 1964 with the System/360, which was followed by the System/370 that evolved over

https://github.com/riscv
https://www.power.org


twenty years from 1970 to 1990. System/390 and its variations held the market from about 1990 to
2000, when the zSeries was introduced. The z/Architecture is a modern branding of IBM’s 64-bit ISA
that is backward compatible all the way to the System/360. IBM develops specific operating systems,
such as z/OS, to take advantage of their CISC design, and alternatives such as Linux on System z are
also available.

Almost everything in the z/Architecture is 64-bit, although supporting both 32-bit and 64-bit
operations for backward compatibility required implementing 64-bit versions of most 32-bit
instructions present in the earlier System/architectures. The move to 64-bit doubled the instructions to
more than 300. The address space is 64-bit, so up to 16 exabytes of address space is available. As of
this writing, register sizes vary in the z/Architecture: 16 general purpose registers (r0–r15 or gpr0–
gpr15) at 64 bits, 16 control registers (cr0–cr15) at 64-bits, 16 access registers (ar0–ar15) at 32
bits, 16 floating-point registers (fp0–fp15) at 64 bits, a Floating-Point Control register (FPC) that is
32 bits, and the program status word register (PSW) that is 128 bits wide. The PSW serves as the
program counter, among other things.

To illustrate z/Architecture, we derived Examples 11.2 and 11.3 from a debugging example
retrieved from www.kernel.org. Assume we have a simple C++ test program that looks something
like Example 11.2.

PROGRAMMING: Debugging on Linux for s/390 & z/Architecture by Denis Barrow provides
useful information on memory layout, stack frames, and register usage.
Link: https://www.kernel.org/doc/Documentation/s390/Debugging390.txt

Example 11.2 C++ test

Example 11.3 illustrates characteristics of the z/Architecture with the disassembly of Example
11.2. First, note the AT&T syntax style. Second, notice the variable instruction length found in CISC
design, particularly in the disassembly of main(). Parameters are passed in registers when
possible. Function prologue and epilogue code saves and restores registers as appropriate. Registers
are serving special purposes related to the calling convention, such as r11 as the frame pointer, r14 as
the return address, r15 as the stack pointer, r2 as the return value, and r7 as a pointer to arguments. If

http://www.kernel.org
https://www.kernel.org/doc/Documentation/s390/Debugging390.txt


successful, the test would return the integer 10.
System/ and z/Architecture provide a point of comparison for the x86 CISC design. We encourage

you to examine the z/Architecture further if you have interest in exploring software development on
64-bit mainframes.

Example 11.3 Disassembly of Example 11.2

Quantum Architecture
Quantum architecture has been making waves (pun intended) as advances continue in science and
technology. Harnessing energy has always been necessary for computing. Classical systems use
energy forms such as electricity and magnetism. Quantum systems use more elementary energy
sources such as photons, which are discrete quantities (a quantum) of light. Thus, a quantum
architecture is one where the unit of information and/or communication is built upon elementary
particles.

In classical architecture, a bit is the unit of information. A bit is a binary digit representing 0 or 1
and is in a given state until switched. In other words, a bit is always either 0 or 1. In CHAPTER 1 we
discussed physical properties used to represent a binary digit. A couple of quick examples are a
memory cell being charged or not charged, and a transistor allowing current or not.

In quantum architecture, a qubit is the unit of information. A qubit is a quantum digit that is in a
given state when observed, but exists in a superposition of both states. In other words, when
measured, a qubit will represent either 0 or 1, but otherwise it is in both states simultaneously.
Physical particles (along with their properties) that can be used as qubits include the polarization of
photons (horizontal or vertical) and the spin of an atom (up or down).

As an example, a classic byte (8 bits) has 28 possible states. The byte of information is in one of
256 unique combinations (a state) until switched. Like the classical byte, a quantum byte or qubyte is



2n, but with 8 qubits the qubyte exists in all 256 states simultaneously. When observed, the qubyte
will collapse into a classical state and one of 256 possibilities.

ATTENTION: The difference between classical and quantum bits can be expressed in
probabilistic terms. Say we have two states, a and b. In a classical system, the probability that a
bit is in a given state sums to 1 (a + b = 1). In a quantum system, the probability that a qubit is in a
given state is the sum of the squares of the coefficients’ magnitudes (the coefficients are complex
and a squared magnitude is the probability of a given state), which is also 1 (|a|2 + |b|2 = 1), but
the phase difference between two states is meaningful.

Quantum particles have a beneficial property that can be exploited for computation. Entanglement
is an unusual correlation between quantum particles where particles maintain a connection no matter
the distance. For example, when two qubits are entangled, they are always in opposite states when
observed. If two photons A and B are entangled, when A is measured as horizontal, B will always be
vertical, and vice versa. If A is 0, B is 1. Due to the inter-correlation, multiple states can be acted on
simultaneously.

What is the computational benefit of quantum computing? The key is in considering how classic
computers solve problems and the circumstance that superposition and entanglement provide. The
process of problem solving in computing is algorithmic—a step-by-step process. For example, if we
wanted to test the output of an algorithm given 28 (256) possible inputs, we would have to step
through the algorithm 256 times, once for each unique input. But in a quantum computer, we could
process all 256 possibilities simultaneously with a single logic gate, which is an exponential increase
in computation speed.

However, quantum computation is not without its challenges. First and foremost, quantum
properties such as entanglement are not fully understood. Second, qubits are susceptible to
environmental interactions and can easily lose their state, which is known as decoherence. Quantum
computing requires qubits to be initialized to states that represent a specific problem (e.g., Shor’s
algorithm) and then a fixed series of quantum logic gates manipulate the qubits, which produces a
classic result. Other challenges are initializing qubits to a known state, measuring states,
communication between qubits, qubit lifespans, and fault tolerance.

Such challenges leave many questions about large-scale manufacturing of quantum computers, and
they are currently out of reach. Very few quantum computers exist; they are confined to research
organizations and large corporations, and they average just a few qubits. In the meantime, classical
systems can still be improved by harnessing the power of light in other ways. One example is using
photonic interconnects in classical systems to speed up intra-chip and inter-chip communication (see
following LEARNING note). Fiber optics are faster and more energy efficient than electrical buses,
and marrying the two methods on the same chip is becoming a reality. Researchers are figuring out
ways to integrate photonics without changing the manufacturing process, which means low cost and
easily scalable production.



LEARNING: Photonic interconnect example. The processor is based on the RISC-V architecture.
Citation: Sun, C. et al. Single-chip microprocessor that communicates directly using light. Nature
528, 534–538 (2015). doi:10.1038/nature16454.
Link: http://www.nature.com/nature/journal/v528/n7583/full/nature16454.html

Summary
In this chapter, we diverged from our exploration of x86/x86_64 architecture and introduced several
popular ISAs of both RISC and CISC design. As with learning programming languages, learning one
architecture very well is better than learning many architectures only slightly. If you have a very good
understanding of an ISA such as x86, the transition to learning other ISAs, such as those presented in
this chapter, is less difficult. Computer architectures will continue to evolve and markets will shift,
but the principles of architecture design are firmly grounded and are mostly transferable from design
to design. Yet, what the future holds remains to be seen.
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Questions
Short Answer

1. x86_64 is a type of __________ architecture.
2. __________ architecture has found a dominant place in the mobile computing market.
3. Condition code selectors in AArch32 instructions are known as a __________.
4. The ARM Cortex-M3 is based on the __________ profile.
5. In the ARM architecture, the __________ register holds the return address of a function call.
6. Instruction length on RISC ARM processors can vary due to the __________ instruction set.
7. AVR architecture is based on the __________ architecture.
8. AVR is an __________-bit architecture with a __________-bit address space.
9. __________ is an example of an open-source ISA.
10. Uninterruptible sequences of instructions are said to be __________.

11. RISC-V uses the __________ calling convention for function calls.

12. Elementary particles serve as units of information in a __________ architecture.

13. The ability for a photon to exist in multiple states simultaneously is known as __________.

14. Quantum __________ is when environmental factors cause qubits to lose state.

15. If two qubits are entangled, when one is measured, the other will always be the __________.

True/False
1. CISC architecture is said to be load/store design. (T/F)
2. The number of instructions in an ISA has little to do with whether it is RISC or CISC. (T/F)
3. Machine constraints are the same across all architectures. (T/F)
4. Register sizes must all be 64 bits in a 64-bit architecture. (T/F)
5. Classic (n-bit) systems and Quantum (n-qubit) systems are both 2n when measured. (T/F)



Assignments
11.1 CPU Architecture Report

Write a two- to three-page technical research report on a CPU that implements an ISA other
than x86/x86_64 and the four architectures described in this chapter (ARM Cortex-M3, AVR
ATmega, RISC-V, and z/Architecture). Some examples are MIPS R4000, Sun UltraSPARC IV,
PowerPC G5, MC 68000, Cell, and PIC processors.
    The report should contain information on the following topics:
• Technology introduction/overview (brief), including devices that used or are using the CPU;
• Architecture history and details including an overview of the ISA. (Is it RISC or CISC? How

many instructions? For what types of applications and computation is it best suited?) You can
follow the general format used for the architecture overviews in this chapter.

• Pipeline Structure (fetch-execution cycle design and/or enhancements);
• Memory specifics (main, cache, registers, virtual);
• Other interesting tidbits ... such as a code example.

11.2 Alternative Assembly

Choose a device or simulator/emulator you have access to that is based on an ISA other than
x86/x86_64. Using your preferred or the required development environment for the
architecture, write an Assembly program that does a task or tasks of your choosing. The
requirements are that the program must have at least 20 Assembly instructions, all Assembly
statements must be commented describing their purpose or operation, and the program must
assemble/compile and execute successfully (demonstrate). You may use stand-alone or inline
Assembly.

11.3 Alternative Disassembly

Choose a high-level program (e.g., C, C++, Objective-C, Java, a microcontroller variant of a
language) that is intended for or portable to an architecture other than x86/x86_64. Using your
preferred or the required disassembler for the architecture, disassemble the program, save the
contents to a text file, and comment at least 30 Assembly statements describing their operation.
You can disassemble a program you have written or a program for which you have the source
of code. If you use a program that is larger than 30 Assembly statements (which is likely), you
can choose any section of the program to comment.

11.4 ISA Design (Challenge Assignment)

If you were to design an ISA, what would it look like? Write an abstracted overview of an ISA
that provides the basic need-to-know information. How many bits? Load/store design?
Register layout? Floating-point support? Memory design? Pipeline? Instruction format? Calling
convention? Sampling of an instruction set? Code examples? What makes your ISA different
from other ISAs? For what devices and applications is it best suited and why?
    Assignment 11.4 gives you an opportunity to think of improvements and enhancements, and to



tweak things that you find problematic with current ISAs. Or maybe you just want to design
something your own way. The best way to approach this assignment is to look at outlines of
other ISA specification documents. Most specifications are hundreds of pages, but with just the
basic information, brief descriptions, some visualizations, and theoretical code examples you
can keep it between 5 and 10 pages.



CHAPTER 12

Hardware and Electrical Components
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•    Identify electrical components
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•    https://en.wikipedia.org/wiki/Electric_current
•    https://en.wikipedia.org/wiki/Voltage
•    https://en.wikipedia.org/wiki/Electric_power
•    https://en.wikipedia.org/wiki/Electrical_resistance_and_conductance

Introduction
Welcome to the final chapter! Reading this far is quite an accomplishment. We have covered many
details of Assembly programming, x86/x86_64 architecture, and taken glimpses at other architectures
you may encounter on your journey as a software engineer. Because the primary audience of this book
is software engineers, not computer and electrical engineers, we have not discussed electrical design
and the components that underpin computer architecture and make programming possible. This
chapter dives a little deeper in order to give you a general understanding of electronics. We also
intend to provide you with information necessary to build simple hardware devices. This hardware-
focused content may help with courses, personal projects, or company projects when prototyping
devices, when working with embedded devices, or when working with microcontroller boards and
components. Basically, we want to help you avoid burning components or yourself.

Foundations of Electricity
Basic Principles
First, understanding the basic principles of electricity is critical. Electrical principles include current
(usually abbreviated with an uppercase I for intensity), voltage (usually abbreviated E or V, though V
is usually reserved for the unit of measure), power (usually abbreviated P), and resistance (usually
abbreviated R). The principles and their units of measure are shown in Table 12.1.

Table 12.1 Electrical principles

Principle Unit of measure

Name Abbreviation Name Abbreviation

Current I Ampere A

Voltage E or V Volt V

Power P Watt W

Resistance R Ohm Ω

Next, we define each of the principles to gain a better understanding of how they are related.
Current can be defined as the rate of electrons flowing past a certain point. In order to better

describe the intensity of electron flow, the Ampere (Amp) was assigned as the unit of measure. The
higher the Amperage, the faster the flow of electrons across a wire. Imagine two pieces of electrical
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equipment, a desk lamp and a motor that is driving a vacuum cleaner. Relatively speaking, very little
electricity is needed to illuminate a light bulb, so light bulbs have a low Amperage. Vacuum cleaners
require much more electricity, so vacuums have a high Amperage. Sometimes the flow, or usage, of
electricity is called the draw (i.e., the amount of current a device needs to draw in order to operate).

LEARNING: One Ampere is roughly equivalent to 6.24 × 1018 or 6,240,000,000,000,000,000
electrons passing a given point per second.

ATTENTION: Using multiple high-Amp devices at the same time in a house can cause a circuit
breaker to trip, resulting in loss of power. Breaker trips occur when devices operating at the same
time attempt to draw more current than the circuit can provide (e.g., a 10A hair dryer and an 8A
vacuum will trip a standard 15A house breaker because the draw exceeds the maximum).

Voltage is electrical pressure, or the difference in charge between two points. As such, voltage is
sometimes referred to as potential. Electrical pressure is measured in volts. You may be confused
about the difference between the flow of electricity (current) and electrical pressure (voltage).
Comparing electrical pressure to water pressure can help clarify voltage and current.

Imagine a garden hose that has the spigot half way (50%) open. A constant amount of water
(current) is now flowing through the hose at any given point. Assume the garden hose has a typical 1-
inch opening at the end. Water flows out of the hose with no real force because the 1-inch opening is
not creating much pressure (voltage). The stream of water is not very powerful and would not be
useful for intense cleaning.

However, if you change one of the variables, such as placing your thumb over most of the 1-inch
opening, you can create a more powerful stream of water. Decreasing the opening size creates a
higher pressure (voltage) but lowers the current because less water is flowing through the opening.
Still, the stream of water would only be slightly more powerful. Were you to keep your thumb mostly
over the opening (increasing the voltage) and also open the spigot to 100% (increasing the current),
you could create a more powerful stream of water.

The next electrical principle is power. Power is the amount of work performed by the electrical
current and is measured in watts. Going back to the garden hose example, we found that changing one
or more of the principles (pressure and current) affects power. The implication is that power is
directly related to current and voltage. The relationship can be expressed algebraically with the
following formula.

P = I * E



Using basic algebra, we can determine any one of the principles as long as we know the other two.
For example, by knowing the wattage of a device and the voltage of the electrical outlet, you can
determine the current to ensure you do not go over the maximum amps of the breaker. Assume you
have an air conditioner that is rated at 1560W and a nominal voltage of 120V. Rearranging the
equation, we can determine the current necessary to operate the air conditioner.

Lastly, we introduce resistance. Resistance is the reduction in current due to the material,
environment, and components through which current is flowing. Since electrical conductors are not
perfect, some electricity is naturally lost in transit. But we can also add resistance in order to ensure
electrical energy is at an appropriate level for a component. Resistance is measured in Ohms.
Resistance and its relationship to other electrical principles is expressed with Ohm’s Law, which
provides equations demonstrating the proportionality of current (I), voltage (E), and resistance (R).

Given the formulas of Ohm’s Law and the formulas relating power, current, and voltage, we can solve
electrical equations with only two of the four variables (P, I, E, and R). Here we provide two
examples.

Given P = 1600W and E = 110V, determine I and R.

Given I = 30A and R = 10 Ω, determine E and P.

AC & DC
With an understanding of the basic electrical principles, we can revisit current and move toward a
discussion of components and devices. Electricity is usually delivered in one of two forms, as shown
in Figures 12.1 and 12.2: alternating current (AC) and direct current (DC).

The form of electricity that comes out of a typical wall outlet is AC. As shown in Figure 12.1,
with AC the direction of electrical flow is constantly reversing. The rate of reversing (alternating) is



measured in Hertz (Hz). One Hertz is one oscillation per second. Standard AC in the US is 60Hz,
which means that electrical flow reverses from +120V to -120V 60 times every second.

The form of electricity that most electronic devices require is DC. DC is usually represented as a
positive voltage (e.g., CD-ROM drives that require +5V DC or LED flashlights that require +2.7V
DC). With modern electronic devices requiring DC but standard households only providing AC, how
do devices such as computers operate when plugged into a wall outlet? Not only is the type of signal
incorrect (AC instead of DC), but the voltage is usually high enough (110–120V) to damage the
computer and all of its components. The current discrepancy leads us to the next section in which we
discuss electrical components.

Figure 12.1 Alternating current (AC)

Figure 12.2 Direct current (DC)

LEARNING: AC became the standard household electrical current due to its transmission
efficiency (3-phase AC power uses a small neutral conductor, reduces generator and motor
vibrations, and does not require complex motor designs), lower cost, and political “victory” of
Westinghouse over Edison in the late 1800s.

Electrical Components



Powering Devices
As previously mentioned, something needs to alter the electrical current between the time it exits the
wall outlet as 120V AC and the time it reaches the computer, where the device needs an appropriate
DC voltage (e.g., +3.3V, +5V, etc.). Two electrical components are responsible for handling the
current manipulation and both are found in computer power supplies, either built into the case for
desktop computers, or in the external power supply (“brick”) for laptop computers. The two
components are a transformer and a rectifier.

A transformer is a component that increases or decreases the voltage of an alternating current via
a method known as electromagnetic induction. The transformer lowers the 120V current to a voltage
that will not destroy the internal components of a computer. A typical power supply contains two or
three transformers that are responsible for lowering the voltages of multiple signals needed to power
the many internal components that each get their own supply of electricity.

Once the voltage has been lowered, components responsible for converting AC into DC, known
as rectifiers, alter the electrical current to only allow flow in one direction. Recall that AC flows in
both positive and negative directions. Rectifiers also perform a secondary function: ensuring that the
current does not flow backwards. Rectifiers prevent electricity from flowing back through the
transformers and, even more dangerous, into the wall outlet should the computer create a surge of
electricity due to a malfunction. We discuss the rectifier subcomponent responsible for flow safety
control later.

While we are on the topic of powering computers, one more electrical component is worth
mentioning. People like having the ability to power devices on the road, perhaps via a cigarette
lighter port. The form of electrical current delivered via a lighter port is DC. Even if you had an
adapter for the two- or three-prong plug from a laptop’s power supply to the DC port, you would still
have the issue of the electrical signal. A laptop’s power supply expects AC and the vehicle is
delivering DC. In such a situation, you need a power inverter, shown in Figure 12.3. A power
inverter does the exact opposite of a rectifier: it converts DC to AC. An inverter can convert the DC
signal from a vehicle to AC, then the laptop power supply converts the AC back to DC at the proper
voltage (via the transformer) to properly power the laptop.

ATTENTION: Power inverters differ in the wattage and voltage they provide. If you are in the
market for a power inverter, be sure to find one that provides enough wattage and voltage to
power your computer.



Figure 12.3 Power inverter usage

While some electronic devices such as computers require ample power that is usually provided
by a wall outlet, many electronic devices, such as phones, MP3 players, and flashlights, are smaller
and are powered by much less electricity. Smaller devices usually contain batteries that provide
power. A battery is a component with a cathode (positive terminal) and an anode (negative terminal)
with external connections for delivering power to devices. The electricity comes from reactions in
the electrochemical cells contained within the battery.

Because of a battery’s typically small size, a single battery usually does not provide the voltage
required to power certain devices. Some devices can be powered by a single battery, but only for a
short amount of time due to the draw rate. Both problems can be remedied by using multiple batteries
combined in different ways. In a situation where the electronic device needs more voltage than a
single battery can provide, multiple batteries can be connected in series. When batteries are wired in
series (the anode of one battery is connected to the cathode of the next battery), the voltage
calculation is additive while the current is constant.

Figure 12.4 depicts how a remote control for a standard television is powered that requires +6V
DC and pulls 1800mA of current. Each battery is rated at 1800mA and +1.5V DC; therefore, wiring
batteries in series adds the voltages together and maintains the current.

ATTENTION: mA is the common abbreviation for milliamps. We use more unit abbreviations in
this chapter, and we generally follow the metric system for prefixes (e.g., milli, mega, giga, etc.).



Figure 12.4 – AA batteries wired in series

ATTENTION: If you have ever wondered why you must reverse batteries from one direction to
the other in some devices, the alternating configuration reveals batteries wired in series in such a
way that the least amount of connecting wire is necessary. Such is not the case in Figure 12.4,
where a battery’s positive terminal is distanced away from the next battery’s negative terminal.

Figure 12.5 AA batteries wired in parallel

In some cases, you might have a device that can be powered by a single AA battery, but only for a
short amount of time. If the size of the device permits, the designers could allow for multiple batteries
to be present but wired in parallel so that the voltage is constant while the current is additive (the
opposite of being wired in series). When batteries are wired in parallel, the electricity flows through
all batteries at the same time instead of one at a time as illustrated in Figure 12.5.



The remainder of this section focuses on foundational electrical components found in electronic
devices.

Resistors
Previously, we introduced resistance with Ohm’s Law. Some amount of resistance is always present
in any circuit due to the imperfections of conductive and capacitive materials. Still, some circuits
need to further reduce the flow of electricity. The electrical component that slows the flow of
electrons is called a resistor. An example is shown in Figure 12.6.

Figure 12.6 Resistor

Resistors come in many different ratings, measured in Ohms. Resistor ratings are identified by
colored bands on the resistor. A typical resistor has four bands to be read left to right (toward the
gold or silver band) in order to determine how many Ohms of resistance the resistor provides. The
first two bands represent the base digits, the third band is the multiplier in powers of 10, and the
fourth band is the accuracy/tolerance. Table 12.2 lists the values for the color bands.

Consider two resistor examples. First, the resistor in Figure 12.6 has four bands: BROWN-
GREEN-RED-GOLD. Brown and Green make the whole number 15, and when multiplied by the Red
multiplier 102 we get 1,500Ω as the resistor’s value. The fourth band is gold, so the resistor has an
accuracy of ±5%.

Assume a second example has three bands in the following configuration: RED-BLACK-
ORANGE. The first two bands represent the digits of the whole number (Red = 2 and Black = 0), so
the number is 20. The third band, the multiplier, is Orange (103), making the value of the resistor 20 ×
103 = 20,000Ω. With no fourth band, the 20,000Ω resistor has an accuracy of ±20%.

LEARNING: As with the battery examples, when resistors or other components are attached in
serial the voltage is additive, while in parallel the current is additive. So a resistance total RT of
four resistors in series would be RT = R1 + R2 + R3 + R4. A resistance total RT of four resistors in
parallel would be the inverse 1/Rt = 1/ R1 + 1/R2 + 1/R3 + 1/R4.



Table 12.2 Resistor values

Resistors also come in a form known as variable resistors, commonly called potentiometers,
which can provide a variable amount of resistance. Potentiometers can be thought of as linear as you
slide or turn the resistance up or down to the desired rate. A simple example of a variable resistor is
a radial volume control on a car radio.

Diodes
Recalling our discussion on rectifiers, we mentioned that in addition to performing current
conversion, a rectifier also has an additional component that prevents electricity from flowing
backwards. The component that controls current direction is the diode, shown in Figure 12.7.

Figure 12.7 Diode

A diode accomplishes its purpose by having low or zero conductance in one direction, while
having high or infinite conductance in the opposite direction. Another way of describing a diode is in
terms of resistance: it has high or infinite resistance in one direction while low or zero resistance in
the opposite direction. The grey band on a diode shows the direction of electrical flow, with current
flowing left to right in Figure 12.7. Diodes most people are familiar with that can also emit light
when they are attached in the proper direction are light-emitting diodes (LEDs).



Capacitors
Moving on, capacitors are electrical components that temporarily store an electrical charge, two
types of which are shown in Figure 12.8.

Figure 12.8 Capacitors

Capacitors are typically used in circuits as a way to filter the electrical current or ensure that the
next component in the circuit always receives the proper voltage, even if the power source is unstable
(e.g., drops or surges). Because many electronic components are sensitive to power fluctuations,
capacitors help to lengthen component lifespans. A capacitor can provide stability as long as it has a
charge (i.e., it has not been depleted of electrons). Think of capacitors as rechargeable batteries; once
they are depleted they do not work until they have been charged again. The battery analogy is not
perfect since capacitors still allow electricity to flow even when they are depleted (whereas batteries
cease to function), but current may not be as stable as when the capacitor is operating at full charge.

Because different electrical components require different voltages, different ratings of capacitors
exist. Capacitors are rated in terms of their ability to store electrons, also called capacitance.
Capacitance is measured in Farads (F). A 1F capacitor stores a large amount of electrons, 6.24 × 1018

to be exact. One Farad is much more than most computing components need, so typical capacitors you
will encounter when building circuits are measured in picofarads (pF), nanofarads (nF), or
microfarads (μF).

Transistors
The last fundamental electrical component is the foundation of the next section and modern
computing: the transistor. A transistor is used as a signal amplifier or switch and is a building block
of all modern electronics. Modern computer transistors are made of silicon as opposed to the
Germanium used in early transistors. Still, different types of transistors can be purchased for use in
circuit design. Transistors have three terminals, as depicted in Figure 12.9: the base, the emitter, and
the collector.



Figure 12.9 Transistor

Applying a current to the base opens the channel between the emitter and the collector, allowing
electricity to flow. The amount of flow amplification is proportional to the voltage applied to the base
terminal. A common use of transistors that should be recognizable to software engineers is as an
electronic switch to represent binary information, off or on. Transistors, serving as switches, are
combined together in various configurations to produce logic gates, which give software engineers
the ability to execute arithmetic and Boolean expressions discussed in CHAPTERS 1 AND 2, such as
AND, OR, and NOT.

ATTENTION: The transistor’s ability to either conduct or not conduct electricity across the
emitter and collector terminals is where the term semiconductor originated. Silicon (and
previously, Germanium) has the ability to partially conduct electricity or to act as a switch that can
turn on or off (semi-conduct).

Integrated Circuits
All of the previously discussed electrical components come together to create a circuit that performs
a specific task. The first step is to design a circuit. Circuit design is typically done with software that
produces a schematic, an example of which is shown in Figure 12.10. Notice the resistors (R1, R2,
and R3), capacitors (open bars; C1 and C2), and transistor (orange in color; Q1). The resistors are
labeled with Ohms, the capacitors are labeled with Farads, and the transistor is labeled with an
identifier that specifies its function.



Figure 12.10 Preamp schematic

Figure 12.11 Breadboard

After a schematic is created, engineers might build a bare-bones version using a breadboard,
shown in Figure 12.11. This is a board containing an array of terminals such that electrical
components can be connected together with wires (buses) in the desired configuration without the use
of solder. Breadboard circuits are purposefully temporary so components can be easily added,
removed, and moved until the circuit functions as desired.



Figure 12.12 Kilby Integrated Circuit (used with permission by Texas Instruments Incorporated)

Once a circuit has been built and tested, a more permanent version can be produced. Many years
ago, circuits were not too different from the one seen in Figure 12.11. Circuits still had exposed wires
and components even though they were soldered together. Although components became smaller over
time, their exposure was a challenge. Jack Kilby, while working at Texas Instruments in 1958, created
a solution to the problem at the same time as Robert Noyce from Fairchild Semiconductor (later a
founder of Intel). Kilby built a complete circuit out of a single block of material rather than using
individual components connected together manually. Who created today’s interpretation of the
integrated circuit, Kilby or Noyce, is still hotly debated. The Kilby integrated circuit is shown in
Figure 12.12.

Figure 12.13 Printed circuit board

Though a milestone, the first attempt at a monolithic circuit still had issues, such as protruding
wires and fragility. Such issues would soon be solved by Jean Hoerni at Fairchild Semiconductor in
1959, with the invention of the planar process. The idea was to view the circuit as a two-dimensional
plane with insulated areas and doped areas where the conductive material would reside. The process
allowed the entire circuit to be built in layers, by machines, without protruding wires or components.
Circuits created with the planar process are the circuits we see in today’s electronics. An example of
a printed circuit board is shown in Figure 12.13.

The achievements we have mentioned plus many others have led to the powerful, small, and
reliable electronics we use every day.



Popular Implementations
Every day, more devices are making use of the amazing technologies we have discussed. Some
devices are merely for hobbyists, some are embedded in our daily lives, some are luxuries, and some
are modern necessities. In this final section, we briefly discuss a few popular devices that only exist
because of the foundational and electrical developments discussed in this chapter.

Figure 12.14 Intel Core i7

Computer Processors
The earliest processors created by Intel, short for Integrated Electronics, could only operate on 4 bits
at a time with a clock rate of 740 kHz (kilohertz). At the time of this book’s publication, consumer
processors such as the Intel Core i7, shown in Figure 12.14, can operate on 64 bits (or more) at a
time with clock rates above 4 GHz (gigahertz) at an instruction execution rate of over four billion
instructions per second.

Raspberry Pi
The Raspberry Pi, shown in Figure 12.15, is a compact but complete computer. The size of a deck of
cards, the Pi is a complete system with HDMI, USB, Ethernet, WiFi, Bluetooth, audio, and General
Purpose Input/Output (GPIO) pins for connecting external devices. While the Pi might not be
powerful enough for movie studios to render 3D animations, it is powerful enough to act as a retro
gaming device, a controller for a home’s “smart” devices, or even a network penetration device used
by information security engineers. The Raspberry Pi is a hobbyist’s dream computer due to its low
cost and expandability.



Figure 12.15 Raspberry Pi

Apple iPhone & Watch
If you have not already realized, the authors of this book prefer Apple products as their daily-use
devices. So what better smartphone and other “smart device” examples to present than the Apple
iPhone and Watch, shown in Figure 12.16.

Figure 12.16 Apple iPhone and watch

The fact that personal computing devices have more processing power than the computers that put
men on the moon is nothing short of amazing. For posterity, and because this is a book on Assembly
programming, Figure 12.17 shows Margaret Hamilton, the lead software engineer for the Apollo
project, standing next to the Assembly listing printout for the Apollo Guidance Computer (NASA).



Between smartphones, such as Apple’s iPhone or various Android phones; smart watches, such
as Apple’s Watch, Samsung’s Gear, or Motorola’s Moto 360; and other miscellaneous smart devices,
such as FitBits and Google Glass, we have computers that can fit in our pockets or be worn on our
bodies. Such devices exist thanks to the creation of the integrated circuit and the continued
miniaturization and increased efficiency of electrical components.

Figure 12.17 Assembly source code for the Apollo guidance computer (NASA)

Summary
In this last chapter, we discussed fundamentals of electronics at a low level and then built upon each
section from the basic principles to modern devices. You should now be familiar with the
characteristics of electricity and electrical components that manipulate and harness its power. In
addition to presenting electrical principle definitions and formulas, we discussed electrical
components at a tangible level. When electrical components come together to make a circuit, the
possibilities are endless, as we illustrated with some popular implementations. You made it! May the
bits be ever in your favor.

Key Terms
alternating current (AC)



ampere
anode
battery
breadboard
capacitance
capacitor
cathode
current
diode
direct current (DC)
draw
farads (F)
Hertz (Hz)
integrated circuit
inverter
light-emitting diode (LED)
Ohm’s Law
ohms
parallel
planar process
potentiometer
power
printed circuit board
rectifier
resistance
resistor
schematic
semiconductor
series
transformer
transistor
voltage
volts
watts

Questions
Short Answer

1. When representing Ohms, use the Greek ___________ character.



2. The difference in the charge between two points is known as ___________.
3. Computers typically draw ___________ current than flashlights.
4. The watt is the unit of measurement for electrical ___________.
5. ___________ can be calculated if you have both the wattage and the voltage.
6. Because conducting materials are not perfect, they increase ___________ on an electrical

circuit.
7. Using Ohm’s Law and the equation to calculate power, ___________ and ___________ can be

calculated as long as you have resistance and current.
8. Typical wall outlets provide ___________ current.
9. Unlike DC, AC constantly reverses its flow at a rate that is measured in ___________.
10. A secondary function of a ___________ ensures that electricity does not flow backwards.
11. Batteries provide ___________ current.
12. The ___________ is an electrical component that slows the flow of electrons.
13. Capacitance is measured in ___________, although most capacitors are rated much lower than

the standard unit.
14. Originally made of Germanium, ___________ are now made of silicon.
15. Printed circuit boards are only possible because of the invention of the ___________.

True/False
1. Transformers change current from AC to DC for usage in electronic devices.
2. Diodes only allow current to flow in one direction.
3. Wiring batteries in series is used when a device requires more voltage rather than more

amperage.
4. A resistor with three colored bands has a tolerance of ±5%.
5. Integrated circuits are devices that an engineer can plug electrical components into to test a

circuit.

Assignments
12.1 Don’t blow the breaker!

Assume that in your home office you wish to use the devices listed below. Will a 15A breaker
trip when you turn on all of the devices at the same time? List all combinations you can use at
the same time without blowing the breaker and the total amperage for each combination.
• Air conditioner (1000W)
• Computer (500W)
• Desk lamp (5W)
• Cross-cut shredder (5A)

12.2 Speed Limit

Assume you are building a small electrical circuit. Your power source supplies +5V DC at



500mA, but your electrical components can only handle a max of +5V DC at 200mA. Because
the components are extremely sensitive, you must ensure that the resistor’s Ohms are
appropriate and that the tolerance is as small as possible. What resistor size should you use to
accomplish the current drop? (Specify the resistor in terms of the colored bands.)

12.3 Mini-computers

Using the Web and other resources, select a small form factor computer or microcontroller
such as the Raspberry Pi or an Arduino board and research some creative uses of the device.
Write a two- or three-page paper that 1) describes three of the most interesting
implementations you found, and then 2) describes a custom implementation of your own design.
You may use a combination of text and visuals.



 

Introduction to the Appendices

Welcome and Objective
Hello and welcome to the Appendices for Assembly Programming and Computer Architecture for
Software Engineers. The objective of the Appendices is to provide some practical guidance for
various topics related to the main text.

Appendix Outline
•    Appendix A: Assembly Syntax Translation
•    Appendix B: Environment Setup
•    Appendix C: Disassembly
•    Appendix D: Command-Line Debugging Assembly with GDB
•    Appendix E: Linking Assembly and C++
•    Appendix F: Functions and Stack
•    Appendix G: Using CPUID
•    Appendix H: ASCII and Decimal Arithmetic
•    Appendix I: Intrinsics

We decided to take a very practical approach to the Appendices, so you will find very helpful guides,
such as Appendix B, D, and E. Appendix A is a lifesaver for an Assembly programmer, and we have
found ourselves using it regularly. The other Appendices not only contain supplemental information,
but they will help you understand the book content and “how-to” scenarios in more detail. The
Appendices also contain additional resources and links that will help with exploring specific topics.

Lost and Found
What you will not find in the Appendices is information that is readily found elsewhere. The x86,
x86_64, x87, SIMD, AVX, and so on instruction sets are already well documented in the formal Intel
and AMD specifications and online resources. ASCII maps can easily be found with a Web search
and so on. What we do provide is links and references to where important and already well-



documented information can be found. Many resources are available via the WEB RESOURCES at the
beginning of every chapter.

For the instruction sets, the best resource by far is the Intel 64 and IA-32 Software Developer’s
Manual, Volume 1, Chapter 5. Other information about instructions is scattered throughout the
manuals, but Volume 1 Chapter 5 is a great starting point. We recommend downloading the manuals
from the Intel website.

•    http://www.intel.com/content/www/us/en/processors/architectures-software-developer-
manuals.html

AMD manuals can be found on the AMD developer site.
•    http://developer.amd.com/resources/developer-guides-manuals/

Agner Fog has some amazing technical documentation about instructions, calling conventions, and
optimization.

•    http://www.agner.org/optimize/#manuals
If PDFs are not your thing and you prefer an online exploration of instruction details, the following
instruction indexes are quite useful.

•    http://www.felixcloutier.com/x86/
•    http://x86.renejeschke.de
•    https://en.wikipedia.org/wiki/X86_instruction_listings
•    http://www.nasm.us/doc/nasmdocb.html

Application Binary Interface specifications are also particularly helpful. Some good ones are as
follows.

•    http://refspecs.linuxfoundation.org/elf/x86-64-abi-0.99.pdf
•    https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/LowLevelABI/000-

Introduction/introduction.html

Assembler References are the go-to place for information related to a specific Assembler, such as
supported directives and syntax.

•    https://sourceware.org/binutils/docs/as/ (GAS)
•    http://www.nasm.us/doc/ (NASM)
•    http://www.nasm.us/docs.php (NASM)
•    https://msdn.microsoft.com/en-us/library/afzk3475.aspx (MASM)
•    https://developer.apple.com/library/mac/documentation/DeveloperTools/Reference/Assembler/000-

Introduction/introduction.html (outdated but still informational)

We hope you find the Appendices helpful and if you have an idea for an Appendix let us know!

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://developer.amd.com/resources/developer-guides-manuals/
http://www.agner.org/optimize/#manuals
http://www.felixcloutier.com/x86/
http://x86.renejeschke.de
https://en.wikipedia.org/wiki/X86_instruction_listings
http://www.nasm.us/doc/nasmdocb.html
http://refspecs.linuxfoundation.org/elf/x86-64-abi-0.99.pdf
https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/LowLevelABI/0%2000-Introduction/introduction.html
https://sourceware.org/binutils/docs/as/
http://www.nasm.us/doc/
http://www.nasm.us/docs.php
https://msdn.microsoft.com/en-us/library/afzk3475.aspx
https://developer.apple.com/library/mac/documentation/DeveloperTools/Reference/Assembler/000-Introduction/introduction.html


APPENDIX A

Assembly Syntax Translation

Objective
Appendix A provides some general rules and a table for translating code between Assemblers and
syntaxes.

Rules
•    GAS prefixes registers with %
•    GAS prefixes immediate values with $
•    GAS also uses the $ prefix to indicate an address of a variable
•    MASM and NASM use $ as the current location counter, while GAS uses the dot ( . )
•    GAS operands are source first, destination second
•    MASM and NASM operands are destination first, source second
•    GAS denotes operand sizes with b, w, l, and q suffixes on the instruction
•    GAS and NASM identifiers are case-sensitive
•    MASM identifiers are not case-sensitive by default, but can be by adding option

casemap:none (usually after the .MODEL directive)
•    NASM writes FPU stack registers as ST0, ST1, etc…without parentheses
•    GAS/MASM usually write FPU stack registers as %st(1)/ST(1), %st(2)/ST(2), etc…with

parentheses
•    GAS uses .equ to set a symbol to an expression, NASM uses EQU, and MASM uses = or EQU
•    All three Assemblers can use single or double quotes for strings
•    MASM relies more on assumptions (e.g., data sizes), so sometimes interpreting what an

instruction does can be difficult
•    NASM usually does not require a size directive for source operands, but a size directive can

be used. A size directive is required for destination operands.







APPENDIX B

Environment Setup for Assembly Programming

Objective
Appendix B describes how to prepare your Development Environment for programming in Assembly.
Examples are provided for Windows using Visual Studio and MASM, for macOS using Xcode
(Clang/LLVM, GAS compatible), and for Linux using NASM and ld. We offer some basic setup
configurations and you can explore other options if desired. The code examples we use are 32-bit.

Windows – Visual Studio (2017) – MASM
1. Install Visual Studio if needed.
2. Open Visual Studio and create a new empty C++ project, giving the project an appropriate

name.
3. Once the project has been created and is open, right-click on the project in the Solution

Explorer and select “Build Dependencies” → “Build Customizations”
4. Check the “masm” box.
5. In the Solution Explorer, right-click “Source Files” then select “Add” → “New item...”
6. Under “Visual C++” click “Utility” then choose “Text File.” When you name the file also type

the .asm extension.
7. In the Solution Explorer, right-click on the newly created .asm file, select “Properties,” and

under “General” change “Item Type” to “Microsoft Macro Assembler” if not already set.
8. In the Solution Explorer, right-click on the project, select “Properties” and within the

Properties you should see a drop-down menu called “Microsoft Macro Assembler.” If the menu
is missing, return to Step 2. If the menu exists, continue to Step 9.

9. In the project Properties drop-down menu, navigate to “Linker” → “System” and in the
“SubSystem” drop-down box select “Windows (/SUBSYSTEM:WINDOWS)”

10. In the project Properties drop-down menu, navigate to “Linker” → “Advanced” and in the
“Entry Point” box type either “main” or “_main” depending on your preference for identifying
the main function in your Assembly code. We use “_main” throughout the book.

11. Write a sample Assembly program in the .asm file.



12. Set a breakpoint at a suitable location (e.g., mov eax, num).

13. Build and Run the program.

14. When the program halts at the breakpoint, arrange the window frames to your preference. We
recommend opening the following windows in the “Debug” → “Windows” menu.
• Registers
• Memory (choose at least Memory 1, others are optional)
• Disassembly
• Autos

15. Another useful option is to right-click anywhere in the Registers window and select “Flags,”
which enables viewing of the flags register. Select any other registers you have interest in
watching.

16. To make Visual Studio create a listing file when assembling your code, in the project
Properties navigate to “Microsoft Macro Assembler” → “Listing File” and set the following
options.
• “Generate Preprocessed Source Listing” to “Yes”
• “List All Available Information” to “Yes”
• “Assembled Code Listing File” to “$(ProjectName).lst” or any desired file path
 

After re-running the program to create a listing file, you may need to set the “Generate
Preprocessed Source Listing” back to “No” so debugging works correctly.



17. If you re-run the program you will find the listing file created in:

ProjectFolder\ProjectName\ProjectName.lst (file type is shown as “MASM Listing”).
Example file path: C:\Documents\Visual Studio 2017\Projects\masm_testing\ masm_testing\
masm_testing.lst

18. Optional: In the project Properties drop-down menu, navigate to “Linker” → “Advanced” and
in the “Image Has Safe Exception Handlers” drop-down box select “No.”

macOS – Xcode (8.2) – Clang/LLVM (GAS compatible)
1. Install Xcode from the AppStore if needed.
2. Open Xcode and create a new project.
3. The template for the new project should be a “macOS” → “Application” and select “Command

Line Tool”
4. Give the project an appropriate “Product Name,” for example “asm_testing”
5. Language should be set to C++.
6. Create the project in an appropriate folder.
7. In the Project Navigator, select “main.cpp,” press the “Delete” key, then select “Move to

Trash.”
8. In the Project Navigator, right-click on the project folder and select “New File…” then under

“macOS” → “Other” (scroll down) chose “Assembly File” (the icon has a large “S”). Click
“Next.”

9. Name the file, then click “Create.”
10. Write a sample Assembly program in the .s file.



11. In the Project Navigator, click on the project (top level) and under the “Architectures” drop-
down menu and select “32-bit Intel (i386).”

12. Set a breakpoint at a suitable location (e.g., movl num, %eax).

13. Build and Run the program.

14. Arrange the windows to your preference, but we recommend the following setup (selections in
blue).

15. Registers are viewable in the lower left “Debug Area” and output is in the lower right.

16. To view disassembly, in the “Assistants Area” window (the overlapping circles in the above
figure), click on “Counterparts” (see above figure) and select “Disassembly” (at the bottom of
the menu).

17. To create a separate listing file, we recommend using otool.
• In Terminal.app, navigate to the folder where the object file for the Xcode project was

created (an easy approach is to type “cd” in Terminal then navigate to the object file in
Finder and drag the folder location into Terminal)

• Example path:
•

asm_testing/DerivedData/asm_testing/Build/Intermediates/asm_testing.build/Debug/asm_testing.build/Objects-



normal/i386/asm_testing.o
• Run otool in Terminal: otool -dtvj asm_testing.o >
disassembly.txt

• To see flag options to get the output you desire simply type otool and press return
• We use d = print data section, t = print text section, v = print verbosely, and j = print

opcode bytes

Linux – NASM
For the Linux configuration we use Ubuntu. You can adjust the steps for your chosen distribution.

1. Ensure that gcc and g++ are installed by issuing the following commands in the Terminal.
• ~$ gcc -v
• ~$ g++ -v

2. To ensure you can run both 32-bit and 64-bit programs, you need to install the latest “multilib”
files.
• ~$ sudo apt-get install gcc-5-multilib
• ~$ sudo apt-get install g++-5-multilib

3. Install NASM and verify version (2.11 or higher).
• ~$ sudo apt-get install nasm
• ~$ nasm -v

4. Use your preferred editor such as gedit, vim, or vi to create a .s or .asm file in an appropriate
folder location and write a sample program.



5. Assemble the file using nasm and then link using ld.
• ~$ nasm –f elf32 –o testing.o testing.asm
• ~$ ld –e _main –melf_i386 –o testing testing.o

6. Run the program: ~$ ./testing
7. To debug using the command-line, refer to APPENDIX D: COMMAND-LINE DEBUGGING

ASSEMBLY WITH GDB.
8. To create listing files and perform other tasks with the object file, you can use utilities such as
objdump or otool, but the simplest way is to use the -l flag when assembling.
• ~$ nasm –f elf32 –o testing.o –l testing.lst testing.asm



APPENDIX C

Disassembly

Objective
In APPENDIX B, we mentioned how to create a listing file for each OS platform that contains the
disassembly for a given program. Appendix C identifies elements of disassembly files and also
demonstrates how to view Assembly and Disassembly while working in Visual Studio, Xcode, and
GDB.

Program
Consider Program C.1, which has one initialized variable (num) and one uninitialized variable
(sum). In _main, we move num to eax, add 20, then store the result in sum, which equals 100. Then
the program exits.



Program C.1 Template

Windows
Using the method for creating a disassembly (listing) file in APPENDIX B, the output is shown in
Example C.1. We present an abbreviated version: we removed the “Procedures, parameters, and
locals” and “Symbols” sections toward the end of the default MASM listing output.



Example C.1 Disassembly with MASM

The memory offsets start at 0h since the object file just contains relocatable machine language. The
machine instructions are the numeric (hexadecimal) counterparts to the Assembly instructions. The
initialized data (num DWORD 80) appears as the raw hexadecimal value (00000050). Note the
instructions in _main when comparing the Assembly code and the Disassembly.

Toward the end of the file, you will see the “Segments and Groups” area, which lists segment
sizes. The _DATA segment is the combined byte size of all initialized and uninitialized variables. The
_TEXT segment (written as .CODE in MASM, but translated to _TEXT behind the scenes and written
at .text in the other Assemblers) is the byte-length of the machine instructions. With every two
hexadecimal digits equaling a byte, the _main code is 00000014 bytes in length, or 20 bytes in
decimal. As an aside, also notice we allocated 4,096 bytes of stack space, which is 00001000.

If you want to view Disassembly while you are debugging in Visual Studio, set a breakpoint and
run the program. Click on the “Debug” menu and under “Windows” you will find “Disassembly”



(Figure C.1).
Once you have opened the Disassembly window, you will have something that looks like Figure

C.2.

 

Figure C.1 Disassembly in Visual Studio



 

Figure C.2 Visual Studio Disassembly Window

macOS
Using the method for creating a disassembly (listing) file in APPENDIX B, the output is shown in
Example C.2.



Example C.2 Disassembly with otool

The memory offsets start at 0x0 since the object file just contains relocatable machine language.
The machine instructions are the numeric (hexadecimal) counterparts to the Assembly instructions.
The initialized data (num: .long 80) appears as the raw value in Little-Endian hexadecimal
form (50 00 00 00). Note that _main has seven instructions and the same is true in the
Disassembly.

You might be wondering where the uninitialized data is (.lcomm sum, 4), which we
declared in the .bss section. Since the .bss section includes variables that do not have initial
values, the system does not need to store them until the program is loaded and running. All that needs
to be saved in the object file (.o) for .bss variables is the total amount of storage needed at
runtime for uninitialized variables.

An easy way to see how much space is being reserved for .bss, other sections, and the program
generally is to run the size utility on the object file in Terminal. For example, if the object file was
named test.o, the size command provides the information we seek.



The size utility has several flags for output formatting, but our example shows the sections printed
along with the number of bytes, in decimal, that each section requires in memory. Notice that the
.bss section requires four bytes, which is enough space for one .long, the uninitialized variable
sum. Since we assembled the program in Debug mode in Xcode, the __debug sections appear in
the output as well.

To clarify, the byte count needed for the executable part of the program is the length of all the
instructions combined. The key is to not forget the last instruction, which begins at the last offset.

If you want to view Disassembly while you are debugging in Xcode, set a breakpoint and run the
program.

Figure C.3 Opening disassembly in Xcode



Figure C.4 Disassembly window in Xcode

Click the the “Assistant Editor” button, click on the “Counterparts” text, and in the dropdown box
choose “Disassembly.” If you were using a language like C++, you can choose “Assembly” when
debugging to get a more granular view of your code as it executes.

Linux
Using the method for creating a disassembly (listing) file in APPENDIX B, the output is shown in
Example C.3.



Example C.3 Disassembly with NASM

In Linux, the size utility will likely offer different options for output than in macOS/BSD, so we just
show the default output.

As with the macOS version, the text, data, and bss sections are 25, 4, and 4 bytes in size,
respectively. The bss section includes variables that do not have initial values, so the system does
not need to store them until the program is loaded and running. All that needs to be saved in the object
file (.o) for bss variables is the total amount of storage needed at runtime for uninitialized
variables.

Here we show several options for viewing Disassembly in the GNU Debugger (GDB). One quick
way is to use the layout asm command. Run the program with GDB (look at APPENDIX D if
necessary), set a breakpoint at _main, and then issue the command.

    (gdb) layout asm



Figure C.5 ASM Layout in GDB

To view the Disassembly of the current instruction, you can use the Program Counter (PC), which is
wherever the ip/eip/rip register is pointing. Again, look at APPENDIX D if needed, but in the
following GDB command, x means examine, i means instruction, and we use the program counter
register.

To view multiple instructions, just put a number before the i as we do in the next example.



APPENDIX D

Command-Line Debugging Assembly with GDB

Objective
Appendix D describes how to assemble, link, and then debug a NASM Assembly program with the
GNU Debugger (GDB). Being able to examine the flow and behavior of low-level instructions is a
useful skill, but it can be tricky for Unix/Linux programmers using a command-line environment. This
Appendix assumes installs of NASM, GCC or Clang, and GDB.

Program D.1 Sum  

Code



We use a 32-bit NASM Assembly program to illustrate GDB commands. Program D.1 should be
written and saved in a file, we use sum.asm as the filename. You can use the .asm or .s extension.

Assembling and Linking
Assembling takes an Assembly .asm or .s file and produces an object .o file. Object file formats vary
by OS platform. The standard object file formats are ELF for Linux, MACH-O for macOS, and COFF
for Windows.

•    For a Linux system (using the .asm extension), the command to assemble the sum.asm file might
look as follows.
nasm –f elf –o sum.o sum.asm

•    For a Mac system (using the .s extension), the command to assemble the sum.s file might look
as follows.
nasm –f macho –o sum.o –l sum.lst sum.s

Notice the use of options. The –f (format) flag precedes the desired file format of the object file. The
–o (output) flag precedes the desired name of the object file. Last is the filename of the Assembly
file. In the macOS example, we also wanted a listing file, so we use the –l (listing file) flag
followed by the desired name of the listing file. The listing file is handy if you wish to verify the
instructions and memory offsets of an assembled program.

The formats elf and macho default to 32-bit. To assemble for 64-bit, use elf64 and macho64.

Linking takes object .o files and produces a Unix executable file. Linking can be achieved using the
linker (ld) or by using a compiler (e.g., gcc, clang).

•    For a Linux system, the command to link using ld might look as follows.
ld –e _main –melf_i386 –o sum sum.o

The –e (entry point) flag allows you to specify the entry point of the program, in this case _main.
The –melf_i386 (emulation) indicates the file format of the object file, in this case elf, and
specifies the linker emulation, in this case i386. In simple terms, we are specifying the target
architecture. The –o (output) flag precedes the name of the desired executable file. Last is the name
of the object file.

•    Using a compiler as opposed to directly using the linker is another option. For a Linux or Mac
system, the command to link using a compiler might look as follows.
clang –o sum –m32 sum.o

gcc –o sum –m32 sum.o

First is the compiler used. The –o (output) flag precedes the name of the desired executable file. The
–m32 specifies 32-bit architecture. Last is the name of the object file. For 64-bit you would use –
m64.



Debugging with GDB
After assembling and linking the code, you should have an executable file. To run the sum program
with GDB, use the following Terminal command.

gdb sum

If you are using macOS and have installed GDB via MacPorts, you must use the alternative name
ggdb.

ggdb sum

The command will launch the debugger and state the program under examination. Our gdb command
assumes you are at the same file path level as the executable. You can enter the full file path as well.

Though GDB has many debugging commands, we highlight some basics to get you started. In order to
debug, you must set a breakpoint. In this case, we will set a breakpoint upon entry into _main.

(gdb) break _main

Notice in the break command that we prefix main with an underscore. The underscore is explicitly
necessary on some systems (most Linux distributions), but may be implicitly assumed on others (e.g.,
macOS, FreeBSD).

(gdb) break main

GDB will report back the memory location where the breakpoint was placed.

We could also set a breakpoint at _sum if we wanted, to which GDB will respond.

Now we can begin executing the program with the run command. GDB will respond that the
program has started and halts at our first breakpoint.

Next, we take a moment to examine the current state of the program. Specifically, we want to look at
registers and memory. To examine all of the registers, issue the info registers command.



To examine the contents (in decimal) of a specific register, you can use the print command.

To examine the register in a different format, include the format desired, such as hexadecimal (x).

To examine memory, use the examine (x) command along with the count, display format, unit size, and
starting address. For example, to examine (x) eight units (8) in hexadecimal (x) with words being the
unit size (w), starting where esp is pointing, use the following command.

To examine memory based on the address where a function begins, use a command like the following.



The above examples are prior to executing any instructions in our code. Next, we step through some
instructions and re-examine registers and memory along the way. The first instruction in our program
is

mov eax, 10.

To execute the instruction and move to the next, we use the next instruction command (nexti, ni),
to which GDB will respond with the address of the next instruction.

Now we can re-examine the eax register.

Moving on, go ahead and execute the next three instructions, which will take us through the execution
of push DWORD[num2], with push DWORD[num1] next in line.

Since we pushed num2 to the stack, we can look at how memory has changed.

Notice that the item on the top of the stack is 0x00000004, which is the num2 value just pushed.
Execute one more instruction and then re-run the examine command.

Now both parameters are on the stack. Next, is call _sum. If we run nexti, then we will step
over the call to _sum and move along to add esp, 8. If we want to step into the _sum function,
we would either need a breakpoint in _sum or we can use the step into command (stepi).



We could now step through the _sum function examining registers and memory along the way,
ensuring that our code is doing what we expect. If we want to execute until the end of the program or
the next breakpoint, we can use the continue command (continue, c).

An inferior is just GDB’s way of managing the state of program execution and is typically tied to a
process. If you were to type the quit command (quit) while executing, GDB will output something
similar to the following.

After issuing the continue, you can quit GDB.
(gdb) quit

As shown in APPENDIX C: DISASSEMBLY, a way to view instructions and memory as you debug is to
use layout asm.

(gdb) layout asm

Resources
The following resources detail the commands and options of nasm, ld, and gdb.

•    NASM manual (Chapter 2): http://www.nasm.us/doc/nasmdoc2.html
•    ld man page: http://linux.die.net/man/1/ld
•    GDB manual: https://sourceware.org/gdb/current/onlinedocs/gdb/
•    GDB command index: https://sourceware.org/gdb/current/onlinedocs/gdb/Command-and-

Variable-Index.html#Command-and-Variable-Index

http://www.nasm.us/doc/nasmdoc2.html
http://linux.die.net/man/1/ld
https://sourceware.org/gdb/current/onlinedocs/gdb/
https://sourceware.org/gdb/current/onlinedocs/gdb/Command-and-Variable-Index.html#Command-and-Variable-Index


APPENDIX E

Linking Assembly and C++

Objective
Appendix E describes how to create a stub and driver for mixing Assembly and C++ code. Examples
are provided for Windows using Visual Studio and MASM, for macOS using Xcode and Clang/LLVM
(GAS compatible), and for Linux using NASM.

Windows – Visual Studio – MASM
•    Open Visual Studio and create a new empty C++ project.
•    Add a new file named something such as main.cpp.
•    Type the following code in main.cpp.

•    Add another new file named something like code.asm.
•    Type the following code in code.asm.



•    The 32-bit code defines the asmMain procedure to use the cdecl calling convention, which
could be set for all procedures by changing the .MODEL directive to be .MODEL FLAT,
C.

The 64-bit code needs no explicit call type because only one exists, the x64 calling convention.
•    Open the Developers Command Prompt, which can be found by searching for “dev” or

“command prompt” in the Start Menu or by navigating to the appropriate location. The path
may vary depending on your Visual Studio version and installation location. We have provided
an example path and a couple of MSDN links for more information.

Path: C:\Program Files (x86)\Microsoft Visual
Studio\2017\Community\Common7\Tools
Links: https://msdn.microsoft.com/en-us/library/ms229859.aspx
           https://msdn.microsoft.com/en-us/library/f35ctcxw.aspx

•    In the Developers Command Prompt, change directory (cd) into the folder that contains
code.asm, and then run the appropriate command to assemble the file and produce an object
file.

ml = MASM 32-bit Assembler and linker
Example Path: C:\Program Files(x86)\Microsoft Visual Studio
14.0\VC\bin\ml.exe

ml64 = MASM 64-bit Assembler and linker
Example Path: C:\Program Files(x86)\Microsoft Visual Studio
14.0\VC\bin\x86amd_64\ml64.exe

/c = assemble only, do not link
/Cx = preserves case in public and external symbols

https://msdn.microsoft.com/en-us/library/ms229859.aspx
https://msdn.microsoft.com/en-us/library/f35ctcxw.aspx


/coff = object file format (required in 32-bit, not for 64-bit)

ml and ml64 Command-Line Reference: https://msdn.microsoft.com/en-
us/library/s0ksfwcf.aspx

Depending on the version of Visual Studio, Windows, and installation settings, you may need
to add the paths for ml or ml64 to the system PATH Environment Variable. We provide an
example path and some helpful links.

C:\Program Files (x86)\Microsoft Visual
Studio\2017\Community\VC\Tools\MSVC\14.10.25017\bin\HostX64\x64

Setting the Path and Environment Variables for Command-Line Builds:
https://msdn.microsoft.com/en-us/library/f2ccy3wt.aspx

General instructions for adding a PATH environment variable:
https://msdn.microsoft.com/en-us/library/office/ee537574.aspx

•    Back in Visual Studio, add an “Existing item…” to the project and select the code.obj file
created in the previous step.

•    Build and run the program to verify that it works.
•    You can now add code in code.asm that calls C/C++ functions defined or included in main.cpp

and vice versa.
•    If you create your own functions, do not forget to add the prototype in the .asm file before the

.DATA segment.
Example: inputInteger PROTO C

•    Reminder: You must re-assemble the .asm file after any code changes via the Developers
Command Prompt for the changes to take effect when rebuilding and running the program.

•    Debugging breakpoints will work on the C++ side, but will not work on the Assembly side. If
you want to set a debugging breakpoint on the Assembly side, use the int 3 instruction
where breaks are desired.

macOS – Xcode – Clang/LLVM (GAS compatible)
•    Open Xcode and create a new empty C++ project.
•    Add a new file named something such as main.cpp.
•    Type the following code in main.cpp.

https://msdn.microsoft.com/en-us/library/s0ksfwcf.aspx
https://msdn.microsoft.com/en-us/library/f2ccy3wt.aspx
https://msdn.microsoft.com/en-us/library/office/ee537574.aspx


•    Add another new file named something such as code.s.
•    Type the following code in code.s.

•    Click on the project in the Project Navigator. Scroll down to “Apple LLVM 8.0 – Custom
Compiler Flags” and in “Other C Flags” add "-mstackrealign". The flag realigns the
stack for function calls, which allows for mixing legacy (4-byte aligned) and modern (16-byte
aligned) code. Both 32-bit and 64-bit code on macOS must be 16-byte aligned.

•    Build and run the program to verify that it works (the program works for both 32-bit and 64-
bit).

•    You can now add code in code.s that calls C/C++ functions defined or included in main.cpp
and vice versa.

•    Prefix function calls in code.s with an underscore, even if a function does not begin with an
underscore in the .cpp file.

Linux – NASM
Using your preferred development environment or editor,

•    Create a new file named something such as main.cpp.
•    Type the following code in main.cpp.



•    Create another new file named something such as code.asm.
•    Type the following code in code.asm.

•    Build and run the program to verify that it works. The following assumes gcc and g++ multilib
are installed on a 64-bit Linux system.
º 32-bit

    Assemble: nasm –f elf32 code.asm (just using elf also implies 32-bit)
    Compile and link g++ -m32 main.cpp code.o –o test
    Run: ./test

º 64-bit
    Assemble: nasm –f elf64 code.asm
    Compile and link: g++ main.cpp code.o –o test
    Alternative: g++ –m64 main.cpp code.o –o test
    Run: ./test

•    You can now add code in code.asm that calls C/C++ functions defined or included in main.cpp
and vice versa.

What is extern "C"?
Prefixing a C++ function with extern "C" turns off name mangling. Unlike the C language, C++
allows for function overloading: naming multiple functions the same name, assuming the parameter
lists are different. Overloading works in C++ because the compiler will “mangle” function names so
the system can distinguish between function calls. Mangling involves pre-fixing and post-fixing a



function name with symbols that indicate information about the function. Almost every compiler
mangles names differently.

Looking at the Disassembly in EXAMPLE 6.4 – STACK ALIGNMENT USING NOP in CHAPTER 6 on
line 24, notice that the name of the sum function has been modified to be __Z3sumii. For the
Clang/LLVM compiler, __Z indicates a mangled symbol, 3 indicates the number of characters in the
function name, sum is the original function name, and ii signifies that the function receives two
integer parameters. Again, the mangling scheme varies from compiler to compiler. You can find
mangling schemes online, and a suitable starting point is
https://en.wikipedia.org/wiki/Name_mangling.

In order to call a C++ function from Assembly, you need to know the name of the function post-
compilation. So unless you want to memorize mangling conventions, turn off name mangling so you
can use the name of the function as declared by the programmer (you). Any C++ functions you create
for calling from within Assembly and vice versa should be marked as extern "C".

https://en.wikipedia.org/wiki/Name_mangling


APPENDIX F

Functions and Stack

Objective
Appendix F describes attributes of functions and stack manipulation, and is a useful reference for
CHAPTER 6. As a primary note, general stack manipulation is achieved with PUSH and POP
instructions, and also with ADD and SUB of the stack pointer register (esp/rsp).

Registers
ebp/rbp base frame pointer: points to beginning of currently executing stack frame and is used to reference parameters

esp/rsp stack pointer: should always point to top of stack (most recently pushed value)

eax/rax accumulator: used for function return value in most cases, but not all cases

eip/rip instruction pointer: points to next instruction to be executed; also used for rip-relative addressing in 64-bit programs
(see CHAPTER 6 SUPPLEMENT, PROGRAM 6.3)

st(0)/stmm0 x87 Floating Point Unit (FPU) stack register used for returning floating point values

xmm0/zmm0 Streaming SIMD Extensions (SSE) register used for returning floating point values

Stack Frames
Stack frames are established in the following steps:

1. Parameters (pass-by-value) or addresses of parameters (pass-by-reference) being passed are
placed in registers or pushed to the stack.

2. The function is called, which pushes the return address on the stack.
3. Upon entering the function, ebp/rbp is pushed to the stack.
4. Any callee-saved registers needing to be saved are pushed to the stack (typical of 64-bit).
5. ebp/rbp is set equal to esp/rsp.
6. Bytes may be subtracted from esp/rsp to setup space for local values that are subsequently

copied, or local values are pushed to the stack (typical of 32-bit); values may be copied from



registers into scratch stack space (typical of 64-bit).

Usually, ebp/rbp is used to reference parameters within a stack frame. In 64-bit, if no further PUSH,
POP, or CALL instructions are used, then rsp can be used to reference parameters. However, more
commonly rip-relative addressing is used to refer to parameters in 64-bit mode, which is the default
method in x86_64.

rip-relative addressing is a method that is position-independent and uses memory offsets from the
current instruction pointer (where rip is pointing) to refer to parameters. Relative addressing using
rip is available in some 64-bit Assemblers (e.g., GAS, NASM), but is not available in MASM x64
(ml64.exe). In MASM 64-bit, variable and address access is similar to 32-bit mode; the
conversion to rip-relative addressing is done automatically by the linker. For a comparison, see the
64-bit programs in the CHAPTER 6 SUPPLEMENT.

Example F.1 illustrates Step #6 in the STACK FRAMES section: creating space for local variables.
Notice that to dereference the local variables, you can either add the bytes back to esp (GAS) or
realign esp to ebp (MASM and NASM).

Example F.1 Local variables (32-bit)

Any time you want to get the address of a stack parameter, you must use the LEA instruction because
the parameter’s exact location is not known until run-time (e.g., lea esi, variable1).

Passing Parameters
•    In 32-bit, parameters are passed on the call stack.
•    In 64-bit, parameters are passed in registers (up to 4 in Windows, up to 14 in Mac/Linux), then

the stack is used for additional parameters.
•    Using registers to pass parameters requires attention to detail in terms of temporarily saving

the contents so the register values can be restored after the function ends.
•    Pass-by-value: a copy of the value is pushed on the stack. Directly refer to the variable per the

Assembler syntax (e.g., push num, push DWORD [num]).
•    Pass-by-reference: the address where a value is stored is pushed to the stack. Make use of the

Load Effective Address (LEA) instruction for clarity.



•    Passing arrays: the address of the first location is pushed to the stack. Arrays are always pass-
by-reference.

•    If stack space was used for passing parameters, remember to clean up stack after returning
from a function.

•    When using the C declaration (cdecl) calling convention, parameters are passed in reverse
order and the calling function cleans up the stack (ADD constant,  esp instruction after
the CALL instruction).

•    When using the STDCALL convention, parameters are passed in reverse order and the called
function cleans up the stack (ret constant).

Referring to Parameters
Referring to parameters on the stack can be achieved a number of ways, as noted in the STACK
FRAMES section. Example F.2 shows a couple of methods for explicitly referring to stack parameters.

Example F.2 Referring to stack parameters

Returning Values
In 32-bit:

•    Integer values 32 bits or smaller are returned in eax.
•    Integer values between 33 and 64 bits (e.g., long long int in C++) are returned in

eax:edx.
•    Floating point values are returned in st(0) on the FPU stack and in xmm0 (if supported).

In 64-bit:
•    Integer values 64 bits or smaller are returned in rax.
•    Floating point values are returned in xmm0/zmm0.

In both 32-bit and 64-bit: structs, object data, and values larger than 64 bits are passed by:
•    The calling function allocates enough stack space for the data.
•    Pass the stack address (i.e., pointers to object/members) into the called function.
•    The called function writes the return data to the address (via the pointers).
•    For pass-by-value, use general purpose registers (e.g., eax/rax, edx/rdx, edi/rdi) to copy

data/object to new stack location, and the copied data/object is passed to and manipulated in
the called function.

  32-bit specifics:
o    For pass-by-value, upon returning, the ecx register points to the stack location of the



data/object.
o    For pass-by-reference, the calling function uses eax to point to the data/object, then

eax can be used in the called function to manipulate the data/object.

  64-bit specifics:
o    For pass-by-value, upon returning, general purpose registers (e.g., rax, dl) are used to

point to stack locations of the data/object.
o    For pass-by-reference, the calling function uses rdi to point to the data/object, then rdi

can be used in the called function to manipulate the data/object.

More x86_64 Considerations
•    Parameters can be up to 8 bytes.
•    Parameters placed in registers or memory that are less than 64 bits are not zero extended

automatically.
•    In Microsoft x64, reserve shadow space as necessary per platform requirements (see x86_64

in CHAPTER 6).
•    Functions must be 16-byte aligned.
•    Calling functions are responsible for cleaning up the stack.

MASM Specifics
•    PROC directive is used to declare a procedure (function), its attributes, and parameters.
•    PROTO (preferred), EXTERNDEF, and EXTERN directives are used to identify external

functions used in a program.
•    ENTER and LEAVE directives automatically create and dereference a stack frame for a called

function.
•    LOCAL directive can be used to declare a local variable by name and assign sizes.
•    INVOKE (32-bit only) can be used instead of CALL, which allows for passing multiple

parameters on a single line of code (see PROGRAM 10.4 in CHAPTER 10).

 INVOKE displayArray, OFFSET array, LENGTHOF array, TYPE
array

•    ADDR (32-bit only) can be used to pass a pointer when using INVOKE.

 INVOKE displayArray, ADDR array



APPENDIX G

Using CPUID

Objective
Appendix G demonstrates how to use the CPUID instruction to test for processor features. Appendix
G assumes you have read through CHAPTER 9. As examples, we test for x87 FPU, MMX, SSE
(variants), AVX (variants), SYSENTER/SYSEXIT, SYSCALL/SYSRET, FMA (fused multiply-add),
F16C (half-precision), RDRAND and RDSEED (random number generators). The examples include
standard features and extended features.

Developer Resources
•    Intel 64 and IA-32 Software Developer’s Manual, Volume 1, Chapter 18
•    Intel 64 and IA-32 Software Developer’s Manual, Volume 2A, Chapter 3
•    AMD Architecture Programmer’s Manual: http://developer.amd.com/resources/developer-

guides-manuals/
•    AMD CPUID Specification: http://amd-dev.wpengine.netdna-

cdn.com/wordpress/media/2012/10/25481.pdf
•    Microsoft __cpuid(): https://msdn.microsoft.com/en-us/library/hskdteyh.aspx

Web Resources
•    https://en.wikipedia.org/wiki/CPUID (the best resource for a quick visual of feature bits)
•    http://wiki.osdev.org/CPUID

Testing for Features
In Program G.1, we use C++ in combination with inline Assembly to indicate supported features. The
primary examples herein show Xcode/GCC inline Assembly, but the Visual C++ equivalent is shown
in Table G.2 at the end of Appendix G. For Microsoft systems, keep in mind that Microsoft x64 does
not support inline Assembly; so either use x86, an Assembly-only program/module, or use the
__cpuid() function. Program G.1 should work for most platforms with no or very little tweaking.

You can also test to make sure the CPUID instruction is supported on your system (which is very
likely), but that task is reserved as ASSIGNMENT 10.3 in CHAPTER 10.

http://developer.amd.com/resources/developer-guides-manuals/
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/25481.pdf
https://msdn.microsoft.com/en-us/library/hskdteyh.aspx
https://en.wikipedia.org/wiki/CPUID
http://wiki.osdev.org/CPUID


The basic process of testing a processor for feature support is to load the appropriate register(s)
with a value that indicates the information desired, such as standard features, extended features, cache
information, or core topology. In most cases, load the eax register with the information value, execute
CPUID, and then the information is returned in various general purpose registers (eax, ebx, ecx, edx).
Each feature has a corresponding bit that is set (1) if supported, or clear (0) if not supported. For
example, if the processor has an Onboard x87 FPU, the first bit in edx (bit 0) will be set.

Here we show snippets from Program G.1 along with the features and corresponding bit
locations. We use bitsets to hold the feature bits and we have only selected a subset of the features.
You can modify the program to include all features or select the features you wish to test. The full
program and example output is included at the end of Appendix G.

Standard Features
To get standard processor feature bits, load eax with 1, execute CPUID, and the feature bits are
returned in edx and ecx. The code snippet to test for standard features is shown in Example G.1.

Example G.1 Standard features

Extended Features
To get extended processor feature bits, load eax with 7, load ecx with 0, execute CPUID, and the
feature bits are returned in ebx and ecx. The code snippet to test for extended features is shown in
Example G.2.



Example G.2 Extended features

More Extended Features
To test more extended processor feature bits (assuming the processor supports function parameters
over 8000000h), load eax with 80000001h, execute CPUID, and the feature bits are returned in
edx and ecx. The code snippet to test for more extended features is shown in Example G.3.

Example G.3 More extended features

The reason for including the SYSCALL example is because in 32-bit mode the instruction is not
supported, but in 64-bit mode the instruction is supported, so SYSCALL provides a predictable 64-
bit feature example.

Output Examples
For brevity, we do not show the CPUID bits for all three examples in Table G.1, but Program G.1
will output the CPUID bits returned in the general purpose registers. Examples G.4 and G.5 show the
CPUID bits for an Intel Core i7 (mid 2012) in 32-bit mode and an Intel Core i7 (mid 2015) in 64-bit
mode, respectively.



Example G.4 CPUID bits for Intel Core i7 (mid-2012), 32-bit mode

Example G.5 CPUID bits for Intel Core i7 (mid-2015), 64-bit mode

Table G.1 Program G.1 output

CPUID Program



Program G.1 CPUID features





Inline Assembly CPUID Testing Code
Table G.2 provides the CPUID inline Assembly statement in Program G.1 for both compiler formats.



Table G.2 Inline Assembly CPUID testing code



APPENDIX H

ASCII and Decimal Arithmetic

Objective
Appendix H presents information and examples for ASCII and Decimal Arithmetic using Binary-
Coded Decimal (BCD). BCD is supported in x86 (32-bit), but is not supported in x86_64 (64-bit),
although it still has uses.

ASCII Arithmetic
When we receive input from a user via a keyboard or perhaps information from the system via a
system call, numeric values are usually in the ASCII format, which is a character set for mapping
logical symbols to a numeric counterpart (CHAPTER 1). High-level languages have mechanisms that
take care of converting character Decimal input entered on a keyboard to a true integer equivalent.
Assume we have the following C++ code snippet shown in Example H.1.

Example H.1 Integer input

If we entered “2,” the input is initially the character-based ASCII value 32h, which will then be
converted to an integer form so the true value of 2 can be used in arithmetic (like incrementing),
instead of the raw ASCII value. For output to console, the integer value 3 must be converted back to
its ASCII equivalent 33h, which again is handled for us without any extra effort. Table H.1 shows the
ASCII equivalents of Decimal values.



Table H.1 ASCII equivalents of decimal integers

Decimal Value ASCII Value (hex)

0 30

1 31

2 32

3 33

4 34

5 35

6 36

7 37

8 38

9 39

When working with values at a low-level, a programmer must handle ASCII conversions for numeric
input and output. A good example is PROGRAM 10.3 in CHAPTER 10 where we output a Process ID to
console.

Getting integers from a user, performing arithmetic (such as addition) and displaying the result
can generally be achieved in two ways: 1) get input, convert the whole operands from ASCII to
decimal, add the values, convert back to ASCII for output; or 2) add by using the ASCII values a pair
at a time. In the following exchange, the second option would be like ASCII 2 + ASCII 6 = ASCII 8,
display ASCII 8, move to next pair.

      

Binary-Coded Decimal (BCD) is an approach sometimes used when displaying numeric values. BCD
is simply a system where each decimal digit is represented by a fixed number of bits. In a packed
BCD system (mostly older systems), a decimal digit is stored in a nibble (4 bits) since four bits is
enough to represent integers 0–9. In an unpacked BCD system (more modern systems), a decimal digit
is stored in one byte (8 bits), which means 4 digits can be stored in 32 bits. BCD can be helpful when
dealing with decimal values.

As a point of comparison, the char data type in C++ stores one byte. Look at Example H.2,
which is a modified version of Example H.1.



Example H.2 Character input

Assume we enter “1” at the prompt in Example H.2. If we were to set a breakpoint and look at the
actual stored value, it would be 31h. The statement num1++; does not increment an integer from 1 to
2, but rather increments the ASCII value 31h to 32h, which when output to console will print “2”.

Unpacked BCD and ASCII Arithmetic
The high four bits of unpacked BCD integers are always zeros, whereas the same bits in ASCII
decimal numbers are 3 (0011b). Both forms store one digit per byte. Assuming the number 3402, the
formats would be as follows.

Unpacked BCD: 03 04 00 02
ASCII format: 33 34 30 32

The x86 instruction set contains special instructions to assist in ASCII arithmetic, if you happen to be
working with ASCII at a low level. The ASCII instructions adjust unpacked BCD arithmetic results
so the value can be easily converted to the appropriate ASCII value by ORing each byte with 30h.
The ASCII Adjust instructions take carry and borrow situations into account as well.

Table H.2 ASCII instructions

ASCII Instruction Description

AAA ASCII adjust after addition

AAS ASCII adjust after subtraction

AAM ASCII adjust after multiplication

AAD ASCII adjust after division

Program H.1 presents an example of how to use AAA.



Program H.1 ASCII Adjust after addition (32-bit)

Packed Decimal Arithmetic
The x86 instruction set also contains special instructions to assist with packed decimal arithmetic. As
previously stated, packed BCD uses four bits for each digit instead of eight bits, meaning two decimal
digits per byte. Visually, packed BCD values use each hexadecimal digit as a literal decimal value.
Look at the data declarations in Example H.3.

Example H.3 Packed decimals (GAS)

Packed decimal instructions are only for addition and subtraction.

Table H.3 Decimal instructions

Decimal Instruction Description

DAA Decimal adjust after addition

DAS Decimal adjust after subtraction



Program H.2 presents an example of how to use DAA.

Program H.2 Decimal adjust after addition (32-bit)

Resources
Intel 64 and IA-32 Software Developer’s Manual, Volume 1, Chapter 4, Section 4.7
Intel 64 and IA-32 Software Developer’s Manual, Volume 1, Chapter 7, Section 7.3.3
https://en.wikipedia.org/wiki/Binary-coded_decimal

https://en.wikipedia.org/wiki/Binary-coded_decimal


APPENDIX I

Intrinsics

Objective
Appendix I introduces intrinsics, which are functions that are usually not implemented as part of a
package or library for a programming language, but instead are implemented and handled by a
compiler. Intrinsics work much like inline functions: intrinsics are replaced with a sequence of
instructions that represent the desired action at every instance. Intrinsics are highly-optimized since
they are built in to the compiler. The optimizations are usually regarding parallelization, such as
SIMD operations.

The C++ compilers we have referenced throughout the book (Clang, GCC, Visual C++)
implement intrinsics for x86/x86_64 SIMD instructions. Also as mentioned in CHAPTER 9, Microsoft
x64 does not allow inline Assembly statements, which means to achieve similar low-level
operations, programmers must use intrinsics. Some compilers use platform-specific intrinsics, while
some compiler frameworks provide more portability across platforms. Always keep in mind that
intrinsic support will vary by compiler and version.

Resources
•    https://software.intel.com/sites/landingpage/IntrinsicsGuide/ (an amazing interactive site by

Intel)
•    https://software.intel.com/en-us/node/523351 (Intel Intrinsics Reference)
•    https://msdn.microsoft.com/en-us/library/26td21ds.aspx (Microsoft Compiler Intrinsics)
•    Intel 64 and IA-32 Software Developer’s Manual, Volume 2A, Chapter 3, Section 3.1.1.10

“Intel C/C++ Compiler Intrinsics Equivalents Section”
•    Intel 64 and IA-32 Software Developer’s Manual, Volume 2C, Appendix C “Intel C/C++

Compiler Intrinsics and Functions Equivalents”

Intrinsic Datatypes
Just as with SSE data in raw Assembly, data for SSE intrinsics must be aligned on 16-byte
boundaries. Table I.1 presents MMX and SSE intrinsic datatypes.

https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/en-us/node/523351
https://msdn.microsoft.com/en-us/library/26td21ds.aspx


Table I.1 MMX and SSE intrinsic datatypes

Datatype Description

__m64 contents of an MMX register (8-bit, 16-bit, 32-bit, and 64-bit values)

__m128 contents of an XMM register used by an SSE intrinsic (one scalar or four 32-bit packed single-precision floating-point
values)

__m128d contents of an XMM register used by an SSE intrinsic (one scalar or two 64-bit packed double-precision floating-point
values)

__m128i contents of an XMM register used by an SSE intrinsic (sixteen 8-bit, eight 16-bit, four 32-bit, or two 64-bit integers)

Table I.2 presents AVX and AVX2 datatypes, which must be aligned on 32-byte boundaries. Most
AVX intrinsics can also use SSE datatypes since AVX and AVX-512 are backward compatible.

Table I.2 AVX Intrinsic datatypes

Datatype Description

__m256 contents of an YMM register used by an AVX intrinsic (eight 32-bit packed single-precision floating-point values)

__m256d contents of an YMM register used by an AVX intrinsic (four 64-bit packed double-precision floating-point values)

__m256i contents of an YMM register used by an AVX intrinsic (thirty-two 8-bit, sixteen 16-bit, eight 32-bit, or four 64-bit integers)

Table I.3 presents AVX-512 datatypes, which must be aligned on 64-byte boundaries.

Table I.3 AVX-512 Datatypes

Datatype Description

__m512 contents of an ZMM register used by an AVX-512 intrinsic (sixteen 32-bit packed single-precision floating-point values)

__m512d contents of an ZMM register used by an AVX-512 intrinsic (eight 64-bit packed double-precision floating-point values)

__m512i contents of an ZMM register used by an AVX-512 intrinsic (sixty-four 8-bit, thirty-two 16-bit, sixteen 32-bit, or eight 64-bit
integers)

The use of intrinsic datatypes has some restrictions that are covered in the Intel manual. To use
intrinsic datatypes, you must include the header file with the datatype definitions. For example, the
SSE header file is <xmmintrin.h> and the AVX header file is <immintrin.h>. With Clang
and GCC, you can include <x86intrin.h>, which includes all extension headers. The file is
<intrin.h> for Visual C++.



Table I.4 Intrinsic header files

Extension Header file

MMX <mmintrin.h>

SSE <xmmintrin.h>

SSE2 <emmintrin.h>

SSE3 <pmmintrin.h>

SSSE3 <tmmintrin.h>

SSE4.1 <smmintrin.h>

SSE4.2 <nmmintrin.h>

SSE4a, XOP <ammintrin.h>

AES <wmmintrin.h>

AVX, FMA <immintrin.h>

AVX512 <zmmintrin.h>

Intrinsics
Most intrinsics are simple, meaning only one intrinsic is needed to achieve the desired operation.
Some intrinsics are composite, which means more than one statement is necessary for implementation.

Referring to the intrinsic template, operations are usually equivalent or similar to some form of
Assembly instruction, such as ADD or SUB. The suffix denotes the datatype used in the operation.
The suffix begins with p (packed), ep (extended packed), or s (scalar). Additional letters further
describe the data. For example, ps indicates packed single precision, while ss indicates scalar
single precision. Table I.5 presents examples of additional suffix letters.



Table I.5 Intrinsic suffix examples

Additional suffix letters Description

s Single-precision floating point

d Double-precision floating point

i8 signed 8-bit integer

u8 unsigned 8-bit integer

i16 signed 16-bit integer

u16 unsigned 16-bit integer

i32 signed 32-bit integer

u32 unsigned 32-bit integer

i64 signed 64-bit integer

u64 unsigned 64-bit integer

i128 signed 128-bit integer

i256 signed 256-bit integer

i512 signed 512-bit integer

Based on the intrinsic template, an intrinsic function in code has the following form.

The datatype is the return datatype, which can be void, int, or one of the supported intrinsic
datatypes (e.g., __m64, __m128i). The intrinsic_name is the function-like operation you
wish to perform, which is based on the intrinsic template. The parameters are the data on which
the intrinsic operates.

Table I.6 presents three intrinsic examples. First is an SSE intrinsic to add packed single-
precision values. Second is an AVX intrinsic to move (load) a YMM register with aligned packed
double-precision values. Third is an AVX-512 intrinsic to calculate the sine value of packed single-
precision floats. Notice that the AVX-512 intrinsic has no Assembly instruction counterpart.



Table I.6 Intrinsic examples

Assembly Mnemonic
(ext)

Description Intrinsic

ADDPS (SSE) Add packed single precision __m128 _mm_add_ps(__m128 a, __m128 b)

VMOVAPD (AVX) Move aligned packed double precision __m256d _mm256_load_pd(double const
*a)

N/A (AVX-512) Calculate sine value of packed 32-bit
floats __m512 _mm512_sin_ps(__m512 v)

Programs
Here we provide programs to illustrate the behavior and use of intrinsics. We encourage you to work
through the examples presented and then explore other intrinsics. The programs include snippets of
Disassembly, so this section assumes you have reviewed APPENDIX C: DISASSEMBLY. With your
preferred development environment and compiler, write Program I.1 and set a breakpoint at return
0; so you can examine the local variables and register state.

Program I.1 Intrinsic load packed single precision

Program I.1 simply creates an array of 32-bit floats, creates a result that is of type __m128,
and uses the _mm_load_ps intrinsic to load the array comprised of packed single-precision
floating-point values into an SSE register. Note that the intrinsic parameter is the address of array.

Example I.1 shows the Disassembly of Program I.1, of which most is the process of setting up the
stack frame for main and storing local variables. The first arrow (->) in the Disassembly indicates
where the data pointed to by the address in rcx (the address of array) is moved to xmm0 using the
MOVAPS instruction. The second arrow is where the values are copied to result.

Keep in mind that the compiler will choose the register(s) to use for operations. For Program I.1,
xmm0 is likely to be chosen.



Example I.1 Disassembly of Program I.1

If you set the breakpoint and examine xmm0, you will find the float values 1.0, 2.0, 3.0,
4.0. Packed floats are stored in reverse order with the lowest element used in scalar operations.
Consider the following additional line in Program I.2 (i.e., float element =
result[0];).

Program I.2 Accessing the first element in result

The float value element will contain 1.0 after the assign statement. So 1.0 is in result[0],
2.0 is in result[1], and so on. A different intrinsic could be used to set the floats in the same
way they visually appear in C++ (think Little-Endian versus Big-Endian).



Example I.2 Set packed single precision

If executing the code in Example I.2, element would hold 4.0 because we use the _mm_set_ps
intrinsic instead of the _mm_load_ps intrinsic.

By having SSE registers loaded with values and intrinsic datatype variables, we can achieve
low-level operations quite easily. Program I.3 shows another modification to Program I.1, an easy
way to square the contents of result.

Program I.3 Square elements in result

The Disassembly of the result multiplication in Program I.3 will look something like Example I.3,
which shows the Assembly instructions the compiler uses to achieve the operation.

Example I.3 Partial disassembly of Program I.3

In Example I.3, we see the values in xmm0 are copied to memory, the elements in memory are
multiplied by their counterparts in xmm0 using the MULPS instruction with the result stored in xmm0,
which is then copied back to memory (result). We could have used a multiplication intrinsic if
desired, as shown in Example I.4.

Example I.4 Multiply packed single precision

Program I.4 shows another way in which intrinsics can be used. Intrinsic datatypes can be used in
aggregates such as unions so the elements of a vector can be manipulated easily. For example, the
address of a vector and addresses of elements can be taken, and brackets [] can be used to access



elements.
Program I.4 also illustrates the use of AVX2 intrinsics. AVX introduced the 256-bit YMM

registers with floating-point instructions; and AVX2 introduced integer operations with YMM
registers. If using Clang or GCC, the -mavx2 complier flag is necessary to enable the AVX2
instruction set for a target. Specific flags can be used for each extension (e.g., -msse, -msse4, -
msse4.2). Another approach is to enable all available extensions supported by the processor using
-march=native. APPENDIX G: USING CPUID explains how CPUID can be used to test for
extensions supported by a processor.

Program I.4 Add thirty-two packed 8-bit integers

The U32i union contains an __m256i 256-bit integer vector (v), and sharing the same memory
space is an array of thirty-two int8_t 8-bit integers (a). Using a union allows us to access all
elements of the vector via the array. We use a for loop to fill the vector with integers in ascending
order from 0 to 31. Then, the instance of the union in Program I.4, testing, serves as a parameter
for two intrinsics.

First, we create another vector (v2) that stores the result of the intrinsic addition. We just add the
vector to itself, effectively doubling all the values simultaneously. Note that the _epi8 suffix
indicates extended packed 8-bit integers (extended meaning AVX and YMM as opposed to SSE and
XMM). Second, we load the signed integers in the 256-bit vector into a YMM register. The
Disassembly of the intrinsics is shown in Example I.5.



Example I.5 Partial disassembly of Program I.4

Breaking down the Disassembly: (1) the vector values are moved to ymm0, (2) the vector values are
copied to two memory locations (a copy of each parameter) by using the VMOVAPS instruction, (3)
the vector is copied to ymm1, (4) the VPADDB instruction adds ymm0 and ymm1, saving the result to
ymm0, and (5) the result is saved back to memory.

Notice that even though intrinsics are in the form of functions, with return values and parameters,
no actual call takes place, similar to inline functions. Yet, some behaviors are similar, which is why
the vector is copied to memory locations in pass-by-value fashion; a local copy is made for each
parameter. Also, even if an intrinsic is used that has an SSE or AVX equivalent, such as our second
intrinsic in Program I.4, the compiler may not use the equivalent. A more optimal instruction or
combination of instructions may be used to accomplish the task. In Program I.4, the ymm0 register
already holds the vector values after the addition, so the load intrinsic is optimized away.
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AGU (address generation unit), 38
.align, 72
ALIGN, 72
ALIGNB, 72
ALU (arithmetic logic unit), 27
Amp (ampere), 230
AND. See Boolean expressions
anode, 233
API (application programming interface), 196
APIC (advanced programmable interrupt controller), 195
Apple

iPhone, 238
Watch, 238

architecture, 24
ARM, 217
array, 49, 73–76

addressing, 74
ASCII (American standard code for information interchange), 15
.ascii. See data: directives
.asciz. See string
asm

__asm, 174–75



asm(), 174–75
basic, 175
extended, 175
volatile, 180

assembler, 7
assembling, 260
assembly dialects, 179
AT&T. See syntax: AT&T
atomic operations, 222
.att_syntax. See syntax: AT&T
auxiliary carry flag. See flags: viewable
AVR, 219

ATmega, 219
AVR32, 219

AVX (advanced vector extensions), 153–55
register space, 154

.balign, 71
basic asm. See asm: basic
battery, 233
BCD (binary-coded decimal), 140, 281

packed, 282
unpacked, 282

Big-Endian, 26
bit, 9

sets, 273
shifting, 68

arithmetic, 69–70
logical, 69

Boolean expressions
arithmetic, 82–86
definition, 16–17
logical, 89–90

branching, 86
breadboard, 237
bus, 25

address bus, 25
control bus, 25
data bus, 25
system bus, 25



byte, 9
.byte. See data: directives
BYTE. See data: directives

cache, 28, 37
CALL, 101, 103–105, 114
callee, 98
caller, 98
calling conventions, 98
capacitance, 236
capacitor, 235
carry flag. See flags: viewable
cathode, 233
CBW. See sign: extension
cdecl, 99
CDQ. See sign: extension
changing data sizes and types, 77–78
character

encoding, 15
literals, 46
sets, 15
storage, 15–16

CISC (ccomplex instruction set computing), 5, 216
CLD, 120
clobbers list, 177
clock

cycle, 25
generator, 37

CMP, 87
CMPS, 121–124
code segment descriptor. See segment: descriptors
comments

multi-line, 47–48
single-line, 47

compatibility mode, 187
compiler, 7
compiling, 4
computer architecture, 5
condition code bits. See x87: status register
conditional jumps, 87–90



compound, 89–90
instructions, 88

constraints, 176
inline. See inline: x86 constraints

control registers. See registers: control
counter, 90
CPU (Central Processing Unit), 24

clock, 27
CPUID, 273
CQO. See sign: extension
CU (control unit), 27
current, 230
current location counter, 52, 74
CVTPS2DQ, 152
CWD. See sign: extension

data
addressing. See addressing
alignment, 71–72, 150
definition, 48
directives, 48
movement, 61
representation, 8–16
segment descriptor. See segment: descriptors

DAZ bit. See SSE: control and status register
DB. See data: directives
DC (direct current), 231
DD. See data: directives
debugger, 8
debugging, 259
DEC, 62
decode. See instruction execution cycle
decoherence, 225
denormalized numbers. See subnormal numbers
developer’s command prompt, 266
device drivers, 38
diode, 235

light-emitting, 235
direction flag, 31, 119
directives, 42



MASM-specific, 43
disassembly, 5, 251
disk, 26
DIV, 65–66
DMA (direct memory access). See input/output: DMA
.double. See x87: datatypes
DPL (descriptor privilege level), 193
DQ. See data: directives
DRAM (dynamic random access memory), 26
draw, 230
DT. See data: directives
DUP, 49
DW. See data: directives
DWORD. See data: directives

entanglement, 225
epilogue, 105
.equ. See symbolic constants
EQU. See symbolic constants
error status bit. See x87: status register
exception, 136

bits. See x87: status register
flags. See SSE: control and status register
handler, 192
masks. See SSE: control and status register
trap, 191

execute. See instruction execution cycle
extended asm. See asm: extended
extension instructions, 78
extern, 268

F (Farad), 236
FADD, 143
fast system call. See system: call: fast
fastcall, 106
fences, 180
fetch. See instruction execution cycle
file and utility relationships, 7
FINIT, 142
FISTS, 144



flags
editable, 31
viewable, 31

flat memory model, 187
FLDCW, 145
FLDPI, 143
FLDS, 143
.float. See x87: datatypes
floating-point

formats, 135
operand, 27
values, 46, 134

FMA (fused multiply-add), 153
FNSAVE, 146
FNSTENV, 146
for loop, 92, 94
FPU (floating-point unit), 37, 110, 138

busy bit. See x87: status register
frames, 190
frequency, 27
FRNDINT, 145
FSAVE, 146
F16C, 153
FSTCW, 145
FSTENV, 146
FSTPL, 144
FSTPS, 144
FZ bit. See SSE: control and status register

GDB (GNU debugger), 260
GDT (global descriptor table), 188
GP (general protection) exception, 193
GPU (graphical processing unit), 37

hardware interrupt. See interrupt: hardware
high-level language, 3
home space. See shadow space
HyperThreading, 38
Hz (Hertz), 231

IA-32e. See processors: modes



identifiers, 41–42
IDIV, 66–67
IDT (interrupt descriptor table), 188
IEC (International Electrotechnical Commission), 15
IEEE 754 (representation), 134
immediates. See literals
IMUL, 65
INC, 62
INCLUDE, 128, 130
inline

assembly, 174
parameter access, 177
x86 constraints, 178

input/output
application level, 38
channel, 35
DMA, 34
interrupt-driven, 34
module, 33
programmed, 34
system level, 38
UEFI level, 38

instruction execution cycle, 32
instructions, 44
INT, 196
integer

literals, 45
operand, 27
signed, 9
signed storage, 13–15
unsigned, 9
unsigned storage, 9–13

integrated
circuit, 236–37
memory controller, 37

Intel
processor, 238
syntax. See syntax: Intel

.intel_syntax. See syntax: Intel
interpreting, 4



interrupt
flag. See flags: viewable
hardware, 195
software, 191

interrupt-driven I/O. See input/output: interrupt-driven
intrinsics, 285

composite, 287
simple, 287

inverter, 232
IRQ (interrupt request line), 195
ISA (instruction set architecture), 5
ISO (International Organization for Standardization), 15
ISR (interrupt service routine), 193
IST (interrupt stack table), 194
ISTRUC, 129
IVT (interrupt vector table), 192

JA. See conditional jumps: instructions
JAE. See conditional jumps: instructions
JB. See conditional jumps: instructions
JBE. See conditional jumps: instructions
JC. See conditional jumps: instructions
JCXZ. See conditional jumps: instructions
JE. See conditional jumps: instructions
JECXZ. See conditional jumps: instructions
JG. See conditional jumps: instructions
JGE. See conditional jumps: instructions
JL. See conditional jumps: instructions
JLE. See conditional jumps: instructions
JMP. See unconditional jumps
JNA. See conditional jumps: instructions
JNAE. See conditional jumps: instructions
JNB. See conditional jumps: instructions
JNBE. See conditional jumps: instructions
JNC. See conditional jumps: instructions
JNE. See conditional jumps: instructions
JNG. See conditional jumps: instructions
JNGE. See conditional jumps: instructions
JNL. See conditional jumps: instructions
JNLE. See conditional jumps: instructions



JNO. See conditional jumps: instructions
JNP. See conditional jumps: instructions
JNS. See conditional jumps: instructions
JNZ. See conditional jumps: instructions
JO. See conditional jumps: instructions
JP. See conditional jumps: instructions
JRCXZ. See conditional jumps: instructions
JS. See conditional jumps: instructions
JZ. See conditional jumps: instructions

kernel, 196

labels, 47
LAHF. See flags: editable
language relationships, 3–4
.lcomm. See variable: uninitialized
LDT (local descriptor table), 188
LEA, 73, 114
leaf functions, 109
LED (light-emitting diode). See diode: light-emitting
LENGTHOF, 76
linear memory model. See flat memory model
linker, 7
linking, 260
literals, 45–47

operand. See operand: definitions
Little-Endian, 26, 98
loader, 7
load/store design, 216
LODS, 121, 127–28
L1-3 cache. See cache
.long. See data: directives
long mode. See processors: modes
LOOP. See repetition: CX/ECX/RCX

machine-level, 4
MACRO, 181
.macro, 181
%macro, 181
macros, 181–83
mask, 17



memory, 25–26
barriers, 180
management registers. See registers: memory management
models, 187–90

microarchitecture, 6
Microsoft x64, 106
MMX, 146–48

data formats, 147
mnemonic, 44
motherboard, 24
MOV. See data: movement
MOVPS. See packed: operations
MOVS, 121–22
MOVSD. See scalar: operations
MOVS/MOVSX, 77
MOVSS. See scalar: operations
MOVZ/MOVZX, 77
MSR (machine-specific registers). See registers: machine-specific
mstackrealign, 107
MUL, 64
multi-core/multi-processor, 37
multiplication and division, 64–67
multiplier, 28

name mangling, 268
NaN (Not-a-Number), 136
NEG, 63
negative values, 70–71
NOP, 107–108, 114
normalized form, 135
NOT. See Boolean expressions
number systems, 8–9

object code, 7
.octa. See data: directives
OFFSET, 73
Ohm, 231

Ohm’s law, 231
one’s complement, 13
operand



definitions, 60
unsigned division, 66
unsigned multiplication, 64

OR. See Boolean expressions
overflow flag. See flags: viewable

packed
integer, 146
operations, 150

PADDSW, 147
page

definition, 189
directory, 189
directory pointer table, 190
fault, 190
table, 189

paging, 189–90
parallel, 38, 234
parameters, 99

inline access. See inline: parameter access
parity flag. See flags: viewable
PCB (printed circuit board), 237
PIC (programmable interrupt controller), 37, 195
pillars of assembly code, 40–48
PIO (programmed I/O). See input/output: programmed
pipelining, 32
PL (privilege level), 193
planar process, 237
POP, 105, 114
postfix notation, 141
potentiometer, 235
power, 230

architecture, 222
prefetching, 37
processors, 27–33

modes, 186–87
64-bit, 32, 106

program sections, 43
programmable interval timer, 37
prologue, 104



protected mode. See processors: modes
PSE (page size extension), 189
PTR, 77
PUSH, 101, 114

.quad. See data: directives
quantum

architecture, 225
logic gates, 225

qubit, 225
qubyte, 225
QWORD. See data: directives

Raspberry Pi, 238
real mode. See processors: modes
real numbers. See floating-point: values
REAL8. See x87: datatypes
REAL4. See x87: datatypes
REAL10. See x87: datatypes
rectifier, 232
red-zone, 109
registers, 29

addressing, 29
control, 186
machine-specific, 186, 201
memory management, 186
operand. See operand: definitions
overlapping, 30
overwriting, 30
segment, 186
system, 186

relocatable machine language, 254
REP. See repetition: string instructions
repetition

CX/ECX/RCX, 90–92
programmer-defined counters, 92–94
string instructions, 120

RESB. See variable: uninitialized
RESD. See variable: uninitialized
reserved words, 40–41



resistance, 231
resistor, 234
RESQ. See variable: uninitialized
REST. See variable: uninitialized
RESW. See variable: uninitialized
RET, 105, 114
RIP-relative addressing, 117, 269
RISC (reduced instruction set computing), 5, 216
RISC-V, 221
rounding

control. See SSE: control and status register
definition, 137
modes, 138

ROUNDPS, 152
RVG, 222
RV32I, 222

SAHF. See flags: editable
SAL. See bit: shifting: arithmetic
SAR. See bit: shifting: arithmetic
SBYTE. See data: directives
scalar, 38

operations, 150
SCAS, 121, 125–26
schematic, 236
SDWORD. See data: directives
segment

descriptors, 188
registers. See registers: segment
selector, 187

segmented memory model, 187
series, 233
shadow space, 108–109
SHL. See bit: shifting: logical
SHR. See bit: shifting: logical
sign

extension, 70
flag. See flags: viewable

signed integer. See integer: signed
significand, 134



SIMD (single instruction, multiple data), 146
.single. See x87: datatypes
64-bit

mode, 187
processors. See processors: 64-bit

SIZEOF, 76
software interrupt. See interrupt: software
special values, 136
SRAM (static random access memory), 26
SSE (Streaming SIMD Extensions), 107, 148

control and status register, 148–49
SSE4, 152
SSE3, 151–52
SSE2, 149

data formats, 149
stack

fault bit. See x87: status register
frame, 98, 269
memory, 98

STD, 120
stdcall, 106
STOS, 121, 126–27
string, 50

literals, 46
primitive instructions, 121

STRUC. See structure
STRUCT, 129
.struct. See structure
structure, 128
SUB, 62
subnormal numbers, 136–37
superpipeline, 33
superposition, 225
superscalar, 38
SWORD. See data: directives
symbolic constants, 51–52
syntax

AT&T, 40, 179
conventions, 40
Intel, 40, 179



SYSCALL, 199
SYSENTER, 199
system

call, 196
fast, 199

clock, 25
registers. See registers: system
/390, 223
/370, 223
/360, 223

System V AMD64, 106

task gates, 195
TBYTE. See data: directives
terminating expansion. See rounding: definition
TEST, 87
TEXTEQU, 52
.tfloat. See x87: datatypes
3-bit computer, 18–19
thumb instruction set, 217
TOP bits. See x87: status register
top-of-stack, 139
transformer, 232
transistor, 236
translation pipeline, 4–7
translation process, 6
TSS (task state segment), 188
two’s complement, 13
TYPE, 76

unconditional jumps, 86–87
underflow, 136
Unicode, 15
union, 291
unsigned integer. See integer: unsigned
USES, 115
UTF (Unicode Transformation Format), 15

variable, 49
operand. See operand: definitions
uninitialized, 49–50



VDSO (virtual dynamic shared object), 201
VFP (vector floating-point unit), 217
VMOVAPS, 168
VMOVUPS, 168
volt (voltage), 230

watt, 230
while loop, 93–94
WORD. See data: directives
.word. See data: directives

x87, 138–46
control register, 140
datatypes, 140
precision control, 141
registers, 138–40
status register, 139
tag register, 146

x86_64. See processors: 64-bit
XCHG. See data: movement
XMM, 148
XMMWORD, 168
XOP (eXtended OPerations), 153
XOR. See Boolean expressions

YMM. See AVX: register space
YMMWORD, 168

z/Architecture, 223
zero flag. See flags: viewable
ZMM. See AVX: register space
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