

�e Fundamentals of C/C++
Game�Programming

�e Fundamentals of C/C++
Game Programming

Using Target-Based Development on SBC’s

Brian Beuken

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2018 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper

International Standard Book Number-13: 978-1-4987-8874-8 (Paperback)
978-0-8153-5527-4 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to
publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or
the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced
in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright
material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any
form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and
recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.
copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400.
CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been
granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification
and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Names: Beuken, Brian, author.
Title: The Fundamentals of C/C++ Game Development : using Target-based
Development on SBC’s / Brian Beuken.
Description: First edition. | Boca Raton, FL : CRC Press, Taylor & Francis
Group, 2018. | “A CRC title, part of the Taylor & Francis imprint, a
member of the Taylor & Francis Group, the academic division of T&F Informa
plc.”
Identifiers: LCCN 2017048100 | ISBN 9781498788748 (pbk. : acid-free paper) |
ISBN 9780815355274 (hardback : acid-free paper)
Subjects: LCSH: Computer games--Programming. | C (Computer program language)
| C++ (Computer program language)
Classification: LCC QA76.76.C672 B49 2018 | DDC 005.13/3--dc23
LC record available at https://lccn.loc.gov/2017048100

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

vii

Contents

“From Hello World to Halo—It’s Just Code!” xv

Thanks xxvii

Brian Beuken: Who Is He? xxix

 1. Getting Started 1

Mine Looks Di�erent?. ..1
First Steps ..2
Setting �ings Up ..2
Introducing Visual Studio ..2
Hello World. ..10
Hello Place of My Choosing. ..11

 2. Getting Our Target Ready 13

Setting Up the Target. ..13
Oh Wait…Did We Plug-In? ..15
Starting Up VisualGDB for the First Time ..16

viii Contents

Getting the Machines to Talk ..17
Sending Our First Program ..18
Debugger Hangs Too Much? ..28

 3. Using the Target 31

Ready to Rock and Ermm Indeed Roll! ..31
Graphics Explained! ..32
So It Be OpenGL ES Ye Be Wanting Arrgghhh!. ..33
Where Is OpenGLES2.0 on My Target? ..33
A Nice New Project with Graphics ..35

So Much Typing?. ..35
Our First Graphics Project! ..36
Are We �ere Yet? ..41
Houston We Have a Triangle. ..41
Behold the Triangle Code! .44
Why Are We Working in a Window?. ..50
2D. ..51

 4. Putting It All Together 53

Expanding Our First Graphics Program .53
Loading Graphics or Other Assets ..53
Adding Assets to the Build Chain. ..57
Keeping �ings Tidy ..58
Add Some Code ..59
Displaying More Images. .64
But I Didn’t Do Anything Wrong? ..65
But I Fixed It? .66
Making a Dynamic Play�eld ..68
Old School Frame Bu�ers. ..68
Setting Up the Frame Bu�er and Switch System ..74

 5. Finally Our First Games 77

5.1 Invaders from Space. ..77
Using the OS ..78
Start as We Mean to Go on ..85

We’re Here Now ..87
Inheritance. ..88
Every Story Needs a Villan. ..91
Arrays or Vectors. ..93
Move Em Out!. ..96
Animation 101. ..98
Hand Me a Bag of Bullets. ..100

ixContents

Did We Hit It?. ..101
Box Checks. ..102
Circle Checks. ..102
Give Me Shelter. ..104
So Which Is Better?. ..110
Final Details. ..110
Simple Text Display. ..111
A Simple Font ..113
How Did We Do? �e Infamous Postmortem ..118

Fix Question 4. ..119
A Pat on the Back. .122
Kamikazi Invaders ..123

�e Ship . 128
Da Baddies! ..130
Now We’re Talking ..132

Make �em Move ..135
Get �em Flying ..136
A Nice Arc . 137
Step by Step. ..141
Dive Dive Dive. ..142
Bombs Away. ..144
Get Back to Where You Once Belonged. ..145
Home Again! ..145

Vectors, Our Flexible Friends ..146
Lets Get Lethal. ..151
Bombs Away for Real Now. .154
Danger UXB. ..161
Stepping Back, Deciding When to Go ..162
Breaker Breaker Rubber Duck. ..167

Fred Reacts! ..169
Tidy Up the Logic ..173
Twiddles and Tweaks ..173

Postmortem ..173
Jumping around a Bit �ough? ..174

Crawling Over, Time for Baby Steps ..175
Object-Oriented Programming Is Not an Error. ..175

Encapsulation. ..176
Abstraction. ..176
Inheritance .176
Polymorphism ..176

Start the Music. ..176
Welcome to OpenAL. ..177
Installing OpenAL. ..177
Getting OpenAL Working ..179

x Contents

Dealing with Sound as Data ..182
How Does OpenAL Work? ..183
How Does Alut Work? ..184

Horrible Earworms. .190
Streaming .191

�e War against Sloppy Code Storage! ..192
Our Own Library ..193
Using �is New Library .196
Lets Get a Bit More Compiler Speed ..198

5.2 Tiles and Backgrounds ..198
What Do We Mean by Tiles?. ..199
Working with Tiles ..199
What a Wonderful World. ..199

Homing in . 208
Wrapping It Up ..211
Is �is All We Need? ..211

5.3 Single-Screen Platforms. ..214
A World with Gravity. ..214
Routine Bad Guys. ..221
Point-to-Point ..221
Patrolling Enemy. .224
Homing Enemy. .226
Ladders and E�ects. .229

Data, Our Flexible Friend. .234
Loading Our Maps (and Other Resources) .235

5.4 Lets Scroll �is ..239
Simple Scrolling Shooter .244
Let �em Eat Lead .248
Bring on the Bad Guys! .249
Process Everything? ..251
No More Mr Nice Guy .252
What Will Make It Better?. .254
�ere’s No Wrong Way…But �ere Are Always Better Ways.255
For a FireWork, Life Is Short But Sweet! ..255

A New Dawn for Particle Kind!. ..261
�ere’s Always a Price to Pay. ..270
Handling Large Numbers of Objects ..271

Locking the Frame Rate. ..271
Recapping the 2D Experience. ..272

 6. A New Third Dimension 275

A Short Explanation of 3D .276
MATHS!! Don’t Be Scared (Much) .280

How Does �is Witchcra� Work? ..281
�is Is All a Bit Much? .288

xiContents

Installing a Maths Library .288
Danger, Will Robinson!. .289
Normal Programming Resumes .290

�ree Types of Matrix ..291
Model Matrix. ..291
View Matrix. ..291
Projection Matrix .292
�e Relationship of �ese �ree Matrices .294
Other Matrix Functions. ..295
Moving Around .296

Revisiting Hello Triangle .296
Let’s Try a Cube. .300
Mistakes Waiting to Happen .302

A Quick Word about Using Quaternions. .303
HelloCubes .304

I �ought We Could Move 100’s of �ousands of �em? 306
How the GPU Gets Data .307
Bu�ers, Bu�ers Everywhere .308
Vertex Bu�ers .309
Attribute Pointers. ..311
Texture Bu�er ..312
Frame Bu�er ..312
Render Bu�er. ..313
Bu�ers Are Not Free. ..313

Let’s Get Back to It. ..314
Time to Texture Our Cube ..315

�e Fixed Pipeline Isn’t Quite Dead. ..318
Mapping a Texture to Our Faces. ..319
Choose the Size to Suit . 320
Limited Numbers of Textures? .320

Everyone Loves a Triangle But! ..322
3D Lets Get into the Heart of Our GPU. ..325

What Else You Got? ..325
Loading Models (OBJ) .327
Locate and Install an OBJ Model Loader ..327
Installing and Using TinyObjLoader ..329
Do We Care about the Data?. ..330

Lights Camera Action. ..332
�e Return of the Vector ..335
Dot Product. ..335
Another Fun Vector Fact-Cross Product ..336
Who’s to Say Whats Normal?. ..336
Types of Light ..338
Light Sources. ..339
Shadows, a Place Where Danger Hides. ..339
Shaders .340
So What Is a Shader? .341

xii Contents

Keeping Track of �em .344
Introducing the Shader Language .344
Let’s Light It Up! .346
�e Camera Never Lies ..350
But What Does It All Do? ..351

In Space, No One Can Hear You Smashing Your Keyboard As You Scream
Why “Don’t You Work!!!”. ..353

 7. Space the Final Frontier 355

Space, Why All the Asteroids?. .360
Skyboxes ..361
�e Game’s Afoot Which Way to Turn?. .363
We’re Going to Need Some Game Mechanics. .365

HUD and Cockpits. .365
GUI .365
Screen or Render. .366
3Dfont. .366
Hit Em Where It Shows. .366
3D Collision. .368
Primitive Collision Types .368
Culling Concepts .369
Grids, Quad Trees, and OctTrees. .369
Possible Collision Systems. ..372
Sphere-to-Sphere. ..373

3D Particles. ..374
�e Wrap Up ..375

 8. Recognizable Environments 377

Let’s Talk about Time!. ..378
Animating Models ..379
Limitations of OBJ .380
�e MD(x) Systems. ..381

Controlling the Animation of Our MD2 Model. .385
Explaining Environments. .389

�e Ground, the Place Where You Will Fall to! .390
A Simple Ground Plane. .390

Level of Detail ..391
Mipmapping ..393
Filtering .394

We Don’t All Live in the Netherlands. ..395
Using an OBJ File—�e Simple Solution .396
How Far above Sea Level Are We?. .396

Interacting with Our World. .397
Collision Maps .397

xiiiContents

Render Culling!. ..398
Adding the Functionality .400

Physics, More Scary Maths Stu�? .401
Subtitle…More Long Winded Explanations!. ..401
Introducing Bullet Physics .402
How It Works, and Finally Quaternions. .403
Let’s Get to It, at Last .404
Setting �ings Up .406
Stepping �rough .407
Visualizing �ings .407
Force, Torque, and Impulse. ..410
Collisions ..412
�e Downside ..415

Basic Racing Game ..416
Getting and Making the Car Controllable. ..417
I Like to Move It, Move It ..418
Staying on Track. ..421
Using Bullet to Collide with the Terrain. .423
Can’t Find My Way Home?. .427

Other Optimizations. .430
Other Performance Options. ..431

 9. Let’s Go Indoors 433

�e Beginnings, Doom, and Beyond ..433
Occlusion, a Discussion to Have for a Problem to�Solve�Later.434
Exploring the Maze . 436

Moving the Baddies Around, �ings!. .438
What Do We Draw? .441
Whats the Point?. .442
Ray Cast and Picking. .443
Are We Going to Do Any AI?. .444

 10. Graphics Need a Boost 447

�at Cat’s Been in the Bag Long Enough. .447
Shadow Mapping .448
Recap the Processes. ..452

 11. Populating the World 455

Keeping Track of the Assets. ..455
Scene Management .456
Wrangling All �at Data .459

Asset Management. .459
Fragmentation, a Problem �at’s Hard to Solve .460

xiv Contents

Expanding to an SDK? ..461
�e Last Project .462
Ready-Made or Roll Your Own .462

Limitations of Hardware. .463
Cross-Platform Compilation .464

 12. Some Advanced Stuff 467

Multicore Fun. .467
What Is �reading? .468
�reads and Pthreads ..471
Job Managing, Also Kinda Simple ..471
With Great Power Comes Great Heat. ..473
�e End Is Near! ..474

Appendix I 477
Where Files Live on Non-Raspberry Machines .477

Appendix II 479
Updating versus New SD ..479

Appendix III 481
A Word or Two about Source Control ..481

Appendix IV 483
Bits Bytes and Nibbles Make You Hungry! .483

Appendix V 485
OpenGLES3.0� .485

Appendix VI 487
�e Libs We Used. .487
On the PC End .488

Appendix VII 489
Writing My Own Games?. .489

Appendix VIII 491
Visual Studio 2017. ..491

Index 493

xv

“From Hello World to
Halo—It’s Just Code!”

Who Is This Book for?
�e Fundamentals of C/C++ Game Programming: Using Target-Based SBC’s, is quite a
mouthful, isn’t it, as a title, it’s also making a few promises that it probably can’t keep,
because there are so many de�nitions of what are the fundamental skills a game program-
mer needs to have. But it’s my view that there are a few things that can get people up and
running and develop their hunger for learning, and it’s those things I want to bring to you
here. �is is for people who want to be game programmers, but probably don’t quite know
how to do it or feel a little daunted that their coding skills don’t really let them explore
their game-creation skills. Although this is very much a beginner’s book, it is not really
aimed at a total novice who has never programmed before; you should be able to under-
stand at least the basic concepts and syntax of C/C� � programming.

�ere are some excellent beginner’s books that I recommend to all my students, such
as Michael Dawson’s excellent Beginning C� � �rough Game Programming (2014; Cengage
Learning; Australia), which though it throws little light on actual graphic gaming, is a
superb foundation for C� � . I will give some very simple getting-started examples and
build on those, so even the most code wary the beginner, should pick things up as they go.

None of the code in this book is complex, indeed it can be comfortably argued that it’s
oversimpli�ed, it’s designed as a jumping-o� point for a novice to expand their knowledge
and most of the initial explanations are going to be understandable even for a total begin-
ner. I’ll start slowly and explain much at �rst, but the pace will pick up as we get going and
I’ll let the online source code go into more detail as I explain the overall intent of what we

xvi “From Hello World to Halo—It’s Just Code!”

are doing rather than the speci�c functions. If you still don’t understand the syntax of the
code, you should undertake a beginners’ coding course, there are several online.

In addition, despite the title, this isn’t a book solely about programming Single Board
Computers (SBCs). �e use of a cheap target system is a means to an end to encourage the
reader to limit expectations and work within tight constraints, which game programmers,
especially console programmers have to work with. I want primarily to focus on gameplay
concepts and game structures, which will let us get games up and running really quickly.
However, we do have to introduce some technical concepts later, when we’re a bit more
comfortable, because most of these technical concepts will have a direct impact on the
performance of your games. You will need to know just enough to avoid some pitfalls and
get things up and running correctly.

SBCs are usually quite simple systems, so building a working knowledge of the fairly
generic hardware to produce graphics, sound, and data storage is generally easier to learn
on them, than it would be on your up to the minute PC, which will shield you from errors
by virtue of massive processing performance and near unlimited memory.

Once understood, all of the concepts and projects in this book are easily transferrable
to any development target where the reader can stretch their growing skills on more pow-
erful systems while still being mindful of the need to work within constraints of hardware,
which are hard to push, and personal limits, which should always be pushed.

But SBCs are really fun to work with, cheap to acquire, and present a real sense of
achievement when you make them to do more than just act as media servers or control units.

Most important, this is not a how to do x, with y kind of book. I want to take you
through a journey of discovery, mine as well as yours, and provide suggestions and work-
ing examples on how to do things that games need, and let you decide if the approach I’ve
taken is valid. I want to make you question things and hopefully come to di�erent conclu-
sions, using what I supply as a base for debate and expansion rather than a gospel to be
followed. When working with beginners, I don’t believe in imposing the right way, I prefer
to have faith in, “this works for me, can I make it better?” �e right way, for you at least,
will come with practice and the joy of achievement.

What Are We Gonna Do?
For the last 9�years, I’ve been teaching beginner-level game programmers how to write
computer games. Not so much the actual languages used in programming, but the prin-
ciples of actually creating games. Starting with simple space shooter games, scrolling plat-
formers, maze games, character animation games, and so on!

Eventually, at some point in their development when they start to move beyond such
simple themes, and their con�dence is high enough, I then encourage them to take their
�rst steps in writing more complex 3D immersive games on consoles, such as the Nintendo
Wii U, Microso� Xbox One, and Sony PlayStation 4.

It sounds like a massive leap, to teach beginners how to make a simple space shooter
game in 2D to then write games on the most powerful consoles on the market, but in fact
the progression is really quite simple. Coding is coding…once you have the basics in your
head, the rest of it is down to understanding how to get your code to work on di�erent
machines and with increasingly larger projects, only the levels of complexity change.

Internally, you could not �nd more di�erent machines than a PC, a Nintendo Wii U,
and a PlayStation 4. However, the basic ideas of getting something to appear on screen,

xvii“From Hello World to Halo—It’s Just Code!”

move�around under some kind of control, and process some form of logic are what the games
programmers are really trying to do. �at is independent of any machine architecture!

�rough various concepts such as APIs, Libraries, and Engines, a lot of the complex-
ity of how the screen objects appear is hidden from the programmer and is accessed via
simpler means, though there is always a chance to unhide it, usually causing untold dam-
age as a result. We generally leave the technical side of the machines to tools and graphics
coders who make those APIs, Libraries, and Engines available to us, so we can focus on
the simpler concepts of getting our chomping pizza to move around the maze collecting
his trademarked pills.

When you move away from the worry of the technical issues of how to draw things
and start to abstract your thinking toward making, a thing, do a thing you want that thing
to do, you �nd yourself to be able to explain and understand your game concept far easier.
What you understand, you can code!

For some time, I wanted to write a tutorial that could take some of my methods of
learning as you go/do, taking beginners from their �rst simple projects to producing
fully working games on consoles. But there are some roadblocks I have to overcome.
Not least of which is while PC coding is easy enough to enter into, and I would have no
problem converting my �rst-year courses into a simple tutorial. Console coding, which
I�also teach, is essentially a closed shop, open only to industry and a few elite educational
institutions.

So I thought it might be an interesting journey to take a machine I’d never worked
on before and document my way through it, simulating the out of my depth feel many
new programmers have when confronted by a blank screen, while at the same time giv-
ing the reader a chance to understand the basic concepts of game programming I’ve been
involved with for more than 30�years.

First things �rst, I need a target machine….In my normal game dev career; I’ve
worked mostly with consoles from Nintendo and more recently Sony. So my basic tech-
niques of coding are �rmly entrenched in the idea of writing games on an editing system
that you don’t actually run the code on.

For the vast majority of my career, I’ve used what we call a development machine,
more o�en than not a PC, to write the code, which in turn is transmitted via some kind of
network link to the actual target machine the games will be played on, usually some form of
specialist development kit that allows communications and debugging to take place. All the
main console systems use Dev Kits, and I’m incredibly lucky to have access to all of them.

�at creates something of a problem. �e general public are not actually allowed to
purchase these dev kits, also I’m not allowed to talk about them, having Non-Disclosure
Agreements (NDAs) all properly signed up, so even if I wanted to, I can’t tell you how to
write games on a PS4 or Nintendo Wii, but I do very much want to give you a �avor of it.

Looking around at the kind of equipment most beginner programmers have, there
are however a few choices. �e most obvious are Apple devices and Android phones.
�ese days almost everyone has one of these, to take sel�es or spend a few minutes playing
games, so it seems like an ideal choice.

But there are issues with them. Apple devices really work best when using Mac’s and
their own idiosyncratic (but by no means bad) Objective C-based development tools.
�ese are great tools, but I �nd them a little too speci�c for my liking, and since one of the
objectives in writing this is to get you, the reader, to be able to work on standard types of
machines, I feel I should rule them out, perhaps that’s another book.

xviii “From Hello World to Halo—It’s Just Code!”

Android uses Java……I suppose now it is a good time to admit I don’t like Java…but
the reasons for that will take too long to go into, but I’m certain that in at least one chapter
of this book or forum post, I’ll explain and you may feel I’m overreacting…I am of course,
but allow me a little bias. I believe Java is a �ne language for some things, just not console
games. Again that may be another book.

�at said, it’s quite possible to code at a low level on an Android system using the
Native Development Kit (NDK) essentially working on the hardware level; however, that
then raises another issue with Android machines, at the hardware level there is a massive
amount of di�erence from one maker to another, resulting in what are called abstraction
layers between the hardware and Android to maintain compatibility for the Android OS,
but less consistency in access methods, if you want to deal with hardware direct. Since I
want you the reader to have as few issues with the hardware as possible, and not be wres-
tling with it, it means we cannot be 100� certain that the code is going to work on every
Android system. �at, more than the Java, rules out Android for us.

So common devices exist, there are ways to hook them up to the PC but do they pro-
vide a good experience that simulates development for consoles?

I don’t think so, Apple comes close and indeed for all basic de�nitions most Apple
devices are small consoles but the Objective C issue and confusing tools make it a bit too
specialized, If you want to do apps for Apple devices, I think there are more than enough
excellent tutorials out there.

Most industry programming is done in C/C� � so that’s what I want to work with.
Yes…before someone pipes up, you CAN do C/C� � on Apple and Android devices….it’s
just not as easy as I want it to be, and while I don’t anticipate this journey to be without
incident, I prefer to keep to paths I know I can travel.

�is book is intended to be a tutorial…So I wanted to �nd a simple and easy system
to work with.

I didn’t �nd one!
And there’s a good reason for that, pretty much any computer system has its own

drawbacks when it comes to getting it set up, o�en this is so�ware based and that in turn
led me to another decision I needed to make before starting. What kind of standard devel-
opment Integrated Development Environment (IDE) was I going to use…I wanted to use
Visual Studio.

Why? Well because I like it! I’m used to it, almost every other game developer not
doing Apple or Android product uses it, and moreover…it’s now free! Free is good.
Especially since I am going to encourage you to spend a little bit of money to fund your
journey into the joys of game programming.

It’s not everyone’s favorite IDE; in fact, I know Pros who will spend hours explaining
to you just how bad it is, but truthfully if you’re a beginner and all you want is a simple
system to write code, press a deploy button and watch the �reworks…It does just that. If
you’re a Pro, you want to totally investigate the code, be able to search for sections that
contain information, and so on…Visual Studio does that too, it won’t stop me cursing it
from time to time, but I never met a programmer who was 100� happy with his tools.

As with most things in life, once you get used to something, you don’t like to change.
Mac users love X-code (mostly) and PC users love Visual Studio (mostly). We’ll just use
what works.

So, our development system is chosen, we are going to use a PC or a Mac, run-
ning Windows and Visual Studio. But we don’t really need to worry about what kind of

xix“From Hello World to Halo—It’s Just Code!”

Windows; I’m still using 8.1 on my main system, as I write this and occasionally on my
laptop running Windows 10. At the time of writing, I’ve just upgraded to Visual Studio
2015 and I’m sure it’s going to annoy the hell out of me for all the things it does di�erent
from Visual Studio 2013. �at anger will pass but for this book, I mostly used my trusty
Visual Studio 2013. I’m not planning to do anything Visual Studio speci�c, so all should
be good whichever version you are using.

Now for the tricky bit, what’s the target system going to be…As I said before I wanted
to use a machine I’d never used before so that I could also experience some of the things a
new coder will come across. It also needed to be able to hook up to the PC somehow and it
needed to be available to the general public.

2� | !2�
Ok, let’s stop beating about the bush, a�er all the section heading gives it away. I chose
the Raspberry Pi, because it’s cheap, it’s freely available all over the world, it connects to
a PC via network cables or wirelessly, it has consistent hardware, so what works on one is
sure to work on another even if a few di�erences in speed happen, and in my opinion, it’s
a machine that has largely been ignored by the games development community. So you’re
going to be treading in largely virgin sand, that’s quite exciting.

I need a consistent, fun bit of hardware, with su�cient power, reasonable graphic
abilities, and onboard memory to create a range of decent little games to learn with. �e
Raspberry Pi gives me all that, and most of its clones are close enough to also give us some
insight into the fragmentation issues in a small enough scale to cope!

Now it also has to be said, once I settled on the Raspberry machine I had my eyes
opened up to the fact that there are several Raspberry Pi-type machines out there; in fact,
there is a thriving community of similar small board System on Chip (SoC) machine’s
with their own communities. So I expanded my remit a little to include as many of the
main ones as I could �nd with a simple limit of cost. I only looked at units I could buy for
under U.S.� 100.

So if you have one of these other systems then it’s only fair that I make sure what we
do here are going to work on them too, so long as they run some form of Linux and have
OpenGLES2.0 for their Graphics systems. We should be able to get our games to work on
them too. I’ll try to give a summary of machines I’ve tried, and maintain an update on the
support site.

Of course, technology never stands still, and as I was a quarter of the way in writing
this book, the Raspberry Pi foundation announced a new model, the Raspberry Pi 3, and
as usual it sold out within hours of its announcement. Not quite as big a leap in perfor-
mance as the 2 was over the 1, but still another boost in performance for the same price is
much appreciated.

So I guess most of you will now be on model 4 by the time this comes out. But the nice
thing about the Raspberry range is that aside from memory and speed, they all are based
on the same hardware principles and they have maintained the mantra of compatibility.
So even though I’m going to continue with my Raspberry Pi Model 2B for now, swapping
over to the Model 3B quite soon I am sure, everything in this book will be checked on the
latest models before it goes to the printers.

I should say to owners of earlier Raspberry Pi models, all the things in this book will
work for you, but the later explanations on multicore processing will be useless as earlier

xx “From Hello World to Halo—It’s Just Code!”

models had single core processors. You may �nd speed is an issue on the later 3D projects,
but given the cost of a Raspberry Pi 2(3/4/5), why not upgrade? �e extra power is well
worth it. I do have a small collection of the earlier machines and will be trying the code
out on them as we go to give you notice of any issue I �nd.

Also, since part of the thinking behind writing this book is to introduce some of
the concepts and limitations of working on consoles, I have set myself some limitations.
As far as possible, I plan not to use any external third-party libraries, though consoles
do sometimes use external libs (audio for example, commonly uses third-party libs even
though SDKs usually provide some support). Wherever possible, the only libraries I will
try to add will be on the Raspberry Pi already. �is will create some di�culties for us and
require a bit of imagination to overcome them, but will hopefully create a more rewarding
experience and producing more compact code on machines with limited memory. I will,
of course, break this rule, it’s impossible to keep really, but I will not do so lightly, if we do
have to use an external lib I will ensure it is free and easily available. You will also have to
take care if you distribute your projects, that the end user also has access to those libraries,
either supplied by you, or with a helpful test and request to install if missing.

You Call This Code?
A word about my coding style in this book….Aside from some quite deliberately poor
design choices, I fully intend to make to show you how to improve, the style is, ermm, my
own!

I tend to write in a mixture of C and C� � , partly because many consoles and embed-
ded toolchains I use still use C, and partly because it’s a style I have found my students pick
up quite well before fully adopting C� � . I �nd full Object-Oriented Programming (OOP)
C� � to be a little unreadable, and confusing, especially for beginners. I also don’t want
to have to spend two or three pages to explain why C� � wants you to do things a certain
way, before we can move forward. So I’ll continue with my C with classes approach until
we �nd that it does not �t our needs. But I will be introducing more structured C� � as
this book goes on.

�e thing about a computer language is this: it is there to make your life easier. If you
�nd it easier to write in mostly C...do so! Never let anyone stop you unless you are in a
team doing OOP. But on your own at this stage, I encourage you to simply write code that
works, something that makes sense to you, at least until you are 100� sure you know what
you are doing, then you can explore the majesty, or lunacy, of coding standards. With
practice you will naturally start to see patterns in your code that will lead to improvement
and understanding of the more advanced quirks of any language, once you start to see
faults in your own code and that becomes the second nature to you, you’re a coder.

But my C with classes style, is functional, my aim here is to make things clear, to give
you room to expand and improve on the basic systems. I’m also not a hardware expert,
so much of the information I am going to pass on is taken from a basic users’ view point,
based on what I have found the machine can do within the project I am producing. I am
quite sure a technical graphic coder could get and give a lot more info on the tech side of
things but that’s not really what I want to focus on here.

�at’s not to say we should not learn new things, I always aim to improve, but I’m usu-
ally just too busy making games! It’s supposed to be fun! �is means a lot of the early sam-
ples in this book will be mostly C based to tie in with the traditional starter projects found

xxi“From Hello World to Halo—It’s Just Code!”

in most textbooks. I’ll introduce some classes and then hopefully some more recognizable
standard C� � as we progress. I don’t use a lot of C� � 11 usually, but I will introduce
some more useful and up-to-date C� � 11 concepts when we need them, as we go through
the�projects. I hear that there is now a C� � 17….meh, mañana!

If you want to write tidy sharable code for the team, I suggest a Computer Science (CS)
course somewhere. If you just want to gain con�dence in coding, make something work
and improve your understanding of how to make games. Read on, and feel free to rework
my code when you are con�dent enough to do it. Also take note, most of the technical stu�
we have to deal with, in the 3D sections in particular, can ALL be done better! I’m giving
you functional, but deliberately not optimal systems, it leaves you open to play with and
improve things, and I will suggest some ways for you to explore and research, so you get a
bigger con�dence boost from doing it yourself.

Uggh It’s All So Old
One other thing you need to also consider is that many of the libraries, �le, and data
formats used in this book are older concepts that don’t have too much traction any more
in modern game dev. So why present them here? Simple, we are using target machines
that do not have the horsepower of a modern computer system; in fact, they are about
10–15�years behind the current power level of even a modest PC. A great many cutting-
edge concepts need a lot of horsepower or large data stores to function; we just don’t have
those resources available to us.

So it’s quite appropriate that we are going to use some techniques from the good
old days, which are still perfectly functional and once grasped will make updating these
methods a journey you will want to take with foundation knowledge to help you.

Coding and using, things that work, will give you a sense of achievement and quick
visible results, rather than a sense of frustration that tends to cause new coders to give up.
We will enhance some of the older ideas with our more modern systems and methods
where viable, so you are always free and encouraged to try to use more modern concepts as
soon as you feel you are capable of writing them. If your target can handle them! But I am
deliberately presenting relatively simple methods, which are compact, fast, and e�ective
even on the lowliest of target system.

Finally, though most of the current range of SBCs are multicore and get a signi�cant
boost when using parallel processing, I’m not going to explore that in the projects pre-
sented here, though I will explain the concepts and some of the projects should be suitable
for parallel processing if the reader feels they want to tinker. I do this because parallel
coding works best if the projects are built with this in mind, but as this book is targeting
beginners I want to avoid potentially confusing technical concepts until such time as the
beginner starts to understand what they are doing. �ere’s no rush, when you get it, you’re
free to do anything you want to the code and enjoy the achievement of improvement for
yourself.

What Do We Need to Get Started?
As with every new technical challenge the �rst thing you need is some cash, you’re going
to have to spend a bit of money. Not much, trust me, as a Scot, with Dutch ancestry, spend-
ing money is as painful to me as it is to you, so we’ll limit it to what we need.

xxii “From Hello World to Halo—It’s Just Code!”

�roughout this book I am going to refer to our target machine as the Target or
Raspberry Pi, which due purely to its massive market lead, I am going to assume you
will be using. But with very few exceptions any SBC with onboard/integrated Graphics
Processing Unit (GPU), keyboard and mouse connections, and a display output can be
used. So long as it’s running some form of Linux, which we only need for �le and I/O
handling, and most important is using and has drivers for OpenGLES 2.0 or higher as
a graphic Application Programming Interface (API). �is will all be explained in more
detail later.

I don’t have the foggiest idea how Linux itself works, so I’m only going to use what I
need to use to make the code work. I tend to use Rasbian or Debian, because that’s what
the Raspberry Pi uses, but a few machines prefer Ubuntu. As I say, once we are running
our code we don’t care about the OS. I’ll limit my usage to getting the IP address, installing
some libraries, and making sure it has a compiler and required drivers on it, some things
may need to be downloaded, but are all available for free!

�ose of you with Android installed on your (non-Raspberry) machines will need
to change, Android is something else entirely though and not supported in this book but
it is supported by some of the tools we use. It’s not impossible to convert the projects to
work with an Android-based machine; however, you do risk incompatibility because of
signi�cant di�erences in machines, which again is a chief reason this is not a book about
Android programming. �at may come later. It might be a fun project for you when you’re
done with this book to try using any new skills you develop to get the projects running on
Android, it can be done, I’ve got them all running on a couple of brand name tablets with
little real e�ort but can’t get anything to work on another leading brand phone.

�ere are some issues with the di�erent SBCs and Linux methods of setting up render-
ing windows, but for the most part all these machines provide drivers that make that pos-
sible, usually in some sample OpenGLES2.0 code you can �nd in the makers downloads.

Some of the most popular SBCs are detailed on the support site and I will have per-
sonally tried all the samples on them so can give good feedback on any set up and execu-
tion issues you might come across. I’m picking up as many as I can over the next months
to make sure I can give you a chance to use your SBC of choice.

Once individual drivers are set up and installed, a�er any speci�c initializing sys-
tems are called the code samples in here should work on any valid target with few issues.
However, computers are interesting things and even two machines of the same model
from the same maker but with di�erent production runs, may display di�erences, or have
di�erent user set ups, so it would be naive of me to suggest everything is going to work
on every machine on a �rst attempt, but as far as possible, it should. Any signi�cant dif-
ferences in machine setup or installation will be covered as much as I am able to on the
support site.

The Target
We need an SBC of course; for the most part I will assume Raspberry Pi, 12�million� users
would indicate that most of you are using that. So that’s your �rst purchase, if you haven’t
done so already, you need to do this now. At the time of writing, I’m using the current
model, a Raspberry Pi 2 Model B, but am soon going to plug-in my new Raspberry Pi 3
Model B. I will do the odd sanity check with older Raspberry Pi Model A� /B� /Zeroes
I�have to hand. I also have picked up quite a few of the so-called Raspberry Pi beaters

xxiii“From Hello World to Halo—It’s Just Code!”

that are on the market, such as, Nano Pi, Banana Pi, Orange Pi, Pine A64, and so on,
which also use a Linux OS. One awesome thing about these little SBCs is most are pocket
money cheap, so adding to my collection is proving to be a fun hobby. I’ll document any
issues I��nd in the support site. I do know that some of the others are faster or have more
impressive graphic systems and a few have SATA and USB3 to make disk access a factor,
but I�strongly suggest we all stay with the Raspberry Pi’s for learning and then transition
to others if that’s what you want to use.

I hope the later versions of the Raspberry Pi that are sure to come, will be as compat-
ible. I’m sure they’ll be even more powerful allowing you to fully explore that power with
this book.

Buying an SBC on its own is a bit useless though, it usually needs an SD card, to act as
its boot drive and storage medium, ideally preformatted with some form of Linux, which
on the Raspberry Pi is called Rasbian, (there are other options but Rasbian is easy to use).
It also needs some means to power it, ideally a 5 V, 2–3 A, wall wart.

Internet access for your target is needed to install libraries and updates. A wi� dongle
is a wise extra purchase if your target does not have it onboard, and is especially useful
on boards with no wired network connection, though a�ermarket USB-based network
systems are available. Wired network connection to your PC is preferred for faster com-
munication between the target and dev system.

I’d recommend a case to keep the Raspberry Pi safe and tidy. �ese are minor extra costs
and usually most sellers will o�er you a bundle. I got my new Model 3 for under � 60euros.

Remember that the Raspberry Pi is a computer…therefore, it will also need a display,
a keyboard and a mouse to get the most out of it, I tend to have a few broken and bashed
keyboards lying around, which met their fate during some horror bug hunting session, but
any simple cheap keyboard and mouse will work. We will be doing our coding on our own
PCs, so the Raspberry Pi’s keyboard and mouse only needs to be functional and you can
pick up really cheap combination keyboard/mousepads.

As noted, your target also needs to have a display, it may be you have a monitor on
your PC that has dual HDMI inputs or you want to use a KVM system, this will work, but
will not be e�ective when you want to debug on one screen and see the project running
on another. Display switching between the two images will not be a satisfactory expe-
rience. A small monitor with your Raspberry Pi hooked up, beside your main monitor
is ideal. �ere are also some very serviceable low-cost LCD panels you can hook up to
the boards directly but don’t get less than 7�, our early games are mostly going to run in
1024�� �640�pixel resolution, which we’ll scale to the screen’s resolution most of the time
and the small sub 7� screens can’t really handle even that low res making scaling look odd.
If you are using a really low-power machine like a CHIP or Pi Model A, you can always
drop the resolution down to 640�� �480, or even worst case 320�� �200. It will provide a
speed increase, especially on the 2D projects.

If you plan to use a target system you already had for a while, and it currently is set up
with lots of apps, which are set to run in the background, it would be wise to create another
project-based SD to boot clean, so that we make sure our target machine is not using resources
on other applications when we are developing. �roughout this book, I am assuming a total
clean fresh install of Rasbian or your usual �avor of Linux, with all default settings.

People have many reasons for buying SBCs and game programming is rarely one of
them, so there are many keen users out there who have expectations that focus on their
particular needs. When researching a board to buy, you may see a lot of comments on

xxiv “From Hello World to Halo—It’s Just Code!”

what the best board and passionate explanations of why a particular board is bad, very
bad, a total con, and so on!

It’s quite true that some of the boards out there are, shall we say, less than optimal
for use as so-called maker boards. �ey may have badly implemented certain important
features, have a chronic lack of support, or any number of an absolute plethora of quite
genuine issues that will get people raging on their keyboards.

But very few of these genuine issues have a direct impact on us using our boards
as programming tools for the game development. We don’t care about the OS; we don’t
care about the I/O Pins or the hardware’s layout. So long as it runs some form of Linux,
has�OpenGLES2.0 with drivers, and can display an image. We should not have too many
problems…famous last words there!

The Development Machine
Any desktop or laptop style PC can be used, we are really only interested in its perfor-
mance as an editor, so a decent keyboard, mouse, and display are all you really need. �e
only hardware consideration is that it needs to be able to network in some way, via stan-
dard cables or wirelessly.

Next, you’ll need a copy of Visual Studio. �is presupposes you are running on a
computer with a Windows OS. Later, models of Mac’s can run Windows, so pop-o� to
Microso�’s site and see if you can download a version, it can sometimes be obtained for
free or on discount for students. Visual Studio itself is free in its rich featured Community
version from https://www.visualstudio.com.

I must take a moment to thank Microso� for this; it really is a great gesture to make
such professional tools free to everyone.

Next you need some so�ware to allow you an easy connection from your PC to the
Raspberry Pi. Whether you do this via a network cable direct to your PC, or via a router,
or even wirelessly. A network connection needs to be made. Wired connections are much
faster, but wireless can be tidier if you don’t mind the speed lag.

If you are of a technical mind you can probably work out how to get two machines
with di�erent operating systems to work together, maybe even get them to communicate
via Visual Studio. But that takes time and e�ort, and if you’re reading this you’re probably
a beginner, so why go to so much e�ort? I am of a technical mind, but I’m also quite lazy
when it comes to doing things when I know there are easier solutions, so I decided to have
a serious hunt around for a solution to this, and I found it.

�ere is a wonderful piece of so�ware called VisualGDB, which allows you to get your
version of Visual Studio to talk to a whole range of di�erent machines, send them code,
run it, and debug it on your development machine.

I therefore give you a choice:

 1. Write your own interface between Visual Studio and a Linux-based Raspberry Pi

 2. Download and install the 30-day free trial of VisualGDB

I’m pretty sure you will opt for option 2. If you went for option 1. Close the book now, go
write your interface, and be sure to write to me in a few months’ time when you’re ready
to start again.

xxv“From Hello World to Halo—It’s Just Code!”

VisualGDB is available from Sysprogs website at https://www.visualGDB.com.
It’s free for 30�days, which if you spend a few hours a day, should be more than enough

time for you to work your way through this book and decide if it’s worth investing around
U.S.$100 (50� Student discounts are available) for something that will make your pro-
gramming life so much easier. Take note though, the trial starts when you �rst run it, so if
you’re waiting for your Raspberry Pi to arrive, don’t run it till it’s purring away and we are
ready to start working on our target.

�at’s it…a total outlay of around � 60 for a target (excluding keyboard/mouse/moni-
tor) should see you with a tasty little machine you can target and so�ware you can use to
write to that target for the next 30�days.

We’re ready to get started.

Why Can’t I Use Linux for Everything?
You can, be my guest I don’t mind at all, the problem is I don’t have a clue about Linux,
I don’t really want to have a clue about Linux, and you will discover as you read this that
I’m never going to have a clue about Linux. So I’m totally not quali�ed to give you any real
insight into or advice on using Linux. Which means you’re on your own? Which is kind of
the way most Linux coders seem to work!

We use Linux in some form on our target machines, simply because it provides an
easy use of Secure Shell connections (SSH) via a network, and a means to create a graphi-
cal interface to let our projects run and access to some input and output functions.

I’m not anti-Linux in any way; it’s a �ne OS, especially as it’s basically free. It’s just
not one I personally have ever really wanted to use or found easy to keep up-to-date with.
I know only a few basic features, which are used in this book, anything I don’t know I’m
going to Google for, just like everyone else.

One thing I do have a problem with though, is the massive variety and quality of the
distributions of Linux, which are available on SBCs, even of the same types of Linux. My
recent tests into running Linux on many di�erent target machines has demonstrated that
it’s rare to �nd a fully featured version of any brand of Linux, which is the same from one
machine to another, even from the same makers.

But the core versions at least should contain the ability to access, send, compile, run,
and debug, which is all I will focus on.

Support Website
Almost all the code in this book, and some other things that didn’t make it in the �nal
edit will be available online at my website (https://www.scratchpadgames.net). Most of the
missing parts are things I want you to enter yourself for the practice. I’ll also maintain an
errata and update on systems or tools I use, color versions of all screenshots, and �nal and
much more complete versions of all the demos in this book for you to download, review,
and try out.

For brevity, the listings in this book are sometimes incomplete or have had format-
ting altered to �t on a page. Later in this book, when you should be more pro�cient, I’m
not even going to provide the code as a listing, you can review the downloaded source
code itself, which will be commented and tied in with the text. I’ll provide suggestions
on how to deal with a problem and some outlines, con�dent that you already have the

xxvi “From Hello World to Halo—It’s Just Code!”

requirements from previous examples. Downloading the demo base code will allow you to
get your systems’ setup ready to add your own additions as this book outlines.

But there will be �nal versions of the demos available, so you can compare your e�orts
with mine. I only ask that you please please please, don’t just look at the �nal versions and
cut and paste the code, you really will not bene�t from doing that. Work with the support
site, in conjunction with this book.

It’s quite probable that I will cleanup, tinker with, or �x bugs in the source code a�er
this book goes to print. But don’t worry, I will make as few changes to the base online code
as possible, and the source code will have descriptive comments, especially if it varies from
the printed versions.

xxvii

Thanks

�ere are a lot of people to thank for this book, but at the top of the list as always for me
is my daughter, Danielle, who has somewhat reluctantly featured in the credit list of every
game I’ve written since she was born. Giving her the dubious distinction of numerous
mentions, on several game credit sites, without ever having any interest in playing or mak-
ing computer games.

�e addition in December 2015 of her son Harvey, my �rst grandchild, gives me even
more cause to consider her the greatest achievement of my life, games being a very distant
second, or probably third as I am quite proud of my guitar collection, though not my
actual playing!

�anks to my friend Professor Penny De Byl for helping me to �nd a means to pub-
lish this nonsense, and her help with checking my concept and invaluable advice and
encouragement on what to add and take away from the original concept to keep it fun and
interesting.

�anks also to friend and now former colleague, Jamie Stewart for taking the time to
go through this book at di�erent times and comment on any mistakes I made, deliberate
or otherwise.

�anks to Grumpy old Git developers (Facebook group, not an insult) Gareth Lewis,
Rob Wilmot, and Paul Carter; Paul for helping me �nd and convert some low poly car
models for producing some nice LOD versions of the cars. Gareth, for his timely help
with a Rasbian compatible key reading routine when I was on the point of throwing the
Raspberry Pi out the window, and also to my student Petar Dimitrov, who came up with a

xxviii Thanks

neat keyboard scan system to determine which keyboard event was actually active, which
was much tidier than the one I had, so I shamelessly stole it, with his consent �

�anks also to old friends Shaun McClure and Ocean Legend Simon Butler for their
pixel-pushing prowess on the 2D art you can �nd on the site and use, and Colin Morrison
for his 3D race track tiles and a few other models I wasn’t able to �t in but you can �nd on
the site.

I have to give a huge shout out to the incredibly talented Pim Bos, one of our family
of NHTV students studying Visual Arts, who did the cartoons that illustrate this book.
His�fun take on complex concepts is inspiring and made me chuckle every time he sent
one in.

A special shout out to the small band unsuspecting volunteers who ran through this
book for me, �nding multiple spelling errors, and more than a few issues with my coding,
especially to colleague David Jones who I now owe free drinks for life for his proofreading
and eye for detail.

Finally, my thanks to the management, sta�, and all students past and present at the
International Games Architecture and Design (IGAD) programme of NHTV University
of Applied Sciences* in Breda, �e Netherlands, which has been my home for the last
9�years. I’ve learned much from them and I hope I’ve given a little bit back at times.

* Soon to be renamed Breda University of Applied Science.

xxix

Brian Beuken:�Who
Is He?

Brian Beuken is a veteran games developer, having started in the early 1980s writing his
�rst games on the venerable Sinclair ZX81. Self-taught as many were at the time, Brian
wrote games in Basic and Assembler, selling them via mail order before branching out
to form his own small company specializing in conversion of projects from one popu-
lar machine to another. A chance to work for Ocean So�ware in Manchester, England,
then one of the largest games companies around, saw Brian leave his native Scotland and
become a full-time game programmer, staying in the center of the tech bubble that was
Manchester and working for several companies producing a host of projects in quick
succession.

Eventually, the Manchester bubble burst as companies began to merge and moved
away. Brian became a well-established freelance coder specializing in Z80 systems and
handheld devices from Nintendo and Sega, before again taking a leap into entrepreneur-
ship and forming his own company, Virtucra�. Virtucra� grew from 3 to 30� people
in the space of 4�years, until once again the bubble burst and the company was forced to
close. Brian went on to become Head of Development at an emerging mobile games com-
pany, which was later sold and became part of the mighty Square Enix. But Brian had le�

xxx Brian Beuken:�Who Is He?

before that happened, unhappy with the distance from development in the management
role, he returned to coding, and once again entered the freelance market for several years
again specializing in handheld consoles.

A chance encounter with a tutor at NHTV in Breda, �e Netherlands, resulted in
Brian being o�ered a teaching position at the still new IGAD program they had estab-
lished to bring game development skills that the industry needed, to education. Finding
the program o�ered far more than he’d seen in any comparable education, Brian signed
up thinking he’d try it for a year. Nine years later, he’s still there, still coding, and add-
ing to his 75� published titles and enjoying watching his students �nd the joy of game
development, which they can take with them to an industry that sorely needs more
programmers.

1

1Getting Started

Mine Looks Different?
It’s in the nature of commercial so�ware to update from time to time, and even as I�write
this I will have to deal with so�ware updates of at least three of my key tools, which
are known to update regularly. When I �nish writing this, I will go back through it
and change as many old images as I can to be as up-to-date as possible, but even then,
by the time you read it there are likely to be many subtle di�erences in the layout and
format, even sequences of some of the tools, especially visually. I also use at least two
development machines: (1) home and (2) o�ce with di�erent versions of the main tools
and�multiple targets, so I fully expect a lot of images to be di�erent to your basic �rst
time setup.

However, don’t panic! We can do that later when we get into the tricky stu�!
It’s unlikely that any of the functionality will change in successive updates, so if the

screenshots presented in this book don’t look exactly the same, consider the images as
guides only, and take note of what that image and the text around it is telling you to add/
change/remove and don’t panic if it looks di�erent, be adaptable. Any updates/changes that
have real functional issues for the book code, I will document and maintain �xes on the
support site.

1. Getting Started2

First Steps
It’s a common rule that programmers must never assume anything, so I’m immediately
going to break that rule and assume you to know how to install Visual Studio, VisualGDB,
and get your Target; in this case, a Raspberry Pi, set up to go. No? Ok well let’s do the simple
things �rst.

Set up the Raspberry Pi: �is is relatively easy, especially if you opted for a prefor-
matted SD card when you purchased. If so, insert the card into the Pi, hook up
your power, keyboard, mouse, wi� (if you bought one), and display and �re it up.

If you didn’t opt for the preformatted card, you have a bit more work to do, but
it’s always best to go to the Raspberry Pi website and follow the latest instructions.
https:/www.raspberrypi.org/help/quick-start-guide/.

Install Visual Studio: �is also should be pretty simple, Microso� downloads tend to
be painless, if a little slow because of their size. Installation can take a little while
but there’s not a lot of input required from you, so once you’ve started it and ticked
all the right boxes, you can go and make a few cups of your favorite beverage and
come back when it’s done.

Install VisualGDB: One thing you should do before you install this, is make sure you
have run Visual Studio at least once, and closed it down. On its �rst run, Visual
Studio sets up a lot of things, and that can interfere with the settings of some plug-
ins, which is what VisualGDB is, a plug-in, a piece of so�ware which extends Visual
Studio’s features.

Once you’ve run it, the installation of VisualGDB is totally painless, but do not
activate it yet!

Setting Things Up
Sadly, we still have a few confusing steps to go through to write our �rst Raspberry Pi
program, so let’s start by introducing ourselves to Visual Studio. If you’ve already used it
and know some C/C� � , you can skip to the section titled, setting up the Raspberry Pi and
other targets.

Introducing Visual Studio
�ose of you still with me, prepare to be amazed and scared, mostly scared, because Visual
Studio is indeed an incredibly scary thing when you �rst �re it up but we’re only going to
use some of the most basic features to start, so let’s just play with those �rst before we even
think about the scary topic of connecting to the target machine.

Introducing Visual Studio 3

Depending on your version of Windows, you should have a link somewhere on your
start menu or taskbar for the version of Visual Studio that you just installed. I prefer to
keep it on my taskbar at the bottom, so it’s always accessible.

Fire it up and if you have already sneaked ahead and installed VisualGDB, it will
immediately ask you if you want to start the VisualGDB trial…answer no at this point, we
have things to set up and we’re going to do one or two little PC programs to get ourselves
comfortable with the Visual Studio.

You’re going to get something like this, a start screen. It won’t look exactly the same
as my screen, I’ve got a lot of di�erent plug-ins on my version, also I’ve used it for several
projects already but the main areas should be similar.

For now, ignore the Start options in the main window, and look at the top le� corner, can
you see the FILE tab? Click on it and select New, then Project.

1. Getting Started4

�is will give us something like this, I say like this, because it’s quite possible that the later
version of Visual Studio you may be using will have some variation on this, but we should
still have some of the basics in place to do this.

Introducing Visual Studio 5

Notice we have a group of templates, I’ve selected the Visual C� � group, which we’ll
quickly use to get started, but there is also an option for Visual GBD…we’ll click
that�soon.

1. Getting Started6

For now, click on the Win32 Console Application, Visual Studio will automatically
name the project and locate it somewhere on your machine for you.

You’ll see a box like this appear.

Go ahead and click Finish.
And like Magic (that’s why it’s called a Wizard), you will now have a small project in

your Visual Studio.

Introducing Visual Studio 7

Now this is a very, very simple project, it actually doesn’t do much, but you can run it..…
press F5.

1. Getting Started8

Wait for it.
Wait for it.
Wait for it.
Yup that’s it, that’s all that’s going to happen, you will have seen a small output window

at the bottom saying something like this.

1>------ Build started: Project: ConsoleApplication2, Configuration: Debug
Win32 ------
1> stdafx.cpp
1> ConsoleApplication2.cpp
1> ConsoleApplication2.vcxproj -> c:\users\brian\documents\AndroidWorks\
Projects\ConsoleApplication2\Debug\ConsoleApplication2.exe
========== Build: 1 succeeded, 0 failed, 0 up-to-date, 0 skipped ==========

And then a black box appears and then disappears on your screen. Well done, you just
ran your first ever Visual Studio-built program. Of course, it really didn’t do too much
but if you look carefully at the code in the large window, you’ll see there’s very little
code to run.

// ConsoleApplication2.cpp : Defines the entry point for the console
application.
#include "stdafx.h"
int _tmain(int argc, _TCHAR* argv[])
{

return 0;
}

�ere’s only one function, called _tmain and it has one instruction to return, that’s exactly
what it did. But how did it do it?

Running a program consists of at least three main stages: (1) compiling, (2) linking,
and (3) then running.

If you look at the Build output, you can see that two cpp �les were compiled; they
were then linked together, though it does not explicitly tell you, it then made the result-
ing EXE �le, the actual program was stored in a directory, called, on my machine;
c:\users\brian\documents\AndroidWorks\Projects\ConsoleApplication2\Debug\
ConsoleApplication2.exe.

Visual Studio then automatically ran the program in something called Debug Mode
and executed the �rst instruction it saw…which was to return.

Now we don’t really need to know much about how the black box gets created and the
program starts up, but let’s try to slow things down.

Visual Studio is an Editor, but it is also a very powerful debugger. �at allows us to
examine code while its running and also to stop code at certain points, hover your cursor
over the gray bar next to the return 0; instruction. Press the right mouse button and a gray
dot will appear.

Introducing Visual Studio 9

�is is a breakpoint . Hit F5 again.
Now what do we see?

We should see an Empty window, this was the black box that popped up and disappeared
before we could see it. �is is called a console window; it’s basically a small user output
box that we will o�en display some text in, usually to tell us something important about
our programs.

But why can we see it now?
Look at the Visual Studio again…it seems to be doing something interesting.

1. Getting Started10

Our gray dot, now has an arrow in it, and we now have a new window on show, though this
may vary on your machine because I have some presets that show me autos and arrange
my windows the way I like them, but, we will share the same experience of how our code
runs.

�e program has stopped, dead in its tracks and is waiting for you to allow it to
continue or to step through its instructions. Press F5 again…or press the green Arrow
Continue box…the window now vanishes again. �e program continued and did its
return, closing the program and closing the console window.

So far so good, but it’s not exactly the cutting edge, let’s make it do something.
Traditionally, the �rst program that any new coder writes is a hello world program, so

let’s try to do that now.

Hello World
In this very simple console application, we really only can do one or two things, we can
print some text, and input some text. So let’s start with printing some text.

�e simplest way to print text in a C� � program is to use a function called cout , its
part of a family of routines from what’s called the STL, or Standard Template Library. All
C� � programs have access to these functions, and there are a lot of them. However, we’re
only interested for now in cout , which a quick check of my favorite C� � reference site
www.cplusplus.com tells me is part of the � iostream � class.

Now, if I want to use things in a class I need to make sure my program includes the
class de�nitions, I also need to check the format for the function, again check my favorite
site.

For speed, I’ve added them here.

Hello Place of My Choosing 11

Add the lines.

#include <iostream>

and

std::cout << "Hello World";

As I have in the screenshot. Notice the breakpoint is still there, hit F5 again and you should
see Hello World at the top of the console window. If you get a build error, carefully check
the typing, at this point, the only thing that can really go wrong is a typo.

Congratulations! You have your �rst Hello World, or whatever childish expletives
you decided to use. �ere’s nothing funnier for beginners than to make a computer swear.

Hello Place of My Choosing
Let’s expand on things a bit, and try to change the output depending on an input.

�is means using cout ’s partner in crime cin .
Did you notice the format of cout?

std::cout << "Hello World";

�e std:: part indicates that the cout belongs to the namespace of the Standard
Template Library, namespace is a concept in C� � that allows us to group things together,
and reuse common names, a bit like a family name. �ere are many people called Brian
in the world, but not so many in the Beuken family, I think I’m the only one, Brian is a
common name, Brian Beuken is speci�c to me. So, I’m Brian from the Beuken namespace.

1. Getting Started12

�e � � part indicates that the text is going out to the console, it wouldn’t be of much
use if it was going in…in fact it would not compile if we used � � .

So, cin will also need that std identi�cation and some indication of the direction
of �ow of the data.

If text goes � � (out) then input must come (in) � � but it also means it needs to be
stored somewhere, usually in a variable of our choice.

We want to enter some text, which is best stored in what’s called a string. Now string
is also a std class and so we need to also include the � string � class header, like we did
with � iostream � .

Add the new lines like this;

// ConsoleApplication2.cpp : Defines the entry point for the console
application.

#include "stdafx.h"
#include <iostream>
#include <string>
int _tmain(int argc, _TCHAR* argv[])

{
std::string mystring;
std::cin >> mystring;
std::cout << "Hello "<< mystring;
return 0;

}

You should still have a gray dot on your return 0; line to indicate a break point, if not,
add one, so your program will stop long enough for you to read your e�orts. Press F5…
the screen will be blank, but you can enter some location, or friends name, when you press
Enter, you will display Hello…then whatever you typed.

Not bad…we’ve done our �rst input and output and compiled and ran our �rst two
Visual Studio programs, only a few million more to go till you master it. As an exercise, see
if you can remove the breakpoint, and add another instance of cin to let it create a pause
for you…hint, cin will �nish and move to the next instruction when you press Enter.

Now it’s time to focus on the target system we are using, we’ll come back to the Visual
Studio soon.

13

2Getting Our
Target Ready

Now before we get into the setting up, it might be wise at this point for you to skip ahead
to the Appendix section of this book and quickly read Appendix III, which covers the
importance of using source control? You don’t need to use source control, especially if
you are �nding it a bit confusing at this point, but a�er a while source control is going
to be something you really will need to start using. It’s ok, there are many free options,
but you can make up your own mind whether now is the time to start using it. I want
you to be comfortable in what you are doing �rst before adding new tools you may �nd
confusing.

Setting Up the Target
If you bought a preformatted SD card or managed to install it from the website, our target
should be quite happily running its OS now, but ironically we’re not going to spend a
 massive amount of time using it.

It really is wise though, to spend just a little bit of time reading the manuals, or wiki
sites that your maker recommends just to familiarize yourself with your target machine.
As I write here, I’m using a Raspberry Pi, but I am aware that how this works now, is quite
di�erent to how it worked 6�months ago, so minor variations will have to be expected and
dealt with by you using a tiny bit of imagination.

We’re not really here to talk about the joys of navigation on a Linux-based system, and
I have never touched Linux before I got my �rst Raspberry Pi, so I’ve been on my search
engines to �nd out the key things I need to know. It turned out that I needed to know a lot!

2. Getting Our Target Ready14

But probably the �rst and most important thing you need to know is how to make sure your
version of Rasbian (or other Linux) is up-to-date.

I wish I could spend some time explaining to anyone not using a Raspberry machine,
how to get it set up and running it but in truth there are just too many of them out there,
and I really don’t want this to be a book about single board computers (SBCs) and their
idiosyncrasies, it’s meant to be about programming. So I will apologize straight away if I
miss out some small detail that your particular SBC has or does not have that will prevent
you from moving forward. I am trusting that you know just enough about your unit to get
it set up and working. In nearly every unit I’ve looked at, SBC makers maintain forums/
wikis or other means of keeping their communities updated. �at’s where you need to look
for speci�c information on your system. I will post some info on the support site, but I can’t
really guarantee to cover all the possible systems.

�roughout this book I am only going to show code for the Raspberry range, but fear not,
the only signi�cant* di�erences relate to the graphic setup and whether it works in a window
or full screen. So you will �nd that on the non-Raspberry machines everything should work
if you use the standard Linux version downloads from the support site, and do NOT set up a
Raspberry value in the Preprocessor Macros (explained later). Later I will provide a Graphics
Class that allows you a duel option of Linux X11 and Raspberry, which should cover pretty
much any standard Linux display. In addition, take care to note some of your include and
library directories will be di�erent. Most versions of Linux keep the �les we need in the same
places, but reality can bite sometimes, and the fact is that a few systems will have di�erent
locations of those �les. I will record as many as I can on the support site but really it’s up to
you to �nd them as I won’t have every single machine available to test and check.

�at said, I’ve collected quite a few of the little beasties, so I’ll try to maintain a run-
ning list of issues on the support site.

Generally, the version of the OS you get from the target maker is going to be the
most up-to-date, and you will use that to burn your �rst SD card, you’ll �nd instructions
on how to do that with your documentation or makers website, so I won’t repeat that
there. If you �nd, however, that your makers OS is not up to scratch and a lot of them are
quite poor, Armbian from Armbian.com is a very good alternative, o�en providing a more
 stable and driver-equipped OS on a very wide range of chipsets.

However, it is wise to know the OS’s update from time to time as do several standard
apps that come with your OS and these are not all updated at the same time. Makers will
post new builds for you to create new SDs. However, be aware that every time you make
a new fresh SD you lose any package libraries or projects that you installed on the previ-
ous version. So rather than continually burning SDs every time a new build comes, and
potentially losing your useful tools and libs, use the update/upgrade routine described in
Appendix II. It’s not a bad idea to make a backup ISO �le of your SD card from time to
time, in case you need to reburn it for some reason.

From our view point as programmers, it’s a just a target to run code, whether it runs in its
console text mode or a Graphic User Interface (GUI), we’re going to make it do other things
and the only thing we want most in the world right now is the IP address of the target machine.

Personally I prefer to have the GUI running while developing keyboard-based games,
and console for mouse games, for reasons that will become clear later, but it should be

* �ere is one other signi�cant di�erence, which relates to Shaders, but so far I only �nd this to be a problem
on intel-based machines, full info is on the support site.

Oh Wait…Did We Plug-In? 15

noted that the GUI is eating up some of the CPU and GPU bandwidth, actually quite a lot,
so it’s your call at this point if you want to allow it to run. If you booted up as a console text
system, enter startx to go to the GUI. Nothing we’re going to do so far is going to really
stress the target, so keep it in whatever mode works for you. Of course, if your system
defaults to a graphic interface, you can ignore this.

First thing we must do, once we’re all connected up correctly, is to ID our target on
our network. If you don’t have the graphical interface and have a console screen, then we
can simply type ifconfig and press enter, we’ll get a slightly confusing set of numbers,
I’ll explain them in a moment.

If we have the GUI on screen click on the terminal button to open a window that
allows us to enter ifconfig to get the IP address. You can also hover your mouse pointer
over the wi�/network icon usually on the top right of the screen.

Oh Wait…Did We Plug-In?
Of course, we have to assume that it is either hooked to the Dev PC via a cable, or it plugs
into a router on the Dev PC’s network, or that it is connected up to the same wi� network
as the DevPC with a USB�Network dongle. �e key point is that your target and your
development PC/Mac need to be on the same network and they need to be connected. �is
needs to be a network connection, not USB.

Let’s get back to those numbers, whether you entered ifconfig in the console mode
or in the terminal window, you should get something like this.

A lot of confusing numbers. But we’re looking for the wired and wi� Ethernet connection.
Either will do, but ideally the wired one, which is described as eth0.

If you don’t have a wired connection but you do have a wi� dongle plugged into your
Raspberry Pi, you should then have a wlan0 connection. We can use that too, it’s going to be
a lot slower but we’re not trying to shi� gigabytes of data, so we can use it.

2. Getting Our Target Ready16

We’re looking for the IP address, here called the inet addr . �is is a number that
identi�es your computer on your network, each computer on your network will have a dif-
ferent IP number, and when connecting to the Internet, this is like your computer’s name or
phone number to the network.

�e default IP number for any unassigned computer connection is usually 127.0.0.0 or
127.0.0.1, and you will probably see that on the second set of numbers, if your Raspberry
Pi is still all fresh and new with nothing else added.

If you see 127.0.0.0/1 on both the �rst and third set of numbers it means there may be
a connection issue with your Raspberry Pi and you’ll have to try to resolve that…I can’t
o�er a lot of help beyond, try turning it on and o� again, check the dongle, change the
cable, and review the Raspberry Pi forums for help.

�e number on my machine is currently 192.168.178.13, a pretty common standard
internal IP address for a home network. If you’re connected directly to your target, or
using a network system in an o�ce or school you may have a completely di�erent set of
numbers decided on by your ICT dept... But the key is, it’s not 127.0.0.0/1.

So �nd the wired IP address, and if not wired, �nd the wi� IP address.
Take a note of the number; we’ll need that to set up VisualGDB, so it knows what

target machine to talk to.
You probably will have to do this again from time to time, especially if you are respon-

sible and switch all your equipment o� when done. �e IP address is assigned by the sys-
tem when it starts up and connects, and though, if all things are equal it will provide
the same number, you can’t be 100� certain. �e order things power up, or adding new
computers onto your network may change the assigned IP address. But it’s simple enough
to reset, now that you know how to get the IP address.

You can also hover your mouse cursor over your network signal indicator, this works
on the Raspberry range and most others, ignore the /24 part at the end.

Starting Up VisualGDB for the First Time
Getting back to your development PC, it’s now time to make sure it’s all ready to be your
main tool for programming. Setting up VisualGDB is really simple, but do make sure you
have run Visual Studio at least once and shut it down before you try.

Getting the Machines to Talk 17

�e installation process is really painless, if you have not done so already, download
and install from this webpage following the simple instructions:

http://visualgdb.com/download/.
And then next time you �re up visual studio and agree to the activation of VisualGDB,

you won’t see anything new, until you select.
File�New�Project .
And you will discover this in your Installed�Templates�VisualGDB section.

We are going to be always using the Linux Project Wizard option; we’ll discuss this more
when we start our �rst project. Before that, let’s get a connection sorted.

Getting the Machines to Talk
�ere are two basic ways that our PC can talk to our Raspberry Pi via a hardware cable,
which is generally going to be the fastest, or via a wi�, which assumes that both machines
are on the same network.

�ough you can hook the PC up directly to the Raspberry Pi, most people with mul-
tiple computers use some form of router, it doesn’t make a lot of di�erence, so long as both
machines are on the same internal/home/o�ce network and therefore can ping each other
to create a network communication. I suppose it’s possible to even connect to them over
the Internet…but I can’t see the point really.

Wi� basically works the same way as a cable, but is a lot slower. Basic wired net speeds
are rated around 100Mb/s, which is the max our Raspberry Pi can handle, despite some
PCs and SBCs having 1000Mb/s systems. Although wi� tends to be under 10Mb/s, though
as with all techs, they are getting faster, and 10Mb/s is just fast enough to work with, but

2. Getting Our Target Ready18

more speed is always better, so try to use a wire. I �nd mine tends to hover around 30Mb/s
on a supposedly stated 100Mb/s capability. Don’t be too alarmed if you �nd that actual
performance of your equipment does not match the stated performance on the box.

I actually have a small technical issue on my main home dev PC, which prevents it
from hooking up directly with a wired connection, (i.e., it’s borked and I never managed
to �x it) so I only use it with wi� or a network switch attached to a router. How you hook
it up is not as important as the fact it is actually hooked up.

All this technical talk makes it sound like we have to perform some kind of
black magic rituals, but in reality hooking our machines up is pretty automated by
VisualGDB.

Sending Our First Program
We’ve already seen that convention dictates our �rst program on a new machine should be
hello world, so let’s repeat what we did before and create a hello world program, this time
on the target system.

Let’s start a new fresh project, by �ring up Visual Studio, and then by clicking on.
FILE�New�Project .
To bring up the New Project Dialog Boxes, choose Linux Project Wizard, and take

care to name it HelloWorld with no spaces. Rasbian/Linux can be a bit fussy about spaces
in �lenames.

Sending Our First Program 19

Take note that the Location here does not exist on your machine; it exists on mine! You
can use the Browse button on the right to �nd a suitable location on your hard drive
to place this project. Ideally, somewhere from your root Directory in a folder called
OpenGLESProjects or simply SBCProjects. Avoid branching o� from directories that may
have spaces. �is directory structure will be copied on your target machine, and spaces
can cause problems for Linux-based compilers. In fact as a general rule of thumb, always
create dev directories o� a main drive location. �e confusion with spaces in Directory
naming is a long established con�ict between Windows and Linux; let’s not allow it to get
in our way.

Once you are happy with your project name and location, press the OK button and
this will appear.

You can choose one of four build systems, I want you to use GNU Make, as you are a
beginner, it exposes more of the values we need to see directly inside the VisualGDB,
select that and hit next. MSBuild is a generally nicer system to use when you are a little
more experienced, but it does hide some things from the VisualGDB, which we don’t want
you to be hunting for. CMake is an awesome system if you have a more advanced under-
standing of how make �les work. I’ve never used QT, so won’t make any comment on that.
However, GNU is the system we need to use for now, so hitting next will bring up this
next popup which is a nice and important dialog as this is where we tell our PC, where our
target system is by entering the IP address and name.

2. Getting Our Target Ready20

As you can see, I already have a Raspberry Pi, listed as the remote computer, this time on
192.168.0.100, but chances are you will not, so click on the down arrow at the end of the
info box to get something like this.

Sending Our First Program 21

Again, as I have had a lot of machines attached, many of which have altered their IP as I
was using them, it is showing all the machines it knows, on your �rst setup you won’t get
this. What we really want is the Create a new SSH connection option.

Click on that to open up the setup box that is where most of the good stu� happens.

Here you can see a blank box, you have to give it the IP address as the Host name, the user
name (pi) and the password, (raspberry), and also tick the box for setting up the public key
authentication. �at by the way is why I have so many options on my computer for target
machines, they all are getting saved.

2. Getting Our Target Ready22

If all has been entered correctly, a short handshaking dialog box will pop up then you will
see this.

Hit save and now that the machine will be locked into your system’s memory saving you
have a lot of time later.

You’ll then see a box appearing as it does various tests and checks, which will vanish
if all is ok. Again this probably won’t happen to you as a �rst time user, but you may get
this box appearing.

Sending Our First Program 23

Just press ok.
Your dialog box will now come up with this.

Take note of the transferred �les section. �is lets the system know what kind of �les we
have to send down to the target to compile. Again you may not see this on your �rst try,
but as I have been using the system for some time, it has remembered some of the �le types
I want to send…You probably only have a few and at this point that’s ok, we’ll add to them
as we go, and this can be edited later if we need to.

�at’s it, hit Finish, the system will do some testing, a few boxes will pop and
 progress bars will seem to do their thing. �ey are indicating the testing of compiles and
sending of data to the target machine, including setting up some annoyingly complex
directories. But when you check things out on your Visual studio it should seem remark-
ably familiar.

2. Getting Our Target Ready24

Sending Our First Program 25

Go on run it. Click on the green arrow.
As before, the project compiled in the background switched its display to a debug

display for a moment then something di�erent happened.
Instead of a black console window appearing and disappearing, we got this apparent

error, with a big scary! in a triangle.

It’s not actually an error, it is simply telling us that the program has stopped suddenly…
and it found that a bit odd!

But also look closely at your output window (if you have one open, I hope you do).
Can you see it says Hello World?
Instead of opening up a console window on our Target, VisualGDB has intercepted

that output and sent it to an output window.

2. Getting Our Target Ready26

Sending Our First Program 27

Now do what we did before and put a breakpoint at the return instruction. Hit the run
button and look for what we get. It should all be very familiar to us now.

2. Getting Our Target Ready28

�ere are only two things we need to know here... �rst and most important, our code is
not running on our PC, its running on our target. Our PC is talking to it, and getting info
that allows it to know where it is in the program cycle so that the debugger can correctly
display the info.

Second, the VisualGDB console on our PC is actually pretending to be our targets
console window, when our target sends to its console it will appear there. It’s a process
called routing (Actually it will cause a couple of minor issues later but for now we’ll leave
it alone).

We could open up a console window on the machine if we wanted, but really we don’t,
consoles are really for information only, and having them on our development machine is
much better than having them on the target, which we want to be a graphic display when
we write our games.

Congratulations! You’ve just had your �rst project run on your target. And it really
wasn’t very hard at all. Feel free to change it, add silly names and extra output, get com-
fortable with this, we have taken an important �rst step in a target-based development.

Debugger Hangs Too Much?
When I �rst started using VisualGDB, I had no issues with it at all; it was, in fact, seam-
less in its use. But over the past 3 or 4�months, I’ve had some serious frustrations with it
hanging on my Visual Studio, targeting any Raspberry Pi, when trying to single step or set
break points in the debugger.

A debugger that crashes constantly isn’t a very good debugger, and I was rather irked
by this and contacted Sysprogs who make VisualGDB. �eir advice was to replace the copy
of GDB on the Pi itself.

GDB is the program that does most of the debugging work on the Pi to send data back
for display. Without it we can’t access data on the Pi.

It seems that at some point during its updates, the Rasbian version of GDB version
7.7.1 has fallen behind the update loop, and it’s not actually VisualGDB that is crashing
but GDB on the Pi, because VisualGDB is expecting a later version. Updating Rasbian, or
GDB itself will not help, as it considers the current version to be the latest, for Rasbian,
which it is! However, GNU who make it do have a most up-to-date versions and it would
seem that VisualGDB much prefers these.

Replacing GDB on the Raspberry Pi is a bit of a task, especially for a Linux noob like
me. However, I had to bite the bullet and use what little understanding I have of how Linux
installs things, to replace GDB. Here are the steps I worked out, but only consider these
if you are getting unacceptable hangs in your debugger. �is may happen later as your
projects get more complex, so you can come back to this then. Other targets should have
the most up-to-date version of GDB unaltered on their versions of Linux, so should be a
problem only for Raspberry machines. But I did notice that it was also present in the Nano
Pi systems. So best to check.

On your Raspberry Pi connected to the Internet, open a terminal and then enter these
commands one at a time, some take a lot longer than others but the overall process does
take quite some time, so best to do it over lunch or some other noncritical time.

Debugger Hangs Too Much? 29

wget https:/ftp.gnu.org/gnu/gdb/gdb-7.12.tar.gz -P ~/Downloads/
tar vxzf ~/Downloads/gdb-7.12.tar.gz -C ~/Downloads/
sudo apt-get update
sudo apt-get upgrade -y
sudo apt-get install libreadline-dev
sudo apt-get install texinfo
sudo apt-get autoclean
cd ~/Downloads/gdb-7.12
these last two take the most time
./configure --prefix=/usr --with-system-readline && make -j4
sudo make -j4 -C gdb/ install

�e update and upgrade commands are just to make sure you have the latest version, if you
are sure you already have that you can skip those two lines, but it’s usually better to be safe
than sorry (also if using a single core Pi, you can leave out the �j4 arguments, which are
really for multicore compiling). A�er doing all this, we should be good to go, reset your
Raspberry Pi, when it comes back, you can open a terminal and type gdb –version and it
should now report a new generic version 7.12.1 (or later) of GDB, which is not the Rasbian
speci�c version. I can’t say if this will have an impact on any programs or projects that are
relying on the Rasbian speci�c version, so you install this �x at your own risk.

What I can say with some happy certainty is that it cured my constant and very ran-
dom hang-up issues, and saved a few keyboards from coder rage smashes. I hope that the
Rasbian version gets an update soon, so this �x will no longer be needed.

All this only impacts us if we are using default toolchain settings when we start a
project up to build on a remote target, if, when starting, you choose the option available, to
try loading the GDB installed on your target, it may be happy enough to use it. As I recom-
mend all beginners should start with default settings, there’s a pretty fair chance that you
will have this issue on systems which have earlier than 7.12.1 GDB.

31

3Using the Target

Ready to Rock and Ermm Indeed Roll!
So far so good, we have a dev system on our PC, which gives us a professional Integrated
Development Environment (IDE) and a means to send code and other data to the
Raspberry Pi for compiling, then running, and debugging.

At the moment we are using a remote-based compiling system, this is e�ective and
simple to set up, but has some drawbacks, mainly on the compilation speed. Our target
machine has only a fraction of the power of our PC, so it is going to compile our code
much slower than our PC could do it, so it makes more sense to do the compilation on
our PC.

�at’s something we’ll discuss later, as this kind of cross platform Dev has one or two
minor pitfalls I want all of us to avoid till we’re more comfortable with our set up. If we
just use the compiler on the target, which was already there or we installed it, there is basi-
cally no doubt that it works on that target. Running a compiler to output code on our PC
is 99.9� of the time going to be �ne, but I want you to continue doing what you’re doing
now. I want you to get a sense for how long compilation can take so that when we do switch
you will know the bene�ts.

For now though we’ve achieved something, getting code from our keyboard onto the
target screen, that’s worth a pat on the back and celebratory swig of strong programmer
co�ee.

But in the next chapter, it’s time to get serious a�er a bit of explanation and some
proper setting up!

3. Using the Target32

Graphics Explained!
So far we’ve managed to get a bit of code going and print some text; however, to write
games we need nice pretty graphics in glorious color with lovely animations. But to do that
we need to ask the video system in our target to draw our graphics. And there lies a prob-
lem for us as novice coders. Asking a very complex hardware chip to do even the simplest
things is really a hard work, and we generally don’t have access to all the relevant registers
and access protocols the chip wants…How then do we do graphics?

Back in the (good) old days, screen displays were generally memory mapped in some
way, so if you wrote a byte to the memory area representing the screen then a pixel would
appear.

Sadly those days are gone, with the advent of ever more powerful graphic chips whose
sole purpose was to produce 3D objects in virtual space on a �at panel, actually drawing
�at-panel graphics directly has fallen out of favor (though it can still be done on some
machines).

�e preferred method these days is to ask our Graphics Processing Unit (GPU) to draw
things for us, usually triangles. �ose are the most beloved of all coder graphic primitives.

But getting our GPU chip to draw even simple triangles means a lot of very low-level
requests for hardware to set up registers, send data, con�rm data, attach data, and so on…
it’s a pain.

To relieve that pain, hardware manufacturers make their systems compliant with
graphic Application Programming Interface (APIs), or more accurately graphic API’s are
produced for hardware systems, but given that there is no sense in limiting your market,
hardware makers generally introduces new features to their hardware slowly, to allow the
API’s a chance to incorporate new features.

�ere are two dominating APIs in the games �eld. Direct X from Microso�, which is
used by PCs and most other Windows-based systems, and Microso�’s Xbox consoles. It’s
a vast, frequently updated, and powerful API, which on recent versions of Windows has
been rolled into the OS itself, so is no longer an additional download.

�is is very much a workhorse API for any PC, and its constant development over the
years has created a standard where its market dominance was so powerful that hardware
was forced to comply with it allowing for widespread standardization of desktop GPUs,
which, in turn, allowed the hardware makers to focus more on performance ahead of fancy
new graphic gimmicks that most users could not access. �is also had the bene�t of allow-
ing coders to specialize and drive the graphics tech forward to the levels that we see today.

New hardware features do come along but under controlled release conditions and
almost always with the APIs updated and ready to use them when they come to market.

�e other giant is OpenGL, which is available for almost every computer-based
 system imaginable, it is a more open and community friendly API than DirectX, but it
does have a standards body, �e Khronos group who maintain and update it when needed,
and enhances performance, maintaining the reference materials that users and hardware
makers can use to develop new so�ware and hardware.

It also has a very popular subbranch called OpenGL ES, the ES stands for embedded
systems, and is considered a low overhead high-performance version for use in machines
that need low power consumption and do not have massively powerful chips or memory.
It does have some limitations and a lot of previously deprecated but still usable features
of full OpenGL that have been removed to keep it slim. But it is a popular API because

Where Is OpenGLES2.0 on My Target? 33

of its use in the vast majority of mobile phones and other small devices, including our
Raspberry Pi and almost all other SingleBoard Computers on the market.

�ere are also proprietary APIs from Nintendo and Sony, which are unique but famil-
iar in their approach to things, taking the best of OpenGL and Direct X and adapting
them for their speci�c needs. As they are only available on the makers own machines,
these APIs are highly specialized and optimized for known hardware con�gurations and
are generally very high performance.

In addition, sadly they are 100� con�dential and not to be discussed in this book.
However, it’s fair to say once you understand how to use one API you should be able to
adapt to the others because they all generally try to do the same things in similar ways at
least from the users point of view. What happens under the hood should probably stay
under the hood unless or until you are an expert in 3D maths and hardware coding.

So It Be OpenGL ES Ye Be Wanting Arrgghhh!
Is it Talk like a Pirate day (September 19)? No, oh well every book should have at least one
talk like a pirate comment, that’s mine…it if is Talk like a Pirate day, add an arghhh at the
end of every sentence in this section, maybe an occasional, me hearty, too.

We’re almost ready to start some proper tech coding; we are going to enter the world
of graphics by doing some 2D games, let’s stick to a few very simple concepts and add to
our knowledge of how to use OpenGL ES as we go.

�is is one point where our SBC target as a console concept lets us down a little.
Consoles, of course, have those very powerful graphic hardware features we all love, and
also have those specialized APIs I mentioned before. What these do is allow for a more high
level of manipulation of all the machines graphic systems, which, in turn, forms the basis of
their SDKs, which is a collection of enhancements to the So�ware Development Kit (API),
and various so�ware packages to control graphics, assets, memory, sound, and so on.

We don’t have an SDK…and writing a fully functioning SDK is a way beyond the
scope of this book. But we can identify the key components we will need to write basic
game concepts and put together our own very basic project layout as we go. We’ll talk
about that more a�er we’ve done our project work. To begin with, the collection of rou-
tines and functions we will put together throughout this book, is more of a framework
than a fully formed SDK; but we will add to it as we need to, until we have something we
can be happy to share with others. When you do eventually manage to get your hands on a
proper console, this experience of what goes into the framework will be a massive boost to
you. Programmers never like to reinvent the wheel but they do like to know how to make
them should they ever �nd themselves having to work with square ones.

As we go along with each game, we’ll try to add various components to our framework
and make things easier for the games that follow. To start with we need to use the most
basic graphic functions we have available, which in our case is…drumroll, OpenGLES
2.0…arrghh me hearty!

Where Is OpenGLES2.0 on My Target?
It’s interesting that the Raspberry Pi, having by far the largest market share of all SBCs is
actually the one machine out of dozens, which is the exception to the rule when it comes
to OpenGLES libraries. It was always designed to be a machine that users could write

3. Using the Target34

anything on, so it’s OpenGLES2.0 was part of the OS distribution from day one, even
better; the Raspberry Pi foundation somehow convinced Broadcom to provide extra func-
tions to make using the GPU even easier, which basically means that the Raspberry range
does its graphics setup one way, and all the others do it….well the correct, but slightly
trickier way? So the set up and location of libraries for OpenGLES2.0 will vary on any
non-Raspberry machine.

Now if you are using a sensible target, you will have your OpenGLES2.0 fully inte-
grated into your hardware, you will have KHR, EGL and GLES2 folders somewhere on
your machine, and your system is capable of completely accessing the GPU. Most of the
main targets do that. Sadly a few of them don’t and it could be a real chore to locate and
install the correct libraries. �e reality is if you want your particular machine to have its
GPU fully functioning where the makers have not provided so�ware to do that, that’s a
task you need to take on yourself. I have spent hours on forums and google, hunting down
libraries only to �nd that they don’t work on a particular target even though it has the
same GPU.

In addition, there are legal aspects that limit where you can access the particular
library you need for your particular brand, that would take way too long to debate and
discuss. So your main recourse if you do not have default Open GLES installed, is consult
your maker, the user community, and the hardware manufacturers. �e answers should
be there somewhere.

However, if you �nd that you can’t locate them there is a reasonable catch (almost) all
solution, which works for most machines, which is the Mesa 3D Graphics library, which
will make use of any exposed GPU features you have on your system where it can detect
them, and where not, the so�ware emulate them as best as possible.

What that gives us is a pretty reliable way of having the OpenGLES2.0 functions
available to us, even if not all the hardware is otherwise available. So if you are using a
machine where you have to install OpenGLES2.0 libs, and you cannot get them from the
maker’s site for your speci�c GPU….do this in a terminal in your target.

sudo apt-get install libgles2-mesa-dev

(You don’t need the sudo if you are using a machine that gives you a root terminal).
Now you should �nd the EGL and GLES2 folders in your /usr/include folders, which is

where most normal forms of Linux seem to install the �les. You’ll also almost certainly get
at least one binary lib, libGLESv2.so, which is compatible with your hardware or provides
the same functions in emulation. It will be in your /usr/lib/name_depends_on_cpu folder.

I have to make clear though, on SBCs, these are not always optimal, they will let you
create and build graphic games but the performance is going to be variable if your hard-
ware has not made direct access available. As soon as possible you need to replace them
with proper drivers for your machine, if they are not available, hassle the makers on their
forums. A board without proper graphic drivers is simply not going to perform at optimal
levels and that does not help their cause of selling a board for multiple uses. �is is in my
view one reason why the Raspberry range is such a success, everything you need is there
ready and waiting, even if it’s in odd directories.

I’ve noted that all this works for most machines, sadly there are a few that just don’t
have their GPUs open to our code and nothing we do is going to get them working. Chase
the makers, that’s all you can do, or buy a cheap simple unit with OpenGLES2.0, such as

A Nice New Project with Graphics 35

the Raspberry Pi Zero, or NanoPi M1. Before buying any SBC for this kind of work, make
sure that the OpenGLES2.0 drivers are available and working. I will post some updates on
the support site of systems that I’ve tried.

A Nice New Project with Graphics
Our old console program has served its purpose, it’s time for us to produce a proper game
project, so let’s start a new one and go through the process of setting up an OpenGLES2.0
graphics system, which will let us produce our �rst couple of very simple games.

�is is the point in most books where you are told to go and download a project from a
website and work on it, and this book is no exception, you’ll �nd the project GameProject1
on the support website, but if you are new to coding, it is really a good idea to get some
practice of just entering code into your IDE, and if you are a beginner, I strongly suggest
you to enter the next program in by hand as I go through it. You’ll make a ton of typing
errors, but that’s all a good practice for �nding real bugs later. We’re going to go through
the whole process of starting a project and building up the small arsenal of �les we’re going
to use throughout this book to create a framework for writing all manner of simple games.

At this point, it might be wise to locate some good online resources for OpenGLES2.0.
Googling for OpenGL will bring up a plethora of main OpenGL sites and some of those
are really good until they get deeper into full OpenGL which we can’t really do, or are too
focused on the older OpenGL1.x, which is no longer in general use.

�e Khronos Groups’ page’s main focus is on documenting the feature set of
OpenGLES2.0, so there’s not a lot of easy to use tutorials but it is the goto place for infor-
mation on how to gain access to all the features of OpenGLES2.0 (and other versions).

�e main documentation can be found here:
https:/www.khronos.org/opengles/sdk/docs/man/
Bookmark this into your browser; you will need it at di�erent points.
For a quick reference check, �e Khronos Group also supplies a handy reference card at:
https:/www.khronos.org/opengles/sdk/docs/reference_cards/OpenGL-ES-2_0-

Reference-card.pdf
Again bookmark this on your browser bar or better yet, print it out and put it on the

wall next to where you work.
In addition, I hope my publisher does not object, but the primary reference book for

OpenGLES2.0 is the so-called Gold Book, endorsed by the Khronos Group: OpenGLES
2.0 Programming Guide by Aa�ab Munshi, Dan Ginsburg, Dave Shreiner (2008; Addison-
Wesley Professional; Upper Saddle River, NJ). A copy of this book is considered to be
essential to keep by your side when working on OpenGLES2.0. It’s not as easy to �nd as it
once was, but the updated version for OpenGLES3.0 is almost as usable.

So Much Typing?
One of the problems with OpenGLES 2.0, is that, unlike its predecessor OpenGLES1.1 it
needs a lot of setting up, speci�cally it needs fancy bits of code called Shaders, because
OpenGL 2.0 onward uses them, and OpenGLES1.1 doesn’t. Coding ES1.1 was, therefore,
sometimes a lot easier and setting it up didn’t need as much e�ort.

So why not take the easy route and start with OpenGLES 1.1, a�er all Shaders are also
a little bit complex for a beginner, and in some ways are a special kind of new code mystery

3. Using the Target36

we could do without as we have to learn a ton of new things, but though almost all SBC
targets support OpenGLES1.1, it’s pretty obsolete now and we should try to make use of
the best API we have.

We’re not really going to do any Shader work till much later, so we can content our-
selves with some very simple get things running, type Shaders. But we still have to type
them in and at this point we have no idea what they are doing…so it’s a potential mine�eld
of confusion I want to avoid. But it’s a mine�eld we’ll get to grips with later when we are
more comfortable with what we are doing.

For now, we need to create a project, set it up to initialize OpenGLES2.0 and then
get it to set a screen up for us to draw to. �at’s the most fundamental basics we have
to do �rst, the rest will fall into that. So if you want to start fresh rather than load the
GameProject1 �les, let’s get started.

Our First Graphics Project!
Let’s start a new project as we did before, by clicking on FILE�New then Project to bring
up the New Project Dialog Boxes.

Just like before we are going to select the VisualGDB template, choose a Linux Project
Wizard, and enter our project as GameProject1. �is is the last time I’m going to explain
this process, so make sure you totally understand it, from now on I’ll just tell you to set up
a project, you can refer back to this or the previous example if you really need to. But it’s
pretty intuitive, so I’m sure you’ll know what you’re doing now.

Our First Graphics Project! 37

Make sure you name it and put it in a suitable �le path. �is example is not suitable,
because it is using previous use; default path to the Android projects I had been working
on before I did this example. Take note to check the directory before you click OK. I’ll
enter a path to my SBC projects instead. Once done, pressing ok, takes us to the type of
project we want to build.

We are now once again at the New Linux Project Dialog box, which should be set
to use your choice of make; as I’ve said before I tend to prefer GNU make, especially for
target-based building. For Language standard, Choose C� � for a simple Hello world start
project.

If you have this, just hit next and then repeat the earlier process for connecting your
machine, though if the IP address has not changed you no longer need to set up a new
SSH connection.

Click Next, let the wizard do its thing to take you to the second page of New Linux
Project where you can enter your targets detail. �en once more click on Next, it will do a
bunch of checks to make sure that the connection is good.

3. Using the Target38

Finally bringing up the last part of the New Linux Project Wizard.

Our First Graphics Project! 39

Where you now get the chance to add the list of transferred �les and make changes to
the way �les are accessed. You don’t usually need to alter anything from the defaults, and
if you know all the �le types you are going to add, you can list them in the Transferred
�les. But if you don’t it’s ok, it’s possible to add them later.

At this point, you think we’d be ready to go, but no, all we’ve done is set up a standard
C� � project, not a graphic project. We’re going to use OpenGLES2.0 and perhaps a few
other things that use header �les that related to prebuild libraries…so we have to add those
to our project.

Click on the VS Project tab and at the bottom you will see VisualGDB Project
properties.

�is brings up this the Project properties, select Make�le Settings, and you should get
a pretty empty list of Con�guration settings.

Add this line to include directories.
/opt/vc/include/opt/vc/include/interface/vcos/pthreads/opt/vc/include/interface/opt/

vc/include/interface/vmcs_host/linux
And this line to Library directories.
/opt/vc/lib
And �nally these names to Library names
GLESv2 EGL bcm_host
(Take note, if not using a Raspberry Pi, you’ll need di�erent directories and libs, see

Appendix 1) As this book was going to press, �e Raspberry Foundation, released an
updated version of Rasbian, which annoyingly uses di�erent and new library names which
you may need to use if you have downloaded a fresh version of Rasbian. Please add/replace
these library names to your VisualGDB properties>Make�le settings>Library names,
 section. �is is a great example of having to be �exible and adapt as systems change and
evolve over time. Check the support site for any other updates that might be needed

GLESv2_static (name change)
EGL_static (name change)
vchiq_arm (new library)
vcos (new library)
khrn_static (new library)
So you have a properties sheet like this;

3. Using the Target40

Houston We Have a Triangle 41

What we have done is tell the compiler (on the Raspberry Pi) to look inside three impor-
tant directories on the Pi itself, which contain the Raspberry Pi’s very own versions of
OpenGLES2.0 and a special exclusive library called bcm_host to allow graphic coding on
the Broadcom GPU. It’s not needed with other GPUs and I’ll explain later how to prevent
it from being compiled when it’s not needed.

�ere are actually a whole bundle of di�erent libraries on your Raspberry Pi that will
probably get used at some point in later projects. Other SBCs may require you to download
and install these libraries and locate them yourself.

For the next couple of projects, this is all we will need, but later we will add more
system libs, as we need extra features that we know are available in the libraries that come
supplied with the Raspberry Pi, or are supplied by third parties.

When we click Apply or Ok, we may have to wait just a little while as the directories
we listed will now be transferred and cached to our PC, because I’m on a wi� network, this
takes a minute or two, but once done we are ready to go.

Good now we’re �nally ready to go with our standard boring blank graphic project,
I won’t repeat this process too o�en in future setups, except when explaining something
that will be markedly di�erent.

Are We There Yet?
No, not quite. �at was just us loading the car; we still have a journey to make.

Hello World is the �rst thing we traditionally do when writing a text program, when
writing a graphics project, traditionally the �rst thing we do is draw a triangle, so let’s not
alter the tradition. �e OpenGLES2.0 Programming guide, informally known as the Gold
Book describes this as the Hello Triangle, so let’s do our own twist on Hello Triangle.

Houston We Have a Triangle
It seems like eons ago I suggested we do something really simple to start with and put a
triangle on screen, but now we can make a start on it.

We have a lot of things we need to set up, until that’s done, we can’t get anything on
screen, so we need to �rst of all create what’s called a render surface, which is basically the
image we want to display on our screen, using something called EGL, which is a low-level
API that sits above the core OpenGLES2.0 code, and acts as a collection of helper routines
to get things going and provides the direct link to your video hardware.

We also have to do something about our Shaders, even though we have no idea at the
moment what they actually do, OpenGLES2.0 insist we have some. Talk about carts before
horses?

�en we have to actually do the creation and drawing (rendering) of our triangle.
�en make it visible!
�ese steps all need to be set up before we can even begin to see something. �at is just

so much work! But that’s just how it is, once we’ve got these ideas worked out and coded,
we don’t really have to think about them again, so let’s bite the bullet and make a start.

3. Using the Target42

�e �rst thing we have to do (a�er setting up our project of course) is remove the con-
tents of that example’s main function; we need something a bit more substantial.

We also need to deal with the fact that not everyone reading this is using a Raspberry
Pi, even though most of you are using a target that accepts our C/C� � code, will compile
to our target machine’s CPU code, we may �nd that we have di�erent GPUs. And that cre-
ates a few minor di�erences in how we can set up and initialize our code.

Broadcom GPUs on Raspberry, Mali, on most others, but also Power VR on some,
need slightly di�erent libs, and slightly di�erent setups. So we should be aware of that and
later we will keep our OpenGLES2.0 setup code in a separate �le, which will make it easier
for us to track that, for now though let’s have it as a simple single �le project.

Also some of us might want to try and run our projects on PC and our targets. Now
the level of variety in our GPU has scaled up quite a bit, but this is quite a handy thing to
be able to do, especially if you want to work away from your target machine.

Ok let’s �rst do our project on our target, then talk about setting up di�erent systems,
this is a variation on the standard OpenGLES2.0 project modi�ed to run on a Raspberry
Pi, a Raspberry, and non-Raspberry version can be found on the support site, but please
try to type this in and get some practice handling some strange looking code to let you get
used to Visual Studio and understand the compile process.

You’re almost certain to make typos and omissions, so this small program is a good
start to help you learn where to �nd the errors and �x them.

Before you enter the code though, make sure you go into you VGDB proper and add
the correct library paths and names to the Make�le settings. If you don’t then the standard
OpenGL libraries present on your Raspberry Pi (I’ll explain other targets later) will not be
located and you cannot compile.

So be sure to add the following include and library directories and names as seen in
this screen pic;

Houston We Have a Triangle 43

3. Using the Target44

Now, let’s enter the code, in the main.cpp, replacing anything that was already in there.
�is is written in C rather than C� � but its �ne for our needs.

Behold the Triangle Code!

/* Hello Triangle
code adapted from OpenGL® ES 2.0 Programming Guide
and code snippets from RPI Forum to set up Dispmanx
*/

#include <stdio.h>
#include <assert.h>
#include <math.h>
#include <sys/time.h>
#include "bcm_host.h"
#include <EGL/egl.h>
#include <EGL/eglext.h>
#include <GLES2/gl2.h>

#define TRUE 1
#define FALSE 0

typedef struct
{
 //save a Handle to a program object
 GLuint programObject;
} UserData;

typedef struct Target_State
{
 uint32_t width;
 uint32_t height;

 EGLDisplay display;
 EGLSurface surface;
 EGLContext context;

 EGL_DISPMANX_WINDOW_T nativewindow;
 UserData *user_data;
 void(*draw_func)(struct Target_State*);

} Target_State;

Target_State state;
Target_State* p_state = &state;

static const EGLint attribute_list[] =
{
 EGL_RED_SIZE,
 8,
 EGL_GREEN_SIZE,
 8,
 EGL_BLUE_SIZE,
 8,

Behold the Triangle Code! 45

 EGL_ALPHA_SIZE,
 8,
 EGL_SURFACE_TYPE,
 EGL_WINDOW_BIT,
 EGL_NONE
};

static const EGLint context_attributes[] =
{
 EGL_CONTEXT_CLIENT_VERSION,
 2,
 EGL_NONE
};

/*
 Now we have be able to create a shader object, pass the shader source
 and then compile the shader.
*/
GLuint LoadShader(GLenum type, const char *shaderSrc)
{
// 1st create the shader object
 GLuint TheShader = glCreateShader(type);

 if (TheShader == 0) return 0; // can't allocate so stop.
 / pass the shader source
 glShaderSource(TheShader, 1, &shaderSrc, NULL);
// Compile the shader
 glCompileShader(TheShader);

 GLint IsItCompiled;

// After the compile we need to check the status and report any errors
 glGetShaderiv(TheShader, GL_COMPILE_STATUS, &IsItCompiled);
 if (!IsItCompiled)
 {
 GLint RetinfoLen = 0;
 glGetShaderiv(TheShader, GL_INFO_LOG_LENGTH, &RetinfoLen);
 if (RetinfoLen > 1)
 { // standard output for errors
 char* infoLog = (char*) malloc(sizeof(char) * RetinfoLen);
 glGetShaderInfoLog(TheShader, RetinfoLen, NULL, infoLog);
 fprintf(stderr, "Error compiling this shader:\n%s\n", infoLog);
 free(infoLog);
 }
 glDeleteShader(TheShader);
 return 0;
 }
 return TheShader;
}

// Initialize the shader and program object
int Init(Target_State *p_state)
{
 p_state->user_data = (UserData*)malloc(sizeof(UserData));

3. Using the Target46

 GLbyte vShaderStr[] =
 "attribute vec4 a_position;\n"
 "attribute vec2 a_texCoord;\n"
 "varying vec2 v_texCoord;\n"
 "void main()\n"
 "{gl_Position=a_position;\n"
 " v_texCoord=a_texCoord;}\n";

 GLbyte fShaderStr[] =
 "precision mediump float;\n"
 "varying vec2 v_texCoord;\n"
 "uniform sampler2D s_texture;\n"
 "void main()\n"
 "{gl_FragColor=vec4 (1.0,0.0,0.0,1.0);}\n";

 GLuint programObject,vertexShader, fragmentShader; // we need some
variables

// Load and compile the vertex/fragment shaders
 vertexShader = LoadShader(GL_VERTEX_SHADER, (char*)vShaderStr);
 fragmentShader = LoadShader(GL_FRAGMENT_SHADER, (char*)fShaderStr);

// Create the program object
 programObject = glCreateProgram();
 if (programObject == 0) return 0;

// now we have the V and F shaders attach them to the program object
 glAttachShader(programObject, vertexShader);
 glAttachShader(programObject, fragmentShader);

// Link the program
 glLinkProgram(programObject);
// Check the link status
 GLint AreTheylinked;
 glGetProgramiv(programObject, GL_LINK_STATUS, &AreTheylinked);
 if (!AreTheylinked)
 {
 GLint RetinfoLen = 0;
// check and report any errors
 glGetProgramiv(programObject, GL_INFO_LOG_LENGTH, &RetinfoLen);
 if (RetinfoLen > 1)
 {
 GLchar* infoLog = (GLchar*)malloc(sizeof(char) * RetinfoLen);
 glGetProgramInfoLog(programObject, RetinfoLen, NULL, infoLog);
 fprintf(stderr, "Error linking program:\n%s\n", infoLog);
 free(infoLog);
 }
 glDeleteProgram(programObject);
 return FALSE;
 }

 // Store the program object
 p_state->user_data->programObject = programObject;
 glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
 return TRUE;
}

Behold the Triangle Code! 47

void init_ogl(Target_State *state, int width, int height)
{
 int32_t success = 0;
 EGLBoolean result;
 EGLint num_config;
//RPI setup is a little different to normal EGL
 DISPMANX_ELEMENT_HANDLE_T DispmanElementH;
 DISPMANX_DISPLAY_HANDLE_T DispmanDisplayH;
 DISPMANX_UPDATE_HANDLE_T DispmanUpdateH;
 VC_RECT_T dest_rect;
 VC_RECT_T src_rect;
 EGLConfig config;
// get an EGL display connection
 state->display = eglGetDisplay(EGL_DEFAULT_DISPLAY);
// initialize the EGL display connection
 result = eglInitialize(state->display, NULL, NULL);
// get an appropriate EGL frame buffer configuration
 result = eglChooseConfig(state->display, attribute_list,

&config, 1, &num_config);
 assert(EGL_FALSE != result);

// get an appropriate EGL frame buffer configuration
 result = eglBindAPI(EGL_OPENGL_ES_API);
 assert(EGL_FALSE != result);
// create an EGL rendering context
 state->context = eglCreateContext(state->display, config, EGL_

NO_CONTEXT, context_attributes);
 assert(state->context != EGL_NO_CONTEXT);
// create an EGL window surface
 state->width = width;
 state->height = height;

 dest_rect.x = 0;
 dest_rect.y = 0;
 dest_rect.width = state->width; // it needs to know our window

size
 dest_rect.height = state->height;

 src_rect.x = 0;
 src_rect.y = 0;

 DispmanDisplayH = vc_dispmanx_display_open(0);
 DispmanUpdateH = vc_dispmanx_update_start(0);

 DispmanElementH = vc_dispmanx_element_add(
 DispmanUpdateH,
 DispmanDisplayH,
 0/*layer*/,
 &dest_rect,
 0/*source*/,
 &src_rect,
 DISPMANX_PROTECTION_NONE,
 0 /*alpha value*/,
 0/*clamp*/,
 (DISPMANX_TRANSFORM_T) 0/*transform*/);
 state->nativewindow.element = DispmanElementH;
 state->nativewindow.width = state->width;
 state->nativewindow.height = state->height;
 vc_dispmanx_update_submit_sync(DispmanUpdateH);

3. Using the Target48

 state->surface = eglCreateWindowSurface(state->display, config,
&(state->nativewindow), NULL);

 assert(state->surface != EGL_NO_SURFACE);
 // connect the context to the surface
 result = eglMakeCurrent(state->display, state->surface, state-

>surface, state->context);
 assert(EGL_FALSE != result);
}

/***
Draw a triangle this is a hard coded
draw which is only good for the triangle
**/
void Draw(Target_State *p_state)
{
 UserData *userData = p_state->user_data;
 GLfloat TriVertices[] =
 {
 0.0f , 0.5f, 0.0f,
 -0.5f, -0.5f, 0.0f,
 0.5f , -0.5f, 0.0f
 };

// Setup the viewport
 glViewport(0, 0, p_state->width, p_state->height);
// Clear the color buffer
 glClear(GL_COLOR_BUFFER_BIT);
// Use the program object
 glUseProgram(userData->programObject);
// Load the vertex data
 glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, TriVertices);
 glEnableVertexAttribArray(0);
 glDrawArrays(GL_TRIANGLES, 0, 3);
 if (glGetError() != GL_NO_ERROR) printf("Oh bugger");
}

void esInitContext(Target_State *p_state)
{
 if (p_state != NULL)
 {
 memset(p_state, 0, sizeof(Target_State));
 }
}

void esRegisterDrawFunc(Target_State *p_state, void(*draw_func)
(Target_State*))
{
 p_state->draw_func = draw_func;
}

void esMainLoop(Target_State *esContext)
{
 int Counter = 0; / keep a counter
 while (Counter++ <200)
 {
 if (esContext->draw_func != NULL)
 esContext->draw_func(esContext);
// after our draw we need to swap buffers to display
 eglSwapBuffers(esContext->display, esContext->surface);

Behold the Triangle Code! 49

 }
}
int main(int argc, char *argv[])
{
 UserData user_data;
 bcm_host_init(); //RPI needs this
 esInitContext(p_state);
 init_ogl(p_state, 1024, 720);
 p_state->user_data = &user_data;

 if (!Init(p_state))
 return 0;
 esRegisterDrawFunc(p_state, Draw);
// now go do the graphic loop
 esMainLoop(p_state);
}

Sorry for making you type all that, but you’ll thank me one day. You will probably make a
few errors, and it won’t work for the �rst time. Even if it seems to compile and run, but not
do what you expect, it will have errors. �at’s normal, you need to develop some practice
in �nding mistakes, usually small ones, such as a missing line, or a mistyped symbol, but
whatever you do, do not cling to the dogma, that you typed it in exactly…because if it does
not work, you didn’t! Be cool with that. Learning to accept you will make errors, o�en, oh
so o�en, and taking responsibility for those errors so you can �nd and �x them, is vitally
important to being a responsible programmer.

�ere’s not really a lot to this code, but it is confusing that you have to do so much to
do so little. At this point, I’m not going to explain everything in here; the comments can
do that for you. But this will serve the purpose of making sure you can compile and run
an OpenGLES 2.0 project.

Compile and run, and, all being well, lo and behold, we have a triangle.

Now all this is �ne and dandy and you can take some pride in getting this up and running
if you typed it in yourself. But I �nd most entry-level programmers who are trying to
write games, come across this or similar small start-up programs, and then realize there

3. Using the Target50

is a massive disconnection between putting a triangle or square on screen and their latest,
poly laden 60GB game on the consoles. Sadly this o�en stops them in their tracks because
it’s just too big a disconnection for them to see a way forward.

And they are right, there is a massive disconnect, it’s totally confusing. But it’s mostly
a case of scale. �at 60GB game is simply moving a lot of triangles around, and it’s using
the code that allows the programmer to manage how many of these triangles are drawn
at any given time and in any given way, in any given color. �e problem we have is that we
now know how to draw a triangle, but we don’t really have any idea how to create games
with it. �at management of the way we draw things is much more important to us than
the actual mechanisms that draw all the pixels on screen.

�ere are not many games that you can do with one static, colored but rather uninter-
esting triangle, but this is mainly a test, we know it compiles, transfers, and runs on our
target, so we should be con�dent that everything works, the key point here is we have four
basic game program features in place that we coded ourselves, and can now expand on.

 � An initialization system.

 � A processing system, which will/can include user input or counters and will later
include enemies/AI.

 � A display system—which loops back to the processing until we decide to end
 creating a main loop.

 � An exit.

�ese four things are vital to almost any game program, the concept of a main loop is
especially important, and though there are variations on how it’s done, almost all games
have these. But it’s time now, to make something cool happens.

Why Are We Working in a Window?
One thing we might have noticed is that our triangle display isn’t �lling the screen, it’s
living in a small window…that’s ok, we can work with that, and there will certainly be
situations when it is desirable but for games, really it’s better to get the system to �ll the
screen, I could just change the line.

init_ogl(p_state, 1024, 720);

To 1920 and 1080, and I’d get it �lling up the screen but if I did I be making a big mistake,
which some, but not all of you reading will have issues with. Let me explain:

On most HDMI-displayed targets the physical pixel size of our screen is �xed, that’s
probably going to be 1920�� � 1080 but notice I said probably. We really cannot always
assume that our potential end user has the same screen setup as us. �ere are some who
are using 320�� �200�pixel LCD panels, some on 800�� �600�panels, some on 720p HDMI,
and so on.

Common sense allows us to discount anything that is way too small to use, or way
too big for our limited target to handle, we can put minimum and maximum limits on

2D 51

our project, so let’s assume a smallest screen size of 320�� �200 and a max up to…well
2560�� �1920 isn’t impossible, but 1920�� �1080 is more common.

�ere are a whole range of standard screen sizes between targets. �at lack of consis-
tency is an annoyance but one we have to deal with, so we need to think of our size values
as variables so that we can easily change them and avoid the so-called, Hard-coded or
Magic, numbers, which can never be changed in a running project.

We will try to get information from our target system values or in a worst case from
our users, that we can store and use when needed. On Raspberry Pi, the Broadcom libs
provide a useful little routine to return the physical pixel size of our display screen, other
targets may have a similar system. Unfortunately, standard Linux machines don’t usually
have this trick, they may have others. But the ability to work to a full screen directly with
no apparent window is one of the Raspberry Pi’s rather cute speci�c tricks. But in all tar-
gets we need to use something called an EGL window, on a screen size dictated by you or
your OS. If I �nd a way to get a standard Linux to do full screen (it is always possible) I’ll
update this. For now then full screen display is a Raspberry Pi thing only.

Once we have our screen’s physical size, we can then make a decision on how big our
working size or window, should be, then let our GPU scale our working size to �t our
physical size.

So if we want full screen, we do this;

uint width, height;
graphics_get_display_size(0, &width, &height);

�is simple little routine, does exactly what it says it does, it gets the size of the current
display, and stores the result in the variable’s width and height.

A�er that we can then use the values in the init_ogl routine to create a full size screen.

init_ogl(p_state, width, height);

Now that the little trick, will for now, on a Raspberry Pi,* allow our projects to run on
pretty much any screen size and be visible, regardless of the actual pixel resolution we set.
Let’s get on with making a project that puts this to use.

2D
We are going to start our game-programming journey with some 2D games; I know some
of you want to leap right into your grand, photo quality Hi Def, 3D, Massively MultiUser
Online Cloud processing realistic AI with real lasers, game. But trust me, getting the
basics right is very important and also a load of fun!

Many if not all the concepts used in 2D games are directly transferred to 3D games
and allow you the chance to properly visualize what you are doing, and measure it against
what you were expecting.

I o�en try to explain to my students with my tongue loosely in my cheek, how Space
Invaders and Halo are basically the same game. You control a character; you can move around
and shoot things, while at the same time trying to avoid being shot by those same things.

* Other systems use slightly di�erent means to determine the screen size; this is noted on the support site.

3. Using the Target52

�ey are essentially the same game, only the visualization, level of complexity, and
amounts of data being shoved onto our screen are variable.

It’s quite possible to break any shooting style game down to the basics of moving
around, shooting while avoiding being shot. If we simply consider that as being what we
have to code, we can add the complexity and additional eye candy as we go.

Of course, there are many other types of 2D game, Puzzle games, platform games,
and racing games, the list is probably endless, and trying to cover them all, even in a book
as big as this, is going to extremes, but you will be able to employ the concepts explained
here in any kind of game, and more importantly you’ll be able to expand and develop the
concepts to suit any new game genre you are lucky enough to think of.

53

4Putting It All
Together

Expanding Our First Graphics Program
So far we’ve not done anything that has needed actual graphics, our triangle and possibly
other shapes you might have dabbled with are mathematical concepts rather than images
as we recognize images, we can alter their color and size but there’s no actual image or
texture yet and that will severely limit the games we can produce.

�is is mainly because displaying actual graphics that look like chomping a yellow
pizza, or avenging hammer-wielding plumbers, is a whole new set of problems we have to
introduce and get over. But if we want to be game programmers we need to have the ability
to display images, which are either created by the program (procedural graphics) or pro-
duced by someone or something else (assets) for incorporation into our program.

Loading Graphics or Other Assets
It’s not impossible to enter graphics into our project as typed data, but it’s extremely
impractical for anything more than a small monochrome image. Modern games have
gigabytes of graphic images, and converting them into source data would be a monu-
mental and unwelcome task. So instead, our assets are usually stored in a usable �le
format on our storage system for loading into the program and set up to use in the
game.

4. Putting It All Together54

So now we’ve reached the point we need to load something from the computer’s stor-
age system, which ideally we have made or downloaded from our PC. Since we are doing
remote building, we are going to take advantage of the transfer of data that VisualGDB
handles for us more or less automatically.

Anything that is not actually compiled but is instead used by your program is called
a resource or an Asset, the terms are o�en interchangeable, but I prefer Assets when
talking about graphics, or sound data. I use the term Resources to describe other �les
that may provide information to or be used in our project, such as a script or list �le of
some kind. I may be wrong with this terminology, but no CS graduate has ever told me
di�erent .

But assets are what we need to get access to, at this point we need to load some simple
images, and then �nd a way to display them.

Loading �les is a pretty simple thing, C/C� � STL gives us loading and saving abili-
ties, but graphics are not just �les, they are data �les, data which are actually encrypted
into a particular format, and there are many formats.

We simply don’t have the time (our 30�days of free VisualGDB will fade away in no
time) to write decryption system to turn graphic �les into simple pixel data that we can
actually draw on screen, so we need some way to do that.

Lucky for us the world is full of programming geeks, who like to write graphic sys-
tems that we can use freely.

As I write this a�er a short session of getting things set up, I have come up against a
few issues. My intention was to use a simple standard library called Simple OpenGL Image
Library (SOIL), because it is free, available for Linux-based systems, and quite easy to get
hold of. But as I tried to install it I had nothing but hassle, because of my Raspberry Pi
being unable to install the libs. Now it may just be that the mirror site is down today, or
that since I’m not that up-to-date with Linux, I was doing something wrong, but I didn’t
want to spend days waiting for it, so I decided to try another approach.

SOIL itself is a wrapper program for collection of image-manipulation programs,
including an Image Loader called stb_image, which is a widely supported and reasonably
easy to use, set of routines to load various common formats. It’s actually all we really want
from SOIL, it also works just �ne for Linux…so let’s work just with that. It’s simple enough
to get hold of. If you have a Git client on your PC it’s available from GitHub, if not, go to...

https:/github.com/nothings/stb
And download the Zip �le (Button on the top right).
�is will give you a whole load of �les contained in the zip, but for now, we only want

stb_image.h, but you will probably use a few of the others later as we get more up to speed
with the process, and maybe I’ll get SOIL to actually install properly one day!

Let’s set about adding stb_image to our project.
I won’t ask you to type in another long initialization system, we can use the Hello

Triangle for now; we’re just experimenting with a �le loader.
Look inside the SOIL zip for stb_image.h and copy it into your projects source direc-

tory; in this case, it’s just going to be in the root directory of our project. If you are unsure
where your root directory is, just right click on your HelloTriangle.cpp �le and select Open
Containing Folder, which will open it up for you allowing you to copy things into it with
ease. Go ahead and copy stb_image.h from the zip into your project directory.

Loading Graphics or Other Assets 55

4. Putting It All Together56

Once its copied you can then add it to your header �les as an existing �le, but that’s
optional, we’re hopefully never going to edit it, so its existence in an accessible folder is
more important than its inclusion in the solution.

�at done, I also need you to add two new �les to this: a header and a cpp �le.
Let’s call the header as MyFiles.h and the cpp as MyFiles.cpp.
Try adding them to the correct solution �lter , which looks like a folder on your solu-

tion view.
Now into MyFiles.h, add this code;

#pragma once
class MyFiles
{
public:
 MyFiles();
 ~MyFiles();
 int height;
 int width;
 int comp;
 char* Load(char const *filename,int*,int*);

};

�at’s, it’s pretty easy, we’re creating a small wrapper class that will allow us to load a
graphic �le and convert it into normal raw memory.

�e actual code for this now goes into the MyFiles.cpp �le and looks like this:

#include "MyFiles.h"
#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"

MyFiles::MyFiles()
{}

MyFiles::~MyFiles()
{}
 char* MyFiles::Load(char const *filename,int* width, int* height)
{
 unsigned char *data = stbi_load(filename, width, height, &comp, 4);

// we are always going to ask for 4 components for RGBA
 return (char*) data;

}

Now we have two very useful �les…which will allow any program that includes them to be
able to load some standard image* formats.

Try compiling this, it won’t do much but there should be something to take note of!
Did you notice that adding that �le means that our build process has become a lot slower?

Try compiling again? It was very fast that time.
�e �rst slow build is because this header stb_image.h header �le is actually quite large

and includes many other �les. Also because it’s a header �le, if we included it in our main
project it’s going to get compiled EVERY time we alter the �le that includes the header…
that’s a bit of a pain. Because we put the stb_image.h include in the My�les.cpp that’s only

* Standard images usually include png, bmp, tga, and jpg, but do be aware that there are some variations in the
formats and you need to be sure that stb_image can handle your image.

Adding Assets to the Build Chain 57

likely to ever get built one time, and then the resulting code that’s made from that is reused
over and over again. As long as we know how to create and load our �les, which we do by
including the MyFiles.h we won’t need to compile the header �le on every build.

We can use that for all subsequent 2D graphic loading needs in our games. Just make
sure we have an instance of a MyFiles object somewhere and include the MyFiles �le in the
other classes that want to use it.

For now, we should have managed to get our project to build and run, but of course we
don’t have any graphics to actually load, and because we are remote compiling, we need to
get them onto the Pi at the compile time…

Adding Assets to the Build Chain
VisualGDB uses a feature called �le synchronization when using remote compiling, which
essentially means that any �les we tell it are important, are checked with the copy �les on the
Raspberry Pi, and if we’ve changed them on the PC they will be updated on the Raspberry Pi.

�is is, of course, essential for the compiler to be able to compile all our cool CPP and H
�les, but it has the extra bene�t of automatically sending over any assets we de�ne as needed
and creates copies on the target automatically. �is is why we’re sticking with remote com-
piling for the moment rather than the much faster Cross-Compiling system we could have!

�at’s something we’ve already done, when we set up the VisualGDB link, the most
important thing is to tell it about the types of �les we are interested in. As we are going to
use graphics, I’m going to use a .jpg image; it’s a common compressed image. And as you
can see in the �les to transfer I’ve added;*.jpg

Be very careful not to have any spaces in your �les to transfer list. I accidently
added;� space� *.jpg when I was setting this up, which led to much confusion when my
jpg �les were not sent across.

Of course, there are many other formats, feel free to add ;*.png;*.bmp;*.GIF, and so on.
Make sure you have the include all subdirectories option ticked as that will also force the
target to create these important subdirectories when things synchronize.

4. Putting It All Together58

Keeping Things Tidy
Now that means we will send over any jpg �les we happen to add to the project folder, but
it’s not a good idea to just dump all your graphics into the project folder, we really need a
proper folder structure, so I’m going to add an Assets folder.

I think it’s also a good point now to add header and source folders and from now on
add our header �les to the header folder and our cpp �les to the source folder, later when
we do some assembly coding, we will also have an assembler folder.

Folder management is one of those never-ending debates about how your project
should be arranged and there are good arguments for having di�erent �le types in di�erent
folders, but really just try to keep code and data and other resources clean and separate and
it’ll all look good.

For now, let’s add the assets folder, and also add a �lter in our Visual Studio Solution
to keep it looking tidy.

Visual Studio allows you to add new �lters to the solution view frame, but even though
it uses the tradition folder style Icon, it is not actually creating new folders in your projects
directory of your PC. �is is both a blessing and a curse, because it allows us to keep all the
�les with .h or .cpp endings in one view on the solution view, but it does mean that we may
have added those �les from any number of di�erent folders in our directory.

�at’s the curse part, our system of transferring data down to the target really relies on
us having a root folder, where our project is stored and then transferring all the �les we need
from that root and its subfolders to the target. So to allow our assets to be accessible, which
are not actually compiled, our assets folder needs to live on the root. When we compile
our games, the systems on both machines will create extra folders for debug and release
builds. And we can step back one folder then into our assets folder with simple �lenames
that have the following format:

“../Assets/filename.ext”

If we don’t keep our folders and �les under control, it can get quite messy quite quickly,
it’s very tempting to put all our �les in the same root folder and just use �lters. I’ve seen
this done o�en but it’s not a good practice, even though we’re doing it now we are going to
change it later, it will all depend mostly on where we decide to put �les when we add them
to the project. But folders containing assets are best located on the root directory.

Spri tes
Debug or release or both

Assets

Scripts

Source

Header

Root

Pictures

Add Some Code 59

You should see now that if our executable is in a Debug folder then ../Assets/Sprites/fname
takes us down one level ../ to root, then switches to Assets then Sprites, so we can get our
�le from that folder.

�en when the time comes to send �les over, the system checks the headers in the
root, and all its subfolders, sending the required �les to the target and making new subdi-
rectories on the target when needed.

Add Some Code
Let’s try to load and display an image, nothing fancy, just �nd a decent-sized image,
smaller than your screen size, but big enough to be seen, something from 512�� �512 up to
1024�� �1024, that will �t on screen and be visible. When you have one save it to your assets
folder.

Ok we now have an image, let’s make a small program to display it.
If you don’t have any suitable images on your PC, have a hunt on the old interweba-

roonies for an image that you would like to use, ideally png, jpg, or tga, for this. Copy/
download it into your Assets folder and be sure to add the �le extension into your Project
settings �les to transfer list.

You can add any number of images, and alter the �le name to load them.
So far so good, we have been able to load an image, store it in its raw data format in

memory somewhere, and it’s now ready for display.
Our loading and graphic conversion systems are now in place, but currently we are

still only able to draw a triangle, which isn’t ideal; images are usually rectangular, so we
should alter the draw routine to draw two triangle and make a square, that’s ok, but we are
also going to turn whatever we load into data that can be displayed on the square in the
form of a texture.

Two things now are needed: (1) the ability to create a texture and (2) the ability to
display that texture using a di�erent form of draw.

Add this code to your project, near the top, just before LoadShader, it’s self-contained,
though at the moment pretty nonfunctional as it needs data to work with. Data we have to
load in. Even then though it can create a texture at the moment there’s no way to draw it.

/* Create a texture with width and height */
GLuint CreateTexture2D(int width, int height, char* TheData)
{
 // Texture handle
 GLuint textureId;
 // Set the alignment
 glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
 // Generate a texture object
 glGenTextures(1, &textureId);
 // Bind the texture object
 glBindTexture(GL_TEXTURE_2D, textureId);
 // set it up
 glTexImage2D(GL_TEXTURE_2D,
 0,
 GL_RGBA,
 width,
 height,
 0,
 GL_RGBA,

4. Putting It All Together60

 GL_UNSIGNED_BYTE,
 TheData);

 if (glGetError() != GL_NO_ERROR) printf("Oh bugger");
 // Set the filtering mode
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
 if (glGetError() == GL_NO_ERROR) return textureId;
 printf("Oh bugger");
 return textureId;
}

We need some data; I’ve added a few nice pics from my photo album in the assets listed
on the support site. But for this �rst attempt at doing graphics, let’s use the most famous
public domain graphic test image there is. Lenna.png.

Our task now is to load this in, convert it to a texture, and then display it. We have the load
part, though we must �rst make sure that the image is located on our source directory for
now. Later we’ll tidy up the directories, and more important we have to ensure that we add
the *.png to the type of �les that are transferred to our target.

Add Some Code 61

I like to add the image to the solution too, for now add it to your resources �lter. Let’s load
it up and convert it. A�er the FileHandler add this code;

 MyFiles FileHandler;
/ now go do the graphic loop
 int Width, Height;
 char* OurRawData = FileHandler.Load((char*)"../Lenna.png", &Width,
&Height);

 if (OurRawData == NULL) printf("We failed to load\n");

Note that I have purposefully put a small test to report a failed load. Because at the moment
we’re not actually able to display this, so we’ll never know if it loaded. Error traps like this
are invaluable to make sure you don’t write buggy code while blind, and assume later that
it’s the draw routines that have failed. Try mistyping Lenna and compile and run to make
sure you get a notice telling you that it failed.

Loading, is done, we’re also pretty sure that converting to texture code is done, so
time to worry about drawing.

Remember I told you OpenGLES2.0 used Shaders? Well there’s a �rst clue as to what
will need changing, our current; triangle shader does very little, it simply draws a red
pixel, we now need a shader that will take a pixel from a texture and draw it.

Look at the shader code in Init again. Check out this line

"{gl_FragColor=vec4 (1.0,0.0,0.0,1.0);}\n";

�is is the main line that needs to be changed so that it can do more than just write a red pixel.
You may have noticed the shader code itself, references other variables: a_ position,

a_texCoord, v_texcoord, and so on.
We never actually did anything to set up those variables, because for the most part

they were ignored as we are just dumping a hard pixel to screen.
�ey need to come into play now, and be part of our program somewhere as these

 provide a means to access particular pixels for any modi�cations we need. I don’t want to
get into this too much as I am going to assume that you’re still �nding your feet with coding,
so explaining how this shader works could be confusing, so for the moment all I’m going to
do is set it. Explanations will come later when we really need them.

Here’s what your Shaders should now look like. �e gl_FragColour is now going to
take a value from a texture coordinate.

GLbyte vShaderStr[] =
 "attribute vec4 a_position;\n"
 "attribute vec2 a_texCoord;\n"
 "varying vec2 v_texCoord;\n"
 "void main()\n"
 "{gl_Position=a_position;\n"
 " v_texCoord = a_texCoord;}\n";

GLbyte fShaderStr[] =
 "precision mediump float;\n"
 "varying vec2 v_texCoord;\n"
 "uniform sampler2D s_texture;\n"
 "void main()\n"
 "{\n"
 "gl_FragColor = texture2D(s_texture, v_texCoord);\n"
 "}\n";

4. Putting It All Together62

Without going into massive confusing detail, we can see that we are now using a
few�extra�values in this shader, and our code needs somehow to know about this, which
needs some additions, we have to tell our code about a_position, a_texCoord,
and s_texture , and store handles to them in our structure so that we can set them up
for our shader to work correctly.

Now go back to the top of your code, alter the UserData Structure so that it looks like�this:

typedef struct
{
 // save a Handle to a program object
 GLuint programObject;
 // Attribute locations
 GLint positionLoc;
 GLint texCoordLoc;

 // Sampler location
 GLint samplerLoc;

 // Texture handle
 GLuint textureId;
}UserData;

Our structure now has values we can use to store the shader’s attribute and sampler loca-
tions, so let’s add some code to our Init routine to do that; at the end of Init, you can see
we are loading a ProgramObject value (which is actually a duplication of a redundant
ProgramObject variable you can remove) …continue with the next three lines with save
our location information so that we can set up the shader.

 // Store the program object
 p_state->user_data->programObject = programObject;

 // Get the attribute locations
 p_state->user_data->positionLoc = glGetAttribLocation(p_state->user_data-
>programObject, "a_position");
 p_state->user_data->texCoordLoc = glGetAttribLocation(p_state->user_data-
>programObject, "a_texCoord");

 // Get the sampler location
 p_state->user_data->samplerLoc = glGetUniformLocation(p_state->user_data-
>programObject, "s_texture");

Now that they exist they can be used, our draw routine needs quite a bit of modi�cation,
so rather than talk through it, replace it all with this.

/***
Draw a Rectangle with texture this is a hard coded
draw which is only good for the Rectangle
**/

void Draw(Target_State *p_state)
{

 GLfloat RectVertices[] = {
 -0.5f, 0.5f,
 0.0f, // Position 0

Add Some Code 63

 0.0f, 0.0f, // TexCoord 0
 -0.5f,
 -0.5f,
 0.0f, // Position 1
 0.0f,
 1.0f, // TexCoord 1
 0.5f,
 -0.5f,
 0.0f, // Position 2
 1.0f, 1.0f, // TexCoord 2
 0.5f, 0.5f,
 0.0f, // Position 3
 1.0f, 0.0f // TexCoord 3
 };

 GLushort indices[] = { 0, 1, 2, 0, 2, 3 };

// Setup the viewport
 glViewport(0, 0, p_state->width, p_state->height);
// Clear the color buffer
 glClear(GL_COLOR_BUFFER_BIT);
// setup the program object
 glUseProgram(p_state->user_data->programObject);
// Load the vertex position
 glVertexAttribPointer(p_state->user_data->positionLoc,
 3,
 GL_FLOAT,
 GL_FALSE, 5 * sizeof(GLfloat), RectVertices);
// Load the texture coordinate
 glVertexAttribPointer(p_state->user_data->texCoordLoc,
 2,
 GL_FLOAT,
 GL_FALSE,
 5 * sizeof(GLfloat),
 &RectVertices[3]);

 glEnableVertexAttribArray(p_state->user_data->positionLoc);
 glEnableVertexAttribArray(p_state->user_data->texCoordLoc);
 // Bind the texture
 glActiveTexture (GL_TEXTURE0);
 glBindTexture(GL_TEXTURE_2D, p_state->user_data->textureId);
//actually draw the rect as 2 sets of 3 vertices (2 tris make a rect)
 glDrawElements (GL_TRIANGLES, 6, GL_UNSIGNED_SHORT, indices);

 if (glGetError() != GL_NO_ERROR) printf("Oh bugger");

}

It’s not too di�erent, but you can see now that there’s a bit more to it, we’re setting up more
vertices, because a rectangle has six being made from two triangles, and it’s also having
to deal with the textures points and setting up the Attribute Pointers so that the data in
our p_state is used by the shader.

Compile and run, and you will still get a blank rectangle window on screen. �ere’s
one last important part to add to this.

Go back to the main loop, which in this case, is the while (TRUE) loop. A�er we
check if our data are valid with this;

 if (OurRawData == NULL) printf("We failed to load\n");

4. Putting It All Together64

add this line;

p_state->user_data->textureId = CreateTexture2D(Width, Height, OurRawData);

�is �nal bit of the puzzle will tell our p_state structure, that it has to use the texture ID
supplied by the CreateTexture2D routine.

Compile and run, and we should see this lovely screen.

Well done, we can now display images. �at’s a very important step. Of course, this code
is just horrible; it’s a mashup of HelloTriangle and a few bits of things we added. It’s very
rigid and is only really good for one rectangle on screen at a time. It’s been hacked together
to do one particular thing. But it works; now we have to make it into something more
usable and a lot tidier. It also helps to demonstrate that the shader code we need to use is a
little confusing; that can sometimes be the second hurdle a�er the triangle disconnection
that holds new programmers up and scares them o�.

But not to worry, we’re going to try to get past that confusion, trust me for a while so
that I can set some code up that will allow us to largely ignore the hardware and get some
actual game coding done.

Displaying More Images
Now that we have our �rst images up and running, let’s try expanding our simple load/
display system to do a bit more work and in the process get some code working to control
the display a bit more.

Get hold of a few more images, at least �ve and put them into your assets folder, if they
have di�erent �le types to what we have already, remember to add the �le extension to the
�les to transfer list in your VisualGDB Project Settings.

We’re going to create a small array of �lenames, and load the �les, one at a time,
 display it, count to 100 and then load and display the next one.

But I Didn’t Do Anything Wrong? 65

Easy….what can possibly go wrong…. Oh…you’ll see
I’m not going to be cruel to you anymore and make you type in the whole project from

scratch, we saw how messy that got. �ere’s a nice little project on the support site called
PhotoFrame. Download it and put it in to a folder called PhotoFrame, preferably on your
root directory, or close to it.

It’s not a complete project, I do want you to do some work but code wise it is all
there, what you need to do is go and add those nice pictures of your own, you put in the
assets folder then include them as existing items in the Assets �lter so that you can visual-
ize them in the editor. Try to make sure the images are png, jpg, or tga, as they tend to be
the easiest to use. Remember to add the �le format to your VisualGDB Project Settings/
Files to Transfer list. (Oh! you could add the actual names to ensure that only those images
are sent…your call!)

You should recognize the code, it’s our HelloTriangle/Rectangle code, but cleaned up
and much tidier with folders and �lters set up, so you can easily locate things. It’s still not
perfect but this is a small project and it’s manageable.

Now depending on how many images you add we have to type in a small array with
the names of those �les. In the PhotoFrame.cpp �le where I’ve indicated at the top, notice
you have to type in the full path name “..\\Assets\\�lename.ext” I’ve given you Lenna and
another image to start you o�.

Now make sure you set the NUMBEROFPICS to the actual number you have included
and compile and run. You should now have your �rst image up on screen, and then a�er
a few seconds, the next one.

Let it run for a few more cycles….what happens?

But I Didn’t Do Anything Wrong?
Well yes you did, I allowed you to experience something every programmer dreads. A
memory leak, in this case a pretty quick one only a�er four or �ve images the program
reports errors and stops working. �at initial �ush of excitement when the code did what
you wanted it to do, suddenly becomes a real downbeat bit of head scratching? But just ask
yourself why did we have a memory leak?

�e golden rule is, if you allocate memory, you need to be sure you release it when
it’s done with; in this case, the error we get is actually because of the GPU running out of
memory.

When we make a texture, which we did when we used CreateTexture2D, we are
allocating some space in our GPU memory. Unless you’ve set the size of your GPU
memory, we don’t really have a good indicator of how much memory we have but on
SBCs it’s not all that much, o�en as little as 64MB. So, two or three 1024�� �1024 images
that take up 4MB each, with some other overheads in the GPU memory, 64MB will
vanish pretty quickly, even 256MB will vanish fast on an app that is gobbling 4MB’s
every frame.

So we have to make sure that when we’ve done with our image, we remove it.
Fortunately, we have the means with this standard OpenGL function glDeleteTex -
tures, which we can use like this;

 glDeleteTextures(1, &p_state->user_data->textureId);

4. Putting It All Together66

Just before we increase WhichImage . Now run it again….we should be comfortably get-
ting past the four or �ve images now, we can really start to feel con�dent, we’ve resolved
the GPU memory leak. Why not add a few more images and then let it run for a while and
check it out, how stable is it?

But I Fixed It?
Did you now? Well, it runs longer but it still seems to crash, probably in an unpredictable
way, in fact my demo just seems to exit normally, but I know that’s wrong because I have
not allowed it to exit normally. If I observe the Visual Studio output window it also shows
that a while before it stops running, it certainly stops loading images. How can that be
when we freed the GPU memory?

�e clue is in the fact we freed the memory on our GPU, but we never freed the mem-
ory our CPU used to hold the image that became the texture. It’s not obvious because we
didn’t actually write the code that allocates the memory but if you load something into
memory, it stands to reason it’s going to occupy memory somewhere!

Every time we loaded an image for display, the stbi_load function allocated some
memory, we were not totally aware of this because we have only focused on the ability to
load an image, we’ve not considered how to remove it. Code wise, this could be considered
a perfectly acceptable way to do things. I mean the code does exactly what it’s supposed to
do, right? But clearly a�er a while it stops doing what it’s supposed to do, as the load systems
cannot get new memory from the system to load up, and it all starts to go wrong.

When we allocate some data space for our image, we store the start of that data in our
OurRawData variable, but when we load another one, we use the same variables to point it,
e�ectively the new address of the image overwrites the pointer that points to the old image
and is lost forever, because a pointer can only hold one value at any given time.

But that the old image is still very much there in memory and your new image will sim-
ply get allocated to another chunk of memory from the system and load its graphics in there.

By constantly creating new images, we are constantly allocating more new memory,
but we have a �nite amount of memory available, which quickly �lls up with these old
unused instances of a surface with graphics.

It’s important for us as programmers to remember that we have full control over our
targets, and we have to be sure that we exercise that control with care. �ere is nothing
technically wrong with the code we wrote here, but there is a massive problem with the
use of the target resources. �ere’s no point being able to code a cool photo frame program
if it stops working a�er a few minutes. Likewise, a game that constantly loads graphics at
inappropriate times and with no regard to memory usage will quickly fail.

�e lesson to be learned here is that coding isn’t just about mastering the languages,
it’s also very much about using the equipment we have in a sensible way. We have the ability
to write perfectly correct code that because of poor management can stop working owing
to very small errors, such as forgetting to deallocate some memory. So, let’s make sure that
every time we want to disregard something which lives in our memory we must �rst make
sure it is properly discarded, a bit like putting things in the bin when you’re done, and recy-
cling. If you just keep allocating new resources, and don’t clear up when �nished, you even-
tually end up with your memory in a terrible mess and no more unused resources for you.

But I Fixed It? 67

But, by recycling the memory and putting it back into circulation you can, more or less,
use it over and over again, with almost no limits.

So how do we recycle the memory? Our load routine in the stb_image.h �les uses a method
of allocation called a malloc(). �is returns an address, called a pointer, which points to
where the data are, our load routines then �lled that up with our image. To free up that
memory, the corresponding function is called free() .

By passing the pointer to the data, we want to release or free within the free() function,
the memory goes back in to general use. So just a�er you delete the texture add this line:

free(OurRawData);

Now, run our program, in fact run it, go make a nice hot beverage, mix some pizza dough,
let it rise, knock it back, let it rise again…and you get the idea. �is program can now be
le� on its own forever, because memory will now be allocated and deallocated correctly.

4. Putting It All Together68

�is is our �rst most important lesson in memory management; never allow an allo-
cated pointer to be lost without clearing up the memory it’s pointing to. �ere are a cou-
ple of di�erent methods of allocating memory as standard, malloc() and free() are
legacy systems from the old days of C, but as C is a full subset of C� � , you will still �nd
it used o�en, especially when the intent is to just allocate a big chunk of empty memory
for something. C� � also has the new and corresponding delete commands, which
create and destroy instances of classes or objects. All we have to remember is that every
 malloc() or new must have a corresponding free() or delete .

If we can keep that in mind we should manage to avoid the dreaded memory leak, at
least in our own code!

Making a Dynamic Play�eld
So we know how to make an image-sized texture and display it, is there a way we can also
change that texture, allowing us to draw objects into it, or text, or change colors or…basi-
cally have the visual image on our screen behave similar to screens in the good old days
and have pixels mapped to (texture) memory?

Well the answer, of course, is yes, but with some pretty major quali�cation. We know
we have an image somewhere in memory, and that image is e�ectively a big chunk of
RAM, which then gets sent to the texture memory for display, what we want to do though
is alter it, and resend it to the texture memory to be redrawn with changes. We e�ectively
want to turn our image in memory into a pixel bu�er, which we alter in code and then
have displayed.

�is is the basic principles of a back or frame bu�er. RAM-based frame bu�ers are a
pretty old concept these days, with graphic cards to do all our work, we don’t really need
the idea of a RAM double bu�er where we write to one bu�er while displaying another,
then swap. But for our initial projects they work very well, it will give us our sense of
dynamic play�elds and perhaps more importantly force us to use our coding skills to get
the graphics on screen.

�is is very much a CPU-intensive process; our GPU is going to be used for nothing
more than displaying screen-sized textures. Better state-up front, this is a pretty primitive
way to do a 2D game on any machine with hardware graphic systems, and it is NOT the
way OpenGLES2.0 likes to work, but it is a quick and dirty way to get set up, very e�ective
and pretty much certain to work on any machine. We will almost certainly �nd a use for
this kind of pixel bu�er manipulation in some kind of game.

�ere are, as I must stress, much better ways to do this, which we’ll touch on later.
For now like you, I really want to get a game written and not worry about the speci�cs

of the machine, we need to get a framework together so that I can teach you some code and
not have you stressing out about accessing the mysterious GPUs before we are ready. We
will have plenty of time to do that when we get some things working and feel comfortable
with our code.

Old School Frame Buffers
A back or frame bu�er works on the simple principle that while one bu�er is being displayed,
we are working on the next one to be ready for display when all our graphics are drawn.

Old School Frame Buffers 69

So the principle is simple enough, write to a clean area of memory, which is not being
displayed and is set up to be drawn to, then when �nished make it into a texture, and send
it to a currently undisplayed screen-sized Quad (2 triangles), and then tell our system to
swap textures while we draw the next one. Rinse and repeat over and over again.

Well that’s the principle, but doing it on a system with no direct memory to display
correlation, it’s actually pretty horrible, once a texture is created its image is then located
in the GPU memory and the CPU cannot access it. So every time we create a texture with
this idea, the target needs to �rst delete an old currently undisplayed texture, then inter-
nally copy the modi�ed memory up to the GPU’s texture memory. �at deleting and shi� -
ing takes time. For now, though we have more than enough bandwidth to get away with it.

In addition, OpenGLES2.0 actually already has a double bu�er concept, where we
get the GPU to draw everything to somewhere not being displayed then swap it with the
screen display, that’s the main purpose of this line of code

eglSwapBuffers(esContext->display, esContext->surface);

….Adding even more kind of bu�ers makes my eyes bleed when I see them. But there is a
method in this madness!

�is is one of those deliberately bad (very bad) design choices I mentioned at the
beginning of this book, so it’s a fair question to ask why are we doing this?

It’s to do with the history and the fact that a lot of old online tutorials you may �nd,
used systems like this, you may come across them and will want to implement them on
your chosen target. In addition, I want to remove the use of the GPU from your mind
for the moment so that we can focus on developing some coding concepts and not worry
too much about how to display things. A straight display to screen relationship is simple
to visualize and code for. An abstract, point in space, drawing machine, that works in a
virtual space if you feed it just with the right data, is a slightly scarier concept for you to
digest right at this moment.

4. Putting It All Together70

It was much easier to do this on older systems where you could actually gain access
to, and manipulate the memory that was your display/texture, but now with the way
OpenGLES2.0 and other modern Shader-based systems work, it becomes an ungainly
method.

So let me again be quite clear...before the real coders start tearing out their hair in
frustration. �is is only to demonstrate a simple means of displaying our own 2D display
bu�er using CPU manipulated graphics, so we can focus on what we are doing rather than
how it is doing it. We’ll upgrade to a proper way of rendering as soon as their basics are
understood. �is is also going to stand as a good example of why a system that works is
actually not a good system.

We need to �rst set up the bu�ers, and I have found the best way to do that is to use a
variation of a system my old colleague Dr. Jacco Bikker produced in our old OpenGL1.1
coding template for the �rst years at NHTV, it was made available online for several
tutorials and a lot of games were written using it. I’ve modi�ed it a lot to work with our
OpenGLES2.0 targets but the principle is based on a class type we call a Surface, java coders
might be more familiar with the term canvas, but it is e�ectively the same thing.

A Surface Class is a pretty simple concept, it’s a bu�er of memory, with some func-
tions that allow us to make/�ll/change/copy that bu�er and interact with other Surfaces.
For now, we’re not even too worried about how it gets displayed; it’s simply a means to
write screen style pixels that we later plan to display. �at’s it! Let’s get started.

We won’t need to type all this in this time, I think you’ve cut your teeth on typing
now, so from now on you can download the base code from the support site. For any his-
torians reading this in the next century, here’s the basic Surface Class that we’ll add to as
we build up a need to do more.

Ok, once you’ve downloaded the Surface.h and Surface.cpp �les, you can move
them to your source folder (on the Dev machine, remember VisualGDB will send them to
the target when it syncs before it starts compiling), then use the add existing �les, options
to add our friends here.

Old School Frame Buffers 71

Let’s have a quick look at this header �le. Headers are way more important to us than
the .cpp �les because they tell us at a glance what our class can do; it’s not cluttered up
with masses of code and formatting info. It’s normally just the declarations of functions
(called methods in pure C� � geek speak) that the class can do, a few de�nes and the vari-
ables a class contains when you make an instance of that class.

�ey also let other parts of our program know what a class can do. �is can be very
useful as we’ll discover. A header �le acts similar to an instruction manual for you and the
code you create, which will give information on what the names of the methods are, what
passed values you need to give these methods, and the variables the class has access to.

#pragma once
#include "MyFiles.h"

#define REDMASK (0xff0000)
#define GREENMASK (0x00ff00)
#define BLUEMASK (0x0000ff)

 typedef unsigned long Pixel;

inline Pixel AddBlend(Pixel a_Color1, Pixel a_Color2)
{
const unsigned int r = (a_Color1 & REDMASK) + (a_Color2 & REDMASK);
const unsigned int g = (a_Color1 & GREENMASK) + (a_Color2 & GREENMASK);
const unsigned int b = (a_Color1 & BLUEMASK) + (a_Color2 & BLUEMASK);
const unsigned r1 = (r & REDMASK) | (REDMASK * (r >> 24));
const unsigned g1 = (g & GREENMASK) | (GREENMASK * (g >> 16));
const unsigned b1 = (b & BLUEMASK) | (BLUEMASK * (b >> 8));
return (r1 + g1 + b1);
}

 // subtractive blending
 inline Pixel SubBlend(Pixel a_Color1, Pixel a_Color2)
 {
 int red = (a_Color1 & REDMASK) - (a_Color2 & REDMASK);
 int green = (a_Color1 & GREENMASK) - (a_Color2 & GREENMASK);
 int blue = (a_Color1 & BLUEMASK) - (a_Color2 & BLUEMASK);
 if (red < 0) red = 0;
 if (green < 0) green = 0;
 if (blue < 0) blue = 0;
 return (Pixel)(red + green + blue);
 }
 class Surface
 {
 public:
 // constructor / destructor
 Surface(int a_Width, int a_Height, Pixel* a_Buffer, int a_Pitch);
 Surface(int a_Width, int a_Height);
 Surface(char* a_File,MyFiles* FileHandler);
 ~Surface();
 // member data access
 Pixel* GetBuffer() { return m_Buffer; }
 void SetBuffer(Pixel* a_Buffer) { m_Buffer = a_Buffer; }
 int GetWidth() { return m_Width; }
 int GetHeight() { return m_Height; }

4. Putting It All Together72

 int GetPitch() { return m_Pitch; }
 void SetPitch(int a_Pitch) { m_Pitch = a_Pitch; }
 void Clear(Pixel a_Color);
 void Line(float x1, float y1, float x2, float y2, Pixel color);
 void Plot(int x, int y, Pixel c);
 void CopyTo(Surface* a_Dst, int a_X, int a_Y);
 void BlendCopyTo(Surface* a_Dst, int a_X, int a_Y);
 void ScaleColor(unsigned int a_Scale);
 void Box(int x1, int y1, int x2, int y2, Pixel color);
 void Bar(int x1, int y1, int x2, int y2, Pixel color);
 void Resize(int a_Width, int a_Height, Surface* a_Orig);
 private:
 // Attributes
 Pixel* m_Buffer;
 int m_Width, m_Height, m_Pitch;

 };

You can see that the class actually only contains four variables, m_bu�er being the most
important, because it contains our data, width and height are obvious, Pitch, however, will
become apparent later.

As C� � variables in a class are known as members, the pre�x m_ is commonly used
to indicate that the variable is a member of a class.

�e Pixel stu� at the top is to allow us to grab the data in a recognizable pixel format,
which will be much easier later. It’s using the Inline directive because this isn’t something
we want in a routine, if it is used it needs to be pretty quick and this is the best way to do it.

Also notice this section here:

Surface(int a_Width, int a_Height, Pixel* a_Buffer, int a_Pitch);
Surface(int a_Width, int a_Height);
Surface(char* a_File, MyFiles* FileHandler);

We have three di�erent declarations of constructors for our Surface Class, each of which
contains di�erent variables, which identify them as speci�c overloads, this will allow us
to create a surface, from a �lename, or a width and a height, or with width and height and
the address of another bu�er.

You’ll also notice that all the variable names start with a_; this is another common
way to indicate that a parameter is a variable that is given to the method. It’s not a hard and
fast rule, and indeed in the header you don’t even need to name the variables, you could
just as easily write declarations like this;

Surface(int, int, Pixel*, int);
Surface(int, int);
Surface(char*, MyFiles*);

�e only thing the compiler actually wants to know in the method declaration is what
kind of values are the methods going to use. How many parameters, what type they are,
and the order are very important, because it de�nes which particular version of the con-
structor we are going to use when we call it.

Even though it’s valid, we don’t need to use logical variable names, but adding a vari-
able name, which is also descriptive, makes for easier to read code; for example, look at
the following:

Old School Frame Buffers 73

Surface(int a, int b, Pixel* c, int d);
Surface(int a, int b);
Surface(char* a, MyFiles* b);

You can see the problem! Nondescriptive variable names, in a header, might be valid code,
it will compile, but for the poor human trying to read it, it’s not much fun and gives little
away. Always try to use descriptive variable names, even in the header declarations.

Surface(int a_Width, int a_Height, Pixel* a_Buffer, int a_Pitch);
Surface(int a_Width, int a_Height);

Surface(char* a_File, MyFiles* FileHandler);

Much nicer to read, and easier to understand what we are passing, or trying to return.
We’ll start to write the constructors �rst as they are the most important.
It’s a rather nice feature of C� � that, when we de�ne a class, we can add the concept

of methods we want to have in our class, but don’t actually have to write them yet. It lets us
think about it �rst. �at’s basically all a declaration is, a concept of what we plan to write.
We only actually have to write it if we try to call it.

�e accessor functions are usually nice short Get and Set routines whose job is to
access and perhaps consistently modify a value before returning it. Since these are nearly
o�en very small, they are o�en best done in the header, so the Get and Set functions are
basically commands that will let us keep our variables private and allows �exibility later
if we perhaps have to modify our values in some way, before we return them to a calling
routine. If they need more than a couple of commands to return their values, then move
them into the .cpp �les because they have become proper code methods rather than simple
accessors.

Private members are variables that are usually only accessible by the class methods
themselves. I’m not a massive fan of private members as you will discover, as an old school
assembler coder I like to have all variables open and available to me and not worry about
additional calls using up CPU time. But they are a C� � convention and if you are working
with code that’s likely to evolve and change or you work with other programmers, keeping
variables safe from interaction with other classes can have great bene�ts, and accessors
do allow you to make controlled consistent alterations to data you want to give to other
classes.

Ok, let’s look at the constructors, which will let us create these lovely little pixel buf-
fers! Of course, you’ve downloaded it, put it in your source folder, and added the existing
�le, but here’s the code anyway, so I can explain it.

 Surface::Surface(int a_Width, int a_Height, Pixel* a_Buffer, int a_Pitch)
 : m_Width(a_Width)
 , m_Height(a_Height)
 , m_Buffer(a_Buffer)
 , m_Pitch(a_Pitch)
 {}

 Surface::Surface(int a_Width, int a_Height)
 : m_Width(a_Width)
 , m_Height(a_Height)
 , m_Pitch(a_Width)

4. Putting It All Together74

 {
 m_Buffer = (Pixel*)malloc(a_Width * a_Height * sizeof(Pixel));
 }

Surface::Surface(char* a_File,MyFiles* FileHandler)
 : m_Buffer(NULL)
 , m_Width(0)
 , m_Height(0)
{

 m_Buffer = (Pixel*)FileHandler->Load(a_File, &m_Width, &m_Height);
 if (m_Buffer == NULL)
 {
 printf("File %s cannot be loaded, check name and dir \n", a_File);
 }
 else
 {
 printf("Buffer loaded with %s image, size is %i,%i\n", a_File, m_Width,
m_Height);

 }

 }

Our �rst one assumes a pixel bu�er has been set up and simply passes it to our m_Bu�er
pointer along with size and pitch. So our class is complete.

�e second is a meatier one it actually makes some space in memory that’s big enough
to accommodate our bu�er. I am using malloc instruction here for the moment, which is
a standard way to allocate some memory, but it does not guarantee that the start of that
memory is on what we call an alignment, usually for 32bit machines that will be at every
fourth byte, which is far easier for the CPU to access when grabbing a memory. For now,
we’ll work with it and check later if it is aligned and see what we need to do to �x it, there
are work arounds.

�e third actually loads up an image, in the same way our picture displays program
and uses its data in memory as our m_bu�er. Notice, we are passing it a �le handler to use,
because I don’t really like to create two of them, any classes that need to use a �le handler
should be given the address of the one we created at the start. Later though we’ll close the
one in the Main argument and explore other options.

You may notice I also like to inform my user of the �les being loaded, or when they
failed to load. �is is me being a bit overcareful with my errors, but it would be wiser to
use a function of my own, something like notify_user(char* msg); which can actually be
stopped from outputting when running in a release mode. But I’ve not written it yet, so
we’ll do it later when we refactor the code and we’re sure it’s all doing what it should do.

Setting Up the Frame Buffer and Switch System
So this is where it gets messy, because OpenGLES2.0 does not provide a simple means to
get CPU access to the pixels that make up a texture, once it actually becomes a texture! So
we can’t do anything with a currently active texture, only with the memory bu�er full of
pixels we plan to make a texture.

It’s logical when you think about it. When a texture is created, the raw image of the
data as pixels is copied and stored in the GPU’s own memory, we can delete the �le data

Setting Up the Frame Buffer and Switch System 75

we loaded, the texture is still there, somewhere! But now the GPU owns it and it does
not want to share with the CPU. �is is why a GPU has its own memory, having two
processes trying to access the same memory at the same time is not usually possible,
causing one to stop and wait for the other. Hardware makers don’t like that, so generally
it’s not allowed.

But back to our dynamic play�eld; let’s layout what we need to create a double bu�er?

First, pretty obviously we need two bu�ers: one to work on and one to display.

Second, we need some way to keep track of which one we are drawing to.

�ird, we need a means to do the swapping and put our texture on screen.

Part 1: �is is the easy bit; let’s make two bu�ers that are big enough to hold our
screens data.

Pixel* Locations[2];

bool createFBtexture()
{

 int Red = 0xff0000ff;
 int Green = 0x00ff00ff;

 Locations[0] = (Pixel*)malloc(SCRWIDTH * SCRHEIGHT * 4);
 Locations[1] = (Pixel*)malloc(SCRWIDTH * SCRHEIGHT * 4);
 //set it all to black
 memset(Locations[0], 255, SCRWIDTH * SCRHEIGHT * 4);
 memset(Locations[1], 255, SCRWIDTH * SCRHEIGHT * 4);

 m_Screen = new Surface(SCRWIDTH, SCRHEIGHT, Locations[0]);
 m_Screen->SetPitch(SCRWIDTH);
}

 malloc and memset are those old throwback systems from the days of C, which
allow us to allocate an area of memory of a speci�c size. It returns the start of that
area as a pointer and we store it in our Locations array. memset, lets us quickly
set that bu�er to a value, I don’t really need to do that here but it can be useful
when debugging to see if the memory has been cleared/written to have it all set to
a simple to view value.

Part 2: Let’s create a few simple variables and a Surface Class, which we are going to
work with as our screen surface. But whose m_bu�er value will point to the bu�er
we are currently drawing to.

Surface* m_Screen;

GLuint framebufferTexID[2];

Part 3: �e messy bit, promise me you will never show this to a real OpenGL/ES
coder…ever. �e death and rebirth of the textures to create the display.

4. Putting It All Together76

bool swap()
{
 bufferIndex++;
 bufferIndex = bufferIndex % 2;
 glDeleteTextures(1, &framebufferTexID[bufferIndex]); //delete the old
texture (displayed 1 frame ago)
 framebufferTexID[bufferIndex] = CreateSimpleTexture2D(SCRWIDTH, SCRHEIGHT,
(char*)m_Screen->GetBuffer());
}

Finally, let’s set the screen size to work on any size of screen. For Raspberry Pi, we have a
nice little function called

graphics_get_display_size(0,&scr_width, &scr_height);

which gives us the physical pixel size of the screen we have. Sadly, we don’t have that on
our other possible targets, but I’ve added a best guess system that will work on most on
the downloaded versions. We can use the display size to set up our EGL window, and then
the screen will �ll up. But…if we use the full HD 1080 size, it gives us a screen size of
1920�� �1080, that’s rather large, and our textures allocate internally as a closest power of
two (POT), so it will actually create two 2048�� �2048 textures, our max size. Testing shows
this to be a bit too much e�ort for our humble targets, so I’ve set the maximum bu�er sizes
to 1024�� �800, a decent-sized screen, which the display system will scale to �t on whatever
size screen we are using, even those little 3.2� LCD. Internally, the texture generated is
1024�� �1024 so that means we’re not wasting too much actual space.

So there you have it, a working double bu�er system, and a Surface Class we draw that
e�ectively becomes a screen to see the results…

We’ve done rather a lot so far without blowing anything up, but we now have a viable
system, albeit clunky, that will let us write our �rst basic games.

Yes, we’re ready to make a game now. Save our project somewhere safe, this is going to
be our starting block for the next couple of projects.

77

5 Finally Our
First Games

5.1 Invaders from Space
Let’s begin our �rst proper graphic game with homage to a classic, which has almost no
graphics, which for copyright reasons I probably can’t name, but you should all be familiar
with.

5. Finally Our First Games78

Looks familiar?

Using the OS
I said right at the start that I didn’t want to add any third party libraries and to stay away
from the OS as much as possible, BUT this is one of the places where that is going to create
some issues for us.

Our projects need to have some kind of input, keys/mouse/joystick to be usable. �is
is exactly the thing our OS is designed to do for us, handle I/O. We’ve already used it for
our loading �les, though C/C� � abstracted that away from us and we didn’t need to see
the underlying code that actually switched on the drives, moved the heads, and pulled in
the data, now we have to use the OS, for our key handling. But it’s not quite as simple as
entering and printing text was, which was also our higher level C� � code talking to the
OS, which controls the console.

We only really want to detect key/button presses and in the case of the mouse, posi-
tion changes. �e STL does not provide for that, it really only provides for character-based
concepts; it supplies the character A not the fact that the A key was pressed. Testing indi-
vidual keys or device positions is problematic.

Normally, we’d probably have a consoles SDK, or in a PC, another library in place like
SDL/SDL2 to take care of things like that for us, we have no SDK and SDL/SDL2 is rather

5.1 Invaders from Space 79

a big clunky library, which though available and does a lot, I want to maintain my promise
of no third party libs, especially big ones.

So we have to write some code that asks the OS for some info on what keys are pressed,
which can then be used in our games.

So…let’s be honest… �is turned out to be hard to do. I scanned the Raspberry Pi
forums, and Linux sites, and could not �nd a simple direct method to get key scans. I was
starting to feel I was going to have to dig up a load of Linux source code and decipher it
myself, when a friendly colleague on an old developers Facebook page came to my rescue.

My thanks to Gareth Lewis, who provided me with a basic method for handling the
key input events that the OS generates and storing the results. As an added bonus, it is also
a very useful introduction into �read/multi core management, but more on that later.

It’s not a massively complex bit of code, though some of the ways to access data are
odd, but I took what Gareth gave me and wrote up a simple Input Class, which you can
�nd listed here or download from the support site.

In the Make�le settings of your VisualGDB Properties you have to add pthread to
the list of library names. Like this:

Now I really would like you to type this in again, because the practice you get typing in
code is far more valuable than just blindly adding a �le. But if you really don’t want to type
this in, the input.h/cpp �les are on the download site. But please. Type it in!

If you are adding the �les, then copy them into your folders and add an existing �le to
include them; otherwise, if you are taking the sensible approach and practicing your code
entry skills, go back to the Visual Studio Solution explorer and right click on the �lter for
Header Files, and add a new �le called Input.h, and start typing this in.

5. Finally Our First Games80

#pragma once
#include <stdio.h>
#include <cstdio>
#include <iostream>
#include <pthread.h>
#include <linux/input.h>
//***
Mega thanks to Grumpy old Git Developer Gareth Lewis for his help with this
Keys[] sets the relevant index to TRUE when pressed and FALSE when
released, index names can be found in <linux/input.h> and follow the usual
KEY_A...KEY_Z format mouse keeps track of the motion of the mouse not the
absolute position, which needs to be known beforehand if you plan to use
the mouse for direct control. Wherever the GUI mouse is at startup is
considered 0,0 and all movement is offset from there. If no GUI it assumes
0,0 is start. User must draw their own mouse! */

#define SCRWIDTH 1920
#define SCRHEIGHT 1080 // at some point we will need variable access

class Input
{
#define TRUE 1
#define FALSE 0

public:
 typedef struct // A very simple structure to hold the mouse info
 {
 int PositionX; // contains the relative position from the start
point�(take care to not confuse it with the GUI mouse position)
 int PositionY;
 float RelY;
 float RelX;
 unsigned char LeftButton; // TRUE when pressed FALSE otherwise
 unsigned char MidButton;
 unsigned char RightButton;

 } MouseData;

 char Keys[512]; // maximum possible keys is a little less than this, but
best to be careful in case of future expansion
 MouseData TheMouse;

 pthread_t threadKeyboard;
 pthread_t threadMouse; // handles for the threads

 bool mQuit; // set true to kill the mouse thread
 bool kQuit; // set true to kill the key thread

 int iterations;
 bool KeyPressed;

5.1 Invaders from Space 81

/**
Intended to be a thread which processes the mouse events and stores Mouse
info in TheMouse struct.
**/

 static void* ProcessMouseThread(void* arg);

/**
This thread processes the keys, and stores TRUE/FALSE values in the Keys[]
array.
**/

 static void* ProcessKeyboardThread(void* arg);

 //small accessor function to test a specific key
 bool TestKey(unsigned char WhatKey);
 bool SimpleTest();
 /************************
 must call init before use
 ************************/
 bool Init();
/**
this will test for our keyboards
**/
 int AreYouMyKeyboard();
 std::string kbd; // this will be the event filename for the keyboard
discovered in the init/AreYouMyKeyboard test

}; // end of class

Now with that done we need an Input.cpp �le to go with it.

#include "Input.h"
#include <dirent.h>
void* Input::ProcessMouseThread(void* arg)
{
 FILE *fmouse;
 fmouse = fopen("/dev/input/mice", "r");
 if (fmouse != NULL)
 {
 while (((Input*)arg)->mQuit == false) // so as long as mQuit is FALSE,
this will endlessly loop
 {
 signed char b[3];
 fread(b, sizeof(char), 3, fmouse);
// if we do plan to scale, best make these into floats for greater
precision before they are cast down to ints.
 float mousex = (float)b[1];
 float mousey = -(float)b[2];

 ((Input*)arg)->TheMouse.RelX = mousex;
 ((Input*)arg)->TheMouse.RelY = -mousey;
 ((Input*)arg)->TheMouse.PositionX += (mousex / 1.0f); // 1.0 can be
replaced by a scale factor (entierly optional)

5. Finally Our First Games82

 if (((Input*)arg)->TheMouse.PositionX > SCRWIDTH) ((Input*)arg)->
TheMouse.PositionX = SCRWIDTH;
 if (((Input*)arg)->TheMouse.PositionX < 0) ((Input*)arg)->TheMouse.
PositionX = 0;

 ((Input*)arg)->TheMouse.PositionY += (mousey / 1.0f);

 if (((Input*)arg)->TheMouse.PositionY > SCRHEIGHT) ((Input*)arg)->
TheMouse.PositionY = SCRHEIGHT;
 if (((Input*)arg)->TheMouse.PositionY < 0) ((Input*)arg)->TheMouse.
PositionY = 0;
 ((Input*)arg)->TheMouse.LeftButton = (b[0] & 1) > 0; // using a
test(x>0) allows it to return and store a bool
 ((Input*)arg)->TheMouse.MidButton = (b[0] & 4) > 0;
 ((Input*)arg)->TheMouse.RightButton = (b[0] & 2) > 0;
 }
 fclose(fmouse);
 }
 printf("Mouse Thread closing \n");
 pthread_exit(NULL);
}

void* Input::ProcessKeyboardThread(void* arg)
{
 FILE *fp;
 fp = fopen(((Input *)arg)->kbd.c_str(), "r");
 struct input_event ev;
 if (fp != NULL)
 {
 while (((Input*)arg)->kQuit == false) // kQuit is set to false by the init
 {
 fread(&ev, sizeof(struct input_event), 1, fp);
 if (ev.type == (__u16)EV_KEY)
 {
 ((Input*)arg)->Keys[ev.code] = ev.value>0 ? TRUE : FALSE; // never gets
here to give me key values
 ((Input*)arg)->KeyPressed = true;
 }
 else ((Input*)arg)->KeyPressed = false;
 }
 printf("quit responded too\n");
 fclose(fp);
 }
 printf("Key Thread closing\n");
 printf(" err %d \n", errno); // we closed so let's see the error
 pthread_exit(NULL);
}

bool Input::TestKey(unsigned char WhatKey)
{
 return Keys[WhatKey] == TRUE; // simply return binary true or false
}

bool Input::SimpleTest()
{
 return KeyPressed ;
}

5.1 Invaders from Space 83

bool Input::Init()
{
 kQuit = false;
 mQuit = false;
 iterations = 0;
 int result;
//mice don't usually provide any issues
 result = pthread_create(&threadMouse, NULL, &ProcessMouseThread, this);
// we send the Input class (this) as an argument to allow for easy cast
((Input*)arg)-> type access to the classes data.
 if (result != 0) printf("got an error\n");
 else printf("mouse thread started\n");

 if (AreYouMyKeyboard() == false) printf("Oh Bugger, we can't seen to find
the keyboard\n"); // go find an active keyboard

 result = pthread_create(&threadKeyboard, NULL, &ProcessKeyboardThread,
this);
 if (result != 0) printf("got an error\n");
 else printf("Key thread started\n");
 return true;
}

// tests for the keyboard, which can be on different events in Linux
// thanks to my student Petar Dimitrov for this improvement to the keyboard
search systems
int Input::AreYouMyKeyboard()
{
/* **Note** linux machines may have their key and mouse event files access
protected, in which case open a command line terminal, and enter
 sudo chmod a+r /dev/input/* (assuming your input event files are there)
 this is kinda frowned on by linux users, but I don't know a way to
overcome this in code yet. It may also be possible to get VisualGDB to
execute the build as sudo for root access but I find that flakey */

 // Some bluetooth keyboards are registered as "event-mouse".
 // If this is your case, then just change this variable to event-mouse.
 std::string pattern = "event-kbd"; //<-change to event-mouse if your BT
keyboard is a "mouse" or test for a failure to find a kbd, then try as a
mouse.
 std::string file = "";

 DIR *dir;
 struct dirent *ent;

 printf("Checking for active keyboard\n");

 if ((dir = opendir("/dev/input/by-path/")) != nullptr)
 {
 while ((ent = readdir(dir)) != nullptr)
 {
 fprintf(stdout, "%s\n", ent->d_name);
 file = std::string(ent->d_name);
 if (!file.compare(".") || !file.compare("..")) continue;

5. Finally Our First Games84

 if (file.substr(file.length() - pattern.length()) == pattern)
 {
 kbd = "/dev/input/by-path/" + file;
 fprintf(stdout, "%s\n", kbd.c_str());
 return true;
 }
 }
 }
 return false;

}

Do take notice of the small comment in the code regarding Linux machines, you may have
to manually change permissions to access the key event handlers, which are basically �les
in a particular directory.

Regardless of how you entered it, it’s time to make use of it, to use this we just need to
add a #include Input.h to our list of header �les.

In our main program loop, we will need to have an instance of an Input Class like this:

Input Input;

And therea�er in our initialization system we can switch on keyboard and mouse scans
by using

Input.Init();

We can then access keys using

if (Input.Keys[KEY_A] == TRUE) Do_something

Or use a test that provides a binary true/false

if (Input.TestKey(KEY_ESC)) Do_something

You can �nd a complete list of all the KEY_XXX codes in the linux/input.h header, we’ll
talk about the mouse later, for now we don’t need to use it, but we now have some very
useful access to our keys!

�ere is a downside to this code though! When our project is running, our back-
ground system, Linux, is running its own version of this key scan, so it still has its
keys working. �at means we will provide input to our terminal/Graphic User Interface
(GUI) and our project when we press keys, this is not desirable. We need to stop that
happening. But for now, if you run in GUI mode, the GUI will ignore all the key inputs.
GUI takes up some memory though, so it’s important we come back to this issue and
�nd a way to either switch o� the key input or ensure key input is transferred only to
our project.

We’ll do this later, for two reasons;

 1. I don’t want to complicate things at this point.

 2. It’s actually a bit of a bug. VisualGDB uses a bit of a hacky means to send info back
to our development PC, and that basically stops any normal attempts we have to
redirect the native OS’s outputs…so for now, we need to live with it, it will only be

5.1 Invaders from Space 85

a problem on our debugging station, and there are ways to avoid it. If we run our
projects directly from our targets, this problem vanishes. I will post updates on
the support site when I or Sysprogs provide a solution to this.

So taking stock, now we can load graphics, display screen graphics, read keys and even
have a pretty good handle on how our four main game states work. But we do need a few
more things in our arsenal before we can make an actual interactive game. We need to
have an ability to create and display some form of graphic object. In this case, sprites.

Sprites are a pretty old fashioned name for a graphical object that is displayed on
screen and moves over/in/out of the screen area under programmed control. So far we
have screens, now we need things that move within the screens.

�is is where it starts to get complex, but fun…Let’s start coding up some means to
display sprites and then use them to make our �rst game.

Start as We Mean to Go on
Yup you guessed it, we have to do some setting up before we can actually write the game,
which means a new tidy project and perhaps more important a simple way to keep track
of the initializing and setting up of our OpenGL 2.0 graphic setups, as well as things that
will be used a lot and can be expanded on as we go forward.

I’m not going to be cruel again and make you type in everything…there are a couple
of setup �les you need to have which probably could need some explaining but that will
stop us getting to the good stu�.

So on the Support site, you’ll �nd a project called InvaderStart, download it and �re
it up.

It clearly doesn’t do much yet but the basic structure of our 2D games is there and
we’ll improve on it as we go.

For now, let’s ignore the OpenGLES code �les, they are tech �les doing what we need
to do to get our game image on screen. We’ll make more sense of that later.

�e most important thing is that our project �res up into an application entry point,
which is used to set everything up. On this project it’s called Invaders, we’ll rename it in
di�erent projects and expand it a bit but really it has one purpose, to get our game up and
running.

Let’s look at the main function, which is where everything starts:

int main(int argc, char *argv[])
{
 ProgramData user_data;
// this is a little trick for the Raspberry
 bcm_host_init();
 graphics_get_display_size(0,&scr_width, &scr_height);
 TheInput.Init();

 FileHandler = new MyFiles();
 printf("filehandler set up\n");
 esInitContext(p_state);
 init_ogl(p_state, scr_width, scr_height);

 createFBtexture();
 p_state->user_data = &user_data;

5. Finally Our First Games86

 if (!Init(p_state)) return 0;
 esRegisterDrawFunc(p_state, Draw);
 eglSwapBuffers(p_state->display, p_state->surface);
 esMainLoop(p_state);

}

You can see it starts o� making a small structure for some Program data that will be used
to draw. It then does a little bit of machine speci�c magic to get the width and height of
our screen stored in variables. Note, graphics_get_display is a Raspberry function, I’ll �nd
something equivalent for non-Raspberry machines.

�en two cool things happen. We initialize our Input and File handlers. And notice
we do them a di�erent way? Input is declared as an instance at run time with this simple
line near the top of the �le

Input TheInput;

So it’s created and constructed when the project �res up, so that when we use �eInput, we
are actually always talking about the instance of the class we created there.

FileHandler though is declared like this;

MyFiles* FileHandler;

�e * or dereferencing symbol means that FileHandler is actually a pointer to somewhere
in memory that holds the instance of MyFiles. �is is an example of a pointer, and it’s an
important concept to get used to. We read that as a Pointer to an instance of MyFiles Class.

When we create a pointer like

MyFiles* FileHandler;

�ere is NO value in there, or to be more exact, there is an unpredictable value. But.

Input TheInput;

Creates and instantiates that at the location where the value is declared, it might seem like
it’s the same thing but there are subtle di�erences.

We have to create an instance of MyFiles and store it in FileHandler to use it. �at’s
done with

FileHandler = new MyFiles();

�is is referred to as a Dynamic allocation, in other words, we create it when we need it,
and also we can remove it when we don’t.

Addressing variables or functions inside the classes will also depend on how they are
created. We’ll talk more on this as it comes up.

Compile and run your project, it won’t do very much but you should get something
simple on screen.

So we now have a very straight forward system. �at initializes our machine, jumps to a
Game Class and goes about its business. Initializing on the �rst pass, creating our instances,
and then returning to a main loop, which checks for an esc key press to allow a clean exit.

�is is a good framework to build on.

We’re Here Now 87

We’re Here Now
Let’s get this game written, if you’re not familiar with Space Invaders, you’re missing out
on one of the greatest games ever made, though I have my rose tinted glasses on, it is the
perfect �rst game to try to code, let’s get on with it.

So what do we need to do?

 � We have 5 rows of 11 baddies, which change frames and slight di�erences in
graphics.

 � We have bullets our shooter can �re.

 � We have missiles raining down on us in an apparently random way.

 � We have a saucer that pops out from time to time.

 � We can hit the invaders with our bullets—they blow up.

 � And we can be hit by our bullets—we blow up, and we lose a life.

 � We also have some score system.

 � We can hide behind shelters, which get destroyed.

 � And we move our shooter le� and right, and �re.

 � �e invaders move le� or right then move down at the edge.

 � If they get to the bottom we are dead.

 � If we kill them all, they come even faster.

It’s important to think about what we are going to display, this little list and a rough screen
drawing give us a lot of information. We need the game to able to draw di�erent images,
respond to key presses, move objects semi-intelligently, create new objects when needed,
bullets and missiles, and somehow do it all at the same time. Take some time before ever
putting �ngers to keyboard, to think about what kind of code we need.

Seems simple enough, Ok, so we’ve described the main features, these are things we
need to code and the order we do seems fairly simple, we’ll start by putting a shooter on
screen.

On the support site, you will �nd two projects InvadersStart and InvadersFin. I really
want you to use the InvadersStart, which is the basic framework and assets we are going to
use, I’ll put down the code in here that you need to enter in to get it all working, and let you
try out things as you go. �e InvadersFin project is just so you can see the �nished work,
but only use it if you really mess up. You should get as much practice as you can entering
code and trying out things before moving the next steps.

Our �rst task is to put a player on screen, let’s call him Bob, cos I like the name Bob..
BOB, it has a nice ring to it. But before we do that we need to think a bit more about what
other kinds of things are going on screen.

5. Finally Our First Games88

Inheritance
As coders, we need to notice patterns in the way things behave…looking at our outline we
have a few types of thing we are going to put on screen, but we should consider that these
visually and functionally di�erent objects share certain concepts between them.

�ey have position variables, they have a graphic and they have some kind of repeat-
ing function to make them do stu�.

At the moment that’s really all they have but if we were to treat the variables as being
pretty consistent for anything, which needs to be drawn on screen, we can also be sure that
we are going to need some kind of code to update them, then also some code to draw them.

So let’s make things tidy, and create a class to keep track of our objects common
 values. We’ll call it, naturally enough, an Objects Class

enum Types { Bullet,Missile1,Missile2, Alien, AShooter,AShelter };
class Objects
{
public:
 Objects();
 ~Objects();
 Types Type;
 float Xpos, Ypos;
 bool Update(Surface* s,Input* InputHandler);
 Surface* Image;
};

Now that isn’t too bad, but that type variable in the members list is a bit clunky, every
time we do the update, we have to use a switch system or condition test, to get to the bit
of code we want that relates to the type of thing we are updating, and we are now going to
�ll our Object Class with update code for all the di�erent types of thing we have, even if
the instance of thing does not need them. We really only want the type to be used for ID
purposes, not for decisions on which update routine to use.

�ere has to be a better way? Of course, there is, it’s called inheritance! Inheritance is a
key part of C� � ’s makeup, which allows it to do a range of nice things, if we consider that
Objects is a Base Class that contains all the prime concepts of an object, such as its position
and its image, and an update routine, then that’s all we need. But we want to create di�erent
types of objects we should be able to create a new class that has access to all the base values.

�ink of it like this, you, me, and everyone we know, are humans, (I hope?). We all
derive from a basic concept of what a human is. Bipedal, four-limbed mammals with big
brains and stereo vision. But if we are all built from the same base model. Why are we all
di�erent, and how do we even begin to explain males and females?

A male human is derived from the basic concept of a human template, but has a few
extra bits. A female human is also derived from the basic concept of a human template,
and has a few di�erent extra bits.

�e human genome, de�nes a whole range of di�erent variables and values, they alter our
looks, build, skin color, eye color, hair, and so on. �e vast range of these variations are com-
mon variables to both and our genes switch di�erent things o� and on. But some genes are only
found in our Y Chromosomes, meaning only Males can have them or set things to on/o� in our
base variables. Making Males and Females quite di�erent (as if we didn’t know that already).

But, both derive from a human template, so both are human. If we wrote that in code
we could use this

We’re Here Now 89

class Female :public Human
{
 Female();
 ~Female();
};
class Male :public Human
{
 Male();
 ~Male();
};

What this basically means is that we have two types of Human, each has their own con-
structor and can be identi�ed as being of a class Female, or Male. �ey are unique, but
share the fact they are Human, and their di�erences can be listed in the class de�nitions,
or used to set up the values contained in variables in the base human class.

So how does this amazingly over simplistic explanation of the battle of the sexes help
us draw and update things? We have a base class, called Objects, it’s going to grow a little
as we go, but basically even now it tells us all we need to know about things that are going
to be drawn on screen. But the behavior is going to be di�erent. Say however we write a
Bullet Class, which inherits from Objects we can put the behavior of our bullet in its very
own class de�nition and not clutter up the Objects Class.

�e de�nition of our bullets can then look like this.

class MyBullet : public Objects
{
public:
 MyBullet();
 ~MyBullet();
}

So now, we have a Bullet Class, (actually I called it MyBullet), which derives from Objects,
so it has all the Objects traits and variables. It even still has a variable called type though
we may not need it any more.

What is di�erent though and now neatly contained in its own class de�nition and has
the code that is unique to it and its update function are now cleanly held in a simple class
and readable �le.

Now let’s get back to Bob, Bob, is a shooter, so we need to create a class for him, so to
your project add a Shooter.h �le, which contains this class de�nition code

#pragma once
#include "MyFiles.h"
#include "surface.h"
#include "Objects.h"
#include "Input.h"
class Shooter :public Objects
{
public:
 Shooter();
 Shooter(char* f, MyFiles* fh);
 ~Shooter();
 bool Update(Surface*,Input*);
};

5. Finally Our First Games90

�at’s not too complex, we’re simply de�ning a shooter as a type of Objects, which has
a constructor without a �le name, a constructor with a �le name, a destructor, and the
important one an Update routine, which passes a pointer to a surface and a pointer to an
input system. Oh it also returns a bool. I’m thinking ahead here, that bool might prove to
be useful to indicate something that the calling routine might want to know.

Remember, because this is derived from the Objects Class, all the attributes of an
Objects are automatically attached to our Shooter Class.

Ok so that’s simple enough, let’s look at the actual code that we need to write. Add a
Shooter.cpp �le to your source folders.

And start o� by adding the two constructors.

#include "Shooter.h"
#include "Game.h"
Shooter::Shooter(){} // empty
Shooter::Shooter(char* f, MyFiles* fh) :Objects(f, fh)
{
 MarkForRemoval = false;
 Type = AShooter;
}

We could also add the destructor here, but if we don’t enter anything, it will simply use the
Base Class destructor, which for our likely needs is all we need. It’s up to you. You can add
a destructor of your own if you want?

�e Constructor is only setting up a few variables. MarkForRemoval will become
apparent later.

Now the meat of this class is the update routine, which is actually going to move old
Bob around, so add your movement routines now

bool Shooter::Update(Surface* a_Screen, Input* a_Input)
{
 bool fire = false;
 if (a_Input->TestKey(KEY_LEFT))
 {
 Xpos--;
 if (Xpos < 0) Xpos = 0;
 }
if (a_Input->TestKey(KEY_RIGHT))
{
Xpos++;
if (Xpos > SCRWIDTH - Image->GetWidth()) Xpos = SCRWIDTH
- Image->GetWidth();
}
Image->CopyAlphaPlot(a_Screen, (int)Xpos, (int)Ypos);
 return fire;
}

Ok, so Bob is now happily moving le� and right and being drawn. We’re done with him
for a few minutes.

Now we can see clearer that MyBullet, and Shooter have a lot in common. �ey both
need coordinates to tell us where on the screen they are, they both have surfaces, which
need to be copied onto the active screen bu�er before they can be seen. �ese are now nicely
contained in our Objects Class. �e only real di�erence between Bob and our nameless
bullet is that Bob responds to key controls, and bullets just �y up until they go o�screen.

We’re Here Now 91

But we need to be aware of something, Bob and MyBullet both use an update routine,
and each update routine is speci�c. If I want to call the update routine for Bob. �en I must
speci�cally call the update routine for Bob, and also for the Bullet I must speci�cally call
the routine for the Bullet. �at’s a bit of an annoyance.

But inheritance comes to our rescue again in the form of virtual functions. Our
Objects Class also has an Update routine even though it does nothing, which Shooter and
MyBullet both can access. But what we really want is for Shooter and MyBullet to use their
own Updates but have a single call. We want to be able to call the Objects update function
and have it use the correct update function for the type of class that the object ultimately
is, a Shooter or a Bullet, or even as we will add, the enemies.

�is is easily done, we are going to refer to all of our objects regardless of their types
as Objects and we’re going to call their Objects Class update routines. If we make the base
objects Update function a virtual function, it means then any class that inherits from
Objects and also has an Update function, with the same arguments, will replace or over-
ride the Base Class.

�is has tremendous bene�ts for us because we can now keep a list of all the di�erent
types of Objects and only ever call one function to update them. If this was not possible,
we’d have to do separate calls to each types update function.

Let’s examine that more by putting some enemies on screen. We need to add a class,
derived, as with MyBullet and Shooter, from our Objects Class. But we are going to make
a modi�cation to the Objects Class and add the virtual keyword,

class Objects
{
public:
 Objects();
 ~Objects();
 Types Type;
 float Xpos, Ypos;
 virtual bool Update(Surface* s,Input* InputHandler);
 Surface* Image;
};

Now any class that derives from this, which has an Update function with the same return
value and argument list, will replace this call.

We could also do this;

virtual bool Update(Surface* s,Input* InputHandler) = 0;

�at would indicate this function is a pure virtual, in other words the Base Class has no
update routine at all, and therefore any derived classes are forced to provide it. But for now
we’ll stick with an overridden Update to give us a bit of �exibility.

Every Story Needs a Villan
Ok make an Enemy Class, as before derive from Objects, and it really does not need too
much additional content. We don’t even really need an update at this point, we’ll add that
once we’ve got them set up and displaying.

Now we’ve got to put 55 enemies on screen here, and each has to somehow be
addressed so we can call their update functions, how can we name them in such a way

5. Finally Our First Games92

that we know who they all are? We could name them all as post�xes to a name, Galroth
the Destroyer and his o�spring. So Galroth1, Galroth2, Galroth3, and so on, hmmm 55 of
these could get a bit heavy, and besides do we really want to get to know their names before
we unthinkingly blast them into atoms?

No, not really, but we do need some way of addressing them, something a bit more
usable than third Guy that looks a bit like Galroth to the le�, isn’t the most e�ective coding
directive!

We know they are all based on an Objects Class. So let’s just create some means of stor-
ing 55 of them that lets us address them by a single name. �ere are two traditional ways.
Arrays and Vectors.

If we create an array for our 55 guys called Galroth, C� � , let’s use that name to access
them.

Objects* Galroth[55];

What this code does is create space for 55 pointers to Objects, and we can reference them
by using Array indexing, so Galroth1, who sadly will never live long enough to attend a
naming ceremony on his victorious return to his home planet, can simply be addressed as
Galroth[0]…ermm wait he’s Galroth1 not Galroth0.

Well that’s to do with a little quirk of array-based indexing, we need to start with 0 as
our �rst index, so our index range for our 55 Galroths is Galroth[0]…..Galroth[54], and
besides we really don’t care what he’s called. From now on he’s an index, and the cool thing
about indexes is we can use variables to get to them.

If we de�ne a variable with a number, we can access the objects update function like
this:

int I = 25;
Galroth[I]->Update();

Is the same as

Galroth[25]->Update();

Or, had we actually bothered to name him.

Galroth26->Update();

But to update or otherwise do anything with 55 Galroths, we would have needed 55 indi-
vidual calls to their proper names. �at’s not practical, so an array is best because we can
loop through it with ease.

Of course so far all we have, is just an array full of empty spaces or random rubbish,
there no actual values in there at the moment, so our Game initialize routine must now
create our Galroths, line them all up and put them on screen, a bit of work, but it does not
now have to create and keep track of 55 individually named objects.

We can still keep Bob as Bob, because there’s only one and he’s a fairly important
object, but these invader scum don’t deserve our time to name them all.

We’re Here Now 93

Arrays or Vectors
Vectors work a little like Arrays in the way we use them, but the way we create and load
them is di�erent, and the reason is really simple. Arrays are absolutely the best thing ever,
when you know exactly how many things you are going to create and manipulate at the
time of compiling, and don’t have any plans to alter that number.

But what if you are not 100� sure how many things you are going to generate…how
many missiles can the invaders �re for example? We could limit the amount, but it’s more
fun if we let them create as many as they want, so that means at compile time we have no
real idea how many missiles will be made. We could make an array big enough to cope
with the maximum we think we will use, but that’s quite wasteful.

Vectors allow us to create dynamic arrays, we can add to it whenever we �nd we need
a new element, we can even remove things if we want, as we shall see soon.

�e choice of arrays versus vectors is always an important one. Vectors are function-
ally a little slower to use, and require more space to set up, but their �exibility is amazing.

Let’s try out both systems. We know we have 55 invaders, but we don’t know how
many missiles/bullets we have so let’s use arrays for the invader and vectors for the
missiles/bullets.

If we’re going to create Aliens though, we will need an Alien Class, so start o� making
that. All it needs is this for the Aliens.h �le

#pragma once
#include "MyFiles.h"
#include "surface.h"
#include "Objects.h"

class Aliens :public Objects
{
public:
 Aliens();
 Aliens(char* fName, MyFiles* fh);
 ~Aliens();
 bool Update(Surface*, Input*); // the update we override needs both params
even if we don't use Input

};

We’ll talk about update in a few moments, but for now this is enough. You can work out
the default constructor and destructors, which are not going to do much, so let’s look at
the main constructor for this.

Aliens::Aliens(char* fName, MyFiles* fh)
{
 Image = new Surface(fName, fh);
 MarkForRemoval = false;
 this->Type = Alien;

}

And the update function, which for now can be a simple call to the base functions update
to provide a draw to the screen.

5. Finally Our First Games94

bool Aliens::Update(Surface* S, Input* In)
{
 Objects::Update(S, In);
 bool ReturnValue = false;
 return ReturnValue;
}

�at will give us now a simple basic ability to create and update an alien. Now go inside
the Game.cpp �le at the init, and let’s set about creating 55 invaders, which might seem
a simple task, it is slightly complicated by having di�erent graphics on di�erent lines, so
we’ll create a small array of �lenames for the graphics for each line �rst.

char* Names[] =
 {
 (char*)"../Assets/invaders8x8/InvaderA-1.png",
 (char*)"../Assets/invaders8x8/InvaderB-1.png",
 (char*)"../Assets/invaders8x8/InvaderB-1.png",
 (char*)"../Assets/invaders8x8/InvaderC-1.png",
 (char*)"../Assets/invaders8x8/InvaderC-1.png",
 };
AlienCount = 0;
for (int i = 0; i < 5; i++)
 {
 for (int x = 0; x < 11; x++)
 {
 Aliens* T = new Aliens(Names[i],a_FileHandler);
 T->Xpos = (x * 11) + 5;
 T->Ypos = (i * 11) + 40;
 AlienList[AlienCount] = T;
 AlienCount++;
 }
 }

Now there was a perfect example of how to use an array when de�ning a set of objects at
compile time, I could have used a hard number 5 like this:

char* Names[5] =

But as I was de�ning them as I created them, the compiler was happy to count how many
strings I entered. So the number of entries was clearly known at compile time.

AlienList on the other hand, had to be de�ned in our Game.h �le as an array of point-
ers to Alien instances with 55 entries. As there is no way for the compiler to know how
many things were going to be entered into it, compilers have no way to look through your
code and understand what you mean by a pair of nested loops creating 55 aliens. So you
have to explicitly tell them.

Aliens* AlienList[55];

All we need now is a small update loop in the Game Update,

for (int i = 0; i < 55; i++)
{
 AlienList[i]->Update(a_Screen, a_InputHandler)
}

We’re Here Now 95

And we’re ready to feast our eyes running our project now, we should get our aliens on
screen, looking scary and menacing, in a 1978 kind of way. So now we’ve got our 55 invad-
ers, all lined up and ready to go, but how do we get 55 individual objects to move, bearing
in mind that if we shoot some of them the group still exhibits individual movement and
any one of them can tell the others to change direction.

Now, that’s a perfectly �ne example of using an array, but I don’t like it, if you look at
our Game update function its updating �rst our player, then 55 objects in an array, and
then, though we’ve not added them yet, we also have to handle bullets and missiles. So that
will add an update via a vector (a kind of dynamic array). Giving us, three di�erent updates
inside one function. It’s not wrong, but for me a golden rule I try to stick to, even though I
o�en fail, is to keep the main update loop as simple as possible. �ere will always be excep-
tions to that rule, but the simpler I can keep things the less impact those exceptions with
have. So I’ll change things now and use a vector for ALL our objects, Player, Aliens, bullets,
and missiles.

�e change isn’t massive but we do have to go back and make a few dirty edits, sorry, I
just wanted to you see an array working even if you don’t use it this way ever again. Oh and
for the more savvy C� � coders, yes, this is terrible code, please wait, I will explain soon.

In the Invaders.cpp add this line to your code outside of any function, this will put
it in what is known as global or unreserved space. Here’s an especially bad way to de�ne
our vector.

std::vector<Objects*> MyObjects;

As it’s in the Invaders.cpp �le, only that �le will know about it and we really want the
Game Class methods to see it, so we need to tell the Game Class, which wants to use that
vector that it actually exists, we can do that with this line of code, at the top a�er the
headers

extern std::vector<Objects*> MyObjects;

So now the Game Class can use the MyObjects vector. Its nasty, but it works.
If we now ensure that our init system in Game loads up the MyObjects list to a vector,

although we’re not doing it yet, it means we can also load and process other objects in that
list, exactly the same way we would with an Aliens* AlienList[55];

 char* Names[] =
 {
 (char*)"../Assets/invaders8x8/InvaderA-1.png",
 (char*)"../Assets/invaders8x8/InvaderB-1.png",
 (char*)"../Assets/invaders8x8/InvaderB-1.png",
 (char*)"../Assets/invaders8x8/InvaderC-1.png",
 (char*)"../Assets/invaders8x8/InvaderC-1.png",
 };

 for (int i = 0; i < 5; i++)
 {
 for (int x = 0; x < 11; x++)
 {
 Aliens* T = new Aliens(i,a_FileHandler);
 T->Xpos = (x * 11) + 5;
 T->Ypos = (i * 11) + 40;

5. Finally Our First Games96

 MyObjects.push_back(T);
 AlienCount++; // keep track of how many we create so we can tell when
they are all dead
 }

And the principle is now exactly the same. But I know that no matter how many other
objects I put on this list, or even perhaps remove from it, they will update.

Move Em Out!
Let’s get them moving, they move le� and right and sometimes down…which means we
need a value for them… Since they all move in the same direction at the same time, we can
keep that direction as a game variable. Let’s use an enumeration to specify the directions
and give them easy to remember names. But one thing to remember is they all move as a
group, so we need to work out a way to do that, moving them individually isn’t going to
work.

Add this to the Game.h �le before the class is described because this will be used in
other places not just in the class

enum Directions {Left, Right, Down };

And also in the class itself, let’s keep a variable, which is going to be one of those directions

Directions Direction;

Now back to our Game.cpp �le. Our update routine only draws our guys at the moment,
and it would be nice if we could get them to move but we don’t have that. Yet!

So we need our Game loop to do the movements, even though it’s against our golden
rule to have too much code in there. But at the moment, we don’t seem to have a choice, if
we want them all to move, we need to do that at the point of access. Let’s make it simple…
Add this code to your Game loop just before the update loop.

for (int i = 0; i < 55; i++)
 {
 float Xstep = 0;
 float Ystep = 0;
 switch (Direction)
 {
 case Left:
 Xstep = -1;
 if (MyObjects[i]->Xpos < 1) Direction = Right;
 break;
 case Right:
 Xstep = 1;
 if (MyObjects[i]->Xpos > SCRWIDTH - MyObjects[i]->Image->GetWidth() - 1)
Direction = Left;
 break;
 case Down:
 Ystep = 1;
 break;
 default:
 printf("Huston, we have a problem");
 break;
 }

We’re Here Now 97

 MyObjects[i]->Xpos += Xstep;
 MyObjects[i]->Ypos += Ystep;
 }

Now at �rst glance this looks ok, we’re moving all the 55 aliens depending on the direction
they travel, when it gets to the edge, the direction changes…easy huh?

Ok run it and see…
Kinda cool to see the aliens bouncing le� and right, but it’s not right is it? We’ve some-

how got one guy sticking out and creating a gap.
Why?
Well there’s a simple �aw in our system, yes we are moving a group in the same direc-

tion, but we also need every single one to check if they are at an edge. �at means that �ve
guys at di�erent times in the update cycle are going to change the direction and the guys
in front of them, will get the message, the guys behind won’t, so there’s going to a gradual
change in their motion. Not good.

So rather than let them cause the change direction when they detect the edge, we must
let them signal that a direction change is needed, and only a�er all the aliens have moved
can we then set a change in direction.

�e code for that now looks like this:

 Directions ShallWeChange = Direction; // keep track of the current Direction
 for (int i = 0; i < 55; i++)
 {
 float Xstep = 0;
 float Ystep = 0;
 switch (Direction)
 {
 case Left:
 Xstep = -1;
 if (MyObjects[i]->Xpos < 1) ShallWeChange = Right;
 break;
 case Right:
 Xstep = 1;
 if (MyObjects[i]->Xpos > SCRWIDTH - MyObjects[i]->Image->GetWidth() - 1)
ShallWeChange = Left;
 break;
 case Down:
 Ystep = 1;
 break;
 default:
 printf("Huston, we have a problem");
 break;
 }
 MyObjects[i]->Xpos += Xstep;
 MyObjects[i]->Ypos += Ystep;
 }

 if (ShallWeChange != Direction) Direction = ShallWeChange;

Run that, and check out our cool new le� <> right aliens.
Nice, but there’s another issue, it’s far too smooth, we don’t want our aliens to glide

like that, we want them to step, and soon to animate. So let’s make them move in slightly
bigger steps, and also add a timer variable to our Game.h �le a�er direction.

int StepTime;

5. Finally Our First Games98

Now we need to make sure it’s initialized and also we need to create a value that we can
easily alter. Let’s set a #de�ne TIMEPERSTEP 50 in our game cpp at the top.

Also let’s set another #de�ne for SIZEOFSTEP 2
The reasons for this are really simple, we may not be happy with the step size

and speed of our movement, but to make adjustments in the code we have to change
values�like

Xstep = -1;

Every time we want to make a change, that’s two sets and two checks…four times, but by
using a de�ned value we only have to change the de�ned value once. And there’s no danger
of us forgetting to change a value somewhere in the code.

Now go ahead play with the TIMEPERSTEP and SIZEOFSTEP values, until you get a
nice jerky movement in your aliens. I’m going to stick with 50 and 2 for now.

All pretty neat so far, we’ve got nice jerky moving aliens, but it’s still not right, we
need to go down. And Down is a direction all on its own, we also need to change direction
a�er we’ve gone down… So a bit more logic is needed, we want to go down, then change
to a new direction.

Our Directions ShallWeChange variable is a local variable, which means it’s
going to be lost once this routine is �nished, so we need a more permanent variable

Directions SavedDirectionToChangeTo;

So there we have it, aliens moving le� to right and dropping as they go. We have our bad-
dies. �is is an example of the game loop doing the logic for our enemies, which is not
very Object-Oriented Programming (OOP), and also not very �exible. �ough for these
particular very basic baddies we can live with it for now.

But do you see how cluttered our main loop and Game.cpp �le has become…Its really
only supposed to process our baddies and check if we’re done with our slaughter of invad-
ing hordes, but now it’s handling the main logic of our aliens. We’ll look at this later, for
now, let’s pat ourselves on the back.

So we’ve got baddies, we’ve got Bob, the last savior of the human race, we’re almost
ready to start killing baddies. But there is something missing before we start on the shoot-
ing and the killing and the maiming and the ewuugh. We want to put a bit of animation
in here….

Animation 101
Animation at this level really is nothing more than changing our displayed image every
so o�en so that we can create some semblance of motion. It’s very much the same concept
as �icker books; as you �ick through the book, each image is seen by the eye, and for a
moment that image is retained, so that when you see another image, slightly di�erent it
appears to be a transition.

Cartoons have relied on this concept since the dawn of the �lm. And computers pretty
much are like a bank of Disney animators at a giant desk drawing 50 or 60 frames of screens

We’re Here Now 99

every second so your eye thinks that things are moving smooth, it’s not, it’s just images that
one a�er another combine to give the appearance of a smooth moving image.

But all this talk of 50 or 60 frames per second is not relevant to our invaders…who
have two frames, and we only really need to change them every couple of seconds.

To make animation work we need to get the right kind of frame in place so let’s make
a small change to our projects organization.

Our Aliens, are all basically doing the same thing, even though they have three dif-
ferent styles of graphics, they don’t do anything di�erent, so we can group them all into
one class, which we’ll call Aliens. We could do three di�erent classes for Aliens, if you
plan to make your Aliens do slightly di�erent things that’s a good plan, but here, they all
just move le�/right and down…with di�erent animations, so one class is enough to keep
them tidy.

Let’s make an Alien Class, also, let’s remove the responsibility from the Game Class
for initializing the graphics. We do need to know what kind of aliens we’re making, but we
can de�ne that using a Row value during our set up loop.

As the group movement, is still best controlled by the game loop, which is able to see
all 55 aliens at once, we won’t give our alien any responsibility for movement, we will just
allow it to control its animation and keep track of its graphics, so we can remove some of
that from the Game Class initialization.

Small point…and this is me being lazy as well as trying to avoid confusion, did you
see all those warnings that came up on compile? Now a warning is not an error, but it is a
warning that you might have made an error. In this case the warning is

warning : deprecated conversion from string constant to 'char*'
[-Wwrite-strings]

It’s not the worst warning ever, it just means that because we are using char* to track our
�le names, it’s asking us to use the more up-to-date C� � string type. So we can do that…
or…we can tell it, no, I really want to use chars please…and that’s done by explicitly cast-
ing to char*.

Adding a (char*) cast to the start of the strings ensures that our compiler will know that
these are char*, you are telling the compiler, “it’s what I expect them to be compiled as, now
stop complaining and do as I ask” (Use appropriate power crazed internal voice for that state-
ment). It might seem a bit of a chore but it’s very good practice to be clear to the compiler!

�e key point you must keep in mind, don’t let warnings pile up, they are there for a
reason, and while most of the time you can ignore what they are telling you, sometimes,
o�en in fact, there are good reasons for the compiler to warn you that you might be mak-
ing a mistake, and those good times, can be obscured by the thousands of simple situa-
tions when being clear and explicit costs you nothing. Treat warnings as errors, and make
sure your code tells your compiler exactly what you want it to do at all times.

So now our Aliens Class is the type of object we want to create, we can make a few
simple changes to our Game::Init so it now looks like this. Much tidier…We moved all the
main init code into the Aliens constructor, which you’ll �nd in your folder, but not added
to the project.

5. Finally Our First Games100

bool Game::Init(MyFiles* a_FileHandler)
{
 int imageWidth, imageHeight;
 StepTime = TIMEPERSTEP;
 for (int i = 0; i < 5; i++)
 {
 for (int x = 0; x < 11; x++)
 {
 Aliens* T = new Aliens(i,a_FileHandler);
 T->Xpos = (x * 11) + 5;
 T->Ypos = (i * 11) + 40;
 MyObjects.push_back(T);
 }
 }
 Bob = new Shooter((char*)"../Assets/invaders8x8/shooter.png",
a_FileHandler);
 Bob->Xpos = SCRWIDTH / 2 + 16;
 Bob->Ypos = SCRHEIGHT- 48;
 MyObjects.push_back(Bob);
 InitDone = true;
 return true;
}

Add a #include Aliens.h to your Game.h �le under the current list of #includes, then alter
Game.cpp’s init to the new version. Now you can add the new Aliens �les into your proj-
ect. �ey are very simple, so have a quick look at them. By adding the Aliens.cpp and
Aliens.h code to your project, and compiling we will see our baddies are animating and
moving… we’re nearly there.

Did you notice though that in Game::Update() we didn’t do anything to the update
loop itself

for (int i = 0; i < MyObjects.size(); i++)
{
 MyObjects[i]->Update(a_Screen,a_InputHandler);
}

It’s still happily processing all the objects in the vector, by calling their update
(Surface*,Input*) functions, Aliens, are all Objects Class things, in the same way that Bob,
our Shooter, is an Objects Class thing!

Now this still isn’t ideal, and the shortcomings, might become apparent soon, but for
now we’ve got movement and animation and we’re ready to do the next cool bit. Shooting!.

Hand Me a Bag of Bullets
We put all our input handling code, quite sensibly in the class that actually needs to act on
it, our Shooter Class. We can move it le� and right simply by testing for key presses. We
can also decide when to shoot if the space bar is pressed.

Go ahead and add this code to our Shooter Update code a�er the le� and right Tests
and before Image-CopyAlphaPlot.

if (a_Input->TestKey(KEY_SPACE))
 {
 fire = true; // fire
 }

Did We Hit It? 101

So, we’re just setting a �ag, not actually creating any bullets. �at’s because as it stands
this class isn’t really able to do that, we can certainly detect our users desire to shoot, but
we need a way to create a bullet and put it on our list of things that have to be updated.
�e problem is our Shooter Class has no access to the main list. �at is indeed a problem.

So we’re going to have to consider what the best option is. �e Game Class is our root
for all the game play code, and the list is held in there, which means I have no way in my
Shooter Class to add a bullet, only the Game Class can currently do that.

Now there’s a few ways around this, and really at this point recognizing the fact our
code does not provide the �exibility we need, we should really rewrite it. But as this is a
quick and dirty bit of code, let’s instead try something else.

By returning a bool value from the update we can leave the code that controls Bobs
update to check for that bool value, and if true, get the Game Class to create a nice new
Bullet and put it in the update lists. Like this

>>>in the Game.cpp file Update function
bool WantToFire = Bob->Update(a_Screen, a_InputHandler);
if (WantToFire)
{
 // do we have a bullet in flight?
 if (Bullet == NULL)
 {// ok let’s make a new bullet
 printf("We fired a bullet/n");
 Bullet = new MyBullet("../Assets/invaders8x8/bullet.png", a_FileHandler);
 Bullet->Yspeed = -4; // give it a speed
 MyObjects.push_back(Bullet);
 Bullet->Xpos = Bob->Xpos+4;
 Bullet->Ypos = Bob->Ypos - 12;
 }
}

So now the bool that Bob returns, which indicates a desire to Fire, true or false, is stored
in another bool, and then tested. We only allow Bob one bullet at a time so a check to see
if a Bullet currently exists, is needed, and if we do not currently have a bullet in place, we
can now create one, set its values to be starting just at Bob’s nose, and then leave it to do its
thing. Now we have �ring! �ere’s no end to the damage we can do!

Did We Hit It?
Something very important for our bullets is next, knowing whether we hit something,
which is harder to do than you might think? It’s easy for us to see our bullets travelling up
or down screen, and then coming into contact with the enemies or our shooter. But the
CPU does not have the bene�t of a pair of eyes watching the screen. It knows only a few
bits of data that relate to the Objects positions and in fact it actually does not even know
that unless we bring it into focus.

�at is almost enough, but we also need to know a bit about the size of the sprites we
are testing to see if they collided on screen with each other.

�ere are many forms of collision detection used in game programming, but for 2D
games using sprites, which are basically squares, one of the most reliable is a box check,
which relies on knowing the position of the objects we are testing, and then their height
and width. �ese data are available to us based on a very simple check.

5. Finally Our First Games102

Box Checks

�is is the very common box check, or more accurately an axis aligned box check
or� AABB. It’s an algorithm, which is easy to implement, reasonably fast and pretty
accurate for objects that are made up of square/rectangles. It does have a few limits
though, as you can see in the diagram, it only detects the fact the squares have over-
lapped, it does nothing to test if the overlap area actually contains any part of the
graphic. Testing for that needs a bit more work. But usually it’s not needed if our game
is moving reasonably fast.

�e basic code format for the box check is something like this;

if (
 (rect1.x < rect2.x + rect2.width) &&
 (rect2.x < rect1.x + rect1.width) &&
 (rect1.y > rect2.y + rect2.height) &&
 (rect2.y > rect1.y + rect1.height)
)
{ printf("overlap detected"); }

Not too shabby, though even when laid out in one line you can see there are a number of
compares, tests and && checks going on so it’s got to check quite a few things, you can
speed it up a little by breaking the test down into pass/fail tests and returning as soon as a
fail is encountered but generally we leave it like this for speed and ease of use.

Circle Checks
Another very popular 2D collision system, is the circle to circle test. It works in a very sim-
ilar way to the box check but is a little bit faster. It works using our old friend Pythagoras’
theorem, to test if the distance between two circles, which encapsulate the main part of
our sprite, is less than the combined two radius of the circles.

Did We Hit It? 103

For a simple and quick test, either of these methods are good for us to use. I tend to use
the circle to circle test.

float R1 = sqrtf((My_Height*My_Height) + (My_Width*My_Width));
float R2 = sqrtf((Ob_Height*Ob_Height) + (Ob_Width*Ob_Width));
// assuming sprite ref is top left, move to the centre
int diffx = ((Xpos + My_Width) - (TheObject->Xpos + Ob_Width));
int diffy = ((Ypos + My_Height) - (TheObject->Ypos + Ob_Height));
float Dist = sqrtf((diffx*diffx) + (diffy*diffy));
if (Dist < (R1 + R2)) return true;
return false;

�is can be optimized a little by not actually caring about the square root and keeping
track of the squared Radius values in the object somewhere because it’s unlikely to change.
�is is my personal preference for a quick fast, reasonably accurate obj� � obj collision test.

// do a simple circle/circle test
 float R1 = TheObject->RadSq;
 float R2 = this->RadSq;
 // assuming sprite ref is top left, move to the centre
 int diffx = ((Xpos + My_Width) - (TheObject->Xpos + Ob_Width));
 int diffy = ((Ypos + My_Height) - (TheObject->Ypos + Ob_Height));

 float Dist = ((diffx*diffx) + (diffy*diffy));
 if (Dist < (R1 + R2)) return true;
 return false;

Collision checks are one of the most intensive things we can do on a game, because we
have 55 invaders, all of them need to check with our shooters bullet to see if they have
been hit. �at’s a lot of tests. And in other games where objects may collide with other
objects, each of those objects will have to test with every other object as it tests with you.
�e number of tests in most games can become very large very quick. So an e�ective fast
test is essential.

5. Finally Our First Games104

Give Me Shelter
�e last thing we need now is a series of bunkers or shields to hide behind that provide us
with some kind of ablative protection from bullets.

I don’t want to spend too long on this, as we need to crack on with other things, but
we should certainly put something in here, and you can make it more complex later if you
want, but for now let’s make this a very simple system of four shield areas each made of
four simple squares…

Now you may think that these are totally passive and uninteresting things. �ey don’t
move, they don’t shoot, they simply stay on screen and degenerate/vanish with hits, it’s
the bullets and missiles that can do all the work? But they are still objects, so they need to
exist as a class.

Create and add Shelter.h and Shelter.cpp �les to our projects.
�e header is going to look very familiar.

#pragma once
#include "Objects.h"
using namespace std;
class Shelter :
 public Objects
{
public:
 Shelter();
 ~Shelter();
 bool Update(Surface*, Input*);
 bool TestForHit(Objects*);
};

It’s not dissimilar to a Bullet Class, but we’re not going to need any graphics for it, so it
does not need a �le-based constructor. It needs an update, and a hit test, but unlike the
bullets, it has to check for hits from both the player and enemies bullets. So it’s going to
need its own hit routine.

And that presents a problem.
Neither the bullets nor the Invaders have any idea what the shelters are, they have no

access to the Shelter instances, which are going to be contained, most likely in the Game
Classes MyObjects list.

Did We Hit It? 105

�is is a problem, not insurmountable, but one we need to keep in mind later, because
this is an issue of design. We’re starting to �nd the limits of this dirty code. Our classes
can’t really talk to each other, only through the Game Class. Our own bullet, is a named
object we’re quite happy to have a bit of code in the update loop as each object is being
processed to see if it gets hit by the bullet.

if (Bullet) // if we have a bullet check if it hit anything
 {
 if (MyObjects[i] != Bullet)
 {
 if (Bullet->TestForHit(MyObjects[i]))
 {
 MyObjects[i]->MarkForRemoval = true;
 Bullet->MarkForRemoval = true;
 }
 } // if !Bullet
 } // if Bullet

Look at that, isn’t it horrible? Right in a the end of an already cluttered loop, a�er we
update an object, we then have to make sure we’re not the actual Bullet, then test if our
current test object is hit. Fair enough, that works we can use that. But that game update
loop is starting to look more than a little untidy.

#side note- One thing you might notice is the way my brackets line up. And I also have
a couple of comments to show which bracket is associated with which condition. �is is a
format I like to use, when loops or conditions start to get intense. Having the brackets line
up like this, and the code within indented, gives an immediate visual clue as to the way
the code works, at least as long as it stays on screen. Massive global wars have been fought
and many kittens killed over the correct way to use brackets like this. I try to stay 100�
neutral, and use the correct, proper, and only sensible way. But it’s up to you! Just make
your code as readable as possible, especially when you are going to be prone to errors at
this stage of your development.

Right, let’s get back to it, we’ve got maybe 10–12 invader bullets, and 16 shelter blocks
to test, to make it even worse our own player bullets can hit the shelters and kill them.
�ings are starting to get a bit strange. It’s no longer a simple case of 1 object testing 1
object, its 10 or more, each testing 16. And to make it even more fun, we don’t really know
how many bullets are in play, or how many shelters are still standing.

Now you should start to realize why collision tests need to be fast, there’s a lot of them
likely to happen and for the most part 99� of them are going to result in a negative test.

With the system we have at the moment, there’s no real way round this, but, we do
have a pretty simple and fast test and a reasonably small number of objects, so let’s allow
it to do its thing, because trying to test if a collision is needed is probably not going to give
us a great advantage.

�e �rst problem though is identifying our interested parties. We know where in the
vector things started, but things might move around, that’s the nature of dynamic arrays.

As our bullets are more variable in their numbers, we’ll let the bullets test for the
shelters. But for that to happen we must know where all the remaining (active) shelters are.

�is is where we have to hold our hand up and admit, that we can’t keep that game
loop nice and simple, if we put our Shelters into the normal MyObjects list we will just
lose track of them.

5. Finally Our First Games106

So for collision purposes we need to allow the bullets, both types, to be able to test
a shelter list, which means another array or vector. Our update loop can update the
MyObject list and any bullets in there can access the shelters. But it will also need to
update the Shelters so they can be drawn.

Since we do know exactly how many shelter sections there are, 16, we will use an array
to store pointers to the shelters, and this has the added bonus of letting us see how both
systems work.

Our Game update loop has sadly started to �ll up with a lot more code, but we’ll learn
in time how to improve on that.

Let’s make some shelters �rst, we’ve got the header, and for now still the code can be
empty. But we need to make a few changes to the way we initialize our game.

Go to the Game.h �le, and add Shelter.h to the headers and in your Game Class de�-
nition add this line

Objects* Shelters[16];

Now in the Game.cpp �le, let’s create the shelters in the init function, and also use a gen-
erated array to work out where to place them, to make our lives a bit easier when using a
loop.

// because these are not at equidistant points let’s keep a simple table of
x locations to place them
#define BARRIER1 32
#define BARRIER2 BARRIER1+64
#define BARRIER3 BARRIER2+64
#define BARRIER4 BARRIER3+64
 int BarrierPositions[] = {
 BARRIER1, BARRIER1 + 9, BARRIER1 + 18, BARRIER1 + 27,
 BARRIER2, BARRIER2 + 9, BARRIER2 + 18, BARRIER2 + 27,
 BARRIER3, BARRIER3 + 9, BARRIER3 + 18, BARRIER3 + 27,
 BARRIER4, BARRIER4 + 9, BARRIER4 + 18, BARRIER4 + 27
 };
 for (int i = 0; i < 16; i++)
 {
 Shelter* s = new Shelter();
 s->Xpos = BarrierPositions[i]; // use the counter as an index
 s->Ypos = SCRHEIGHT - 48 - 16;
 s->Type = AShelter;
 s->MarkForRemoval = false;
 Shelters[i] = s;
 }

Pretty simple, not really much di�erent from the way we created enemies, but rather than
using a push.back() function, we just load the empty array position with the pointer to the
shelter we just made.

And now the game update needs to also loop through the shelters to draw them. A�er
the main MyObjects loop, add this very simple loop.

// Update the Shelters looping 16 times
 for (int i = 0; i < 16; i++)
 {
 Shelters[i]->Update(a_Screen, a_InputHandler);
 }

Did We Hit It? 107

Even though the Update routine for a shelter does return a bool, it is a�er all an over-
ridden update function; we don’t use it, so there’s no need to collect it. It’s simply going
to go to the update and inside that go to the Draw, because the shelters have zero logic
to process.

You can compile this and you should now see 16 nicely positioned but currently
 inactive shelters.

Ok that’s drawing and logic where needed, done. Time to do the collision.
We already have the bullet test but it’s currently just testing the invaders, we now need

to do a second test just a�er that, to test for the shelters and now the reason for a pair of
data lists become clearer.

And now to wrap it up, we need to add some code, so that the bullet objects in our
MyObjects list can check this array and see if there is a hit.

Hmmm how do we know which of our MyObjects are Bullets?
Well this is a point where the type variable we included in our Objects Class now

actually comes in handy. �ough we do now have to make sure that we have the types we
have been given during construction, go back and check that when you made an Alien, in
the constructor(s) you did set the type to Alien, same for Bullets and shooter. Remember
this list?

enum Types { Bullet,Missile1,Missile2,Alien,AShooter,AShelter };

First let’s add to the Bullets test so it can shoot shelters, currently we should have this

// if we have a bullet check if it hit anything
 if (Bullet)
 {
 if (MyObjects[i] != Bullet)
 {
 if (Bullet->TestForHit(MyObjects[i]))
 {
 MyObjects[i]->MarkForRemoval = true;
 Bullet->MarkForRemoval = true;
 }
 } // if !Bullet
 } // if Bullet

Let’s add to that.

// if we have a bullet check if it hit anything
 if (Bullet)
 {
 if (MyObjects[i] != Bullet)
 {
 if (Bullet->TestForHit(MyObjects[i]))
 {
 MyObjects[i]->MarkForRemoval = true;
 Bullet->MarkForRemoval = true;
 }
 } // if !Bullet
 // did we hit a shelter
 for (int i = 0; i < 16; i++)
 {
 if (Bullet->TestForHit(Shelters[i]))

5. Finally Our First Games108

 {
 Shelters[i]->MarkForRemoval = true;
 Bullet->MarkForRemoval = true;
 }
 }
 } // if Bullet
 } // update loop

So a�er our own Bullet tests it exists, and makes sure it isn’t trying to test on itself, it tests
for any Object in the MyObjects list, which contains Aliens and their missiles. AFTER
which it then test for all 16 shelters.

Yeah, it’s starting to hurt a bit now, our lovely clean Game Update is far from clean
with loops inside of loops. But it works. �ough the Shelters don’t yet remove themselves
when hit, in fact nothing does.

�is is where that MarkForRemoval comes in, it’s been there from the beginning, but
now its purpose can be coded.

When we hit something with a bullet, we want it to blow up and vanish, blowing up,
we’ll get to another time, but certainly we need it to vanish because a dead character that
does not go o�screen and out of the MyObjects list is just going to create zombie objects
that will never die. We could remove them from the list as we do the update but to be hon-
est that creates a few problems, since objects just killed might have info that objects not
killed need. Not that that is the case here but we need to think about it. Removing them
should really be done a�er the update loop has completed, in a clear-up operation. Getting
rid of any dead objects and removing them totally from the processing lists so they are no
longer actually updated.

As we have two lists of objects we need to clean up loops. MyObjects is the easiest to
do �rst and view.

Remember to add this AFTER the update loop has closed.

// scan for a clear up
for (int i = MyObjects.size()-1; i >= 0; i--)
{
 if (MyObjects[i]->MarkForRemoval)
 {
 if (MyObjects[i] == Bullet) Bullet = NULL;
 if (MyObjects[i]->Type == Alien)
 {
 AlienCount--;
 if (AlienCount == 0)
 {
 InitDone = false; // force a new level
 }
 }
 delete(MyObjects[i]);
 MyObjects.erase(MyObjects.begin() + i);
 i--;
 }
}

Notice, that the loop runs backward, because if you remove things from the list the num-
ber of items in the list is reduced, which can cause a loop counter moving forward to lose
track of the number it’s testing, but running backward and decrementing the counter

Did We Hit It? 109

when you remove an object gets over that problem. Run your project now, and try shoot-
ing a few aliens through the gaps in the shelters. You can see we are actually removing
aliens when they are shot. Nice, we’re beginning to get some gameplay. But now we have a
snag, we have to do the shelters. And we chose to use an array to store those so we need to
do things a little di�erently. In principle, we need to do this;

// scan for a shelter clean up
for (int i = 0; i < 16; i++)
{ if (Shelters[i]->MarkForRemoval)
 { delete Shelters[i]; // delete the instance of object
 Shelters[i] = NULL;
 }

} /#note *

It does not have to run backward because our Array size is �xed and never changes, so
we’re not going to have to worry about resizing the array and losing track of how big it is.
Enter this, just a�er the MyObjects clean-up, compile and run, and shoot a shelter, and…
we get this

Uggh that’s not good. Pressing break will give us a yellow arrow at this line:

Shelters[i]->Update(a_Screen, a_InputHandler);

which might seem odd, as that’s not the code we just entered? But the code we just entered
did something very simple to a hit shelter.

Shelters[i] = NULL;

It caused it to have a NULL or 0 value… the update routine could not call from 0. And
created a break.

* Please note, I cleared the Shelters[i] value with NULL a�er the delete, to not do so would leave a dangling
pointer, that is, a pointer to an instance of something, which is no longer in use. It might keep working, but
the reality is that memory has now gone back into general usage and the next new command that is used
could re-use that memory. �is is a time bomb of a bug, and o�en not immediately obvious. Always, NULL or
nullptr any pointer immediately a�er you delete it.

5. Finally Our First Games110

Obviously, this is a bug, but it’s an easy one to �nd and �x, in fact it’s one of the very
reasons we NULL our dead pointers so that we can get this error coming up if we acci-
dently try to use an invalid pointer. We need to recognize the fact that when we kill an
object, we don’t want it to be updated. So the �x for this is simple, we might not be able
to call a NULL pointer, but we can test if we have a NULL pointer and not try to use it.

Like this;

// Update the Shelters looping 16 times
for (int i = 0; i < 16; i++)
 {
 if (Shelters[i] != NULL) Shelters[i]->Update(a_Screen, a_InputHandler);
 }

�ere are two other cases where we are potentially going to use a NULL Shelter, one is in
the Bullet test for collision with the Shelters, so you can do a double test on that;

if (Shelters[i] != NULL && Bullet->TestForHit(Shelters[i]))

I’ll leave you to �nd the other yourself, it’s quite simple, Visual Studio will give you a break
when you hit it.

Once you’ve done that, we will now have the basics of our game, go ahead, unleash
hell on the alien scum.

So Which Is Better?
So which is the better option, Arrays or Vectors? It really depends on what you need them
for and how you use them. We’ve seen some of the issues when using them to store point-
ers. Both have and pros and cons.

Removing from an Array isn’t possible, leading to extra checks for NULL values,
assuming you use them, to prevent accidental use of dead instances.

Once we hit the assigned number of items we de�ne in an array, we can’t (easily)
 create any new entries, so the �xed size limits us.

Removing from a Vector needs a slightly tricky backwards loop, and it’s a lot slower,
but we can track and alter its size as we please.

But ultimately, you choose what works for you. In an ideal world, we could have all
the objects including shelters in one single list, but keeping track of where the shelters are
as the vector alters size becomes a challenge, but hardly a di�cult one.

Final Details
�ere are still a last few details we really should add; we need to actually include some
game rules, allow ourselves to actually be killed and detect game over when all our lives
are gone.

Did We Hit It? 111

Also the enemies can win, when the invaders get to the bottom of the screen, it’s game
over.

�ese game rules should really have been applied right away, but we were having too
much fun so now we have to somehow squeeze them in.

�ese last few things are tasks hopefully kept on our mental to-do list, and are impor-
tant to making the game fun, but not actually a major part of the game mechanics. �ese
kinds of eye candy features though can make or break the game.

We should have a random mothership popping out from time to time…giving us a
chance to do some decisions and divert the players focus for a few moments. It’s also pos-
sible we can make it do something cool when it comes on or dies…you decide?

Also there’s a life counter, which needs to be displayed and updated when we die, or
perhaps give ourselves extra lives?

What’s le� is to indicate an end of game, which, of course, is going to happen when
our lives get to 0? But also we have to indicate the end of a level and then reset it to play
again, hopefully with some increased level of di�culty.

�ese are things you should return to later when you are more con�dent in your
coding.

We should have kept a record of the score in a Score variable, which incremented
with each kill, but we don’t have any way to display it. We know about cout and printf as
a means to send info to our console. But that’s not going to be much use to a player, who
wants to see the score of the game on screen as they progress.

So we need to take our �rst steps into the world of fonts. �is will get a bit more com-
plex later, but for now, on a very simple 320�� �200 size screen, all we need is a some images
that look like letters and numbers and come up with a way to display them.

Simple Text Display
Invaders doesn’t need any text, but it could make use of a score, which is basically a short
string of numerical characters. Since we know how to use surfaces to draw graphics, it
should be possible to create Alphanumeric characters as graphics? Let’s do that here, by
including in our game a screen containing the images for the letters of the alphabet, in
an ASCII order so that we can mathematically index to the right character in our set so
that we can draw it using our simple square draw system. Oh ASCII, stands for, American
Standard Code for Information Interchange, it’s the way we arrange our various charac-
ters in the English and most other western alphabets so that we know a certain character is
attributed to a speci�c number. It is very useful to keep a copy of the ASCII table to hand.
Sadly it’s not so useful for eastern and pictorial languages but there are other systems you
can research for those. Here’s the ASCII table (image from public domain) for the �rst 127
chars in the western alphabet. �e second 129 usually contains the accents and diphthongs
of non-English languages.

5. Finally Our First Games112

So if we lay out our graphic representations of our characters in the same order as the
ASCII values, we can do a simple look up system to draw the characters in a string and
visualize them on screen. �e letter A is 65; X is 88 and so on. We generally don’t store any
graphics for the �rst 32 characters, though as they are actually rather old representations
of teletype and printer control codes, but still used in some circumstances. �at’s ok; as
long as we have graphics for space to z we just subtract 32 from our alpha numeric char to
get the right index. So we can easily represent the text we print or type with numbers that
give us indexes into an array of graphics. Simple, though it has limits, we can’t scale, for
example, whatever size our images are, is the size we will display, but until we need that,
this is �ne. Once we have some proper access to hardware scaling and some proper fonts,
we can expand things.

Did We Hit It? 113

A Simple Font
Here’s our Font

As you can see it goes from a blank space, through punctuation, then numbers, upper case
letters, then lower case, up to a few characters beyond a lower case. It’s also laid out in a grid,
eight characters per line. So we should be able to load it into a Surface, and work out how
to copy the right tile into a nice receptive surface that will then contain the new graphic.

�ere are several ways we can work with this, some more e�cient on memory or
speed than others. But let’s focus on a simple system to get it working. First thing to do is
create a new font class and load this image up so we can use it.

Now one thing about our font image is, it’s not actually an RGBA image, it has no
alpha value and we basically have an image that has 0’s for transparent and 1’s for any black
pixels in it. �at presents us with some interesting opportunity to manipulate the data to
produce di�erent colors. We could for example decide to create a Red character, which is
simply done by taking the 0 or 1 value of the pixel and multiplying by our desired color
value, making sure to add an Alpha value so it can be visible.

I’d suggest a fairly simple method we can use, �rst of all load this into a surface which
will act as our store for the font. �en we need a new method in our Surface Class that will
draw a selected character using simple x y o�sets to locate the 32�� �32�pixels that relate to
our character and draw the pixels.

�at will give us a very e�ective font drawing system, our new method can be set up
to provide useful features such as color, alpha values, and perhaps even scale. But we do
have to write it ourselves.

5. Finally Our First Games114

It’s not going to be the most e�cient or fastest system but hey we already know that
our double bu�er system is an insult to the gods of programming so let’s keep insulting
them. At least it gives us a chance to play with fonts, so let’s write a font display system.

�e principle is simple, make a surface from that image, and draw the relevant char-
acter as from the Font Surface to the game surface. We can enhance it with color and
maybe even scaling, but to be honest that will look pretty nasty, this kind of system is best
thought of as a straight draw to the screen, if you want bigger text we will need bigger
characters. But later we can �nd ways to scale up.

As with most things, we are going to think of the font as an object to be manipulated,
but it’s not a game object, so it does not need to inherit from that. So create a new class. I’m
calling it TileFont. And this is your header.

#pragma once
#include "MyFiles.h"
#include "surface.h"
#define PRINT_AT 1
#define NEWLINE 13
class TileFont
{
public:
 TileFont();
 ~TileFont();
 void FontPrint(char*, Surface* mScreen);
 void SetScreenSizes(int height, int width);
 void SetPrintPosition(int PrintX,int PrintY);
 void SetColour(Pixel Col);
private:
 Surface* TheImage;
 int Xpos, Ypos;
 int CharWidth, CharHeight;
 Pixel TextColour;
};

So we can see a familiar looking class formation, a constructor and destructor, and some
useful methods, which should be fairly obvious.

Notice this time I made the variables or members as they should be called, for the
class private. �at forces me to use get and set routines to make changes to them, in this
case three set routines, I don’t need any get systems just yet so I’ve not added them.

I’ve done that because despite my normal preference to make everything public, it’s
not considered good coding practice, and this class needs to be totally portable, and inde-
pendent, so ensuring that its members are private, and that it will use its own routines to
set them keeps it cleaner for later insertion into a routine.

�e cpp �le will look like this:

// very basic tile font display system
#include "TileFont.h"
TileFont::TileFont()
{
 MyFiles* FileHandler = new MyFiles();
 this->TheImage = new Surface((char*)"../Assets/fontwhite.png",
FileHandler);
 delete FileHandler; // we opened some memory, make sure it is reclaimed
}

Did We Hit It? 115

TileFont::~TileFont()
{
 delete this->TheImage; / we don't need this now
}

void TileFont::SetPrintPosition(int PrintX, int PrintY)
{
 this->Xpos = PrintX;
 this->Ypos = PrintY;
}

void TileFont::SetColour(Pixel Col)
{
 TextColour = Col;
}

void TileFont::FontPrint(char* Text, Surface* mScreen)
{
// parse the string till you find the terminating 0
 char* TheString = Text;
 while (*Text != 0)
 {
 char Ch = *Text;
 int index = (Ch - 32);
// now convert index to an offset
 int X = index % 8;
 int Y = index / 8;
 TheImage->CopyBox(mScreen, X,Y, 8, 8, mScreen->GetPitch(), Xpos * 8,
Ypos * 8, TextColour);
 Xpos++;
 Text++;
 }
 return;
}
void TileFont::SetScreenSizes(int height, int width)
{
 this->CharHeight = height;
 this->CharWidth = width;
}

�ere’s a new loop system, and a new way to access data.

while (*Text != 0)

Although for and while loops test for conditions, for is usually associated with an
iteration, while however, is looking to see if a particular test condition is done with no
regard to how o�en the loop repeats. We’re also using an interesting way to access memory
using *Text, which is checking for the value contained in the address Text holds. Since I
used a “set of characters contained in quotes” the internal method C� � has for storing
such strings adds a 0 to the end to terminate it. My while loop is then searching to see if
we’ve reached the 0 yet, and if not it prints the character and then increments the pointer
in Text to look at the next character.

�e parsing through the characters is fairly mundane, but the drawing of the charac-
ters is a bit more fun, and relies on the idea that we have eight characters in a line, starting
with the space character. We then take the ASCII value of the letter we want to print, use
modulus to work out which column we want, and a simple divide to an int to get the row.

5. Finally Our First Games116

�at will then get us to the character we want to print, which I’ll explain in a
minute.

Now back to the TileFont Class, notice that I quite deliberately let the constructor
create its own �le handler, which once used, it deleted. �is might seem a bad idea, and
indeed it probably is. We know that our Game Class has access to the original apps �le
handler. But remember I said I wanted this to be an independent plug-in class. So having
this temporary �lehandler allows me to plug it into any project so long as it also has the
MyFiles header available.

You can if you choose to, optimize this and you should later. Since creating a class that
you don’t really need is quite wasteful. You might also consider not limiting the construc-
tor to loading only one font. I’ll let you think about things like that.

�ere’s just one more thing, the actual drawing, from one surface to another, isn’t
quite covered in the current Surface Class. I need to add a new method to the Surface
Class, as the existing copy systems don’t work for me. So add this de�nition into your
Surface.h

 void CopyBox(Surface* Dst, int X, int Y, int Width, int Height, int
srcPitch, int DestX, int DestY, Pixel Colour);
And the corresponding routine in Surface.h
 void Surface::CopyBox(Surface* Dest, int SourceX, int SourceY,int Width,
int Height, int dstPitch, int DestX, int DestY, Pixel colour)
 {
 Pixel* dst = Dest->GetBuffer();
 Pixel* src = GetBuffer();
 src += SourceY*(this->GetPitch()*Height);
 src += SourceX*(Width);
 if ((src) && (dst))
 {
 dst += DestX + (dstPitch * DestY);
 for (int y = 0; y < Height; y++)
 {
 for (int x = 0; x < Width; x++)
 {
 if (src[x] & ALPHAMASK) dst[x] = colour;
 }
 dst += dstPitch;
 src += GetPitch();
 }
 }
 }

We can now print any color of text by setting the color and we can choose the location
where it starts and write the text, each frame (remember our screen is cleared every cycle).

Of course, we need to have an instance of a font, so let’s get the Game Class to make
it like this in the Game.h Class

TileFont Font;

Not a pointer this time but an example of an automatic instance, which is constructed
when the instance of Game is created so there is no pointer. We don’t use the “-� ” operator
to access its methods, we use the “.” operator as you can see here.

Did We Hit It? 117

// draw the text to screen
 this->Font.SetPrintPosition(10, 14);
 this->Font.SetColour(GREENMASK+REDMASK + ALPHAMASK);
 this->Font.FontPrint((char*)"This is my test text", a_Screen);

Print systems usually print text at character positions, within the size of the character
itself, so 8�� �8 in this case, rather than pixel positions, but it’s a simple thing to change this
from character to pixel if you want to add that ability.

So now we can display text. It’s not very advanced at the moment, and needs a little
help to be able to print a variable since this will only print ASCII chars, but we have STD
functions to do that.

If you are wondering about these lines;

#define PRINT_AT 1
#define NEWLINE 13

�ey are a maybe, for later. I nearly always use a Print At style text draw when I print text
to allow me to, well, print at, any point on the screen and have the locations built into the
string I send. But for simplicity and demonstration I used a separate set function. Newline
should be obvious too, for the moment we can only print along one line, and this will allow
us later to add the concept of a print at newline. If you decided to code it up.

�is line below is �ne if we want to just print a text line, but it does not really work if
we want to print a mix of text and numbers, or indeed even numbers since a variable like
score is not stored as a set of characters.

this->Font.FontPrint((char*)"This is my test text", a_Screen);

So we need to do a bit of formatting, or rather we don’t, because C/C� � kindly provides a
nice routine for us that prints and formats in to a character bu�er, which we can then print
with our simple text printer.

So if we want to print our score, we can do something like this:

char buffer[50];
 int n, a = 5;
 n = sprintf(buffer, "this is my test buffer %04d", a);
 buffer[n] = 0; //ensure we have a 0 in there

�is is a cool, old, but clearly still useful, C system that lets us print a formatted string into
a bu�er, and can also convert numbers into strings even giving them leading 0's (� 04d),
that bu�er is then passed to our text print, which can remove that horrible cast to char*
like this

this->Font.FontPrint(buffer, a_Screen);

Aside from the fact we to have a bu�er somewhere accessible, and that has to be big enough
to cope with our largest possible string� 1, this is a very easy and simple system, which will
let us print scores, lives, and hello world on screen.

And now we can print some text and numerical data, it’s a little primitive but it will
serve our purpose of displaying the score and number of lives we have.

I want to move on now, I know it’s far from a �nished product, but we have learned all
we can from this project for now, it’s time to move forward. If you can think of any other

5. Finally Our First Games118

features, eye candy or new game mechanics to add, feel free, though as we will discuss
in the postmortem, the way this game is put together has some issue that might make it
harder than it needs to be, all will become clearer.

How Did We Do? The Infamous Postmortem
So now we’re done, we have our game and we can be rightly pleased, or can we? It’s rare
that any coder should feel 100� happy with their e�orts at the end of the project. �ere are
several issues I have with this code that I want us to think about carefully.

 1. Why did we have the ugly extern in the code?

 2. Why were we not able to get the invaders themselves to �re their missiles?

 3. Why is the Game Class still handling all the logic?

 4. Why are we loading graphics during actual gameplay?

 5. Are we leaking memory?

 6. Why didn’t I do it right from the o�set?

 7. �at game update loop…ugggh.

 8. How can we make it better?

�ese and a few others you can think about for yourself, are extremely important ques-
tions. As our games become more complex we may �nd ourselves becoming more limited
in our ability to do things, so we need to review this. We really need to ask is this the
best way to do this project, even though it works, and works very nicely, it’s a very poor
example of a C� � program.

We had the extern because our vector of objects was based in free memory, in other
words it was not held in a class. �at made it very hard for us to pass the address of the
vector to any routine, which might have wanted to manipulate it. It was convenient to use
an extern, but not at all elegant!

�is also answers our second question, we could have passed the vector address, and
a load of other addresses to the Game Class, and it, in turn, could have passed the address
to the update routines, had the update routines themselves been passed a vector address.
It would have been far easier though to simply pass the address of a Startup Class, which
held these main game variables, if you have the class address, you can access all the values
in that class, meaning instead of passing 2, 3, 4 or more di�erent important addresses or
variables, we just pass the address of the Master Class. We’ll do that next project.

Question 3 is a good one, because in some ways we certainly needed the Game Class
to control the directional aspects of our alien’s movement, but we let it do movement as
well, and our animation of our aliens. We’re also passing �ags back from objects, which
are telling our game loop to make new things such as bullets and bombs. �at’s messy.
Ideally, we want this class to simply provide a means to service the objects, not do their
actual logic for them.

Fix Question 4 119

Question 4 is another good one, and one we need to address right a�er this so we’re
ready for the next time. Loading graphics, especially from an SD card, is painfully slow,
and here we are every time a bullet or missile gets �red, we are using up several thousand
cycles loading the same graphics over and over and over again. We’re not really noticing
it, because we don’t do it more than a few times per frame, but it’s still a bottle neck. We
don’t need to do that. It’s important to keep track of things like this. It can lead to memory
leaks and massive performance issues.

Question 5…hell yes, we’re leaking like a sieve, if you don’t know where it will be a very
good exercise to look. �e problem is we probably will never notice, you might have to play
the game 1000 times before you suddenly get an unexpected out of memory error, but it’s
there…oh it’s there. Don’t worry you’ll realize later, much later on. But I’ll give you a clue,
every new, should have a corresponding delete. �ere are a couple of news, which don’t!

Question 6, is simple I wanted you to appreciate that even though our game works
perfectly, plays well, and does everything we wanted it to do, it’s not very well written,
you should have felt a little twinge of ine�ciency in the way we did it, that twinge is what
is going to make you a better coder in the years to come. If you don’t like something you
really should try to avoid doing it!

So these issues need to be addressed. �is will be a good exercise for you later.
Question 7, that update loop, oh that loop, it’s painful to look at isn’t it? A game loop

really should consist of just an input, and update and a draw, in an ideal world! It’s not
always possible though, but we certainly should not pollute our game loop with move-
ment logic, collision logic, and so on. We’ll improve on this as we get better at designing
our framework and encapsulating some of the tasks into objects so that their functions
become part of the update cycle and we can keep it as clean as possible.

Question 8, leaves the best to last…we need to take note of what we learn; every proj-
ect is a learning process. We’re going to do a lot wrong, there’s no need to get upset about it,
but the trick is to do less wrong each time and review what we did. If you’re really serious,
you can go back and rework past projects to avoid the mistakes you made. Let’s start by
dealing with something that really made my skin crawl.

Fix Question 4
So yes, this one bothers me so much, and it’s hopefully bothering you to want to �x it now
before we move on. Let’s consider this, we’ve got 55 invaders, all loading 2 images for their
animation, but there are only actually 6 images….our game is loading and storing space
for 110 images. But we only display 6, 6 is all we display, not 110, 6. �ere are only 6 images!

You get the idea. �is is kind of wrong . Surely there is some way to re-use the images?
’Course there is…let’s consider what our surface class calls an Image, it’s just a pointer

to a pixel bu�er. So if we create six pixel bu�ers containing our images. �en can tell the
Objects to simply point at the right image.

Let’s make a new constructor, which does not create a new pixel bu�er, but uses an
existing image. Like this

Objects::Objects(Surface* a_Image)
{
 Image = a_Image;
 MarkForRemoval = false;
}

5. Finally Our First Games120

So rather than passing a �le name and making a brand new image every time, we can
pass it an image, perhaps already loaded in the Game Class during its initialization, and
it will create that image.

Another option is to use a list of images and pass that to a constructor, there really
are no limits on how many constructors we make; the only constraint is they must pass
di�erent types or quantities of parameters or a di�erent order. Since C� � di�erentiates a
constructor by the �ngerprint of the type of parameters it needs to send and return.

Our Aliens need two images, to be stored in Image1 and Image2, which during the
course of animation are loaded to the Objects main display Image. So we need a construc-
tor for the Aliens that can take two images.

Now by choosing to load the actual images in the Game Class at the start of initial-
ization, we’re only loading six images, which can be stored somewhere to be given to the
Alien Class. So the start of our Game Init can now look like this:

bool Game::Init(MyFiles* a_FileHandler)
{
 int imageWidth, imageHeight;
 StepTime = TIMEPERSTEP;
 AlienCount = 0;
#define PRELOAD
#ifdef PRELOAD
 char* Names1[] =
 {
 (char*)"../Assets/invaders8x8/InvaderA-1.png",
 (char*)"../Assets/invaders8x8/InvaderB-1.png",
 (char*)"../Assets/invaders8x8/InvaderC-1.png",
 };
 char* Names2[] =
 {
 (char*)"../Assets/invaders8x8/InvaderA-2.png",
 (char*)"../Assets/invaders8x8/InvaderB-2.png",
 (char*)"../Assets/invaders8x8/InvaderC-2.png"
 };
 Surface* Images1[5];
 Surface* Images2[5];
 for (int i = 0; i < 3; i++)
 {
 Surface* s = new Surface(Names1[i], a_FileHandler);
 Images1[i] = s;
 / reload s
 s = new Surface(Names2[i], a_FileHandler);
 Images2[i] = s;
 }
/ rearrange things because we have 3 images to fill 5 rows.
 Images1[4] = Images1[2];
 Images1[3] = Images1[2];
 Images1[2] = Images1[1];

 Images2[4] = Images2[2];
 Images2[3] = Images2[2];
 Images2[2] = Images2[1];
 for (int i = 0; i < 5; i++)
 {
 for (int x = 0; x < 11; x++)
 {

Fix Question 4 121

 Aliens* T = new Aliens(Images1[i], Images2[i]);
 T->Xpos = (x * 11) + 5;
 T->Ypos = (i * 11) + 40;
 MyObjects.push_back(T);
 AlienCount++; // keep track of how many we create so we can tell when
they are all dead
 }
 }

#else
 for (int i = 0; i < 5; i++)
 {
 for (int x = 0; x < 11; x++)
 {
 Aliens* T = new Aliens(i, a_FileHandler);
 T->Xpos = (x * 11) + 5;
 T->Ypos = (i * 11) + 40;
 MyObjects.push_back(T);
 AlienCount++; // keep track of how many we create so we can tell when
they are all dead
 }
 }
#endif
>>>cont

I used a nice preprocessor feature here too, with the #ifdef, #else and #endif. �ese are
compiler directives that ask if the label I am testing exists, not that it has a value, but has
it been de�ned, and if yes, it will compile the snazzy new code. And if not it will compile
the old and wasteful code. If I want to use the old code, just comment out the #define
PRELOAD.

�e snazzy code needs a di�erent constructor in Alien Class, which can use the two
Surfaces; can you work out how to add that yourself?

�e Aliens will still work exactly the same way. Using them exactly the same way, and
we saved 104�*�32�*�32�*�4�bytes that’s 416�k …Also, though it might not be so noticeable,
we’re not loading 106 extra images, which takes up a fair chunk of time saved on our ini-
tialization, that’s nothing to sni� at.

�ere are reasons of course why we might want to have 110 separate images but not
today! It’s generally better to ensure images are not duplicated and loaded at times when
speed is not important.

We may not really have noticed this though, because we only did these loads when
we set up the aliens for the �rst time, so it was our initialization system that was a little
bit slow, however that was largely done in under a second just before the game started.
Chances are we simply never thought about how long it was taking, and never gave much
thought to the waste of memory.

It’s MUCH more worrying to think that every time we �re a bullet or missile and cre-
ate a new instance of one of those things, this loading process is happening for every single
thing, so we must resolve that.

So as with the aliens, make sure you load the graphics in the Game Class initializa-
tion and make sure the update routine passes the location of the Game Class to the actual
invaders update, that will then ensure that the Aliens can get access to the bullet graphics,
to make a new instance of a bullet and are able to look at the list of currently active objects
for any other tests we may want them to do.

5. Finally Our First Games122

Now that, is a far better and more e�ective system and clearly one we should have done
right away. But let’s not wallow too much in doubt and self-loathing, we have our whole
careers ahead of us to indulge in that, for now we’ve written our �rst actual game, albeit with
a few concepts altered from what you may remember from the original game. Keep this game
safe for now, as we learn new things, I want you to come back to this and add new features so
that you can customize and enhance this game to make it your own special personal version.

A Pat on the Back
Let’s examine what you did, not the code, that’s pretty simple stu� with lots of errors, what
have you achieved in making this game, what are the component parts of the game you
just made?

You learned how to draw things, and create things that can actually respond to key
presses and shoot more things that have a form of movement logic. You can see the process
in terms of bullets and missiles �ying and causing things to die, you tracked the score, you
can avoid being shot and see these events take place on screen. You even started to gain some
insight into why code that seems to work does not really perform the way you need it to.

It’s all a bit rough and ready, and has quite some number of little bugs that you can try
to �nd, but as our �rst attempt to write an arcade game it’s pretty neat.

What you did, is really quite amazing, you have created a virtual world where you are
the person controlling Planet Earth’s last defence against a band of marauding arm wav-
ing pixel monsters…but really you’ve done so much more.

It is vital that you realize, ALL the concepts presented here are observable in any mod-
ern First Person Shooter (FPS*) you will see on the latest PCs and consoles. Time now to
put my tongue in my cheek and do my Halo is Space Invaders, pitch….But really think it
over, the only real di�erences between our invaders game and the year 2045s Halo 26, �e
Return of Master Chiefs Grandson on Xbox 19, is complexity. In Halo, you move around
under user control, you shoot baddies, and they in turn shoot at you, you accumulate a
score, you hide behind things and you see it all rendered on a screen, the power of your
imagination and the computers response to your input, makes it as real as you need it to be.

Your �rst proper game project has all the same basic qualities as the most advanced
FPS games you can buy……the only di�erence is complexity! Even the story boarded, cut
scene, dialog-driven immersive 3D aspect of modern games is rather irrelevant to the fact
that you are still moving around in an area, shooting projectiles at things and avoiding
being shot. Games really have not changed that much. We’ve added to them for sure, in
spades, and there’s no real way we can individually hope to put in the man hours needed
to make a modern FPS from scratch, but you must take notice of the fact that almost every
shooting game you can think of, owes its basic DNA to your �rst proper game project!

Let’s take our invaders game and add a little more complexity as well as a touch more
re�nement, to change it into another classic homage to a retro game from the 1980s, which
I’ll also avoid naming but I hope you will seek it out.

* FPS also stands for Frames Per Second in relation to programming, I will probably use this term a few times
but you should get the meaning from the context.

Kamikazi Invaders 123

Kamikazi Invaders

�is game involves some nice new graphics, this time in color. �e original was one
of� the �rst games to use color sprites, which really made it stand out and become a
classic.

Rather than just simply moving le� and right, sometimes we’re going to let a few of
our invaders �y and drop a hail of bombs on your poor shooter, which operates pretty
much the same way as before but without any shelters to hide behind.

We’re also going to tart it up a bit, the plain black background of our invaders game
needs a bit of pizazz to make it more fun.

Download the Kamikazi base project from the support site, you will see its essen-
tially still the InvaderStart project we achieved before adding gameplay, but I’ve
renamed a few things, this is going to be our baseline project for the next few games.

We’re going to keep our original Game Objects Classes, Collision Classes, and input
systems from Invaders, so I’ve copied them from the Invaders Project directory into the
Kamikazi directory and added them to the new project, but the graphics and Game Class
are not going to be usable for this, so we’ll need new ones for this.

Also it’s time for us to increase our screen resolution to 1024�� �720, still an older reso-
lution but will give us a better level of detail. We’ll use some much bigger sprites though
still quite simple.

Finally we’re going to organize our classes a little better so we can do away with those
nasty extern commands and get better access for all our objects to info held in the main
Game Class.

Good, we’re ready.

5. Finally Our First Games124

Let’s do what we did before and list the games basic features and mock up a screenshot:

 � We have �ve rows of baddies, slightly di�erent numbers in each row, which change
frames and slight di�erences in graphics.

 � We have bullets our shooter can �re.

 � We have missiles raining down on us in an apparently random way.

 � We have aliens, which seem to �y down intent on crashing into us.

 � Aliens return to their formation position if they make it o�screen.

 � We can hit the aliens with our bullets—they blow up.

 � Our bullet sits on our ships nose when available, only one at a time.

 � And we can be hit by their bullets—we blow up. And we lose a life.

 � We also have some score system.

 � We move our shooter le� and right, and �re.

 � �e invaders move le� or right then back.

 � If we kill them all, they come even faster.

 � We have a moving star �eld in the back.

So a lot of similarities, and a few interesting di�erences. We know how to create things that
move le� and right. We know how to make bullets �y, we know how to do the collisions.

�e unknowns are the dive-bombing aliens and the star �eld.
We also have the advantage of experience now; we know we did some things badly last

time, so let’s work to avoid that this time.

 � Let’s do the Star �eld �rst.

 � Create and control our shooter.

 � Give the shooter bullets and test for hits.

 � Set up the enemies moving le� and right.

 � �en work on the dive bombing.

Star �elds are pretty easy, as you can see the stars are all moving in one direction, they
are randomly placed, and for fun we’ll make them twinkle a bit. �e StarField Class is all
set up for you but has no actual code yet. First up, decide on a number and add this in
StarField.h

Kamikazi Invaders 125

#define NUMBEROFSTARS 50

Anything between 50 and 100 should be ok!
�ere is a keyword in our description of star �elds, they need to be Randomly placed.

So we are going to need our random functions again. �is time though instead of using
them to make decisions, we will use them to actually generate positions.

Like everything else we can use Stars as derivations from Objects with a surface to
hold their graphics, so let’s make them up, and put them into an Objects list, which can
easily be an array this time as we are �xing the amount of them.

So �rst things �rst, let’s de�ne a new class for stars in Star.h

#pragma once

#include "simplebob.h"
#include "surface.h"
#include "Game.h"

class Star : public SimpleBob
{
public:
 Star();
 ~Star();

 bool Update(Surface*, Input*);
 bool Update(Game* G);
 void Draw(Surface*);
private:
 Pixel Colour1;
};

It’s a very small class because it really does not need much, it derives from SimpleBob, an
equally simple class that essentially is empty at the moment but may be useful as a graphic
object that by de�nition is going to be simple, at this point I am thinking it might end up
being removed, but for now I’ll allow it to stay in case I think of something else I want to
create that derives from it.

We could even make our stars purely as SimpleBobs, but as I want to do a few di�erent
things I prefer to keep the SimpleBob Class as separate as possible. As o�en, this is a choice
you need to make, create a Star Class on top of the SimpleBob, or replace SimpleBob with
a Star Class?

SimpleBob though does itself derive from our Standard GameObject so all the usual
game object values we might need are there for us, also since SimpleBob supplied versions
of the GameObjects virtual functions I only need to supply one Update routine and one
draw routine for Star.

�e actual star code in Star.cpp looks like this

#include "Star.h"

Star::Star()
{
 this->Xpos = Rand(SCRWIDTH);
 this->Ypos = Rand(SCRHEIGHT);

5. Finally Our First Games126

 Colour1 = REDMASK+BLUEMASK+GREENMASK+ALPHAMASK;
}
Star::~Star()
{
}
bool Star::Update(Game* G)
{
 this->Ypos++;
 if (this->Ypos > SCRHEIGHT - 2)
 {
 this->Ypos = 0;
 this->Xpos = Rand(SCRWIDTH);
 }
}
void Star::Draw(Surface* TheScreen)
{
 Pixel* dst = TheScreen->GetBuffer();
 dst[TheScreen->GetPitch()*(int)Ypos + (int)Xpos] = this->Colour1;
}

�is is really nice simple code, a constructor, to place it randomly within the top of the
screen and give it a color, which for the moment is �xed, an update routine to move it
down, and reposition it when it gets to the end, and lastly a draw routine to display it.

Notice, there is no Surface or Image to draw here, it’s just a pixel. If we used a sur-
face we could have used a simple copy-to function but here we can see the idea of using a
single-dimensional array, in this case our screen, being accessed by the X and Y values.
�is is a nice feature of C/C� � using a base pointer address as the start of an array; it
allows us to directly access memory using index values from that base. �ough, a small
caution is needed. It does not ever check if your index is outside the range you allocate to
the array space/bu�er allocated. So an incorrect address will still be written to, o�en with
unpredictable results.

Run your new code with stars and see what happens?
Cool, we have stars; they are currently a bit dull, though let’s work on that twinkle

idea.
Our update routine needs to move them, down at a steady place.
Our Update can do more things though, let’s add a little animation counter and other

things, and we can if we want to use an image rather than a pixel. �e choice is entirely ours.
Let’s try drawing a couple of very small images and creating some e�ect.
Now if you look in the Star Class header �le, you will see we only have 1�Pixel, called

Color1
Add three more, called Color2, Color3, and Color4.

Pixel Colour1;
Pixel Colour2;
Pixel Colour3;
Pixel Colour4;

Run your code… �xing any typo’s you might encounter, there shouldn’t be much too
worry about here as we only added some Pixels into the mix, we’re not using them yet.

So, now we have colors, all currently de�ned but empty, let’s load them up with nice
values. Our Pixels are made up of di�erent intensities, or levels, of Red, Blue, and Green,
and what’s called an Alpha value, to decide how transparent it is on screen.

Kamikazi Invaders 127

In our Star constructor method, we have this line of code.

Colour1 = REDMASK+BLUEMASK+GREENMASK+ALPHAMASK;

�is e�ectively sets the Colour1 to white, because these Mask values have all the binary
digits set for those colours. We’ll discuss masks and binary a bit more later.

We could make Colour2–4 variations a�er you set the value for Colour1

Colour2 = BLUEMASK + GREENMASK + ALPHAMASK;
Colour3 = REDMASK + GREENMASK + ALPHAMASK;
Colour4 = REDMASK + BLUEMASK + ALPHAMASK;

Now hopefully you’ve been paying attention, and you remember that having to reference
individual variables by their speci�c name is a bit of a pain, especially when we want to
reference them using a variable… So we’re not going to change the code a bit here and get
rid of Colour1 and replace it with a nice array called Colours.

Pixel Colours[4];

All we have to do now is alter the code in our Star constructor to create four colours, which
live in this array, like this.

Colours[0] = REDMASK+BLUEMASK+GREENMASK+ALPHAMASK;
Colours[1] = BLUEMASK + GREENMASK + ALPHAMASK;
Colours[2] = REDMASK + GREENMASK + ALPHAMASK;
Colours[3] = REDMASK + BLUEMASK + ALPHAMASK;

Notice I made sure that was always there ALPHAMASK, this will make sure that we can
see it but we can still play with it later. Now in the Star::Draw method, let’s add a line and
alter one.

Pixel Col = Colours[Counter];
dst[TheScreen->GetPitch()*(int)Ypos + (int)Xpos] = Col;

I have a Counter variable, be sure to add that as an int into your Class de�nition, and
in the update method, we’ll add this

Counter++;
if (Counter > 3) Counter = 0;

Ok, so we’re good to go? Compile, and run, if you’ve made any typos, or forgotten to add
the Counter in the Class de�nition then go do your �xes and try again.

Not bad eh, but you can barely see the blinking, it is happening, but the update rate is
so fast, probably well over 30 fps, that it just makes it seem a bit blurry. It’s up to you if you
want to keep this, but for me, it’s not quite having the impact I wanted, how can we slow
the animation down?

Simply using numbers 0–3 creates too fast an animation so let’s try something else,
use a much bigger number and scale it down, let’s allow the counter to go up to a large
multiple of 4, try this;

Counter++;
if (Counter >= 4�*�32) Counter = 0;

5. Finally Our First Games128

Why are we using 4�*�32 and not 3�*�32? Well it’s due to the fact we are going to divide it
down, and we want to have; 32 uses of 0, 32 uses of 1, 32 uses of 2 and 32 uses of 3, so there
are actually 4 numbers we want, 0,1,2,3. We want to display each color for an equal amount
of time. We basically are allowing it to go over 3..so that 3 gets used, but never over 4.

So now we have the counter working, change Draw, to use this line instead.

Pixel Col = Colours[Counter/32�];

And there you can see the /32, which makes sure we never have a value bigger than 3, since
the index is an int , the �oating point part will always round down so we’ll get 0,1,2 and 3
as possible index values. �ere is however a better way to do this, I won’t say what just now,
but if you know a bit of maths and C� � . Feel free to change it. Run that and you should
see them all changing color.

Ok but they are a bit uniform…let’s give them di�erent numbers, and keep a copy of
it, (in the Star’s speci�c member list). Let’s make sure that the counter is slightly di�erent
for each one when we start them, using our friend Rand(32) , add this a�er your array
setup in the Star Constructor;

Counter = Rand(32);

Much better, 50–100 little stars moving down screen at a nice steady pace twinkling…
hmmm should we try changing the speeds? It might add a little more variation? Add
more color, change the Alpha values? Feel free, it won’t do any harm and it’s a good little
enhancement you can work out yourself.

�at’s our stars done; we can be comfortable with that. Or can we? �e Pixels work
very well, but you could just as easily do the same e�ect with small images, four small rep-
resentations of stars, why not try that for yourself. Try adding a few surfaces in your Star
Class, and draw those rather than pixels, change the image to create animation and watch
it do its thing autonomously!

So…Stars, not quite the dumb things we thought, they move, they animate and they
reposition themselves when they go o�screen. It’s not complex logic, but it is logic. You can
add to that any way you want, make them move diagonally for example?

All the code is neatly contained in the update method of the Star Class so to make
changes we just alter the update routine, we can even have variations of type, as we’ll see
a little later.

The Ship
Our shooter is a little better de�ned in this game, so let’s call it a ship this time. It’s not
really very di�erent from the Invaders ship, we still create a class, load a graphic, and con-
trol it le� and right with �ring, there is a slight di�erence, though it keeps its bullet at its
nose ready to �re.

So let’s write our Ship Class:

#pragma once
#include "GameObject.h"

class Shooter :
 public GameObject

Kamikazi Invaders 129

{
public:
 Shooter();
 ~Shooter();
 Shooter(char* filename, MyFiles* filehander)
 : GameObject(filename, filehander) {}; // creates an image from the file
// these replace the pure virtuals
 bool Update(Surface* s, Input* InputHandler);
 bool Update(Game* g);
 void Draw(Surface* TheScreen);
};

No real di�erence here is there? Everything should be pretty familiar with the original
invaders shooter.

�e class itself is supplied to you as an empty class, all we really have at the moment
is the draw routine. I’ll let you add the update function, which uses the InputHandler to
make your ship move le� and right.

#include "Shooter.h"
Shooter::Shooter(){}
Shooter::~Shooter(){}
bool Shooter::Update(Surface* s, Input* InputHandler){}
bool Shooter::Update(Game* g){}
void Shooter::Draw(Surface* TheScreen)
{
 Image->CopyAlphaPlot(TheScreen, Xpos, Ypos);
}

�e bullet presents a minor problem, when it is available to �re; it needs to be on the nose
of the ship. But for that to happen, we need to know where the bullet is, or the bullet needs
to know where the ship is, the choice is up to us.

I prefer to have the ship know where the bullet is, because the ship is going to be a
fairly constant object in our world, though in truth so is our bullet as it never actually
gets deleted. But the Ship is where most of our control goes and we want the bullets to be
as autonomous as possible, so let’s make sure the Ship knows, by adding a value into the
Shooter Class, which can point to where the bullet is (once it’s created).

GameObject* TheBullet; /Bullet location

Ok, so make a little note somewhere that when you initialize the bullet you must make
sure you tell the Ship where the bullet is, we’re going to come back to this later. For now,
just make sure that value has a null in it, when you create the shooter, so we don’t acci-
dently end up pointing at mad memory, we do that with this bit of code at the Shooter
constructor

Shooter::Shooter()
{
 TheBullet = NULL;
}

�is seems �ne so far, let’s get our init systems to create our ship and try moving him
around a bit.

5. Finally Our First Games130

Da Baddies!
Now the baddies this time are arranged a little di�erently, but essentially do the same
le� � � right thing, but no down movement… So that’s easy.

However, we don’t have a nice even 5�� �11 grid like Invaders had, so we can’t use a
simple mathematical method to position our aliens.

But we can take a note of x and y positions we want them to be when they start, and
like any other list we can write it down, but to avoid having a massive list of hard num-
bers that can’t be changed without having to edit every number we’ll de�ne them from
previous values.

#define Row1 48
#define Row2 (Row1�+�32�+�8)
#define Row3 (Row2�+�32�+�8)
#define Row4 (Row3�+�32�+�8)
#define Row5 (Row4�+�32�+�8)
#define Row6 (Row5�+�32�+�8)

By de�ning our Row1 as 48, we can accumulate previous de�ned rows to give us a fairly
easy set up for the y positions of our aliens. Also we are going to keep our aliens at a spe-
ci�c distance away from each of them, so we can de�ne that distance as a variable... And
then lay out our new aliens.

#define DIST 40
 int AlienCoords[46 * 3] = // we could use a [46][3] but it’s not so hard
to use a single
 {
 // top row ALIENS we use X,Y,Type
 (SCRWIDTH / 2) - 100,Row1, 0,
 (SCRWIDTH / 2) + 100 - 32, Row1, 0,
 //2nd row 6 aliens
 (SCRWIDTH / 2) - (3 * DIST), Row2, 1,
 (SCRWIDTH / 2) - (2 * DIST), Row2, 1,
 (SCRWIDTH / 2) - (1 * DIST), Row2, 1,
 (SCRWIDTH / 2) + (0 * DIST), Row2, 1,
 (SCRWIDTH / 2) + (1 * DIST), Row2, 1,
 (SCRWIDTH / 2) + (2 * DIST), Row2, 1,
 // 3rd row 8
 (SCRWIDTH / 2) - (4 * DIST), Row3, 2,
 (SCRWIDTH / 2) - (3 * DIST), Row3, 2,
 (SCRWIDTH / 2) - (2 * DIST), Row3, 2,
 (SCRWIDTH / 2) - (1 * DIST), Row3, 2,
 (SCRWIDTH / 2) + (0 * DIST), Row3, 2,
 (SCRWIDTH / 2) + (1 * DIST), Row3, 2,
 (SCRWIDTH / 2) + (2 * DIST), Row3, 2,
 (SCRWIDTH / 2) + (3 * DIST), Row3, 2,
...continues (see source)

Notice that we are also using SCRWIDTH, because it’s a prede�ned value that we can be
con�dent of using that will allow us to center these aliens in the middle of the screen.
�ough we are still using a few hard numbers but we can make simple adjustments by
altering the value in Row1 and DIST rather than altering 46 entries we only need to make
a few small changes.

Kamikazi Invaders 131

Now in code, we can represent lists like this, which have a set number of entries as a
2D array:

int AlienCoords[46][3]
{
 { 300, 100, 0},
 { 320, 100, 0},
 { 320, 100, 0},
...

So this is an Array just like we had with our invaders that has 46 entries, with 3 values in
each entry. You look down to �nd the relevant alien you want using a variable or a hard
number to pick.

Like this:

XCoord = AlienCoords[23][0]; // get the first value, which is where we have
our x’s

And this:

YCoord = AlienCoords[23][1]; // get the second value, which is where we have
our y’s

Two-dimensional arrays are very important as we’ll discover later, but it’s not always nec-
essary to set them up, where we have an equal number of elements per entry, it’s simple
enough for us to know that can do a simple calculation of the Y index * the number of
elements and add an x o�set/index to get the value we want.

Two-dimensional arrays need a bit more typing and can also present a few minor
issues when passing a 2D array as a parameter, though none of this is an issue in this
project. I’m just being a bit lazy and making sure you are fully comfortable with single-
dimensional arrays before we move on.

Now that we have the positions, and types of aliens we can go right ahead and create
our aliens and put them on screen.

So we have our ship and baddies, we might as well get the bullet and collision done, exactly
the same as we did before. I’ll leave you to add that?

5. Finally Our First Games132

Now We’re Talking
Ok, so here we go, time for the major di�erence in this game, we have to make these bad-
dies �y toward us, but we’re going to do it in a particular way. Only the top two aliens
should dive bomb at us �rst, before we let the others have a go.

But how do they dive-bomb…we can break it down into steps

 1. Doing an Arc

 2. Flying down toward the ship on a death dive

 3. Dropping bombs on the way

 4. Going o�screen if they don’t crash

 5. Returning to their position

�ere is one other feature that would be nice to have, it would be very cool to have the
aliens rotate around their center in order to make the arc and dive more impressive create
the impression that they are banking as they change direction. However, we don’t have a
rotation method in our Object Class or draw system. Hmmm well for now we’ll have to
leave it…but how cool would it be? Why not try to create a new draw system that can allow
rotation. Put it on a to-do list.

Let’s consider the steps, or as coders like to call them the states. We have six distinct
behaviors that our individual alien needs to do…and lucky for us they can do them in
order, that lets us track certain conditions that will indicate when one state should transi-
tion to the next.

Kamikazi Invaders 133

 1. Moving le� and right, this seems like a no brainer but we have a small complica-
tion that will be more obvious in Step 6.

 2. Arcing, well arcing needs a bit of maths, if you remember your high-school maths
you will know you can draw a circle using sin or cos of an incrementing angle to
plot points, we can use that here, so long as we keep an incrementing angle, this
can also indicate to use when our arc is �nished since if it goes over 180� , we are
done with arcing and ready to �y.

 3. Diving, so this state is easy, we want to dive bomb our ship, so we are going to aim
our alien just to the le� or the right of the ship depending on our direction and set
up something called a vector, which will be explained in a bit.

 4. Dropping bombs. While diving, at a certain point we are going to open the
bomb bay and let a load of bombs drop, hopefully catching the ship at its current
position.

 5. Going o�screen, again continuing to Dive but now checking to see if we have gone
o�screen.

 6. �is is a slightly tricky move because they need to come back in from the top of
the screen and home into the position they were in before their dive, so we need to
know where our position is to return to, and as the aliens will have moved while
we are diving that position is changing every single frame… So in Step 1 we need
to keep track of their le�� � right positions and whatever position they have when
they are �ying.

So again by laying out the features we have identi�ed some new variables we are going
to need to keep track of and a problem in that we need to keep track of our normal le�/
right moment position. We also need to give the top aliens a priority for when to start a
dive, and decide when to dive. Perhaps we can even let them take a few of their chums
with them.

In code, we can de�ne these di�erent states using an enum command, because it’s
easier to add to the states and change values when we don’t have to look for hard numbers.

�is means a command like:

if (State == Moving) DoMove();

is a lot easier to alter than:

if (State == 0) DoMove();

Why? I hope you’re asking yourselves. Well if you remember that moving is 0, then that’s
good, but suppose you decide to add another state, or you end up with 20 di�erent states
and then need to add one in the middle, it can get a bit hard to keep track of which number

5. Finally Our First Games134

means what? Confusion is the enemy of all coders, so it’s good that our C� � and other
languages provide options to keep things in order for us.

We could #define multiple values, but since we might add things in the middle, it
might mean hunting down and changing multiple #defines .

A much simpler trick is to use an enum, with an extra twist of a typedef like this

typedef enum Status
{
 Moving = 100, Arcing,Diving,Bombing,FlyOff,FlyBack
} Status;

So what this means is that Moving has the value 100, and Arcing 101, Diving
102, and so on. But more importantly typedef creates a new type of variable, which
in this�case can consist only of these listed values, Moving, Arcing , and Diving .
We can insert or remove values into this list quite easily and the numbers assigned will
change but the code does not need to. So we can now de�ne our variable State as a type
Status like this;

Status State;

Finally, why did I start with 100? Well when all said and done, the Status type is still
basically an int , and it’s not impossible for us to accidently test for something using
another typedef’d int that has the same value, so it’s wise to make each enum
start at a di�erent base. It’s not essential, but it is wise. �e compiler will take care
of the� numeric� for us,�we just have to use the names we’ve assigned to the numbers,
the numbers can change each compile but the code will always look the same and be
understandable to us.

Now we can put a simple switch/case combo into our Alien::Update methods
like�this:

 switch (this->State)
 {
 case Moving:
 break;
 case Arcing:
 break;
 case Diving:
 break;
 case Bombing:
 break;
 case FlyOff:
 break;
 case FlyBack:
 break;
 default:
 printf("Something undefined happened in Alien Update!\n");
 break;
 }

We now have to �ll in the code for each step, notice the default state, which is there to
catch anything we forget to write code for. If you see that text in your console, �x it right
away! It’s also another reason why I set up the Moving value as 100, because if you don’t

Kamikazi Invaders 135

initialize it, it will most likely be set to 0, causing this to immediately trigger. And making
sure you check your initialization/constructor settings.

Make Them Move
Ok, so �rst on our list of steps is to make them move. We did this in the Invaders game but
here it’s actually a lot simpler, there’s no down step but we do want them to switch direc-
tion when they get to the edge.

Notice that in the Alien::Update de�nition, I return a bool , we’ll use that to tell
the group manager, which controls the aliens, that the direction has changed. But as with
invaders we won’t let the aliens themselves change the direction.

Ok, the code for the movement is pretty simple, note that we are going to add a

bool ReturnState = false;

Just before the switch statement, this will provide a value to return, so our �rst task now
looks like this in Alien.cpp.

case Moving:
 if (TheGame->AlienGroup->Direction == true)
 {
 this->MovingX++;
 if (this->MovingX > (SCRWIDTH - 64))
 ReturnState = true;
 }
 else
 {
 this->MovingX--;
 if (this->MovingX < 64)
 ReturnState = true;
 }
 this->Xpos = MovingX;
 break;

We also need to add

return ReturnState;

At the end of the update routine, but that’s it for moving. I trust none of this needs much
explaining now?

In the GroupManager.cpp code, we just have to make sure we check for this return
value, add this to the GroupManager::Update

// this only needs to update the aliens left and right
 bool Changed = false;
 for (int i = 1; i < 47; i++) // 0 is the ship
 {
 if (Game::MyObjects[i]->Update(G) == true)
 Changed = true; // we could get a few things returning true, so be
sure to change here
 }
 if (Changed == true)
 Direction = !Direction; // then check if Changed was set which indicates
a direction change

5. Finally Our First Games136

And that’s that for movement, compile and run, watch them go le� and right forever and
ever assuming they are in the Moving state

Now did you notice, that my Alien code did not actually update the Xpos, it updated the
MovingX then moved that value into the Xpos to create the movement, the reasons for
this were brie�y discussed, I hope you were paying attention, but I’ll let it become more
apparent later.

Get Them Flying
�is is an interesting point, we need to get the Aliens to do their thing, but at the moment
we don’t have all their logic coded. We want these Aliens to start their attacks in a semi-
logical and calculated way. But that means we need to have the game actually playing to
decide if our approach is working. Talk about the cart before the horse?

If you are really con�dent about what you are doing, you could indeed write a whole
set of routines that would carefully trigger the right Aliens to �y at the right time, perhaps
even taking an escort or two with them, but most of us are not that con�dent at this point.
So here’s a suggestion.

Write something that will work for now, and allow us to move forward. Something we
know is not actually good enough for the �nished game but which will give us a quick and
dirty way to get what we need to happen, in this case to trigger an Alien to �y. And that we
can come back to later and either enhance or scrap.

We call routines like this Holding Routines, things we allow to function in a non-
�nal way, that we fully intend to remove later. Artists also do something similar with
artwork that is put in place as a temporary measure so the project can continue, coders
o�en work in advance of artists, but need something in place to get their code working,
so they use holding art, and naturally we also use holding code to let things move for-
ward. But be sure to mark down that this is holding code that must be updated, though
sometimes, very occasionally we might keep it, with a few tweaks to make it up to �nal
standards.

We could trigger a move based on a special key press, that’s actually a very cool and
popular way to do things but I want to trigger a number of aliens to run, so I think a simple
random trigger might be best here.

Kamikazi Invaders 137

So in the Moving step add this code:

case Moving:
 this->Xpos = MovingX;
 this->Ypos = MovingY;
 if (Rand(1000000.0f) < 1100.0f && TheGame->Fred->State == Shooter::Normal)
 {
 State = Arcing;
 ArcInit = false;
 }
 break;

�ere, couldn’t be simpler could it? �ough why am I using such a big number 1,000,000
and testing for 1100, which is about 1.1� ? Why not test for 100 and � 1 Not great odds is it,
if you were only throwing the dice once?

We’re throwing the dice 30 times a second or more and you really will throw up a
lot of 0's and 1's triggering a near constant stream of Aliens, because even low odds will
eventually hit if you try o�en enough. Having a larger number as the seed, when you are
repeatedly calling a random system, reduces those chances quite a bit. But when all said
and done it’s a case of try it and see, I found 1100 out of 1,000,000 to be a good result,
increase or decrease as you need.

A Nice Arc
Ok, so we are ready for Step 2 of our Kamikazi’s attack, the Arc, which if you remember
your high school trig is a semicircle, and that’s neat because we can draw semicircles using
very simple Pythagoras calculation. Ah! Reasons to love tringles, are never far away when
you are doing programming.

So let’s think about how to plot a circle, If we were to assume a radius of r’ and assume
we have 360� , we can make a circle using two simple formulas to calculate the x and y
points.

xPoint = cos(angle)*r’
yPoint = sin(angle)*r’

Really simple, and if you do a for loop, of 0–360 as the angle value, you will get 360
dots that will more or less form a circle…we can actually plot that… try entering this
code?

for (int angle = 0; angle < 360; angle++)
{
 float Xpos = cos(angle) * 30;
 float Ypos = sin(angle) * 30;
 TheScreen->Plot(Xpos + 100, Ypos + 100, REDMASK + ALPHAMASK);
}

Put it in the Game::Update method, just a�er the check for init, it’s not going to stay
around long, it’s just so we can see what’s happening.

Now we added an o�set to our point to move it away from the 0,0 origin point of the
screen, and in fact we can use any value as that o�set, which means we can replace that
o�set and use it to plot a circle from any speci�c start point.

5. Finally Our First Games138

What we get then is this. A nice gray circle.

In fact that could be a nice way to create a shield of some kind around our ship, suppose
we move the o�set to Fred’s position with this code.

for (int angle = 0; angle < 360; angle++)
{
 float Xpos = cos(angle) * 30;
 float Ypos = sin(angle) * 30;
 TheScreen->Plot(Xpos + Fred->Xpos, Ypos + Fred->Ypos, REDMASK +
ALPHAMASK);

}

Hmmm something went a bit wrong? No not really, you see our circles center point is
based on Fred’s top le� corner, because that’s how we decide the x and y start points of our
sprites. To balance it out we would need to add half the height and half the width to get to
the center of the sprite image.

Kamikazi Invaders 139

Assuming a radius of 30�pixels, we can do that like this:

 for (int angle = 0; angle < 360; angle++)
 {
 float Xpos = cos(angle) * 30;
 float Ypos = sin(angle) * 30;
 TheScreen->Plot(Xpos + Fred->Xpos + (Fred->Image->GetWidth()/2), Ypos +
Fred->Ypos+(Fred->Image->GetWidth()/2), REDMASK + ALPHAMASK);
 }

Ok, that actually looks quite nice; it’s not really part of the game though, unless you feel
like adding a shield or some kind of impact marker, I’ll leave it up to you.

But I do want you to look at this image carefully….and then ask yourself, how this
line;

if ((xpos >= 0) && (ypos >= 0) && (xpos < m_Width) && (ypos < m_Height))

Hidden away in the plot routine in your Surface Class, has prevented you from doing some
massive damage? Any ideas?

Of course a semicircle only needs 180 steps so try running the code with 180 steps
instead of 360. What happened? Not quite what you thought? You were maybe expecting a
nice arc pointing up, but we ended up with a circle again, but with holes in it? �at’s ok, I
was expecting it. �ere are two minor things wrong with what we are doing, even though
it seemed at �rst to be doing what we wanted.

First is our use of degrees. Degrees are easy things for humans to understand but not
so easy for computers, they tend to use things called Radians, which are essentially pro-
portions of the circumference of a circle. Radians go from 0 to 2PI (6.2831…) And the way
the cos and sin functions work, is to use a modulus value of 2PI so whatever number you
put in, it will range between 0 and 2PI. So let’s �x that �rst and make sure we send Radians
to our sin and cos routine.

It’s still ok for us to use Degrees, as I say, humans understand them better than
Radians, but we do need to convert, this is done with a simple formula;

Radians = (Degrees*Pi)/180

5. Finally Our First Games140

And for completeness the formula for Radians to Degrees is;

Degrees = Radians x (180/Pi)

As I’m a bit old fashioned and like to use Degrees when possible, I swap back and forward
as I need to, so I de�ne a couple of simple macros to do this for me;

#define DEG2RAD(x) (x*PI)/180
#define RAD2DEG(x) x*(180/PI)

�ese usually live in a common �le, such as a De�nes.h �le, but here for now I will use the
Surface.h �le, immediately a�er the PI de�ne that it relies on. Now, let’s try again this time
sending Radians to our sin and cos functions, like this:

for (int angle = 0; angle < 180; angle++)
 {
 float Xpos = cos(DEG2RAD(angle)) * 30;
 float Ypos = sin(DEG2RAD(angle)) * 30;
 TheScreen->Plot(Xpos + Fred->Xpos + (Fred->Image->GetWidth()/2), Ypos
+�Fred->Ypos+(Fred->Image->GetWidth()/2), REDMASK + ALPHAMASK);
 }

�at should do it…but not quite.

We got a semicircle ok, but it’s the wrong way up; 0� to 180� should have drawn half a circle
from the top to the bottom, has the world and the laws of maths gone mad?

No not really, it’s because we tend to think of 0� as being straight up, but our C/C� �
maths systems prefer to think of it as pointing to the right at 90� , there’s a couple of ways
round this, we could add/subtract an o�set to the angle, but that’s not ideal, as we already
have a lot of calculations going on in the loop. Or, we simply accept that the start point we
want at 270� as we see it, is 90� less at 180� , and change the step values.

Kamikazi Invaders 141

Now our code looks like this,

 for (int angle = 180; angle < 360; angle++)
 {
 float Xpos = cos(DEG2RAD(angle)) * 30;
 float Ypos = sin(DEG2RAD(angle)) * 30;
 TheScreen->Plot(Xpos + Fred->Xpos + (Fred->Image->GetWidth() / 2), Ypos
+ Fred->Ypos+(Fred->Image->GetWidth() / 2), REDMASK + ALPHAMASK);
 }

And the image like this; Success!

Good, that was a nice and interesting bit of simple maths wasn’t it? Let’s try to use it to get
our aliens to move in an arc. We know the formula; we just have to work out how to do
them in steps so that our movement is visible over a period of time.

Step by Step
We already understand the basic idea of steps, because we are doing our state processing.
We know that if we are in a certain mode our switch statement is going to take us to the
right case to process that particular movement. In the case of arcing though, we only really
need to be sure of one thing… �at we have set up the step value and that we don’t keep
resetting it. So we need a variable to indicate that Arc initialization has been taken care of.

case Arcing:
 if (ArcInit == false)
 {// so now we set up the variables
 ArcInit = true;
 ArcStep = 180;
 }

So add this, and remember to make sure you have declared ArcInit and ArcStep as a
bool and an int in your class de�nition.

5. Finally Our First Games142

Once the arc has been set up, all that remains is for us to actually do it…using the arc
step as the Angle, which allows us to add this

 else
 {
 Xpos = MovingX + ARCRADIUS + (float)(cos((ArcStep)* PI / 180)*ARCRADIUS);
 Ypos = MovingY + (float)(sin((ArcStep)* PI / 180)*ARCRADIUS);
 ArcStep += 3;
 if (ArcStep >360) State = Diving;
 }
 break

Yes, that really is all that’s needed. Define ARCRADIUS as some reasonable value,
I have 44, and your Aliens will now do a semicircle centered on their MovingX ,
MovingY position, until they have completed it. Before we did our circle in a loop,
this time we do it in a step each time the method is called, the only variable changing
is ArcStep, which like the angle in our circle drawing for-loop, dictates the new place-
ment of our alien.

Try it, you have a very simple trigger routine ready, which we’re going to re�ne shortly
but let’s see if you can get your Aliens to arc. Notice I added three to the step rather than
one. Well it’s all a matter of balance; I want them to move fairly smoothly and quick, one
step at a time is too slow, three is nearly right, play with the value and see what works best
for you.

Ok good, that should not be too hard. When the Arc is complete it changes into the Diving
sate, which we can now cover. I personally �nd the Arc to be a little too regular; I’d like a
more oval shape, any thoughts on how that could be achieved?

Dive Dive Dive
Diving, like Arcing, also needs to be initialized…because we have to work out where
we are diving to. We have established we want our aliens to aim for the ship. So we
have to work out the direction of travel we need to move our alien to intercept the ship,
like�this;

Kamikazi Invaders 143

Yvalue

Xvalue

Clearly we need to move along the hypotenuse of a triangle to get to our man in the short-
est possible time. If only there was some way to work out what those Xvalues and Yvalues
were, I hear you cry?

Please tell me you have worked this out? Remember triangles are a programmers best
friend because it allows us to get so much information, angles, distance, how much to
move along the X coordinate to be at a point, how much to move along the y coordinate,
to be at a point.

And that’s what we want here…how much to move? But we can’t just move Xvalue and
Yvalue. We need to move them in steps. Ideally converting the amount to move in the X
direction and Y direction in to small useful chunks.

First thing, �rst calculate those X and Y values, by subtracting the X position of the
alien form the X position of the Ship, and same for the Y positions.

As we are going to do this one time, it becomes part of the initialization process, we
can make a choice here to do it at the point where the state changes, or use a �ag to indicate
that an initialization is needed the �rst time we do the Diving code.

On the o� chance that you might want to go into a dive without �rst doing an Arc,
let’s give the Diving system its own init �ag, but do remember to set it to false when you
set the State to Diving, we should also have done the same with Arcing, since we may have
a ship arc more than once.

Diving now looks like this, a simple case of working out the X and Y Values and
reducing their scale to provide a value that should mean in 32 frames it will hit our man.

case Diving:
 if (DiveInit == false)
 {
 float Xvalue = TheGame->Fred->Xpos - this->Xpos;
 float YValue = TheGame->Fred->Ypos - this->Ypos;
 this->StepX = Xvalue/32 ;
 this->StepY = YValue/32 ;
 DiveInit = true;
 } else
 {
 Xpos = Xpos + StepX;
 Ypos = Ypos + StepY;

5. Finally Our First Games144

 if (Ypos > SCRHEIGHT / 2) State = Bombing;
 }
 break;

Bombs Away
�is looks like it works wonderfully, if we actually leave out the check for change state,
our aliens will come heading toward us at the end of every arc. We can choose when to
decide to start Bombing at around the midpoint of the screen. Bombing will basically
repeat the dive code, but also add some random factor to decide if we should drop some
bombs.

 case Bombing:
 // now we must decide if we are going to drop bombs
 if (Rand(100) < 5)
 { //drop a bomb once you create the class;
 printf("bombs away\n");
 }
 Xpos = Xpos + StepX;
 Ypos = Ypos + StepY;
 if (Ypos > SCRHEIGHT * 2) / let them get off screen before changing
 {
 State = Moving; / temp normally change to FlyBack
 }

We don’t yet have a Bomb Class, so consider the printf to be a temp thing that will show us
the code is working, and let us continue.

Starting to look like a game now, you can alter your random timers to increase the
incidence of dives just so we can continue the tests, but for now all we really want to do is
step through the di�erent states and make sure our aliens do what they are supposed to.
Without actually causing any virtual loss of life. You can change the State to Moving if you
want them to just reappear at the end of their dives, while we work on the tricky Fly back
to the top, and the return to formation.

Kamikazi Invaders 145

Get Back to Where You Once Belonged
So we are now in the Flyo� stage where we want the alien to get back to the top of the
screen, while staying o�screen. We can do this in two ways. �ese are as follows:

 1. �e easy way… Actually place them back at the top of the screen.

 2. Let them move up to the top of the screen, usually o� the side but just enough to
see them heading back.

On face value the easy way is clearly the best, and simplest. But a small part of me would
love to have them on the edge of the screen being seen to be moving back up.

I’ll tell you what, for brevity, I’ll do the easy way. You do the cool way, you already
know how to make a step system work for a target point, so you have all the tools
needed.

But both systems need a target point. I’m going to pick a point above and outside the
screen, on the le� and another on the right, depending on what side of the screen the alien
is when we trigger the state.

Since I’m doing a single step I don’t need to use a target variable, I’m just going to set
Xpos and Ypos like this.

 case FlyOff: // here we must return to a point top left or top right,
depending on where we are.
 Ypos = -64;
 if (Xpos > SCRWIDTH/2) Xpos = SCRWIDTH+64;
 else
 Xpos = -64;
 State = FlyBack;
 break;

Cool, so now when the FlyO� is called it will set itself to the top le� or right of the screen
ready to start homing to its correct position.

Home Again!
So now what we want to do is get our alien to slowly move back into its position where it
should be in the ranks of Aliens back where we �rst �ew o�. Now you see why we kept
that MovingX and MovingY variables. But we have to home in…. hmmm basically this
means we need to check where we want to go to, and move in that direction, can we use
triangles again?

Yes, of course, we can, it’s exactly the same process as the target we chose for the
dive, but this time we have a moving target, as the MovingX and Y values are, ermm
moving.

So that means we have to recalculate the target every time and add our step value.
When both our X and Y positions are the close to being the same as our MovingX and Y,
we’re done. Let’s try that out.

case FlyBack:
 {
 float Xvalue = MovingX- this->Xpos;
 float YValue = MovingY - this->Ypos;

5. Finally Our First Games146

 this->Xpos+= (Xvalue / 32);
 this->Ypos+= (YValue / 32);
 if (fabs(Xpos-MovingX) <4 && fabs(Ypos-MovingY) <4) State = Moving;
 }
 break;

Ok looks simple enough, if we’re about 4�pixels away on the x and y, we’ll change into
moving mode, which will snap them back to the moving mode and moving positions, try
it out, what happens?

So, it kinda works, but can you see sometimes the aliens are struggling to home to
that �nal point before they can be allowed to reset back into moving mode. �ey get there,
but it’s clearly a bit of a struggle o�en playing slow motion chase until the pack changes
direction. Why?

Well, the closer they get to their target point, the smaller the step value we calculate, and
we even scale it down by dividing it by 32. So the closer they are the smaller the step value
causing them to need the target to slow down or move toward it before it catches up. It does
work, sort of, and the speedup then slowdown e�ect we get is actually quite nice, but are
we happy with it? I’m not!

We need to talk about a di�erent way of creating those step values.

Vectors, Our Flexible Friends
Now when they are in full motion, we are moving our aliens in a simultaneous X and
Y direction to create the directional movement we want. �e two values are linked and
 create an X step and a Y step, which results in the alien moving in a certain direction.
�at’s basically what vectors are; they are directions, represented by step numbers. Not to
be confused with the dynamic data store system, or indeed even the data type, which also
share the name vector.

A mathematical vector is a numerical quantity having direction and length/
magnitude. �ey are incredibly useful concepts and can represent a lot of di�erent
things, but for now we’re going to restrict it to the idea we currently need, which is
direction. It’s probably easiest to visualize vectors as the Hypotenuse of a right angled
triangle. With an added arrow to represent that it has direction. It’s the Hypotenuse

Kamikazi Invaders 147

itself, here with a magnitude of �ve units, which is the vector, and vec2(4,3) is how we
represent it.

4

3
5

For this representation to work we need to consider the start of the triangle as being at a
0, 0 origin, and a lot of maths assumes that, but no matter where a (4,3) vector starts, it’s
going to point the same relative direction from its own origin.

We can have any numbers, that can therefore represent any direction we want, but
generally if using vectors only to indicate direction, we keep them as numbers less than
one. �e reason is really simple an X of 2 and a Y of 2 mean you will always move in a
diagonal from a start point, but an X of 0.5 and a Y of 0.5 will ALSO go in exactly the same
diagonal just in a smaller step within a square unit, so lots of numbers can represent the
exact same direction, though having di�erent magnitude, or length of movement.

If we keep them all under 1 or �1 for opposite directions, using a process called normal-
izing to create a unit vector, we can be sure our object is going to move within a given 1�� �1
square in the direction we want. And here’s a bonus, by multiplying that unit vector by a
scale value we can change the e�ective amount of the movement keeping the same direction.

�at scale can be a number from 0 to 1 for even slower movement, to, well, anything
that the game needs. We can consider that scale value Speed and alter that to create vari-
able speed in our object, in the direction we set the vector at, and if we set it to negative
values, Speed will move the object backwards. Win!

Normalizing isn’t as mad as it sounds, it’s simply a standard equation that considers
the X and Y values of a vector to be the height and width of our visualization triangle,
which as your old high-school teacher tried to tell you, in those boring trigonometry
classes, if you know those two, you can work out the hypotenuse of that triangle (and
quite a few other things we will discover later). As we now know, the Length/Magnitude of
the vector…dividing the X and Y by that Length will always result in a numbers between
�1 and 1. Perfect for movement.

A small confusing point, vector2D types are not a standard part of C� � they are part
of a maths library, and C� � provides only basic functions for numbers, so if you don’t
use a maths library, you have to code them up yourself. �ey are, however, pretty much
standard.

Although it does seem a little odd, a neat thing about vector2D as a code type, is that
they can represent di�erent things, like points in a grid and a direction, which means we
can add one set of vectors to another, so you can add a Vector2D of a movement vector to
a vector2D of coordinates to create new coordinates.

So if we store our X and Y Screen positions in a vector type we can move our object
by adding any other vector type. �is makes things quite simple and we can still access x
and y individually if we want.

5. Finally Our First Games148

Later we will discover we can actually use vectors for all sorts of di�erent things, not
just coordinates, we can also di�erent types of vectors, which could have three and four
dimensions, but for now, we’re going to think of them as convenient storages for coordi-
nates and as a direction for movement!

I hope you can see that vectors are really useful things they have a lot of di�erent uses
in games, for now using them to create movement is an ideal introduction, as this is the
fact they can be considered as kinds of incomplete triangles, so some understanding of the
maths behind triangles is going to be a great thing for us. For 2D maths we don’t need too
much more than trigonometry, so the sooner we learn to love the triangle the better. We’ve
already used it in a few things, did you notice?

We used Sine in our arcing function to create semicircles, and it’s not the �rst
time we will come across Sine, Cosine, and the mysterious and occasionally frustrating
Tangent, but we’ll bring them in when we need them so as not to bring up those bad
memories of trigonometry classes you slept through because you could not ever see a
situation where you would ever need them. Yup! I was wrong too! Boy, was I so so sooo
wrong.

Remember though this is important, sin, cos, and tan all use radian values, so we need
to choose if we’re going to use radians or degrees and stick with it. As noted I tend to use
degrees, but translate them to Radians at the point of use. It’s probably more than a little
wasteful but when debugging it’s far easier to read a number as a degree from 0 to 360 and
relate that to a direction even if a little twisted, than a radian from 0 to 6.28318530717958
6476925286766559

If you are comfortable using Radians all the time, feel free to do so. If not, remember
those macros to convert between them will make life a lot easier.

Sadly, our current standard maths library does not include any maths vector classes.
So we are going to have to write our own. For now! Later as we get a little more complex
we’ll consider an open source library to save time. So for now we’ll just include a simple
Vector2D Class in our project and put this into a new .h �le called Vector2D.

#pragma once
#include <math.h>
class Vector2D
{
public:
 float x, y; //everything we do with 2D vectors revolves around these 2
numbers
 Vector2D(float X = 0, float Y = 0) // allows us to create an empty vector
 { x = X;
 y = Y;
}
 ~Vector2D() {};
// we need a few standard arithmetic functions
 Vector2D operator*(float scalarValue) const
 { return Vector2D(x * scalarValue, y * scalarValue); }
 Vector2D operator+(const Vector2D &vect2d) const
 { return Vector2D(x + vect2d.x, y + vect2d.y); }
 Vector2D operator-(const Vector2D &vect2d) const
 { return Vector2D(x - vect2d.x, y - vect2d.y); }
 // magnitude (length) of the vector
 float mag() const {return sqrtf(x * x + y * y);}

Kamikazi Invaders 149

 // return cross product
 float cross(const Vector2D &vect2d) const
 { return (this->x * vect2d.y) - (this->y * vect2d.x);}
// normalise
 void normalise()
 { float mag = sqrtf(x* x + y * y);
 this->x = x / mag;
 this->y = y / mag; }
 // dot product
 float dot(const Vector2D &vect2d) const
 {return (x * vect2d.x) + (y * vect2d.y);}
};

�is little class throws up a couple of interesting points, which you may not have encoun-
tered yet in your C/C� � journey. Most interesting is the use of operator , which is a cool
but dangerous C� � feature. We are essentially telling C� � that when it sees a *(multiply)
operator in code, that it needs to look at the kinds of objects it is acting on, if it is acting
on a Vector2D and a float value, it uses the routine here, which is actually doing two
multiply commands.

Also for � and �, if it sees they are acting on two Vector2D’s it uses the code listed.
� and – will still work perfectly on every other kind of number, but when it is used on
Vector2D’s from now on, it does a di�erent kind of addition/subtraction that creates
new vector values.

Cool eh? But also as I say, very dangerous, this is a concept known as overloading,
allowing a command or operator to do more than one thing under speci�c circumstances.
Don’t overload an operator unless you really need to, it might seem fun, but it can lead to
a world of pain for you later, when you forget you overloaded the � function on two �oats
to return an int for one particular circumstance, where it seemed to make sense, but if
you actually needed a �oat returned, you did a bad thing.

Here though it’s pretty safe, there are no current concepts of how to multiply
Vector2D’s by scalers, or add or subtract 2 Vectors2D , so this is a clear case of need.

We’re also adding a few functions to our class, such as Dot Product, Magnitude
(which I hope you recognize from school Trig Class), and the important one, Normalize.
What are the others for? Well you will need them later, and they are very trivial to code, so
doing them now is going to be useful. I will explain later. �ere are many other functions
that we can add to this as we get more into our maths journey, but for now these will do
what we need and allow us to expand a little later.

Another thing was the use of const , in some of those functions; this is just a way of
making sure we don’t let the function change anything it’s not supposed to. In such small
functions, it’s a bit moot, but it’s a good habit to get into, since accidently altering the x�and
y values in more complex functions could have a disastrous impact. If we added some code
that did make changes the compiler would then complain and force us to think about what
we are doing.

Ok, time to convert our project to use vectors and normalized step values, which we
hope will give us a more accurate stepping and allow for �uid movement.

�e actual Dive and bombing systems are not really badly impacted by the bad maths,
so let’s focus on the step where it was most apparent, the FlyBack step. Feel free to �x the
Dive and bombing later.

5. Finally Our First Games150

To make that more e�ective we need to know the normalized vector, between where
we are and where we want to be, remembering that it’s a moving target so it needs to be
updated every cycle. �is gives us something like this:

 Vector2D Vec(MovingX - this->Xpos, MovingY - this->Ypos);
 float Speed = Vec.mag();
 Speed /= 32;
 if (Speed < 3) Speed = 3; // we need a decent speed to nail the position
as its moving
 Vec.normalise();
 Vec = Vec * Speed;
 this->Xpos += Vec.x;
 this->Ypos += Vec.y;
 if (fabs(Xpos - MovingX) < 2 && fabs(Ypos - MovingY) < 2) State = Moving;

Replace the code in the current FlyBack step with this. Notice, I’ve reduced the
approximate point of impact check from 4 to 2, as it’s a lot more accurate now. Also
to maintain the idea of speeding in, then slowing up as it gets to its target, I’ve used
the distance/length/magnitude whatever you wish to call it, as a factor, but ensuring
it never gets too slow. Since a normalized number is always less than one, so we need
to be sure we can at least move at the speed of the MovingX motion in order to catch
it up. This is the big advantage of a normalized vector; we can alter the scale of it very
easily by multiplying by a f loat value, it’s still going to point the same way. In fact aside
from a means to indicate direction, a vector is very important for having a magnitude.
To be mathematically correct for a moment, it has both direction and magnitude. That
will become much more important later when we use Vectors for things other than
simple 2D motion.

How much more visually neater is that? We see our Aliens �ying in and smoothly
taking their place, no chasing and neatly slotting in place.

Ok, time for me to confess, we could have put a small minimum value on the scale
system too, and yes I must be honest it would have given more or less the same result, but
this was meant to be a painless introduction to Vectors, did you feel any pain? No? �at’s
ok, it’ll come later!

Of course we’re still using a mix of separate X and Y values and Vector2D in this
project but now that we have a Vector2D Class, let’s use it for all future situations where
we have an object that has X and Y motion.

Oh one �nal thing on this, we are calculating the magnitude of the vector
when� we� calculate speed. But later, we’re doing a rather clumsy calculation with this
line�here.

if (fabs(Xpos - MovingX) < 2 && fabs(Ypos - MovingY) < 2) State = Moving;

Can you think of a really simple way to remove this line and change the code to achieve the
same result? I’ll give you a clue, we’re e�ectively trying to work out if we’re within a certain
distance of our goal, and we should not really need to calculate that twice!

�ere are a couple of other fantastic and very useful things that vectors can do for
us, but we don’t quite need them yet, so we’ll not clutter your head at this point. But rest
assured we’re a long way from being done with vectors.

Kamikazi Invaders 151

Lets Get Lethal
Now that we know our aliens are all working �ne, it’s time to give them some weapons,
and also get our ship moving and �ring, and making sure we collide and blow things up, to
complete the gameplay and yes, we must make sure our bombs use vectors as that the way
we want to do things now. Let’s start with the ship as that’s the easiest to do.

We le� our Shooter Class with only the basics to create it and draw it, it’s update rou-
tine currently does nothing, but it’s not dissimilar to our Invader Class, so let’s put that
same code in here:

bool Shooter::Update(Game* g)
{
 bool fire = false;
 if (g->InputHandle->TestKey(KEY_LEFT))
 {
 Xpos-= 1;
 if (Xpos < 0) Xpos = 0;
 }
 if (g->InputHandle->TestKey(KEY_RIGHT))
 {
 Xpos+= 1;
 if (Xpos > SCRWIDTH - Image->GetWidth()) Xpos = SCRWIDTH
- Image->GetWidth();
 }
 if (g->InputHandle->TestKey(KEY_SPACE))
 {
 fire = true; / fire
 }
}

Only a minor modi�cation from the methods we used for Invaders from Space. Do make
sure you add

#include "Game.h"

To the top of the Shooter.cpp �le or it won’t know that the Game Class has an InputHandle
to get info from.

So it’s all working, but it’s a bit slow, try changing the increments to values you �nd
give you more smooth movement, I’ll let you pick the numbers, try a few, and see what
works best for you. Hopefully, you’ve le� your aliens in working order, so you will see that
as you move around they still attempt to crash into you, or at least the point where you
were when they started their dive. �is adds some gameplay as you now really have to keep
moving to avoid the diving aliens. Later we should increase the frequency of these dives to
make the game a lot more intense, and avoid bullets too.

Now, you are asking yourself, why do I still have an empty Update function? Well
that’s a fair question, and the answer is, because when I laid it out I felt I might need a
routine that only passed a surface and a handler, but since I’ve moved more to using an
update that passes the Game Class address, and with that everything that the routine will
need accessed via that instance of game, it has become redundant. But since I made the
original Abstract Class have those updates, I have to at least provide the empty version.

I should go back to the original Base Abstract Class and remove it. But I’ll let you do
it, it’s good practice for you. Note that the Aliens are using the Update with Surface and

5. Finally Our First Games152

Input, even though they don’t actually care about the input. So you may choose instead
to leave that alone (it ain’t exactly broke, so does not need �xing) or make sure that both
the Aliens and the shooter use one type of update, then remove the other. It’s entirely
your call! Let’s see how OCD you are? (hint…leave it for now, OCD be dammed!)

Now unlike the Invaders from Space shooter, Fred, our shooter here, can access the
Game Class, and maybe that is where our bullet should live, because it, like Fred here, is
going to be always on screen. Either moving to shoot, or stuck on the end of Fred’s nose. So
our concept of �re is a little di�erent from Invaders, but I have a reason for not including
Bullet in the Game Class, which will make sense in a bit.

We’re not going to create a new bullet; we’re simply going to check if the current bullet
is ready for �ring. But we do need a Bullet Class, so let’s add that.

Create a new header �le called Bullet.h

#pragma once
#include "GameObject.h"

class Bullet : public GameObject
{
public:
 Bullet();
 ~Bullet();
 Bullet(char* filename, MyFiles* filehandler)
 : GameObject(filename, filehandler) {};
// these replace the pure virtuals
 bool Update(Surface* s, Input* InputHandler);
 bool Update(Game* g);
 void Draw(Surface* TheScreen);
 bool ReadyToFire;
 Surface* Frame1;
};

Nothing too strange there, I’m maintaining the two types of update for now but I am only
going to use the version that passes Game, as I want the shooter to make decisions on
when to �y. I also have a bool in there called ReadyToFire, because the bullet has only two
states, �ying, or on the ships nose. I can use a bool to inform me.

�en we must create our Bullet.cpp �le, so add that into your source lists.

#include "Bullet.h"
#include "Game.h"
Bullet::Bullet() { this->ReadyToFire = true;} // we can't do this here
Bullet::~Bullet() { }
bool Bullet::Update(Surface* s, Input* a_Input){ }
bool Bullet::Update(Game* g){ }
void Bullet::Draw(Surface* TheScreen){Image->CopyAlphaPlot(TheScreen,Xpos,
Ypos);}

Ok, we’re almost ready. Let’s try to create a bullet in the Game class, we can create it
just a�er we make Fred, but do not add it to our vector of game objects until AFTER
we�make all the aliens, because we are doing some stu� that relies on the aliens start-
ing at a set value in the list, and we don’t want to hunt through the code to �nd it, let’s
just�make sure our bullet is the last thing added for the moment until we add bombs
at least.

Kamikazi Invaders 153

We should also remember we actually told Fred where our Bullet was going to be in
the Shooter.h Class with this line;

GameObject* TheBullet; /Bullet location

�is was ok as a holding value, because when we wrote this, we didn’t actually know what
a bullet was. But now we do, and we want to make a new bullet and modify the �ag it has
which a GameObject does not have, so we must change this now to

Bullet* TheBullet; /Bullet location

And remember to include the Bullet.h �le at the top of the �le.
Now, back to why the Bullet is in Fred, there probably is no need to keep Fred’s bul-

lets address in Fred. We could just as easily put it in the Game.h �le as we did Fred him-
self. But Fred and the bullet are linked, so it’s slightly more sensible to let Fred reset the
ReadyToFly �ag at the appropriate times by accessing his own variables rather than dip-
ping back into the Game’s variables. But that really is a choice you can make for yourself,
keep the Bullet separate from Fred in Game, or keep in in Shooter.h. I going to leave him
for now inside Fred, but it does mean we should be careful to delete Fred’s bullet when
Fred’s destructor is called.

But now, let’s now get the bullet to stick to the nose of Fred. Change the Bullet update
routine to this;

bool Bullet::Update(Game* g)
{
 if (this->ReadyToFire == true)
 { / it’s on the nose of Fred
 Xpos = g->Fred->Xpos + g->Fred->Image->GetWidth() / 2 - 4;
 Ypos = g->Fred->Ypos - 12;
 }
}

We’re using the Game* g update because our main loop in Game calls that update pattern
for all non-Alien objects (unless you �xed that?).

Annoyingly I had to subtract a tiny o�set of 4 to get the line in the middle, can you
guess why? Now it’s not good to use hard numbers in code, so I really would like to �x
this. Perhaps then you can work out a way to alter this line so that if we change the bullet
graphic to something thicker it will still center. For this it’s a trivial problem, so if you
don’t know why it’s doing this, just leave the �4 in place.

Ok compile and move Fred around and you see the bullet stays on his nose. Time now
to get him to �y.

�e bullet actual movement is going to be achieved by simply moving up whenever
the ReadyToFire �ag is false, so we can add this to our update

else
{
 Ypos -= 10;
 if (Ypos < 0) ReadyToFire = true;
}

5. Finally Our First Games154

Just a�er the code to �x the bullet. Now all that remains is for Fred to test if the bullet
is ready to �re, and if so, has the �re button been pressed. In the shooter.cpp �le, we can
change the �re code to this

 if (g->InputHandle->TestKey(KEY_SPACE) && TheBullet->ReadyToFire == true)
 {
 fire = true; // fire
 this->TheBullet->ReadyToFire = false;
}

Now run that, you should now get a nice bullet �ring, and returning to your nose tip when
it gets to the top. Notice I am checking that the bullet is in ready to �re mode, we don’t
want to �re it when it has already been �red.

Notice also that the shooter’s �re code contains a redundant �re variable, we really
don’t need it in this game, so unless you feel there is some need to keep it, it can be removed.

Our shooter can now shoot. Its bullet is smart enough to test for the end of the screen
and reset itself, all done by simply setting a �ag. �ere is one other condition, which would
reset the �ag. If it actually hit an alien!

So why don’t we get the bullet to test for Alien hits? Well it’s the same issue we had
with the Invaders from Space, we don’t actually always know how many aliens there are at
any given time and we’d waste processing cycles if we blindly tested every single one dead
or alive, worse, we may be reducing our vector list of objects as they die, so we could end
up testing something else.

No, far better to let the Aliens test if they’ve hit our bullet, and also for the Bombs to
test if they’ve hit our Shooter.

But we’ll do collision in a bit, �rst let’s give our Aliens the chance to drop some bombs
on us, and make our bombs a tiny bit more interesting.

Bombs Away for Real Now
Bombs, like Bullets also need their own class, because they do something di�erent from
everything else. So create a Bomb Class. And presto:

#pragma once
#include "GameObject.h"
#include "Shooter.h"
#include "Vector2D.h"
class Bomb : public GameObject
{
public:
 Bomb();
 ~Bomb();
 Bomb(char* filename, MyFiles* filehander)
 : GameObject(filename, filehander) {};
// these replace the pure virtuals
 bool Update(Surface* s, Input* InputHandler);
 bool Update(Game* g);
 void Draw(Surface* TheScreen);
 bool DidWeHitFred(Shooter* Fred);

 Vector2D BombMotion;
 float BombSpeed;
 Surface* Frame1;
};

Kamikazi Invaders 155

Yes, you guessed it, it’s pretty much the Bullet code with a di�erent name and no need
for the ready to �re �ag. It does add a few things though, it’s got a collision test and a vector
for its motion, and a speed value; this will make their movement much more interesting.

So with the Bomb code looking pretty similar to the Bullet code it’s going to be no
surprise to see that the base Bomb.cpp looks like this:

#include "Bomb.h"
#include "Game.h"
Bomb::Bomb(){ }
Bomb::~Bomb(){ }
bool Bomb::Update(Surface* s, Input* a_Input){ }
bool Bomb::Update(Game* g){ }
bool Bomb::DidWeHitFred(Shooter* Fred){ return false;}
void Bomb::Draw(Surface* TheScreen)
{
 Image->CopyAlphaPlot(TheScreen, Xpos, Ypos);
}

I’ve le� the Updates empty, and for now, made sure that DidWeHitFred always returns
false. �ere is one condition I want the Update routine to test for, Bombs going o�screen.
But what exactly do we do when bombs go o�screen or hit? Unlike our bullet, which
always exists, bombs are dynamically created, so we need to remove them from the object
list which means our old friend MarkForRemoval comes back into play.

One more thing though, when we work out the BombMotion we are going to tar-
get a �xed point, probably where Fred is at that point. So we need to know the normal-
ized vector. It’s a calculation that needs to be done every time a bomb is set o� so to
keep our trigger routines clean, we should do that calculation and the subsequent setup of
BombMotion in this class, so add one more method de�nition in Bomb.h

void SetBombMotion(Shooter* Fred, Alien* Host);

Remember to add Shooter.h and Alien.h so that the Bomb knows what they are.
�e code for this is simply:

void Bomb::SetBombMotion(Shooter* Fred, Alien* Host)
{
 Vector2D Vec(Fred->Xpos - Host->Xpos, Fred->Ypos - Host->Ypos);
 Vec.normalise();
 this->BombMotion = Vec;
}

And the update routine can now be altered to this:

bool Bomb::Update(Game* g)
{
 Vector2D Step = BombMotion*10;
 Xpos += Step.x;
 Ypos += Step.y;
 if (Ypos > SCRHEIGHT + 10) this->MarkForRemoval = true;
}

�ere’s that MarkForRemoval �ag, if our bomb gets too near the bottom, we set it to
indicate to our game loop that we want it to be removed.

5. Finally Our First Games156

In our game update loop we now need to add a small check for our MarkForRemoval
Flag. Like this:

// we don't need to update the 1st 46�because those are the ship and aliens
handled by AlienGroup->Update(this)
 for (int i = 48; i < Game::MyObjects.size(); i++)
 {
 Game::MyObjects[i]->Update(this);
 if (Game::MyObjects[i]->MarkForRemoval == true)
 {
 delete Game::MyObjects[i]; / delete the object in memory
 Game::MyObjects.erase(Game::MyObjects.begin() + i); / remove from the
vector
 i--;
 }
 }

What this is doing is interesting and needs to be looked at carefully, we’re updating all the
nontrivial enemies such as Fred and the Aliens, before this loop, then the stars and now
the Bombs that may have been added. To remove an object from play we have to delete it,
because it was new’d, then erase it from the list. �e reasons for the i-- should be appar-
ent but are o�en forgotten. When we start this loop we may have 150 objects to parse, sup-
pose we are looking at the 100th. And we remove it. �e vectors erase function will remove
it, then shi� everything down 1 step, entry 101 now goes into entry 100’s space a�er the
erase. If we don’t decrement the counter, which currently stands at 100 the next loop it will
be 101, and the new occupant of space 100 will get ignored.

We also need to go back into our code, and check all the object constructors take care
to set MarkForRemoval to false when instantiated, or we may delete things we don’t want
to delete because of a assumed false setting on creation.

So we’re looking pretty good so far, lots of bombs trying to hit Fred and Kamikazi
aliens trying to smash into him. We’re close to our conclusion for this game, but let’s add
the all-important collision, and with it we need to add some gameplay rules, for lives,
and so on.

Like our previous game we really don’t need anything too fancy on this collision, a
simple circle to circle check will do �ne. Start by getting the Aliens to test if they hit the
bullet. Or if they hit Fred. Both of these conditions end our Aliens life, either in Glory or
in misery!

Add a de�nition for a new method in your Alien.h �le

bool DidWeGetHit(Shooter* Fred);

And then in your Alien.cpp �le add this

bool Alien::DidWeGetHit(Shooter* Fred)
{
return false;
}

Now this is interesting because this actually helps us to justify the decision to keep Fred’s
Bullet inside Freds Class, as we only need to pass this function Freds address to get access
to both Fred, for a suicide collision, and Fred’s bullet for an ignominious defeat.

Kamikazi Invaders 157

Let’s �ll in the code, both conditions do, in fact, result in a death, so the bool returning
true should be a hit condition. We’ll write the hit a bullet condition �rst as it’s the easiest.

�is should be very familiar to you now?

bool Alien::DidWeGetHit(Shooter* Fred)
{
 int My_Height = this->Image->GetHeight()/2;
 int My_Width = this->Image->GetWidth()/2;
 int Ob_Height = Fred->TheBullet->Image->GetHeight()/2;
 int Ob_Width = Fred->TheBullet->Image->GetWidth()/2;
 // do a simple circle/circle test
 float R1 = sqrtf((My_Height*My_Height) + (My_Width*My_Width));
 float R2 = sqrtf((Ob_Height*Ob_Height) + (Ob_Width*Ob_Width));
 // move to the centre
 int diffx = ((Xpos + My_Width) - (Fred->TheBullet->Xpos + Ob_Width));
 int diffy = ((Ypos + My_Height) - (Fred->TheBullet->Ypos + Ob_Height));

 float Dist = sqrtf((diffx*diffx) + (diffy*diffy));
 if (Dist < (R1 + R2)) return true;
 return false;
}

Ok add some code in the update, to run this test and if true, for now set the
MarkForRemoval �ag.

Compile and run, and then try shooting an alien, what happens? Not what you were
expecting? Any ideas why? Let me give you a clue, in our Game.cpp �le we have this
update sequence going on:

// lets move our ship and shoot things
 Fred->Update(this);
// now do the normal update code?
 AlienGroup->Update(this);
// we don't need to update the 1st 48�because those are the ship and aliens
handled by AlienGroup->Update(this)
 for (int i = 48; i < Game::MyObjects.size(); i++)
 {
 Game::MyObjects[i]->Update(this);
 if (Game::MyObjects[i]->MarkForRemoval == true)
 {
 delete Game::MyObjects[i]; // delete the object in memory
 Game::MyObjects.erase(Game::MyObjects.begin() + i); // remove from the
vector
 i--;
 }
 }

Can you see it? I put a comment in there for you to take note.
We update our Aliens in the AlienGroup->Update(this) ; which is great as it

keeps them all nicely grouped together so we can keep the moving status updated regard-
less, but it does mean those �rst 47 objects, Fred, and the 46 Aliens we created, do not
respond to the Update loop that follows, which starts from Object 48, which is the �rst star.

Well, that’s a good thing? Or a bad thing?
It’s kind of both. Bad, because hard numbers really suck, but the fact is the group

manager really needs to work on the Aliens and only aliens, it could have scanned the

5. Finally Our First Games158

vector to ID the Aliens but that adds cycles, so in this case, it’s a slightly better idea that
it moves those objects in isolation of the other updates and for that it has to know exactly
when they start and end. Hard numbers being one of the easiest ways, despite our well
intentioned reservations.

So we keep our Aliens at 1–47 to allow them to move and be treated as a group. But
it does mean we can’t ever really delete the Aliens when they are hit, so we need to �nd
another way to remove them from the game.

What I suggest, is to create another state for them, maybe even two states. Dead and
Dying. Dying being a good state to perform some explosion animation and take care of
housekeeping, like adding to a score. And Dead to allow it to be processed but not actually
do anything.

�ese two extra states should be very easy to add, as we’ve already done a great job
of producing the current set of states. So let’s start with adding them to the enum list and
producing some code for it. Our enum in Alien.h now looks like this

typedef enum Status
{
Moving = 100, Arcing,Diving,Bombing,FlyOff,FlyBack,Dying,Dead
} Status;

Just a simple addition of two new states, which is why enums are very cool, we can add
things to them with ease.

In the Alien.cpp �le, where we process the states, add two empty states handlers, just
before the default, they can go anywhere in any order between the switch brackets but
convention is to do them in order.

 case Dying:
 break;
 case Dead:
 break;
 default:
 printf("Something undefined happened in Alien Update!\n");
 break;

Ok, now that’s added, rework the collision system, not to change the MarkForRemoval
�ag, but to set the State of the Alien to Dying. Now we just need to write some code to
handle these states and we’re good to go.

if (this->DidWeGetHit(TheGame->Fred))
{
 printf("He done got me in my killin' parts\n");
 this->State = Dying;
}

If you run this now, and shoot, you’ll see that when they are hit, they freeze, because they
now no longer have a state that currently functions, so they are stuck. �at shows the code
is working but needs more.

We also should have noticed our bullet didn’t stop and went on to disable many more
aliens. �at’s something we also have to �x. Do that �rst by simply setting the Bullets
ReadyToFire �ag, which will, of course, return it back to Fred’s nose.

Kamikazi Invaders 159

 if (this->DidWeGetHit(TheGame->Fred))
 {
 printf("He done got me in my killin' parts\n");
 this->State = Dying;
 TheGame->Fred->TheBullet->ReadyToFire = true;
 }

But be careful, it’s still considered to be active, so let’s also use that �ag to actually decide
if the bullet is currently lethal by wrapping the collision check for the bullet in a test
like this:

if (Fred->TheBullet->ReadyToFire == false)
{
 int My_Height = this->Image->GetHeight()/2;
 int My_Width = this->Image->GetWidth()/2;
 int Ob_Height = Fred->TheBullet->Image->GetHeight()/2;
 int Ob_Width = Fred->TheBullet->Image->GetWidth()/2;
 // do a simple circle/circle test
 float R1 = sqrtf((My_Height*My_Height) + (My_Width*My_Width));
 float R2 = sqrtf((Ob_Height*Ob_Height) + (Ob_Width*Ob_Width));
 // move to the centre
 int diffx = ((Xpos + My_Width) - (Fred->TheBullet->Xpos + Ob_Width));
 int diffy = ((Ypos + My_Height) - (Fred->TheBullet->Ypos + Ob_Height));
 float Dist = sqrtf((diffx*diffx) + (diffy*diffy));
 if (Dist < (R1 + R2)) return true;
}

Now, when we compile and run, we should be able to shoot the aliens, and have them
freeze, and our bullet returns back to our nose where it does no harm to any suicide attacks.

Perfect, we’re almost done with this part now, just need to make some decisions on
how we plan to show them dying and how we plan to remove them from play.

Dying is an important state, because it provides a means for us to check on how we
have done in the level, perhaps alter some factors as more aliens get killed and to check if
we’re at the end of the sequence. So Dying needs a bit more work.

Dead though, is really easy. Just position them o�screen. �ere’s still a little process-
ing going on, and the draw routines later will try to draw them, but that’s ok, we don’t
mind that on this game as we’re not really taxing our CPU……..Wait…did you really think
that was ok?

Hell no! We have to make sure they are not drawn at all; even a draw that does not
show them is a draw that’s wasting CPU cycles deciding not to draw them. We need to
stop that. But how?

Well we have a �ag in GameObject Class that has been there for a long time but has
not been tested

bool onscreen; // we might mark an object as on/off screen to avoid
processing

It’s been there all this time quietly being ignored, but now its time has come. We should
now use this �ag, so that the part of our update in Game.cpp, which does the�drawing can
test this to see if some objects have been switched o� or not. Of course though since it was
never initialized, its state at the moment on each of our drawable objects, including stars

5. Finally Our First Games160

and missiles, it’s currently unde�ned, so we have to take a few steps back to make sure
when we create any Objects that we set it to a known value, in this case true.

Since all our graphic objects are based on the concept of a GameObject, all we need
to do is make sure each of the three current constructors in the GameObject has the
 following line added to it.

onscreen = true;

Now every Bullet, Bomb, Alien, and even Fred who is created, will use one of those base
constructors and will therefore have its onscreen �ag set to true. All that remains is to alter
the draw loop to take that into account.

// having updated lets draw them all
for (int i = 0; i < Game::MyObjects.size(); i++)
{
if (Game::MyObjects[i]->onscreen == true)
Game::MyObjects[i]->Draw(TheScreen);
}

And we should �nd on a test run, that nothing will be di�erent until we set that �ag to
false in an object. Let’s make that happen in Dying for now;

case Dying:
 onscreen = false;
 break;

Compile and run, not too shabby is it?
But…again, something isn’t quite right, there appear to be invisible ships, which the

bullet is hitting? Making it really hard to kill the ships above it.
Yes. Even though the Alien is dead or rather Dying, and not being drawn, it’s still there

in the spot where it was hit, and it’s still processing collision tests. We need to stop that.
Two ideas come to mind…put the Alien WAAAY o�screen so it could never be hit, or

have the DidWeGetHit routine, take account of the fact a dead or dying ship is no longer
able to be hit.

I think we should do both, start with putting it o�screen.

 case Dying:
 Ypos = 2000;
 onscreen = false;
 State = Dead;
 break;
 case Dead: // I really don't need to do anything here just acknowledge
that I am dead
 break;

And then deal with the collision system:

bool Alien::DidWeGetHit(Shooter* Fred)
{
 if (Fred->TheBullet->ReadyToFire == false && State != Dead && State !=
Dying)
 {
..etc.

Kamikazi Invaders 161

Now we’re talking… We have a bullet that works, we have Aliens that check for
collision with it when it’s lethal, and that die and vanish to clear the play �eld. �ough
it would be nice if you could add some explosions to it? You could create a very nice set
of explosions from this site http://www.explosiongenerator.com/, which allows you to
�ddle about with lots of settings and create nice sequences of explosions. Perfect for
sprite-based explosions, we will certainly use these at some point in upcoming demos.
We can work around the fact that they bleed over the size of the sprite boxes we use with
an art package.

Danger UXB
Next up is the bombs we have to make lethal to Fred, and also we need to consider what
happens to Fred when he is hit. We know there are two circumstances where Fred can be
killed, a Kamikazi hit, and a bomb hit.

Dealing with the Kamikazi hit �rst should be trivial, as it’s really just extending the
concept of the DidWeGetHit routine because it relates directly to the Alien, who sadly
dies in a blaze of green slime glory if he manages to collide with our heroic Fred. So that’s
the �rst thing to do. Add the following a�er the bullet test. It’s still the same circle to circle
code but with di�erent targets:

// now check for a Kamikazi test
 if (State == Diving || State == Bombing)
 {
 int My_Height = this->Image->GetHeight() / 2;
 int My_Width = this->Image->GetWidth() / 2;
 int Ob_Height = Fred->Image->GetHeight() / 2;
 int Ob_Width = Fred->Image->GetWidth() / 2;
 // do a simple circle/circle test
 float R1 = sqrtf((My_Height*My_Height) + (My_Width*My_Width));
 float R2 = sqrtf((Ob_Height*Ob_Height) + (Ob_Width*Ob_Width));
 // move to the centre
 int diffx = ((Xpos + My_Width) - (Fred->Xpos + Ob_Width));
 int diffy = ((Ypos + My_Height) - (Fred->Ypos + Ob_Height));
 float Dist = sqrtf((diffx*diffx) + (diffy*diffy));
 if (Dist < (R1 + R2)) return true;
 }

Notice, I have a di�erent condition wrap around the code this time, I’m testing if the Alien
state is currently set to Diving or Bombing. I don’t really need to, I could just test regard-
less, but I know that most of the time the Aliens are not actually in a place where they are
likely to ever collide with Fred. �is test therefore is what we call a cull.

We use culls in collision a lot, especially in 3D because a collision check is a fairly
decent amount of calculation. Here, for example, we have three square roots, a notoriously
slow function, and several multiply and divide functions. If we have 46 Aliens, and only
2 of them are Diving, it’s far more e�ective for me to only test the ones who are diving.
I�will save 44 totally useless and processor expensive, collision tests, which I know will not
produce a result.

We basically also culled the Bullet collision when ReadyToFire was not set; avoid-
ing any collision call when you know it’s not needed is a good practice to maintain.

Compile and run, with this new addition to the collision and hold o� �ring at things,
as you want to see the result of when they collide. You should see them acting in exactly

5. Finally Our First Games162

the same way as if they were shot, crashing into you, entering their Dying state and leav-
ing the game.

But what of Fred, who has had this con�rmed collision. We have to do something
about that?

Stepping Back, Deciding When to Go
So, we’ve got all the Alien code working, and we know it’s working �ne, but remember that
routine we put in place was always intended to be a holding routine. �is is where we have
to make a choice, is it working well enough as it stands to leave it? Will it allow us to alter
the di�culty as the level progresses or changes? I think not, though as a random trigger it
works just �ne and let us test things, it really does not provide any �ow or uniqueness to
the game, we have to scrap it and do something else.

Our problem has not changed, we simply want to provide a more re�ned and interest-
ing way to trigger our Aliens. Let’s consider what we are going to need?

 � We want to have some code to decide when someone is going to �y, generally this
is done on either a timer or as we did, random coin toss system.

 � We also want to decide if we let the Aliens �y alone or in groups, that’s quite an
important decision.

 � We need the rate of attack to increase as the level progress.

 � We need the Levels to become more di�cult with more triggers/�yers.

Starting with when they are going to �y, let’s just use a random value as a timer? Well we
could, it worked before but pure random systems, somewhat obviously, tend to produce
values that are too random, it does depend on the range we seek, which now leads me in a
potentially rather long and boring discussion about random numbers.

Random numbers are an interesting concept in games, because in truth there are
no such things, CPUs actually �nd it very hard to produce true random numbers, but
we can simply manipulate a start value, called a seed, and modify it using various means
to produce a seemingly random sequence of numbers. �is is the most common form
of randomness computers use, which has an advantage sometimes in that the sequence
derived from the same seed will produce the same results. �at can be useful for ensuring
a repeating pattern of events.

It also can be undesirable, if you truly want your triggered events to be unpredict-
able. But though the sequence that is generated is predictable, the frequency in which it is
 chosen and used, can be varied by truly unpredictable factors such as when a user presses a
key, which is an example of a truly unpredictable and therefore random event, because no
computer will know exactly when the user is going to hit a key. Setting a seed from unpre-
dictable or changing values, like the time the app starts up, can also produce a sequence,
which will be di�erent from game to game.

So randomness can be partially controlled, or allowed to be seemingly unpredictable,
like many things in programming what you need will depend on the needs of your project,
it’s up to you which you choose.

Kamikazi Invaders 163

But that’s enough about Random numbers for now; they have very signi�cant uses in
games, but be very careful about basic logic decisions on them.

How about a timer, well timers are by nature rhythmical, your player is going to very
quickly sense the pulse of the game if some things happen in the same intervals. If you
want that, then great, if not, it needs to be modi�ed.

Usually a good solution as a mix of both, Random and Timer, using a base time to
make sure we get at least some time between triggers and a modi�er, that is, randomly
generated, which extends that time to a less predictable event.

For our needs, this sounds like quite a reasonable thing, we’ll set up a timer using a
length we �nd reasonable, and once that timer counts down we’ll reset the count to use a
random value as a modi�cation factor, then we can be pretty sure that a reasonable interval is
going to happen but that it’s not going to be so repetitive, we may still get a lot of 0.001�s values
but our base value will let our player think that there’s a beat happening until the random
values do �nally produce a noticeable change and it’s also quite possible to reduce the size of
that base value to increase the incidence of events. �e Player will get a sense that the events
will happen within given time frames, but not be able to accurately predict the exact moment.

But let’s create a small timer to count down and set a �ag to tell us it’s time to do some-
thing. �is little bit of code should be considered a housekeeping task in the Game loop,
that ideally occurs before we move the Aliens

// do some housekeeping
Trigger = false;
TimeTillChoice--;
if (TimeTillChoice == 0)
{
 TimeTillChoice = BaseTime + Rand(30 * 5);
 Trigger == true;
}

I’ve de�ned BaseTime as a #de�ne in my game.h, inside the class like so

#define BaseTime 3*30

Also inside the Game Class, add TimeTillChoice and Trigger

 int TimeTillChoice;
 bool Trigger;

Needless to say these need to be initialized, and in the �rst init I’d actually make them
TimeTillChoice about four or �ve times longer than BaseTime . To allow the player
to take view of what’s going on before all hell breaks loose.

Now this is an example of a code-based timer, but it’s not actually using time as such,
it’s just decrementing a value we set somewhere to 0, it’s really more accurate to call it a
counter, but we are using time, since we know that our game runs at 30 fps so 30 cycles
is 1�s. We could however use real-time values if we wanted as there are in fact timers on
board in your OS that can allow you to tell how long things have taken. �ough most SBCs
don’t contain onboard real-time clocks (because of lack of batteries), once they are pow-
ered up and running they keep count of how long they have been awake, and once they
have been allowed to get the time from the Internet or your input, they set that to the time

5. Finally Our First Games164

in the time zone it thinks it’s in. �ey keep quite impressive time as a running counter. We
use this already with this line in our start up �le Invader.cpp

gettimeofday(&t2, &tz);

We will discover cool things to do with this later, since it allows us to tell how long our game
cycle takes, we call this delta time, the time that passed since last cycle, and we do keep track
of it, because later as our projects become more complex it will have a very important use. We
could for example subtract that delta time from our TimeTillChoice counter, for a really
accurate value. But, this is a random value, actual proper time isn’t that important to us, we
simply want to create a variation in time. No need for microsecond accuracy here is there?

�e time from the gettimeofday routine has many other uses, for example, it can
be a truly Random seed because we have no way of knowing what time our game starts to
the microsecond.

Back to our Alien selection, we keep getting distracted by geeky interesting things!
Once we decide that we are going to �y, we also need to decide who is going to do it! �at’s
pretty important, since we really want the two top guys to do their thing before the others
get into a free for all, and we don’t want them all doing it at once. So some rule is needed
to decide, who gets priority.

We also would like them to �y in small groups, so when we trigger one, we should try
to trigger some close companions.

So let’s discuss what we’re going to do. We’re going to use the timer we just wrote,
when the timer says we can go, we need to pick someone. Here random can help us as we’ll
set up probabilities, which we can use to stack the odds of a move.

We have three types of Alien, top is our Commanders, we want them to go �rst, in fact
as long as there are Commanders in the line, we want them to always go �rst, things will
only start to get more interesting when they are both dead.

�erea�er we’ll let the Sergeants next in line have a go, then the privates.
I would like the Commanders to try to take two Sergeants with them when they �y,

and also the Sergeants to take two privates.
Privates though can go o� by themselves as long as the Commanders and Sergeants

are dead.
Ok so that’s the battle plan, let’s try to code it up.
So, if we have three types of Aliens, let’s have a small array that gives us a percentage

chance which type we trigger and we can scan through, let’s also keep a current running
tally of how many of that type we currently have, which will be useful later. We didn’t
actually record the type of Alien when we created them, so we need to backtrack a little bit,
and actually set that up. We can use an enum and typedef again to make that happen.

Inside the Alien Class a�er public: and before the #de�ne put this code

typedef enum AlienType
{
 Commander = 0, Sergeant, Private
} AlienType;

Notice, I break my little rule about starting an enum at a di�erent point from other
enums, that’s because in this case I am going to use these as an index rather than a simple
compare.

Kamikazi Invaders 165

When we originally set them up in our GroupManager init function we initially gave
them hard numeric values in the table

 int EnemyCoords[46 * 3] = // we could use a [46][3] but it’s not so hard
to use a single
 {
 // top row ALIENS we use X,Y,Type
 (SCRWIDTH / 2) - 100,Row1, 0,
 (SCRWIDTH / 2) + 100 - 32,Row1, 0,
 //2nd row 6�aliens
 (SCRWIDTH / 2) - (3 * DIST), Row2, 1,
 (SCRWIDTH / 2) - (2 * DIST), Row2, 1,
etc.

We could leave them like that, but you know my feelings now about hard numbers…so
time to do a bit of copy and replace, I don’t recommend a full block copy and replace, just
copy type the �rst Alien::Commander , copy it, then select the 1 in the next row and
paste in the Alien::Commander . �en replace the �rst, two with Alien::Sergeant ,
copy it, then highlight the next two, and press CTRL to replace the two. Repeat till done
then do the three and Alien::Private .

Why not a block replace? Well we’re replacing the numbers 0, 1, and 2, which do
appear a lot in the body of the chunk of code we’re altering, so individual, select and
replace is better if a bit tedious, it looks like this when done.

 // top row ALIENS we use X,Y,Type
 (SCRWIDTH / 2) - 100,Row1, Alien::Commander,
 (SCRWIDTH / 2) + 100 - 32,Row1, Alien::Commander,
 //2nd row 6�aliens
 (SCRWIDTH / 2) - (3 * DIST), Row2, Alien::Sergeant,
 (SCRWIDTH / 2) - (2 * DIST), Row2, Alien::Sergeant,
etc.

So that’s done, for no other reason than we may choose to alter the values we know that we
are looking at Commanders, Sergeants and Privates…If you compile that, you will not see
any di�erence at all, the code in the setup routine is still using 0, 1, and 2, because that’s
what those enum values are set to.

�is time though, when we get the whatImages value, we need to store it in the Type
variable we make in the Alien.h Class.

AlienType Type;

And back to our Group setup, add this line

A->Type = (Alien::AlienType)whatImages;

Annoyingly we need the cast (Alien::AlienType) as a bit of a safety check, it quite
rightly thinks our Type variable is an AlienType , but the array initializer allowed it to
be stored as an int . It’s a quirk of C� � that it will allow enums to be considered as int ’s,
but it won’t consider it to be a typedef’ed enum without casting to make it clear that is what
we want. So when we set up whatImages , it was an int , and we need to just tell C� � that
it is really an AlienType .

5. Finally Our First Games166

While we’re on the subject of casting, it’s probably wise to note that
(Alien::AlienType) is an example of a C style cast, C� � has di�erent and more
e�cient types of cast, but we’ll get to those later.

Ok, now that’s done, we’ve now managed to store without too much e�ort the type
value of the Aliens we create, which we can use in our logic, let’s get back to the Game and
Alien Classes.

We’re almost ready, just need to make sure we set up our TimeTillChoice and
ChanceOfHit tables like this, at the end of the Game initialization code

/Level variable initialising stuff
 TimeTillChoice = BaseTime * 3;
 ChanceOfHit[Alien::Commander] = 60;
 ChanceOfHit[Alien::Sergeant] = 5;
 ChanceOfHit[Alien::Private] = 0;
 HowManyOfThisType[Alien::Commander] = 2;
 HowManyOfThisType[Alien::Sergeant] = 6;
 HowManyOfThisType[Alien::Private] = 38;

Take special note of that comment, for later. Make sure you have ChanceOfHit[3] and
HowManyOf�isType[3] as ints in your Game.h.

So we’ve set up the timer to be about 9�s that may be too long, but we can adjust later,
and the Chance of a hit for Commanders is 60� and Sergeants 5� because we don’t want
to totally eliminate them from the �rst few dives. But we don’t want the Privates to dive
alone until the Commanders are dead, that btw, will need us to keep a bit more notice of
what happens when things die, we’ll check back to that in a minute.

Once our timer says we can go, we simply test our existing Aliens, and if the trigger
is set we roll a Random chance, and compare it to the type � chance we gave. Don’t go for
100� as the highest though; we need to add a little uncertainty, that’s why we have a 60�
chance that you will �y a Commander when the time is ready.

If we scan through the list and don’t trigger one, it might need some code to reduce
the timer value to try again, but for now let’s see how it goes.

In our Moving step of the Alien update, let’s test if we want to �y, replace the holding
random routine with this:

if (TheGame->Trigger == true)
{
 // lets do some triggering folks
 if (Rand(100) < TheGame->ChanceOfHit[Type])
 {
 State = Arcing;
 ArcInit = false;
 TheGame->Trigger = false; /should we clear?
 }
}

Now run your code, we should see a nice delay a�er the game starts, then the com-
manders will �y to their glorious Kamikazi deaths but it seems ok so far. We’ve not
added any formation code yet but that’s ok, we will. Leave it even longer and you will
eventually also get a sergeant or two taking the plunge. But with only a 5� chance every
3–5�s it’s going to be a while before we clear the board of them, and the Privates are
never going to go.

Kamikazi Invaders 167

�e key point is that when any enemy dies, we need to alter the probability. �e best
place to do that, is in the Dying step of the Alien, because that’s the point when an Alien
transitions to its dead state, and that’s where we can review the variables and make some
minor alterations.

Add this to the Dying step code a�er you set State to Dead;

State = Dead;
 TheGame->HowManyOfThisType[Type]--;
 TheGame->ChanceOfHit[Type] += 2; // every time we kill one of this type,
increase the chance of this type flying

 if (TheGame->HowManyOfThisType[Type] == 0 && Type != Alien::Private)
 {
 TheGame->ChanceOfHit[Type + 1] += 20; // increase the chance of the next
type flying
 if (Type == Alien::Commander)
 {
 // all the Commanders are dead so lets allow a few Privates to fly and
increase the Sergeants chances
 TheGame->ChanceOfHit[Alien::Private] += 10;
 TheGame->ChanceOfHit[Alien::Sergeant] += 10;
 }
 }

Ok, so we are doing a few small things, every time we kill a type, we increase the prob-
ability of that type �ying. If we eliminate an entire type, we increase the probability of the
next type, though we can’t increase beyond a Private, so there’s a safety check in there and
also if we kill all the Commanders, we quite deliberately stack the odds for the Sergeant
and Privates to �y.

All pretty good, so far, time to get them to attack in convoy now. We can �ddle about
with the timing and also the increase we add to the chance of a hit to alter our gameplay
but we’re getting close to what we want. More kills = more dives, so the action should
become a little more frenetic as the level progresses.

Breaker Breaker Rubber Duck
We’re ready now to trigger some companions; we’ll do this fairly simply by just scan-
ning through the Aliens directly below the ones we trigger. Only the Commanders and
Sergeants �y in convoy, so we only really want them to have any inclination of who’s
under them.

We will let the Commander �y with up two sergeants and the sergeants �y with
three Privates, but that creates a problem for us, we have no idea what’s under us, we’d
have to scan through the vector list of objects for one that represents us, then get our
coords and then compare all the other objects to see if they are of the right type and
right range.

Well ok, that’s one way, and it’s a valid way, take our coords, and scan through the
list to see who is in a certain radius. Actually not a bad approach. But I hate scanning for
things that are likely to produce a lot of dead results. It’s far better to do a bit of preplan-
ning and let our Aliens know where to look. But to do that we need to backtrack a little
again and make sure we know which Alien we are looking at, give them an ID that relates
to their position in the Vector list.

5. Finally Our First Games168

I’ve a feeling this process might get complicated, and I don’t want to mess up what is a
very nice little movement step, so I’m going to add variable/member and a routine/method
to my class, called;

void GetMyFriends(Game* G);
int MyID;

And look, it passes a pointer to Game, and I will be able to know who I am from ID as the
Alien I am currently updating, so that I can look up a list of Aliens I know are under me.

Go back to your GroupManager initialize routine, and in the loop where you create
the Aliens a�er you actually new it, add this

A->MyID = i;

And that will give our Alien and ID number between 0 and 45 inclusive, perfect for look-
ing up an array!

But we have a problem. Quite a big one; we have indexes we can use to look up an
array, but we don’t currently in our game have an Array of Aliens…what yes we do, we’re
updating them using Game::MyObjects , and that is true. But Game::MyObjects is
not an array of Aliens, it’s an array of GameObject’s and the GameObject Class does not
contain the MyID or State variables we need to change, they are in the Alien Class! We
need another array, of Aliens, in the Game Class.

�is can be a straight array because we know exactly how many we have, if you choose
later to have more Aliens of an indeterminate number then make it a vector, for now
though, add this to the Game Class in Game.h

Alien* TheAliens[46];

Annoyingly before we compile this, we’ll need to add a small prede�ne for our Alien Class,
so that Game Class knows about it. �is is because of the fact our Alien Class includes the
Game.h �le to use Game* in its class de�ne, but now Game wants to use Alien, so it kind
confuses the compiler, as some things are attempting to be created before it knows about
them and it is a bit of a cyclical mindbender.

Adding this line just before we de�ne the Game Class, will tell it, that there is a class
called Alien, and once it’s all compiled the linker will �x things up for us. It’s untidy cod-
ing at this point but trust me, it works.

class Alien;

Now in the init system for our GroupManager we need to populate this new Alien array
with the address of each Alien as we make it, add this line a�er the push_back at the
end of the routine.

ParentGame->TheAliens[i] = A;

Boom, we now have a trail of breadcrumbs our Aliens can use to �nd each other, which
will let us write that GetMyFriends routine like this:

void Alien::GetMyFriends(Game* TheGame)
{
 if (MyID > 7) return; //Privates not allowed friends!! :(

Kamikazi Invaders 169

 int Count = 0;
 for (int i = 0; i < 3; i++)
 {
 if (TheGame->TheAliens[WhoAreMyFriends[MyID][i]]->State == Moving)
 {
 TheGame->TheAliens[WhoAreMyFriends[MyID][i]]->State = Arcing;
 Count++;
 }
 if (Type == Commander && Count == 2) break;
 }
}

�is will make sure that Commander only takes two of his possible three friends, and
sergeants can take all three if they are available. Privates, sadly have no friends, unless you
want to add them?

You can see though that this routine needs a new array, called WhoAreMyFriends ,
so where is that? Well here of course!

int WhoAreMyFriends[8][3] =
{
 { 2, 3, 4 }, / 2nd 3rd Aliens for sure, and possible 4th Alien
 { 6, 7, 5 }, / move to the end of the sergeants
 { 8, 9, 10 }, / 8th 9th and 10th
 { 9, 10, 11 },
 { 10, 11, 12 },
 { 11, 12, 13 },
 { 12, 13, 14 },
 { 13, 14, 15 }
};

I put it just above the routine, and let it live in Global space, it makes it quicker and easier
to access. Can you work out from the routine and the array what’s going on? Run it now
and �x any errors/typos that come up and see what happens.

�at’s pretty much it for the Aliens now, we can tweak some of those annoying hard
numbers, though far better if we replace them with some nice easy to locate #defines at
the top of the �le, but overall we’ve achieved our goal, time to move on to our next problem.

Fred Reacts!
So what does Fred do when he’s hit? Well he blows up, in fact he does pretty much the same
things as the Aliens, we might show a little explosion graphic, then he dies, a life counter,
which we don’t currently have anywhere, will decrement, and then it’s up to the game code
to decide if he gets reborn or if the game is over.

And now we see we have a problem. We have no game management code at all in our
Game loop, we’re only doing the simple steps of updating and rendering objects with very
little thought into how our game itself should �ow.

So we need to put something on our to-do list, *write some game management code.
And �rst part of that needs to be to include some lives. So go back to Game.h, add a

Lives variable as an int, and in the Game init code set it to a value, let’s say three.
Now, our Fred/Shooter update code does not contain any concept of states like our

Aliens do. Given that we now realize we need to have at least three states... Active, Dying,
and Dead. We should add them as an enum, and a state variable in our Shooter Class.

5. Finally Our First Games170

Now be careful with this, we’re maybe going to have states with the same name but
relating to di�erent actions. We don’t want to use the Aliens enum, which we actually put
in global space, naughty! We want to put the Shooters enum inside the class de�nition
like this:

Shooter(char* filename, MyFiles* filehander)
 : GameObject(filename, filehander) {}; // creates an image from the
typedef enum Status
{
 Normal = 200, Dying, Dead
} Status;
Status State;

I put it just a�er the constructor to show you. Now we have a variable called State that the
Shooter can check, and it’s using a new type called Status, but it’s enclosed totally in the
Shooter Class, so when we come to set it up, a�er we create the Shooter (not before) we use
this format:

Fred->Xpos = (SCRWIDTH / 2) - 16;
Fred->Ypos = (SCRHEIGHT) - 40;
Fred->State = Shooter::Normal;

As we might want to use Dying or Dead as a state, we can use that Shooter:: pre�x to
help us to make sure that we’ve got the Dying and Dead value we want for the Shooter,
which is di�erent from the Dying and Dead value the Alien has, just to be quadruple
sure, I made sure the enum for the Shooters states started at 200 where the Aliens
started at 100. �is is a form of encapsulation. We’re making sure that the variables we
want to use for that class are only usable in that class we could enhance this even more
by making the enum private inside the class, but I’m not a big fan of that, though real
coders will disagree.

Ok, so let’s make a few alterations to the Shooters update code, we currently only have
the normal state, so let’s put in a switch and use that as the normal case so we get this:

bool Shooter::Update(Game* g)
{
switch (State)
{
case Normal:
 if (g->InputHandle->TestKey(KEY_LEFT))
 {
 Xpos -= 5;
 if (Xpos < 0) Xpos = 0;
 }
 if (g->InputHandle->TestKey(KEY_RIGHT))
 {
 Xpos += 5;
 if (Xpos > SCRWIDTH - Image->GetWidth()) Xpos = SCRWIDTH

- Image->GetWidth();
 }
 if (g->InputHandle->TestKey(KEY_SPACE) && TheBullet->ReadyToFire == true)
 {
 this->TheBullet->ReadyToFire = false;
 }
 break;

Kamikazi Invaders 171

case Dying:
break;
case Dead:
break;
default:
 printf("The Shooter has a state that has no code assigned\n");
break;
}
}

Also if you’ve not already done so, I’ve taken out the redundant �re �ag code from the old
Invaders version.

Run this, and if you’ve set it up ok in the initialize this will work just perfectly with no
apparent di�erence from the last attempts. But now we have the ability to do something
cool when we get hit and all we have to do to trigger that, is tell Fred, he’s Dying.

Let’s put in some holding code, so we know that it gets to the right bit of code when
we get hit.

case Dying:
 printf("Uggg he got me, farewell cruel world\n");
 State = Shooter::Dead;
break;

Now to actually make the bombs deadly, time to update and use that DidWeHitFred
code we wrote way back in the bomb’s update code, which now looks like this:

bool Bomb::Update(Game* g)
{
 Vector2D Step = BombMotion*10;
 Xpos += Step.x;
 Ypos += Step.y;
 if (Ypos > SCRHEIGHT + 10) this->MarkForRemoval = true;
 if (g->Fred->State == Shooter::Normal)
 {
 if (DidWeHitFred(g->Fred) == true)
 g->Fred->State = Shooter::Dying;
 }
}

Compile and run, and let Fred get hit by a bomb, and we should see that he will report his
condition in the console window and then freeze up.

Remember also, we have Diving and bombing Aliens who can kill Fred, and they have a
speci�c test that checks that, but are only removing themselves when they hit, now we can add
this to the bottom of that code in Alien.cpp in Alien::DidWeGetHit(Shooter* Fred)

float Dist = sqrtf((diffx*diffx) + (diffy*diffy));
 if (Dist < (R1 + R2))
 {// we did dive into Fred so Fred can be killed
 Fred->State = Shooter::Dying;
 return true;
 }

Great, I mean, how sad, he’s dead. But it’s all good we have more lives, maybe. �ough, we
should probably stop the Aliens from starting new dives now as they clearly have completed

5. Finally Our First Games172

their task, and of course that’s another simple condition check on routine, which triggers
the Arc. At the moment, I have this random routine in the Aliens Moving step condition

if (Rand(1000000) < 1150 && TheGame->Fred->State == Shooter::Normal)
 {
 State = Arcing;
 ArcInit = false;
 }

Our ability to know that he’s in a normal or dying state allows us to tailor several of our
behaviors. We could even trigger a little celebration dance, if we had the graphics for it.

But the most important thing we need to do is to get the game to check for an end
game condition or a restart condition, which incidentally is where stopping the arc is quite
useful, as we don’t want to respawn in a swarm of diving Aliens.

Ok so we know it all works, let’s add some explosions and some logic code to control
the game �ow. Go back to Shooter.h and replace the eloquent bit of text with some relevant
code:

case Dying:
 if (g->Lives > 0) g->Lives = g->Lives - 1;
 State = Shooter::Dead;
 break;

I’m checking that Lives is not already 0 because there’s the possibility of more than one
bullet hitting, though in truth only the �rst one is ever going to set this, it’s a good sanity
check to make sure.

I’m also going to add a timer to the Game Class in Game.h called the respawn timer.

int RespawnTimer;

Its purpose hopefully is obvious, but do make sure at game init time you set it to 0.
To make it work in the Game Class, add this code before you update Fred.

if (RespawnTimer != 0)
 {
 Fred->onscreen = false;
 RespawnTimer--;
 printf("Get Ready for a respawn in %i \n", RespawnTimer);
 if (RespawnTimer == 0)
 { // time to bring him back
 Fred->State = Shooter::Normal;
 Fred->onscreen = true;
 }
 }

�is will prevent Fred from being drawn and decrement the timer to reset him back. �is
should give you a clue to when we want to set that RespawnTime to have a value?

case Dying:
 if (g->Lives > 0) g->Lives = g->Lives - 1;
 State = Shooter::Dead;
 g->RespawnTimer = 30 * 3;
 break;

Kamikazi Invaders 173

Although, if we want to put in an animation for an explosion, we could probably use
an exploding state before this. I’ll let you worry about that. Notice in the �nal code, I
commented out the printf, rather than delete it, it’s a personal choice, but it acts as a per-
fectly sensible comment, and who knows I may have a problem with this code and want to
restore the print to check that the state is being called.

�e dead state for our shooter can be simply an empty state:

case Dead:
 break;

Its only purpose is to signal to the game code that he’s not currently able to have any in�u-
ence until Fred is set back into normal state.

If you compile this now, you should actually have the �rst real gaming experience with
lethal force and the chance of your shooter being killed, or clearing up all your Aliens. But
then it does kind of stop, there’s no way to continue, which is not a good thing.

Tidy Up the Logic
So, we’ve got Fred Dying, very sad, the Aliens testing his state and going into a holding
pattern until he’s ready to be reborn, and the Game loop itself, processing a respawn
loop and keeping him o�screen when not needed, btw did you notice his bullet was still
 visible…you can �x that now.

Twiddles and Tweaks
Now it’s done, our second fully functioning game. It’s actually not too bad, but there are
a lot of little things we could do to make it better. For example, how about sending the
bullets down to where they expect Fred to be rather than where he is? It’s not too hard to
work out that if he’s moving le� he will be a few dozen pixels le� of his current position in
20 cycles or so? Why are we only doing the arc in one direction? Could we do both if we
had a �ag to indicate which side we’re on? Or, maybe get the divers to start to bomb a little
earlier in a spread pattern of a random number of bombs. So that you cover where he is,
and where he might be. �ese things are all pretty simple and you should be able to work
them out now from the things we’ve done so far. Don’t be afraid to experiment with it, it’s
your game, make it play the way you want it to play.

Btw I have a question for you, in our Game.h �le we de�ned our vector lists as static,
now aside from giving you some experience of using static variables, do you think that was
a good idea? A�er all we only ever have one instance of Game. �ink about it, consider
why we have static variables in a class, and then consider if it was a good choice in this
single instance?

For now though we’ve made a game, it’s a nice little shoot-em-up. I hope you enjoyed
writing it, but I hope you will enjoy making it better, even more.

Postmortem
Now this time we really didn’t �nd it too hard to get access to the info we needed, by
ensuring our Base Class contained the main data structures that connected all the other
classes to that Base Class it was possible for one object to interact with another and also to
generate bombs, put them in lists and do tests with the shooter, who likewise could make

5. Finally Our First Games174

the bullet �y on command and the Aliens could test for collisions. �ere wasn’t really
much twisting around to get what we wanted.

We also had a bit of fun with 2D vectors, which really do make smooth motion and
steady speed a lot easier. We’re going to use them a lot more until we are fully comfortable.

�ere are few things I’m not happy with; for example, I wasn’t totally happy with the
fact we set a hard number in the list for the number of active Aliens and Fred, which meant
we could never really delete them, as it would confuse the list indexing on the second part
when we process the stars and bombs. �at was bad planning, don’t you agree? So we
should avoid that in future, hard numbers are bad, mkaay?

Also why did I make the Aliens enum global and the Shooters encased in the Shooter
code? I really should have encased both in their respective classes. But though some people
allow all their enums to start at 0, I defend the choice of ensuring they had di�erent base
starts, it can be a useful fail safe in case you forget to add the correct pre�x.

If I’m honest I really hate the scaled descent on the dives, it should upset you too,
have you noticed how fast the aliens are if they are a long way from Fred when they start,
how do you think we can level out that speed? You should know the answer, so I won’t
tell you!

For the most part though, the Game Class was clean and tidy and did its three main
functions, initialize, update all objects, and control when to end or reset the levels. �e
individual classes themselves did the rest. �at’s tidier and allowed us to make simpler
changes to behavior in the �les of the objects that actually exhibited that behavior.

�is was structurally a much sounder bit of code. It’s still not the best way; purists
might not like it too much, because real OOP architecture avoids too much interaction
between classes in this direct way, but for a small game this works quite well. So now we
can build on this until we expose other weaknesses we have to tackle.

Jumping around a Bit Though?
One thing you should also notice, was that, though I had a pretty fair idea of what the
di�erent classes and �les were going to do when I started, as the project developed, I was
not afraid to go back and make changes or additions. As the game grew we went back and
forward into di�erent classes, adding a bit here, altering a bit there; you may have got the
idea that I didn’t know what I was doing but really I did.

�is is a normal development �ow, which is hard to capture in a book tutorial but I
hope you got it. Every beginners programming book I’ve read, shows you �nished little
masterpieces that do exactly what the author said it would do at the start. But what they
didn’t show you was the week or so of writing, rewriting, and then a bit more rewriting to
�nd ways to serialize that �nished bit of code in the book. �is is not how game develop-
ment happens!

�is is important, a lot of beginners think they have to plan their projects to the
smallest detail before coding and try very hard not to go back and alter things once coded.
But this is how madness and bad code occurs. Never be afraid to go back, never be afraid
to change things, and never be afraid to make a start before you’ve fully thought it out. So
long as you have the basic structure set in your mind you can get things up and running,
play with ideas, try things out, see what happens, and allow things to evolve!

�ere are no coders out there who know exactly what they are going to code before
they type the �rst line. You need to be �exible, some ideas will sound fantastic when you

Kamikazi Invaders 175

think of them, and explain them to your coding buddies, but when you actually imple-
ment them; they suck. Or as you are writing you might come up with a small improve-
ment, but it needs you to step back into your code to make some changes. We did that here
a few times in Kamikazi.

�ere’s a really important rule. Don’t be too precious about what you write. Even a
really great method can be improved as your code starts to grow and you can see how
it behaves under real running conditions. Like that scaled dive!! It really is wrong,
I�just wanted to you to see that a bad idea might seem to work, but it really doesn’t, you
should �x it!

Don’t be afraid to modify, alter, update, and improve, at any point in your project.
Also, don’t get too obsessed with having fully working systems in place before you try
them out. Be willing to place holding systems or partial systems to make sure they get
called at the right times, and allow you to observe the results. printf’s are a great way
of making sure your code is getting to where you think it’s going, but don’t leave them in
the �nal builds.

Crawling Over, Time for Baby Steps
Pretty good stu� so far, even though these are really quite simple games, they presented
us with some challenges on how to think about how we were going to do things, also we
learned that we could get things to happen at the right times and we discovered how to
use some basics of maths, Vector maths in particular is a very important concept that
will come to be indispensable when we move to 3D. We also introduced a new type of
very important array, vectors, not to be confused with the maths type 2D and 3Dvectors,
Vectors are a form of dynamic array that can change its size and delete/replace objects
inside it, as needed. �is extra ability does have a few drawbacks with performance but the
�exibility of an array type structure you can modify as the game is running is invaluable.
�ese are going to become even more important in the next chapters.

And on top of all that, you gained some experience of creating classes, processing a
game loop, and made use of a fundamental C� � feature of inheritance and the powerful
but sometimes dangerous concept of overriding.

Object-Oriented Programming Is Not an Error
Let’s not confuse oops with OOP, which stands for OOP. C� � is at its heart an OOP lan-
guage, which means it is designed to allow certain concepts in programming, which we are
just starting to make use of. Of course, the name is a giveaway in that we consider the things
we create to be objects, and I’ve hinted at that so far. But objects can mean more than just
our little graphic workhorse class. An object is anything we can describe as a self-contained
unit. You’ll �nd I use the word object a lot in this book, because we are going to be using a
lot of self-contained units. And if we can de�ne such a thing we can add functionality to
it, that’s where the OOP part comes in. We generally (though not exclusively) use classes
to de�ne our concepts of objects, which then allows C� � to come into its own as an OOP
language. Up till now we’ve been quite lazy with our design of our code, which has resulted
in my usual messy C with classes style, but we’re going to make more e�ort now to move
you toward better OOP principles. �ere are four major principles of OOP, which C� �
embraces, here’s some very simple explanations, which we’re going to expand on as we go.

5. Finally Our First Games176

Encapsulation
Which essentially ensures that all the data and variables that an object needs to have
access to for ful�lling its requirements are contained within itself? Ideally then an objects
methods or functions will only act on its own data. �is is probably the big thing with
C� � , the more you can avoid global concepts and nasty externs the better, an object/class
should be totally self-contained.

Abstraction
Is harder to explain in simple terms, I like to think of it as moving away from the techni-
cal details of an object and looking at it from a higher level, for example, our Kamikazi
Enemies, they are just enemies to me, I don’t want to spend too much time thinking about
the underlying variables and subclass that make them work, I just want to make the ene-
mies move around. �e fact that Enemies and Fred, are essentially the same workhorse
Object Class, allows me to consider them as abstracted concepts.

Inheritance
Allows us to build on previous concepts and objects to create new things, thus creating
a hierarchy of object concepts but able to refer to them as their base types. Again our
Enemies in Kamikazi are a great example, all the Enemies inherit their data from Objects,
but are controlled by their �nal class types.

Polymorphism
Which despite sounding like a nasty virus, simply means an ability to have multiple meth-
ods of the same name but having di�erent functionality. �is is usually denoted by pass-
ing or returning a di�erent set of arguments. �ere’s a bit more to it than that, but that’s a
decent one sentence explanation.

Real hard-core C� � programmers will adhere to these four principles as if their life
depends on it, and if you really want to do proper C� � then so will you. But it can take
quite some time to bend your brain around the concepts while you are still struggling to
get to grips with, “what happens if I do this.” So we are going to be slowly developing our
OOP concepts and moving away from the very basic C and C� � with classes we’ve done
so far. I’m just warning you ahead of time that our coding style needs to develop away
from this fugly beginning, to something a bit more elegant. But as far as humanly possible,
I’m going to keep the code readable, which will break some of the main OOP rules from
time to time. Working a lot with beginners, I suggest readability and understanding will
always be better than correct but confusing.

Start the Music
It’s obvious that we need sound in our games; if not actually music we at least need some
way to play some sound fx. So it’s time to get some sound in, but how?

Well it’s perfectly possible to access the targets sound chip, if it has one, write a tone
generator, replay sounds, and ohhh all sorts of things, which we stopped caring about
years ago, it is a lot of e�ort, and this is a case where keeping our rule of no external libs

Kamikazi Invaders 177

makes no sense at all. �e amount of work involved in writing a sound system is vastly
disproportionate to our desire to get a working game.

A word of caution though, in my experiments with di�erent types of target, its become
clear that not all SBC systems do their sound the same way or even have the sound systems
activated when you boot up. Make sure that your system is capable of playing sound before
we try to do anything. �ere is nothing more frustrating that trying to get something
working and seemingly failing, only to discover in the �nal moments, you forgot to turn
the volume up.

It’s up to you to make sure you system currently has its sound working and the vol-
ume turned up.

�e Raspberry range, come with a really e�ective sound and media system that lets it
playback sound in all sorts of media, called OpenMax. �is is available on a lot of systems
but it isn’t really designed with games in mind, so I decided to try a di�erent and more
conventional approach and not use OpenMax, we really want something that gives more
than just playback, OpenMax won’t allow us to provide user variable surround sound,
which is very useful later when we do 3D worlds with objects in them, so cool as it is, it’s
not for us!

Time to go locate a free, easy to use and popular sound lib, and add it to our builds.

Welcome to OpenAL
As its name suggests this is or rather was, an open access Audio API, but it’s actually
named because it was designed in a similar way to the concept of the original OpenGL. It
started out as a royalty free cross-platform system, but it is now proprietary, so you need to
pay for the very latest version. However, it’s not all bad, there is still a fully functional very
stable and widely used version available called OpenAL So�, which we can use royalty
free, which more importantly, we can easily install on our target, and will do pretty much
all we need to do with a modest amount of e�ort.

�ere ARE many other sound APIs available, FMOD, OpenSL, and as mentioned
OpenMAX, for example, from the Khronos group would seem to be ideal, as we are look-
ing for royalty free cross-platform systems. But though you can get some SBCs support-
ing them, not all do, audio on a SBC is o�en part of the main chips system, so it’s up to
the makers to decide on compatibility with audio APIs and that support is very variable.
I�can’t locate it for most of my SBCs, including the very well-supported Raspberry range.

I also, for the purpose of learning, need a very general system that should work on all
the available SBCs we are targeting in this book. You are, of course, absolutely free to use
another sound API, if you accept you might limit your number of user targets. So for now,
OpenAL it is! And the experience of using it will stand you in good stead when you want
to upgrade to a better, more modern, or more target speci�c API.

Installing OpenAL
We have to break the no external library rule one more time for a good cause. �is time
though unlike our header-based graphics loader we’re going to install a prebuilt library
from the net, the process is a tiny bit di�erent.

Open up a terminal or if you are in a console mode, enter,

sudo apt-get install libopenal-devl

5. Finally Our First Games178

In your console line, while (of course) connected to the Internet. �at should be all we
need to do as the apt-get app will go ask the servers it knows of, for the latest version of
libopenal-dev, which is suitable for our target, it will install the libs on your machine, usu-
ally in the usr/libs/arm-linux-gnueabihf and usr/include/AL folders but di�erent Linux
�avors may go somewhere else.

To be sure, enter this command a�er the install has done its job

dpkg -L libopenal-dev

It will display the location of all the �les in the package, including docs. No, I don’t
know what dpgk is supposed to mean, Linux is an absolute mystery to me, I don’t know
why it is so popular, let’s hope that’s the extent of the Linux we have to use…though
I�suspect not!

Hopefully you’ll get something like this:

which lets us know our include �les are as we hoped in the /usr/include and usr/include/
al directories

We need to pass this info to the VisualGDB properties like so:

You can see I added the include directory, to the Include directories, with a space a�er
the last one. And the Library directories, notice we got the name of the *.so from our
dpkg app and the name is openal. Library names are usually, the name of the *.so �le

Kamikazi Invaders 179

with the lib pre�x removed, so the libopenal.so �le is named openal. Be careful as this
is all case sensitive.

VisualGDB should take those values, and when you click apply do a test to make sure
they are all valid, if you’ve entered them all correctly the libs are now installed and ready
for you to use. �ere may be a short pause while it creates copies on your dev system.

Now that’s done we are able to include the header �les we need using � style� includes.
�e <> indicates known paths, and as we’ve set the path for these �les up in the proper-
ties, Visual Studio will locate them for us, if you get a red line when you enter #include
<al.h> double check you typed it all in correctly.

Getting OpenAL Working
We’re only going to do some basic sound control, full 3D binaural sound is a little beyond
our needs at the moment, even though OpenAL is fully capable of doing that. But we do
want to have some sound fx that can be played and perhaps a simple background tune.

Now having it installed is one thing, using it and knowing how to set it up is another.
�ere is, of course, a strong support network, and the �rst place you need to go is http://
www.openal.org.

Where you may �nd updates, though as it’s been unsupported for some time that
might be unlikely, but you certainly can �nd documentation.

One very important point to know is that OpenAL just like OpenGL knows nothing
about �le formats, or indeed even about your target audio system, it can only work on data
that has been placed in a bu�er and is ready to be played and it then sends it to a device that
is responsible for playing it. OpenAL simply does all the maths and timing things needed
to make the sound play in stereo.

So now we also need to add something that can load sounds, and we need to be cer-
tain we have some kind of proper playback device.

Oh no, more libs?
Yes, I’m afraid so, but this is an easy one, we’re going to install Alut, a utility toolkit

designed to go with OpenAL. �ere is a tiny problem with this, it’s horribly outdated, I mean
horribly, you are probably going to be the �rst people to download it in decades, its outdated
even to the point of being o�cially considered deprecated, but I’m going to use it now, just so
we don’t over complicate our life. As, and this is for your bene�t, it is by far the simplest solu-
tion when using simple wav �les. Once we get things up and running and you know what you
are doing, you can replace it with a much more �exible system that can handle more stu� and
deal with streaming of other formats. It’s important to remember we’re trying to write games,
not get tied up in the minutiae of technical aspects. So Alut, is going to do the job for us.

Like OpenAL we are going to install the binaries from the linux servers so once again
our friend apt-get comes into play

sudo apt-get install libalut-dev

Once installed we again need to ask for info on where it is with

dpkg -L libalut-dev

Only this time, we don’t need to worry about installing all the include and lib directories
as it will install itself in the OpenAL directories, we only need to add the lib name as Alut.

5. Finally Our First Games180

You may �nd that you get a red line under #include � alut.h� if you add it, and
there’s a reason for that, the VisualGDB’s intellisense system, which takes care of our
cross-referencing for functions, labels and �le locations, only caches the libraries listed in
the included directories, and we’ve not changed them, so they won’t have been updated
because we included the OpenAL directories. So our intellisense system does not actually
know much about this new lib we’ve added because we only added the name, the �les that
it uses are not in the cache.

Your code will compile but that red line will cause us issues when we want to use/
�nd functions, so go into your VisualGDB properties and select the reload all directories
option.

Once it’s done, select ok and you should �nd your red lines all gone. �e intellisense works
on the �les cached in your dev machine, so now it will work again. If you ever add a lib and
�nd you are getting red lines, even when you are sure the directory you put in properties
is correct, this should �x it.

And now at last, we should be able to get our sound to work, we’ll get that going shortly.
If you don’t hear anything it may just be that your volume is turned down, go to the audio
preferences, make sure you select controls and activate the Pulse Code Modulation (PCM)
control, which gives you volume.

If you are using a target other than a Raspberry Pi, it’s going to be a total crap shoot
if you have sound activated on your system, half of the target boards I have do not have
working sound systems built into their OS as standard, which is a frustration to be sure.
However, there may be some help at hand, in the form of another library we can add to
provide sound play on most systems. If you don’t already have it installed try installing
pulseaudio on your target.

sudo apt-get install pulseaudio

Kamikazi Invaders 181

�ere’s no need to alter our VisualGDB properties �les, this is a system library we are
installing into our OS, and this basically ensures your target has pulse audio functionality,
if it does not already have it. I wish I could say that will work on all systems, but it won’t
if you don’t have audio enabled on your board, then you need to chase the board or OS
makers to activate it.

So we’ve actually covered three types of library we will use, one we compile ourselves,
one we will download and use, and one we will expand our OS with. Painless eh?

You will have to make sure that you remember to provide the .so �les associated with
these libraries if you distribute your games, or make sure that the user also installs them,
which is usually a safer bet.

Ok…now we’re ready, though I am going to only focus on Wavs for now, we will rec-
ognize our need for a compressed longer format and use them later.

We need to make sure, we have some sound fx that are suitable and like most things
there are a plethora of royalty free sound fx you can �nd on line, as well as royalty free
music. For our purposes we really want to use music and fx which are quite short, because
our machines don’t have a lot of onboard RAM.

Music as one might imagine tends to be longer than a spot e�ect, it’s not impos-
sible to have 3 or 4�min of sound looping in a game. If you look at that as raw uncom-
pressed data that can be many megabytes of data. We have to always be mindful of that.
So compressed formats are generally best for such large samples. Of course, there is a
trade-o�, compressed sound needs to be uncompressed eating up some CPU cycles and
stored somewhere once uncompressed; again perhaps eating our memory. Methods exist
to prevent that, such as streaming where the sound is stored on our storage systems and
pulled into working bu�ers as needed. But again, there’s an overhead, loading data is not
a fast process.

Since OpenAL does not actually care about �le formats and works only on raw data, it
can handle MP3, OGG, and FLAC and any other compressed format, it just can’t actually
load them or decompress them, that’s a job for a support library, so we’ll try to use those
for background music later when we have a suitable loader.

For now we’ll not worry too much about these technical details, let’s just get some
sounds loaded and give our game a bit of life. On the support site, you can �nd some sim-
ple sound fx and a background tune for Kamikazi, in the Sounds folder under Kamikazi.

As usual we need to create a folder, to store these new assets, and it’s also wise to put
a �lter on your solution view, so that you can remind yourself of the �lenames. Also don’t
forget to add *.wav to your VisualGDB properties so that the fx sounds are sent from your
machines directories to the target.

In our solution, we can add a �lter but �lters do not map directly to our directory
structures, so when adding resources like this that are not actually part of the build pro-
cess, it’s a good idea to create a single directory for our sounds in our assets folder.

In a large game, we may have many sounds to play at di�erent times. But generally we
need music and a sequence of so-called spot fx, shots, pings, booms, and bangs…the list is
as endless as the types of graphics.

If like me you are not very good at making your own sounds, there are many di�erent
free sound sources available and I don’t want to endorse any one in particular but I did
�nd some nice sounds here at https://www.freesound.org/, which had everything I need
for this, even if I used them in a slightly di�erent way from their description, I used a nice
arcade sound pack by contributor Cabeeno Rossley. You can, of course, use any sounds

5. Finally Our First Games182

you want and maybe even make a few of your own. Take note though, I didn’t have much
luck getting 24 and 32 bit sound samples to work, so try to stick to 16 bit samples, they are
smaller anyway.

So I wanted the following unimaginative sounds:

 � Fire for bullets.

 � Fire and whistle for missiles.

 � Whistle for diving.

 � Explode for ship.

 � Two or three di�erent explosions for enemy deaths.

 � Also some music for the background, but that’s tricky, so leave that till later.

 � A fanfare for clearing the level.

 � A death knell for losing a life.

 � A bigger death knell for losing all lives and the game over.

Ok, that’s enough, there’s a temptation to add more and more, but, that’s unwise. I’ll
explain in the next section why.

Dealing with Sound as Data
Sound is a funny stu�, when we break it down we are basically looking at samples, nor-
mally one for each type of sound you want to play, resulting in large quantities of data. To
increase quality of a given sound, higher sample rates are used, and larger bit counts. Both
of which creates larger sample sizes. Sound therefore has a range of quality available and
it’s important to know what quality the data is before it is replayed, most formats store that
info in their �le headers.

Raw samples, usually come in something called PCM format, and can take up very
large amounts of memory, but there are several compressed and uncompressed systems
available, which make up a range of di�erent �le formats. Many of these are available to
use and OpenAL can play them when turned into raw data.

Generally, as with all things to do with coding, a compromise needs to be made.
Larger samples such as music are best stored and loaded as compressed �les, shorter more
frequent sounds, as uncompressed WAV or even PCM.

So now that the sounds are in place on our system, we need to be able to play them, but
like we discovered with our graphics, we can’t really load them each time we want to play
them. Imagine if we have a rapid �re shooting sound, and we are constantly pressing the �re
button. Such constant loading would really slow things down, and eat up a lot of memory.

So we need to be clear what sounds we need in our game, and during our initializa-
tion phase, or a level set up, we can load all the sounds we think we will need ready to be
triggered.

Kamikazi Invaders 183

Remember though two things,

 1. Sound is memory hungry; I keep saying this because it’s important, only load
what you need so that it’s ready to be triggered. If you need to load a new set of
sounds arrange them in an order that you can load at nongame critical times.

 2. As sound data are generally quite big, loading from our storage system is going to
be slow. Try to avoid loading in the game loop, it will cripple performance, this is
why we use bu�ers.

Let’s keep the sounds simple for the moment, adding it only to our Kamikazi project.
We’ll add a couple of explosions and a shooting e�ect, with some nice spot e�ects for dif-
ferent game events. �at’ll be enough for this game to let us get everything working and
stand us in good stead for a project with more complexity.

To use our sounds we need a simple sound class, and a way call the fx. So let’s start by
giving the sound fx some easy to use names in an enum.

How Does OpenAL Work?
When dealing with OpenAL we need to think of three things, the so-called fundamental
objects:

 � Bu�ers: �is is where our raw sound data live, this is not the same as the data we
load from our storage systems, this is converted from wav or other formats into
PCM data.

 � Sources: Where in 3D space, is the object that is making sound.

 � A Listener. You.

�e reasons these are separate is to do with the way OpenAL renders sound. It does actually
take into account the direction and distance of a sound as well as the speed the object emitting
the sounds is travelling, so it can even simulate the Doppler e�ect of sound. �ose are fairly
complex equations, not unlike the concepts of OpenGL when it comes to working out what
pixels are actually seen in a given direction, OpenAL works out the sound you should hear.

Bu�ers are the easiest of our concepts, it’s simply a location in memory where a raw
sound sample exists and then identi�ed with a handle once it’s set up. We should load up
all the sounds we need and keep track of the locations.

Understanding sources as simply the objects in a game world which emit the sound is
the easiest way to think of a Source. In time we will allow every object that emits sound,
to be a source. But for a simple 2D game, the only real source we need is going to be �xed
at a position that represents the screen we are looking at which hopefully has speakers
to the side of it. In a 3D game though, we might have two ships, with engines humming,
moving toward our location at di�erent speeds. OpenAL allows us to think of each ship
as a source, playing the same engine sound from a bu�er, but we as the listener viewing
the game world at a �xed point, will be able to determine that they are coming from two
di�erent locations in our stereo soundscape.

5. Finally Our First Games184

Unlike OpenGL though we don’t need to set up massive amounts of values to get our
sound to work, just let it know where our bu�ers are, where our sources are and where the
Listener is.

�e device we plan to play our sound on is di�cult to know, some systems will have
sound chips on board, and some will be using other means. But usually there is at least one
device on your machine that is designed to play sound, it’s rare for any SBC to not have
a sound system, though it may not be automatically enabled. You should check that you
have sound playback enabled.

We could give our users a choice of playback devices if there are multiple devices, but
really all we want is a default player. So our �rst real task of our sound system is to �nd
out the device.

�en we need to load up our sounds and have them assigned to bu�ers. We don’t want
to load them at the playback point, so preloading them is preferred.

On a 2D game we only really need one source and of course one listener, so it should
be fairly clear now what our order of business should be?

How Does Alut Work?
OpenGL used to have a nice helper toolkit called GLut, it’s still out there and popular
with some people, but its outdated now, Alut was OpenAL’s equivalent helper toolkit
and like Glut it’s outdated. But it does provide us with the simplest method to load and
convert wavs so that OpenAL can use them. And they are pretty universal on all types of
system. We’re only going to use it to load and unload basic wav �les, so it’s a convenient
system despite is age and limits. We’ll use something a bit better when we need 3D sound.

It’s important to initialize OpenAL and also ALUT. �e sound class itself can be ini-
tialized from a constructor, but ALUT needs a speci�c call to its initialization system, this
is probably best done in your Project start up, or in your Game initialization. But certainly
somewhere before you start your actual game code.

ALboolean initAL = alutInit(NULL,NULL);
TheSound = new Sound();

We don’t need to pass any parameters to alutInit, though it is designed to take parameters
should it be called from a main function, you can give it command line parameters. In our
case passing NULL, NULL is �ne.

Ok a simple sound class header should look like this:

#pragma once
#include <al.h>
#include <alc.h>
#include <alut.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include <stdlib.h>

#define NUM_BUFFERS 8
#define BUFFER_SIZE 4096 /* 4K should be fine */

Kamikazi Invaders 185

class Sound
 {
public:
 Sound();
 ~Sound();

ALCdevice *device;
ALCcontext *context;

 ALuint source, buffers[NUM_BUFFERS];
 ALuint frequency;
 ALenum format;
 void LoadSound();
 void PlaySound(ALint);
 };

For the moment, all we are de�ning are some data concepts and the very simple idea of
loading and playing sounds. At this stage we don’t really need much more, and we should
not try to do much more. Let’s just get it working.

So our Sound.cpp �le only has to worry about our constructor/destructor pair, and
the two simple concepts we asked for, Load and Play sound.

Our Constructor can set up all the main things, and we’ll let LoadSound do the load-
ing, I am going to add a few functions though to allow us to report errors and get access to
some information that OpenAL can give us.

It should look a little like this:

#include "Sound.h"
#include <AL/alut.h> // we need this to load Wav
#include <string.h>

static void list_audio_devices(const ALCchar *devices)
{
 const ALCchar *device = devices, *next = devices + 1;
 size_t len = 0;
 fprintf(stdout, "\n Devices list:\n");
 fprintf(stdout, "----------\n");
 while (device && *device != '\0' && next && *next != '\0') {
 fprintf(stdout, "%s\n", device);
 len = strlen(device);
 device += (len + 1);
 next += (len + 2);
 }
 fprintf(stdout, "----------\n");
}

// unlike some other constructors this can do some things
Sound::Sound()
{
 // 1st check if we have multiple devices (quite possible)
 ALboolean testEnum = alcIsExtensionPresent(NULL, "ALC_ENUMERATION_EXT");
 if (testEnum == AL_FALSE)
 {
 printf("enumerations are NOT possible");
 // enumeration not supported
 }

5. Finally Our First Games186

 else
 {
 printf("enumerations are possible");
 // enumeration supported
 }

 list_audio_devices(alcGetString(NULL, ALC_DEVICE_SPECIFIER));
 defaultDeviceName = alcGetString(NULL, ALC_DEFAULT_DEVICE_SPECIFIER);
 device = alcOpenDevice(defaultDeviceName);
 if (!device) {
 fprintf(stderr, "default device not available\n");
 return ;
 }
// tell us the device
 fprintf(stdout, "Device: %s\n", alcGetString(device,
ALC_DEVICE_SPECIFIER));
// clear the errors
 alGetError();
// create the context
 context = alcCreateContext(device, NULL);
 if (!alcMakeContextCurrent(context))
 {
 fprintf(stderr, "failed to make default context\n");
 return ;
 }

 ALfloat listenerOri[] = { 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f };
 /* set orientation */
 alListener3f(AL_POSITION, 0, 0, 1.0f);
 alListener3f(AL_VELOCITY, 0, 0, 0);
 alListenerfv(AL_ORIENTATION, listenerOri);
 alGenSources((ALuint)1, &source).
 alSourcef(source, AL_PITCH, 1);
 alSourcef(source, AL_GAIN, 1);
 alSource3f(source, AL_POSITION, 0, 0, 0);
 alSource3f(source, AL_VELOCITY, 0, 0, 0);
 alSourcei(source, AL_LOOPING, AL_FALSE);
 alGenBuffers(1, &buffer);
}

bool Sound::LoadSound(char* fileName)
{
 ALvoid *data;
 ALsizei size;
 ALfloat freq;
 ALenum format;
 ALboolean loop = AL_FALSE;
 data = alutLoadMemoryFromFile("test.wav", &format, &size, &freq);
 if (data == NULL)
 {
 printf("sorry can't load sound file\n");
 return false;
 }
 return true;
}
Sound::~Sound()
{// destroy any buffers and close things down
 alDeleteBuffers(NUM_BUFFERS, buffer);
}

Kamikazi Invaders 187

Feel free to type this in, we are going to make a few changes; however, I still want you to
enter this, the changes won’t need a total rewrite and you’ll be simulating a normal refac-
toring process.

As it stands, we can load up a few general sounds, eight in fact as de�ned in NUM_
BUFFERS, and it’s quite trivial to play them, but we should be aware that there is a di�er-
ence between music and sound Fx. Music tends to loop, which is a concept we can only
apply to the source, not the sound it plays, so we will have problems getting a music loop
to, ermm loop, and not have an fx loop, a constant ping ping ping e�ect that does not
switch o�, is not appreciated by many users.

So even though all this will work, having only one source, now proves to be a
 little tricky. Each source can only play one thing at a time, and having the source play
our background loop is �ne, but every single time we also call an fx the background
loop�resets.

�is is troubling, but not a major issue. As we can have multiple sources and each
source can be set up a little di�erent. So let’s set up a source purely for the loop, and
maybe a couple of sources for the fx. All the sources can be located at the same spot,
we just specialize them to purpose. In fact, let’s have one source for our music loop and
seven sources for fx the aliens want to make. In other words, we’ll have the same number
of sources as bu�ers, it’s not really by design, we can have more sources if we want, but
NUM_BUFFERS can be any size we need it to be.

Adapting the above-mentioned code to work with multiple sizes is simply a matter of
using an array for sources in the same way we use arrays for bu�ers.

We decided that source 0, is going to be our looping music loop, so we just need a way
to allow the other sources to be set up in turn, so a small helper function to �nd the �rst
free one is needed.

�e header �le now looks like this:

#pragma once
#include <al.h>
#include <alc.h>
#include <alut.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include <stdlib.h>
#define NUM_BUFFERS 8
#define BUFFER_SIZE 4096 /* 4K should be fine */
class Sound
 {
public:
 Sound();
 ~Sound();
 ALCdevice *device;
 ALCcontext *context;
 ALCenum error;
 ALuint source[NUM_BUFFERS], buffer[NUM_BUFFERS];
 ALuint frequency;
 ALenum format;
 const ALCchar *defaultDeviceName;
 bool LoadSound(char* fname, ALint index);

5. Finally Our First Games188

 bool PlaySound(ALint index);
 bool PlayMusic(ALint index);
 ALuint GetFreeSource();
};

Notice the addition of a PlayMusic method, to allow me to di�erentiate from a sound and
a music loop. PlayMusic is always going to work with source 0, PlaySound will work with
sources 1–7 inclusive.

And the code for this now looks like this, though I have removed the text output for-
mat to save a bit of paper here.

#include "Sound.h"
#include <AL/alut.h> // we need this to load Wav
#include <string.h>
>>>> I removed the list_audio_devices and TEST_ERROR, as they are the same
as before

// unlike some other constructors this can do some things
Sound::Sound()
{
 // 1st check if we have multiple devices (quite possible)
 ALboolean testEnum = alcIsExtensionPresent(NULL, "ALC_ENUMERATION_EXT");
 if (testEnum == AL_FALSE)
 {
 printf("enumerations are NOT possible");
 // enumeration not supported
 }
 else
 {
 printf("enumerations are possible");
 // enumeration supported
 }

 list_audio_devices(alcGetString(NULL, ALC_DEVICE_SPECIFIER));
 defaultDeviceName = alcGetString(NULL, ALC_DEFAULT_DEVICE_SPECIFIER);
 device = alcOpenDevice(defaultDeviceName);
 if (!device) {
 fprintf(stderr, "default device not available\n");
 return ;
 }
// tell us the device
 fprintf(stdout, "Device: %s\n", alcGetString(device,
ALC_DEVICE_SPECIFIER));
//clear the errors
 alGetError();
// create the context
 context = alcCreateContext(device, NULL);
 if (!alcMakeContextCurrent(context))
 {
 fprintf(stderr, "failed to make default context\n");
 return ;
 }
 // lets talk about OpenAL
 printf(" OpenAL Version %s\n", alGetString(AL_VERSION));
 printf(" OpenAL Renderer %s\n", alGetString(AL_RENDERER));
 printf(" OpenAL Vendor %s\n", alGetString(AL_VENDOR));
 printf(" OpenAL Extension %s\n", alGetString(AL_EXTENSIONS));

Kamikazi Invaders 189

 ALfloat listenerOri[] = { 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f };
 /* set orientation */
 alListener3f(AL_POSITION, 0, 0, 1.0f);
 alListener3f(AL_VELOCITY, 0, 0, 0);
 alListenerfv(AL_ORIENTATION, listenerOri);
// generate a range of sources all at the screen 0,0,0
 alGenSources(NUM_BUFFERS, source);
// set up all sources
 for (int i = 0; i < NUM_BUFFERS; i++)
 {
 alSourcef(source[i], AL_PITCH, 1) ;
 alSourcef(source[i], AL_GAIN, 1) ;
 alSource3f(source[i], AL_POSITION, 0, 0, 0) ;
 alSource3f(source[i], AL_VELOCITY, 0, 0, 0) ;
 alSourcei(source[i], AL_LOOPING, AL_FALSE) ;
 TEST_ERROR("oops") ;
 }
// set the music to be a little quieter or it will overpower fx
 alSourcei(source[0], AL_LOOPING, AL_TRUE);
 alSourcef(source[0], AL_GAIN, 0.2f);
//Generate buffers
 alGenBuffers(NUM_BUFFERS, buffer);
 TEST_ERROR("buffer generation");
 return;
}
Sound::~Sound()
{// destroy any buffers and close things down
 alDeleteBuffers(NUM_BUFFERS, buffer);
}

bool Sound::LoadSound(char* FileName,ALint index)
{
 ALvoid *data;
 ALsizei size;
 ALfloat freq;
 ALenum format;
 data = alutLoadMemoryFromFile(FileName, &format, &size, &freq);
 TEST_ERROR("sorry can't load sound file");
 alBufferData(buffer[index], format, data, size, freq); / we could print
these
 TEST_ERROR("buffer copy");
 return alGetError() == AL_NO_ERROR;
}
bool Sound::PlaySound(ALint number)
{
 ALint source_state;
 ALint FirstFree = GetFreeSource();
 alSourcei(source[FirstFree], AL_BUFFER, buffer[number]);
 TEST_ERROR("buffer binding");
 alSourcePlay(source[FirstFree]);
 TEST_ERROR("source playing");
 alGetSourcei(source[FirstFree], AL_SOURCE_STATE, &source_state);
 TEST_ERROR("source state get");
 return alGetError() == AL_NO_ERROR;
}
//music is always source 0
bool Sound::PlayMusic(ALint number)
{

5. Finally Our First Games190

 ALint source_state;
 alSourcei(source[0], AL_BUFFER, buffer[number]);
 TEST_ERROR("buffer binding");
 alSourcePlay(source[0]);
 TEST_ERROR("source playing");
 alGetSourcei(source[0], AL_SOURCE_STATE, &source_state);
 TEST_ERROR("source state get");

 return alGetError() == AL_NO_ERROR;
}
ALuint Sound::GetFreeSource()
{
 ALuint RetVal = 1;
 ALint source_state;
 for (int i = 1; i < NUM_BUFFERS; i++)
 {
 alGetSourcei(source[i], AL_SOURCE_STATE, &source_state);
 if (source_state != AL_PLAYING)
 {
 RetVal = i;
 return RetVal;
 }
 }
 // if nothing is free, then just return 1;
 return RetVal;
}

So the only major di�erence is the scan through to �nd a free source, and the new
PlayMusic method. We’re ready to set o� the music in our Game Init using

TheSound->PlayMusic(2);

Where 2 is bu�er number 2 (or sound 3 since we count from 0). We should really use our
enumeration system though.

Horrible Earworms
Our looping sound works well, and does what we want, but human ears are sensitive to
repeating patterns, so in a pretty short timescale this short loop is going to start to irritate
our sensitive programmer ears as we spend a week or two listening to this droning on and
on and on. We could just turn the TV volume down, but that’s more of an ICT problem
and you can never get an Engineer out on a Sunday!

So even though a longer tune will still start to make us crazy a�er a few days, proper
music for our background is clearly something we want, but we are faced with a few more
technical issues, and even a legal one. We already see just how large, even modest wavs,
are in terms of memory. OpenAL can only cope with uncompressed data so longer fx or
short tunes start to eat memory even more. We can comfortably use 400 or 500�MB on a
few minutes of uncompressed sound. Since some of our targets don’t even have that much
memory to play with, alternatives methods have to be found.

Ideally we would try to save our music in a common compressed format such as MP3
and decompress it as we play it. But, sadly MP3 is not free to use, and though the people
who own it have been a little less litigious in recent years, there’s no sense in poking a
sleeping bear.

Kamikazi Invaders 191

So despite its market dominance and e�ective compression ratios MP3 isn’t some-
thing we want to get into. But there are fortunately other options, which provide pretty
much the same features.

Of course the open source community is �lled with di�erent options, but a few stand
out and have gained enough support to have propagated to mainstream use, and can be
considered reliable and usable. So we’re going to use the OGG format, which is supported
by several open source sound and music applications.

Once again we must break our no libs rule, but as before this is for a good, that is, no
choice, cause, let’s install it the same way we did with OpenAL in a terminal window and
enter the following.

sudo apt-get install libogg-dev

And of course add OGG to the list of libraries you include. And the library should be
located at /usr/include/ogg so add that to your library list in your Make�le settings.

Using OGG �les is as simple as loading graphics, it works in almost the same manner, we
can load an OGG compressed �le and let it occupy space ready for OpenAL to work with it.

Streaming
So we can load, decompress, and play sound, but you probably noticed we’re still using
staggeringly large amounts of memory, decompressing a small �le into a big bu�er does
not eliminate our chronic shortage of memory on our systems.

We need some other way to deal with this, the process is known as streaming. What
this involves is allocating a certain amount of space that we can a�ord to give, and having
OpenAL work with that, but, keeping that space �lled up with sound data coming from
the process of decompression into that space.

5. Finally Our First Games192

�ere’s a couple of technical challenges to this process; nothing overwhelming, but at
this current stage of our development, we don’t want to get too bogged down in this. So for
now, we’ll stick with our simple and annoying loop. I’ll cover streaming in some samples
on the support site, since we need to move forward now and we have a working system to
be going on with.

�is is all I’m going to do on fx/music from here on, simply to keep the book page
count down a little. We can certainly assume all our games will need sound in them, but
it’s all done the same way and the �nal versions on the support site will have appropriate
sound. I’ll leave it up to you to add sound as you need it in the working examples from this
point on, it will save repeating ourselves.

The War against Sloppy Code Storage!
Up till now we’ve been happy to just add �les into our Visual Studio Solution �lter and our
code looks �ne. Here you see a nice tidy example of a base project, our usual Invaders start
base, with source and header �les neatly in their folders!

But the reality is di�erent…take a look at our project directory and we see something
horrible beyond words. A mish-mash of *.h, *.cpp’s, make �les, setting �les, and so much
more. It may all look neat and tidy in Visual Studio, but it’s a mess in the folder itself. If we
only had a couple of �les it wouldn’t really be an issue, so we’ve not worried about it so far.
But we’re going to start increasing the numbers of �les with each project and while it has
no impact at all on the compiling, Visual Studio knows where every �le is and compiles it
correctly, it will make it hard for us to locate �les we may want to use in later projects. So
it’s time to grow up and clean up our bedroom a bit.

�e simplest way to do that is to make sure for each �lter you have in your solution,
you also have a similarly named folder in your directory!

The War against Sloppy Code Storage! 193

So it’s time for a clean-up, it’s a bit of a pain making new folders and moving �les into
them, since we’ll have to delete and readd them in the Visual Studio solution, so next proj-
ect we’ll start with a cleaner template, and a more sensible name with Header, Source, and
other directories as we need them, this all just serves to explain why.

Our Own Library
Another battle in the war against sloppy code is trying not to reinvent the wheel. Over just
a few simple projects we’ve started to see that we are reusing the same basic code ideas over
and over again, in some cases updating it, �xing a few bugs, but still basically the same.
�is has le� us with di�erent generations of the same �les scattered in di�erent projects.

Why do we care about this? Other than the waste of disk space, especially since most
of these early projects are disposable learning tools, we don’t have to be too concerned
about this waste of e�ort.

We care, because already we’re starting to get serious about how we keep code tidy in
a solution, we need to also keep our repeatedly used code tidy and accessible. Time then,
to develop another important tool in a programmers arsenal, a personal library, which
is where we take the �les, classes, code snippets, de�nes, and so on, which we see are
becoming common in all our work, and where, aside from some additions to the existing
features, the core features are not changing.

Some things are obvious, we clearly need input, �le handling and sound in all future
projects, the Surface Class in all our 2D projects looks good, that Vector2 Class will cer-
tainly be useful and might need expanding, later we’ll probably add a few other workhorse
classes.

5. Finally Our First Games194

What we are doing, is starting to rely on a core set of functions and features, which we
reuse in our projects. �ese will be the basis our �rst library!

Since this library is expanding as we go, rather than actually making signi�cant
changes, we should try to keep it in one place, so we don’t have to keep making copies of the
�les it contains. �is will stop us having a copy of the �les for project A, and B and …..Z,
you get the idea. Making our library the go to code resource for all our future projects. It’ll
also avoid confusion over which version of which project did I have that cool de�ne for Pi in?

By having it as its own project, we can dictate that instead of generating an executable
�le, it can be instead a standard linux static library, which any other projects just need to
include the library and its header �les to gain access to the functions.

�is is considerably tidier and allows us a lot more �exibility. It also should impose a little
discipline on us, because we must be careful not to actually destroy or change functionality
that the library provides to older projects, which we may return to when we add new features.
But adding new features we can, and will, and in turn future projects will bene�t from it.

Let’s set up a MyLibs project, which generates a static library, that is, one that is linked
into our main project at link time, creating a combination of our new project and the
MyLibs project. We will put all our workhorse classes in there, and create a simple header
�le to load all the workhorse header �les in.

Setting up our own library is as easy as creating a new project, only instead of creating
an executable we will create a static library. As before, create a new project and provide it
with a location on your PC to live in. A�er setting up the name and directory, then select
the type of application, a Static library, I also usually prefer a GNU make, but MSBuild
is also good, though you will �nd some deviation in the format of the preferences panels
compared to the book.

The War against Sloppy Code Storage! 195

Pressing next takes you to the Build the project under Linux options, which we’ve
already covered. Enter your Targets details and press NEXT… But, don’t press �nish on
the next screen.

Take note of the Remote Directory option, by default it will use a copy of your PC’s own
directory structure, stored o� the /tmp directory, and for the most part during devel-
opment that will be �ne, but this library is going to be used by many di�erent projects
now, so it really needs to live in one central place that won’t change if you use a di�erent
PC or decide to relocate your projects on your PC. I’ve set it to use a MyLibs Directory
just o� the VisualGDB directory, that way I know it’s my code and it is generated and
maintained by my own VisualGDB projects. Now that isn’t actually ideal, because the
tmp directory is erased every time you power o� your target, so it will not be there until
you do a build. So it’s important to make sure at the start of a code session, you build
that library to replace it before your main program tries to build. You could and prob-
ably should put this in an actual permanent directory not associated with tmp. For now
though as we are still learning and things are going to chop and change we can tolerate
this need for a prebuild.

One Final thing to do, which I could have done when I named it, but I can still to do
it here, is enter in the MyLibrary VisualGDB properties and rename the output �le name,
to libMyLibrary.a �le.

�e GNU Linker expects all libs to have a pre�x of lib to their name, which it
strips to get the library name. Our projects will therefore include this lib by naming it
MyLibrary.

5. Finally Our First Games196

All that remains now is for us to add all the library’s we need to use, they will get included
in our main project when it links this library with the �les the compiler generates.

Using This New Library
Now that the library project is set up; we need to tell our upcoming projects how to use it.
�at really is very simple. Initially, we know were going to be building the library so we
can include it in our solution alongside our game. �at means we just include it in each
future solution we create. Visual Studio considers a solution to be any number of projects,
so we can actually have one project dependant on another, and in this case, our new sets
of game projects are dependent on our MyLibrary.a being compiled and up to date. By
including the MyLibrary project in our solution, we can make changes to it, and allow it
to compile before our new projects then link it into their executable. I’ll detail that process
in the next project.

Remember that this particular library is being set up just for our game projects, you
can create any number of libraries that contain useful content/tools/functions you might
want to keep handy in your projects. All you have to do is ensure that the header �les are
accessible and that the .a �le can be linked in.

The War against Sloppy Code Storage! 197

I should also explain the other kind of library in Linux, a Shared Object (SO) library.
Shared Objects are libraries that are loaded into an application when it loads up, they are simi-
lar to the DLL concept in Windows. We use these kind of dynamic libraries a lot when creat-
ing interfaces to hardware or so�ware systems that may get updated, the SO system allows for
a new SO to be produced and made available when hardware updates or so�ware interfaces
change resulting in a need to change the so�ware a�er it has been written, because the SO
itself is variable and can be changed to re�ect the new state of the interface, we can add new
data to the same access points to give new updates or functions, whereas the old self-written
application just calls a known access point in the .so library. OpenGLES2.0 and sound and
most other types of libraries to systems are mostly provided as SOs, which allows di�erent
makers the chance to do slightly di�erent things that relate to their particular systems.

Static libs are actually compiled into the executable when it is linked. �erefore they
are a one time thing and not changeable a�er the link. �e addresses of all routines are
allocated at linker time.

One annoying issue I have discovered with having both projects in the solution is
that it should be possible to let Visual Studio know that your main project is dependent
on your library project, so that any changes to the library code will result in the library
being rebuilt.

�ere is an option in Visual Studio called Build Dependency, which is supposed to
allow you to assign a project dependency, that is, make sure Project Library A is up-to-date
and compiled before I use it in Project B. But sadly I have found setting a Visual Studio
dependency, results in a compile error, where the master project seems to try and is unable
to build the Library, even though the Library has already been built. See the image below
for details on the dependency setting and result.

It may just be a minor niggle with the VisualGDB integration, I have reported it, so it may
get �xed, but it’s not the end of the world, just build (without dependency) and remember
to make sure you have build MyLibs �rst, right click on the MyLibs project and build the

5. Finally Our First Games198

library if you make a change to it. You can also make sure your library name is alphabeti-
cally before the project name, so it will always be built �rst.

It’s not actually essential to include the library project itself in your solution, you can
choose, perhaps wisely to only include the resulting libMyLibs.a �le in the Make�le set-
tings, and not actually touch the Library code when you work on your game. �e wisdom
there comes about because there’s a horrible temptation in the middle of working on your
game project, to just go change the library a bit to make this particular bit work! Rather
than work within what the library provides you. Changes will be needed sometimes, but
best to only really make them when you absolutely have to. Our early projects though are
very much going to build that library, so for now let’s include it in your projects, when
you �nd you are no longer adding to it, we can stop including it and just use the static
LibMyLibs.a �le.

Another reason why it’s wise to just load a libXXX.a file is because of the way
VisualGDB maintains its remote cache for intellisense to work. If you make changes to the
library project, and then recompile it, you also need to make sure you go to your main proj-
ect and reload the cache for MyLibs. It’s a minor irritation, which we will do away with later.

Lets Get a Bit More Compiler Speed
I’ve been a bit mean to you up till now, especially if you own a multicore SBC. As there is a
way to get your compiler to work quite a bit faster. I wanted to wait till a�er you had com-
piled all the multiple classes, graphic and sound systems though since they presented the
most obvious signs of compiler stress, which I wanted you to become aware of and which
we can now try to alleviate with a very simple command. It won’t do much at all for single-
core systems but if you have a dual, quad, or even an octocore target, go into VisualGDB
project properties for your project. Select MakeFile settings, and then add –j2 or –j4 or
j8 to the Additional arguments �eld. �is informs the compiler to run two, four, or eight
tasks at a time, allowing it in e�ect to compile multiple �les, one per core, at the same time.

Yes I’m sorry, it was mean, and you’re welcome! We’ll talk about even faster compila-
tion methods a bit later on too, but for now this will ease the compile times quite a bit.

5.2 Tiles and Backgrounds
Despite our star �eld, Kamikazi was played on a pretty plain background, it would be
nice if we could play a game where the background forms part of the gameplay. �is is the
principle behind a lot of platform games.

We could just dump a screen-sized image for a Surface Class into the m_screen sur-
face in our game and use that to replace our clear screen, because there’s no need to clear
the screen if you are going to constantly dump a screen-sized image to erase the previous
frame.

In fact, go back right now to the Kamikazi, �nd a nice image that you can scale with
an art package to screen size, put it in your assets folder, create a surface with it, and use
that to replace the clear screen and create your background, you can display it by replacing
the clear screen command with a surface copy.

Go on…I’ll wait.
Ok how did that look? Even though you probably got a really nice backdrop to your

game clearly the backdrop was not something you could interact with, it’s just an image.

5.2 Tiles and Backgrounds 199

�e very best you could do is pick out what colors you have at certain points on the screen
but that does not give you a lot of useful info.

But suppose we created a screen from tiles, a kind of mosaic of images, and some of
those tiles were able to represent parts of the backdrop you want to interact with.

What Do We Mean by Tiles?
Now we’ve actually already used tiles, our simple font system is e�ectively a tile-based sys-
tem, which is why I named it TileFont, we have been using ASCII values as our index into
a group of squares, which represented alphanumeric images that we were able to control.
�is single-line index was calculated but it’s quite possible that we could have had a single-
dimensional array to provide that index, Possible, but a bit pointless, the calculation was
trivial, so no point in wasting memory to create an array.

All we’re doing now is extending that idea so that as well as text, we can have small
images, which can produce larger images, like a big interactive variable jigsaw puzzle, or
a mosaic, with the world’s most boring patterns! We could still do a long single line of tile
images but it starts to be a bit hard for us to visualize, so we need to change to a simple
screen with rows and columns of tiles. �e calculations are still trivial, but this time we
will use an array, just for convenience, and as we will see later, speed.

Working with Tiles
�e font system we used simply was a grouping of joined-up images and we indexed into
it to get the right tile, we can continue to do that, or we can actually create individual tiles
from that image. Hmmm choices…coders are o�en faced with choices; we need to learn
how to make them based on the needs of our project. So let’s consider this for a bit.

We’re probably going to have rather a lot of tile images if we have any reasonable sized
and detailed world, so we want to be as e�cient as possible, which means keeping the
graphics, in their uncompressed and usable form, as limited as possible, remember RAM
limitation is a constraint we cannot overcome.

As with most things in game programming, there are pros and cons to every approach.
I’m going to use a 2D indexing system to get access to my tile, which will be e�cient so
long as we don’t have too much blank space added into it, because pointing at a blank
space is pointless, and keeping multiple indexes to blank spaces is even more pointless.
Actually we could be really clever and make sure our tiles are stored in a logical way, same
as our ASCII systems were set up. �e choice is always ours. Sometimes a little e�ort to
calculate an index is worth the saving in memory that pointless padding of graphics and
unused indexes cost us.

What a Wonderful World
We’ve been thinking of our screen coordinates as the actual physical locations where
our objects live in their virtual 2D universe. �at’s perfectly �ne when the screen is
the absolute limit of the universe they exist in. However, if we want them to have a
larger world, we’d have to increase the size of our screen to see it all (does not apply if
you�are using an EGL window). At the moment that’s actually still possible, because we
are displaying a 640�� �480 area on a monitor, which would have 1920�� �1080 (maybe
more) pixels on show, but the physical real-world ability of our monitor display is not

5. Finally Our First Games200

as important as that window into our game world, which we set to be a comfortable size
for any monitor to display.

If 640�� �480 is the size of our window, then that’s the limit of the screens we can view
using only a screen-coordinate system. �at’s �ne for now; we’re only going to do a single-
screen game.

Download the TilesExample example from the website and compile and run. You
can see right away that it’s a very simple program, but notice that instead of a clear screen
routine each cycle it uses a draw map routine;

// this now has the job of scanning the map
void Game::DrawMap(float x, float y, Surface* a_Screen)
{
 for (int y = 0; y < SCRHEIGHT/16; y++)
 {
 for (int x = 0; x < SCRWIDTH / 16; x++)
 {
 Tiles[Map1[y][x]]->CopyTo(a_Screen, x * 16, y * 16);
 } // x loop
 } // y loop
}

�is is nothing more than a loop that �lls the screen with tiles going from the top to the
bottom, one line at a tile.

�ese red and green tiles are being created in the Game Classes init routine

void Game::GameInit()
{
 this->InitDone = true; / ok we can set this to true so this won't be
called again
/* Tile example */
// make a red tile
 Surface* T = new Surface(16, 16);
 T->ClearBuffer(GREENMASK+ALPHAMASK);
 Game::Tiles.push_back(T);
// make a green tile
 T = new Surface(16, 16);
 T->ClearBuffer(REDMASK+ALPHAMASK);
 Game::Tiles.push_back(T);

And the resulting tiles are being pushed into a vector held in the Game.h �le .
�e Map itself is a big 2D array at the top of Game.cpp, actually held in what is known

as global space, that is, not in any particular class. It’s only there for now, so we can access
it quickly, normally we would keep data in a class.

Aside from this new DrawMap and a few additions to Game, I hope you can see this
is currently just a very simple template. But most of the content should be quite familiar to
you. It’s really not much di�erent at all from the Invaders. But that map array is important
as it contains the indexes of which tiles need to be displayed on screen.

�is DrawMap system will e�ectively replace our clear screen system. It’s a little
slower of course but it is very e�ective.

Now when you compile and run that you will get a nice image of a map with a rough
spelling of HELLO, which if you look in the Map1 array, you should be able to see it. Try
adding a full stop to the hello in the map?

5.2 Tiles and Backgrounds 201

By now you should be able to visualize the concept of numbers in the maps relating
to di�erent tiles, but we humans also know that those tiles can also represent certain
concepts in games, for example, �oors, walls, ladders, and so on. �e tiles that make up
the �oors, walls, and ladder are always going to be the same, so that means we can some-
how tell what number is a wall, what number is a ladder, and so on. We’re going to need
a few more tiles though to represent anything more than just a �oor or wall, we’ll get to
that soon.

Still with me? Good, let’s expand things a bit more…If we have a screen made up of
tiles, and that tile is held in those maps, you can make the connection that the map is, in
fact, an encoded representation of the area we are playing on. And that map, is a simple
2D grid…..now that means they have X and Y coords. Are we making a connection yet?

�e screen maps gives us two sets of information, what tile to draw, and what tiles are
solid or have special features. We can build on that later.

Let’s turn TileExample into a simple little game. In the assets folder you will �nd a few
graphics. Four for a player, two for some family characters we have to save and an enemy
hoverbot of some type.

Let’s place 20 of the family on the screen not moving, and have 20 enemies randomly
placed moving around in a simple way.

We will place our character in the center of the map, so we must ensure our enemy
types don’t spawn in the center.

�e game will consist of us moving our character around with the keyboard, and pick-
ing up the family characters while avoiding the enemies, which should at least make some
attempt to home toward our character?

Our task list for this:

 � Draw and display a map: �at’s done for you as you can see.

 � Place our character in and interact with that map: Still to be done.

 � Place the enemies: Still to be done.

 � Set a win goal: Still to be done.

We really need to work out what the win goal should be, do we just want to get to the
top? Or perhaps we’ll make it a bit more interesting and make it a collecting challenge.
So let’s arrange to collect a number of items while avoiding enemies, which are guarding
those item.

First thing we need is a character to control, make a class called Player, and create the
header like this:

#pragma once

#include "GameObject.h"
#include "Game.h"
class Player : public GameObject
{
public:
 Player();
 Player(char*, MyFiles*);

5. Finally Our First Games202

 ~Player();
 void Update(Game* G);
private:
 Surface* Images[4];
};

If you’ve been paying attention, you will remember in our Kamikazi and Invaders games,
we de�ned a quite di�erent update routine, which was deliberately designed to override
this update routine in the GameObject;

virtual bool Update(Surface* s, Input* InputHandler);

�is new form of update, passing the Game Class, is frowned on by C� � purists because
I’m sending the calling class’s address to the player code, and everything the calling rou-
tine has in it becomes exposed. �at goes against every rule of C� � ’s encapsulation and
protection of data.

But I really don’t care, because I want to get access to quite a few of the Game Class’
variables and I don’t want to jump through hoops to do it. Not at the moment anyway. It’s
important we don’t end up �ghting with the language at this point; we just want to get
things done. Once we are comfortable with the way things work, and we feel we under-
stand how, then, and only then should we care about the perceived proper ways to use the
language, remember it works for us, not us for it!

But to use this update system, I need the GameObject Class to have this same type of
update. Why? I hope you are asking, well because my Game Class stores all the relevant
objects it has to update and draw in this vector.

static std::vector<GameObject*> MyObjects; // this will hold all the game
objects we need in game?

And it’s this vector we iterate through to do the updates, which is as you can see a Vector
of GameObject pointers. So I can only call GameObject methods, not a speci�c Player
Update. �ough, of course, I could, there’s only one player and calling one speci�c update
is not a major problem for us, I just prefer to have them all in the same vector.

One solution is to add the same kind of update to the GameObject Class methods as
a virtual and make it an Empty Class, like this, in GameObject.h:

virtual void Update(Game* g) {} ;

So we are both declaring and de�ning this in the header. We’ll add to the concepts we
might need later. For now, an update, a draw, and some coordinates are all we need.

�e cpp �le is also going to be a little di�erent, we’re used to doing empty constructors
and destructors but this time we are going to do something a bit di�erent. To begin with
our player has four frames, one for each direction, and our header we made some space for
that with an Images[4] array. So we should �ll that, in the constructor let’s load in the four
frames that our character uses.

Player::Player(char* fname, MyFiles* fh) : GameObject(fname, fh)
{
 // we can create with this images but lets store the full set
 this->Images[0] = this->Image; // store the 1st one we loaded up with
(walk down)

5.2 Tiles and Backgrounds 203

 this->Images[1] = new Surface((char*)"../Assets/walkUp.png",fh);
 this->Images[2] = new Surface((char*)"../Assets/walkLeft.png", fh);
 this->Images[3] = new Surface((char*)"../Assets/walkRight.png", fh);
}

Our constructor starts right away by calling its base constructor with a �lename and �le
handle, this is �ne because we know the image is the down image, and we’re happy to let
that get loaded into the GameObject Image pointer, and also now into our Images[0]. Let’s
load up the three other frames in to the array and that’s done.

Now notice when we loaded the array, we used the new command three times. �at
means that memory was allocated for these instances, and done in this instance of the
class. We must adhere to a golden rule, every new must have a delete.

So our Destructor is not going to be an empty one, it must be responsible for deleting
these three objects when/if it is called. But what about the �rst image? Which will actually
be the result of this call in the Game.cpp �le

Player* GO = new Player((char*)"../Assets/walkDown.png",this->FileHander);

As this is called in the Game Class, we need to let the Gameclass itself handle its removal,
so for now we’re only going to worry about our three news, and make sure we have three
deletes.

Player::~Player()
{ // because this class made 3�images we need to delete them
 delete this->Images[1];
 this->Images[1] = nullptr;
 delete this->Images[2];
 this->Images[2] = nullptr;
 delete this->Images[3];
 this->Images[3] = nullptr;
// but... we didn't create Images[0] here, it was created in the Game class
so let it remove it
}

�ere, that’s done. We can create and when needed delete our player and store away his
four images. �e update routine can now be written:

void Player::Update(Game* G)
{
 Input* IH = G->InputHandle; // easier access;
 if (IH->TestKey(KEY_RIGHT))
 {
 this->Image = Images[3];
 this->Xpos += SPEED ;
 }
 if (IH->TestKey(KEY_LEFT))
 {
 this->Image = Images[2];
 this->Xpos -= SPEED;
 }

 if (IH->TestKey(KEY_UP))
 {
 this->Image = Images[1];
 this->Ypos -= SPEED;
 }

5. Finally Our First Games204

 if (IH->TestKey(KEY_DOWN))
 {
 this->Image = Images[0];
 this->Ypos += SPEED;
 }
}

�is will allow us to move our man around…once we have three things done in our
GameClass, �rst in the init routine we need to create our player:

Player* GO = new Player((char*)"../Assets/walkDown.png",this->FileHander);
GO->Xpos = 400;
GO->Ypos = 200;
MyObjects.push_back(GO);

And we need our Game::Update routine to cycle through the MyObjects vector calling
this new update system:

for (int i = 0; i < Game::MyObjects.size(); i++)
{
 Game::MyObjects[i]->Update(this);
}

Finally, we need a draw routine, just a�er the update loop:

for (int i = 0; i < Game::MyObjects.size(); i++)
{
 Game::MyObjects[i]->Image->CopyAlphaPlot(a_Screen, Game::MyObjects[i]->Xpos,
Game::MyObjects[i]->Ypos);
}

We could put it in the same loop as the update, but I prefer to keep logic and drawing
separate. Reasons for this might become more obvious later when collision could result in
the removal of an object already updated, and drawn.

Don’t forget to add Player.h to the Game.cpp list of headers. Compile and run…it
should look like this:

So this works pretty well, if we press le� we go le�, if right we go right, and our frame
changes to suit the direction. But notice we use a speed value, de�ned in Player.cpp a�er
the headers, with

#define SPEED 1.0f

5.2 Tiles and Backgrounds 205

We’ll make more use of that later, but having our character move with such a value gives us
so much more control over him. Here it’s set as a #define but we could just as easily make
it a variable, which gets altered depending on the situation we are in. Movement through
water, for example. If you �nd the movement too slow, you can always increase the value.

So far so good, that wasn’t much harder than moving our Kamikazi shooter, but now
we have up and down. But move to the edges and we can see we have a problem, we don’t
want him to overlap our red tiles, they should be barriers/walls, so let’s use our screen
coordinates to test for red pixels. �e solids are all red so that will indicate we have hit a
barrier.

A little check at the players sprites position and we can indeed tell when we hit the wall
and prevent the movement. But we need to allow for the fact that we reference the sprite
by its top-le� corner, so if moving right the whole sprite will actually overlap the barrier,
which isn’t desirable, so we need to add a small o�set to the players x, for le� and right
movement, or y coordinate for up and down, to test just at the edge of the sprite and not at
the center reference point. �at’s easy enough to add to the movement systems, just take
into account the direction of travel and add an o�set from the reference point we use.

We can get our reference point with this simple pointer into the bu�er:

Pixel* Point = G->m_Screen->GetBuffer() + ((int)Ypos*SCRWIDTH + (int)Xpos);

If we want the Le� we can just subtract 1 from that address, and Right adds the width of
the sprite image to get to its top right corner. If we don’t detect a red pixel we will allow
the addition of the speed.

if (IH->TestKey(KEY_RIGHT))
 {
 this->Image = Images[3];
 if (*(Point + (this->Image->GetWidth())) != REDMASK + ALPHAMASK)
 this->Xpos += SPEED ;
 }

�at awkward looking dereference symbol * is telling us that we want to actually test the
pixel at Point � our calculated o�set. �ere are other ways to address an area of bu�er
memory, but I thought it would be nice to see how we access memory like this, we’ll be
using a nicer system soon.

As we’re looking directly at a memory address up and down need a slightly di�erent
approach, we need to know the width of the screens bu�er, so we can multiply that by how
far down we want to look, or just subtract the width of the bu�er in pixels, to look.

Down would look like this:

if (IH->TestKey(KEY_DOWN))
{
 this->Image = Images[0];
 if (*(Point + (Offset * this->Image->GetHeight())) != REDMASK + ALPHAMASK)
 this->Ypos += SPEED;
}

See if you can write the tests for Le� and Up yourself? All you need to know is that instead
of adding the reference point they are subtracting.

Compile and run the code and try walking around, you can see that our player can
indeed move until he hits a red pixel!

5. Finally Our First Games206

So that works, clearly we can detect the pixel at the point of interest, it’s a very
simple matter as we know which direction we are moving, to add an o�set from a
known point.

Not bad, we have movement, and we have interaction, Time to add a bit more
functionality.

We need some enemies, which, of course, mean an Enemy Class, so create a CPP/H
�le pair called Enemy, and for now just create the con/destructors. We want them to
be placed randomly within the edges, so they can be seen but we’ll let an init system
handle that.

Now one thing we do need to do is give them a sense of direction, the reasons
for� that are that they don’t have keyboard controls, so they don’t really know what
direction they are going to use for the correct o�set values to look for a collision with
walls.

So as well as giving them a random placement, we will give them a random direction
when we create them. A direction value seems to me to be quite an important concept for
our enemies, so it might be better to add it to the GameObject Base Class rather than just
into the Enemy Class, also an enum for directions would be a good idea. So let’s add that
to our GameObject.h:

typedef enum Direction
{
 Up = 0, Right, Down, Left
} Direction;

I made it a typedef so that it would allow me to do this for the variable type;

Direction Dir;

From now on we can load Dir with Up, Right, Down, or Le�, rather than 0,1,2, or 3. It’s
just a nicer way to address things because hard numbers can be confusing sometimes if
you forget what number relates to what value.

Ok, now I just remembered we said we were going to also include homing, so I will
add that to the type of Direction controls we plan to have

typedef enum Direction
{
 Up = 0, Right, Down, Left, Homing
} Direction;

So our Enemy.h Class de�nition will look like this:

#pragma once
#include "GameObject.h"
#include "Game.h"
class Enemy : public GameObject
{
public:
 Enemy();
 Enemy(char*, MyFiles*);
 ~Enemy();
 void Update(Game* G);
};

5.2 Tiles and Backgrounds 207

And for now that’s pretty much it, the code needs very little just now. �e cpp �le will look
like this:

#include "Enemy.h"
#define SPEED 1.0f
Enemy::Enemy(){}
Enemy::Enemy(char* fname, MyFiles* fh) : GameObject(fname, fh){}
Enemy::~Enemy(){}
void Enemy::Update(Game* G)
{
 switch (Dir) //what direction are we moving in
 {
 case Up:
 break;
 case Left:
 break;
 case Down:
 break;
 case Right:
 break;
 default:
 break;
 } // end switch
}

We will �ll in those case statements with proper movement and detection shortly, same
way we did with the player. Let’s try generating these chaps in the init of the Game Class,
but before we do, we need to add a random function; ideally to our Game.h (it needs a
proper home soon!)

inline float Rand(float a_Range) { return ((float)rand() / RAND_MAX) *
a_Range; }

We’ve used this before in our Kamikazi and Invader games. �e Random placement will
look like this, remember to add Enemy.h to the Game.cpp �le and this is placed in our
Game::Init routine a�er the player is generated.

for (int i = 0; i < 20; i++) // make 20�enemies randomly placed
 {
 Enemy* TempEnemy = new Enemy((char*)"../Assets/shooterEnemy.
png",this->FileHander);
 TempEnemy->Xpos = Rand(SCRWIDTH - 64) + 16;
 TempEnemy->Ypos = Rand(SCRHEIGHT - 64) + 16;
 TempEnemy->Dir = (GameObject::Direction) Rand(GameObject::Left);
 MyObjects.push_back(TempEnemy);
 }

Notice the cast to GameObject::Direction? Casting is generally bad, but because we
explicitly decided to give, Up, Down, Le�, and Right a typedef, so the Dir member wants
that type, this ensures that we can use the values the Rand routine generates.

We can run that now and we should see a fair number of baddies. �ough some may
be on red squares, which we don’t want, but we’ll get to that a�er we move them, and you’ll
see why we don’t want that.

5. Finally Our First Games208

Movement should be simply a case of doing the relevant add or subtract and the pixel
test we used in Player. �ink you can do that yourself? Try it.

Ok, now we’re looking pretty cool except, of course, they are all going to go to
the edges of the screen, so add one check to the test, if positive, change the direction
to the�opposite direction. Again I want you to try this on your own! If you get really
stuck there is some info on the support site to help. But please do your very best to do
this alone.

Let’s place our 20 pickups randomly on the screen and then see if we can use a circle–
circle collision system to detect if our character has collided.

We’ll call this class Family. (Mom and Dad) and again it will inherit from GameObject.
�ey don’t do anything except check for a collision with the player, because they only

exist to be picked up, so that’s all the update function is going to do. We can immedi-
ately tell we really need to know where the player is in the Game Class, which mean we
have to go back to the Game Class where we �rst created the Player and create a variable
that makes it easier for us to get hold of the Player. Add this to your public members in
Game.h

Player* ThePlayer;

And in Game when we create him don’t use and push a TP value use �ePlayer instead.
Let’s create these exactly the same way we did with the enemies.

Homing in
We’ve got enemies moving in nice predictable ways, reacting to the obstructions in the
map, and we’ve got things to pick up. �is is a pretty well-established game mechanic, but
if we’re honest it does not really do a lot. If we keep our wits about us we can avoid the
enemies. So let’s add that extra feature. Homing, where we said we would let the closest to
the man switch to a homing system, not unlike our Kamikazi divers.

How can we determine the closest one? It’s pretty simple for us to calculate range; our
old friend Pythagoras did that for us. But do we really want to scan through 20 enemies
every cycle to work out who’s closest?

Well, yes, we actually have no choice, remember what we humans do is look and visu-
ally compute distances, but computers can’t do that, they literally have to test every single
relevant object and compare with the others.

But there is a logical way to do it. We already have a nice loop doing the updates in our
Game loop, so if we can compare the range of each relevant object in turn we can compare
with the last best, and if that is now better we will by the end of the loop know which is
closest.

Notice I said relevant object. We have three types: (1) family, (2) player, and (3)
enemy, we only want to test the enemy. �ere’s at least two ways to do that, we could add
a type value to the GameObjects, and in the constructor of each object set that up, it then
becomes a simple test to see if it’s an enemy or we could add a range value and allow all
nonenemies to set that to a very large value meaning they’d never been chosen, and let the
enemy put correct values in.

Range is actually quite a useful concept in a lot of games, so I’m going to jump for that,
and add Range as a value in GameObject so that all types of game object have some value.
But only the Enemies will actually calculate it each frame.

5.2 Tiles and Backgrounds 209

We can add a bit of code in the enemies update function to calculate and store that
range, and the main loop can do a simple comparison test. �e range calculation will look
like this as a GameObject method.

float GameObject::DistanceFrom(GameObject* P)
{
 float XDist = P->Xpos - Xpos;
 float YDist = P->Ypos - Ypos;
 return (XDist*XDist) + (YDist*YDist);
}

Notice, even though this is a Pythagorean calculation I am not bothering to SQRT it,
because I can work just as easily with the square of the value as I can with the square root,
this used to be an important optimization, perhaps not so much now but SQRT is still a
time-consuming function, so if you really don’t need it, don’t use it.

As we parse through objects in the vector, to update them, we now just need to add
a call to this routine in the Game Class, which if it �nds a closer object than we currently
have it will keep his details in the CurrentClosest variable.

void Game::CheckClosest(GameObject* GO)
{
 static float Distance = 300000;
 static GameObject* CurrentClosest = NULL;

 if (CurrentClosest != NULL) // make sure we have a current closest
 {
 Distance = CurrentClosest->DistanceFrom(ThePlayer); // ok how close is he?
 }
 if (GO->DistanceFrom(ThePlayer) < Distance) // compare our current closest
distance with this players distance
 { // we found someone who was closer
 if (CurrentClosest != NULL) // make sure we have a current,
 {
 CurrentClosest->Dir = (GameObject::Direction) Rand(GameObject::Left + 1);
// he's no longer current so reset his directions
 }
 Distance = GO->DistanceFrom(ThePlayer); / our new enemy is the current
closest
 CurrentClosest = GO;
 CurrentClosest->Dir = GameObject::Homing; // make him a homing enemy
 }
}

Remember to add a descriptor for this function in the Game Class, we have one more step
to do, which is to add to our game update to call this nice range checker like this:

for (int i = 0; i < Game::MyObjects.size(); i++)
{
 if (Game::MyObjects[i]->OBJType == GameObject::ENEMY)
 {
 CheckClosest(MyObjects[i]);
 }
 Game::MyObjects[i]->Update(this);
}

5. Finally Our First Games210

So much tidier, and that’s what we need to always aim for, clean tidier code, is easier to
debug, and usually easier to follow.

So having worked out who the new closest guy is, we can set his direction state to
Homing, but we should also remember the old one and set him to a random standard
move pattern. �ough if you want a really hard game….let it stay at Homing.

We do need to �rst talk about how we are going to move, I am simply going to repeat
the basic idea we used in Kamikazi, work out a vector direction to the target (the player)
and then using a normalized version of that vector move toward the player at a speed of
my choosing.

Ok well that’s simple enough, but I also have to take the background into account,
I’m not allowing my enemies to cross over a red barrier. And here we �nd ourselves in
a dilemma, if we’re homing we no long have any clear idea if we’re moving Up, Down,
Le�, or Right, most likely with vector motion we could be moving in any one of 360� of
direction and a few billion �oating point fractions in-between. So clearly we need to use a
maths solution to this issue and also use what resources we have.

We have the Xpos and Ypos, we also have a SPEED constant, we have the position of
the Player, to calculate the vector, and we have the sizes of the image. AND we have the
Vector2D Class we wrote for Kamikazi.

It might seem a bit MacGyverish, but that’s enough. If we think of the square, or more
correctly rectangle of our sprite as having a center point, the direction of travel viewed
from the center of that sprite itself points to the outside edge of that sprite, sadly the vec-
tor for motion, being normalized, won’t be quite big enough to reach the edge of our
square. But we can use our old collision idea of drawing an encompassing circle around
our square and get a radius for the circle to enlarge the vector. It won’t be 100� accurate
but it’ll be close enough, so the code will look something like this:

case Homing:
 {
// calculate where we want to move to, then see if its safe
 float PX = G->ThePlayer->Xpos - Xpos; // vector toward the player
 float PY = G->ThePlayer->Ypos - Ypos;
 Vector2D MoveThisWay(PX, PY); // use these to make a vector
 MoveThisWay.normalise(); //normalise it so we can make better use

 float PossibleXpos = Xpos + MoveThisWay.x*SPEED; // keep a possible new
Xpos if test works
 float PossibleYpos = Ypos + MoveThisWay.y*SPEED; // same for ypos
// now we have to work it if the direction we are travelling to is allowed
// a reference point is needed. Work out the centre, since we know height
and width
 Vector2D sides(Image->GetWidth() / 2, Image->GetHeight() / 2);
 Vector2D CP(Xpos + sides.x, Ypos + sides.y); / Centre point is calculate
// getting the radius is easy too
 float Radius = sides.mag(); // we now have the radius
// we can use our radius to work out offsets fromour centre point that will
give us a test point
 MoveThisWay = MoveThisWay*Radius; // reuse the vector which now has an
offset
 CP = CP + MoveThisWay;

5.2 Tiles and Backgrounds 211

// re-caculate point with our new test position
 Point = G->m_Screen->GetBuffer() + ((int)CP.y*SCRWIDTH + (int)CP.x);
 if ((*(Point) != REDMASK + ALPHAMASK))
 { / we can allow this move
 Xpos = PossibleXpos;
 Ypos = PossibleYpos;
 }
 }
 break;

It’s nice to see our old friend the Vector2D Class coming back in, we really should have
used it for the whole game, hint hint. A nice small technical thing to note, I usually prefer
to have my case statements in brackets, it’s not always needed, and you’ve seen several
instances so far where I didn’t, but here I absolutely had to, because I was creating some
local variables to hold temp values. If I had not put the case statement in brackets to con-
tain the scope of the statement it would have thrown a confusing error when trying to
compile. (Translation, I didn’t put it in brackets and it threw up a confusing error! I su�er
so you don’t have to.)

A much more important point to make here, we did something we will do again and
again in future, we worked out where were wanted to go, used that for testing but only
updated the position of the sprite when we decided that it was a valid point. We will repeat
that process a lot in future, movement in any game world o�en depends on knowing where
you want to go to, rather than where you actually are.

Wrapping It Up
So now all we need to do is deal with some gameplay conditions. Clearly contact with
enemies is a death, so we need to store the numbers of lives we give, and if we catch all the
family, it’s a win and then game over, with a nice little triumph message.

I’ll let you do those, so that we can move on with this book, as you can tell from the
very basic graphics and poor gameplay, this isn’t a serious game, it’s just a demo. But let’s
make it playable at least and add some scoring and end-game conditions. For later games
though you should refer to the support site �nal versions source code, for game state info,
as its going to be pretty much common code/methods for each game. You’ll �nd a �nished
version on the support site to compare against your own e�orts, but really how you want
to tackle this is up to you.

Is This All We Need?
In terms of letting our characters move around a simple map with solid colors this idea
actually works pretty well. Small o�sets depending on our directions lets us to test what
is in front of us in the direction we are moving and react accordingly. But it really only
works as long as we are certain that our obstacles are on screen and have certain colors,
it’s not terribly �exible.

It is, however, an established principle and sometimes used for situations where a
precise form of pixel collision or testing is needed, it’s also good practice for working

5. Finally Our First Games212

out how to get data from memory. But if we want to have multicolor tiles, and with
more variety of tile this method totally fails to work. If we look at a map with more tiles
such as this:

Clearly we have a lot more colors and more importantly these tiles can represent di�erent
types of things we might stand on, dipping into a pixel bu�er no longer makes sense. But
we do still have access to the tile or character map that can give us information.

We can see for example, that tile 0, appears to be a blank tile, tiles 1, 2, 3, and 4 are
solid, tiles 5 and 6 are water, 7–13 are solid, though the pipes might be useful for other
concepts, 14 very interestingly is a ladder and 15 is another pipe.

So we’ve got 12 of our 16 tiles seem to be some kind of ground, 1 is a ladder 2 are water
and the 0 is blank, but might have a use.

Here’s a simple play map set up with these graphics, nothing too fancy. I put this
together in 10 mins using a lovely shareware package called Tiled, from �orbjørn Lindeijer,
it’s available free from http://www.mapeditor.org/ but if you plan to use it please donate a
few pennies to allow him to continue to support it. If you want to design your own maps
this is a great app to own. Of course, you should put more care into your design than I have!

5.2 Tiles and Backgrounds 213

Let’s look at this map in our game, download the BobsDay framework from the site. And
get it up and running. You should see straight away its built the same way as the TileDemo,
which we made into a little chase game.

If you look at the map code in Game.cpp you will see direct correlation between the
numbers in the map and the tiles in the image.

Can you see a much more traditional and clear game style here, where the map is
build up from di�erent simple tiles? But as there’s no logic or control in place yet, our
pixel testing robot �ends are not going to be much use here, we need to check tiles not
colors.

Now we have to think about this a bit more carefully. How can we actually tell what
tile we are hitting? Color isn’t going to help us, so the testing for pixel data has now become
useless. But there are other things we can test, such as the map itself!

�e principle is pretty simple, we move our objects around in unit coordinate
that�represent pixels. So they can move pretty freely around the screen. We also draw
our tiles starting in unit coordinates. But our map array is being used to represent
objects that represent 32, 64, or, in fact, any number of pixels square. So there is a
common means of addressing the screen only the spacing between start points really
changes.

As always we can only use the data we have to hand, in this case, the pixel-based
positions of the objects we want to test. �ese are screen coordinates. If we know our tiles
are 32�� �32�pixels, and the screen is full of such tiles. �en working out the grid position
is simply a matter of taking the objects X/Y values and dividing them by 32, the width/
height of the tile.

�at then provides an o�set into the map array, assuming the �rst tile in the array
is drawing at position 0,0 on the pixel screen we do, in fact, have a direct relationship
between the tiles position and their coordinates.

If the tile starts at a di�erent point, for example, when a second area of
screen�is � displayed in the same map, we only need to take account of the o�set to �nd
the tile.

I call this point to grid collision and it allows us to take any point on the screen and
�nd out where the relevant tile is with a very simple method:

int GetTile(float PixelX, float PixelY)
{
 int Xindex = PixelX / TILE_X;
 int YIndex = PixelY / TILE_Y;
 return Map[YIndex][XIndex];
}

Where TILE_X and TILE_Y are values de�ned elsewhere that give the size of the tile
(usually the same, but never assume!).

�e fact we can check any point, means we can use our objects reference
point,� and/or� any o�sets from the reference point we want to use. �at gives us
great��exibility to test the middle, top, bottom, sides, and even corners of a rectangular
sprite.

5. Finally Our First Games214

�is allows us to have a pixel-movement system, which can comfortably read in the
value in a character map at a given screen collision and gives us a quick simple way to tell
if there is something there to hit.

Ok, so that all works, we have a new collision system, as long as we know the type of tile we
can assign di�erent attributes to it and react accordingly when our characters detect they
have come into contact with di�erent tiles. Now let’s work on a project that really makes
use of these cool graphics and collision systems.

5.3 Single-Screen Platforms
A World with Gravity
Now let’s start to use this information to create a new but very familiar type of game, time
for us to do a platform game. And also we’ll start to make use of our tidier �le systems
and MyLib.

I’m also going to make another couple of changes and move all that old C style graphic
setup and swap code into a nice clean class of its own so that we can let the �le contain-
ing the main function do only what it needs to do to set up the game. �at’s really what
we should aim for, small self-contained �les that contains code that does only what it is
supposed to do. A main �le is really only there to set up the system, call the game, and
exit. �at’s all it does now. Also I changed the way I instantiate the Input and FileHandler
routines, not just �xing the spelling.

We’re �nally starting to make a break from the old Hello Triangle code and make our
code much cleaner, though we still have a few things to �x. You can download this much
nicer template from the support site, it’s called BobsDay. �is will now form the base tem-
plate for our projects until the next big improvement. As a bonus having the graphics as
a separate class will make it far easier to slot in a di�erent graphics �le for di�erent target
systems.

5.3 Single-Screen Platforms 215

Now let’s get back to the game play, when you compile and run BobsDay it will look
pretty much the same as the TileDemo, except when you move the much nicer looking
character around, he is clearly presenting a side on view, he also has a much nicer four
frame animation though as soon as you move him around the screen you will see we are
not interacting with it at all yet.

You can see now that a top–down world is very easy for us to deal with, we are just
basically taking account of the things we bump into and we are happy to think that our
characters are always on the ground, but now that we take a side on view of our world
things change. BobsDay is exactly the same display code as the TileDemo game, the same
style of map and game structure but our concept of control and interaction are going to be
quite di�erent. �e only signi�cant di�erence is our perspective.

A di�erent control system is achieved in the Player Class, which has a new construc-
tor that loads up 12 images, 4 each for le�, right, and climb. �en there is a change to the
update code where you will see some slight changes to the movement, since we do actually
have multiple frames of animation based on our direction. I have loaded the animation
frames in this order.

Four Walk Rights, four Walk Le�s, and then four climbs. So I can be sure that the
Walk rights go from index 0–3, Le�s 4–7, and Climbs 8–11.

Having multiples of 2, in this case 4 is quite useful, because it allows me to change
the frame, using a simple increment system, which is then binary ‘and’ed to be only in the
range 0–3.

Adding that index to a base value lets me cycle through the four frames where each
base starts.

BaseAnim = 0;
 this->Image = Images[BaseAnim+AnimIndex];
 (AnimIndex += 1) &= 3;

Each direction sets its own base, though climb up and down share, and I can make the
choice of frame quite easily. Using base 0 for Right, 4 for Le�, and 8 for Climb. Since this
game is now looking side on, we have to consider how we’re going to move. We’ve created
a play�eld where we recognize the concept of down being at the bottom of the screen, and
presumably we adhere to some form of gravity, we want to walk on the �oor, and any other
platforms in our map and we should fall when we’re not actually jumping up.

Let’s start by introducing the basic idea of falling in our Player::Update code, add
these two lines before the key reads

Ypos += SPEED;
if (Ypos > SCRHEIGHT - 48) Ypos = SCRHEIGHT - 48;

We can see we are simply adding speed to our Ypos, unless we’re on the ground (allowing
a slight o�set for the fact our sprites reference is its top le� corner).

Run this and you will see that we do indeed fall, while still retaining some ability to
move le� and right, and apparently stop when pressing up and falling faster when pressing
down, can you understand why up and down are doing such odd things? �ey are e�ec-
tively negating or compounding our fall system.

But clearly this isn’t a very convincing fall, falling with gravity is an accelerating pro-
cess. As anyone who’s ever jumped out of a plane can tell you, you fall faster and faster

5. Finally Our First Games216

until air resistance stops your acceleration and you then keep falling at that terminal
velocity until you go splat on the ground, which is why parachutes are really important if
you plan to test this in real life!

Our simple addition of a speed constant does not really work for us, we need to accel-
erate, and that means we need to actually increase the speed value up to a point we also
consider our terminal velocity.

We can do this by adding to our currently dormant GameObjects YSpeed value, test-
ing if it has reached terminal velocity and then adding that to our Ypos.

Yspeed += SPEED;
 if (Yspeed > 9.81f) Yspeed = 9.81f;
 Ypos += Yspeed;
 if (Ypos > SCRHEIGHT - 48)
 {
 Ypos = SCRHEIGHT - 48;
 Yspeed = 0;
 }

Adding the speed this way gives us a much more convincing fall, and also we must remem-
ber to still test if we hit ground and if so we either went splat or simply stopped falling, so
we can reset the speed.

�at’s pretty neat, by always adding a gravity value each update we move but now
we need a small test condition, giving us the power to stop gravity at a condition point
we recognize as the ground. Let’s try adding some jumping now and see how that works.

Jumping, requires you to exert a force to overcome gravity, I’m reliably informed by
my much �tter nongame developer friends that to overcome gravity, you have to exert a
force with your legs, which must be greater than the force of gravity, but it can only be
applied once as an impulse at the point of the jump. Since in this case, we have a positive
gravity force, to overcome it we need a negative jump force, add this line to your Up key
get code before or a�er the animation

Yspeed = -SPEED*6;

It’s nothing fancy, but that will mean when we press up, we are giving ourselves a negative
force, which will propel our man up, but and this is the cool important part, gravity does
its job every cycle, this happens only once (though for now we will trigger it as long as the
key is pressed).

Try it and see, but don’t hold the up key. So now we have jumping, our acceleration
up is added to or position, but our acceleration up is constantly eroded and eventually
overwhelmed by our gravity update, just like real life.

We need to stop the fact that we can continually apply the force if the key is pressed
though, it should only be possible if we are currently on the ground.

�ere are two ways to do this, have an indicator �ag to tell if we are in the current
process of jumping, the �ag gets set when the jump triggers and resets when the fall stops.
�is is quite a nice way, but another way is also possible and will aid our design. We can
only allow the jump to trigger if we are on the ground to start with which at the moment
would be done with this.

if (Ypos == SCRHEIGHT - 48)
 Yspeed = -SPEED*6;

5.3 Single-Screen Platforms 217

But that’s of limited use to us, we are not playing this game at only the �oor level, there are
platforms we want to walk on which are at di�erent Y positions on screen, so it’s time to
start our testing of the map to �nd out if we are on a solid platform or if we let our falling
system kick in.

Now, we know our screen is built up from a 2D map, which is basically an array, and
we know our X and Y coords, we also know our tile sizes are 16�� �16�pixels.

So...if we wanted to know what tile we are standing on, we take our X and Y coordi-
nates, divide them by the size of the tile, in this case 16 and we then get an index into the
array that builds the screen.

Calculating the coordinate to test needs an adjustment, remember our sprites top-le�
point is the reference coordinate, but we need to test the bottom, so there is a o�set to add,
so long as I add the Height of the sprite to the Ypos, part of the reference coordinate I can
get the bottom, Equally if I add width it to the X part, I can check the right point. �is
ability to test a point in our map, means we can extend it to look for objects to our le� and
right, letting us be stopped by walls and bumping our head when we go up. But we do need
to be careful, because testing only one point is a little narrow, we should probably test two
or even three points in the direction of our movement, representing the center point of our
object, and the two corners of that direction. �is will prevent us passing through a tile if
we are physically larger than it or our contact point misses.

We also need to give our player some access to our Map, which currently is in our
Game Class but not actually a member of the class. Add this line to our Game Class header
in the public section

int* WhichMap;

�is will provide us with a pointer to a location which is an int, and as our Maps are made
of arrays, we can tell our Game Class to set the relevant map we want into this location and
any object with access to the Game Class public members can get this.

Sadly, though we can pass the address of the base of an array quite easily, we can’t
pass the dimensions of a 2D array quite so easily as a pointer, so we will have to do a bit
of gymnastics because I don’t want to alter our Update entry parameters to make passing
an array simpler.

In your Game init Class be sure to let the WhichMap variable know where the map
we are using is with this command:

WhichMap = &Map2[0][0];

Now when our player is updating he can update gravity as before, but now is able to alter
the test condition that stops or allows jumps, to take account of his position in the map
like this:

int YMap = (Ypos + 33) / 16;
int XMap = (Xpos + Image->GetWidth()/2) /16;
int WhatsUnderOurFeet = G->WhichMap[YMap*64+XMap];
 if (WhatsUnderOurFeet == 4 && Yspeed >= 0)
 {
 Ypos = YMap*16 - 32;
 Yspeed = 0;
 }

5. Finally Our First Games218

�e test condition now takes account of the X and Ypos of the player as a reference point
1�pixel below his feet in the center of his image, then dividing them down by the size of the
tiles to �nd indexes into the map. WhichMap can still be accessed as an array, but only as
a single dimension, so we need to multiply the YMap index by how many elements are in
the X component of the original map. We already know this, so we can use a hard number.
We then add an o�set.

Our condition is now �exible enough to use, I’ve chosen 4 to be the main �oor tile, but
I’ll show you how to expand that shortly.

Try it and see. We can now jump up onto another section, but no more midair jumps.
Our jump trigger also used a condition to decide if a jump was allowed, so that also needs
updating list so

if (WhatsUnderOurFeet == 4 && Yspeed >= 0)
 Yspeed = -SPEED*6;

Now we’ve got a lot more �exibility and a pretty convincing jump, but already you see the
jump only really lands properly if we have that center bottom point on our map. We need
to make some small changes now so that we can get this kind of control.

We want to fall in empty areas, land on solid, and be able to detect if a wall is going to stop
our X-axis movement. What will that look like if we could see the tiles as tiles is depicted
in the following image. Let’s create a small list of attributes, which will relate directly to
our 16 di�erent types of tiles:

5.3 Single-Screen Platforms 219

int Attributes[] =
{
 0, 1, 1, 1, 1, 0, 0, 1,
 1, 1, 1, 0, 0, 1, 2, 1
};

�is very simple list tells us if something is solid, 1, or not 0, and there is the special case
for the ladder, which is 2. We could also consider these as binary bit patterns for multiple
attributes on each tile!

So now place that list in our Game Class under the map. Remember we will once again
need to access this array in our player and later Enemy Classes, so have another pointer
to the data called

int* WhichAttributes;

And in your game init routine set this up with

WhichAttributes = Attributes;

Notice we don’t need the & address symbol or [][] because it’s a single-dimensional array and
C� � actually knows that such arrays are already treated as addresses. With the attributes
for each tile now recorded, another small change to our ground test has it looking like this:

 int WhatsUnderOurFeet = G->WhichMap[YMap*64+XMap];
 int Attrib = G->WhichAttributes[WhatsUnderOurFeet];

 if (Attrib != 0 && Yspeed >= 0)
 {
 Ypos = YMap*16 - 32;
 Yspeed = 0;
 }

We are now seeking out the attribute associated with a tile at the players feet, and if it’s
non-0 we will stop it, do the same for your jump condition:

if (Attrib != 0 && Yspeed >= 0) Yspeed = -SPEED*6;

5. Finally Our First Games220

And compile and run. We now have many more platforms we can stand on, and though we’re
treating the ladder as a type of ground we are actually able to detect if it is, in fact, a ladder
rather than a simple solid block, which will allow us to use a more suitable climbing anima-
tion. In fact, we can treat many of the blocks as having a di�erent e�ect on our movement.

All this work gives us a totally �exible system; we can decide which tile is solid, or
dangerous to stand on, or simply a part of the background with no interaction, no matter
what our map position is. We are now ready to write some code that will work with many
maps so long as the map tiles are the same.

One tileset, many many maps, is how a lot of 2D games are made, the maps can be
any size and even have multiple tiles with the same graphics but di�erent attributes, using
a common access system and altering the base level.

5.3 Single-Screen Platforms 221

Routine Bad Guys
Our game does not really call for any signi�cant intelligence in enemies, they just need to
get in the way, and perhaps go for Bob, when he gets too close.

So let’s have them do simple point to point motion for now, and decide if that’s enough.
We have an Enemy Class but it’s designed for the top down tile demo, but we can still use
this Enemy Class, since we know all enemies are going to have a few common features,
such as their desire to obey the laws of physics, animate through some standard sequences
and make some simple choices. We can create a couple of speci�c classes for a couple of
enemies that do a speci�c task.

So let’s start by stripping the top down logic from the Enemy Class and make our �rst
enemy.

Point-to-Point
As you might imagine, point-to-point is simple a case of going from one place to another
and back. And we actually already know how to go to a point, we did it in Kamikazi. �e
only real change then is that we have two points, and we need to detect if we have reached
them before we change the point to focus on.

So as long as they are moving le�� � right they are simply performing a straightfor-
ward action. We don’t even really need to have them check if they are standing on a plat-
form. We can comfortably place them at a point where there is no need to move up or
down between point A or B. �is bit of code will do just that.

We will of course need to de�ne the two points somewhere, as this is essentially an
enemy speci�c behavior, then we can put it in the Enemy Class, or perhaps more wisely
create a new class that inherits enemy? If we plan to add multiple enemy types this makes
sense, since we can isolate the update systems for each type of enemy and keep speci�c
variables in the relevant class. �e Enemy Class itself can now be restricted to handling
animation, drawing, and testing for collision with player. So our Point2Point header can
look like this.

#pragma once
#include "Enemy.h"
class Point2Point : public Enemy
{ public:
 Point2Point();
 Point2Point(MyFiles*);
 ~Point2Point();
 void Update(Game* G);
 Direction OurHeading;
 Int Xmin, Xmax;
 int Ymin, Ymax;
};

Update should by now be obvious, and then there are a few variables, which our update
routine can make use of to do its moves.

In our Point2Point.cpp �le, we just need to create the constructor, a simple default
one and one which is going to load our images into the vector, so it needs the address of
our �le hander.

5. Finally Our First Games222

So now let’s write those two constructors. �e default isn’t at all interesting at the
moment, just creates an instance and leaves, the �le based one loads the images, but that
presents us with a problem, what if we create more than one set of images?

With our Player Class it’s �ne to have an array, because we only have one, but we
might have �ve or six enemies on screen and it’s best if they use the same set of graphics.
We got over this with our previous invader code by being careful that we preloaded the
graphics but in our war against sloppy code it’s time for a better solution. I propose a way
to check the graphics that we already loaded, and if we have it, use it, otherwise load it,
we’ll call it add or replace and it will look a little like this:

// check if a graphic already exists in the main map
Surface* Enemy::AddorReturn(char* fn, MyFiles* FH)
{
 char *cstr = &fn[0u]; // embarrasing side effect of the decision to use
char....

 if (graphics.find(fn) == graphics.end())
 {
 printf("New graphic to be added %s \n", cstr);
 // we never found it
 Surface* T = new Surface(fn,FH);
 graphics.insert(std::make_pair(fn, T));
 return T;
 }
 else
 {
 printf("Graphic previously loaded and now reused %s \n", cstr);
 return graphics[fn];
 }
}

I’m putting this in the Enemy Class because it’s really only the enemies that I need to take
care of. �is system depends on something called a map, a very nice special form of array
that instead of an index, looks up things based on other things, in this case a �lename.

We will need to de�ne our map in our enemy.h �le, which I want to make static, as
there should only be one map. Our new enemy.h header now looks like this:

#pragma once
#include "GameObject.h"
#include "Game.h"
#include <map>

class Enemy : public GameObject
{
public:
 Enemy();
 Enemy(char*, MyFiles*);
 ~Enemy();

 virtual void Update(Game* G);

 static std::map<char*, Surface*> graphics;
 Surface* Images[4];

5.3 Single-Screen Platforms 223

// tests if we already loaded the graphic, if so return a surface it not
insert it, and return the surface
 Surface* AddorReturn(char*, MyFiles*);
};

As long as we also have a de�nition of this map in another �le, ideally in the enemy class
like this

std::map � char*, Surface* � Enemy::graphics; / created in the h file so
reference here

We are now able to use AddorReturn as a loading system, which will do exactly what it
says. It does, however, create a very dangerous precedent. We will be creating new surfaces
and storing them in this map, providing the calling function with the surface, but we are
passing on the responsibility to delete those surfaces to whichever class creates the ene-
mies and, in turn, destroys the map, normally if an object makes a new item it’s up to that
object to delete it, in a clean-up or destructor function. But since more than one enemy is
going to be using these graphics, it’s not practical for the �rst enemy to delete the surface
potentially damaging the graphic integrity of any remaining enemy.

AddorReturn could just as easily be based in our GameObject Class too, it’s up to you
really, I would like to have a separate collection of images only for enemy graphics in this
case, so there’s no real reason to have it in the GameObject Class.

Let’s get the constructors built, I’ll just detail the ones with �les, you can manage the
others.

Point2Point::Point2Point(MyFiles* FH)
{ // we can test our map to see if the files already exist, if so use the
existing
 Images[0] = AddorReturn((char*)"../Assets/fungus_1.png", FH);
 Images[1] = AddorReturn((char*)"../Assets/fungus_2.png", FH);
 Images[2] = AddorReturn((char*)"../Assets/fungus_3.png", FH);
 Images[3] = AddorReturn((char*)"../Assets/fungus_4.png", FH);
}

Here we can see how to use the AddorReturn function, when we create the �rst Point2Point
enemy, we will see that all four of them will load, but the second time, it will reuse the
graphics. We will expand this a bit more as we �nd a need to initialize variables.

So a simple dumb le�/right or up/down motion is �ne and if we are careful to place
them in the right part of the map, we will never have to worry about them appearing to
walk o� the edges or through walls. �ese systems are ideal for �ying types of enemy, and
the system is simple to expand with a counter into an array of points, and using normal-
ized vectors to move to them.

But if we want them to do things a little more cleverly we need them to have much
the same understanding of how to move around the map as Bob has. �ey should adhere
to the concept of gravity unless �ying and interaction with the map, meaning that they
should fall when there is nothing to support them, they should stop if they encoun-
ter a�wall, and they should try to make it look as if someone, or something is actually
 controlling them.

5. Finally Our First Games224

Dumb baddies in a game are �ne, they make good obstacles, are easy to code and o�er
a simple �re, and forget kind of enemy. Smart baddies though, give a totally di�erent feel
to a game and allow you to interact with them in cool ways, it also paves the �rst steps of
developing AI.

Patrolling Enemy
So let’s have the �rst semi-smart baddie, we’ll use the same graphics for him and his header
�le isn’t a lot di�erent, but this one has no need for min and max points. Create a new pair
of �le for a Patrol Class, this is the header:

#pragma once
#include "Enemy.h"

class Patrol : public Enemy
{
public:
 Patrol();
 Patrol(MyFiles*);
 ~Patrol();

 void Update(Game* G);
 Direction OurHeading;
};

Basically, nothing more than a stripped back Point2Point. Like before we won’t actually
use our Default constructor, but it’s good to leave it in place.

Our Filehandle using constructor is going to perform the same duty of loading
the��les in for the images. Even though we only plan to use 2 again, there’s no harm at
all�in loading them all if we �nd a way to make use of them another time they are there and
ready for us, but if it worries you change things to use a two entry Images array.

Patrol::Patrol(MyFiles* FH)
{
// we can test our map to see if the files already exist, if so use the
existing
 Images[0] = this->AddorReturn((char*)"../Assets/fungus_1.png", FH);
 Images[1] = this->AddorReturn((char*)"../Assets/fungus_2.png", FH);
 Images[2] = this->AddorReturn((char*)"../Assets/fungus_3.png", FH);
 Images[3] = this->AddorReturn((char*)"../Assets/fungus_4.png", FH);
 BaseAnim = 2; // 0�is static frame 1�is s stand, 2�and 3�are the walk
frames
 Yspeed = Xspeed = 0;
 AnimIndex = 0;
 Image = Images[0]; // we need one to start
 Dir = Right;
}

So only a small di�erence here, mainly I am making sure I have an Image surface ready to
be used before the update because I will need to gain access to my images sizes. �e Update
is where the main action is now going to occur. A�er working out the timing for animation,
we again have a switch, this time for two directions as I won’t make him go up and down.

5.3 Single-Screen Platforms 225

�e tests are now focused not on what’s under our feet but what’s along the edges of
our fungus/mushroom guy, as he moves, right edge of the box when moving right and le�
edge when moving le�. Rather than test only one point I test enough to cover his entire
height, he’s a 32�� �32 image, so I’m only going to actually test two points, one at his top and
one at his center, but that will be ok for this.

As with the Point2Point if the test shows something in the way I can then change
direction.

void Patrol::Update(Game* G)
{
 float Speed = 1.2;
 Yspeed += 1.2f;
 AnimTime -= 1.0f / 60.0f;
 if (AnimTime < 0)
 {
 (AnimIndex += 1) &= 1;
 AnimTime = 0.2f; /0.2�seconds
 }

// lets move him
 switch (Dir)
 {
 case Left:
 {
 Xpos -= Speed;
 // now we check for possible obstacles
 int YMap = Ypos / 16;
 int XMap = (Xpos-1) / 16;
 for (int i = 0 ;i < Image->GetHeight() / 16; i++,YMap++)
 {
 int WhatsAtTheEdge= G->WhichMap[YMap * 64 + XMap];
 int Attrib = G->WhichAttributes[WhatsAtTheEdge];
 if (Attrib & 1)
 {
 Dir = Right;
 break; // break the loop we are done
 }
 }
 break;
 }
 case Right:
 {
 {
 Xpos += Speed;
 // now we check for possible obstacles
 int YMap = Ypos / 16;
 int XMap = (Xpos + 1+Image->GetWidth()) / 16;
 for (int i = 0; i < Image->GetHeight() / 16; i++)
 {
 int WhatsAtTheEdge = G->WhichMap[YMap * 64 + XMap];
 int Attrib = G->WhichAttributes[WhatsAtTheEdge];

 if (Attrib & 1)
 {
 Dir = Left;
 break; // break the loop we are done
 }

5. Finally Our First Games226

 YMap++; // move downp to the next
 }
 break;
 }
 break; // break the case
 }
 default:
 {
 printf("default occured, setting direction to Rightt \n");
 Dir = Right;
 }
 } // switch dir

 // check for gravity and get the frame
 if (Yspeed > 9.81f / 4) Yspeed = 9.81f / 4;
 Ypos += Yspeed;
 int YMap = (Ypos + 33) / 16;
 int XMap = (Xpos + Image->GetWidth()/2) /16;;
// we could also choose to not let him fall!
 int WhatsUnderOurFeet = G->WhichMap[YMap * 64 + XMap];
 int Attrib = G->WhichAttributes[WhatsUnderOurFeet];

 if (Attrib != 0 && Yspeed >= 0)
 {
 Ypos = YMap * 16 - 32;
 Yspeed = 0;
 }

 this->Image = Images[BaseAnim + AnimIndex];
 // calculate a screen position for our object
 this->SXpos = Xpos - G->ScreenX;
 this->SYpos = Ypos - G->ScreenY;
}

You can create a Patrol fungus in your GameInit, in game.cpp, with this,

// make a standard patrol
 Patrol* Pat = new Patrol(FileHander);
 Pat->Xpos = 210;
 Pat->Ypos = 20;
 Pat->Dir = Enemy::Right;
 MyObjects.push_back(Pat);

Compile and run, and our smoother moving patrol fungus can now be seen going o� to
the right and when he hits the bricks, turning back.

It’s not exactly cutting edge AI, but it’s a good example of our enemies making
decisions about their direction of travel based on the environment around them, just
as we do.

Homing Enemy
Finally, one more type of Enemy can be added, a homer of sorts. We’ll use what we know
about calculating distances and have a fungus that sits quietly until Bob gets close then he
tries to attack, hunt him down as far as the environment will let him. �e movement parts
are going to be the same as our Patrolling fungus, but to make them a bit more interesting

5.3 Single-Screen Platforms 227

let’s introduce a sleeping mode, where they don’t seem to do anything. Make a pair of
Homer �les and our Homer header looks like this:

#pragma once
#include "Enemy.h"
class Homer : public Enemy
{
public:
 Homer();
 Homer(MyFiles*);
 ~Homer();
 void Update(Game* G);
 float GetDistance(Game*);
 Direction OurHeading;
 float Distance;
 bool Moving;
};

Not really a massive di�erence, there’s an additional variable for distance, and a bool,
which we will need to initialize to a default false when we make the constructor.
�e�default constructor again will be empty with a File handle constructor looking
like this:

Homer::Homer(MyFiles* FH)
{
// we can test our map to see if the files already exist, if so use the
existing
 Images[0] = this->AddorReturn((char*)"../Assets/fungus_1.png", FH);
 Images[1] = this->AddorReturn((char*)"../Assets/fungus_2.png", FH);
 Images[2] = this->AddorReturn((char*)"../Assets/fungus_3.png", FH);
 Images[3] = this->AddorReturn((char*)"../Assets/fungus_4.png", FH);
 BaseAnim = 0; // 0�is static frame 1�is s stand, 2�and 3�are the walk
frames
 Yspeed = Xspeed = 0;
 AnimIndex = 0;
 Image = Images[0]; // we need one to start
 Dir = Left;
 Moving = false;
}

Aside from initializing the Moving �ag it’s not doing much more, the real meat in this
class once again is evident in the Update functions, which are now being altered depend-
ing on the state of that Moving �ag.

void Homer::Update(Game* G)
{
 float Speed = 1.2;
 Yspeed += 1.2f;
 if (Moving == false) // lets check if he's moving if not should we make him
 {
 BaseAnim = AnimIndex = 0;
 Distance = GetDistance(G);
 if (Distance < 16 * 6) AnimIndex = 1; // pop up and show interest
 if (Distance < 16 * 3)

5. Finally Our First Games228

 {
 Moving = true;
 Dir= (Xpos < G->ThePlayer->Xpos) ? Right : Left;
 }
 }
 else
 {
 if (GetDistance(G) > 16 * 6) Moving = false; // reset to wait if far away
 BaseAnim = 2; // we are walking
 AnimTime -= 1.0f / 60.0f;
 if (AnimTime < 0)
 {
 (AnimIndex += 1) &= 1;
 AnimTime = 0.2f; //0.2�seconds
 }
// we're moving so do the directional switches
 switch (Dir)
 {
 case Left:
>>>>From here on the code is identical to the Patrol movement, but notice
there is a close brace for the else to take into account options
 } // switch dir
 } // else
 // check for gravity and get the frame
>>>>From here on the code is identical to the Patrol movement

I don’t need to paste in the full routine because it should be very obvious to you now what
to do, the tests for the distance, are taken care of, and if we are not moving we do the old
movement systems, but be careful to close your else brace before the gravity check because
we want that to function even on a sleeping mushroom.

Create a new Homer in Game, but, of course, adding Homer.h, and then in the game
init, add this:

// make a standard Homer
 Homer* H = new Homer(FileHander);
 H->Xpos = 310;
 H->Ypos = 20;
 H->Dir = Enemy::Right;
 MyObjects.push_back(H);

Compile and run, you should see that as you get close to the mushroom, he will pop his
head up, if you get even closer he’s going to charge at you, then move away and once out of
range revert back to a sleeping mushroom.

As all three of our enemies have such similar code, some of it actually even repeats,
it’s tempting to have a single �le with one Enemy Class and use a type variable to just
choose di�erent initialize and update routines. It might even be tempting to have each
more advanced one inherit its primitive version.

But keeping the types separate allows us to make changes very easily without having
an impact on the other types, it also lets us maintain small and focused �les, which do
speci�c things for speci�c types, which is an important mantra in C� � ’s OOP-coding
concepts. �ere are small but subtle di�erences in our three fungus types, which might get
lost if we have one large and confusing �le or overdo the inheritance. But there is a valid
argument for separating out the exact same movement code in the patrol and homing

5.3 Single-Screen Platforms 229

system. It could perhaps go into the Enemy code as a stand-alone function, saving a little
bit of space and making the code more compact in those two classes.

I’ll let you add collision systems to this, there’s nothing di�erent in the way you would
do collisions here from how you do them in our space shooters. So add a collision with
the Player test function in the Enemy Class, and perhaps set up a �ag in the Game Class,
which each enemy can get to with the G-� access. If you hit it, set the �ag, and have the
player detect if that �ag is set and then has to die a horrible bloody death!

Ladders and Effects
I pointed out that in our attributes we set the ladder to 2, making it a special case, and
indeed it is special because we need to make some subtle changes to our player’s up routine
if it detects a ladder, so that we can change our animations from walk to climb.

What makes the ladder special, is that if can trigger a transition from simple walk to
climb on a key motion currently assigned to a jump. When we detect the need for a jump,
we can now also check if there is a ladder object under us, and if so, switch to a climb.

Climbing is in some respects a di�erent state of control, whereas on the ladder we
don’t really want to jump or be able to walk o� until we get to the top. We don’t really have
too many states of play in this particular game, so climbing and walking/jumping are
really the only things we should worry about. So this code here needs to change:

if (IH->TestKey(KEY_UP))
 {
 BaseAnim = 8;
 this->Image = Images[BaseAnim + AnimIndex];
 (AnimIndex += 1) &= 3;
 if (Attrib != 0 && Yspeed >= 0)
 Yspeed = -SPEED*6;
 }

As it stands it is blindly allowing a jump but using the climb animations, let’s alter things
so that we can take into account when he’s in a climbing mode we can use climb anima-
tions. Also we need to test when he can transition to a climbing mode and when he needs
to exit it.

Add a bool �ag called Climbing to your player.h and be sure to set it to false when
you init your game. Also make sure you add the �nal two frames for the jumps in the
constructor

Images[12] = new Surface((char*)"../Assets/brianJumpR.png,fh",fh);
Images[13] = new Surface((char*)"../Assets/brianJumpR.png,fh", fh);

Simply wrapping the test code in an if/then/else condition will let us use the bool:

 if (IH->TestKey(KEY_UP))
 {
 // this is the climb
 if (Climbing)
 {
 BaseAnim = 8;
 this->Image = Images[BaseAnim + AnimIndex];
 (AnimIndex += 1) &= 3;
 }

5. Finally Our First Games230

 else
 {

 if (Attrib != 0 && Yspeed >= 0)
 Yspeed = -SPEED * 6;
 }
 }

We can compile and run this and see what happens, if we press up, we jump without a
frame change but the ladder itself is treated as a platform and allows us to jump up, so let’s
add a little more tests for that climb, so it now looks like this:

 if (IH->TestKey(KEY_UP))
 { // this is the climb
 if (Climbing)
 {
 Yspeed = -SPEED * 6; //<<<<<<<<climb speed
 BaseAnim = 8;
 this->Image = Images[BaseAnim + AnimIndex];
 (AnimIndex += 1) &= 3;
// we need to test if the climb is over?
 if (Attrib != 2)
 {
 Climbing = false;
 }
 }
 else
 { // now we check if we are on a ladder
 if (Attrib == 2)
 {
 Climbing = true;
 }
 if (Attrib != 0 && Yspeed >= 0)
 Yspeed = -SPEED * 6;
 }
 }

�is looks good, we are changing the animation at the right time, the only issue now is
that we are still basically jumping up the ladder, so reduce the amount of speed we add
when we are climbing, to give a more step-like value, 2* Speed seems to work well.

�is method allows us to clear the �nal top part of the ladder by allowing it to revert
to a jump at the �nal step, is that something we want? Ideally we could have a little clam-
bering up animation but sadly we don’t have the graphics. So we have to leave it like this.

Now try to move down! We have a problem, don’t we? Our attribute test is looking at
our feet and right at our feet there’s no actual ladder it’s a row below our feet, so we need
to do a second test and rewrite the down routine like this:

if (IH->TestKey(KEY_DOWN))
{
 int WhatsUnderOurFeetplus = G->WhichMap[(YMap+1) * 64 + XMap];
 int Attrib2 = G->WhichAttributes[WhatsUnderOurFeetplus];
 if (Attrib2 == 2) Climbing = true;
 if (Climbing)
 {
 BaseAnim = 8;

5.3 Single-Screen Platforms 231

 this->Image = Images[BaseAnim + AnimIndex];
 (AnimIndex -= 1) &= 3;
 this->Ypos += SPEED;
 if (Attrib2 != 2 && Attrib != 2)
 {
 Climbing = false;
 Yspeed = SPEED * 2;
 }
 }
 else
 {
 // maybe add a toe test graphic?
 }

 }

It’s a little di�erent from the up routine, especially as you now have two attributes to test:
the one directly under our feet and the one a tile down, this will allow it to travel to the
bottom of the ladder before the Climbing �ag is cleared. Compile and run….and it’s not
quite right, is it?

As we have gravity acting on our player at all times, we need to deal with the fact that
gravity should not work while we are in climbing mode. �is is why, Down is making a
direct change to the Ypos, because the gravity should not allow us to drop while we’re on
the ladder.

We need a small change to the gravity section of the Game::Update function, to take
account of this one o� condition:

if (Climbing == false)
 {
 Yspeed += SPEED;
 if (Yspeed > 9.81f) Yspeed = 9.81f;
 Ypos += Yspeed;
 }
 else
 {
 Ypos += Yspeed;
 Yspeed = 0;
 }

So gravity works the same if we’re not climbing, otherwise we add the speed, which Up climb
will use, and make a point to immediately clear the speed so that the down will not fall.

But what happens if we do something we have not anticipated, try climbing the lad-
der, and then walk o�.

Hmmmm not quite right is it? Our walk systems do not have tests for climbing, so if
we are in climbing mode, and we walk o� the ladder, we are still technically in climbing
mode and gravity will not work. What’s the best solution? Do we lock out/le� right motion
while in climb mode, or do we automatically clear the Climbing �ag when we move le� or
right? Both are valid, try them out.

Animation might also need a little helping hand, we should probably return the player
to one of his walk frames, or when jumping to one of his jump frames. But which one?
Le� or right? We don’t keep any note of his direction of travel, we should keep a note in
our players direction when moving, remember we have that nice Direction Dir ; value

5. Finally Our First Games232

in our GameObject Class. If we keep that up-to-date when we move Le� or Right, we will
always have a record of what direction he was moving before the decision to climb. Try
adding that and make the jump animation take account of it as well as when you reset the
Climbing �ag.

One �nal thing we need to address for this before we wrap it up, relates to the pre-
cision of the testing. We are currently only using one single point, really we need a few
more, and like the down-ladder check, the purpose of two tests is to make sure that we
are completely in the area of the tile where the climb should be, so we can avoid things
like this:

By testing two points, less than a tile width apart around the center point we already test
we can make sure that the climb will be central, try adding these new methods for the
player:

bool Player::TestClimb(Game* G)
{
 int YMap = (Ypos + 33) / 16;
 int XMap = (Xpos + (Image->GetWidth() / 2) - 6) / 16;
 int WhatsUnderOurFeet = G->WhichMap[YMap * 64 + XMap];
 int Attrib = G->WhichAttributes[WhatsUnderOurFeet];

 if (Attrib != 2) return false; // test for ladder
 YMap = (Ypos + 33) / 16;
 XMap = (Xpos + (Image->GetWidth() / 2) + 6) / 16;
 WhatsUnderOurFeet = G->WhichMap[YMap * 64 + XMap];
 Attrib = G->WhichAttributes[WhatsUnderOurFeet];
 return (Attrib == 2);
}
bool Player::TestClimbDown(Game* G)
{
 int YMap = (Ypos + 33�+�16) / 16;
 int XMap = (Xpos + (Image->GetWidth() / 2) - 6) / 16;
 int WhatsUnderOurFeet = G->WhichMap[YMap * 64 + XMap];
 int Attrib = G->WhichAttributes[WhatsUnderOurFeet];
 if (Attrib != 2) return false; // test for ladder
 YMap = (Ypos + 33�+�16) / 16;

	Cover
	Half Title�����������������
	Title Page�����������������
	Copyright Page���������������������
	Table of Contents

