
3D game development for the iOS platform
using the Unreal UDK and UnrealScript

Beginning

iOS 3D Unreal Games
Development

Robert Chin

Apress

http://freepdf-books.com

http://www.it-ebooks.info/


For your convenience Apress has placed some of the front 
matter material after the index. Please use the Bookmarks 

and Contents at a Glance links to access them. 

http://freepdf-books.com

http://www.it-ebooks.info/


iii 

 

Contents at a Glance 

Contents ............................................................................................................. iv 

About the Author ................................................................................................ ix 

About the Technical Reviewers .......................................................................... x 

Acknowledgments ............................................................................................. xi 

Introduction ...................................................................................................... xii 

■Chapter 1: UDK Overview ................................................................................. 1

■Chapter 2: UnrealScript Overview ................................................................. 29

■Chapter 3: Player Controllers, Pawns, and Weapons .................................... 53

■Chapter 4: UDK Collisions .............................................................................. 83

■Chapter 5: UDK Bots .................................................................................... 137

■Chapter 6: Environment: Sounds, Kismet, and HUD .................................... 175

■Chapter 7: Sample Game and GamePlay ..................................................... 205

■Chapter 8: 3D Math Review ......................................................................... 227

■Chapter 9: Physics Game Framework ......................................................... 261

■Chapter 10: First-Person Shooter Game Framework .................................. 283

■Chapter 11: Third-Person Shooter/Adventure Game Framework ................ 319

■Chapter 12: Top-Down Shooter/RPG Game Framework .............................. 351

Index ............................................................................................................... 373

http://freepdf-books.com

http://www.it-ebooks.info/


xii 

 

Introduction 

The release of the Unreal Development Kit is really the first time a powerful 3D commercial game 
engine has been available to the masses of ordinary people for free. The underlying technology 
has been used for numerous high-quality commercial triple-A games that you see in the retail 
stores in the United States and around the world. The UDK contains the Unreal Engine 3 3D 
graphics engine and related tools that would normally cost hundreds of thousands of dollars. The 
only limitation is that the C/C++ source code used to create the UDK is only available to those 
who pay the full license fee. Thus, you can not modify the UDK engine itself. 

This book provides an introduction to using this technology, including the UnrealScript 
language, for creating 3D iOS games. I have used the technology extensively and used it to create 
a full commercial physics puzzle type game for iOS similar to the iOS game Angry Birds. It is a 
powerful tool that is excellent for iOS development. My intention here is to give others a 
quickstart guide for creating their own iOS games and share game frameworks I’ve developed 
that readers can use as the basis for their own work. 

Who This Book Is For 
This book is for people that want to use the Unreal Development Kit (UDK) to create 3D games 
for Apple’s iOS platform. This includes devices such as the iPhone, iPad, and iPod Touch. This 
book also is useful for people that want to develop games on the PC platform with the UDK since 
much of what is covered in this book would apply to creating a game for the PC as well.  

This book assumes the reader has some experience with an object-oriented programming 
language like C++ or at least some programming experience in general. However, several basic 
game frameworks are presented in this book as a means to help those who are not professional 
programmers build their own game using the frameworks as a starting point.  

It is also assumed that the reader has some basic knowledge of how to use an iOS device 
since the final game created using the UDK will be played on the actual iOS device. 

General Layout of the Book 
Before we cover the general layout of this book there are some key points that the reader should 
note.  First, this book is not designed to cover every feature of the UDK since that would 
realistically involve a set of books, not just one. This book concentrates on the programming side 
of game development using the default set of assets that come with the UDK. Also, in terms of 
programming, this book is not meant to provide a full reference to the UnrealScript programming 
language. This book also isn’t intended as a general introduction to iOS development. We have 
mentioned links to web sites that provide additional useful information throughout this book. 
Some of the more important ones are listed in the “Other Resources” section at the end of this 
introduction.  

http://freepdf-books.com

http://www.it-ebooks.info/


■ INTRODUCTION 

 

 

xiii 

The general format of this book is to discuss UDK topics and then demonstrate these topics 
in the form of a “Hands-On Example” in which we show you how to develop an UnrealScript 
program along with the creation of any levels that are needed. We take you, step by step, through 
these examples along with showing you how to set up any configuration files that are required. 

We start with overviews of the UDK and UnrealScript, including a practical coding example. 
Then we work through key topics with hands on examples and culminating with a complete 
sample game. Some of these topics rely on 3D math concepts that are reviewed and 
demonstrated in a separate chapter. Then, in the latter part of the book we present game 
frameworks which are actually small working games that you can modify and use to build your 
own custom games. Game frameworks include a physics game, a first-person shooter game, a 
third-person shooter/adventure game, and a top-down shooter/role playing game.  

Other Resources 
Epic Games provides a wealth of resources you can use to supplement what you learn in this 
book: 

■ Epic’s UDK Mobile home page: 
http://udn.epicgames.com/Three/MobileHome.html 

■ Getting Started: Developing Mobile Projects: 
http://udn.epicgames.com/Three/GettingStartediOSDevelopment.html 

■ iOS Provisioning Overview: 
http://udn.epicgames.com/Three/AppleiOSProvisioning.html 

■ Distributing iOS Applications: 
http://udn.epicgames.com/Three/DistributionAppleiOS.html 

■ UnrealScript Language Reference: 
http://udn.epicgames.com/Three/UnrealScriptReference.html 

http://freepdf-books.com

http://udn.epicgames.com/Three/MobileHome.html
http://udn.epicgames.com/Three/GettingStartediOSDevelopment.html
http://udn.epicgames.com/Three/AppleiOSProvisioning.html
http://udn.epicgames.com/Three/DistributionAppleiOS.html
http://udn.epicgames.com/Three/UnrealScriptReference.html
http://www.it-ebooks.info/


 
1 

   Chapter 

UDK Overview 
This chapter covers the basic background information needed to get started with Unreal 
3D games development for iOS and for the hands-on examples that follow in 
subsequent chapters. To start, we take a quick tour of the Unreal Development Kit 
(UDK) and familiarize those new to Unreal with the development environment. We cover 
the Unreal Editor, which is where levels are built and assets within the UDK are imported 
and managed. Some examples of UDK assets are textures, materials, static meshes, 
skeletal meshes, and sound cues. These are all covered in this chapter. Finally, 
information specific to game development on the iOS platform using the UDK is also 
covered. Readers who already use Unreal might want to jump ahead to this section. 

Getting Started 
The first thing you need to do is go to the UDK’s website, located at http://udk.com, 
download the June 2011 Beta version of the UDK (approximately 1.5 GB) that is used in 
this book, and install it on your computer. The code examples in this book work 
correctly with the version of the UDK presented in this book at the time of the writing. 
The UDK is currently still in the Beta phase and new versions of the UDK are being 
released about every month. After downloading the executable, run the program to 
install the UDK. At least Microsoft Net Framework 3.1 is required and will be installed on 
your system if not detected. You can also download UDK Remote at 
http://itunes.apple.com/us/app/udk-remote, which helps with testing your iOS games. 

Unreal Editor Overview 
Once you have the UDK installed, go to the Start bar and navigate to where you installed 
the UDK and run the UDK Editor. Once the Unreal Editor is loaded, you should see 
something similar to Figure 1–1. The Editor is where you build your game levels, as well 
as manage and manipulate the game assets used in the level. You can run your game 
on the iOS mobile previewer from the Unreal Editor, as well as set the specific game 
type to be played. 

1 

www.it-ebooks.info

http://freepdf-books.com

http://udk.com
http://itunes.apple.com/us/app/udk-remote
http://www.it-ebooks.info/


CHAPTER 1:  UDK Overview 2 

 

Figure 1–1. UDK Startup Screen 

Click the Close button inside the Welcome to UDK box to get started. On the right hand 
side there is a window with many different tabs. 

The Generic Browser 
I won’t go over all the buttons and toolbars in the Unreal Editor UI. We’ll discuss all that 
in context as we work through the book. It is important to take a look at the Generic 
Browser, however, especially the Content Browser, covered in detail later in this section, 
and the Actor Classes tab. 

As you can see in Figure 1–1, there are six tabs: 

 Content Browser. The Content Browser tab is the main interface by 
which users import, select, and manipulate UDK assets. This tab is 
discussed in greater detail later in this chapter. 

 Actor Classes. The Actor Classes tab contains a list of the 
UnrealScript classes in the UDK and is subsequently discussed, since 
it has several elements that will be important early in the book. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 1:  UDK Overview 3 

 Levels. The Levels tab manages the levels in your world that can 
consist of one level or many levels that are streamed. 

 Scene. The Scene tab displays objects in the current level in table 
form where you can click on the name of an object and bring up its 
properties in a side panel. 

 Layers. The Layers tab allows you to organize the actors in your level 
so you can view certain groups of actors and hide others. 

 Start Page. The Start Page tab contains internet content related to the 
UDK, such as documentation, news, community forums, etc. 

Now let’s take a look at the Actor Classes tab in a bit more detail before moving on to 
the Content Browser. 

Actor Classes Tab 
The Actor Classes tab, shown in Figure 1–2, displays the Unreal Script classes currently 
available. This is where new classes you create appear after you integrate them into the 
UDK system, as well as classes that are part of the UDK code base. 

The term Actor generally refers to an object created from the Actor class or an object 
created from a class derived from the Actor class. The Actor class is important, because 
it implements many items needed for gameplay, including code needed for: 

 Displaying an object 

 Animating an object 

 Performing physics and world interaction 

 Making sounds 

 Creating and destroying the Actor 

 Broadcasting messages 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 1:  UDK Overview 4 

 

Figure 1–2. Actor Classes Tab 

There are three checkbox options in this tab: 

 Use ‘Actor’ as Parent. Check “Use Actor as Parent” to view only 
classes that use Actor as a base class. In other words, only classes 
built from the Actor class. If you uncheck this box, then all classes in 
the UDK system will be displayed. The class Object will be displayed 
as the root of the new tree, since Object is the base class of all other 
classes. 

 Placeable Classes Only. If you check the “Placeable Classes Only” 
checkbox, then only classes that you can place in a game level using 
the Unreal Editor will be displayed. If you uncheck this box, then both 
placeable and not placeable classes will be displayed. 

 Show Categories. Checking the “Show Categories” checkbox will 
group and display the classes in different categories like Physics and 
Navigation. 

There is also a search function in which you can search the tree by class name. We use 
this tab and discuss its features in more detail later in the book. 

Now let’s turn to the Content Browser. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 1:  UDK Overview 5 

The Content Browser and UDK Assets 
The Content Browser tab is the starting point for importing and manipulating game 
content in the UDK system. Game content can be sounds, textures, and 3d computer 
images used in your game. Click the Content Browser tab to change focus to the 
Content Browser (see Figure 1–3). 

 

Figure 1–3. UDK Content Browser 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 1:  UDK Overview 6 

Importing New Content 
You can import new content into the UDK system by clicking the Import button in the 
lower left hand corner of the Content Browser Tab and can preview that content in the 
section of the browser where you see the previous images. Clicking the Import button 
brings up a window in which you can navigate to where your asset is, select it, and then 
load it into the UDK system. Examples of assets that can be imported from outside the 
UDK and placed into the UDK system are: 

 Sound files in .wav format 

 Texture files in .bmp, .pcx, .png, and .tga formats 

 Static and Skeletal mesh files in .fbx format 

 Movies in .bik format 

 Shockwave movies in .swf and .gfx formats 

Searching for UDK Assets 
You can also filter the objects displayed by name, as well as type. In the upper right side 
of the Content Browser there is a search box in which you can type the game asset 
name to search for that is located next to a pair of arrows (see Figure 1–4). There is a 
section below that with the heading Object Type that contains two subsections named 
“Favorites” and “All Types.” Currently, all of the assets in the game, regardless of type, 
are displayed, since the “All” checkbox is checked. 

 

Figure 1–4. Asset Search Filtering Section of the Content Browser 

Let’s search for textures that have “blockwall” as part of their name. Click the Textures 
checkbox under the Favorites subsection. Next, type in the word “block” to search for 
textures that contain the word “block” in their name. Finally, under the Packages section 
of the Content Browser located in the lower left hand corner, select the UDKGame 
package. Your Content Browser should look something like Figure 1–5. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 1:  UDK Overview 7 

Figure 1–5. Searching for Textures Using the “Block” Keyword 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 1:  UDK Overview 8 

You can double click these texture assets, and a texture’s properties window will pop 
up, giving you more information about each texture asset. For example, click the texture 
called “T_BlockWall_02_D,” and the Texture Properties window shown in Figure 1–6 
opens. 

 

Figure 1–6. Texture Properties 

UDK Texture Assets 
Textures for iOS platforms need to be square. That is, the length in pixels must equal the 
width in pixels for the texture, such as 512x512 pixels. Textures are generally created 
outside the UDK system in a paint program like Adobe PhotoShop or PaintShop Pro and 
saved in a graphics file format, such as windows bitmap (.bmp), that the UDK system 
can understand and import in. Once inside the UDK system, textures can serve as the 
building blocks for UDK materials. 

Uncheck the Textures checkbox and check the Materials checkbox. Find the material 
called “M_BlockWall_02_D” and double click it. This will bring up the Unreal Material 
Editor, and you should see something similar to Figure 1–7. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 1:  UDK Overview 9 

 

Figure 1–7. Materials Editor 

UDK Material Assets 
The Material Editor is used to create new materials using textures. In the leftmost part of 
the Material Editor, there is a 3d sphere with a texture applied to it. You can rotate the 
sphere by clicking it, pressing the left mouse button, and moving the mouse. You can 
move the sphere forward and backward by clicking it, pressing down the right mouse 
button, and moving the mouse forward and backward. The texture used for the sphere 
is the same texture just viewed, which is T_BlockWall_02_D. Verify this is the case by 
scrolling through the bottom portion of the Material Editor until you come to the Mobile 
property section. Click the Mobile property if the subproperties are not already displayed 
(see Figure 1–8). 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 1:  UDK Overview 10 

 

Figure 1–8. Setting Textures in the Material Editor 

On the right hand side of the Mobile Base Texture property is a set of buttons. These 
buttons are also used in many other fields throughout the UDK: 

 Arrow. The arrow button allows you to select a texture in the content 
browser, and then click this icon to place the name of that texture here 
so it can be used as the Mobile Base Texture. 

 Magnifying Glass. The magnifying glass button allows you to find the 
object currently in the field by clicking the icon. When you do this, it 
should take you to the Content Browser and highlight the texture 
“T_BlockWall_02_D”. 

 Clear Screen. The clear screen button clears the Mobile Base Texture 
property field. 

UDK Mesh Assets 
A UDK material can be used to provide the surface covering for a mesh, either a static 
mesh or a skeletal mesh. A mesh is the actual 3d object consisting of a collection of 
vertices that can be placed in a game level. A skeletal mesh also includes moving parts, 
called bones, which are generally used to animate a 3d character. The material is what 
gives the surface of a mesh color and texture. 

Now, let’s look at an example. 

1. Go back to the Object Type  Favorites subsection, check Static Meshes, 

and make sure to uncheck all the other boxes. 

2. Type “Cube” into the search box to only display static meshes that have 

“Cube” as part of their name. 

3. Finally, go to the Packages section and click the Engine package. You 

should see a static mesh called “Cube” in the browser. Double click this 

item to bring up the Unreal Static Mesh Editor (see Figure 1–9). 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 1:  UDK Overview 11 

 

Figure 1–9. The Static Mesh Editor 

4. You can rotate the cube by first selecting the left hand side of the Mesh 

Editor that contains the cube. Hold down the right mouse button and 

move the mouse around to rotate the cube. 

5. Hold down the left mouse button and move the mouse back and forth to 

move the cube view back and forth. Static meshes are meshes without 

any moving parts. 

6. You can view the material this cube is using by going to the LODInfo 

property section on the right hand side of the viewer, locating the 

material property, and then clicking the magnifying glass button (see 

Figure 1–10). This will take you to the Content Browser, and the material 

used on this mesh will be highlighted. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 1:  UDK Overview 12 

 

Figure 1–10. Setting Materials in the Static Mesh Editor 

7. As before, double click the material in the content browser to bring up 

this material in the Unreal Material Editor. 

Now, let’s search for skeletal meshes in the UDK. Check the Skeletal Meshes box under 
the Object Type  Favorites, making sure all the other checkboxes are unchecked. Type 
“Jazz” in the search box and change the Package to search in to UDKGame. You should 
see a skeletal mesh called “SK_Jazz” in the content browser. Double click this skeletal 
mesh to bring it up in the Unreal AnimSet Editor (see Figure 1–11). 

 

Figure 1–11. The AnimSet Editor 

You can also set the material for this skeletal mesh. In the lower left hand corner of the 
AnimSet Editor, under the Mesh tab, you can set the Material property for this skeletal 
mesh under the Skeletal Mesh category (see Figure 1–12). 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 1:  UDK Overview 13 

 

Figure 1–12. Setting Materials in the AnimSet Editor 

You can also use the magnifying glass button to find the current material in the Content 
Browser, as well as set a new material from the Content Browser using the Arrow 
button. 

In summary, textures are created in paint programs outside the UDK system and are 
imported into the UDK system via the Content Browser. These textures can be used to 
create materials inside the Unreal Material Editor. These materials can then be applied to 
static meshes via the Static Mesh Editor and skeletal meshes via the AnimSet Editor. 

In addition to textures, materials, static meshes, and skeletal meshes, there are two 
other important game assets within the Content Browser, Particle Systems and Sound 
Cues. 

UDK Particle System Assets 
Particle Systems consist of an emitter and the particles that they emit. These are useful 
for such things as explosions and trails that projectiles leave when fired. 

Let’s take a look at one. 

1. In the Object Type subsection, select Particle Systems as your object 

type, making sure all the other options are unchecked. 

2. Type “fire” as the search filter term, making sure the UDKGame package 

is highlighted in the Packages section of the Content Browser. 

3. Double click the fire particle system displayed to bring up Unreal 

Cascade, as shown in Figure 1–13. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 1:  UDK Overview 14 

 

Figure 1–13. Unreal Cascade 

Unreal Cascade has many options for creating your own custom emitters. Such things, 
including particle type, particle speed, and particle direction, can be customized. For 
now, let’s not get into the details, but just know that custom emitters can be easily 
created from within the UDK system. 

UDK Sound Cue Assets 
Now, let’s search for sound cues. Select Sound Cues as the Object Type you will search 
for by checking its box. You can double click a sound cue to hear it. You can also edit 
the sound cue in the Sound Cue Editor by right clicking the Sound Cue you want to edit 
and selecting the “Edit Using Sound Cue Editor” option (see Figure 1–14). This should 
bring up the Sound Cue Editor shown in Figure 1–15. 

NOTE: You can also access the editor for other game assets like static meshes, materials, etc. by 
right clicking that asset and selecting “Edit Using EditorType”. The EditorType will depend on the 

asset, such as “Edit Using Material Editor” if the asset selected is a material. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 1:  UDK Overview 15 

 

Figure 1–14. Selecting the Sound Cue Editor 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 1:  UDK Overview 16 

 

Figure 1–15. Sound Cue Editor 

The Sound Cue Editor allows you to mix different sound samples into a single sound 
cue. For example, the sound editor has options for looping a sound and generating a 
random sound from a group of sounds. 

IOS Specific UDK Information 
There are certain differences to keep in mind when developing game for the iOS 
platform. The major differences involve saving data, preparing textures for an iOS 
device, and the types of player controls available to the user. We will return to the 
information discussed in this section later in the book and use it in the numerous hands-
on examples. 

Saving Data on an iOS Device 
Some ways of saving data through the UDK system work on the PC-based game and 
even on a game on the Mobile Previewer but not on an actual iOS device. For example, 
using config files to save data will work on a PC-based game and even on an iOS-based 
game using the Mobile Previewer but will not work on the actual device. The best way to 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 1:  UDK Overview 17 

solve this problem is to use the basic save game object feature of the UDK. This method 
works on both the PC side and the iOS platform. 

The idea of the basic save object is to put all the information you need to save into a 
class. Create a new object of this class and save the needed information into variables 
in this class object. You then save this object to a file. Once a file is created, then you 
can load this information back into this class variable. 

Create a new class that will hold the variables you want to save to a file. For example, 
create a new file called PlayerInfo.uc and type the following into it. 

class PlayerInfo extends Actor; 

This declares a new class, called PlayerInfo, which is derived from Actor. Type in the 
following variables that will be the information saved to the new file. 

var int PlayerLevel; 
var float PlayerAgility; 
var string PlayerName; 
var bool PlayerInfected; 

Save this file and open the class file that needs to use this information. Declare a class 
reference variable that uses the PlayerInfo class. 

var   PlayerInfo    PlayerRecord; 

Next, create a new object of this class using the Spawn command and set PlayerRecord
to point to it. 

PlayerRecord = Spawn(class’PlayerInfo'); 

In the same file that you declared the PlayerRecord variable, add the following two 
functions that will be used to save and load the data in PlayerRecord to a file. The 
filename that it is saved in is PlayerData.bin. 

function SavePlayerRecord() 
{ 
    class'Engine'.static.BasicSaveObject(PlayerRecord, "PlayerData.bin", true, 1); 
} 
function LoadPlayerRecord() 
{ 
    class'Engine'.static.BasicLoadObject(PlayerRecord, “PlayerData.bin", true, 1); 
} 

Textures on an iOS Device 
Textures on the iOS platform must be square. The length of the texture must be equal to 
the width of the texture in pixels. For example, texture sizes of 512x512 and 1012x1012 
are both square textures. 

Player Input Controls on an iOS Device 
The UDK supports three types of input: built in virtual joysticks, touch input, and motion 
input The MobilePlayerInput class and the MobileInputZone class handle player input for 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 1:  UDK Overview 18 

the iOS device and are located in the Development\Src\GameFramework\Classes under 
your main UDK installation directory, which is by default UDK\UDK-2011–06. The 
easiest way to handle touch input is through setting and processing different input 
zones in your game through the MobileInputZone class. If you need a greater degree of 
control, then use the MobilePlayerInput class. However, for most uses, 
MobileInputZones will be adequate. In each of the hands-on examples in this book, we 
guide you on how to configure the mobile input controls for that specific example. So 
don’t worry if you don’t understand everything in this section. We guide you on exactly 
how to set up your mobile input controls when the time comes. 

Setting Up Virtual Joysticks 
To use virtual joysticks, the first thing you need to do is configure the input zones for 
your virtual joysticks. To do this, open the Mobile-UDKGame.ini file located in the 
\UDK\UDK-2011–06\UDKGame\Config directory of your UDK installation using a plain 
text word processor like Windows Notepad. 

Type the following in the file. This defines joystick input zones for the first hands-on 
example we cover at the end of Chapter 2. The first line indicates that this configuration 
will belong to Example1Game type game located in the Example1 directory. For each 
new game type that uses joysticks, you must create a similar set of configurations. 

[Example1.Example1Game] 

The following sets up a GroupName defined as an "UberGroup" and two input zones, 
called "UberStickMoveZone" and "UberStickLookZone".The order in which you define 
the zones is important, since input captured by the first zone in the list is not passed 
along to subsequent zones. This might be a problem if you have overlapping zones. 

RequiredMobileInputConfigs=(GroupName="UberGroup",RequireZoneNames=("UberStickMoveZone",
"UberStickLookZone")) 

Next, we need to define the zones. The following line defines the block of configurations 
to follow as data for the UberStickMoveZone. 

[UberStickMoveZone MobileInputZone] 

Some of the more important configurations are subsequently discussed. 

The InputKey defines the name of the inputkey to send to the input subsystem for input 
in the vertical direction. In this case, pushing this stick up or down will move the player 
forward or backward. 

InputKey=MOBILE_Aforward 

The HorizontalInputKey defines the name of the inputkey to send to the input subsystem 
for input in the horizontal direction. For this stick, this means that movements right or left 
will move the player right or left in a side to side manner suitable for strafing an enemy 
while facing it. 

HorizontalInputKey=MOBILE_Astrafe 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 1:  UDK Overview 19 

The Type indicates the kind of zone this is. This zone type is set to be a virtual joystick: 

Type=ZoneType_Joystick 
bRelativeX=true 
bRelativeY=true 
bRelativeSizeX=true 
bRelativeSizeY=true 
X=0.05 
Y=-0.4 
SizeX=0.1965 
SizeY=1.0 
bSizeYFromSizeX=true 
VertMultiplier=-1.0 
HorizMultiplier=1.0 
bScalePawnMovement=true 
RenderColor=(R=255,G=255,B=255,A=255) 
InactiveAlpha=0.25 
bUseGentleTransitions=true 
ResetCenterAfterInactivityTime=3.0 
ActivateTime=0.6 
DeactivateTime=0.2 
TapDistanceConstraint=5 

Next, you need to configure the Joystick for turning the player left and right and moving 
the view up and down. Add the following definition for the UberStickLookZone. For 
vertical movements, an inputkey of value MOBILE_AlookUp is sent to the input system, 
indicating that the player should look up or down. For the HorizontalInputKey that tracks 
horizontal movements, the MOBILE_Aturn value is sent to the input system, which 
indicates the player should turn left or right. 

[UberStickLookZone MobileInputZone] 
InputKey=MOBILE_ALookUp 
HorizontalInputKey=MOBILE_ATurn 
Type=ZoneType_Joystick 
bRelativeX=true 
bRelativeY=true 
bRelativeSizeX=true 
bRelativeSizeY=true 
VertMultiplier=-0.5 
HorizMultiplier=0.35 
X=-0.2465 
Y=-0.4 
SizeX=0.1965 
SizeY=1.0 
bSizeYFromSizeX=true 
RenderColor=(R=255,G=255,B=255,A=255) 
InactiveAlpha=0.25 
bUseGentleTransitions=true 
ResetCenterAfterInactivityTime=3.0 
ActivateTime=0.6 
DeactivateTime=0.2 
TapDistanceConstraint=5 

After you finish entering the previous information, make sure to save the file. Also it 
would be good practice to write protect it, as well to prevent the UDK system from 
overwriting your changes. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 1:  UDK Overview 20 

The virtual joysticks themselves should look like the transparent round circles shown in 
Figure 1–16. 

 

Figure 1–16. Virtual Joysticks 

Setting Up Touch Input 
Now let’s add in touch input for things like swipes and taps. To do this, we need to add 
in some more configurations to the Mobile-UDKGame.ini file that we added our joystick 
configuration info in earlier. First, add in "UberLookZone" to the zone names in the 
RequiredMobileInputConfigs section. Make sure you put the new zone at the end of the 
zone list. This new zone will take up the entire screen. Remember that input goes 
sequentially from the first listed input zone to the last. If you list the UberLookZone first, 
then all input will be processed by that zone and none will get to the zones that follow. 
This would make the virtual sticks unusable. 

[Example1.Example1Game] 
RequiredMobileInputConfigs=(GroupName="UberGroup",RequireZoneNames=("UberStickMoveZone",
"UberStickLookZone","UberLookZone")) 

Next, add in the zone definition for the UberLookZone as follows. As with the joysticks, 
the InputKey refers to the up and down movements and the HorizontalInputKey refers to 
the left and right movements. Note that the Type is ZoneType_Trackball. Also note that 
the X and Y values are set to 0, which indicates the zone starts at the top left hand 
corner. The bRelativeSizeX and bRelativeSizeY values are set to true, and the SizeX and 
SizeY are set to 1, which means the size of the zone is full screen. 

[UberLookZone MobileInputZone] 
InputKey=MouseY 
HorizontalInputKey=MouseX 
TapInputKey=MOBILE_Fire 
Type=ZoneType_Trackball 
bRelativeSizeX=true 
bRelativeSizeY=true 
X=0 
Y=0 
SizeX=1.0 
SizeY=1.0 
VertMultiplier=-0.0007 
HorizMultiplier=0.001 
Acceleration=12.0 
Smoothing=1.0 
EscapeVelocityStrength=0.85 
bIsInvisible=1 
TapDistanceConstraint=32 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 1:  UDK Overview 21 

Once you setup the touch input zone, you will need to set up the callback function that 
will process the touch input for your zone. First, you need to create a new player 
controller that derives from SimplePC. 

class Example1PC extends SimplePC; 

In this new player controller, you need to create the callback function that has the same 
format as the subsequent SwipeZoneCallback in terms of parameters and a Boolean 
return value. The EventType is ZoneEvent_Touch when the user first touches the 
screen. As the user moves his or her finger across the screen, the EventTypes become 
ZoneEvent_Update to indicate these touches are an update to a touch still in progress. 
Finally, the ZoneEvent_UnTouch EventType that indicates that the user has lifted his or her 
finger off the screen is received and the current touch is finished. 

Function bool SwipeZoneCallback(MobileInputZone Zone, 
                                float DeltaTime,  
                                int Handle, 
                                EZoneTouchEvent EventType, 
                                Vector2D TouchLocation) 
{  
    local     bool     retval; 
 
    if (EventType == ZoneEvent_Touch) 
    { 
    } 
    else 
    if(EventType == ZoneEvent_Update) 
    {  
    }   
    else 
    if (EventType == ZoneEvent_UnTouch) 
    {  
    } 
    return retval; 
} 

Next, you need to actually set the delegate OnProcessInputDelegate that controls touch 
input. Create a SetupZone function like the subsequent example that sets the touch 
input delegate to your custom callback function. 

function SetupZones() 
{ 
    Super.SetupZones(); 
    // If we have a valid player input and game class, configure the zones 
    if (MPI != None && WorldInfo.GRI.GameClass != none)  
    { 
        LocalPlayer(Player).ViewportClient.GetViewportSize(ViewportSize); 
        if (FreeLookZone != none) 
        { 
            FreeLookZone.OnProcessInputDelegate = SwipeZoneCallback; 
        }  
    } 
} 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 1:  UDK Overview 22 

Motion Input 
For motion input, you need to use the delegate: 

delegate OnMobileMotion(PlayerInput PlayerInput, 
                        vector CurrentAttitude, 
                        vector CurrentRotationRate, 
                        vector CurrentGravity, 
                        vector CurrentAcceleration); 

located in the MobilePlayerInput class. As before, you need to set up a callback function 
to handle the player input. 

function MobileMotionCallback(PlayerInput PlayerInputMobile, 
                              vector CurrentAttitude, 
                              vector CurrentRotationRate, 
                              vector CurrentGravity, 
                              vector CurrentAcceleration) 
{ 
    // Code to handle Motion Input 
} 

Next, you need to set the delegate to point to your custom callback function. Depending 
on your iOS device, some motion input values will be unavailable or unreliable. For 
example, yaw measurement, acceleration, and gravity are only valid if the iOS device 
has a gyroscope. 

MPI.OnMobileMotion = MobileMotionCallback; 

PC to iOS Setup 
In this section, we will give you a quick rundown of how to set up your completed UDK 
game to run on an iOS device. In addition to the overview in this section, you should 
reference the extensive resources provided by Epic Games which are listed in the “Other 
Resources” section in this book’s Introduction. 

iOS Requirements 
Games developed using the UDK can run on the following types of iOS devices: 

 iPhone 4 

 iPhone 4s 

 iPhone 3GS 

 iPad 

 iPad2 

 iPod touch 4th generation 

 iPod touch 3rd generation (except for 8 GB 3rd generation devices.) 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 1:  UDK Overview 23 

These devices must be running iOS 3.2 or later. 

Apple Developer’s License 
In order to run games on an actual iOS device, you need to register as an Apple 
developer. Apple charges $99 per year for this. You can register at the following URL: 

http://developer.apple.com/programs/ios/ 

Participating in the Apple Developer program also entitles you to a variety of resources 
and enables you to distribute applications via the App Store. 

Provisioning 
Provisioning refers to the generations of keys, certificates, and mobile profiles needed to 
run a UDK game on an actual iOS device. We won’t go into detail about provisioning 
here, but Epic Games provides detailed instructions at the following site: 

http://udn.epicgames.com/Three/AppleiOSProvisioningSetup.html 

Running the UDK Game on the iOS Device 
In order to play a game developed in the UDK on an actual iOS device, you need to 
package the game and then deploy it to the iOS device. After obtaining an Apple 
developer’s license and doing the required provisioning, follow these steps to run your 
game on an iOS device.  

NOTE: This is the process for running default UDK game types. If you create a game with a 

custom type, as we’ll do in this book, see the following section for some additional preparatory 

steps. 

1. Connect your iOS device to your PC that is running the UDK. 

2. Bring up the Unreal Frontend (see Figure 1–17). 

www.it-ebooks.info

http://freepdf-books.com

http://developer.apple.com/programs/ios/
http://udn.epicgames.com/Three/AppleiOSProvisioningSetup.html
http://www.it-ebooks.info/


CHAPTER 1:  UDK Overview 24 

 

Figure 1–17. Unreal Frontend 

3. Change the deployment platform setup from the default PC platform to the iOS 

platform. To do this, first press the Configuration button shown in Figure 1–18. 

This brings up a window shown in Figure 1–19. 

 
Figure 1–18. The Configuration button 

 

Figure 1–19. The Default PC Deployment Setup 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 1:  UDK Overview 25 

4. Change the settings to those shown in Figure 1–20. 

 
Figure 1–20. The iOS Deployment Setup 

5. Click the OK button. The Mobile section should become visible below the 

Configuration button. 

6. In the Mobile section, change the Packaging Mode to Default as shown in 

Figure 1–21. 

 
Figure 1–21. Packaging Mode 

7. Next you need to add the UDK level maps that you want to cook and place in the 

package that you deploy to your iOS device. Figure 1–22 shows the Maps to 

Cook section. 

 

Figure 1–22. Adding Maps to Cook 

8. Click the Add button to bring up a list of the maps available on your computer 

(see Figure 1–23). You select the maps you want add from this list. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 1:  UDK Overview 26 

 

Figure 1–23. Selecting Maps  

9. Select the UDK level map or maps that you want to include, and then click Add 

Selected Maps to add the map(s). The added map(s) should show up as in 

Figure 1–24.  

 

Figure 1–24. After Adding a Map 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 1:  UDK Overview 27 

10. Make sure that Override Default is checked. Then, from the drop-down box, 

select the map that you want to bring up by default when the game is first started.  

11. The final thing to do is to make sure the entire build pipeline is active (which 

means that none of the pictures representing the Script, Cook, Package and 

Deploy processes have “Skip” written over them) and then click on the Start 

button (see Figure 1–25). If one of the processes is disabled, you can enable it by 

clicking on it and selecting Step Enabled from the drop-down box.  

Figure 1–25. Starting the Deployment Pipeline from Frontend 

This will compile, cook, package, and deploy your game to the iOS device where 

you can run it like any other iOS application. At this point the icon representing 

your UDK game should appear on your iOS device ready to run.  

NOTE: Epic Games provides more information on cooking content at 

http://udn.epicgames.com/Three/ContentCooking.html 

Configuring Custom Game Types 
In the hands-on examples in this book, we will first create, compile, and then run the 
UnrealScript program in the Mobile Previewer. You will also create the level in the Unreal 
Editor that uses this script. After making sure that the example works on the Mobile 
Previewer, you are ready to follow the steps in the preceding section to deploy it to an 
actual iOS device. Since we use custom game types in our examples, however, you will 
need to perform a few additional steps before completing the steps from the preceding 
section.  

TIP: In terms of compiling your script, it does not matter if the Frontend is set for iOS or PC 
deployment. You can have your Frontend set for the PC and still compile and run your 

UnrealScript program in the Mobile Previewer. 

First, you need to set the game type that will be played in the deployed version of the 
example. In order to do this, you need to change the Mobile-UDKGame.ini and the 
DefaultGame.ini configuration files located in  

C:\UDK\UDK-2011–06\UDKGame\Config  

www.it-ebooks.info

http://freepdf-books.com

http://udn.epicgames.com/Three/ContentCooking.html
http://www.it-ebooks.info/


CHAPTER 1:  UDK Overview 28 

and set the specific default game that is used in the hands-on example. (If you are using 
a different version of the UDK your default directory will be different.) For example, 
change the DefaultGame and DefaultServerGame configurations to the following to play 
the game type for the hands-on example in Chapter 2:  

[Engine.GameInfo] 
DefaultGame=ExampleCh2.ExampleCh2Game 
DefaultServerGame=ExampleCh2.ExampleCh2Game 

Next, we need to add the package that contains the code for this new game type to the 
list of packages that are cooked and deployed to the iOS device. 

In the UDKEngine.ini configuration file add the following entries under the existing 
headings: 

[Engine.PackagesToAlwaysCook] 
Package=ExampleCh2 
 
[Engine.StartupPackages] 
Package=ExampleCh2 

Next, in the DefaultEngine.ini configuration file, add the following entries under the 
existing headings: 

[Engine.PackagesToAlwaysCook] 
+Package=ExampleCh2 
 
[Engine.StartupPackages] 
+Package=ExampleCh2 

Now you are ready to perform the steps from the preceding section. 

NOTE: Be sure to return to this chapter when you are ready to deploy any of the examples from 
this book to your iOS device, and complete the steps in this section and then those from the 

preceding section. 

Summary 
In summation, we took a brief look at the key features of the UDK system. We took a 
look at the Unreal Editor and the associated subprograms and UDK assets, such as 
textures, materials, static meshes, and skeletal meshes. We then discussed important 
UDK development aspects that differ from the iOS platform and the Windows PC 
platform. We discussed how saving data and using textures differ on the PC platform 
and the iOS platform for the UDK. We also covered the different types of player input 
specific to developing games on the iOS platform. Finally, we went through the basics of 
the PC to iOS setup for your game. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


 
29 

   Chapter 

UnrealScript Overview 
In this chapter we will cover the UnrealScript programming language that is used to 
develop games for the UDK. We will cover key information concerning the UnrealScript 
programming language as well as Kismet which is the graphical version of that 
language. Such topics as data types, functions, classes, and operators are briefly 
discussed to give you a quick working understanding of the UnrealScript language. You 
will also learn how to create and compile your UnrealScript using the Unreal Frontend. 
There are also many hands-on examples that apply UnrealScript throughout the book 
and an appendix with additional UnrealScript language information. If you are already 
familiar with UnrealScript feel free to skip over the language review in this chapter 
directly to the Hands-on Example at the end of this chapter.  

Finally, we’ll work through a hands-on example in which you’ll create your first iOS 
objects that you can select and receive information about using the UDK Mobile 
Previewer. 

Kismet or UnrealScript? 
Kismet is a more limited and less flexible graphical version of UnrealScript. There may 
also be memory and performance issues with using Kismet on older iOS devices. At 
least one poster on the iOS development forum on the official UDK message board 
complained that older iOS devices would only run his game if most of the Kismet was 
stripped out. The game would crash otherwise. He concluded that either it was a 
memory issue related to Kismet or a performance issue where a Kismet sequence was 
causing the game to crash. In the end he decided to only release his game for newer 
iOS devices and was looking for an UnrealScript programmer to convert all of his Kismet 
code to UnrealScript.    

Kismet is more limited than UnrealScript in that it: 

 Does not allow direct access to the UDK’s base code with direct 
access to classes such as Object, Actor and so on. 

 Does not allow the creation of certain variable types such as 
structures. 

2 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 2:  UnrealScript Overview 30 

 Does not allow the creation of new classes that are derived from the 
UDK’s base classes. 

 Does not allow loading and saving Kismet sequences to separate files 
for merging together Kismet code from different programmers on a 
large project. 

UnrealScript is able to do all of the above listed items. 

However, for smaller games, demos, or prototypes that use little Kismet like the Jazz 
Jackrabbit game demo that ships with the UDK, Kismet can work well. Another area 
where Kismet works well is in simple level and location specific items like moving 
platforms, doors, gates including doors and gates that require the player to push a 
button to activate or unlock. Kismet will be discussed further in Chapter 6 as it relates to 
opening doors and locked gates.   

To access the Kismet Editor first bring up the Unreal Editor. Once the editor is up and 
running, click the button that contains a “K” in it that is located in the Unreal Editor at 
the top middle portion in the first row of buttons (see Figure 2–1).  

 

Figure 2–1. Unreal Kismet Editor button and Matinee button 

After clicking on the “K” button, the Unreal Kismet Editor shown in Figure 2–2 should start. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 2:  UnrealScript Overview 31 

 

Figure 2–2. Unreal Kismet Editor 

You may be wondering why we included the Unreal Matinee button with the Kismet 
button. The reason is that in order for Kismet to work in moving the doors, platforms, 
and gates we need to specify the specific locations where you want the object to move 
to. In order to do that we need to use Unreal Matinee. If you click on the Matinee button 
it will list all the Matinee sequences for the level. If there are Matinee sequences in the 
level you can click on one to bring up Matinee and load that sequence in. Another way 
to access Matinee is to bring up Kismet and right-click with your mouse and select 
“New Matinee” to create a new Matinee node. Then double-click on the Matinee graphic 
node to bring up the Matinee sequence associated with that node. See Figure 2–3.   

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 2:  UnrealScript Overview 32 

 

Figure 2–3. Unreal Matinee 

Kismet is good for rapid prototyping of small games or demos, and certain things like 
the control of gates and doors when used with Matinee. Kismet is very limited in its 
access to underlying UDK base code and lacks the ability to create new classes that are 
derived from UDK base classes as well as being unsuited for large projects with many 
different programmers and large amounts of code. UnrealScript is suitable for large and 
small projects and gives you the flexibility and expandability you want in your UDK 
game. 

Overview of UnrealScript 
UnrealScriptUnrealScript was designed to combine features from C/C++ and Java and 
to add in new features such as States to create a programming language that was 
specifically designed for creating games.  

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 2:  UnrealScript Overview 33 

Key features of UnrealScriptUnrealScript are: 

 Single inheritance—All class objects derive directly or indirectly from a 
single class, which is Object. Actor is a class that derives from Object. 
Most important game classes like Pawn and Controller are derived 
from Actor. Multiple inheritance is not supported  

 Support for States—An object can execute different code based on 
what current state it is in. UnrealScript basically implements a finite 
state machine as part of its built-in language features.  

 No crashes when accessing “None” references - 
UnrealScriptUnrealScript handles accessing a None object reference 
(which is similar to NULL in C/C++) by logging the error should a crash 
occur. This alone saves much time in game development. 

 Automatic garbage collection—Objects that are not used 
(unreferenced) are eventually deleted by UnrealScript’s built-in 
garbage collector. This automatically regains memory that would 
otherwise be lost. 

 Latent Functions—These are functions that require game time to 
execute and must finish executing before returning. Some examples 
are Sleep() which allows the Actor to suspend all code execution for a 
certain amount of game time or game ticks before continuing and 
MoveTo() which moves the actor to a target destination. Latent 
functions may only be called from within a State block and not within a 
function even if the function is located inside a State block.  

 UnrealScript objects execute script independently—Each object in the 
game is updated simultaneously. For example, a game object may be 
executing a latent function such as a MoveTo() command but another 
object can access a function in this game object at the same time. 

NOTE: UnrealScript is about 20 times slower than C/C++ in execution speed. So the key to 
creating an efficient UnrealScriptUnrealScript program is to only use UnrealScript to handle key 
events that you want to customize such as when two Actors collide with one another for 
example.  

The Unreal Engine is basically a virtual machine.  UnrealScript runs on this virtual machine and 
thus there is an extra layer of overhead required to convert UnrealScript code into code that is 
understood by the CPU processor running the Unreal Engine. This is one reason why UnrealScript 

is much slower than C/C++ which are compiled into machine language and optimized to run on 
a certain CPU such as Intel. The benefit of this is that UnrealScript is platform independent which 
means that you can take your UnrealScript code and create games on other platforms besides 

the PC. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 2:  UnrealScript Overview 34 

UnrealScript is an object-oriented language similar to C++. This book assumes that you 
have a basic understanding of object-oriented programming (OOP).   

NOTE: If you need a refresher or introduction to OOP with C++, a good reference book is 

Programming: Principles and Practice Using C++ by Bjarne Stroustrup (Addison-Wesley, 2008). 
Stroustrup is the original designer and implementer of the C++ programming language. Another 
good book on C++ is by Ray Lischner called Exploring C++: The Programmer's Introduction to 

C++ (Apress, 2008). For those newer to programming, an alternative would be Sams Teach 

Yourself C++ in 24 Hours by Jesse Liberty (Sams, 2011). 

The following sections give you a brief working look into the UnrealScript language itself 
in terms of basic variables, functions, classes, and data types. Certain aspects of 
UnrealScript, such as its object-oriented nature and inheritance, will not be discussed in 
depth because you are expected to have knowledge of this already. It is not a complete 
reference to the UnrealScript language. We will also be going more deeply into the 
language as the book progresses.  

NOTE: For a full official reference on UnrealScript please check out: 

http://udn.epicgames.com/Three/UnrealScriptReference.html 

UnrealScript Comments 
There are two kinds of comments styles in UnrealScript: the single line comments 
starting with “//” and the multi-line comments enclosed by “/* */”. 

 //—Single line comments begin with double slashes. The following is 
an example of a single line comment:  

 // This is an example of a single line comment 

 /* */—Multi line comments begin with a slash followed by an asterisk 
and end with an asterisk followed by a slash.  The following is an 
example of this multi-line comment:  

 /* This is an  
    example of  
 a multi line  
 comment */  

UnrealScript Variables 
Data in a class is held in variables. In the UnrealScript language variables can be of 
many different types such as integer, floating point, Boolean, string, as well as 
references to class objects. 

www.it-ebooks.info

http://freepdf-books.com

http://udn.epicgames.com/Three/UnrealScriptReference.html
http://www.it-ebooks.info/


CHAPTER 2:  UnrealScript Overview 35 

Scope Modifiers 
All variables in UnrealScript must specify a scope which is either var or local.   

 var—The specifier var indicates this variable is global to the class it is 
declared in. 

 local—The specifier local indicates that this variable is declared within 
a function. 

Variable Types 
There are many different variable types in the UnrealScript language including types like 
int and float that hold numbers. Strings can hold characters. Boolean variables can hold 
the values true or false. An Object reference can hold a reference to a class object. 
Structures can comprise any of the above mentioned types. 

 int—The int type holds an integer value. The following declares a local 
function variable of type int.  

 local int dist2goal;    // Declares a local variable of type int 

 float—The float type holds a floating point value.  The following 
declares a local function variable of type float. 

 Local float MinimumForce;     // Declares a local variable of type float 

 bool—The bool type holds a boolean value of true or false.  The 
following declares a global class variable of type bool.  

 Var bool bdestroyed;    // Declares a global boolean variable 

 string—The string type holds a group of characters.  The following 
declares a local function variable of type string. 

 Local string Player1Name;    // Declares a local variable of type string 

 enum—The enum type declares an enumerated type. The following 
declares and enumeration called eColors that can contain the values 
of Purple, Violet, or Red.  The variable ColorGroup1 is declared as a 
variable of eColors type.  

 enum eColors 
 { 
     Purple, 
     Violet, 
     Red 
 };  
 var eColors ColorGroup1;    // Declares a global enurmerated variable 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 2:  UnrealScript Overview 36 

 struct—The struct type declares a structure type that can hold any 
combination of the other variable types. The following declares a 
structure of called sPlayerInfo that contains two variables, one int 
variable called PlayerHeartRate and one bool variable called 
PlayerInfected. A variable called Player1Info is declared as a global 
class variable of type sPlayerInfo structure. 

 Struct sPlayerInfo 
 { 
     var int PlayerHeartRate; 
     var bool PlayerInfected; 
 }; 
 var sPlayerInfo Player1Info;   // Declares a global variable of type sPlayerInfo 

 Static Arrays—Static arrays can hold collections of objects.  The 
length of this type of array is set at compile time and cannot be 
changed during program execution. Static arrays in UnrealScript are 
restricted to one dimension. Any variable type can be put into a static 
array except boolean. The following declares a global variable of type 
static array that holds 5 elements of objects references to an Actor.  

Var Actor SquadMembers[5];   

 Dynamic Arrays—Dynamic arrays can hold a collection of objects. The 
length of the array can change during script execution. Dynamic arrays 
have many functions that can manipulate items in the array. The 
following declares a dynamic array of type reference to an Actor.  

Var array<Actor> SquadMembers; 

The following code adds a new member to the SquadMembers array assuming 
that TempBot is an object reference variable to an Actor. 

var Actor TempBot; 
SquadMembers.AddItem(TempBot);  

The following code finds the number of members in the array or in this case the 
number of members in our squad. 

numbersquadmembers =  SquadMembers.length; 

The following code loops through the members of the dynamic array 
SquadMembers and returns a reference to each member through the variable 
TempSquadMember. In the loop each squad member can be processed one at a 
time. 

Local Actor TempSquadMember; 
foreach SquadMembers(TempSquadMember) 
{ 
    // Process TempSquadMember 
} 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 2:  UnrealScript Overview 37 

 Object Reference – The object reference type holds a reference to an 
object of type Class Object. The following declares an object reference 
variable to an Actor called TempActor. A new object of class Actor is 
created by the Spawn command and assigned to the TempActor 
reference. 

Var Actor TempActor;// Declares a global reference variable to an Actor 
 TempActor = Spawn(class'Actor'); 

You can cast an object reference variable to a specific class to test if it refers to 
an object of that type. If it returns a None reference then it does not refer to an 
object of that class or any subclass of that class. If the returned result is not 
None then the returned reference will be to an object of the type of the cast. 

In the following code the variable TempActor is tested to see if it is of class Pawn
though a cast. The result is put into the variable TempPawn.  If the conversion was 
successful (holding a value besides None) then TempActor was indeed a Pawn or a 
subclass of Pawn. If the value in TempPawn is None then the object in TempActor is 
not a Pawn or a subclass of Pawn. 

Var Actor TempActor; 
Var Pawn TempPawn; 

TempPawn = Pawn(TempActor); 
If (TempPawn != None) 
{ 
    // TempPawn contains a reference to a Pawn 
} 
else 
{ 
    // TempPawn contain a None value and does not  
    // contain a reference to a Pawn 
} 

NOTE: For object reference variables like TempActor above you need to make sure to either 
assign a valid reference to TempActor before you use it or you need to create a new object using 

the Spawn function built into the base UDK code. Example: TempActor = Spawn(class'Actor'); 

 Class Reference—A class reference variable holds a reference to a 
class.  The format is in  

class<BaseClass>  VariableName; 

The class reference VariableName can hold a class of type BaseClass or a 
subclass of BaseClass. A subclass of BaseClass would be any class that is 
derived from BaseClass. Remember that UnrealScript only supports single 
inheritance from the base class called Object. Multiple inheritances from more 
than one class is not permitted so determining if a class is a subclass of another 
is very straightforward.   

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 2:  UnrealScript Overview 38 

The following code holds a reference to the player controller class used to 
spawn players. The PlayerControllerClass variable is then set to a custom 
player controller class that we will create later in this chapter.  

 var class<PlayerController> PlayerControllerClass; 
 PlayerControllerClass=class'ExampleCh2.ExampleCh2PC' 

Operators 
In order to perform mathematical calculations UnrealScript has the standard arithmetic 
operators available for you to use. UnrealScript also has many different conditional 
operators to test expressions for such things as equality, inequality, and so on. Each of 
the operators takes two expressions. Expressions can consist of a single variable or 
many variables and operators.  

Artithmetic Operators 
UnrealScript provides you with add, subtract, multiply, and divide operators that allow 
you to make math calculations. You can use parenthesis to group these operators 
together if needed.  

 +,  - , * , /—The standard add, subtract, multiply and divide operators 

Conditional Operators 
Conditional operators return a value of true or false depending on what type of 
conditional operator is involved and the value that the expressions evaluate to. 
Conditional operators are mostly used in combination with flow control statements such 
as if, while, and for. 

 (expression1) || (expression2)—Evaluates to true if expression1 or 
expression2 are true. False otherwise.  

 (expression1) && (expression2)—Evaluated to true if expression1 and 
expression2 are true. False otherwise.  

 (expression1) == (expression2)—Evaluates to true if expression1 is 
equal to expression2. False otherwise. 

 (expression1) != (expression2)—Evaluates to true if expression1 is not 
equal to expression2. False otherwise. 

 (expression1) > (expression2)—Evaluates to true if expression1 is 
greater than expression2. False otherwise. 

 (expression1) < (expression2)—Evaluates to true if expression1 is less 
than expression2. False otherwise. 

 (expression1) >= (expression2)—Evaluates to true if expression1 is 
greater than or equal to expression2. False otherwise. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 2:  UnrealScript Overview 39 

 (expression1) <= (expression2)—Evaluates to true if expression1 is 
less than or equal to expression2. False otherwise.  

Code Execution Flow Control Statements 
UnrealScript code, just like C/C++ code, executes sequentially one line after another. 
However, UnrealScript also has statements to control the execution of code so that it 
does not have to always execute sequentially.   

 If Statement—If expression1 evaluates to true then the code in Section 
1 will execute. If expression1 evaluates to false then the expresion2 is 
evaluated and if it evaluates to true then Section 2 code is executed. 

 if (expression1) 
 { 
     // Section 1 Code 
 } 
 else if (expression2) 
 { 
     // Section 2 Code 
 }  

 In the following example if PlayerHealth is less than 0 then the code 
within the braces is executed. 

 if (PlayerHealth < 0) 
 { 
     // Execute code for Player’s Death 
 } 

 While Statement—The code within the While block is executed as long 
as expression1 evaluates to true. 

 While (expression1) 
 { 
 } 

 In the following example the code block is executed if PlayerHealth is 
less than 20 and keeps executing as long as that condition evaluates 
to true. 

 While (PlayerHealth < 20) 
 { 
     // While PlayerHealth is less than 20 then execute this loop 
 }  

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 2:  UnrealScript Overview 40 

 For Statement—The for statement is composed of three sections. The 
first section is the variable initialization section where the initial value of 
the counter variable is set and optionally declared. The second section 
contains the expression to be evaluated. This expression is evaluated 
at the beginning of the for loop and if it evaluates to true then the 
code block is executed. At the end of the code block the counter 
variable is incremented/decremented. The expression is tested again 
and if it evaluates to true then the code block is executed. This 
continues until the expression evaluates to false then the for loop is 
exited. 

 for (counter variable initialization;   
       (expression1);    
       countervariable increment/decrement) 
 { 
 } 

       In the following example, the for loop counter variable is initialized to 
0.  If i is less than 10 then the code block is executed.  The counter 
variable is incremented by 1 at the end of the loop. 

 For (int i = 0;  i < 10; i++) 
 { 
     // Execute this block of code while i < 10, increase i by 1 after every loop 
 } 

 Switch/Case Statement—The switch statement is a more elegant and 
organized alternative to the if then else statement. Instead of many 
else if statements with many braces you have a neat case break pair. 
The expression in the switch statement is evaluated. Execution will 
jump to the case break block that matches the value in the case 
statement or will jump to the default block if there are no matches. 

 Switch (expression1) 
 { 
     case value1: 
     break; 
 
     case value2: 
     break; 
 
     default: 
     break; 
       } 

 In the following example, the value of ColorGroup1 is determined then 
that value is matched with the values Purple, Violet, or Red to 
determine which case break block to jump to. 

 Switch (ColorGroup1) 
 { 
     case Purple: 
         // Insert Code Here 
     break; 
     case Violet: 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 2:  UnrealScript Overview 41 

         // Insert Code Here 
     break; 
     case Red: 
         // Insert Code Here 
     break; 
 } 

Class Declarations 
UnrealScript supports object oriented classes and class inheritance. In order to have 
one class derive from a parent class use the extends keyword. A class consists of the 
class heading which declares the classname followed by “the” extends keyword and the 
class it derives from. This is followed by the global class variables if any. Then the class 
functions are declared. UnrealScript classes can have many different options associated 
with them and these are discussed in a subsequent chapter later in this book. 

The following code declares a new class of type Soldier that derives from the Actor 
class. Two global class variables are also declared. Each class must be put in a 
separate plain text file created with a program like Notepad and named after the class. 
This class’s filename would be Soldier.uc.  

class Soldier extends Actor; 
var bool bIsSick; 
var bool bHasOpenSores; 

Functions 
Functions in UnrealScript help you divide a big task into smaller more manageable 
pieces much like other programming languages like C and C++. UnrealScript functions 
have many different options and function specifiers. These will be discussed in detail in 
a subsequent chapter.   

The following declares a basic function called TestSoldierInfected(). It takes an input 
parameter of type Soldier and returns a boolean value depending on weather this soldier 
is infected or not. 

function bool TestSoldierInfected(Soldier TestActor ) 
{ 
    local bool bInfected; 
    if (TestActor.bIsSick && TestActor.bHasOpenSores) 
    { 
        bInfected = true; 
    } 
    else 
    { 
        bInfected = false; 
    } 
    return bInfected; 
} 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 2:  UnrealScript Overview 42 

States 
UnrealScript has built-in support for a finite state machine. A finite state machine (or 
FSM) used in this book refers to a computer model that describes the behavior of 
computer controlled bots. An FSM can only be in one state at a time and can move to 
other states depending on a trigger such as a change of conditions in the game.  

For example, a bot using an FSM can initially be put into an idle state then when an 
enemy is within a certain distance change to an attacking state and move toward the 
enemy and fire its weapon at it. 

The following is the general format for a state. The items in brackets are optional. 

[Auto] State[()] StateName 
{ 
[ignores FunctionName1, FunctionName2, …] 
    event BeginState( Name PreviousStateName ) 
    { 
        // Code for BeginState Goes Here 
    } 
    event EndState( Name NextStateName ) 
    { 
        // Code for EndState Goes Here 
    } 
    function StateSpecificFunction() 
    { 
        // Code StateSpecificFunction Goes Here 
    } 
    Begin: 
    // Begin State Code 
    // Put calls to Latent Functions here. 
} 

The Auto specifier for the state indicates that this state is the initial state that the actor is 
placed in when it is created. 

The ignores keyword is optional and causes the functions specified after ignores to not 
be executed while the object is in this state. 

The parenthesis () after the State keyword means that this state can be edited in the 
Unreal Editor. 

The BeginState and EndState functions are part of the built in UnrealScript State system 
and are optional. The BeginState function is executed once when the state is first 
entered. The input parameter PreviousStateName holds the Name of the previous state 
the object was in before transitioning to the current state. The EndState function is 
executed once when leaving the state but before entering the new state. The input 
parameter NextStateName is the name of the state that is to be transitioned to after the 
EndState function is executed. A state does not need to declare a BeginState, or 
EndState but it is good to have the framework in place just in case you need to add 
code that has to be executed every time when a state is entered or exited. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 2:  UnrealScript Overview 43 

Within a state you can define functions that only will be executed when the object is in 
that specific state.   

The beginning of the actual state code starts at the Begin: label. 

Debug Messages 
One helpful way to debug your program is to have messages displayed on your screen 
via the Broadcast() function. UnrealScript is very flexible and will automatically convert 
boolean, int, float, and even class objects into a displayable format using the code 
below. 

WorldInfo.Game.Broadcast(self, "Soldier Object = " @ TestActor @  
                               "Soldier's Sick Status = " @ TestActor.bIsSick @ 
                               ", Soldiers's Open Sore Status = " @ 
                               TestActor.bHasOpenSores); 

Creating and Compiling UnrealScript 
UnrealScript can be created by any plain text word processing program such as 
Notepad. Notepad comes with the Windows operating system at no additional cost. In 
order to compile UnrealScript you need to start up the Unreal Frontend program.  The 
Frontend is located in the Tool directory of your UDK installation and is labeled “Unreal 
Frontend”. Select this program from the Start Menu bar and click on it. The Frontend 
window shown in Figure 2–4 opens. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 2:  UnrealScript Overview 44 

 

Figure 2–4. Unreal Frontend 

In order to start the actual compiling click the Script button on the top left-hand side of 
the toolbar, which will highlight options for compilation (see Figure 2–5).  

 

Figure 2–5. Starting the actual compile 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 2:  UnrealScript Overview 45 

The “Compile scripts” option only compiles scripts that have been changed since the 
last compile. The “Full recompile” option compiles all the scripts in the UDK system 
regardless if they have changed since the last compile or not. Once the scripts have 
been successfully compiled then any new classes are automatically added to the Actor 
Classes tab in the Unreal Editor where they can be used in building game levels.       

Hands-On Example: Selecting an Object with Touch  
In this tutorial you will learn how to use the iOS touch input system to pick out an actor. 
The first thing we need to do is create a new level for this example and put some objects 
in it.   

1. Start up the Unreal Editor. 

2. Change the object type filter in the Content Browser to search for static 

meshes.  

3. Put static meshes of your choice into the blank level that is the default 

level that is loaded when the Unreal Editor comes up. One way you can 

do this is you can click on the static mesh you want to put into the level 

then drag it to where you want to place it into the level. Another way is 

to click on the static mesh then go to the place in the level where want 

to place it then right-click and select the add StaticMesh option (see 

Figure 2–6).  

 

Figure 2–6. Adding a Static Mesh to a level 

4. Make sure your static mesh also has a collision model associated with it 

or else it will not be detected by the user’s touch.  

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 2:  UnrealScript Overview 46 

NOTE: We will discuss collision models in Chapter 4 on UDK collisions. Some examples of static 
meshes with collision models are SM_GEN_Foliage01_LargeTree01_Opt, 
SM_GEN_Ruins_512Block01, and SM_VendorCrate_01_E.  The collision models are already 

incorporated within each of the static meshes so you don’t need to set any specific collision 
model for the meshes since they are already part of the static mesh. You can search for these 

models using the search function of the Content Browser and place them in the level. 

5. The next thing to do is to save the level. To do this, click “File” menu 

item and choose the “Save As” option which brings up the Save As file 

dialog box. Enter the filename as “ExampleCh2Map” and click the Save 

button. 

Creating the Game Type 
Now that we have created our map for this example we need to create the code to 
handle touches and code to pick an actor.  

1. Create a new directory called ExampleCh2 under the Development\Src 

directory of the UDK installation which by default is \UDK\UDK-2011-06 

on the drive you installed the UDK on.  

2. Under that directory create another directory called Classes. This is 

where the source code from this example will be placed in.   

3. Create a new file called ExampleCh2Game.uc in the Classes directory. 

This new class will hold information for the type of game to be played 

and is a subclass of the GameInfo class. 

4. Add the following line to the file, which declares the new 

ExampleCh2Game class as deriving from FrameworkGame. 

class ExampleCh2Game extends FrameworkGame; 

5. Add the OnEngineHasLoaded() function to the file. This function is called 

when the Unreal engine has finished loading and prints out a message 

that our custom game type is now active.  

event OnEngineHasLoaded() 
{ 
    WorldInfo.Game.Broadcast(self,"ExampleCh2Game Type Active - Engine Has Loaded 
!!!!");} 

6. Add the PreventDeath() function to the file. The PreventDeath function 

returns true to stop our player from dying in the game. 

function bool PreventDeath(Pawn KilledPawn,  
                           Controller Killer,  
                           class<DamageType> DamageType,  

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 2:  UnrealScript Overview 47 

                           vector HitLocation) 
{ 
    return true; 
} 

7. Add the SetGameType() function to the file. The SetGameType function can 

be used to allow only certain mapnames to be used with our gametype. 

For now just let all maps use our gametype. 

static event class<GameInfo> SetGameType(string MapName, string Options, string Portal) 
{ 
    return super.SetGameType(MapName, Options, Portal); 
} 

8. Add the defaultproperties block to the file. The important thing to take 

note of is that custom player controllers, custom pawns and custom 

HUD classes can be specified here.  The PlayerControllerClass

variable is set to our custom player controller that we will create next 

which is ExampleCh2PC. 

defaultproperties 
{ 
        PlayerControllerClass=class'ExampleCh2.ExampleCh2PC' 

        DefaultPawnClass=class'UDKBase.SimplePawn' 
        HUDType=class'UDKBase.UDKHUD' 
        bRestartLevel=false 
        bWaitingToStartMatch=true 
        bDelayedStart=false 
} 

9. Save the ExampleCh2Game.uc file that you just added the above lines 

into. 

Creating the Player Controller 
Now let’s create the player controller. 

1. Create a new file called ExampleCh2PC.uc and save it in the same 

directory as the other file. Add in the following line to declare this new 

player controller class as a subclass of SimplePC. 

class ExampleCh2PC extends SimplePC; 

2. Add the following line to the file. PickDistance is the maximum distance 

that the picked item can be from the player. 

var float PickDistance; 

3. Add the PickActor() function to the file. The PickActor function actually 

does the work of finding the actor based on an input 2d touch location 

and maps this into the 3d world and then returns the actor touched by 

the player if there is one.  

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 2:  UnrealScript Overview 48 

function Actor PickActor(Vector2D PickLocation, out Vector HitLocation, out TraceHitInfo 
HitInfo) 
{ 
    local Vector TouchOrigin, TouchDir; 
    local Vector HitNormal; 
    local Actor  PickedActor; 
    local vector Extent; 
 
    //Transform absolute screen coordinates to relative coordinates 
    PickLocation.X = PickLocation.X / ViewportSize.X; 
    PickLocation.Y = PickLocation.Y / ViewportSize.Y; 
    
    //Transform to world coordinates to get pick ray 
    LocalPlayer(Player).Deproject(PickLocation, TouchOrigin, TouchDir); 
    
    //Perform trace to find touched actor 
    Extent = vect(0,0,0); 
    PickedActor = Trace(HitLocation,  
                        HitNormal,  
                        TouchOrigin + (TouchDir * PickDistance),  
                        TouchOrigin,  
                        True,  
                        Extent,  
                        HitInfo); 
    //Return the touched actor for good measure 
    return PickedActor; 
} 

4. Add the SwipeZoneCallback() function to the file. The following is the 

touch input callback function that calls the PickActor function and 

displays the result. If the user picks an actor then that actor’s name is 

printed out, followed by the hit location where the user touches the 

object in the 3d world, and the zone that the touch occurred in. 

function bool SwipeZoneCallback(MobileInputZone Zone,  
                                float DeltaTime,  
                                int Handle, 
                                EZoneTouchEvent EventType,  
                                Vector2D TouchLocation) 
{  
    local bool retval;  
    local Actor PickedActor; 
    local Vector HitLocation; 
    local TraceHitInfo HitInfo; 
 
    retval = true; 
    if (EventType == ZoneEvent_Touch) 
    { 
        // If screen touched then pick actor 
        PickedActor = PickActor(TouchLocation,HitLocation,HitInfo); 
        WorldInfo.Game.Broadcast(self,"PICKED ACTOR  ="  
                                       @ PickedActor @ ", HitLocation = "  
                                       @ HitLocation @ ", Zone Touched = "  
                                       @ Zone); 
    } 
    else 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 2:  UnrealScript Overview 49 

    if(EventType == ZoneEvent_Update) 
    { 
    } 
    else 
    if (EventType == ZoneEvent_UnTouch) 
    { 
    } 
    return retval; 
} 

5. Add the SetupZones() function to the file. The SetupZones function sets 

the SwipeZoneCallback as the function that handles touch input 

processing.  

function SetupZones() 
{ 
    Super.SetupZones(); 
    // If we have a game class, configure the zones 
    if (MPI != None && WorldInfo.GRI.GameClass != none)  
    { 
        LocalPlayer(Player).ViewportClient.GetViewportSize(ViewportSize); 
        if (FreeLookZone != none) 
        { 
            FreeLookZone.OnProcessInputDelegate = SwipeZoneCallback; 
        } 
    } 
} 

6. Add the defaultproperties block to the file. Here the PickDistance 

variable is set by default to 10000. 

defaultproperties 
{ 
    PickDistance = 10000; 
} 

7. Save this file. 

Settting up the Game Type Configuration 
Now we need to set up the configuration to compile and run our game. First you need to 
modify the UDKEngine.ini file located in the UDKGame\Config under your UDK 
installation. 

1. Under the UnrealEd.EditorEngine section add in the following line to 

allow our new code to be added to the compile list 

UDKEngine.ini 
[UnrealEd.EditorEngine] 
ModEditPackages=ExampleCh2 

2. Next we need to set up the mobile virtual joystick controls and touch 

screen input. In the same configuration directory add the following line 

to your Mobile-UDKGame.ini file. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 2:  UnrealScript Overview 50 

Mobile-UDKGame.ini 
[ExampleCh2.ExampleCh2Game] 

RequiredMobileInputConfigs=(GroupName="UberGroup",RequireZoneNames=("UberStickMoveZone",
"UberStickLookZone","UberLookZone")); 

NOTE: You can set up a general set of configurations here for the rest of the chapters by making new 

entries for other chapters if you wish. However, some chapters will contain multiple examples and will 

require a configuration entry for each example. We will show you the details on how to set up these 

configurations in the hands-on examples in the rest of the book.  

Next, we need to compile our script. Bring up the Unreal Frontend and select Compile 
scripts to compile our code. After the code successfully compiles then we are ready to 
start up the Unreal Editor.  

Running the Game Type  
Starting in the June version of the UDK you can select and save the game type you want 
associated with a level and play this level in the Mobile Previewer from the Editor.  

1. Start up the Unreal Editor. 

2. Select the World Properties menu item under the View Menu. This 

should bring up the WorldInfo Properties window shown in Figure 2–7. 

 

Figure 2–7. Setting the Game Type in the Unreal Editor 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 2:  UnrealScript Overview 51 

3. Under the Game Type property set the Default Game Type to 

ExampleCh2Game from the drop-down list box.  

4. Close the WorldInfo Properties window. 

5. Under the Play menu select On Mobile Previewer. This should start up 

the Mobile Previewer with your level using the new game type 

ExampleCh2Game (see Figure 2–8). 

 

Figure 2–8. ExampleCh2Game for our first hands-on example 

Both the joysticks should be working. The right stick should turn the player left and right 
and move the view up and down. The left stick should move the player forward and 
back and side to side. You should be able to use your mouse to click on various static 
meshes and the Actor name, hitlocation, and zone should be printed out on the screen. 
An Actor name of None means that no Actor was selected. For now, ignore the message 
about the lighting needing to be rebuilt since this does not affect the gameplay. 

Summary 
In this chapter we took a brief tour of the UnrealScript language giving readers a basic 
working knowledge of it and saving the details for later chapters. We also took a look at 
Kismet and Matinee again saving the details for later chapters. Finally, a detailed hands-
on tutorial was provided that pulled all this information and concepts together in an 
applied manner in the form of a working UDK Mobile based application where the user 
can pick actors by clicking on them through the Mobile Previewer. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


 
53 

   Chapter 

Player Controllers, 
Pawns, and Weapons 
This chapter will cover player controllers, the player’s pawn, and weapons. A pawn in 

the UDK represents the physical presence of a player or a computer controlled game 

character. Think of this as the player’s body in the game. The player controller controls 

the pawn and translates player input into pawn movement and other actions. 

Information regarding these topics is presented followed by tutorials. You will find out 

how to:   

 Use the PlayerController and Pawn classes 

 Make a pawn visible using a skeletal mesh 

 Use camera views 

 Set and change your pawns’ views   

 Use the Weapon and related classes  

 Add weapons to pawns from different views  

Player Controller and Pawn Overview 
The player input system within the UDK is divided between the player controller and the 

pawn. The pawn represents the player’s physical presence in the game. When you need 

to find the player’s location, or rotation you will need to find the location or rotation of 

the player’s pawn. The player controller takes input from the player, processes this input 

and translates them into movement for the pawn it controls.   

All player controllers must derive from the PlayerController class and all pawns must 

derive from the Pawn class. For programming on the iOS platform the SimplePC class can 

be used for the base for custom player controllers and SimplePawn can be used as the 

base for custom pawns. The advantage of using the SimplePC class as the base of your 

custom player controller is that this class already has set up joystick and touch input 

3 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 3:  Player Controllers, Pawns, and Weapons 54 

zones as well as some other features like footstep sounds and simulated player 

breathing through camera motion.  The advantage of using the SimplePawn is that it 

features “head bobbing” which makes the camera move up and down as the player 

walks around.  This makes the player’s view more realistic.  Head bobbing is done by 

setting the bScriptTickSpecial=true which is the default value in SimplePawn. The 

actual head bobbing is done in the TickSpecial() function in the SimplePawn class. To 

turn head bobbing off, set bScriptTickSpecial=false in a derived pawn class. The main 

update function for the PlayerController class is PlayerTick(), which is called at 

regular intervals, or “ticked” once per frame update of the game.   

Here you can add in custom code to handle items unique to your particular game. For 

example, if a goal in your game is to retrieve a certain item then you can check for the 

player’s possessions for this item in PlayerTick(). The way you would do this is 

override the PlayerTick() function in your custom player controller, execute the normal 

PlayerTick() function through the Super prefix and then execute your custom code 

afterwards. See Listing 3–1.  

Listing 3–1. Customizing the PlayerTick() function 

function PlayerTick(float DeltaTime) 
{ 
    Super.PlayerTick(DeltaTime); 
    // Add in additional code here for your custom player controller 
    If (Jazz3Pawn(Pawn).Lives <= 0) 
    { 
        Gameover = true; 
    } 
} 

The modified PlayerTick() function checks if the player’s has more lives and if not then 

sets the Gameover variable to true. 

The PlayerMove() function is called every time PlayerTick() is called and calculates 

new acceleration and rotation values for the player. This function then calls 

ProcessMove() which then executes the actual move. It is in the ProcessMove() function 

that we can change how the player’s pawn responds to the player’s movement input. 

For example, in your custom controller class if you declared a function ProcessMove() 

that is defined in the PlayerWalking state then this new function will override the default 

ProcessMove() function. 

state PlayerWalking 
{ 
    ignores SeePlayer, HearNoise, Bump; 
    function ProcessMove(float DeltaTime,  
                          vector NewAccel,  
                          eDoubleClickDir DoubleClickMove, 
                          rotator DeltaRot) 
    { 
         // Place custom code for player movement here to override the default 
    } 
} 

The UpdateRotation() function is responsible for updating the controller’s rotation and 

the pawn’s rotation. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 3:  Player Controllers, Pawns, and Weapons 55 

Hands-on Example: Making your pawn visible with a 
3D skeletal mesh character 
This tutorial will show you how to add in a skeletal mesh to your pawn to make it visible. 

We start off by creating a new game type and a new custom player controller. This game 

type will use the first-person viewpoint. Next, we configure the new custom game to run 

on the UDK mobile previewer and show you how to run it. Finally, we add a skeletal 

mesh to the player’s pawn to make the pawn visible. 

Creating the Default First-Person View 
In this section you will create a new game type that uses the default first-person 

viewpoint. This section introduces the basic framework from which we will build on for 

future examples. 

1. The first thing you need to do is create a directory for our next example. In your 

UDK installation directory create the following folder, 

\Development\Src\ExampleCh31\Classes. As before you will put your code into 

this new Classes directory. (Note that the general numbering scheme for these 

examples is “ExampleCh” followed by the chapter number and then an example 

number if there is more than one.) 

2. The first class you need to create is the ExampleCh31Game class that defines the 

type of game to be played. See Listing 3–2. 

Listing 3–2. Defining the Game Type  

class ExampleCh31Game extends FrameworkGame; 
 
event OnEngineHasLoaded() 
{ 
    WorldInfo.Game.Broadcast(self,"ExampleCh31Game Type Active - Engine Has Loaded 
!!!!"); 
} 
function bool PreventDeath(Pawn KilledPawn, Controller Killer, class<DamageType> 
DamageType, vector HitLocation) 
{ 
    return true; 
} 
static event class<GameInfo> SetGameType(string MapName, string Options, string Portal) 
{ 
    return super.SetGameType(MapName, Options, Portal); 
} 
defaultproperties 
{ 
    PlayerControllerClass=class'ExampleCh31.ExampleCh31PC' 
    DefaultPawnClass=class'SimplePawn' 
    HUDType=class'UDKBase.UDKHUD' 
 
    bRestartLevel=false 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 3:  Player Controllers, Pawns, and Weapons 56 

    bWaitingToStartMatch=true 
    bDelayedStart=false 
} 

3. The next class is the custom player controller class ExampleCh31PC. This player 

controller is stripped to the bare essentials. See Listing 3–3. 

Listing 3–3. Creating a basic player controller 

class ExampleCh31PC extends SimplePC; 
 
function bool SwipeZoneCallback(MobileInputZone Zone,  
                                float DeltaTime,  
                                int Handle, 
                                EZoneTouchEvent EventType,  
                                Vector2D TouchLocation) 
{  
    local bool retval = true; 
  
     
 
    if (EventType == ZoneEvent_Touch) 
    { 
        WorldInfo.Game.Broadcast(self,"You touched the screen at = "  
                                       @ TouchLocation.x @ " , "  
                                       @ TouchLocation.y @ ", Zone Touched = "  
                                       @ Zone); 
    } 
 
     
    else if(EventType == ZoneEvent_Update) 
    { 
    } 
     
 
    else if (EventType == ZoneEvent_UnTouch) 
    { 
    } 
    return retval; 
} 
 
function SetupZones() 
{ 
    Super.SetupZones(); 
 
    // If we have a game class, configure the zones 
    if (MPI != None && WorldInfo.GRI.GameClass != none)  
    { 
        LocalPlayer(Player).ViewportClient.GetViewportSize(ViewportSize); 
        if (FreeLookZone != none) 
        { 
            FreeLookZone.OnProcessInputDelegate = SwipeZoneCallback; 
        }  
    } 
} 
defaultproperties 
{ 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 3:  Player Controllers, Pawns, and Weapons 57 

} 

4. Next you need to set up the game and compiler for our new example. Edit the 

Mobile-UDKGame.ini and UDKEngine.ini files in your UDKGame\Config directory. 

Mobile-UDKGame.ini 
[ExampleCh31.ExampleCh31Game] 
RequiredMobileInputConfigs=(GroupName="UberGroup",RequireZoneNames=("UberStickMoveZone",
"UberStickLookZone","UberLookZone")) 
UDKEngine.ini  
[UnrealEd.EditorEngine] 
ModEditPackages=ExampleCh31 

5. Now compile the code using the Unreal Frontend. 

6. Start up the Unreal Editor and change the Default Game Type to 

ExampleCh31Game.  Do this by selecting View  World Properties to bring up the 

World Properties window and setting the Default Game Type property under the 

Game Type category. 

7. Run the game on the Mobile Previewer by selecting Play  On Mobile Previewer from 

the main menu and you should see something like the following in Figure 3–1. 

 

Figure 3–1. Default First-Person View 

You should note that by default the player’s pawn is invisible. The reason for this is that 

there is no mesh associated with the pawn. You will add that next.  

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 3:  Player Controllers, Pawns, and Weapons 58 

Adding a Skeletal Mesh to represent your pawn 
In order to make the player’s pawn visible we can add in a skeletal mesh that would 

move around with the player’s pawn and be animated to represent the player’s walking. 

You need to create a new class called Jazz1Pawn and the associated file Jazz1Pawn.uc. 

See Listing 3–4. 

Listing 3–4. Creating a visible pawn 

class Jazz1Pawn extends SimplePawn; 

defaultproperties 
{ 
    Begin Object Class=SkeletalMeshComponent Name=JazzMesh      
        SkeletalMesh=SkeletalMesh'KismetGame_Assets.Anims.SK_Jazz' 
        AnimSets(0)=AnimSet'KismetGame_Assets.Anims.SK_Jazz_Anims' 
        AnimTreeTemplate=AnimTree'KismetGame_Assets.Anims.Jazz_AnimTree' 
        BlockRigidBody=true 
        CollideActors=true 
    End Object 
    Mesh = JazzMesh; // Set The mesh for this object 
    Components.Add(JazzMesh); // Attach this mesh to this Actor 
} 

In the default properties a new SkeletalMeshComponent is defined and named JazzMesh. 

This is added to the object’s Components array which attaches this mesh to the object’s 

position and rotation. The pawn’s Mesh variable is also set to the new 

SkeletalMeshComponent. 

JazzMesh is defined by setting the key variables of SkeletalMesh, AnimSets, and 

AnimTreeTemplate to point to assets in the UDK system. These assets are visible from 

within the Content Browser.  

NOTE:   To find the skeletal mesh used here search for a Skeletal Mesh called “sk_jazz” in the 
Content Browser under the UDKGame package.  You should see a skeletal mesh character called 

“SK_JAZZ”. You can double-click on this asset to bring it up in the AnimSet Editor if you desire. 
You can also right-click on this asset and select Copy Full Name to ClipBoard to copy this asset’s 
name for use in your script code. Do this now and bring up a plain text editor like NotePad and 

paste the text. You should see the following text:  

SkeletalMesh'KismetGame_Assets.Anims.SK_Jazz 

In the defaultproperties block of the ExampleCh31Game class change the 

DefaultPawnClass to point to our new pawn class Jazz1Pawn as shown below. 

//DefaultPawnClass=class'SimplePawn' 
DefaultPawnClass=class'Jazz1Pawn' 

Recompile the code and run the game using the ExampleCh31Game game type. You 

should see a skeletal mesh however at the same time it blocks your view like in Figure 3–2. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 3:  Player Controllers, Pawns, and Weapons 59 

 

Figure 3–2. Player’s default view with a skeletal mesh attached to the player’s pawn 

Obviously, this is not acceptable. By default the position of the camera that represents 

the player’s view is set directly at the pawn’s location. The skeletal mesh is also set at 

the pawn location. This overlapping explains this blocked view. 

The solution is to move the player’s view backward so that the full skeletal mesh can be 

viewed and so that the player’s view of the game is not obstructed. In order to do this 

we must move the camera further away from the pawn. 

UDK Camera Overview 
The camera system in the UDK involves the camera, the player controller, and the pawn 

that is controlled by the player controller. These three elements interact to move and 

rotate the player’s pawn and the player’s view of the world. The way this works is that 

there are functions in these classes that can be overridden by the programmer to 

change things like the camera position, camera rotation, or the way the player moves. 

Changing the camera view from a first-person view to a third-person view where your 

pawn is visible is easily done. You just need to override a function in the Pawn class.  

The player controller takes in user input and then translates this into movement and 

rotation for its pawn. As discussed in the section on player controllers the functions 

ProcessMove() and UpdateRotation() can be overridden in a custom player controller 

class derived from PlayerController to provide custom movements and rotations 

needed for a specific camera view.  Most importantly, the pawn has a function to set the 

camera’s location and rotation called CalcCamera(). In the following tutorials we will use 

this function to change the camera views of our pawn.   

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 3:  Player Controllers, Pawns, and Weapons 60 

In our player’s pawn class we would override the CalcCamera() function with our own 

custom function where we can set the camera location and rotation based on our 

pawn’s location, rotation, and the kind of camera view we desire. You can set the actual 

camera location through the out_CamLoc variable and the camera rotation through the 

out_CamRot variable. Both parameters are declared with the specifier out, which means 

that setting the value of the variable in the function sets the value of the variable in the 

caller function.   

simulated function bool CalcCamera( float fDeltaTime,  
                                    out vector out_CamLoc,  
                                    out rotator out_CamRot,  
                                    out float out_FOV ) 
{ 
    // Put in custom code here to control the camera. 
} 

Hands-on Example: Changing the view of your pawn.  
In this tutorial we will show how you can change the view of your pawn so you are able 

to see it. What we are going to do is override the CalcCamera() function in your custom 

pawn class to position and rotate the camera to get our desired view. 

What you need to do is add some code to your Jazz1Pawn class from ExampleCh31. See 

Listing 3–5. 

NOTE: The Jazz1Pawn class is located in the file Jazz1Pawn.uc. Remember that all UnrealScript 

classes must have filenames that match the class and have a .uc extension.    

Listing 3–5. Modifying the Jazz1Pawn for a third-person view 

class Jazz1Pawn extends SimplePawn; 
 
var float CamOffsetDistance; 
var  int CamAngle;  
 
// Third Person 
simulated function bool CalcCamera( float fDeltaTime, out vector out_CamLoc, out rotator 
out_CamRot, out float out_FOV ) 
{ 
    local vector BackVector; 
    local vector UpVector; 
 
    local float  CamDistanceHorizontal; 
    local float  CamDistanceVertical; 
 
    // Set Camera Location 
    CamDistanceHorizontal = CamOffsetDistance * cos(CamAngle * UnrRotToRad); 
    CamDistanceVertical   = CamOffsetDistance * sin(CamAngle * UnrRotToRad); 
  
    BackVector = -Normal(Vector(Rotation)) * CamDistanceHorizontal; 
    UpVector   =  vect(0,0,1) * CamDistanceVertical; 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 3:  Player Controllers, Pawns, and Weapons 61 

 
    out_CamLoc = Location + BackVector + UpVector; 
 
    // Set Camera Rotation 
    out_CamRot.pitch = -CamAngle; 
    out_CamRot.yaw   = Rotation.yaw; 
    out_CamRot.roll  = Rotation.roll; 
 
    return true; 
} 
 
defaultproperties 
{ 
    Begin Object Class=SkeletalMeshComponent Name=JazzMesh      
        SkeletalMesh=SkeletalMesh'KismetGame_Assets.Anims.SK_Jazz' 
        AnimSets(0)=AnimSet'KismetGame_Assets.Anims.SK_Jazz_Anims' 
        AnimTreeTemplate=AnimTree'KismetGame_Assets.Anims.Jazz_AnimTree' 
        BlockRigidBody=true 
        CollideActors=true 
    End Object 
    Mesh = JazzMesh; // Set The mesh for this object 
    Components.Add(JazzMesh); // Attach this mesh to this Actor 
    
    CamAngle=3000; 
    CamOffsetDistance= 484.0 
} 

The main addition is the function CalcCamera() which actually sets the camera location 

and rotation. The function does this through the function parameters out_CamLoc, and 

out_CamRot. These parameters are declared as out which means that when you set the 

values of out_CamLoc or out_CamRot these values are set in the variables that are used to 

call this function. By doing this a function can return many values at once to the caller.   

The variable CamOffsetDistance holds the distance from the pawn to the camera. The 

variable CamAngle holds the angle the camera will make with the pawn.  The angle is 

measured in Unreal Rotation units. In Unreal Rotation units PI which is 180 degrees or 
half a circle is approximately 32000. See Chapter 8 on 3D Math for more information. 

The variable CamDistanceHorizontal determines the horizontal distance to the camera 

from the pawn. The variable CamDistanceVertical determines the vertical distance to the 

camera from the pawn. 

The variable BackVector calculates the vector behind the pawn that is horizontally 

CamDistanceHorizontal distance away. The variable UpVector calculates the vector that 

is vertically CamDistanceVertical distance upward. Vectors are discussed in more detail 

later in this book in Chapter 8. 

The variable out_CamRot.pitch controls the up and down tilt of the camera which is set 

to the CamAngle. 

Recompile the code and run the program using the ExampleCh31Game game type and 

you should see something like Figure 3–3. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 3:  Player Controllers, Pawns, and Weapons 62 

 

Figure 3–3. Third-Person View Behind Pawn 

By playing around with the camera settings in the CalcCamera() function you can easily 

create other custom camera views such as a top down camera view. For a top down 

camera view just fix the camera location to a point above the pawn and fix the camera 

rotation to point downward toward the pawn.   

For example, the code in Listing 3–6 sets the camera to a top-down view of the pawn. 

Listing 3–6. CalcCamera function for a top-down view  

simulated function bool CalcCamera( float fDeltaTime,  
                                    out vector out_CamLoc,  
                                    out rotator out_CamRot,  
                                    out float out_FOV ) 
{ 
    out_CamLoc = Location; 
    out_CamLoc.Z += CamOffsetDistance; 
 
    if(!bFollowPlayerRotation) 
    { 
        out_CamRot.Pitch = -16384; 
        out_CamRot.Yaw = 0; 
        out_CamRot.Roll = 0; 
    } 
    else 
    { 
        out_CamRot.Pitch = -16384; 
        out_CamRot.Yaw = Rotation.Yaw; 
        out_CamRot.Roll = 0; 
    } 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 3:  Player Controllers, Pawns, and Weapons 63 

    return true; 
} 

The out_CamLoc.Z value sets the height of the camera. The out_CamRot.Yaw value sets 

the rotation of the camera to follow or not follow the rotation of the camera depending 

on the value of bFollowPlayerRotation. 

UDK Weapons Overview 
Using weapons in the UDK system involves the InventoryManager class, Inventory 

class, and the Weapon class. Weapons are actually inventory items derived from the 

Inventory class and held as inventory items within a player’s pawn. 

Inventory Manager 
Each pawn has its own inventory manager that contains links to that pawn’s particular 

inventory. In the pawn class you have the InvManager variable that holds the inventory 

manager.  

var class<InventoryManager> InventoryManagerClass; 
var repnotify InventoryManager InvManager; 

The InventoryManagerClass holds the exact class to be used for the InvManager and is 

set in the defaultproperties block. Thus, you can create your own custom inventory 

manager classes and set them in your custom pawn in the pawn’s defaultproperties 

block. 

InventoryManagerClass=class'InventoryManager' 

Weapon Types 
In terms of weapon types the Weapon class supports three different types of weapons 

defined by the enumeration EweaponFireType. The three different types are: 

 EWFT_InstantHit: This weapon type causes immediate damage to the object that 

is in the weapon’s gun sights. 

 EWFT_Projectile: The weapon type spawns a projectile and launches it. 

 EWFT_Custom: This weapon type requires custom code to handle the firing 

sequence. 

 

enum EWeaponFireType 
{ 
    EWFT_InstantHit, 
    EWFT_Projectile, 
    EWFT_Custom, 
    EWFT_None 
}; 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 3:  Player Controllers, Pawns, and Weapons 64 

In terms of actually firing weapons, the FireAmmunition() function in the Weapon class 

can be called on the weapon in order to get it to fire. This function can be used for all 

types of weapons including instant hit, projectile, and custom weapons. This function 

also processes ammo consumption. See Listing 3–7. 

Listing 3–7. Firing your weapon’s ammunition 

simulated function FireAmmunition() 
{ 
    // Use ammunition to fire 
    ConsumeAmmo( CurrentFireMode ); 
 
    // Handle the different fire types 
    switch( WeaponFireTypes[CurrentFireMode] ) 
    { 
        case EWFT_InstantHit: 
            InstantFire(); 
        break; 
 
        case EWFT_Projectile: 
             ProjectileFire(); 
        break; 
 
        case EWFT_Custom: 
             CustomFire(); 
        break; 
    } 
    NotifyWeaponFired( CurrentFireMode ); 
} 

For weapons that fire projectiles you are able to fully customize the actual projectile. The 

class Projectile is used to define the basic projectile. You can create custom 

projectiles by subclassing this and creating your own class that derives from 

Projectile. 

Weapon States 
The Weapon class defines several different states. UnrealScript has built in support for the 

concept of states. A state is defined by the state keyword and its basic structure is 

similar to the following. An example of a state is the Active state in the Weapon class. See 

Listing 3–8. 

Listing 3–8. The Weapon class’s Active state 

simulated state Active 
{ 
    /** Initialize the weapon as being active and ready to go. */ 
    simulated event BeginState(Name PreviousStateName) 
    { 
        local int i; 
 
        // Cache a reference to the AI controller 
        if (Role == ROLE_Authority) 
        { 
            CacheAIController(); 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 3:  Player Controllers, Pawns, and Weapons 65 

        } 
 
        // Check to see if we need to go down 
        if( bWeaponPutDown ) 
        { 
            `LogInv("Weapon put down requested during transition, put it down now"); 
            PutDownWeapon(); 
        } 
        else if ( !HasAnyAmmo() ) 
        { 
            WeaponEmpty(); 
        } 
        else 
        { 
             // if either of the fire modes are pending, perform them 
            for( i=0; i<GetPendingFireLength(); i++ ) 
           { 
                if( PendingFire(i) ) 
               { 
                   BeginFire(i); 
                   break; 
               } 
            } 
        } 
    } 
 
    /** Override BeginFire so that it will enter the firing state right away. */ 
    simulated function BeginFire(byte FireModeNum) 
    { 
        if( !bDeleteMe && Instigator != None ) 
       { 
           Global.BeginFire(FireModeNum); 
 
            // in the active state, fire right away if we have the ammunition 
           if( PendingFire(FireModeNum) && HasAmmo(FireModeNum) ) 
          { 
            SendToFiringState(FireModeNum); 
          } 
        } 
    } 
 
    /** 
ReadyToFire() called by NPC firing weapon. bFinished should only be true if called from 
the Finished() function 
    */ 
 
    simulated function bool ReadyToFire(bool bFinished) 
    { 
        return true; 
    } 
 
    /** Activate() ignored since already active 
    */ 
    simulated function Activate() 
    { 
    } 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 3:  Player Controllers, Pawns, and Weapons 66 

 
    /** 
     * Put the weapon down 
     */ 
    simulated function bool TryPutDown() 
    { 
        PutDownWeapon(); 
        return TRUE; 
    } 
} 

For example, when the weapon is in the Active state it has access to a certain set of 

functions unique to the Active state such as a custom BeginFire() function. The Weapon 

class can switch from one state to another through the GotoState('StateName') 
command. It also has built in functions BeginState() that is executed when the state is 

first entered and EndState() that is executed just before leaving the state. States are 

covered more in depth later in this book. Specifically, more coverage and examples of 

how to use states are given in Chapters 5, 7, 8, 10, 11, and 12. 

Some important states in the Weapon class are as follows: 

 Inactive: Weapon can not be fired and is not in use. 

 Active: Weapon is being held by the pawn and is in use and can be 

fired. 

 WeaponFiring: Weapon is being held by the pawn and is being fired. 

 WeaponEquipping: Weapon is in this state when moving from the 

Inactive state to the Active state. Weapon selection animations 

should be done in this state. Weapon can not be fired when in this 

state. 

 WeaponPuttingDown: Weapon is in the state where it is being put down 

and is moving to the Inactive state. Any weapon deactivation 

animations should be played in this state. 

Weapon Selection  
To activate a weapon from your inventory call the SetCurrentWeapon(Weapon 
DesiredWeapon) function on your inventory manger with the desired weapon. If you have 

a weapon active and it is different from the new weapon then the pawn will try to put the 

current weapon down by calling the weapon’s TryPutdown() function. The weapon is 

then put into the WeaponPuttingDown state and then moved into the Inactive state. Then 

from there the inventory manager’s ChangedWeapon() function is called. 

If the pawn has no weapon currently active then the pawn will switch to the target 

weapon and activate it for use by calling ChangedWeapon(). This function will then call the 

weapon’s Activate() function. The Activate() function puts the weapon into the 

WeaponEquipping state which leads to the Active state where the weapon is fully 

operational and ready to fire. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 3:  Player Controllers, Pawns, and Weapons 67 

For example, to set MainGun as the current weapon you would use the following line of 

code in your pawn class. 

InvManager.SetCurrentWeapon(Weapon(MainGun)); 

Weapon Firing 
The weapon firing sequence for a player starts in the PlayerController class’s 

StartFire() function. The StartFire() function associated with the controller’s pawn is 

then called. In the Pawn class the StartFire() function associated with the pawn’s 

current weapon is called. The weapon’s StartFire() function calls the BeginFire() 

function which calls the SetPendingFire() function which sets the PendingFire variable 

array in the InventoryManager class to indicate that the weapon needs to fire. If the 

weapon is in the Active state then the SendToFiringState() function is also called. If the 

FiringStatesArray contains a valid weapon state for the requested FireMode then this 

state will be transitioned to using the command: 

GotoState ( FiringStatesArray[FireModeNum] )  

The default state for handling the actual firing of the weapon is the WeaponFiring state.   

The WeaponFiring state then calls the FireAmmunition() function where the weapon is 

actually fired based on the type of weapon such instant hit, projectile or custom. To stop 

the weapon from firing you must call the StopFire() function. 

On the iOS platform you can put the weapon firing code in the SwipezoneCallback() 

function in the player controller as shown in Listing 3–9. 

Listing 3–9. Firing a Weapon from the player controller on iOS 

function bool SwipeZoneCallback(MobileInputZone Zone,  
                                float DeltaTime,  
                                int Handle, 
                                EZoneTouchEvent EventType,  
                                Vector2D TouchLocation) 
{  
    local bool retval; 
   
    retval = true; 
    if (EventType == ZoneEvent_Touch) 
    { 
        // Start Firing pawn's weapon 
        StartFire(0); 
    } 
    else 
    if(EventType == ZoneEvent_Update) 
    {  
    }   
    else 
    if (EventType == ZoneEvent_UnTouch) 
    {  
        // Stop Firing Pawn's weapon 
        StopFire(0); 
    } 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 3:  Player Controllers, Pawns, and Weapons 68 

    return retval; 
} 

In the above example the player’s pawn starts firing when the user touches the screen 

and stops firing when the user lifts his finger. 

Hands-on Example: Adding a weapon to your pawn  
In this tutorial we will be adding a weapon to the pawn from the last tutorial. The weapon 

will be a custom class derived from the Weapon class and fire a custom projectile that is 

derived from the Projectile class. We will also be creating a new InventoryManager 

class to manage this new weapon. Finally, in order to use this weapon we will need to 

modify the player controller and add code that will actually fire the weapon. 

Creating the Weapon 
Create a new file called “JazzWeapon1.uc” with the following code. The new class 

JazzWeapon1 is our custom weapon.   

We are going to add to the code from the previous example so all code for this example 

will go to the Classes directory at:   

C:\UDK\UDK-2011-06\Development\Src\ExampleCh31 

See Listing 3–10 for the JazzWeapon1 code.   

Listing 3–10. Creating a Weapon 

class JazzWeapon1 extends Weapon; 

defaultproperties 
{     
    Begin Object Class=SkeletalMeshComponent Name=FirstPersonMesh 
        SkeletalMesh=SkeletalMesh'KismetGame_Assets.Anims.SK_JazzGun' 
    End Object 
    Mesh=FirstPersonMesh 
    Components.Add(FirstPersonMesh); 

    Begin Object Class=SkeletalMeshComponent Name=PickupMesh 
        SkeletalMesh=SkeletalMesh'KismetGame_Assets.Anims.SK_JazzGun' 
    End Object 
    DroppedPickupMesh=PickupMesh 
    PickupFactoryMesh=PickupMesh 

    WeaponFireTypes(0)=EWFT_Projectile 
    WeaponFireTypes(1)=EWFT_NONE 
   
    WeaponProjectiles(0)=class'JazzBullet1'   
    WeaponProjectiles(1)=class'JazzBullet1'    
  
    FiringStatesArray(0)=WeaponFiring  
    FireInterval(0)=0.25 
    Spread(0)=0 
} 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 3:  Player Controllers, Pawns, and Weapons 69 

The actual gun mesh is created as a SkeletalMeshComponent and assigned to the 

Weapon’s Mesh variable and added to this object’s location and rotation through the 

Components array. 

Next a pickup mesh is defined which is the mesh that is placed into the world when the 

weapon is dropped by the holder. 

Weapon fire types are defined by the WeaponFireTypes array in the Weapon class.  For fire 

mode 0 we define the type of weapon that is to be fired as a projectile weapon. 

WeaponFireTypes(0)=EWFT_Projectile 

If the type of weapon to be used is a Projectile weapon then we need to specify the 

specific sub class of Projectile to use. For firemode 0 we choose the JazzBullet1 

class.     

WeaponProjectiles(0)=class'JazzBullet1'   

The FiringStatesArray holds the state the weapon transitions to when actually firing. 

The weapon that uses firing mode 0 is set to the default firing state of WeaponFiring.  

FiringStatesArray(0)=WeaponFiring  

The FireInterval array holds the how long a shot takes for a specific fire mode. The 

length that a shot takes for firemode 0 is 0.25 seconds. 

FireInterval(0)=0.25 

The Spread refers to how much of a distance there is between shots. 

Spread(0)=0 
 

The following Figure 3–4 is a preview of our final working weapon JazzWeapon1. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 3:  Player Controllers, Pawns, and Weapons 70 

 

Figure 3–4. Preview of your pawn holding our custom weapon 

Creating the Bullets for the Weapon 
Next we need to create a new file “JazzBullet1.uc” for our custom projectile (shown in 

Listing 3–11). Create this file and enter the following code into it and save it like you did 

before with our custom weapon class. The directory to save this new source file under 

would be:  

C:\UDK\UDK-2011-06\Development\Src\ExampleCh31\Classes 

Listing 3–11. JazzBullet1 weapon projectile 

class JazzBullet1 extends Projectile; 
 
simulated function Explode(vector HitLocation, vector HitNormal) 
{ 
} 
 
function Init( Vector Direction ) 
{ 
    local  vector NewDir; 
 
    NewDir = Normal(Vector(InstigatorController.Pawn.Rotation)); 
    Velocity = Speed * NewDir;  
} 
 
defaultproperties 
{ 
    Begin Object Class=StaticMeshComponent Name=Bullet 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 3:  Player Controllers, Pawns, and Weapons 71 

        StaticMesh=StaticMesh'EngineMeshes.Sphere'  
        Scale3D=(X=0.050000,Y=0.050000,Z=0.05000) 
    End Object 
    Components.Add(Bullet) 
  
    Begin Object Class=ParticleSystemComponent  Name=BulletTrail 
        Template=ParticleSystem'Castle_Assets.FX.P_FX_Fire_SubUV_01' 
    End Object 
    Components.Add(BulletTrail) 
  
    MaxSpeed=+05000.000000 
    Speed=+05000.000000 
} 

The Explode() function is overridden because we want the projectile to stay around for 

awhile and demonstrate how we can attach a particle emitter to a projectile for special 

effects. 

The Init() function is called after the projectile is created and sets its starting direction 

and speed. Here we need to override it to set the direction it is firing to point in the 

direction the pawn is facing.   

The actual mesh for the bullet is a StaticMeshComponent named Bullet. Here we set the 

Scale3D variable to shrink the mesh in size before it is placed into the world.   

We also attach a particle emitter which is a ParticleSystemComponent named 

BulletTrail to this projectile. The actual name of the particle emitter is assigned to the 

Template variable. Particle emitters can be viewed in the Content Browser and viewed in 

Unreal Cascade. 

The MaxSpeed variable is set to a new maximum speed from the default value. The Speed 

variable is also set to a new value from the default.  

Creating the Custom Inventory Manager 
Next we need to create a custom inventory manager. See Listing 3–12.  

Listing 3–12. WeaponsIM1 class 

class WeaponsIM1 extends InventoryManager; 
 
defaultproperties 
{ 
    PendingFire(0)=0 
    PendingFire(1)=0 
} 

The reason we need to do this is because we need to create entries for the PendingFire 

array that holds the fire status of your weapon. By default this array is empty. You need 

to create these entries so that they can be set when the weapon is ready to fire.  

Modifying the Player’s PawnNow you need to make some changes to your custom 

Pawn from the last example Jazz1Pawn. See Listing 3–13.   

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 3:  Player Controllers, Pawns, and Weapons 72 

Listing 3–13. Jazz1Pawn class 

class Jazz1Pawn extends SimplePawn; 
 
var float CamOffsetDistance; 
var int CamAngle;  
var Inventory MainGun; 
 
simulated singular event Rotator GetBaseAimRotation() 
{ 
   local rotator TempRot; 
 
   TempRot = Rotation; 
   TempRot.Pitch = 0; 
   SetRotation(TempRot); 
   
   return TempRot; 
}    
 
function AddGunToSocket(Name SocketName) 
{ 
    local Vector SocketLocation; 
    local Rotator SocketRotation; 
 
    if (Mesh != None) 
    { 
        if (Mesh.GetSocketByName(SocketName) != None) 
       { 
            Mesh.GetSocketWorldLocationAndRotation(SocketName, SocketLocation, 
SocketRotation); 
            MainGun.SetRotation(SocketRotation); 
            MainGun.SetBase(Self,, Mesh, SocketName); 
        } 
        else 
        { 
            WorldInfo.Game.Broadcast(self,"!!!!!!SOCKET NAME NOT FOUND!!!!!"); 
         } 
    } 
    else 
    { 
        WorldInfo.Game.Broadcast(self,"!!!!!!MESH NOT FOUND!!!!!"); 
    } 
} 
 
function AddDefaultInventory() 
{  
    MainGun = InvManager.CreateInventory(class'JazzWeapon1'); 
    MainGun.SetHidden(false); 
    AddGunToSocket('Weapon_R'); 
    Weapon(MainGun).FireOffset = vect(0,0,-70); 
} 
 
/////////////////////////////// Third Person View //////////////////////////////////// 
simulated function bool CalcCamera( float fDeltaTime, out vector out_CamLoc, out rotator 
out_CamRot, out float out_FOV ) 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 3:  Player Controllers, Pawns, and Weapons 73 

{ 
    local vector BackVector; 
    local vector UpVector; 
 
    local float  CamDistanceHorizontal; 
    local float  CamDistanceVertical; 
 
    // Set Camera Location 
    CamDistanceHorizontal = CamOffsetDistance * cos(CamAngle * UnrRotToRad); 
    CamDistanceVertical   = CamOffsetDistance * sin(CamAngle * UnrRotToRad); 
  
    BackVector = -Normal(Vector(Rotation)) * CamDistanceHorizontal; 
    UpVector = vect(0,0,1) * CamDistanceVertical; 
 
    out_CamLoc = Location + BackVector + UpVector; 
 
    // Set Camera Rotation 
    out_CamRot.pitch = -CamAngle; 
    out_CamRot.yaw   = Rotation.yaw; 
    out_CamRot.roll  = Rotation.roll; 
 
    return true; 
} 
 
defaultproperties 
{ 
    Begin Object Class=SkeletalMeshComponent Name=JazzMesh      
        SkeletalMesh=SkeletalMesh'KismetGame_Assets.Anims.SK_Jazz' 
        AnimSets(0)=AnimSet'KismetGame_Assets.Anims.SK_Jazz_Anims' 
        AnimTreeTemplate=AnimTree'KismetGame_Assets.Anims.Jazz_AnimTree' 
        BlockRigidBody=true 
        CollideActors=true 
    End Object 
 
    Mesh = JazzMesh; // Set The mesh for this object 
    Components.Add(JazzMesh); // Attach this mesh to this Actor 
  
    CamAngle=3000; 
    CamOffsetDistance= 484.0 
 
    InventoryManagerClass=class'WeaponsIM1' 
} 

First we added in an Inventory item called MainGun which holds a reference to the 

custom weapon.   

The function GetBaseAimRotation() will change the pawn’s aiming to reflect our third-

person viewpoint where the player’s viewpoint does not move up and down. 

The AddGunToSocket() function adds the custom weapon to a socket which is a dummy 

attachment point on the character mesh which when used with a weapon makes it 

appear that the character is holding the weapon. Sockets are created within the AnimSet 

Editor. 

The AddDefaultInventory() function is automatically called when the game begins and 

adds in our custom weapon to the pawn’s inventory. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 3:  Player Controllers, Pawns, and Weapons 74 

The InventoryManagerClass variable is set to the custom InventoryManager class. 

Adding to the Player Controller 
In our player controller class ExampleCh31PC in the SwipeZoneCallback() function we 

need to add in the commands StartFire(0) for a touch event to begin firing the player’s 

weapon and StopFire(0) for an untouch event to stop firing the player’s weapon. See 

Listing 3–14. 

Listing 3–14. Adding to the Player Controller 

function bool SwipeZoneCallback(MobileInputZone Zone,  
                                 float DeltaTime,  
                                 int Handle, 
                                 EZoneTouchEvent EventType,  
                                 Vector2D TouchLocation) 
{  
    local bool retval = true; 
 
    if (EventType == ZoneEvent_Touch) 
    { 
        WorldInfo.Game.Broadcast(self,"You touched the screen at = "  
                                       @ TouchLocation.x @ " , "  
                                       @ TouchLocation.y @ ", Zone Touched = "  
                                       @ Zone); 
        // Start Firing pawn's weapon 
        StartFire(0); 
    } 
     
    else if(EventType == ZoneEvent_Update) 
    {  
    }   
    
    else if (EventType == ZoneEvent_UnTouch) 
    {  
        // Stop Firing Pawn's weapon 
        StopFire(0); 
    } 
    return retval; 
} 

Recompile and run the game on the Unreal Editor using our custom game type. You 

should now be able to touch anywhere on the screen except for the joysticks and fire 

your weapon. See Figure 3–5. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 3:  Player Controllers, Pawns, and Weapons 75 

 

Figure 3–5. Demonstration of your new weapon 

Also note how your bullets emit a fire from the particle emitter (see Figure 3–6). 

 

Figure 3–6. Flames come from your bullets via the fire particle emitter 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 3:  Player Controllers, Pawns, and Weapons 76 

Hands-On Example: Adding a weapon to your first-
person view. 
In this tutorial we will be creating another custom weapon and putting it into a first-

person view. First, create a new directory called ExampleCh32 under our source 

directory which by default is:  

C:\UDK\UDK-2011-06\Development\Src 

This is for the June 2011 UDK. If you are using a different version of the UDK then your 

directory may be different. Under this new directory create another directory called 

Classes. As in the previous examples you will put all the source code for this example in 

this Classes directory. 

Creating the Weapon 
Our custom weapon class is JazzWeapon2. The only difference is that this weapon will be 

firing a different kind of bullet as defined in the JazzBullet2 class. See Listing 3–15. 

Listing 3–15. JazzWeapon2 class 

class JazzWeapon2 extends Weapon; 
 
defaultproperties 
{ 
    Begin Object Class=SkeletalMeshComponent Name=FirstPersonMesh 
        SkeletalMesh=SkeletalMesh'KismetGame_Assets.Anims.SK_JazzGun' 
    End Object 
    Mesh=FirstPersonMesh 
    Components.Add(FirstPersonMesh); 
 
    Begin Object Class=SkeletalMeshComponent Name=PickupMesh 
        SkeletalMesh=SkeletalMesh'KismetGame_Assets.Anims.SK_JazzGun' 
    End Object 
    DroppedPickupMesh=PickupMesh 
    PickupFactoryMesh=PickupMesh 
 
    WeaponFireTypes(0)=EWFT_Projectile 
    WeaponFireTypes(1)=EWFT_NONE 
   
    WeaponProjectiles(0)=class'JazzBullet2'   
    WeaponProjectiles(1)=class'JazzBullet2'    
  
    FiringStatesArray(0)=WeaponFiring  
    FireInterval(0)=0.25 
    Spread(0)=0 
} 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 3:  Player Controllers, Pawns, and Weapons 77 

Creating the Projectile for the Weapon 
The code for the JazzBullet2 class is as follows. See Listing 3–16. 

Listing 3–16. JazzBullet2 class 

class JazzBullet2 extends Projectile; 
 
simulated function Explode(vector HitLocation, vector HitNormal) 
{ 
    SetPhysics(Phys_Falling); 
} 
 
function Init( Vector Direction ) 
{ 
    super.Init(Direction); 
    RandSpin(90000); 
} 
 
defaultproperties 
{ 
    Begin Object Class=StaticMeshComponent Name=Bullet  
        StaticMesh=StaticMesh'Castle_Assets.Meshes.SM_RiverRock_01' 
        Scale3D=(X=0.300000,Y=0.30000,Z=0.3000) 
    End Object 
    Components.Add(Bullet) 
 
    Begin Object Class=ParticleSystemComponent  Name=BulletTrail 
        Template=ParticleSystem'Castle_Assets.FX.P_FX_Fire_SubUV_01' 
    End Object 
    Components.Add(BulletTrail) 
 
    MaxSpeed=+05000.000000 
    Speed=+05000.000000 
} 

The Explode() will now change the physics model for the projectile so that when it hits 

another object it will fall to the ground. The Init() will now set a random spin to the 

object being thrown which is now a rock. 

Creating the Pawn 
The new pawn class is Jazz2Pawn. This pawn uses a different weapon JazzWeapon2 in the 

AddDefaultInventory() function. However, we don’t need to change the 

InventoryManager class. See Listing 3–17. 

Listing 3–17. Jazz2Pawn class 

class Jazz2Pawn extends SimplePawn; 
 
var Inventory MainGun; 
 
function AddDefaultInventory() 
{  

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 3:  Player Controllers, Pawns, and Weapons 78 

    MainGun = InvManager.CreateInventory(class'JazzWeapon2'); 
    MainGun.SetHidden(false); 

    Weapon(MainGun).FireOffset = vect(0,0,-70); 
} 

defaultproperties 
{ 
    InventoryManagerClass=class'WeaponsIM1' 
} 

Creating the Player Controller  
We need a new player controller class which is called ExampleCh32PC. See Listing 3–

18. A lot of the code is the same as ExampleCh31PC except for the PlaceWeapon()
function and the PlayerTick() function.   

 The PlaceWeapon() function actually does the work of putting the 

weapon mesh into the first-person view. Depending on exactly how 

your weapon mesh is oriented your weapon rotation offsets may be 

different than this example. 

 The PlayerTick() function is overridden and the PlaceWeapon()
function is called from here to constantly update the position and 

rotation of our first-person weapon. 

Listing 3–18. Player Controller class 

class ExampleCh32PC  extends SimplePC; 

function bool SwipeZoneCallback(MobileInputZone Zone,  
                                 float DeltaTime,  
                                 int Handle, 
                                 EZoneTouchEvent EventType,  
                                 Vector2D TouchLocation) 
{  
    local bool retval = true; 
  
    if (EventType == ZoneEvent_Touch) 
    { 
       // Start Firing pawn's weapon 
        StartFire(0); 
    } 
    else if(EventType == ZoneEvent_Update) 
    {  
    }   
        else if (EventType == ZoneEvent_UnTouch) 
    {  
        // Stop Firing Pawn's weapon 
        StopFire(0); 
    } 
    return retval; 
} 

function SetupZones() 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 3:  Player Controllers, Pawns, and Weapons 79 

{ 
    Super.SetupZones(); 
 
    // If we have a game class, configure the zones 
    if (MPI != None && WorldInfo.GRI.GameClass != none)  
    { 
        LocalPlayer(Player).ViewportClient.GetViewportSize(ViewportSize); 
 
        if (FreeLookZone != none) 
        { 
            FreeLookZone.OnProcessInputDelegate = SwipeZoneCallback; 
        }  
    } 
} 
 
function PlaceWeapon() 
{ 
    // First Person   
    local vector WeaponLocation; 
    local Rotator WeaponRotation,TempRot; 
    local Weapon TestW; 
    local vector WeaponAimVect; 
 
    WeaponRotation.yaw = -16000; // 90 Degrees turn = OFFSET  
 
    TempRot = Pawn.GetBaseAimRotation(); 
    WeaponRotation.pitch = TempRot.roll; 
    WeaponRotation.yaw  += TempRot.yaw;  
    WeaponRotation.roll -= TempRot.pitch; // Swith due to weapon local axes orientation 
  
    WeaponAimVect = Normal(Vector(TempRot)); 
    WeaponLocation = Pawn.Location + (40 * WeaponAimVect) + vect(0,0,30); 
 
    TestW = Pawn.Weapon;  
  
    if (TestW != None) 
    { 
        TestW.SetLocation(WeaponLocation);  
        TestW.SetRotation(WeaponRotation); 
    } 
    else 
    { 
        WorldInfo.Game.Broadcast(self,"Player has no weapon!!!!!"); 
    } 
} 
 
function PlayerTick(float DeltaTime) 
{ 
    Super.PlayerTick(DeltaTime);  
    PlaceWeapon(); 
} 
defaultproperties 
{ 
} 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 3:  Player Controllers, Pawns, and Weapons 80 

Creating a New Game Type 
Finally, create a new class for our new game type. See Listing 3–19. 

Here, the key changes are that we set the PlayerControllerClass to point to the new 

ExampleCh32PC player controller class and set the DefaultPawnClass to Jazz2Pawn which 

will be the player’s pawn. 

Listing 3–19. Game Type class 

class ExampleCh32Game  extends FrameworkGame; 
 
event OnEngineHasLoaded() 
{ 
    WorldInfo.Game.Broadcast(self," ExampleCh32Game  Type Active - Engine Has Loaded 
!!!!"); 
} 
 
function bool PreventDeath(Pawn KilledPawn, Controller Killer, class<DamageType> 
DamageType, vector HitLocation) 
{ 
    return true; 
} 
 
static event class<GameInfo> SetGameType(string MapName, string Options, string Portal) 
{ 
    return super.SetGameType(MapName, Options, Portal); 
} 
 
defaultproperties 
{ 
    PlayerControllerClass=class' ExampleCh32.ExampleCh32PC' 
    DefaultPawnClass=class'Jazz2Pawn' 
    HUDType=class'UDKBase.UDKHUD' 
    bRestartLevel=false 
    bWaitingToStartMatch=true 
    bDelayedStart=false 
} 
 

Setting up your new Game Type 
Next you need to set up the game and compiler for our new example. Edit the Mobile-

UDKGame.ini  and UDKEngine.ini files in your UDKGame\Config directory. 

Mobile-UDKGame.ini  
[ExampleCh32.ExampleCh32Game] 
RequiredMobileInputConfigs=(GroupName="UberGroup",RequireZoneNames=("UberStickMoveZone",
"UberStickLookZone","UberLookZone")) 
UDKEngine.ini  
[UnrealEd.EditorEngine] 
ModEditPackages=ExampleCh32 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 3:  Player Controllers, Pawns, and Weapons 81 

Running the new Game Type 
Compile and run our new game using the Unreal Editor. Make sure to set your game 

type to ExampleCh32Game under the Default Game Type property. You should be able 

to move your view up and down and left and right. The weapon should be visible and 

you should be able to fire flaming rocks into the air (see Figure 3–7).  

 

Figure 3–7. Shooting flaming rocks into the air with your new weapon in a first-person view. 

Also, you should see your new projectiles bounce off of an object when it is hit. For 

example try to hit a static mesh object to see the rocks bounce off it and hit the ground, 

as shown in Figure 3–8. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 3:  Player Controllers, Pawns, and Weapons 82 

 

Figure 3–8. Weapon’s projectiles bouncing off a sphere l 

Summary 
In this chapter we have shown you how to make the player’s pawn visible by adding a 

skeletal mesh. Then we demonstrated how to change the camera angle so you can view 

your pawn from the third-person perspective. Next, we added a weapon to our pawn 

and showed you how to set it up and fire it. Finally, we changed the view to a first-

person view and demonstrated how we could place a weapon within this view and have 

it rotate up/down and left/right and move correctly with the player’s view. In the 

following chapters we will build on the knowledge gained here to eventually build entire 

games using the UDK. 

Specifically, in the next chapter which covers UDK collisions we take a look at how to 

create realistic complex collisions using the UDK physics engine. We also examine such 

topics as physics constraints that the UDK uses to bind objects together and have them 

behave realistically when interacting with each other and the environment. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


 
83 

   Chapter 

UDK Collisions 
In this chapter we will cover UDK physics. The Unreal Engine features a physics engine 

based on the Novodex PhysX system that calculates collisions for rigid bodies based on 

the shape of a collision mesh. Contact points with other objects using these collision 

meshes are generated by the physics engine in order to produce an accurate physics 

simulation.   

We will be learning the Unreal Physics system through a series of fun hands-on tutorials 

where you will learn such things as:  

 How to create a KActor from a static mesh asset and making it move 

by applying a force to it  

 How to create a KAsset from a skeletal mesh asset and making it 

move by applying a force to it 

 How to create physics constraint that will bind different objects 

together using the Unreal Editor 

 How to create a placeable rigid body that can be placed in a level 

using the Unreal Editor 

 How to make an exploding wall of blocks  

Collision Meshes 
Collision models or collision meshes are what the physics engine uses in rigid body 

physics collisions. Collision meshes are critical to the behavior of an object when it 

collides with another object or the ground. For example, you will notice in the following 

tutorials that a sphere rolls across the floor of the arena while the cube does not. The 

difference in the behavior is caused by the structure of the collision meshes. Let’s 

compare a collision mesh for a Cube and the collision mesh for a Sphere. The collision 

mesh for a Cube is also a cube in structure as indicated in Figure 4–1 of a Cube mesh in 

the Static Mesh Editor. 

4 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 4:  UDK Collisions 84 

 

Figure 4–1. Cube Static Mesh in Static Mesh Editor (Viewing collision mesh and the cube as a wireframe) 

For a Sphere (see Figure 4–2), the collision mesh is, of course, spherical and differs from 

a Cube in the same way a physical ball differs from a block. As in the real world, the 

different shapes behave differently when colliding with other objects. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 4:  UDK Collisions 85 

 

Figure 4–2. Sphere Collision Mesh in Static Mesh Editor (Viewing collision mesh and sphere as a wireframe) 

The collision mesh generally follows the shape of the static mesh and must be convex 

not concave. In convex meshes all parts of the mesh are outward bending and there are 

no holes in the mesh. Concave meshes may have holes in them and have parts that are 

inward bending. You are not limited to a specific set of collision meshes. You can create 

your own collision meshes through a separate, free 3D modeling program like Blender 

available at http://www.blender.org. These meshes must be prefixed with “UCX_” which 

is called a “Convex Mesh Primitive” and match a corresponding regular mesh. For 

example, in Blender the mesh “UCX_Cube” would be the collision mesh for the mesh 

named “Cube”. These two meshes would be placed one on top of the other so that they 

line up perfectly.  They then would be exported in a format such as .fbx that can be 

imported into the Unreal UDK. The collision mesh can then be viewed in the Unreal 

Static Mesh Editor after selecting View  Collision from the menu.  

You can also use the feature in the Unreal Static Mesh Editor called K-DOP to generate 

simple collision meshes for your static mesh. However, this method is only good for a 

very rough collision mesh and may not be suitable for your needs. This may be 

especially true if you are building a physics-type game like Angry Birds that may require 

more precise collision detection.  

www.it-ebooks.info

http://freepdf-books.com

http://www.blender.org
http://www.it-ebooks.info/


CHAPTER 4:  UDK Collisions 86 

NOTE: Other graphics programs that can create UDK-compatible content are 3D Studio Max and 
Maya. Trial versions are available that last 30 days and are fully compatible.  

For more information on 3d Studio Max go to: 

http://usa.autodesk.com/3ds-max/    

For more information on Maya go to: 

http://usa.autodesk.com/maya/  

Collision Objects 
When simulating realistic collisions are concerned, the UDK has two main types of 

collision objects which are the KActor and KAsset. This section will give you a basic 

overview of the KActor and KAsset. Also, in the hands-on examples in this section, you 

will:  

 Create a new KActor and apply a force to it  

 Create a new KAsset and apply a force to it   

KActor and KAsset Overview 
In terms of meshes in the UDK system there are static meshes and skeletal meshes. 

Static meshes are meshes that have no bones or any flexible skeletal structure such as 

doors, gates, blocks, rocks, and chairs. Skeletal meshes are meshes that have bones 

and a skeletal structure such as characters, ropes, wires, and chains.   

In terms of rigid body collisions there are two types of objects KActors and KAssets. 

KActors contain static meshes and can be used by the physics engine for realistic rigid 

body collisions using the KActor’s collision mesh. KAssets contain skeletal meshes that 

can be used by the physics engine for realistic rigid body collisions using the mesh’s 

collision areas that are set up in Unreal Phat. KActors and KAssets are placeable which 

mean that objects of these classes can be placed into a level using the Unreal Editor. 

You can also dynamically create new KActors and KAssets during a game but you must 

use the KActorspawnable class for KActors and the KAssetspawnable class for KAssets. 

Creating Custom KActors and KAssets 
You can create custom KActors and KAssets by creating a new class that derives from a 

KActor or KAsset. For example, the following class RigidBodyCube derives from the 

Kactor class (see Listing 4–1). In the defaultproperties a new StaticMeshComponent is 

created and named RigidBodyCubeMesh. The actual mesh is defined by the variable 

StaticMesh. The RigidBodyCubeMesh is then set as the StaticMeshComponent for this 

www.it-ebooks.info

http://freepdf-books.com

http://usa.autodesk.com/3ds-max/
http://usa.autodesk.com/maya/
http://www.it-ebooks.info/


CHAPTER 4:  UDK Collisions 87 

KActor and added to the Actor’s Components array which ties this mesh to the KActor’s 

location and rotation. 

Listing 4–1. Deriving a class from the KActor class 

class RigidBodyCube extends Kactor 
defaultproperties 
{ 
    Begin Object Class=StaticMeshComponent Name=RigidBodyCubeMesh 
        StaticMesh=StaticMesh'EngineMeshes.Cube' 
    End Object 
    StaticMeshComponent=RigidBodyCubeMesh 
    Components.Add(RigidBodyCubeMesh) 
} 

An example of a class deriving from a Kasset is the class RopeSection that derives from 

a dynamic Kasset class KAssetspawnable (see Listing 4–2).A new 

SkeletalMeshComponent called RopeSection is created in the defaultproperties block.  

Here we define the SkeletalMesh and the PhysicsAsset that are used for this skeletal 

mesh component. RopeSection is then set as the SkeletalMeshComponent for this object 

and added to the Components array. 

Listing 4–2. Deriving a class from KAssetspawnable 

class RopeSection extends KAssetspawnable; 
defaultproperties 
{ 
    Begin Object Class=SkeletalMeshComponent Name=RopeSection 
        SkeletalMesh=SkeletalMesh'physics_assets.SKM_Wire' 
        PhysicsAsset=PhysicsAsset'physics_assets.SKM_Wire_Physics_02' 
    End Object 
    SkeletalMeshComponent=RopeSection 
    Components.Add(RopeSection) 
} 

However, before we can get these KActors and KAssets to collide we need to set the 

collision parameters.  Collision parameters are discussed later in this chapter.  For now, 

we just wanted to introduce how you would create the general framework for a new 

physics object. 

Applying a Force to a KActor and KAsset 
In terms of applying a force to a KActor you can use the ApplyImpulse() function 

located in the KActor class.  The ApplyImpulse() function declaration is as follows and 

takes in an impulse direction, impulse magnitude, and the location where to apply this 

force as required parameters.   

ApplyImpulse(Vector ImpulseDir,  
              float ImpulseMag,  
              Vector HitLocation,  
              optional TraceHitInfo HitInfo,  
              optional class<DamageType> DamageType ); 

For a KAsset you must apply a force to the KAsset’s SkeletalMeshComponent by using 

the AddImpulse() function. The actual function is located in the PrimitiveComponent 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 4:  UDK Collisions 88 

class and has a declaration as follows. The Impulse parameter contains both the 

magnitude and direction of the force. The Position is the location where to apply the 

force in world space.  The BoneName is the bone to apply the force to if this is a skeletal 

mesh. If bVelChange is True, then the Impulse will be interpreted as the change in 

velocity instead of a force and the mass of this object will have no effect. 

AddImpulse(vector Impulse,  
            optional vector Position,  
            optional name BoneName,  
            optional bool bVelChange); 

The following examples illustrate how to apply a force to a Kactor and a Kasset. 

Hands-on Example: Creating a KActor and applying 
a force to it 
In this tutorial you will be creating a KActor from a static mesh asset using the Unreal 

Editor and placing this Kactor in a new level. You will then be able to apply a force to 

this actor by clicking on it with your mouse from within the Mobile Previewer. 

Creating a new Level with KActors 
The first thing you need to do is create a new level in the editor and add some KActors 

to the level.  Follow these steps to add a sphere: 

1. Bring up the Unreal Editor and the default level should pop up.   

2. Create a new level by clicking on the File  Save As menu item to save 

the current map as a different file.  When the file Save As dialog box 

opens, type in Example41Map for the filename and click Save.  This 

should save your map into the \UDK\UDK-2011-06\UDKGame\Content\Maps

directory by default.    

3. Next you need to create a KActor from a static mesh.  Set your 

Packages section located in the lower-left-hand corner of the Content 

Browser to Engine.   

4. Check the Static Meshes checkbox under the Object Types  Favorites
section and type Sphere in the search bar above that.   

5. Click on the static mesh called Sphere.  

6.  Right-click on an empty space in the level where you want to place this 

mesh and select Add Rigid Body:EngineMeshes.Sphere from the 

context menu (see Figure 4–3).  This will place your new rigid body into 

the level.   

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 4:  UDK Collisions 89 

 
Figure 4–3. Converting a static mesh to a rigid body 

7. The first thing you may notice is that the sphere is way too big.  In order 

to make this sphere smaller as well as do some initial setup double-click 

on the sphere to bring up its properties (see Figure 4–4).  

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 4:  UDK Collisions 90 

 

Figure 4–4. Properties of new KActor formed from static mesh 

8. Under the KActor category click on “Wake On Level Start” checkbox to 

begin the physics simulation for this object when the level starts.   

9. Under the Display Category change the “Draw Scale” by clicking on its 

input field and changing the number 1 to .10. This shrinks the size of the 

sphere to one tenth of its original size. You may also have to reposition 

the sphere so that is above ground by clicking on the up (Z Axis) of the 

sphere transformation widget (see Figure 4–5) and dragging the sphere 

upward so that it does not penetrate the ground.  

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 4:  UDK Collisions 91 

 

Figure 4–5. Sphere transformation widget 

Next, let’s add a cube to the level using the same process we used for the sphere. 

1. Change the asset search term to cube. You should see a static mesh 

called TexPropCube. 

2. Select this asset by clicking on it with the left mouse button.   

3. Place this mesh into your game level using the same procedure you 

used with the sphere: Right-click on the level where you want to place 

the cube and select Add Rigid Body: EditorMeshes.TexPropCube (see 

Figure 4–6).   

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 4:  UDK Collisions 92 

 

Figure 4–6. Converting a static mesh cube to a rigid body 

4. Again, the cube will be very big so double-click on the cube to bring up 

the KActor’s properties.   

5. Just as with the sphere check the Wake on Level Start checkbox under 

the KActor properties and change the Draw Scale property under the 

Display category to .10.   

6. Move the cube using the object’s transformation widget so that it is 

completely above ground and positioned where you want it. The 

transformation widget is the set of axes located at the object’s center. 

Click and drag the X, or Y transformation axis to move the object around 

the arena and the Z axis to move the object up and down.   

7. Now, save the level by selecting the File  Save All option. Figure 4–7 

shows the level with the two objects added.  

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 4:  UDK Collisions 93 

 

Figure 4–7. Final level with resized sphere and cube rigid bodies 

Creating the Unreal Script Code  
The next thing we need to do is create a new folder for this example called 

ExampleCh41 and another folder under that called Classes at C:\UDK\UDK-2011-

06\Development\Src under your UDK installation directory. This is where your source 

code files will be placed. Create a new file called ExampleCh41Game .uc and save it to 

your newly created folder.Save the file under the ExampleCh41Game \Classes directory 

you just created. 

Custom Game Type 

To define the game type for this example, enter the code that follows into the file. Note 

that instead of providing a large block of code at once, I’m going to walk through it a 

piece at a time. Just add each new piece as we discuss it, or you can find the full code 

in the book’s source code. 

The following declares a class ExampleCh41Game that derives from FrameworkGame.  
This class defines what kind of game we will be playing: 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 4:  UDK Collisions 94 

class ExampleCh41Game  extends FrameworkGame; 

The function OnEngineHasLoaded() is called once the Unreal Engine has started and 

outputs a message stating that this new game type is now active. 

event OnEngineHasLoaded() 
{ 
    WorldInfo.Game.Broadcast(self," ExampleCh41Game  Type Active - Engine Has Loaded 
!!!!"); 
} 

The PreventDeath function returns True indicating that the player can not die in this 

game type. 

function bool PreventDeath(Pawn KilledPawn, Controller Killer, class<DamageType> 
DamageType, vector HitLocation) 
{ 
    return true; 
} 

The SetGameType function returns the current game type. 

static event class<GameInfo> SetGameType(string MapName, string Options, string Portal) 
{ 
    return super.SetGameType(MapName, Options, Portal); 
} 

In the defaultproperties section take special note that the PlayerControllerClass 

points to our custom player controller class ExampleCh41PC located in the 

ExampleCh41 directory.  We will create the ExampleCh41PC class later. 

defaultproperties 
{ 
    PlayerControllerClass=class'ExampleCh41.ExampleCh41PC' 
 
 
    DefaultPawnClass=class'UDKBase.SimplePawn' 
    HUDType=class'UDKBase.UDKHUD' 
 
    bRestartLevel=false 
    bWaitingToStartMatch=true 
    bDelayedStart=false 
} 

We have just finished creating a class that defines our custom game.  The HUDType 

variable is set to the default class needed to display the mobile input controls.  We will 

learn how to customize the HUD or Heads Up Display in Chapter 6. 

In the next section we specify a custom Player Controller which determines exactly how 

the player interacts with the game. 

Custom Player Controller 
The next class we need to create is our custom player controller class. It is in this class 

we create code where the player can touch a KActor and apply a force to that KActor.   

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 4:  UDK Collisions 95 

You will need to create a new plain text file called ExampleCh41PC in the same 

directory as the previous UnrealScript file. Enter the following code into this new file and 

save it. Again, we’ll go through the code a piece at a time. 

The ExampleCh41PC class is derived from SimplePC and is the class that is responsible 

for processing the input from the player. PC is short for “Player Controller”. 

class ExampleCh41PC extends SimplePC; 

PickDistance holds the maximum distance that the picked object can be from the 

player. 

var float PickDistance; 

The ApplyForceRigidBody() function is where the force is actually applied to the rigid body 

object. See Listing 4–3.   

Listing 4–3. Applying a Force to a Rigid Body 

function ApplyForceRigidBody(Actor SelectedActor,  
                              Vector ImpulseDir, 
                              float ImpulseMag,  
                              Vector HitLocation) 
{ 
    if (SelectedActor.IsA('KActor')) 
    { 
        WorldInfo.Game.Broadcast(self,"*** Thrown object " @ SelectedActor @  
                                               ", ImpulseDir = " @ ImpulseDir @ 
                                               ", ImpulseMag = " @ ImpulseMag @ 
                                               ", HitLocation = " @ HitLocation); 
        KActor(SelectedActor).ApplyImpulse(ImpulseDir,ImpulseMag, HitLocation); 
    } 
    else 
    { 
        WorldInfo.Game.Broadcast(self,"!!!ERROR Selected Actor " @ SelectedActor @  
                                              " is not a KActor, you can not apply an 
impulse to this object!!!"); 
    } 
} 

The function takes a reference to an Actor and first tests the Actor to see if it is a KActor 

class object. This is done through the IsA() function which is defined in the Object 

class. The IsA() function returns True if the reference refers to an object of the KActor 

class.   

If the Actor is a KActor then the KActor’s class function ApplyImpulse() is called to 

apply an impulse to the KActor object.  In this case we are applying an impulse to the 

SelectedActor object. In order to do this we must first convert the SelectedActor object 

(which is defined as a reference to an Actor) to a KActor by casting it. This is possible 

because KActor is a subclass of Actor. The ApplyImpulse function takes as input the 

force direction, the amount of the force, and the location on the object where the force is 

applied. 

The PickActor() function does the actual work of selecting an actor in the 3d game 

world based on a screen input from the iOS device.  See Listing 4–4.   

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 4:  UDK Collisions 96 

Listing 4–4. Picking an Actor 

function Actor PickActor(Vector2D PickLocation, out Vector HitLocation, out TraceHitInfo 
HitInfo) 
{ 
    local Vector TouchOrigin, TouchDir; 
    local Vector HitNormal; 
    local Actor  PickedActor; 
    local vector Extent; 
 
    //Transform absolute screen coordinates to relative coordinates 
    PickLocation.X = PickLocation.X / ViewportSize.X; 
    PickLocation.Y = PickLocation.Y / ViewportSize.Y; 
    
    //Transform to world coordinates to get pick ray 
    LocalPlayer(Player).Deproject(PickLocation, TouchOrigin, TouchDir); 
    
    //Perform trace to find touched actor 
    Extent = vect(0,0,0); 
    PickedActor = Trace(HitLocation,  
                         HitNormal,  
                         TouchOrigin + (TouchDir * PickDistance),  
                         TouchOrigin,  
                         True,  
                         Extent,  
                         HitInfo); 
    //Return the touched actor for good measure 
    return PickedActor; 
} 

A 2d screen coordinate is converted to a ray that is projected into the 3d game world 

and if an actor is hit then that actor is returned else a None is returned. This is the exact 

same function as in the example in Chapter 2. The SwipeZone() callback function 

handles the player’s input.  See Listing 4–5.   

Listing 4–5. Managing input 

function bool SwipeZoneCallback(MobileInputZone Zone,  
                                 float DeltaTime,  
                                 int Handle, 
                                 EZoneTouchEvent EventType,  
                                 Vector2D TouchLocation) 
{  
    local bool retval; 
  
    local Actor PickedActor; 
    local Vector HitLocation; 
    local TraceHitInfo HitInfo; 
 
    // Variables for physics 
    local Vector ImpulseDir;  
    local float ImpulseMag;  
 
    retval = true; 
 
    if (EventType == ZoneEvent_Touch) 
    { 
        // If screen touched then pick actor 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 4:  UDK Collisions 97 

        PickedActor = PickActor(TouchLocation,HitLocation,HitInfo); 
   
        WorldInfo.Game.Broadcast(self,"PICKED ACTOR = "  
                                        @ PickedActor @ ", HitLocation = "  
                                        @ HitLocation @ ", Zone Touched = "  
                                        @ Zone); 
 
        // Set to roughly a 45 degree angle 
        ImpulseDir = Normal(Vector(Pawn.Rotation)) + vect(0,0,1);  
        ImpulseMag = 100; 
        ApplyForceRigidBody(PickedActor,ImpulseDir,ImpulseMag,HitLocation);  
    } 
    else 
    if(EventType == ZoneEvent_Update) 
    {  
    }   
    else 
    if (EventType == ZoneEvent_UnTouch) 
    {  
    } 
    return retval; 
} 

The difference between this function and the previous SwipeZone() function in Chapter 

2 is that code has been added that defines the force that is to be applied to the picked 

object. The ApplyForceRigidBody() function is then called on this object. The force is 

defined so that it appears from the player’s standpoint that he is kicking the object 

forward and upward: the impulse direction. 

The impulse direction is defined as the sum of two vectors (see Figure 4–8). The first 

vector points in the direction the player is facing through the conversion of the Player’s 

rotation to a vector through the Vector() cast: 

Normal(Vector(Pawn.Rotation)) 

That vector is then normalized which means that the vector’s magnitude is set to 1. The 

second vector is a vector pointing straight up with a length of 1: 

vect(0,0,1) 

When you add the two vectors together you get a force vector that points up and 

forward from the viewpoint of the player: 

ImpulseDir = Normal(Vector(Pawn.Rotation)) + vect(0,0,1) 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 4:  UDK Collisions 98 

Figure 4–8. Calculating the Impulse Direction vector 

NOTE: A vector is a quantity that has a magnitude and a direction and is used to represent such 
things as velocities, accelerations, and forces. Vectors can be added together to produce a 

resultant vector that is the net result of all the vectors combined. To get a more in depth 

discussion of vectors, please see Chapter 8 on 3D math. 

The SetupZones() function sets up the SwipeZoneCallback() function to process player 

input.  See Listing 4–6. 

Listing 4–6. Settting up the Input Zones 

function SetupZones() 
{ 
    Super.SetupZones(); 

    // If we have a game class, configure the zones 
    if (MPI != None && WorldInfo.GRI.GameClass != none)  
    { 
        LocalPlayer(Player).ViewportClient.GetViewportSize(ViewportSize); 
        if (FreeLookZone != none) 
        { 
            FreeLookZone.OnProcessInputDelegate = SwipeZoneCallback; 
        }  
    } 
} 

PickDistance is set to a default value of 10000. 

defaultproperties 
{ 
    PickDistance = 10000; 
} 

vect(0,0,1)

Z Axis

X Axis

Normal(Vector(Pawn.Rotation))

ImpulseDir=
Normal(Vector(Pawn.Rotation))

+ vect(0,0,1)

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 4:  UDK Collisions 99 

The PickDistance is the maximum distance that an object can be from the player in 

order to be “picked” by the player. 

We have now finished all the coding for this tutorial.  The new ExampleCh41Game class 

we created specified that this game will use a custom player controller called 

ExampleCh41PC. It is this new player controller class that allows the user to select 

KActor objects and apply a force to them. 

Next we need to configure the mobile game setup for the UDK for compiling our new 

code and for playing the actual game on the mobile previewer. 

Configuring the New Game Type 
You need to add in the mobile control zone definitions for our game type in the file 

Mobile-UDKGame.ini located by default at C:\UDK\UDK-2011-06\UDKGame\Config.The 

following line defining the RequiredMobileInputConfigs for our game type 

ExampleCh41.ExampleCh41Game does that: 

[ExampleCh41.ExampleCh41Game]  
RequiredMobileInputConfigs=(GroupName="UberGroup",RequireZoneNames=("UberStickMoveZone",
"UberStickLookZone","UberLookZone")) 

Now, open the UDKEngine.ini file located in the same directory. Under the 

UnrealEd.EditorEngine section heading, add in the line as below so that our new 

example will be added to the compilation list:  

[UnrealEd.EditorEngine] 
ModEditPackages= ExampleCh41 

When you have finished editing the .ini files, bring up the Unreal Frontend and compile 

your new code.   

Running the New Game Type 
Start up the Unreal Editor and load in the level associated with this tutorial that you just 

created. Set your game type by selecting View  World Properties from the main menu 

which brings up the world properties window. Under the Game Type category set the 

Default Game Type property to ExampleCh41Game.  

Then start up the mobile game previewer by selecting the Play  On Mobile Previewer from 

the main menu. (See Figure 4–9.)  

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 4:  UDK Collisions 100 

 

Figure 4–9. Two KActors 

You can click on the sphere and cube to apply a force that will kick the object forward 

and upward. You may also need to use your mobile virtual joysticks to move the player 

so he can see the objects. Try moving around the arena and kicking the objects from 

various directions. 

Hands-On Example: Creating a KAsset and applying a force 
to it 
In this tutorial we will be creating a KAsset from a skeletal mesh asset and applying a 

force to this mesh. A skeletal mesh is different from a static mesh in that it is a mesh that 

contains moveable parts called bones.   

Creating a KAsset  
A good example of this is called SKM_Wire that is in the physics_assets.upk package 

that is downloadable from the official UDK website located at 
http://download.udk.com/tutorials/using-udk/3dbuzz_assets.zip 

Unzip the file after you download it to a temporary directory.  

1. Create a new directory called “3dbuzz” under the C:\UDK\UDK-2011-

06\UDKGame\Content directory.  

www.it-ebooks.info

http://freepdf-books.com

http://download.udk.com/tutorials/using-udk/3dbuzz_assets.zip
http://www.it-ebooks.info/


CHAPTER 4:  UDK Collisions 101 

2. Copy the physics_assets.upk to this directory. This should put this new 

package into the Unreal Editor’s content manager. Start up the Editor 

and check to make sure the new assets appear under UDKGame  Content 
 3dbuzz directory under Packages. You may have to right-click on the 

3dbuzz directory and select “Fully Load” to refresh the Content 

Browser’s view.   

3. Next, right-click the SKM_Wire in the Content Browser. Select Create 

New Physics Asset from the context menu shown in Figure 4–10. 

 

Figure 4–10. Creating a new Physics Asset 

4. A dialog box should show up asking you to enter the package and group 

where to place the new asset and the name of the new physics asset 

itself. Enter the information requested as shown in the Figure 4–11. 

 

Figure 4–11. Naming a new Physics Asset 

5. Click the OK button. Next, another dialog box shows up requesting 

some setup information. Accept the default options, except change the 

Use Verts With entry to Any Weight as in Figure 4–12. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 4:  UDK Collisions 102 

 

Figure 4–12. New Physics Asset Setup 

6. Click the OK button and this new asset should be opened in Unreal Phat 

(Phat is short for Physics Assets). See Figure 4–13. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 4:  UDK Collisions 103 

 

Figure 4–13. Unreal Physics Asset with our new Asset 

Unreal Phat is used to set collision volumes and physics constraints for skeletal meshes. 

You should see a wire mesh that is divided by bounding boxes which enclose the 

separate bones that make up this wire. A bounding box is an invisible mesh that is used 

by the UDK Physics Engine to calculate physics collisions. Once you make sure that 

your wire looks similar to the above figure then close Unreal Phat window. Right-click on 

the new physics asset you created and select “Save” from the menu that pops up to 

save this asset and associated package. 

Adding a KAsset to a Level 
Our next step is to add a KAsset to the level. This KAsset will be the wire that we just 

created a physics asset for. We will also show you how exactly to put this in your level 

and how to set it up. 

1. Load in our level map from the previous tutorial.  

2. Find and then select the new physics asset you have created. Right-

click on the level where you want to put this new wire and select the 

Add Physics Asset option. See Figure 4–14. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 4:  UDK Collisions 104 

 

Figure 4–14. Adding a Physics Asset to your level 

3. A wire mesh should be created in the level. Bring the wire up some so 

that you can get a better look at it using the transformation widget. See 

Figure 4–15. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 4:  UDK Collisions 105 

 

Figure 4–15. Level with KActors and a KAsset 

4. Next, double-click on the wire to bring up its Properties window. See 

Figure 4–16. 

 

Figure 4–16. The KAsset Properties window 

5. Click on the Wake on Level Start checkbox to begin the physics 

simulation for this object when the level starts and then close the 

window. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 4:  UDK Collisions 106 

6. Now click on File  Save As and save the level, for example, as 

Example4–2Map when the dialog box comes up.  

Now that we have added the KAsset to our level, let’s turn to the code. 

Creating the Unreal Script Code 
It’s time now for you to create the code for this example. Create a new directory for this 

example as you did for the previous example at 

Development\Src\ExampleCh42\Classes where you will place the code for this tutorial. 

Next you will define the game type and then the player controller. 

Custom Game Type 
The code for the new game type is almost the same as ExampleCh41. Although take 

note of the new class definition ExampleCh42Game as well as the new player controller 

that is derived from the PlayerController class. See Listing 4–7. 

Listing 4–7. Game Type 

class ExampleCh42Game  extends FrameworkGame; 
event OnEngineHasLoaded() 
{ 

    WorldInfo.Game.Broadcast(self," ExampleCh42Game  Type Active - Engine Has Loaded 
!!!!"); 

} 
function bool PreventDeath(Pawn KilledPawn, Controller Killer, class<DamageType> 
DamageType, vector HitLocation) 
{ 
    return true; 
} 
static event class<GameInfo> SetGameType(string MapName, string Options, string Portal) 
{ 
    return super.SetGameType(MapName, Options, Portal); 
} 
 
defaultproperties 
{ 
     

    PlayerControllerClass=class'ExampleCh42.ExampleCh42PC' 

    DefaultPawnClass=class'UDKBase.SimplePawn' 
    HUDType=class'UDKBase.UDKHUD' 
 
    bRestartLevel=false 
    bWaitingToStartMatch=true 
    bDelayedStart=false 
} 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 4:  UDK Collisions 107 

Custom Player Controller 
Applying a force to a KAsset is a little different than for a KActor.  For a KAsset you need 

to apply the force to the SkeletalMeshComponent of the KAsset object. Here we have 

specified the bone to apply the impulse to which is ‘Bone06’. This would be roughly the 

center of the wire since the wire is divided into 12 bones. You can verify this by bringing 

the wire up in UnrealPhat.  Please refer back to Figure 4–12 where you can clearly see 

the 12 bones indicated by rectangular boxes. 

For the player controller for this class the only things that have changed from the last 

tutorial are the class definition and the ApplyForceRigidBody function. See Listing 4–8. 

Listing 4–8. Player controller class 

class ExampleCh42PC  extends SimplePC; 
var float PickDistance; 
function ApplyForceRigidBody(Actor SelectedActor,  
                              Vector ImpulseDir, 
                              float ImpulseMag,  
                              Vector HitLocation) 
{ 
    if (SelectedActor.IsA('KActor')) 
    { 
        WorldInfo.Game.Broadcast(self,"*** Thrown object " @ SelectedActor @  
                                               ", ImpulseDir = " @ ImpulseDir @ 
                                               ", ImpulseMag = " @ ImpulseMag @ 
                                               ", HitLocation = " @ HitLocation); 
        KActor(SelectedActor).ApplyImpulse(ImpulseDir,ImpulseMag, HitLocation); 
    } 
    else 

    if (SelectedActor.IsA('KAsset')) 

    { 

        WorldInfo.Game.Broadcast(self,"*** Thrown object " @ SelectedActor @  

                                               ", ImpulseDir = " @ ImpulseDir @ 

                                               ", ImpulseMag = " @ ImpulseMag @ 

                                               ", HitLocation = " @ HitLocation); 

        KAsset(SelectedActor).SkeletalMeshComponent.AddImpulse(ImpulseDir* ImpulseMag, 
,'Bone06');    } 

    else 

    { 

        WorldInfo.Game.Broadcast(self,"!!!ERROR Selected Actor " @ SelectedActor @  

                                              " is not a KActor or KAsset, you can not 
apply an impulse to this object!!!"); 

    } 

} 
function Actor PickActor(Vector2D PickLocation, out Vector HitLocation, out TraceHitInfo 
HitInfo) 
{ 
    local Vector TouchOrigin, TouchDir; 
    local Vector HitNormal; 
    local Actor  PickedActor; 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 4:  UDK Collisions 108 

    local vector Extent; 

    //Transform absolute screen coordinates to relative coordinates 
    PickLocation.X = PickLocation.X / ViewportSize.X; 
    PickLocation.Y = PickLocation.Y / ViewportSize.Y; 
    
    //Transform to world coordinates to get pick ray 
    LocalPlayer(Player).Deproject(PickLocation, TouchOrigin, TouchDir); 
    
    //Perform trace to find touched actor 
    Extent = vect(0,0,0); 
    PickedActor = Trace(HitLocation, 
                        HitNormal,  
                        TouchOrigin + (TouchDir * PickDistance),  
                        TouchOrigin,  
                        True,  
                        Extent,  
                        HitInfo); 

    //Return the touched actor for good measure 
    return PickedActor; 
} 
function bool SwipeZoneCallback(MobileInputZone Zone,  
                                float DeltaTime,  
                                int Handle, 
                                EZoneTouchEvent EventType,  
                                Vector2D TouchLocation) 
{  
    local bool retval; 
  
    local Actor PickedActor; 
    local Vector HitLocation; 
    local TraceHitInfo HitInfo; 

    // Variables for physics 
    local Vector ImpulseDir;  
    local float ImpulseMag;  

    retval = true; 

    if (EventType == ZoneEvent_Touch) 
    { 
        // If screen touched then pick actor 
        PickedActor = PickActor(TouchLocation,HitLocation,HitInfo); 
   
        WorldInfo.Game.Broadcast(self,"PICKED ACTOR = "  
                                       @ PickedActor @ ", HitLocation = "  
                                       @ HitLocation @ ", Zone Touched = "  
                                       @ Zone); 

        // Set to roughly 45 degree angle 
        ImpulseDir = Normal(Vector(Pawn.Rotation)) + vect(0,0,1);  
        ImpulseMag = 500; 

        ApplyForceRigidBody(PickedActor,ImpulseDir,ImpulseMag,HitLocation); 
   
    } 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 4:  UDK Collisions 109 

    else 
    if(EventType == ZoneEvent_Update) 
    { 
    }   
    else 
    if (EventType == ZoneEvent_UnTouch) 
    {   
    }  
    return retval; 
} 
function SetupZones() 
{ 
    Super.SetupZones(); 
 
    // If we have a game class, configure the zones 
    if (MPI != None && WorldInfo.GRI.GameClass != none)  
    { 
        LocalPlayer(Player).ViewportClient.GetViewportSize(ViewportSize); 
        if (FreeLookZone != none) 
        { 
            FreeLookZone.OnProcessInputDelegate = SwipeZoneCallback; 
        }  
    } 
} 
defaultproperties 
{ 
    PickDistance = 10000; 
} 

Configuring the New Game Type 
Now we need to set up the new code for compilation and setup the new game and map 

to run in the Mobile Previewer. Under your UDKGame\Config directory add or change 

entries in your Mobile-UDKGame.ini and UDKEngine.ini files to the following. 

In your Mobile-UDKGame.ini file add mobile input controls for your new game. 

[ExampleCh42.ExampleCh42Game] 
RequiredMobileInputConfigs=(GroupName="UberGroup",RequireZoneNames=("UberStickMoveZone",
"UberStickLookZone","UberLookZone")) 

In your UDKEngine.ini file, add in ExampleCh42 to the compilation list 

[UnrealEd.EditorEngine] 
ModEditPackages=ExampleCh42 

Running the New Game Type 
Bring up the Unreal Editor and load in the level with the wire. Select the View  World 
Properties to bring up the world Properties window. Under the Game Type category set 

the Default Game Type to ExampleCh42Game. 

Run your Mobile Game on the previewer by selecting Play  On Mobile Previewer from the 

Editor’s menu and click on the wire to apply a force. See Figure 4–17. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 4:  UDK Collisions 110 

 
Figure 4–17. KActors and a KAsset 

You should be able to kick around both the cube and sphere which are KActors and the 

wire which is a KAsset. 

In conclusion, KActors and KAssets form the basis for objects providing realistic 

collisions. KActors are objects that are composed of static meshes and KAssets are 

objects that are composed of skeletal meshes. You can easily apply forces to both kinds 

of objects through Unreal Script and have the Unreal Physics Engine process them. 

Physics Constraints 
This section will discuss physics constraints.  First an overview is given followed by a 

hands-on example where you tie several objects together and apply a force to see how 

those tied objects react. 

Physics Constraints Overview 
Physics constraints are objects that can be used to bind together different objects.  

Physics constraints are very flexible and have many options that can specify exactly 

how objects are to be tied together. With a physics constraint you can bind one actor to 

another or to the world itself by specifying None for that actor. If constraining a skeletal 

mesh you can specify which bone name to bind to.   

For example, an arrow attached to a string that when fired from a bow will allow the user 

to retract the arrow and retrieve whatever the arrow has penetrated. The arrow would be 

a static mesh KActor and the string would be a skeletal mesh KAsset that are tied 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 4:  UDK Collisions 111 

together via a physics constraint. The arrow would be tied to one end of the string which 

would be the bone at the end of the string mesh. When the arrow hits the target a 

dynamic constraint is generated to tie the arrow to the target which is then pulled back 

to the user of the bow. 

Linear Constraints 
Linear constraints can be hard. That is, when the two objects reach their linear limits, 

they stop suddenly.  Linear constraints can also be soft in that instead of stopping 

suddenly they behave as if they are attached by a spring. Finally, linear constraints can 

also be set to break if enough force is applied to the constraint. 

The following list provides some additional information for each type of linear constraint: 

 Hard Linear Constraints—You can limit linear movement of 

constrained objects by setting bLimited to 1 for that axis and setting 

LimitSize to the limits for that axis 

 Soft Linear Constraints— If bLinearLimitSoft is set to true then the 

linear limits make the constraint behave like a spring using the 

LinearLimitStiffness value to determine the extent of this behavior 

rather than hard limits where the object suddenly stops when it 

reaches this limit. The LinearLimitDamping value would then control 

the damping. 

 Breakable Linear Constraints—You can also set if this constraint is 

breakable or not.  If bLinearBreakable is true then this constraint can 

break if the force exerted on it is greater than or equal to the 

LinearBreakThreshold value. 

Angular Constraints 
Angular Constraints can be hard, soft, and breakable similar to the linear constraints 

except these constraints refer to angles rather than linear distance. The following list 

describes the several types of angular constraints: 

 Hard Angular Constraints— In terms of angular movement if you set 

bSwingLimited to true you can limit the constrained object’s angle to a 

cone.  The values of Swing1LimitAngle and Swing2LimitAngle define 

the swing limited movements.  

If bTwistLimited is set to true then the twist between the two 

constrained bodies is limited. The value of TwistLimitAngle will then 

determine the limits of the twist angle. 

 Soft Angular Constraints— If bSwingLimitSoft is set to true then the 

constraint will act like a spring instead of being a hard limit and the 

value of SwingLimitStiffness will determine the behavior of this spring 

with SwingLimitDamping controlling the damping. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 4:  UDK Collisions 112 

If bTwistLimitSoft is set to true then the constraint acts as a spring 

instead of a hard limit and TwistLimitStiffness controls the spring 

stiffness with TwistLimitDamping controlling the damping. 

 Breakable Angular Constraints—If bAngularBreakable is set to true 

then this constraint can be broken by twisting it apart when the force 

applied is greater than or equal to AngularBreakThreshold. 

You can create physics constraints using the Unreal Editor and place them into the level 

or you can create them dynamically while the player is playing the game. 

Predefined Constraints 
There are already some pre-defined constraint types that set up the above values to 

make the constraint behave in a certain manner such as: 

 Ball and Socket Constraint (RB_BSJointActor) which has its linear 

movement locked and its angular movements completely free. 

 Hinge Constraint (RBHingeActor) which has its linear movement 

locked and can swing around like a door hinge. 

 Prismatic Constraint (RBPrismaticActor) which has 2 out of 3 linear 

axes of movement locked and all of the angular movements locked.  

This allows it to behave similar to a sliding gate or door. 

 Pulley Constraint (RB_PulleyJoinActor) which simulates a pulley where 

pulling down one object constrained by the pulley pulls up on the 

other object. 

Dynamically Created Physics Constraints 
You can also dynamically create physics constraints. The following is an example of 

creating a physics constraint using Unreal Script using the 

RB_ConstraintActorSpawnable class.  

Var RB_ConstraintActorSpawnable  Constraint1; 
Var Actor RopeStart,RopeSection2; 
 
Pos = RopeSection2.Location; 
Constraint = Spawn(class'RB_ConstraintActorSpawnable',,,Pos);  
Constraint.InitConstraint(RopeStart, RopeSection2 , 'Bone12', 'Bone01'); 

Now that you have an idea of how constraints work, let’s put them to work in a practical 

example. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 4:  UDK Collisions 113 

Hands-On Example: Creating physics constraints with the 
Unreal Editor 
In this example we will show you how to create physics constraints in the Unreal Editor. 

Physics constraints are what you use to tie objects together in various ways. Examples 

that use physics constraints include doors, sliding gates, punching bags and of course 

the wire we used in our previous tutorial. The wire was composed of smaller segments 

that were constrained together. In this example you will tie together a cube and a sphere 

to the ends of the wire you created in the previous example. You will then apply a force 

to parts of this combination and observe the reaction. 

Adding New Objects to a Level 
First we need to add in some new elements to our level from the KAsset example. We 

need to make copies of the cube, sphere, and the wire and put them together using 

physics constraints.  

1. Start the Unreal Editor and load in the level from the previous example 

that contains the sphere, cube, and wire. 

2. Right-click the sphere and select Copy from the context menu. 

3. Right-click on the place in the level where you want to place the sphere 

and select Paste. 

You may have to move the new object so that it does not penetrate the ground using the 

transformation widget. Use the same procedure to copy and paste copies of the cube 

and the wire in the same general area. 

Constraining Objects 
Once you get all the objects copied and pasted you will need to constraint these 

together. To do this we will use a physics constraint called a ball and socket joint. The 

ball and socket joint constrains the objects linearly so that the constrained objects do 

not move in the X, Y, and Z directions. However, the ball and socket joint is not 

constrained in terms of its angular movement so it is free to rotate around the X, Y, and 

Z axes.  You can also modify these properties if you want to after you create the new 

constraint. To create a new ball and socket constraint change the tab in the Unreal 

Editor from “Content Browser” to “Actor Classes”.    

1. Select RB_BSJointActor under the Physics category.  See Figure 4–18. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 4:  UDK Collisions 114 

 

Figure 4–18. Selecting a Ball and Socket Constraint 

2. Then right-click on an empty area in your level and select Add 

RB_BSJoint Actor Here to add it to your level. See Figure 4–19. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 4:  UDK Collisions 115 

 

Figure 4–19. Adding a Ball and Socket Physics Constraint 

The constraint should appear in the level.  See Figure 4–20.   

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 4:  UDK Collisions 116 

 

Figure 4–20. Physics Constraint and Properties 

There are two key properties under the RB_Constraint Actor category. The Constraint 

Actor 1 and Constraint Actor 2 properties are the actors to bind together with this 

physics constraint. Under the RB_Constraint Setup category, Constraint Bone 1 refers 

to the bone from the first actor (if any) to constrain and the Constraint Bone 2 refers to 

the bone from the second actor (if any) to constrain. Thus, you can constrain a static 

mesh (KActor) to a skeletal Mesh (KAsset) using one of the skeletal mesh’s bones. This 

is actually what we are going to do.   

1. First arrange a cube, one end of the wire, and the constraint as in the 

following.  See Figure 4–21. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 4:  UDK Collisions 117 

 

Figure 4–21. Connecting the Cube to one end of the Wire 

2. Then move the wire, constraint and cube so that they are close together 

but not overlapping. The reason for this is if you overlap them too much 

the collision areas of both objects with overlap and the physics engine 

will try to fix this situation with attempting to push them apart resulting 

in weird behavior.  

3. Then double-click on the constraint to bring up its properties. Next you 

need to set the lock on the upper right hand side of the properties 

window so that you can select an actor in the viewport and keep the 

properties windows open and on top. See Figure 4–22. 

 

Figure 4–22. Click on the Lock Icon to keep window open and on top 

4. After clicking the lock icon the graphic should change from an unlocked 

image to one that is locked. See Figure 4–23. 

 

Figure 4–23. Properties window is now locked 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 4:  UDK Collisions 118 

5. Now you can easily click on the wire and set this as Constraint Actor 1. 

Click on the cube and set this as Constraint Actor 2. The Constraint 

Bone 1 will be either Bone01 or Bone12 depending on the wire’s 

orientation. After setting the bone you should see a line going from the 

constraint to the actual bone in the wire that it is now constrained to.  If 

this bone is not at the end of the wire that is closest to the cube then 

you need to change the bone name to Bone01. See Figure 4–24. 

Figure 4–24. Constraint binding a KAsset (Bone1 at End of Wire) with a Kactor (Cube) 

6. After properly setting the constraint properties you need to slide the end 

of the wire, constraint, and the cube closer together to make it look as if 

they are attached.  You may need to turn off the grid snapping feature of 

the editor in order to get a good fit between the objects. Grid snapping 

is a feature that allows the user to move an object only in specified 

increments. For our example, uncheck the Grid Snapping checkbox (see 

Figure 4–25). 

Figure 4–25. Turning Grid Snapping on/off  

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 4:  UDK Collisions 119 

After placing the cube and the wire closer together it should look something like 

Figure 4–26. 

 

Figure 4–26. Constrained Wire and Cube 

7. Next, you need to set up the constraints for the sphere and the other 

end of the wire using the same method as for the cube. The final result 

should look like Figure 4–27. 

 

Figure 4–27. Sphere and Cube constrained to opposite ends of the Wire. 

8. Now save the level and exit the Unreal Editor.   

Changing the Unreal Script  
The next thing you need to do is increase the value of the force applied to an object 

when you click on it. Open the ExampleCh42PC.uc file in the ExampleCh42 directory 

and change the line in the function SwipeZoneCallback() to increase the impulse 

magnitude. 

ImpulseMag = 500; 

Now you are ready to run the game. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 4:  UDK Collisions 120 

Running the new Game Type 
Follow these steps to run the game and see what you’ve created: 

1. Bring up the Unreal Frontend and recompile your script code. 

2. Start up the Unreal Editor and load in the level for this exercise.   

3. Set the game type to ExampleCh42Game. Select View  World Properties 

to bring up the World Properties window and set the Default Game Type 

to ExampleCh42Game under the Game Type category.   

4. Run the game on the mobile previewer by selecting Play  On Mobile 
Previewer. 

5. Click on the sphere. You should see the sphere fly upward and forward 

while at the same time being attached to one end of the wire. As the 

sphere hits the ground it should also move the cube as well since the 

cube is attached to the sphere via the wire.  See Figure 4–28. 

 

Figure 4–28. Using Physics Constraints to bind together a Sphere, Cube and a Wire 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 4:  UDK Collisions 121 

Collisions 
This section covers collisions. First an overview of collisions in the UDK is given, 

followed by two hands-on examples. In the first example, you create a custom KActor 

collision object that is able to detect when another object collides with it. The second 

example shows how to make this custom object explode and disappear when hit hard 

enough. 

Collision Overview 
This section will explain how you would set up and handle collisions for a physics 

object.  For our example, we will use a new class called RigidBodyCube that is derived 

from a KActor class. 

class RigidBodyCube extends KActor 
placeable; 

The RigidBodyCollision() function is declared in the Actor class and will be overridden 

here. This function will process collisions for this object.   

event RigidBodyCollision(PrimitiveComponent HitComponent,  
                          PrimitiveComponent OtherComponent, 
                          const out CollisionImpactData RigidCollisionData,  
                          int ContactIndex) 
{ 
    // Process Collision Here 
} 

This function is called under certain circumstances when a PrimitiveComponent that is 

owned by this class has  

 bNotifyRigidBodyCollision = true 

 ScriptRigidBodyCollisionThreshold is > 0 

 Is involved in a physics collision where the relative velocities between 

the two objects exceed the ScriptRigidBodyCollisionThreshold value. 

In the defaultproperties section, the 3D static mesh that represents this class is created 

through defining a StaticMeshComponent called RigidBodyCubeMesh and adding it to this 

class’s Component array.  

defaultproperties 
{ 
    Begin Object Class=StaticMeshComponent Name=RigidBodyCubeMesh 
        StaticMesh=StaticMesh'EngineMeshes.Cube' 
   
        CollideActors=true 
        BlockActors=true 
        BlockRigidBody=true 
   
        bNotifyRigidBodyCollision=true  
        ScriptRigidBodyCollisionThreshold=0.001 
        RBChannel=RBCC_GameplayPhysics 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 4:  UDK Collisions 122 

        RBCollideWithChannels=(Default=true, 
                                BlockingVolume=true, 
                                GameplayPhysics=true, 
                                EffectPhysics=true) 
        End Object 
    StaticMeshComponent=RigidBodyCubeMesh 
    Components.Add(RigidBodyCubeMesh) 
    CollisionComponent = RigidBodyCubeMesh 
   
    bWakeOnLevelStart = true 
 
    Physics = PHYS_RigidBody 
    BlockRigidBody = true 
    bBlockActors = true 
    bCollideActors = true 
} 

The Component array holds items that are attached to this class object’s location and 

rotation.  The actual 3D static mesh that is used to represent this class is defined in the 

StaticMesh variable that is set equal to a Cube. The StaticMeshComponent of the KActor 

is also set to the RigidBodyCubeMesh. The CollisionComponent which points to the 

collision mesh used for colliding this object against other objects also is set to the 
RigidBodyCubeMesh. 

The following lists the key variables that must be set to produce rigid body collisions for 

this class and for components within this class:  

 The CollideActors variable must be set to true so that this object will 

be considered for collisions.   

 The BlockActors variable should be set to True so the Player will be 

blocked from moving through this object. 

 The BlockRigidBody variable must be set to True to have this object 

collide with other objects that use the Novodex physics engine.   

 The bNotifyRigidBodyCollision variable must be set to true and the 

ScriptRigidBodyCollisionThreshold variable must be > 0 to have the 

RigidBodyCollision() function called for collision processing.   

 The variable RBChannel should be set to RBCC_GameplayPhysics which 

indicates what type of object this is with respect to a rigid body 

physics collision.  The RBCollideWithChannels variable indicates what 

other kinds of objects can collide with this one.     

 The variable bWakeOnLevelStart is set to true to indicate that this 

object’s physics simulation should begin when the level starts up. 

 The Physics variable of this object is set to PHYS_RigidBody to indicate 

that Rigid Body physics simulation using the Novodex physics engine 

should be performed on this object. 

 The variable BlockRigidBody in the KActor class is set to true to 

indicate that objects of this class will collide with other Rigid Bodies. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 4:  UDK Collisions 123 

 The variable bBlockActors in the KActor class is set to true to indicate 

that objects of this class will block a player from moving through it. 

 The variable bCollideActors in the KActor class is set to true to 

indicate that objects of this class are enabled for collision detection. 

Next, let’s see how the above variables are used in a real hands-on example. 

Hands-on Example: Creating a Collision Object and Putting 
It in a Level  
In this tutorial you will creating a new class RigidBodyCube that will be a KActor rigid 

body and that will be placeable in a level using the Unreal Editor. An object of the 

RigidBodyCube class will be able to tell when it is hit. When hit the function 

RigidBodyCollision() will be called and code can be added to handle the event. 

Creating the Unreal Script 
The first thing we need to do is create the code for RigidBodyCube object as well as the 

other classes, such as the game type, and player controller, and compile it.  We need to 

do this in order to put this new class into the UDK system where the Unreal Editor will 

have access to it.   

Create a new directory for your code at Development\Src\ ExampleCh43\Classes under 

your UDK installation directory. Then, as previously, you will define the game type and 

create the player controller. Finally, you define the RigidBodyCube class. 

Custom Game Type 
First create the class that defines the type of game the player will be playing and put it in 

a new file ExampleCh43Game.uc. See Listing 4–9. 

Listing 4–9. Game type  

class ExampleCh43Game extends FrameworkGame; 
 
event OnEngineHasLoaded() 
{ 
    WorldInfo.Game.Broadcast(self," ExampleCh43Game Type Active - Engine Has Loaded 
!!!!"); 
} 
 
function bool PreventDeath(Pawn KilledPawn, Controller Killer, class<DamageType> 
DamageType, vector HitLocation) 
{ 
    return true; 
} 
 
static event class<GameInfo> SetGameType(string MapName, string Options, string Portal) 
{ 
    return super.SetGameType(MapName, Options, Portal); 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 4:  UDK Collisions 124 

} 
 
defaultproperties 
{ 
     

    PlayerControllerClass=class'ExampleCh43.ExampleCh43PC' 

 
    DefaultPawnClass=class'UDKBase.SimplePawn' 
    HUDType=class'UDKBase.UDKHUD' 
 
    bRestartLevel=false 
    bWaitingToStartMatch=true 
    bDelayedStart=false 
} 

Custom Player Controller 
Next, you need to create the custom player controller.  Create a new file called 

ExampleCh43PC.uc using the code in Listing 4–10.  

 

Listing 4–10. Player controller 

class ExampleCh43PC  extends SimplePC; 
 
var float PickDistance; 
 
function ApplyForceRigidBody(Actor SelectedActor, Vector ImpulseDir,float ImpulseMag, 
Vector HitLocation) 
{ 
    if (SelectedActor.IsA('KActor')) 
    { 
        WorldInfo.Game.Broadcast(self,"*** Thrown object " @ SelectedActor @  
                                               ", ImpulseDir = " @ ImpulseDir @ 
                                               ", ImpulseMag = " @ ImpulseMag @ 
                                               ", HitLocation = " @ HitLocation); 
        KActor(SelectedActor).ApplyImpulse(ImpulseDir,ImpulseMag, HitLocation); 
    } 
    else 
    if (SelectedActor.IsA('KAsset')) 
    { 
        WorldInfo.Game.Broadcast(self,"*** Thrown object " @ SelectedActor @  
                                               ", ImpulseDir = " @ ImpulseDir @ 
                                               ", ImpulseMag = " @ ImpulseMag @ 
                                               ", HitLocation = " @ HitLocation); 
        KAsset(SelectedActor).SkeletalMeshComponent.AddImpulse(ImpulseDir* ImpulseMag, 
,'Bone06'); 
    } 
    else 
    { 
        WorldInfo.Game.Broadcast(self,"!!!ERROR Selected Actor " @ SelectedActor @  
                                              " is not a KActor or KAsset, you can not 
apply an impulse to this object!!!"); 
    } 
} 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 4:  UDK Collisions 125 

 
function Actor PickActor(Vector2D PickLocation, out Vector HitLocation, out TraceHitInfo 
HitInfo) 
{ 
    local Vector TouchOrigin, TouchDir; 
    local Vector HitNormal; 
    local Actor PickedActor; 
    local vector Extent; 
 
    //Transform absolute screen coordinates to relative coordinates 
 
    PickLocation.X = PickLocation.X / ViewportSize.X; 
 
    PickLocation.Y = PickLocation.Y / ViewportSize.Y; 
       //Transform to world coordinates to get pick ray 
    LocalPlayer(Player).Deproject(PickLocation, TouchOrigin, TouchDir); 
        //Perform trace to find touched actor    Extent = vect(0,0,0); 
    PickedActor = Trace(HitLocation,  
                         HitNormal,  
                         TouchOrigin + (TouchDir * PickDistance),  
                         TouchOrigin,  
                         True,  
                         Extent,  
                         HitInfo); 
 
        //Return the touched actor for good measure     
        return PickedActor; 
} 
function bool SwipeZoneCallback(MobileInputZone Zone,  
                                 float DeltaTime,  
                                 int Handle, 
                                 EZoneTouchEvent EventType,  
                                 Vector2D TouchLocation) 
{  
    local bool retval; 
  
    local Actor PickedActor; 
    local  Vector HitLocation; 
    local TraceHitInfo HitInfo; 
 
    // Variables for physics 
    Local Vector ImpulseDir;  
    Local float ImpulseMag;  

    Local float KickAngle; 

 
    // Constants defined in Object.uc 
    // const Pi = 3.1415926535897932; 
    // const RadToDeg = 57.295779513082321600;      // 180 / Pi 
    // const DegToRad = 0.017453292519943296;       // Pi / 180 
    // const UnrRotToRad = 0.00009587379924285;     // Pi / 32768     
    // const RadToUnrRot = 10430.3783504704527;     // 32768 / Pi 
    // const DegToUnrRot = 182.0444; 
    // const UnrRotToDeg = 0.00549316540360483; 
 
    retval = true;        if (EventType == ZoneEvent_Touch) 
    { 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 4:  UDK Collisions 126 

        // If screen touched then pick actor 
        PickedActor = PickActor(TouchLocation,HitLocation,HitInfo); 
   
        WorldInfo.Game.Broadcast(self,"PICKED ACTOR = "  
                                       @ PickedActor @ ", HitLocation = "  
                                       @ HitLocation @ ", Zone Touched = "  
                                       @ Zone); 
 

        KickAngle = 15 * DegToRad;  

        ImpulseDir = (Normal(Vector(Pawn.Rotation)) * cos(KickAngle)) + (vect(0,0,1) * 
sin(KickAngle));  

        ImpulseMag = 500; 
        ApplyForceRigidBody(PickedActor,ImpulseDir,ImpulseMag,HitLocation);  
    } 
    else 
    if(EventType == ZoneEvent_Update) 
    {     
    } 
    else 
    if (EventType == ZoneEvent_UnTouch) 
    { 
    } 
    return retval; 
} 
 
function SetupZones() 
{ 
    Super.SetupZones(); 
 
    // If we have a game class, configure the zones 
    if (MPI != None && WorldInfo.GRI.GameClass != none)  
    { 
        LocalPlayer(Player).ViewportClient.GetViewportSize(ViewportSize);                
if (FreeLookZone != none) 
        { 
            FreeLookZone.OnProcessInputDelegate = SwipeZoneCallback;        }  
    } 
} 
 
defaultproperties 
{ 
    PickDistance = 10000; 
} 
 

Most of the code is the same as the previous example in Listing 4–8. However, there are 

some new elements.  

KickAngle = 15 * DegToRad; 

Kickangle is the angle that the force is applied to the object measured from the 

horizontal and is set to 15 degrees.   

ImpulseDir is a vector that represents the direction of the force that will be applied to 

the object. The ImpulseDir is composed of two parts the forward vector component and 

the vertical vector component that when added together produces the final direction of 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 4:  UDK Collisions 127 

the force. The forward component of the direction is calculated by multiplying the 

normalized vector representing the direction the player’s pawn is facing by the cosine of 

the KickAngle. The vertical component is calculated by multiplying the Z axis unit vector 

by the sine of the KickAngle.  

NOTE: Basically, we figure out the horizontal and vertical components of the ImpulseDir vector 
on a 2D plane and then project them onto the 3D world by multiplying each component by 
horizontal and vertical 3D unit vectors. Please refer to Chapter 8 for more information on vectors, 

sine, cosine, etc as well as a detailed explanation of the mathematics involved in this example. 

This gives the forward and vertical components a range of 0 to 1.  If the KickAngle is 0 

then the cosine of this angle is 1 and the sine of this angle is 0. This would make the 

direction all in the forward direction and none in the vertical direction as expected.  If the 

KickAngle is 90 degrees or PI/2 then the cosine of the angle would be 0 and the sine of 

the angle would be 1.  This would make the forward component 0 and would maximize 

the vertical direction.   

ImpulseDir = (Normal(Vector(Pawn.Rotation)) * cos(KickAngle)) + (vect(0,0,1) * 
sin(KickAngle));  

The other code in Listing 4–10 was explained previously in the first Hands-on Example 

of this chapter. 

The RigidBodyCube Class 
The next class you will need to create is the RigidBodyCube class. Create a new file 

called RigidBodyCube.uc and enter the following code into it and then save the file. 

Declare the new RigidBodyCube class as follows. The placeable option at the end of the 

class indicates that this class is defined as placeable. That means that using the Unreal 

Editor you can select this class from the Actor Classes tab and right-click on the level to 

place an object of this type in the actual game level. The new RigidBodyCube class is 

declared as a subclass of KActor.  See Listing 4–11.  

Listing 4–11. RigidBodyCube class 

class RigidBodyCube extends KActor 
placeable; 
event RigidBodyCollision(PrimitiveComponent HitComponent,  
                          PrimitiveComponent OtherComponent, 
                          const out CollisionImpactData RigidCollisionData,  
                          int ContactIndex) 
{ 
WorldInfo.Game.Broadcast(self,"RigidBodyCube COLLISION!!!! - " @ self @ 
                                  ", HitComponent =  " @ Hitcomponent @  
                                  " Has Collided with " @ OtherComponent @ 
                                  " With Force " @ 
VSize(RigidCollisionData.TotalNormalForceVector)); 
} 
defaultproperties 
{  

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 4:  UDK Collisions 128 

        Begin Object Class=StaticMeshComponent Name=RigidBodyCubeMesh 
        StaticMesh=StaticMesh'EngineMeshes.Cube' 
   
        CollideActors=true 
        BlockActors=true 
        BlockRigidBody=true 

        bNotifyRigidBodyCollision=true          
        ScriptRigidBodyCollisionThreshold=0.001 
        RBChannel=RBCC_GameplayPhysics 
        RBCollideWithChannels=(Default=true, 
                                BlockingVolume=true, 
                                GameplayPhysics=true, 
                                EffectPhysics=true) 
    End Object 
    StaticMeshComponent=RigidBodyCubeMesh 
    Components.Add(RigidBodyCubeMesh) 

    CollisionComponent = RigidBodyCubeMesh    
    bWakeOnLevelStart = true 

    bEdShouldSnap = false 

  
    Physics = PHYS_RigidBody 
    BlockRigidBody = true  
    bBlockActors = true 
    bCollideActors = true 
} 

The variable bEdShouldSnap is set to false to indicate that this object by default should 

not use grid snapping while in the editor. The rest of the code in the default properties 

block was explained in the collision overview section that was presented before this 

example.  

Game Type Setup 
Now we need to set up our new game type and compile our new code. In your 

UDKGame\Config directory change Mobile-UDKGame.ini and UDKEngine.ini to compile 

our new code. 

Mobile-UDKGame.ini 
[ExampleCh43.ExampleCh43Game] 
RequiredMobileInputConfigs=(GroupName="UberGroup",RequireZoneNames=("UberStickMoveZone",
"UberStickLookZone","UberLookZone")) 
UDKEngine.ini 
[UnrealEd.EditorEngine] 
ModEditPackages= ExampleCh43 

Now bring up the Unreal Frontend and compile the code. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 4:  UDK Collisions 129 

Setting up the Level 
The next thing to do is to bring up the Unreal Editor so you can set up the level.   

1. First of all you need to load in your level from that last example and save 

it as a different map for this exercise.   

2. Go to the Actor Classes tab and under the Physics  Kactor category and 

select the new RigidBodyCube class you just created. See Figure 4–29.  

 

Figure 4–29. Selecting your new RigidBodyCube class from the Actor Classes Browser 

3. Right-click on an empty area in the level and select Add RigidBodyCube Here to 

add the object to your level. Double-click on the object to bring up its properties. 

See Figure 4–30. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 4:  UDK Collisions 130 

 

Figure 4–30. Properties of new class RigidBodyCube 

4. Change the Draw Scale property under the Display category to .20 and 

close out the properties window.   

5. Next you need to create a wall of blocks using this new class in the 

center of the arena. To help you along, selecting a block and then 

holding down the Alt key while dragging the transformation widget will 

allow you to simultaneously create a new copy of this object and drag 

that copy of the object using the transformation widget. Holding down 

the Ctrl key and clicking on multiple objects will allow you to select 

multiple objects for movement or copying using the Alt key technique. 

Also, make copies of the Spheres and place them around this wall of 

blocks, as in Figure 4–31. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 4:  UDK Collisions 131 

 

Figure 4–31. A wall made of our custom class RigidBodyCube 

Running the Game Type 
Finally, we are ready to try out our game. Change the level’s default game type to 

ExampleCh43Game and start the game up on the mobile previewer.   

Try moving around the wall and kicking balls into it. When the ball hits the wall a message 

should appear stating that there was a RigidBodyCube collision. See Figure 4–32.  

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 4:  UDK Collisions 132 

 

Figure 4–32. Ball hitting a block made of our new class RigidBodyCube 

Hands-On Example: Making an exploding wall of blocks 
This tutorial will build upon the last tutorial. Now what we need to do is take that wall of 

blocks and make them explode when you hit them with another object hard enough. In 

order to do this we need to change the code in the RigidBodyCube class. 

Just under the class declaration add in the following variables. The ExplosionTemplate 

refers to the particle system that will be used for the explosion of a RigidBodyCube. You 

can search for particle systems in the Content Browser by checking the box under the 

Object Type  Favorites heading and selecting “Mobile Game” under Packages. The 

Explosion variable holds a reference to a new emitter that is created using the 

SpawnEmitter() function.   

Var ParticleSystem ExplosionTemplate; 
Var ParticleSystemComponent Explosion; 

For this example, we have decided to “destroy” the block by moving it out of the 

player’s view and turning off Rigid Body physics for this object to save processing 

resources. This way we can easily add in more information later if needed such as the 

time this block was destroyed, what object destroyed it, and so on. The 

OutOfViewLocation variable holds the location in the world where destroyed blocks are 

moved to. 

Var vector OutOfViewLocation; 

The MinimumForceToExplode variable is the minimum force it would take to destroy a 

RigidBodyCube class object. bDestroyed is set to true if the RigidBodyCube is destroyed. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 4:  UDK Collisions 133 

Var float MinimumForceToExplode; 
Var bool bDestroyed; 

In the defaultproperties section add in the default values of the following variables 

MinimumForceToExplode = 370; 
bDestroyed = false 
OutOfViewLocation = (X = 0, Y = 0, Z = -5000) 
ExplosionTemplate = ParticleSystem'Castle_Assets.FX.P_FX_Fire_SubUV_01' 

For the ExplosionTemplate default value you can actually view this system from within 

Unreal Cascade. Search for particle systems using the search term “fx_fire” in the 

“UDKGame” package and you should see 1 particle system asset. Double-click on this 

asset to bring it up in Unreal Cascade. See Figure 4–33  

 

Figure 4–33. Our particle system used for explosions viewed in Unreal Cascade 

You also need to change the RigidBodyCollision() function to the new function that 

follows. What this function does is first test to see if collision force between this object 

and the object that it collided into is equal to or greater than the minimum force needed 

to destroy this object. If it is then the object is destroyed. First a new explosion is 

created using a particle emitter that is spawned from a pool of particle emitters. Next, 

this object is moved to a location out of the player’s view, its physics state is set to none 

and its destroyed variable is set to true. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 4:  UDK Collisions 134 

event RigidBodyCollision(PrimitiveComponent HitComponent,  
                              PrimitiveComponent OtherComponent, 
                              const out CollisionImpactData RigidCollisionData,  
                              int ContactIndex) 
{ 
    local vector ExplosionLocation; 
    local float CollisionForce; 
 
    WorldInfo.Game.Broadcast(self,"RigidBodyCube COLLISION!!!! - " @ self @ 
                                      ", HitComponent =  " @ Hitcomponent @  
                                      " Has Collided with " @ OtherComponent @ 
                                      " With FOrce " @ 
VSize(RigidCollisionData.TotalNormalForceVector)); 
 
    CollisionForce = VSize(RigidCollisionData.TotalNormalForceVector); 
 
    if (CollisionForce >= MinimumForceToExplode) 
    {  
        // Spawn Explosion Emitter 
        ExplosionLocation = HitComponent.Bounds.Origin; 
        Explosion = WorldInfo.MyEmitterPool.SpawnEmitter(ExplosionTemplate, 
ExplosionLocation); 
 
        // Object has been Destroyed 
        bDestroyed = true; 
 
        // Move Rigid Body out of view 
        HitComponent.SetRBPosition(OutOfViewLocation); 
        SetPhysics(Phys_None);  
    } 
} 

Recompile this code and launch the game. Kick some objects into the wall. See Figure 4–34. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 4:  UDK Collisions 135 

 

Figure 4–34. Kicking objects into wall formed by exploding RigidBodyCubes 

Summary 
In this chapter we covered the UDK physics system. We discussed collision meshes and 

how you can create your own through a 3d modeling program like Blender. We showed 

you how to create both KActors from static meshes and KAssets from skeletal meshes 

and how to apply forces to each type of object. Then we showed you how to use 

physics constraints to tie together KActors and KAssets so that a force applied to one of 

these objects will affect all of them. Next we demonstrated how to create a new class 

that was a placeable rigid body that is able to react to collisions. Building on that 

example we added code to make that new class explode when it collides with another 

object. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


 
137 

   Chapter 

UDK Bots 
In this chapter we will cover UDK bots. Bots are basically computer-controlled enemies. 

They are important because, unless the game is a completely multiplayer, you will 

generally need some bots to make the game interesting and challenging.  

First an overview of bots is given. This is followed by a discussion of bot Artificial 

Intelligence path finding and the different methods that the UDK uses which are 

pathnodes and navigation meshes. Finally, using weapons with bots is covered along 

with how players and bots can take damage from their weapons. Hands-on examples 

are given to illustrate these concepts including: 

 How to create a bot and have it follow the player using Pathnodes 

 How to create a bot and have it follow the player using Navmesh 

 How to move a bot to a point in the world specified by the Player 

 How to equip a bot with a weapon 

 How a bot and a player can take damage from a weapon 

UDK Bot Overview 
A UDK bot is basically a 3D animated object, or “robot”, with built-in artificial intelligence 

features that allow for such things like finding a path to another object in the game world 

and then being able to move to that object along that path. For example, let’s say you 

are in control of a squad of computer-controlled soldiers or bots. You can indicate the 

location that you want the bots to move to by touching the screen on your iOS device. 

The bots then calculate the path to that location and in the process avoid obstacles that 

would block their way. The code to find this path is already built into the base UDK code 

and is what we will discuss in this chapter. Other things, such as when to fire weapons 

and who or what to fire at under what circumstances, must be programmed separately.   

There are certain classes within the UDK base code and functions within those classes 

that must be used in order to create a working bot. In order to create a bot with custom 

user-defined behavior, a custom bot controller must be created. Bot controllers are 

5 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 5:  UDK Bots 138 

similar to player controllers except that there will be no player input in determining a 

bot’s behavior. Think of the controller as the bot’s brain. Once a custom bot controller 

has been created then the controller must possess the bot’s pawn in order to connect 

the bot’s brain which is the controller to the bot’s body which is the bot’s pawn. The 

way we connect the two is simple. We use the Possess() function  located in the bot 

controller to connect the brain to the body. This is covered in detail in a later section in 

this chapter. 

Bot Related Classes 
The UDK has a couple of built-in classes that handle bots. They are the AIController 

class and the UDKBot class. The definitions of these classes are as follows.  

class AIController extends Controller 
    native(AI); 
 
class UDKBot extends AIController 
    native; 

Note that both classes are defined as native which means that part of the class is 

implemented in C/C++ instead of UnrealScript. Native classes should not be altered. 

Native classes have a portion of their code implemented elsewhere in C/C++ and are not 

designed to be altered by the UDK user. In order to create a custom bot controller we 

must derive a new class from the UDKBot class. The following declares a new custom 

class called BotCustomController that derives from the UDKBot class.  

class BotCustomController extends UDKBot; 

It is in this new custom bot controller class that code can be placed to give the bot 

custom behavior. This new controller class will inherit the built in pathfinding abilities of 

the Controller class. The Controller class is the base class for controllers.   

Key Bot Related Functions 
There are some key functions that are essential to basic bot AI. 

 LatentWhatToDoNext() – This function is declared in a state and is 

used to transition to the WhatToDoNext() function. The importance of 

using this function is that game time passes  at least one clock tick 

before the actual bot decision making code in 

ExecuteWhatToDoNext() is executed. This prevents a critical timing 

error from occurring. See the example below.    

 auto state Initial 
 { 
     Begin: 
     LatentWhatToDoNext(); 
 } 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 5:  UDK Bots 139 

 WhatToDoNext() – This function is called by LatentWhatToDoNext() 

and calls ExecuteWhatToDoNext() on the next game tick if the 

DecisionComponent.bTriggered is set to true. See the following 

example. 

 event WhatToDoNext() 
 { 
         DecisionComponent.bTriggered = true; 
 } 

 ExecuteWhatToDoNext() – This function is the main decision making 

function for your bot. It is in this function that your bot will decide 

which state to transition to based on the current state it is in and other 

programmer defined factors. 

The following is example code from a bot that basically is designed to loop 

continuously in the FollowTarget state forever. If the bot is in the Initial state 

then it goes into the FollowTarget state. Otherwise if it is in the FollowTarget
state it goes back into the FollowTarget state. 

protected event ExecuteWhatToDoNext() 
 { 

    if (IsInState('Initial')) 
    { 
        GotoState('FollowTarget', 'Begin'); 
    } 
    else 
    { 
        GotoState('FollowTarget', 'Begin'); 
    } 

 } 

The bottom line is that these functions form the basic decision making loop that is 

needed for the bot AI. At the end of each state block the following process occurs:  

1. The LatentWhatToDoNext() function is called.  

2. It in turn calls the WhatToDoNext() function. 

3. Finally, WhatToDoNext() then calls the ExecuteWhatToDoNext() function.  

The ExecuteWhatToDoNext() function is the main decision making function for the bot 

where the bot can be put into a different state through the GotoState() function. 

Possession 
In terms of the AI controller there are several important functions.  Before the bot can 

control its pawn you will need to assign the pawn to the controller. You do this through 

the Possess() function that is declared in the Controller class. The Possess() function 

takes a reference to a Pawn that is to be assigned to this controller as the first 

parameter and the second parameter is true if this involves a vehicle transition.  The 

PossessedBy() function of the Pawn is also called. The function declaration is as seen 

below.  

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 5:  UDK Bots 140 

Possess(Pawn inPawn, bool bVehicleTransition)  

The UnPossess() function is called to release the Pawn from the controller and the 

pawn’s UnPossessed() function is also called.  See Listing 5–1. 

Listing 5–1. Spawning and Possessing a Bot 

Var Controller BotController; 
Var Pawn BotPawn; 
 
function SpawningBot(Vector SpawnLocation) 
{ 
    BotController = Spawn(class'BotCoverController',,,SpawnLocation);  
    BotPawn = Spawn(class'BotCoverPawn',,,SpawnLocation); 
    BotController.Possess(BotPawn,false); 
} 

The code in Listing 5–1 dynamically creates a new controller and a new pawn using the 

Spawn() function at SpawnLocation in the 3d world. The pawn is then assigned to the 

controller using the Possess() function. 

Path Finding 
Path finding is the process of a computer controlled bot determining the path from its 

current location to a target destination location in the  game world. In this process 

obstacles must be taken into account and avoided. There are two ways that the UDK 

can handle this. One is through the use of path nodes and the other is through the use 

of a navigation mesh.  

Path Nodes 
In order to use the path nodes method of path finding you must place path nodes using 

the Unreal Editor on areas in the level that your bot will have access to. If an area has no 

path nodes then the bot may not be able to walk through that area.   

The following Figure 5–1 illustrates how to set up a level to use pathnodes. The key here 

is that all the areas you want a bot to have access to must be reachable directly or 

indirectly from a network of pathnodes. If an area is blocked off by an obstacle and there 

is no pathnode to that area then the bot will not be able to go to that area. Blocking off 

parts of your game world from bots might actually be preferred if you have a special 

area in your game that only the player should be allowed access to. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 5:  UDK Bots 141 

 

Figure 5–1. Pathfinding by pathnodes 

Navigation Mesh 
In order to use the navigation mesh you must put a pylon just above the area you want 

the bot to be able to navigate using the Unreal Editor. 

One advantage of using a navigation mesh is that it automatically calculates all available 

paths around obstacles unlike the path nodes method where you need to manually put 

path nodes around the obstacles to ensure that the bot is able to walk through that area. 

Also, when a game level changes all you need to do if you use the navigation mesh 

method is to rebuild the AI Paths. With the path node method you may need to 

rearrange your path nodes and perhaps add more path nodes manually to adjust for the 

changes in the level. 

The Figure 5–2 illustrates the use of the navigation mesh for pathfinding the same area 

as in Figure 5–1. The graphic with the P is the pylon and the screen capture was 

performed after the AI paths were built. The lines you see in the level are part of the 

navigation mesh. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 5:  UDK Bots 142 

 

Figure 5–2. Pathfinding by Navigation Mesh      

Hands-On Example: Creating a bot and having it follow you 
using Path Nodes. 
In this example we will create a new level in the Unreal Editor full of obstacles. We will 

then place path nodes in the level so as to provide a path for our bot through these 

obstacles. We will then give the bot the ability to follow the player as the player walks 

around the level. The bot will continue to follow the player and avoid the obstacles using 

the path node method of path finding. In terms of bot movement navigation meshes can 

produce smoother more natural movement around corners and around obstacles than 

pathnodes.   

In this example, we create a new game type, a player controller, player pawn, player 

weapon, player weapon projectile, weapon inventory manager a controller, and a pawn 

for our bot. For our player pawn we will use a third-person viewpoint. For those who 

need a review of vectors and trigonometry please see Chapter 8. There is also a detailed 

section in Chapter 8 that explains the math behind the third person camera positioning. 

Creating the Level 
The first thing to do is to create the level with the obstacles.   

1. Open the Unreal Editor and select the Content Browser. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 5:  UDK Bots 143 

2. First we need obstacles. What we need is a static mesh with a collision 

model to place into the level. Type Cube into the search box and check 

the Static Meshes checkbox under the Object Type heading on the top 

part of the Content Browser.   

3. A static mesh called Cube should appear in the preview pane of the 

Content Browser. Select the Cube by clicking on it. 

4. Find an empty space on the level and add the Cube static mesh to the 

level by right-clicking and selecting the Add Static Mesh option. 

5. Repeat step 4 until there are a significant number of Cubes in the level. 

6. Pick a cube and place pathnodes all around it. Right-click on the area 

you want to add a path node to and select Add Actor  Add Path Node to 

add the path node. See Figure 5–3. 

7. Next you need to add path nodes to all the areas between the Cubes 

and other areas that you want your bot have access to. Repeat step 6 

for all the cubes in the level. 

 

Figure 5–3. Creating a level with Cube static meshes and path nodes 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 5:  UDK Bots 144 

8. You now need to build the AI paths for this level by selecting Build  AI 
Paths from the Unreal Editor menu. All the path nodes are now 

connected into one single network. You don’t need to add the 

pathnodes in any specific order.  

9. Once the AI has been successfully built then you can save your level. 

10. Try to run this level on the Mobile Game Previewer by selecting Play  

On Mobile Previewer. The level should appear without the pathnode 

graphics. The pathnodes are only visible in the editor and not the actual 

game level. 

Creating the Game Type 
Next, we need to start creating the code for this example.  In the default source 

directory C:\UDK\UDK-2011-06\Development\Src, create a new directory called 

ExampleCh5 and under that create a new directory called Classes. You will put all your 

UnrealScript code into this new Classes directory. 

Enter the following code (Listing 5–2) in a new file called ExampleCh5Game.uc and save 

the file. We will build examples using this game type for all the examples in this chapter. 

Listing 5–2. Game Type class for Chapter 5 

class ExampleCh5Game extends FrameworkGame;event OnEngineHasLoaded() 
{ 
    WorldInfo.Game.Broadcast(self,"ExampleCh5Game Type Active - Engine Has Loaded 
!!!!"); 
} 
function bool PreventDeath(Pawn KilledPawn, Controller Killer, class<DamageType> 
DamageType, vector HitLocation) 
{ 
    return true; 
} 
static event class<GameInfo> SetGameType(string MapName, string Options, string Portal) 
{ 
    return super.SetGameType(MapName, Options, Portal); 
} 
defaultproperties 
{ 
    PlayerControllerClass=class'ExampleCh5.ExampleCh5PC'  
    DefaultPawnClass=class'ExampleCh5.JazzPawnDamage' 
    HUDType=class'UDKBase.UDKHUD' 
    bRestartLevel=false 
    bWaitingToStartMatch=true 
    bDelayedStart=false 
} 

Most of the above code should be familiar to you by now. The key differences have 

been highlighted. When the game starts up a message should be displayed indicating 

that the new game type ExampleCh5Game has been started. There is also a new 

PlayerControllerClass and DefaultPawnClass specified.   

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 5:  UDK Bots 145 

Creating the Player Controller and Player Pawn 
Next, we need to create a custom player pawn which is called JazzPawnDamage as 

shown in Listing 5–3. 

The view of this pawn is the third person as defined by the CalcCamera() function. If you 

need a more detailed explanation of the math involved please check out Chapter 8. This 

pawn is called JazzPawnDamage because later in this chapter we will add the ability of this 

pawn to process damage through the addition of a TakeDamage() function. Also refer to 

Chapter 3 if you need a review of weapons and pawns. 

Listing 5–3. JazzPawnDamage custom player pawn. 

class JazzPawnDamage extends SimplePawn; 
 
var float CamOffsetDistance; 
var int CamAngle;  
var Inventory MainGun; 
var vector InitialLocation; 
 
simulated singular event Rotator GetBaseAimRotation() 
{ 
   local rotator TempRot; 
 
   TempRot = Rotation; 
   TempRot.Pitch = 0;   
   SetRotation(TempRot); 
   return TempRot; 
}    
function AddGunToSocket(Name SocketName) 
{ 
    local Vector SocketLocation; 
    local Rotator SocketRotation; 
    if (Mesh != None) 
    { 
        if (Mesh.GetSocketByName(SocketName) != None) 
        { 
            Mesh.GetSocketWorldLocationAndRotation(SocketName, SocketLocation, 
SocketRotation);  
            MainGun.SetRotation(SocketRotation); 
            MainGun.SetBase(Self,, Mesh, SocketName); 
        } 
        else 
        { 
            WorldInfo.Game.Broadcast(self,"!!!!!!SOCKET NAME NOT FOUND!!!!!"); 
        } 
    } 
    else 
    { 
        WorldInfo.Game.Broadcast(self,"!!!!!!MESH NOT FOUND!!!!!"); 
    } 
} 
function AddDefaultInventory() 
{  
    MainGun = InvManager.CreateInventory(class'JazzWeaponDamage'); 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 5:  UDK Bots 146 

    MainGun.SetHidden(false); 
    AddGunToSocket('Weapon_R'); 
    Weapon(MainGun).FireOffset = vect(0,0,-70); 
} 
simulated function bool CalcCamera( float fDeltaTime, out vector out_CamLoc, out rotator 
out_CamRot, out float out_FOV ) 
{ 
    local vector BackVector; 
    local vector UpVector; 
 
    local float  CamDistanceHorizontal; 
    local float  CamDistanceVertical;  
 
    // Set Camera Location 
    CamDistanceHorizontal = CamOffsetDistance * cos(CamAngle * UnrRotToRad); 
    CamDistanceVertical   = CamOffsetDistance * sin(CamAngle * UnrRotToRad); 
  
    BackVector = -Normal(Vector(Rotation)) * CamDistanceHorizontal; 
    UpVector   =  vect(0,0,1) * CamDistanceVertical; 
 
    out_CamLoc = Location + BackVector + UpVector; 
 
    // Set Camera Rotation 
    out_CamRot.pitch = -CamAngle; 
    out_CamRot.yaw   = Rotation.yaw; 
    out_CamRot.roll  = Rotation.roll; 
 
    return true; 
} 
defaultproperties 
{  
    Begin Object Class=SkeletalMeshComponent Name=JazzMesh      
        SkeletalMesh=SkeletalMesh'KismetGame_Assets.Anims.SK_Jazz' 
        AnimSets(0)=AnimSet'KismetGame_Assets.Anims.SK_Jazz_Anims' 
        AnimTreeTemplate=AnimTree'KismetGame_Assets.Anims.Jazz_AnimTree' 
        BlockRigidBody=true 
        CollideActors=true 
    End Object 
    Mesh = JazzMesh; // Set The mesh for this object 
    Components.Add(JazzMesh); // Attach this mesh to this Actor 
     
    CamAngle=3000; 
    CamOffsetDistance= 484.0 
    InventoryManagerClass=class'ExampleCh5.WeaponsCh5IM1' 
} 

Most of the code should be familiar to you with key changes highlighted in bold type. 

InitialLocation holds the starting location of the player’s pawn and is used to reset the 

player to its starting location when the player dies. This is needed later in this chapter 

where we show you how the player and the bot can both take damage from each other’s 

weapons. 

Next, we need to create a player controller for this example. The player controller is 

shown in Listing 5–4. The main difference between this player controller and others in 

past examples is that this one spawns a bot right above the player’s starting location. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 5:  UDK Bots 147 

Listing 5–4. The ExampleCh5PC Player Controller 

class ExampleCh5PC extends SimplePC; 
 
var Controller FollowBot; 
Var Pawn FollowPawn; 
var bool BotSpawned; 
var Actor BotTarget; 
 
function SpawnBot(Vector SpawnLocation) 
{ 
    SpawnLocation.z = SpawnLocation.z + 500; 
    FollowBot = Spawn(class'BotController',,,SpawnLocation);   
    FollowPawn = Spawn(class'BotPawn',,,SpawnLocation);  
    FollowBot.Possess(FollowPawn,false); 
 
    BotController(FollowBot).CurrentGoal = Pawn; 
    BotPawn(Followpawn).InitialLocation = SpawnLocation; 
    FollowPawn.SetPhysics(PHYS_Falling); 
 
    BotSpawned = true; 
} 
function bool SwipeZoneCallback(MobileInputZone Zone,  
                                float DeltaTime,  
                                int Handle, 
                                EZoneTouchEvent EventType,  
                                Vector2D TouchLocation) 
{  
    local bool retval; 
  
    retval = true; 
 
    if (EventType == ZoneEvent_Touch) 
    { 
        WorldInfo.Game.Broadcast(self,"You touched the screen at = "  
                                       @ TouchLocation.x @ " , "  
                                       @ TouchLocation.y @ ", Zone Touched = "  
                                       @ Zone); 
    // Start Firing pawn's weapon 
    StartFire(0); 
    } 
    else 
    if(EventType == ZoneEvent_Update) 
    {  
    }   
    else 
    if (EventType == ZoneEvent_UnTouch) 
    {  
    // Stop Firing Pawn's weapon 
    StopFire(0); 
    }  
    return retval; 
} 
function SetupZones() 
{ 
    Super.SetupZones(); 
    // If we have a game class, configure the zones 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 5:  UDK Bots 148 

    if (MPI != None && WorldInfo.GRI.GameClass != none)  
    { 
        LocalPlayer(Player).ViewportClient.GetViewportSize(ViewportSize); 
        if (FreeLookZone != none) 
        { 
            FreeLookZone.OnProcessInputDelegate = SwipeZoneCallback; 
        }  
    } 
} 
function PlayerTick(float DeltaTime) 
{   
    Super.PlayerTick(DeltaTime);  
    if (!BotSpawned) 
    { 
        SpawnBot(Pawn.Location); 
        BotSpawned = true; 
        JazzPawnDamage(Pawn).InitialLocation = Pawn.Location; 
    } 
} 
defaultproperties 
{ 
    BotSpawned=false 
} 

The main additions to this player controller from previous examples are the SpawnBot() 

function that dynamically creates a new bot and the PlayerTick() function which is 

used to call the SpawnBot() function when the player first begins the level. 

The SpawnBot() function creates a bot above the spawn location input. It creates a new 

BotController and new BotPawn and has the BotController possess the BotPawn which 

activates the bot AI. The Actor that the bot follows around is set to the player’s pawn in 

this function. The initial location of the bot’s pawn is also saved. The physics model of 

the bot’s pawn is also set to PHYS_Falling which makes the pawn fall to the ground 

from its spawn point high in the air. 

The PlayerTick() function is called continuously throughout the game as long as the 

player is alive. Here, if this is the first time this function is called then we create our bot 

and save the initial location of the Player. 

Creating the Player Weapon, Weapon Inventory Manager, and 
Projectile 
Next we need to create a new weapon class called JazzWeaponDamage. See Listing 5–5. 

We have discussed weapons before in Chapter 3. This weapon is called 

JazzWeaponDamage because later in this chapter will add code to this weapon’s projectile 

class to cause damage to what it hits. 

The actual graphic of this weapon is set in the SkeletalMesh variable. The general 

category of ammunition this weapon fires is EWFT_Projectile which launches another 3d 

mesh object that you can actually see. The variable FireInterval is the time in seconds 

between projectile firings. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 5:  UDK Bots 149 

Listing 5–5. JazzWeaponDamage class 

class JazzWeaponDamage extends Weapon; 

defaultproperties 
{ 
    Begin Object Class=SkeletalMeshComponent Name=FirstPersonMesh 
        SkeletalMesh=SkeletalMesh'KismetGame_Assets.Anims.SK_JazzGun' 
    End Object 
    Mesh=FirstPersonMesh 
    Components.Add(FirstPersonMesh); 

    Begin Object Class=SkeletalMeshComponent Name=PickupMesh 
        SkeletalMesh=SkeletalMesh'KismetGame_Assets.Anims.SK_JazzGun' 
    End Object 
    DroppedPickupMesh=PickupMesh 
    PickupFactoryMesh=PickupMesh 

    WeaponFireTypes(0)=EWFT_Projectile 
    WeaponFireTypes(1)=EWFT_NONE 
   
    WeaponProjectiles(0)=class'JazzBulletDamage'   
    WeaponProjectiles(1)=class'JazzBulletDamage'    
  
    FiringStatesArray(0)=WeaponFiring  
    FireInterval(0)=0.25 
    Spread(0)=0 
} 

Most of this weapon code should look familiar to you. The main change is that this 

weapon code uses a custom projectile called JazzBulletDamage. See Listing 5–6. 

Listing 5–6. JazzBulletDamage projectile class 

class JazzBulletDamage extends Projectile; 

simulated function Explode(vector HitLocation, vector HitNormal) 
{ 
} 
function Init( Vector Direction ) 
{ 
    local vector NewDir; 
    NewDir = Normal(Vector(InstigatorController.Pawn.Rotation)); 
    Velocity = Speed * NewDir;  
} 
defaultproperties 
{  
    Begin Object Class=StaticMeshComponent Name=Bullet 
        StaticMesh=StaticMesh'EngineMeshes.Sphere'  
        Scale3D=(X=0.050000,Y=0.050000,Z=0.05000) 
    End Object 
    Components.Add(Bullet) 
  
    Begin Object Class=ParticleSystemComponent  Name=BulletTrail 
        Template=ParticleSystem'Castle_Assets.FX.P_FX_Fire_SubUV_01' 
    End Object 
    Components.Add(BulletTrail) 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 5:  UDK Bots 150 

    MaxSpeed=+05000.000000 
    Speed=+05000.000000 
} 

This code should also look familiar. This projectile class is basically the same as one in 

Chapter 3 that uses spheres as projectiles. Please refer to the Figure 3-5 in Chapter 3 

for a visual of this kind of projectile.  

This class will need to be modified in order to give damage to the object it hits. We do 

that later in this chapter in the example of how the player and bot give and take damage. 

We introduce it here to provide a good foundation to start on. 

Finally, there is the inventory manager class. See Listing 5–7. 

Listing 5–7. WeaponsCh5IM1 class to manage weapon inventory 

class WeaponsCh5IM1 extends InventoryManager; 
 
defaultproperties 
{ 
    PendingFire(0)=0 
    PendingFire(1)=0 
} 

Creating the Bot Controller and Bot Pawn 
Next, we need to create the pawn for our bot. See Listing 5–8 below. This class is 

basically the same as pawns covered in Chapter 3, but with a collision component 

added. Again we are using the Jazz Jackrabbit 3d skeletal mesh asset for the bot’s 

physical presence in the game. 

Listing 5–8. BotPawn class  

class BotPawn extends SimplePawn; 
 
var vector InitialLocation; 
 
defaultproperties 
{ 
    // Jazz Mesh Object  
    Begin Object Class=SkeletalMeshComponent Name=JazzMesh      
        SkeletalMesh=SkeletalMesh'KismetGame_Assets.Anims.SK_Jazz' 
        AnimSets(0)=AnimSet'KismetGame_Assets.Anims.SK_Jazz_Anims' 
        AnimTreeTemplate=AnimTree'KismetGame_Assets.Anims.Jazz_AnimTree' 
        BlockRigidBody=true 
        CollideActors=true 
    End Object 
    Mesh = JazzMesh; 
    Components.Add(JazzMesh); 
  
    // Collision Component for This actor  
    Begin Object Class=CylinderComponent NAME=CollisionCylinder2 
        CollideActors=true 
        CollisionRadius=+25.000000 
        CollisionHeight=+60.000000  
    End Object 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 5:  UDK Bots 151 

    CollisionComponent=CollisionCylinder2 
    CylinderComponent=CollisionCylinder2 
    Components.Add(CollisionCylinder2) 
} 

This pawn is represented by the Jazz Jackrabbit skeletal mesh like in previous 

examples. The main difference here is the addition of the collision cylinder that is 

defined by the CylinderComponent class and named CollisionCylinder2. This cylinder is 

set as the CollisionComponent of this Pawn as well as being attached to this pawn by 

way of being added to the Components array. Creating this collision component and 

attaching it to the bot’s pawn is essential for path finding to work. Figure 5–4 shows the 

difference between the bot’s pawn collision cylinder which is 60 units in height shown 

on the left and the player’s pawn collision cylinder which by default is 44.  

NOTE: Experimentally I found that for the navigation mesh method of pathfinding we may need 
the taller collision cylinder. The default height for a collision cylinder for a Pawn is set to 78 units 
of height. Since our Jazz JackRabbit asset is much shorter than this about half the size we may 
need to create a taller collision cylinder in order for the navigation mesh method to work 

correctly.    

 

Figure 5–4. Collision cylinder for bot pawn and player pawn 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 5:  UDK Bots 152 

Now, we need to create the BotController class. This class controls the bot’s pawn and 

contains the bot’s artificial intelligence. See Listing 5–9. 

The key part of this class involves the actual pathfinding code located in the 

FollowTarget state. The critical steps to path finding using path nodes are as follows:  

1. If the bot has a valid goal then the FindPathToward() function attempts 

to find a path to this goal using the path node network in the level and 

saves the first node in this path to the variable TempGoal.  

2. If the bot can reach the goal directly without having to go around an 

obstacle then the MoveTo() function is called to move the bot directly to 

the location of the goal. The MoveTo() function does no path finding. 

3. If not then the bot must move toward the temporary actor generated by 

the FindPathToward() function in step 1 that it can reach directly via the 

MoveToward() function. The MoveToward() function moves the bot 

toward the actor saved in the TempGoal variable.  

4. If there is no valid path generated from the FindPathToward() function 

then an error is generated. 

Listing 5–9. BotController class 

class BotController extends UDKBot; 
 
var Actor CurrentGoal; 
var Vector TempDest; 
var float FollowDistance;    
var Actor TempGoal; 
 
// Path Nodes 
state FollowTarget 
{ 
    Begin: 
 
    // Move Bot to Target 
    if (CurrentGoal != None) 
    { 
        TempGoal = FindPathToward(CurrentGoal);  
        if (ActorReachable(CurrentGoal)) 
        { 
            MoveTo(CurrentGoal.Location, ,FollowDistance);  
        } 
        else 
        if (TempGoal != None) 
        { 
            MoveToward(TempGoal); 
        }  
        else 
        { 
            //give up because the nav mesh failed to find a path 
            `warn("PATCHNODES failed to find a path!");  

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 5:  UDK Bots 153 

            WorldInfo.Game.Broadcast(self,"PATHNODES failed to find a path!, CurrentGoal 
= " @ CurrentGoal); 
            MoveTo(Pawn.Location); 
        }    
    } 
    LatentWhatToDoNext(); 
} 
 
auto state Initial 
{ 
    Begin: 
    LatentWhatToDoNext(); 
} 
 
event WhatToDoNext() 
{ 
    DecisionComponent.bTriggered = true; 
} 
 
protected event ExecuteWhatToDoNext() 
{ 
    if (IsInState('Initial')) 
    { 
        GotoState('FollowTarget', 'Begin'); 
    } 
    else 
    { 
        GotoState('FollowTarget', 'Begin'); 
    } 
} 
defaultproperties 
{ 
    CurrentGoal = None; 
    FollowDistance = 700;   
} 

Configuring the new Game Type 
Next, we need to configure this new game type for compilation and playing on the 

mobile previewer. In order to configure this for compilation we need to add in the 

following line to the UDKEngine.ini configuration file located at C:\UDK\UDK-2011-

06\UDKGame\Config if you are using the June 2011 UDK.  If you are using a different 

UDK version then your base directory will be different. 

UDKEngine.ini 

[UnrealEd.EditorEngine] 
ModEditPackages=ExampleCh5 

In order to configure this new game type to play correctly with the mobile input controls 

on the mobile previewer we need to add in the following lines to the Mobile-

UDKGame.ini file in the same directory. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 5:  UDK Bots 154 

Mobile-UDKGame.ini 
[ExampleCh5.ExampleCh5Game] 

RequiredMobileInputConfigs=(GroupName="UberGroup",RequireZoneNames=("UberStickMoveZone",
"UberStickLookZone","UberLookZone")) 

Bring up the Unreal Frontend and compile your scripts. 

Running the new Game Type 
After a successful compilation bring up the Unreal Editor and load in your level that you 

created for this example. Set your game type to ExampleCh5Game by selecting View  

World Properties from the main menu to bring up the World Properties window and then 

selecting this game type as the Default Game Type under the Game Type category. You 

should see something like in Figure 5–5.  

 

Figure 5–5. Bot following the player around via path nodes 

The bot should now follow you around the level using the path node method of path 

finding. 

Hands-On Example: Creating a bot and having it follow you 
using a Navigation Mesh 
In this example we will demonstrate how a bot can use a navigation mesh as a 

pathfinding method. The two key elements in creating a bot that uses a navigation mesh 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 5:  UDK Bots 155 

are creating a navigation mesh on the level and a bot controller that uses the navigation 

mesh to move around the level. In this hands-on example, we show you how to do both.  

For this example, you can reuse much of the code from the pathnode example, so we 

will refer you back to the relevant listings in the preceding section instead of repeating 

all the code here. 

Creating a Level 
Load in the level you created in the previous example and save it as a new map such as 

Example5–2NavMeshMap to indicate that this map will use navigation mesh. Now, it’s 

time to start making some changes to our new map. 

1. Delete all the path nodes that you added previously to the level. To 

delete the node you can click on it and press the Delete key.  

2. Now place a pylon at the center of your level by right-clicking and 

selecting Add Actor  Add Pylon.  Make sure the Pylon is just above the 

surface of the level and is not inside another object. 

3. Select Build  AI paths from the main Unreal Editor menu to build the 

new AI paths using the navigation mesh method.  The resulting 

navigation mesh that is generated should look similar to Figure 5–6. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 5:  UDK Bots 156 

 

Figure 5–6. A level using a navigation mesh  

4. Save the map. 

Creating the Pieces of the Game 
As indicated above, many parts of this example use the same code as in the pathnode 

example. Follow the same steps you did in that example. Here is the specific sequence 

and relevant code listings: 

1. Create the game type (see Listing 5–2). 

2. Create the player’s pawn (see Listing 5–3). 

3. Create the player controller (see Listing 5–4). 

4. Create the player weapon, the weapon inventory manager, and the 

projectile (see Listing 5–5). 

5. Create the pawn for the bot (see Listing 5–6). 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 5:  UDK Bots 157 

Creating the BotController 
Next, we need to create the controller for our bot. This is the class in which we will 

implement the navigation mesh pathfinding method. In this section, we’ll look at the 

general navigation mesh method and then go through the relevant code step by step. 

Navigation Mesh Method 

The function GeneratePathTo() actually generates a path to an Actor using the 

navigation mesh method of pathfinding. The FollowTarget state uses this function to 

help implement the behavior of following the player around the level. 

In the FollowTarget state the general path finding method is: 

1. If there is a valid goal (a valid Actor which to move toward), then 

generate a path to that goal using the navigation mesh method. 

2. If a path is found to that location, then check to see if the goal is directly 

accessible. 

NOTE: If a location is directly accessible then we actually don’t use any pathfinding at all but use 

the MoveTo() function that moves the Pawn to a location directly. 

3. If it is directly accessible, then use the MoveTo() function to move the 

bot to that location. 

4. If the goal is not directly accessible, then move to an intermediate point 

that was found using the navigation mesh path finding method in Step 1. 

5. If a path is not found in step 1, then output an error message. This 

message is displayed in the mobile previewer for debugging purposes. 

The above steps are repeated as long as the bot remains in the FollowTarget state. 

Eventually, the goal actor will be reachable directly but if it is not then intermediate 

points determined by the navigation mesh pathfinding method will be used. 

The intermediate points are retrieved from the NavigationHandle variable through the 

GetNextMoveLocation() function. Then MoveTo() is called to move the bot to this 

intermediate point which will be directly reachable.  

For the navigation mesh method most of the pathfinding is done through the 

Navigationhandle class. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 5:  UDK Bots 158 

Implementing a Navigation Mesh 
The code in this section is a complete listing of how you would implement a navigation 

mesh in the bot’s controller.  You can also refer to the downloadable source code for 

this book. The code listings in this section are presented sequentially. 

The GeneratePathTo() function uses the navigation mesh method implemented in the 

NavigationHandle variable to find a path to the input Goal Actor variable from the current 

location of the bot’s pawn. See Listing 5–10.  

Listing 5–10. The GeneratePathTo function for the Navigation Mesh  

class BotController extends UDKBot; 
 
var Actor CurrentGoal; 
var Vector TempDest; 
var float FollowDistance;    
var Actor TempGoal; 
event bool GeneratePathTo(Actor Goal, optional float WithinDistance, optional bool 
bAllowPartialPath) 
{ 
    if( NavigationHandle == None ) 
    return FALSE; 
 
    // Clear cache and constraints (ignore recycling for the moment) 
    NavigationHandle.PathConstraintList = none; 
    NavigationHandle.PathGoalList = none; 
 
    class'NavMeshPath_Toward'.static.TowardGoal( NavigationHandle, Goal ); 
    class'NavMeshGoal_At'.static.AtActor( NavigationHandle, Goal, WithinDistance, 
bAllowPartialPath ); 
 
    return NavigationHandle.FindPath(); 
} 

First we make sure that there is a valid NavigationHandle and return false if not. Then we 

clear any old path information that may be cached and clear any path constraints that 

may limit our path choices. We then find the actual path to the Goal.  

The previous listing concentrated on the GeneratePathTo() function which does the 

actual navigation mesh pathfinding. Listing 5–11 is the rest of the bot’s controller code 

and uses this function for pathfinding.  

Listing 5–11. The remaining controller code for the bot 

state FollowTarget 
{ 
    Begin: 
    WorldInfo.Game.Broadcast(self,"BotController-USING NAVMESH FOR FOLLOWTARGET STATE"); 
 
    // Move Bot to Target 
    if (CurrentGoal != None) 
    { 
        if(GeneratePathTo(CurrentGoal)) 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 5:  UDK Bots 159 

        { 
            NavigationHandle.SetFinalDestination(CurrentGoal.Location);   
  
            if( NavigationHandle.ActorReachable(CurrentGoal) ) 
            {    
                // then move directly to the actor  
                MoveTo(CurrentGoal.Location, ,FollowDistance);   
            } 
            else 
            { 
                // move to the first node on the path 
                if( NavigationHandle.GetNextMoveLocation(TempDest, 
Pawn.GetCollisionRadius()) ) 
                { 
                    // suggest move preparation will return TRUE when the edge's 
                    // logic is getting the bot to the edge point 
                    // FALSE if we should run there ourselves 
                    if (!NavigationHandle.SuggestMovePreparation(TempDest,self)) 
                    { 
                        MoveTo(TempDest); 
                    } 
                } 
            }  
        } 
        else 
        { 
            //give up because the nav mesh failed to find a path 
            `warn("FindNavMeshPath failed to find a path!");  
            WorldInfo.Game.Broadcast(self,"FindNavMeshPath failed to find a path!, 
CurrentGoal = " @ CurrentGoal); 
            MoveTo(Pawn.Location); 
        }    
    } 
    LatentWhatToDoNext(); 
} 
auto state Initial 
{ 
    Begin: 
    LatentWhatToDoNext(); 
} 
event WhatToDoNext() 
{ 
    DecisionComponent.bTriggered = true; 
} 
protected event ExecuteWhatToDoNext() 
{ 
    if (IsInState('Initial')) 
    { 
        GotoState('FollowTarget', 'Begin'); 
    } 
    else 
    { 
        GotoState('FollowTarget', 'Begin'); 
    } 
} 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 5:  UDK Bots 160 

defaultproperties 
{ 
    CurrentGoal = None; 
    FollowDistance = 700;   
} 

The key parts of this listing: 

 The FollowTarget state implements the bot’s pathfinding behavior 

explained at the beginning of this section. 

 The Initial state is the state the bot starts out in.  The auto keyword 

sets this state as the default state when the bot controller is first 

created. 

 The WhatToDoNext() function is called from within the 

LatentWhatToDoNext() function. If DecisionComponent.bTriggered is 

set to true then then the  ExecuteWhatToDoNext() function is called 

next. 

 The ExecuteWhatToDoNext() function is the main decision making 

block for the bot’s AI. Here we can test for conditions and move to 

different states based on these conditions. 

The main differences between this version of the BotController and the version in the 

pathnode example are that the old path nodes pathfinding code has been deleted, and 

the functions GeneratePathTo() and FollowTarget() have been added. The new 

FollowTarget() function that contains navigation mesh pathfinding code replaces the 

old FollowTarget() function. 

Configuring the Game Type 
Configuring this game type for this example is the same as for the previous example. 

Please refer to the previous example to configure this game type if you haven’t already.  

Running the Game 
Make sure to compile your source code using the Unreal Frontend.  After a successful 

compilation bring up the Unreal Editor. Load in your level map that is set up for the 

navigation mesh path finding method. Double-check the game type is set to 

ExampleCh5Game and run the game on the mobile previewer. You should be able to 

move around the obstacles and have the bot follow you around. See Figure 5–7. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 5:  UDK Bots 161 

 

Figure 5–7. Using the navigation mesh for path finding 

Hands-On Example: Moving a Bot to a point in the 
world specified by the Player 
In this example we will add the ability of the player to touch the screen and have the bot 

move to that location in the game level. In addition a sphere will be displayed at the 

location the player touches as an indicator of where the bot should move to.  

The concepts in this chapter can be applied to both the pathnode and navigation mesh 

methods of pathfinding. First a botmarker which is basically a 3d mesh asset will be 

created in the game world. We then move the bot toward this asset using a path finding 

method.  

Creating the BotMarker 
First we need to create a new class for the bot marker that will represent the bot’s goal 

location. See Listing 5–12. 

Listing 5–12. Creating the BotMarker Class 

class BotMarker extends Actor; 
 
event Touch(Actor Other, PrimitiveComponent OtherComp, vector HitLocation, vector 
HitNormal) 
{ 
    //WorldInfo.Game.Broadcast(self,"BotMarker Has Been Touched");  
} 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 5:  UDK Bots 162 

 
defaultproperties 
{ 
    Begin Object Class=StaticMeshComponent Name=StaticMeshComponent0 
        StaticMesh=StaticMesh'EngineMeshes.Sphere' 
        Scale3D=(X=0.250000,Y=0.250000,Z=0.25000) 
    End Object 
    Components.Add(StaticMeshComponent0) 
  
    Begin Object Class=CylinderComponent NAME=CollisionCylinder 
        CollideActors=true 
        CollisionRadius=+0040.000000 
        CollisionHeight=+0040.000000 
    End Object 
    CollisionComponent=CollisionCylinder 
    Components.Add(CollisionCylinder) 
  
    bCollideActors=true 
} 

The BotMarker’s physical appearance will be a sphere. The 3d mesh asset to use for 

this marker is set in the StaticMesh variable located in the defaultproperties block in 

the StaticMeshComponent0 object. It is also scaled down to 25% its original size via the 

Scale3D variable. 

Adding to the Player Controller  
Next, you need to add some code to the player controller. What is added are the 

PickActor() and the ExecuteBotMoveCommand() functions. The purpose of these 

functions is to allow the player to touch a location in the game world and have a bot 

move to that location. 

The process of directing the bot to where the user has touched is as follows: 

1. When the user touches the iOS screen, the PickActor() function is 

called to determine the HitLocation in the 3d game world that the 

user’s touch points to. 

2. The ExecuteBotMoveCommand() function is then called to execute the 

bot’s move to this touched location. First the bot marker is created if 

one does not already exist. Then it is placed at the location of the user’s 

touch in the game world. Next, the CurrentGoal of the bot is set to the 

bot marker. This will now make the bot follow a path toward where the 

user has touched. The bot will now instead of following the player it will 

go to the marker. 

Listing 5–13 provides the full code for the modified player controller including the old 

code. The new code is highlighted in bold. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 5:  UDK Bots 163 

Listing 5–13. The Modified ExampleCh5PC class 

class ExampleCh5PC extends SimplePC; 
 
var Controller FollowBot; 
Var Pawn FollowPawn; 
var bool BotSpawned; 
var Actor BotTarget; 
 
var float PickDistance; 
 
function Actor PickActor(Vector2D PickLocation, out Vector HitLocation, out TraceHitInfo 
HitInfo) 
{ 
    local Vector TouchOrigin, TouchDir; 
    local Vector HitNormal; 
    local Actor  PickedActor; 
    local vector Extent; 
 
    //Transform absolute screen coordinates to relative coordinates 
    PickLocation.X = PickLocation.X / ViewportSize.X; 
    PickLocation.Y = PickLocation.Y / ViewportSize.Y; 
    
    //Transform to world coordinates to get pick ray 
    LocalPlayer(Player).Deproject(PickLocation, TouchOrigin, TouchDir); 
    
    //Perform trace to find touched actor 
    Extent = vect(0,0,0); 
    PickedActor = Trace(HitLocation, 
                        HitNormal,  
                        TouchOrigin + (TouchDir * PickDistance),  
                        TouchOrigin,  
                        True,  
                        Extent,  
                        HitInfo); 
 
    //Return the touched actor for good measure 
    return PickedActor; 
} 
reliable server function ExecuteBotMoveCommand(Vector HitLocation) 
{ 
    // 1. Set AttackMove Target Marker  
    Hitlocation.z += 50; // Add offset to help bot navigate to point 
    If (BotTarget == None) 
    { 
        WorldInfo.Game.Broadcast(None,"Creating New Move Marker!!!!!!!!");  
        BotTarget = Spawn(class'BotMarker',,,HitLocation);  
    } 
    else 
    {    
        BotTarget.SetLocation(HitLocation);  
    }   
    // 2. Send Move Command to bot along with target location 
    BotController(FollowBot).CurrentGoal = BotTarget;  
    BotController(FollowBot).FollowDistance = 75;  

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 5:  UDK Bots 164 

} 
function SpawnBot(Vector SpawnLocation) 
{ 
    SpawnLocation.z = SpawnLocation.z + 500; 
    
    FollowBot = Spawn(class'BotController',,,SpawnLocation);   
    FollowPawn = Spawn(class'BotPawn',,,SpawnLocation);  
    FollowBot.Possess(FollowPawn,false); 
  
    BotController(FollowBot).CurrentGoal = Pawn; 
    BotPawn(Followpawn).InitialLocation = SpawnLocation; 
    FollowPawn.SetPhysics(PHYS_Falling); 
    BotSpawned = true; 
} 
 
function bool SwipeZoneCallback(MobileInputZone Zone,  
                                float DeltaTime,  
                                int Handle, 
                                EZoneTouchEvent EventType,  
                                Vector2D TouchLocation) 
{  
    local bool retval; 
 
    local Vector HitLocation; 
    local TraceHitInfo HitInfo; 
  
    retval = true; 
 
    if (EventType == ZoneEvent_Touch) 
    { 
        WorldInfo.Game.Broadcast(self,"You touched the screen at = "  
                                        @ TouchLocation.x @ " , "  
                                        @ TouchLocation.y @ ", Zone Touched = "  
                                        @ Zone); 
        // Start Firing pawn's weapon 
        StartFire(0); 
 
        // Code for Setting Bot WayPoint 
        PickActor(TouchLocation, HitLocation, HitInfo); 
        ExecuteBotMoveCommand(HitLocation); 
    } 
    else 
    if(EventType == ZoneEvent_Update) 
    {  
    }   
    else 
    if (EventType == ZoneEvent_UnTouch) 
    {  
 // Stop Firing Pawn's weapon 
 StopFire(0); 
    } 
    return retval; 
} 
 
function SetupZones() 
{ 
    Super.SetupZones(); 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 5:  UDK Bots 165 

    // If we have a game class, configure the zones 
    if (MPI != None && WorldInfo.GRI.GameClass != none)  
    { 
        LocalPlayer(Player).ViewportClient.GetViewportSize(ViewportSize); 
        if (FreeLookZone != none) 
        { 
            FreeLookZone.OnProcessInputDelegate = SwipeZoneCallback; 
        }  
    } 
} 
 
function PlayerTick(float DeltaTime) 
{   
    Super.PlayerTick(DeltaTime); 
    if (!BotSpawned) 
    { 
        SpawnBot(Pawn.Location); 
        BotSpawned = true; 
        JazzPawnDamage(Pawn).InitialLocation = Pawn.Location; 
    } 
} 
defaultproperties 
{ 
    BotSpawned=false 
    PickDistance = 10000 
} 

Note that enabling the ability for the player to direct bots like in this example can be 

useful in many situations in which the player needs to coordinate the behavior of 

multiple bots. For example, it would be applicable to a game where the player is a squad 

leader and controls the actions of soldiers (bots) in his unit. The player would direct the 

bots to perform various actions such as attack a specific target.  

Running the Game 
Bring up the Unreal Frontend and compile your code. Next, bring up the Unreal Editor 

and load in the level map with the navigation mesh. Run the game on the mobile 

previewer. The bot should follow you around by default. Click on an empty area where 

the bot can walk to and the sphere BotMarker should appear there.  The bot should then 

walk to this sphere. See Figure 5–8. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 5:  UDK Bots 166 

 

Figure 5–8. Directing your bot to the marker which is indicated by a sphere 

Hands-On Example: Equipping your bot with a weapon and 
Taking Damage 
In this example, we will again build on the previous examples and equip the bot with a 

working weapon and modify the code so that both the player and bot can take damage 

from each other’s weapons. 

Modifying the Bot’s Pawn to Add a Weapon 
We must add code to the bot’s pawn BotPawn to add a weapon. See Listing 5–14. The 

code in bold is the new code. 

The code for adding a weapon to the bot should look familiar from the sections on 

Weapons in Chapter 3. You add weapons to a bot by adding it to the bot’s pawn. This is 

exactly the same as adding a weapon to a pawn owned by a player. The 

AddGunToSocket() function attaches the weapon mesh to the pawn. The 

AddDefaultInventory() function creates the weapon and adds it into the pawn’s 

inventory. We have also added the variable JazzHitSound that holds a sound effect that 

is played when the bot is hit. 

The function that processes damage to this pawn and adjusts the bot’s health is 

TakeDamage(). TakeDamage() also resets the bot’s position to the bot’s start position if the 

bot’s health becomes less than or equal to 0. The bot’s health is then restored to 100. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 5:  UDK Bots 167 

Listing 5–14. Modifying the BotPawn class 

class BotPawn extends SimplePawn; 
 
var Inventory MainGun; 
var SoundCue JazzHitSound; 
var vector InitialLocation; 
 
event TakeDamage(int Damage, Controller InstigatedBy, vector HitLocation, vector 
Momentum, class<DamageType> DamageType, optional TraceHitInfo HitInfo, optional Actor 
DamageCauser) 
{ 
    PlaySound(JazzHitSound);  
    Health = Health - Damage; 
    WorldInfo.Game.Broadcast(self,self @ " Has Taken Damage IN TAKEDAMAGE, HEALTH = " @ 
Health);  
    
    if (Health <= 0) 
    { 
        SetLocation(InitialLocation); 
        SetPhysics(PHYS_Falling); 
        Health = 100; 
    } 
} 
 
function AddGunToSocket(Name SocketName) 
{ 
    local Vector SocketLocation; 
    local Rotator SocketRotation; 
 
    if (Mesh != None) 
    { 
        if (Mesh.GetSocketByName(SocketName) != None) 
        { 
            Mesh.GetSocketWorldLocationAndRotation(SocketName, SocketLocation, 
SocketRotation); 
            MainGun.SetRotation(SocketRotation); 
            MainGun.SetBase(Self,, Mesh, SocketName); 
        } 
        else 
        { 
            WorldInfo.Game.Broadcast(self,"!!!!!!SOCKET NAME NOT FOUND!!!!!"); 
        } 
    } 
    else 
    { 
        WorldInfo.Game.Broadcast(self,"!!!!!!MESH NOT FOUND!!!!!"); 
    } 
} 
 
function AddDefaultInventory() 
{  
    MainGun = InvManager.CreateInventory(class'JazzWeapon2Damage'); 
    MainGun.SetHidden(false); 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 5:  UDK Bots 168 

    AddGunToSocket('Weapon_R'); 
    Weapon(MainGun).FireOffset = vect(0,13,-70); 
} 
 
defaultproperties 
{ 
    // Jazz Mesh Object  
    Begin Object Class=SkeletalMeshComponent Name=JazzMesh      
        SkeletalMesh=SkeletalMesh'KismetGame_Assets.Anims.SK_Jazz' 
        AnimSets(0)=AnimSet'KismetGame_Assets.Anims.SK_Jazz_Anims' 
        AnimTreeTemplate=AnimTree'KismetGame_Assets.Anims.Jazz_AnimTree' 
        BlockRigidBody=true 
        CollideActors=true 
    End Object 
    Mesh = JazzMesh; 
    Components.Add(JazzMesh); 
  
    // Collision Component for This actor  
    Begin Object Class=CylinderComponent NAME=CollisionCylinder2 
        CollideActors=true 
        CollisionRadius=+25.000000 
        CollisionHeight=+60.000000 //Nav Mesh 
    End Object 
    CollisionComponent=CollisionCylinder2 
    CylinderComponent=CollisionCylinder2 
    Components.Add(CollisionCylinder2) 
   
    JazzHitSound = SoundCue'KismetGame_Assets.Sounds.Jazz_Death_Cue' 
    InventoryManagerClass=class'ExampleCh5.WeaponsCh5IM1' 
} 

Creating the Bot’s Weapon and Projectile 
Next, we need to create the bot’s weapon which is JazzWeapon2Damage. See Listing 5–15. 

Listing 5–15. Creating the JazzWeapon2Damage class 

class JazzWeapon2Damage extends Weapon; 
 
defaultproperties 
{ 
    Begin Object Class=SkeletalMeshComponent Name=FirstPersonMesh 
        SkeletalMesh=SkeletalMesh'KismetGame_Assets.Anims.SK_JazzGun' 
    End Object 
    Mesh=FirstPersonMesh 
    Components.Add(FirstPersonMesh); 
 
    Begin Object Class=SkeletalMeshComponent Name=PickupMesh 
        SkeletalMesh=SkeletalMesh'KismetGame_Assets.Anims.SK_JazzGun' 
    End Object 
    DroppedPickupMesh=PickupMesh 
    PickupFactoryMesh=PickupMesh 
 
    WeaponFireTypes(0)=EWFT_Projectile 
    WeaponFireTypes(1)=EWFT_NONE 
   

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 5:  UDK Bots 169 

    WeaponProjectiles(0)=class'JazzBullet2Damage'   
    WeaponProjectiles(1)=class'JazzBullet2Damage'    
  
    FiringStatesArray(0)=WeaponFiring  
    FireInterval(0)=0.25 
    Spread(0)=0 
} 

This new class uses the custom projectiles of class JazzBullet2Damage which is shown 

in Listing 5–16. 

Listing 5–16. JazzBullet2Damage projectile class 

class JazzBullet2Damage extends Projectile; 

simulated singular event Touch(Actor Other, PrimitiveComponent OtherComp, vector 
HitLocation, vector HitNormal) 
{ 
    Other.TakeDamage(33, InstigatorController, HitLocation, -HitNormal, None); 
} 

simulated function Explode(vector HitLocation, vector HitNormal) 
{ 
    SetPhysics(Phys_Falling); 
} 

function Init( Vector Direction ) 
{ 
    super.Init(Direction); 
    RandSpin(90000); 
} 

defaultproperties 
{ 
    Begin Object Class=StaticMeshComponent Name=Bullet  
        StaticMesh=StaticMesh'Castle_Assets.Meshes.SM_RiverRock_01' 
        Scale3D=(X=0.300000,Y=0.30000,Z=0.3000) 
    End Object 
    Components.Add(Bullet) 

    Begin Object Class=ParticleSystemComponent  Name=BulletTrail 
        Template=ParticleSystem'Castle_Assets.FX.P_FX_Fire_SubUV_01' 
    End Object 
    Components.Add(BulletTrail) 

    MaxSpeed=+05000.000000 
    Speed=+05000.000000 
} 

The new function introduced here is the Touch() function which is called whenever this 

actor touches another actor. In this function the projectile calls the TakeDamage()
function of the object it hits.  

The other key elements in this code: 

 The SetPhysics() function sets the physics model of this projectile to 

Phys_Falling in which objects fall realistically according to gravity. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 5:  UDK Bots 170 

 The StaticMesh variable refers to the 3d mesh to be used as the 

projectile graphic. 

 The Scale3D variable sizes the StaticMesh with 1.0 representing 

normal size. 

 The Template variable holds what type of particle emitter to attach to 

the projectile. Currently it is set to a fire emitter with gives the 

impression that the projectile is on fire. 

 The MaxSpeed variable sets the maximum speed the projectile will 

move. Set MaxSpeed to 0 for no limit on projectile speed. 

 The Speed variable sets the initial speed of the projectile 

Modifying the Player Controller 
Next, we need to add in the following code that is in bold for the player controller 

ExampleCh5PC (see Listing 5–17). The new code will add in the weapon to the bot’s 

pawn and fire the bot’s weapon when the player touches the screen. For a full listing for 

the player controller please download the full source code. 

Listing 5–17. Adding in code to ExampleCh5PC 

function SpawnBot(Vector SpawnLocation) 
{ 
    SpawnLocation.z = SpawnLocation.z + 500; 
    FollowBot = Spawn(class'BotController',,,SpawnLocation);   
    FollowPawn = Spawn(class'BotPawn',,,SpawnLocation);  
    FollowBot.Possess(FollowPawn,false); 
    BotController(FollowBot).CurrentGoal = Pawn; 
    Botpawn(FollowPawn).AddDefaultInventory(); 
    BotPawn(Followpawn).InitialLocation = SpawnLocation; 
    FollowPawn.SetPhysics(PHYS_Falling); 
    BotSpawned = true; 
} 
 
function bool SwipeZoneCallback(MobileInputZone Zone,  
                                float DeltaTime,  
                                int Handle, 
                                EZoneTouchEvent EventType,  
                                Vector2D TouchLocation) 
{  
    local bool retval; 
    local Vector HitLocation; 
    local TraceHitInfo HitInfo; 
  
    retval = true; 
    if (EventType == ZoneEvent_Touch) 
    { 
        WorldInfo.Game.Broadcast(self,"You touched the screen at = "  
                                        @ TouchLocation.x @ " , "  
                                        @ TouchLocation.y @ ", Zone Touched = "  
                                        @ Zone); 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 5:  UDK Bots 171 

 
        // Start Firing pawn's weapon 
        StartFire(0); 
        
        // Start Firing the Bot's Weapon 
        FollowBot.Pawn.StartFire(0); 
 
        // Code for Setting Bot WayPoint 
        PickActor(TouchLocation, HitLocation, HitInfo); 
        ExecuteBotMoveCommand(HitLocation); 
    } 
    else 
    if(EventType == ZoneEvent_Update) 
    {  
 
    }   
    else 
    if (EventType == ZoneEvent_UnTouch) 
    {  
        // Stop Firing Pawn's weapon 
        StopFire(0); 
 
        // Stop Firing the Bot's weapon 
        FollowBot.Pawn.StopFire(0); 
    }  
    return retval; 
} 

In the SpawnBot() function we added the line of code to add in the bot pawn’s default 

inventory which includes a weapon when the bot is created. Also in the 

SwipeZoneCallback() function we added code to start and stop the firing of the bot’s 

weapon for testing purposes. When the player fires his weapon the bot will fire its 

weapon. 

Modifying the Player’s Pawn to take Damage. 
Next, we need to add in some more code to the player pawn JazzPawnDamage (see 

Listing 5–18). The code in bold is the new code that must be added. For a full listing of 

this class with both the new and old code in it please download the full source code. 

Listing 5–18. Modifying JazzPawnDamage to take Damage 

var SoundCue PawnHitSound; 
 
event TakeDamage(int Damage, Controller InstigatedBy, vector HitLocation, vector 
Momentum, class<DamageType> DamageType, optional TraceHitInfo HitInfo, optional Actor 
DamageCauser) 
{  
    PlaySound(PawnHitSound);  
    Health = Health - Damage; 
    WorldInfo.Game.Broadcast(self,self @ " Has Taken Damage IN TAKEDAMAGE, HEALTH = " @ 
Health);  
    
    if (Health <= 0) 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 5:  UDK Bots 172 

    { 
        SetLocation(InitialLocation); 
        SetPhysics(PHYS_Falling); 
        Health = 100; 
    } 
} 
defaultproperties 
{  
    Begin Object Class=SkeletalMeshComponent Name=JazzMesh      
        SkeletalMesh=SkeletalMesh'KismetGame_Assets.Anims.SK_Jazz' 
        AnimSets(0)=AnimSet'KismetGame_Assets.Anims.SK_Jazz_Anims' 
        AnimTreeTemplate=AnimTree'KismetGame_Assets.Anims.Jazz_AnimTree' 
        BlockRigidBody=true 
        CollideActors=true 
    End Object 
    Mesh = JazzMesh; // Set The mesh for this object 
    Components.Add(JazzMesh); // Attach this mesh to this Actor 
       
    CamAngle=3000; 
    CamOffsetDistance= 484.0 
 
    InventoryManagerClass=class'ExampleCh5.WeaponsCh5IM1'   
 
    PawnHitSound = 
SoundCue'A_Character_CorruptEnigma_Cue.Mean_Efforts.A_Effort_EnigmaMean_Death_Cue' 
} 

The new function TakeDamage() processes damage from projectiles.  Also, it resets the 

player’s position to the player’s start position if the player’s health becomes less than or 

equal 0.  Health is then reset to 100.   

Also, a sound effect is played whenever the pawn is hit. 

Modifying the Player’s Weapon to Give Damage 
Next, we need to add code to the projectiles coming out of the player’s weapon in 

JazzBulletDamage (see Listing 5–19). The additional code is in bold print. You can see 

the full updated JazzBulletDamage class in the source code. 

Listing 5–19. Making additions to JazzBulletDamage 

simulated singular event Touch(Actor Other, PrimitiveComponent OtherComp, vector 
HitLocation, vector HitNormal) 
{ 
    Other.TakeDamage(33, InstigatorController, HitLocation, -HitNormal, None); 
} 

The Touch() function damages the object it has hit by calling that object’s TakeDamage() 

function. The value 33 is the amount of damage to cause to the object that touches this 

projectile. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 5:  UDK Bots 173 

Running the Game  
Bring up the Unreal Frontend and compile your scripts. Bring up the Unreal Editor and 

run the game on the Mobile Previewer. See Figures 5–9 and 5–10.   

 

Figure 5–9. Your bot firing its weapon 

 

Figure 5–10. Your bot falling just after dying and then being reset to its start position 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 5:  UDK Bots 174 

Summary 
In this chapter we discussed bots. We started off with a basic overview of bots. Then we 

discussed Artificial Intelligence path finding using bots. We covered and demonstrated 

how to set up a bot to follow the player using both path nodes and the navigation mesh 

methods of path finding. Next, we showed you how to have the player direct a bot to a 

specific location in the world. Finally, we demonstrated how you could add a weapon to 

your bot and have the player and the bot take damage from each other’s weapons.  In 

the following Chapter 6, we will cover sound effects, create moving gates and platforms 

using Kismet, and create a Heads Up Display. Then in Chapter 7, we pull everything 

together to create a basic game framework using enemy computer controlled bots and 

focus on key elements in developing exceptional gameplay. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


 
175 

   Chapter 

Environment: Sounds, 
Kismet, and HUD 
In this chapter, we will cover several key topics for your gaming environment. These 

include sound, moving elements like platforms and gates, and information displays. 

These constitute the last pieces before we move to an actual gameplay example in the 

next chapter.  

Sounds in the UDK are generated through Sound Cues that can combine sound data 

with functions that alter or process sound effects like looping and attenuation. In a 

hands-on example we show you how to add sounds to a weapon through the weapon’s 

projectile class. This is followed by a brief discussion of Kismet and Matinee with 

respect to moving objects including platforms and locked gates. Finally, the Unreal 

Heads Up Display, or HUD, is covered and a hands-on example is given that displays 

important items like the player’s score, lives left, and current health. 

UDK Sound Cues 
In this section we will cover Sound Cues. First we will give you an overview of the Sound 

Cue Editor and its major features such as attenuation and sound looping. Next, we will 

show you how to place Sound Cues in a level using the Unreal Editor. We then show 

you how to use UnrealScript to play a Sound Cue dynamically from within a program. In 

the next chapter, we present a hands-on example that uses the information and code 

presented here. 

Overview of the UDK Sound Cue Editor 
The Sound Cue Editor is where you can create new Sound Cues as well as modify 

existing Sound Cues. Sound Cues consist of one or more SoundNodeWave items 

(which hold the actual sound data) and sound operators which alter the final sound that 

is output. We won’t describe every aspect of the Sound Cue Editor but touch on the key 

points that are needed to give you a basic working knowledge of Sound Cues.  

6 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 6:  Environment: Sounds, Kismet, and HUD 176 

NOTE: Since Sound Cues are based on sound files of .wav format, any program that can capture 
and save or convert sounds to .wav format can be used to create audio data for Sound Cues. You 
can import .wav files by pressing the Import button located in the Content Browser. One program 

to record and save sound files in .wav format is Audacity which is a free, public-domain program. 

Attenuation 
Search for the Sound Cue called A_Powerup_UDamage_SpawnCue in the Content Browser 

by typing its name into the asset search box. Also check the Sound Cues checkbox 

under Object Types  Favorites to make sure only Sound Cues are shown in the Preview 

Pane. Right-click on the item and select Edit Using Sound Cue Editor. This should bring 

up the Sound Cue Editor. See Figure 6–1. 

 

Figure 6–1. Sound Cue for A_Powerup_UDamage_SpawnCue 

This Sound Cue uses attenuation. Attenuation allows your sound to fade away 

according to the distance from the sound’s source in the game world. For example, 

when a car is on fire, the sound of the fire naturally fades away with a greater distance 

from the fire. In the UDK the sound cue Vehicle_Damage_FireLoop_Cue uses 

attenuation to simulate this real-world situation. 

Click the Attenuation node to bring up the attenuation properties. See Figure 6–2.  

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 6:  Environment: Sounds, Kismet, and HUD 177 

 

Figure 6–2. Attenuation properties 

The most important properties are the Distance Algorithm, Radius Min, and Radius Max. 

 Distance Algorithm—Determines exactly how the sound decreases 

with distance from the source. You probably should experiment with 

this to determine your personal preference. Options include 

ATTENUATION_Linear, ATTENUATION_Logarithmic, 

ATTENUATION_Inverse, ATTENUATION_LogReverse, and 

ATTENUATION_NaturalSound 

 Radius Min—Sound will start to attenuate or decrease starting at this 

distance from the sound source. Up to this radius the sound volume 

will be normal. 

 Radius Max—Sound will attenuate between Radius Min and this value. 

At Radius Max the sound volume is zero. 

Looping 
Looping is the repetition of the same sound. This is appropriate for sounds that must be 

played continuously forever or for a short period of time. For example, the sound of the 

ocean hitting the shore can be played continuously if you are near a beach. Another 

example would be to play the sound of an alarm four times to indicate that an intruder 

has breached an area in your game world. 

Now, search for Vehicle_Damage_FireLoop_Cue by typing that asset name into the 

search box. Right-click on the item in the preview pane and select Edit Using Sound 

Cue Editor to bring up the Sound Cue Editor. The set up of the Sound Cue is shown in 

Figure 6–3.  

 

Figure 6–3. Sound Cue for Vehicle_Damage_FireLoop_Cue 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 6:  Environment: Sounds, Kismet, and HUD 178 

This Sound Cue uses both attenuation and looping to modify the behavior of the output 

sound. Click on the Looping node. The looping properties should be displayed as in 

Figure 6–4. 

 

Figure 6–4. Looping properties 

There are three values in the Looping node: 

 Loop Indefinitely—If this is checked then the sound loops forever 

regardless of the values of Loop Count Min or Loop Count Max 

 Loop Count Min—The minimum number of times to play this sound in 

a loop. 

 Loop Count Max—The maximum number of times to play this sound in 

a loop.  

Random 
The random node’s purpose is to play different variations of the same general sound so 

that the listener does not find the sound repetitive. A good example is background 

noises like insects and other environmental noises. 

An example of a Sound Cue that uses a Random Node to select random sounds to play 

back is the S_BulletImpact_01_Cue. Type this into the search box and right-click on 

the asset in the preview pane and bring it up into the Sound Cue Editor. The Sound Cue 

layout should look like Figure 6–5. 

 

Figure 6–5. Sound Cue S_BulletImpact_01_Cue 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 6:  Environment: Sounds, Kismet, and HUD 179 

This Sound Cue uses attenuation and randomness to produce the final sound from three 

possible sound effects. The final sound output will be affected by both attenuation and 

random selection. What this means is that final sound will be played from a random 

selection of sounds and will decrease in volume as the listener moves farther away from it. 

The random properties are shown in Figure 6–6. 

Figure 6–6. Random Property 

The Weights property allows you to set the probability that each sound would be 

selected. Here each is set to 1.0 which means that each sound effect has an equal 

chance of being selected for output.  

Modulator 
The purpose of the Modulator node is to change the volume and/or pitch of the sound 

data being played. This can be a quick and easy way to tweak a sound once it has been 

sampled. 

Search for the Sound Cue A_Effort_EnigmaMean_Death_Cue by typing that term in 

the search box. Right-click the asset in the preview pane and bring it up in the Sound 

Cue Editor. The Sound Cue structure should look like Figure 6–7. 

Figure 6–7. Sound Cue A_Effort_EnigmaMean_Death_Cue 

This Sound Cue uses a combination of attenuation, modulation, and randomness in 

order to produce the final sound. The modulation properties are shown in Figure 6–8. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 6:  Environment: Sounds, Kismet, and HUD 180 

 

Figure 6–8. Modulation property 

The Modulation node is used to pick a random pitch and volume within a range. The 

range values are: 

 Pitch Min—The minimum value for a random pitch. 

 Pitch Max—The maximum value for a random pitch. 

 Volume Min—The minimum value for a random volume. 

 Volume Max—The maximum value for the random volume. 

For example, you could set the Pitch Min and Pitch Max values to 5.0 and the Volume 

Min and Volume Max values to 2.0 to increase the pitch of the sound sample 5 times 

normal value and increase the volume of the sound sample to twice the normal value. 

Adding Sound Cues Using the Unreal Editor 
You can add Sound Cues directly to levels using the Unreal Editor. For example to put a 

fire sound that loops, select the Vehicle_Damage_FireLoop_Cue that was mentioned 

earlier. Right-click on an empty space just in front of the cube in the default level and 

select Add Ambient Sound to add this Sound Cue to the level. Run the level in the 

Mobile Previewer and walk toward and away from the cube to hear the sound increase 

in volume as you get closer to the sound source and decrease in volume as you walk 

away. To add this Sound Cue to the level see Figure 6–9. Adding Sound Cues via this 

method is good for stationary environmental sounds such as insects, and the sound of 

an ocean near the beach.  

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 6:  Environment: Sounds, Kismet, and HUD 181 

 

Figure 6–9. Adding a Sound Cue via the Unreal Editor 

Adding Sound Cues Dynamically using UnrealScript 
If a sound is not stationary and/or needs to be generated when an action in the game 

occurs then it should be created dynamically using UnrealScript. 

In order for an UnrealScript class to play a Sound Cue it must be derived from the Actor 

class which contains the PlaySound() function. The PlaySound() function is defined in 

the Actor class as follows: 

PlaySound(SoundCue InSoundCue,  
 optional bool bNotReplicated,  
 optional bool bNoRepToOwner,  
 optional bool bStopWhenOwnerDestroyed,  
 optional vector SoundLocation,  
 optional bool bNoRepToRelevant); 

The important parameters that are relevant to our needs are the parameters InSoundCue 

and bStopWhenOwnerDestroyed.  

InSoundCue is the reference to the Sound Cue to play and bStopWhenOwnerDestroyed 

allows you to stop playing the Sound Cue when the owner playing it is destroyed. 

Adding Sound Cues Using Kismet 
If the sound needs to be attached to a Kismet related action such as the opening of a 

door or a gate then an easy way to provide sound effects is through Kismet. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 6:  Environment: Sounds, Kismet, and HUD 182 

Bring up the Kismet panel by clicking on the K icon in the top row of icons on the Unreal 

Editor. Right-click on an empty area of the Kismet panel and select New Action  Sound 

 Play Sound to create a new Play Sound node. See Figure 6–10. 

To set a sound cue to be played when this node is activated click on the node to bring 

up its properties and enter the name of the Sound Cue in the Play Sound field. An easy 

way to do this is to select a Sound Cue in the Content Browser and then click the arrow 

to the right of the Play Sound field to have the name of the selected Sound Cue put into 

the field.  

 

Figure 6–10. The Play Sound node and properties in Kismet 

Hands-On Example: Adding Sound Cues to a Weapon 
In this example, we will begin a larger project for the next chapter. We will create a new 

weapon class and projectile class that incorporate Sound Cues. Remember all classes 

that are derived from the Actor class, which is most classes, are able to produce sounds 

via the PlaySound() function defined in the Actor class and is accessible to derived or 

extended classes. Both the Weapon and Projectile classes are derived from the Actor 

class. We choose the Projectile class to add the sounds into because this is where the 

projectiles are actually initialized and explosions of the projectiles are handled. This is 

designed to illustrate how to incorporate Sound Cues into a real world UnrealScript 

example and demonstrate how to use Sound Cues dynamically.  

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 6:  Environment: Sounds, Kismet, and HUD 183 

Creating the Weapon 
First you need to create a new directory for this project. Create a new directory called 

ExampleCh6 under your default UDK installation directory at C:\UDK\UDK-2011-

06\Development\Src. The exact base directory will depend on which version of the UDK 

you are using. The above base directory is set for the June 2011 UDK version. 

Create another directory called Classes under the directory you just created. You 

should store all the UnrealScript files for this project under the Classes directory. 

Next, you need to create a new class called JazzWeaponSound and save it to the Classes 

directory under the filename JazzWeaponSound.uc. See Listing 6–1.  

NOTE: Remember that all UnrealScript files must be named after the class in them with a .uc 

extension and placed in a Classes directory under a main project directory. 

Listing 6–1. JazzWeaponSound Class 

class JazzWeaponSound extends Weapon; 
 
defaultproperties 
{ 
 Begin Object Class=SkeletalMeshComponent Name=FirstPersonMesh 
 SkeletalMesh=SkeletalMesh'KismetGame_Assets.Anims.SK_JazzGun' 
 End Object 
 Mesh=FirstPersonMesh 
 Components.Add(FirstPersonMesh); 
 
 Begin Object Class=SkeletalMeshComponent Name=PickupMesh 
 SkeletalMesh=SkeletalMesh'KismetGame_Assets.Anims.SK_JazzGun' 
 End Object 
 DroppedPickupMesh=PickupMesh 
 PickupFactoryMesh=PickupMesh 
 
 WeaponFireTypes(0)=EWFT_Projectile 
 WeaponFireTypes(1)=EWFT_NONE 
  
 WeaponProjectiles(0)=class'JazzBulletSound'  
 WeaponProjectiles(1)=class'JazzBulletSound'  
  
 FiringStatesArray(0)=WeaponFiring  
 FireInterval(0)=0.25 
 Spread(0)=0 
} 

The important code is highlighted in bold print. The rest of code should look familiar 

from our coverage of weapons in Chapter 3.  

We specify a new JazzBulletSound class for our projectile. It is in this class that we will 

add sounds associated with our bullets. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 6:  Environment: Sounds, Kismet, and HUD 184 

Creating the Projectile 
Next, we need to create the JazzBulletSound class that is derived from the Projectile 

class. See Listing 6–2.  

Listing 6–2. JazzBulletSound class  

class JazzBulletSound extends Projectile; 
 
var SoundCue FireSound; 
var bool ImpactSoundPlayed; 
 
simulated singular event Touch(Actor Other, PrimitiveComponent OtherComp, vector 
HitLocation, vector HitNormal) 
{ 
 Other.TakeDamage(33, InstigatorController, HitLocation, -HitNormal, None); 
} 
 
simulated function Explode(vector HitLocation, vector HitNormal) 
{ 
 if (!ImpactSOundPlayed) 
 { 
 PlaySound(ImpactSound); 
 ImpactSoundPlayed = true; 
 } 
} 
 
function Init( Vector Direction ) 
{ 
 local vector NewDir; 
 
 NewDir = Normal(Vector(InstigatorController.Pawn.Rotation)); 
 Velocity = Speed * NewDir;  
 
 PlaySound(SpawnSound); 
 PlaySound(FireSound, , , true,,); 
} 
 
defaultproperties 
{  
 Begin Object Class=StaticMeshComponent Name=Bullet 
 StaticMesh=StaticMesh'EngineMeshes.Sphere'  
 Scale3D=(X=0.050000,Y=0.050000,Z=0.05000) 
 End Object 
 Components.Add(Bullet) 
  
 Begin Object Class=ParticleSystemComponent Name=BulletTrail 
 Template=ParticleSystem'Castle_Assets.FX.P_FX_Fire_SubUV_01' 
 End Object 
 Components.Add(BulletTrail) 
  
 MaxSpeed=+05000.000000 
 Speed=+05000.000000 
 
 FireSound = SoundCue'A_Vehicle_Generic.Vehicle.Vehicle_Damage_FireLoop_Cue' 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 6:  Environment: Sounds, Kismet, and HUD 185 

 ImpactSound = SoundCue'KismetGame_Assets.Sounds.S_BulletImpact_01_Cue' 
 SpawnSound = SoundCue'A_Pickups_Powerups.PowerUps.A_Powerup_UDamage_SpawnCue' 
 
 ImpactSoundPlayed = false 
} 

In this class we add sound effects for the impact of the projectile (ImpactSound), the 

firing of the weapon (SpawnSound) and the sound of the flames (FireSound) that are 

attached to the projectile via particle emitter. 

The Sound Cues are set in the defaultproperties block and played back through the 

PlaySound() function. 

This code will be incorporated in a hands-on example in the next chapter. In the mean 

time you can preview the sound effects by searching for these Sound Cues in the 

Content Browser in the Unreal Editor and double-clicking on them to play them. 

Kismet, Matinee and Moving Objects 
Kismet is the graphical version of UnrealScript. Kismet in combination with Unreal 

Matinee does an excellent job in controlling the movement of objects like platforms and 

the opening and closing of gates. Moving platforms that can move characters in the 

game world are created with InterpActors. Objects called triggers can be used to initiate 

the movement of closed gates or doors so that they become open. 

Kismet is used to trigger the movement of platforms and gates and Unreal Matinee 

defines the exact movement that the platform, gate, or door should follow. Matinee uses 

a keyframe method of animation where you set certain frames that indicate the object’s 

position in the world at certain times and then the Matinee will generate all the positions 

for the frames in between the keyframes. In this section we show you: 

 How to use Kismet and Matinee to create a moving platform. 

 How to create a moving gate that opens when your pawn touches a 

trigger. 

NOTE: There is also more information concerning Kismet and Matinee discussed back in Chapter 2. 

Hands-On Example: Using Kismet to create a Moving 
Platform 
In this hands-on example we will create a moving platform that can move the player’s 

pawn from the ground level to the top of the cube of the default level. 

1. Bring up the Unreal Editor. 

2. Search for the static mesh SM_Gate_02 in the search box in the Content 

Browser. Make sure to mark the Static Meshes checkbox. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 6:  Environment: Sounds, Kismet, and HUD 186 

3. Select this mesh in the Preview Pane, and double-click on it to load it into the 

UDK system and bring it up into the Mesh Viewer.  

4. Put your cursor over an empty area in front of the cube in the default level. 

5. Right-click and select Add InterpActor or simply drag and drop the gate into the 

level where you want it.  

6. Rotate and move the gate mesh so that it is right in front of the cube and oriented 

as in Figure 6–11. Hit the spacebar while you have the gate selected to cycle 

between transformation, rotation, and scaling widgets. 

 

Figure 6–11. Gate Mesh platform 

7. With the gate still selected open Kismet. Right-click and select New Event Using 
InterpActor  Mover. This creates a new set of Kismet nodes as shown in Figure 6–12. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 6:  Environment: Sounds, Kismet, and HUD 187 

 

Figure 6–12. Kismet nodes for moving a platform 

8. Double-click on the Matinee node to bring up Matinee. See Figure 6–13. 

 

Figure 6–13. Matinee node for our gate platform 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 6:  Environment: Sounds, Kismet, and HUD 188 

9. Scroll the white bar at the bottom of the Unreal Matinee so that you see the 

ending red marker. See Figure 6–14. 

 

Figure 6–14. Red marker that denotes the end of the Matinee sequence 

10. Move Red Marker which denotes the end of sequence from the 5.00 second mark 

to the 1 second mark. This shortens the time for the total animation to 1 second. 

See Figure 6–15. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 6:  Environment: Sounds, Kismet, and HUD 189 

Figure 6–15. Red Marker at new position at 1.00 second mark 

11. Slide the bar back to the front of the Matinee Sequence and make sure the black 

selection marker at the bottom area above the white bar is at the 0 seconds mark 

and hit the Enter key to mark the starting keyframe. A red outlined triangle should 

appear marking the new key frame. See Figure 6–16. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 6:  Environment: Sounds, Kismet, and HUD 190 

 

Figure 6–16. Starting the first key frame with the gate at the default ground level. 

12. Slide the long black selection marker at the bottom of the keyframe panel to 

around the 1.0 second mark and hit the Enter key. A new keyframe is now being 

generated. See Figure 6–17. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 6:  Environment: Sounds, Kismet, and HUD 191 

 

Figure 6–17. Second keyframe for the moving platform  

13. Now, move the gate up using the transformation widget so that it is level with the 

top of the cube. Since we are recording this keyframe the gate should have lines 

to indicate the change in position from the last keyframe. See Figure 6–18. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 6:  Environment: Sounds, Kismet, and HUD 192 

 

Figure 6–18. Changing the position of the gate for the final keyframe 

14. Close the Matinee Window. 

15. Double-click on the gate to bring up its properties. Under the Collision category 

set the CollisionType to COLLIDE_Blockall. See Figure 6–19. 

 

Figure 6–19. Initializing the new moving gate platform  

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 6:  Environment: Sounds, Kismet, and HUD 193 

Everything should now be set up so that you can have your pawn walk on the gate and 

have it move up. Select a game type from a previous chapter (such as Chapter 3) that 

allows you to see your pawn in the third person. A good choice would be the 

ExampleCh31Game game type. 

Run the game on the mobile previewer. You should now be able to walk your pawn over 

the gate and the gate will automatically move up to the top of the cube. See Figure 6–20. 

 

Figure 6–20. A working platform from a gate static mesh 

Hands-on Example: Using Kismet to create Locked Gates 
In this example we will create a gate that can be opened by the player touching a 

trigger.  

1. Bring up the Unreal Editor. 

2. Click on the cube in the default level, right-click and select Copy. 

3. Put your cursor over an empty area in the level next to the cube, right-click and 

select Paste Here to paste a copy of this cube into the level. 

4. In the Content Browser search for the same gate that you did for the last example. 

Select this mesh in the Preview Pane. Double-click on it to load it into the UDK 

and bring it up into the Mesh Viewer.  

5. Right-click on the space between the blocks and select Add InterpActor to add 

the gate to the level as an InterpActor.  

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 6:  Environment: Sounds, Kismet, and HUD 194 

6. Position the gate between the blocks. 

7. Right-click somewhere to the left or right of your gate and select Add Actor  Add 
Trigger. This will create a new Trigger object to be used to open your gate. You 

can also put a static mesh at the trigger’s location as a reminder of where the 

trigger is if you want to. A good mesh for this is a barrel mesh such as 

Sm_Barrel_01 or RemadePhysBarrel. Type one of these names into the search box 

to bring it up in the preview panel. You can select one of these and drag and drop 

it into your level. See Figure 6–21. 

 

Figure 6–21. Gate with trigger 

8. Select the trigger and open Kismet.  

9. Right-click on an empty space in the Kismet panel and select New Event Using 
Trigger  Touch to create a new Kismet Trigger Touch Node.  

10. Right-click on an empty space in the Kismet panel and select New Matinee to 

create a new Matinee Node. Create a link between the Touched output on the 

trigger and the Play input on the Matinee by clicking on the Touched output and 

dragging your mouse to connect the wire to the Play input. See Figure 6–22. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 6:  Environment: Sounds, Kismet, and HUD 195 

 

Figure 6–22. Trigger controlling Matinee Sequence 

11. Make sure you have the gate selected. Double-click on the Matinee node to bring 

up Matinee.  

12. Right-click on the main Matinee sequence panel and select Add New Empty 

Group. Add this new group by clicking the OK button on the dialog that pops up.  

13. With your mouse on this new group right-click and select Add New Movement 

Track.  

14. Click on the Movement track you just created. Make sure the long black 

sequence marker is at the 0.0 seconds mark and press the Enter key to start the 

keyframe for the starting position of the gate. See Figure 6–23. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 6:  Environment: Sounds, Kismet, and HUD 196 

 

Figure 6–23. Creating the keyframe for the gate’s initial position.  

15. Next, we need to create a new keyframe for the gate’s final position. Move the 

long black sequence marker to around the 5.0 marker. Hit the Enter key to create 

a new keyframe at this time. See Figure 6–24. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 6:  Environment: Sounds, Kismet, and HUD 197 

 

Figure 6–24. Creating the keyframe for the gate’s final position 

16. Next, move the gate using the transformation widget completely to one side as 

shown in Figure 6–25. 

 

Figure 6–25. Moving the gate to its final position 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 6:  Environment: Sounds, Kismet, and HUD 198 

17. Close Matinee. 

18. Change the game type to one that has the player’s pawn visible. 

19. Next, double-click on the gate to bring up its properties. Under the Collision 

category change the Collision Type property to COLLIDE_BlockALL. This blocks 

your pawn from moving through the gate when it is closed. Save the level. 

20. Finally, run your game on the mobile previewer. When you touch the trigger the 

gate should start sliding open. See Figure 6–26.  

 

Figure 6–26. Opening the gate by touching the trigger 

21. Bring up the Kismet panel. Right-click on an empty area and select New Action  

Sound  Play Sound to create a Play Sound node. 

22. In the Content Browser, search for Elevator01_StartCue and select the Sound 

Cue asset when it comes up. 

23. Go back to the Kismet panel and click on the Play Sound Node to bring up its 

properties. Under the Play Sound property click on the arrow to the right of the 

field to place the currently selected Sound Cue in this field. 

24. Repeat steps 21 through 23 for the Sound Cue Elevator01_StopCue. You should 

now have two Play Sound nodes. 

25. Connect the Play Sound nodes as indicated in Figure 6–27. Connect the node 

with the StartCue sound to the trigger node and the node with the Stop Cue 

sound to the Matinee node. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 6:  Environment: Sounds, Kismet, and HUD 199 

Figure 6–27. Creating sound effects for our gate.  

26. Now try out the gate again using the Mobile Previewer. This time there should be 

a sound effect when the gate is first opened and another sound effect when the 

gate is fully opened. 

UDK Heads Up Display 
The last topic we cover in this chapter is the HUD in preparation for the topic that comes 

in the next chapter, which is gameplay. In term of the player’s environment the HUD is 

probably the most apparent since it is right in the player’s face literally. A HUD can be a 

basic one that displays the player’s statistics or much more complex such as in a 

vehicle simulation that includes graphics that represent the vehicle’s controls and the 

interior of the vehicle itself. 

The Heads Up Display or HUD contains information that may be of interest to the player 

such as the number of lives left, current health, or score. The HUD can be drawn using 

Scaleform or the Canvas class. Scaleform refers to the Scaleform Gfx system that 

enables Adobe Flash based HUDs to run on the UDK. 

Creating code that is compatible with Scaleform requires tools outside the UDK and 

requires the extra work of setting up scenes in Adobe Flash and graphics in programs 

like Adobe Photoshop. For these reasons only the Canvas method of HUD creation will 

be used in this book. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 6:  Environment: Sounds, Kismet, and HUD 200 

Overview of the HUD 
For developing iOS games for the mobile platform you should create a custom HUD 

class that derives from UDKHud as follows: 

class ExtendedHUD extends UDKHud; 

The main function that you need to override in your custom HUD class to draw your own 

items is the DrawHUD() function. An example structure of a DrawHUD() function in a 

derived class that adds to the HUD is as follows: 

function DrawHUD() 
{ 
 super.DrawHUD(); 
 // Put your custom code here that draws to the HUD 
} 

In the class where you define the type of game to be played you need to set your 

HUDType in the defaultproperties to your new custom HUD class. 

defaultproperties 
{ 
 PlayerControllerClass=class'ExampleCh6.ExampleCh6PC'  
 DefaultPawnClass=class'ExampleCh6.Jazz3Pawn' 
 HUDType=class'ExampleCh6.ExtendedHUD'  
  
 bRestartLevel=false 
 bWaitingToStartMatch=true 
 bDelayedStart=false 
} 

Displaying Text on the HUD 
In order to draw text as well as do such things as set the color of the text, and the 

position of the cursor that draws the text on the HUD you use the Canvas object.  

The Canvas object is created from the Canvas class which is a built-in class in the UDK 

that contains functions that allow the user to draw on the screen. 

In the HUD class which is the base class for the HUD there is a variable called Canvas that 

can be used to draw text and graphics on our HUD. 

Var Canvas Canvas; 

The following is a list of key functions in the Canvas class. The examples show you how 

to use these functions from within the HUD class. 

 DrawText() —To draw text on the screen use the DrawText() function. 

Canvas.DrawText("Hello World"); 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 6:  Environment: Sounds, Kismet, and HUD 201 

 SetDrawColor()—You can set the color of the text by calling the 

SetDrawColor() function. The input parameters R, G, B refer to the 

colors Red, Green, and Blue. These three values are used to define the 

color of the text that will be drawn. The values range from 0-255.  

Canvas.SetDrawColor(R, G, B);  

 SetPos()—You can set the position of the cursor that draws the text 

on the HUD by calling the SetPos() function  

Canvas.SetPos(X, Y); 

 TextSize()—Gets the horizontal and vertical size of the input text as it 

would appear on the screen in screen pixels and returns it in the last 

two parameters. The TextLabel variable holds the text in string format. 

The last two variables hold the numerical values of the size of the text 

in TextLabel in the X (horizontal) and Y (vertical) directions.  

Canvas.TextSize(TextLabel, TextSizeX, TextSizeY); 

Displaying Textures on the HUD 
You can draw textures to the HUD by using the DrawTextureBlended() function.  

Canvas.DrawTextureBlended(DefaultTexture1, 1, BLEND_Masked); 

The first parameter is a reference to the actual texture. The second parameter is the 

scale factor that will be applied to the horizontal and vertical lengths of the texture. The 

third parameter is the blend mode, with several options.  

 Choose BLEND_Opaque to put the texture on the HUD without any 

alterations of the colors.  

 Choose BLEND_Additive to add the colors of the texture and the 

background color already on the HUD to create a final color that will 

be placed on the HUD.  

 Select BLEND_Masked to put the texture on the HUD without the black 

pixels. 

Hands-on Example: Adding a Basic Heads Up Display 
In this example we will create the basic custom HUD that we will use in the larger 

example that we will create later in the next chapter. Create a new file for this class in 

your Classes directory under the project directory called ExtendedHUD.uc and put in the 

following code. See Listing 6–3. 

Listing 6–3. Custom HUD class 

class ExtendedHUD extends UDKHud; 
 
var Texture DefaultTexture1; 
var Texture DefaultTexture2; 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 6:  Environment: Sounds, Kismet, and HUD 202 

var Texture DefaultTexture3; 
var Texture DefaultTexture4; 
var Texture DefaultTexture5; 
 
struct HUDInfo 
{ 
 var string Label; 
 var Vector2D TextLocation; 
 var Color TextColor; 
 var Vector2D Scale; 
}; 
 
// HUD  
var HUDInfo HUDHealth; 
var HUDInfo HUDLives; 
var HUDInfo HUDGameOver; 
var HUDInfo HUDScore; 
 
simulated function PostBeginPlay() 
{ 
 Super.PostBeginPlay(); 
 
 HUDHealth.Label = "Health:";  
 HUDHealth.TextLocation.x = 1100; 
 HUDHealth.TextLocation.y = 50; 
 HUDHealth.TextColor.R = 0; 
 HUDHealth.TextColor.G = 0; 
 HUDHealth.TextColor.B = 255; 
 HUDHealth.Scale.X = 2; 
 HUDHealth.Scale.Y = 4; 
 
 HUDLives.Label = "Lives:";  
 HUDLives.TextLocation.x = 600; 
 HUDLives.TextLocation.y = 50; 
 HUDLives.TextColor.R = 0; 
 HUDLives.TextColor.G = 255; 
 HUDLives.TextColor.B = 0; 
 HUDLives.Scale.X = 2; 
 HUDLives.Scale.Y = 4; 
 
 HUDGameOver.Label = "GAME OVER";  
 HUDGameOver.TextLocation.x = 400; 
 HUDGameOver.TextLocation.y = 300; 
 HUDGameOver.TextColor.R = 255; 
 HUDGameOver.TextColor.G = 0; 
 HUDGameOver.TextColor.B = 255; 
 HUDGameOver.Scale.X = 7; 
 HUDGameOver.Scale.Y = 7; 
 
 HUDScore.Label = "Score:";  
 HUDScore.TextLocation.x = 0; 
 HUDScore.TextLocation.y = 50; 
 HUDScore.TextColor.R = 255; 
 HUDScore.TextColor.G = 0; 
 HUDScore.TextColor.B = 0; 
 HUDScore.Scale.X = 2; 
 HUDScore.Scale.Y = 4; 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 6:  Environment: Sounds, Kismet, and HUD 203 

} 
 
function DrawHUDItem(HUDInfo Info, coerce string Value) 
{ 
 local Vector2D TextSize; 
 
 Canvas.SetDrawColor(Info.TextColor.R, Info.TextColor.G, Info.TextColor.B);  
 Canvas.SetPos(Info.TextLocation.X, Info.TextLocation.Y); 
 Canvas.DrawText(Info.Label, ,Info.Scale.X, Info.Scale.Y); 
 Canvas.TextSize(Info.Label, TextSize.X, TextSize.Y); 
 Canvas.SetPos(Info.TextLocation.X + (TextSize.X * Info.Scale.X), Info.TextLocation.Y); 
 Canvas.DrawText(Value, , Info.Scale.X, Info.Scale.Y); 
} 
 
function DrawHUD() 
{ 
 local int Lives; 
  
 super.DrawHUD(); 
 
 /* 
 // Blend Modes = BLEND_Opaque, BLEND_Additive, and BLEND_Modulate modes 
 Canvas.SetPos(0,0); 
 Canvas.DrawTextureBlended(DefaultTexture1, 1, BLEND_Opaque); 
 
 Canvas.SetPos(150,0); 
 Canvas.DrawTextureBlended(DefaultTexture2, 1, BLEND_Additive); 
 
 Canvas.SetPos(300,0); 
 Canvas.DrawTextureBlended(DefaultTexture3, 1, BLEND_Masked); 
 
 Canvas.SetPos(450,0); 
 Canvas.DrawTextureBlended(DefaultTexture4, 1, BLEND_Masked); 
 
 Canvas.SetPos(600,0); 
 Canvas.DrawTextureBlended(DefaultTexture5, 1, BLEND_Masked); 
 */ 
 Canvas.Font = class'Engine'.static.GetLargeFont(); 
 
 // Score 
 DrawHUDItem(HUDScore,ExampleCh6PC(PlayerOwner).Score); 
  
 // Lives 
 Lives = Jazz3Pawn(PlayerOwner.Pawn).Lives; 
 DrawHUDItem(HUDLives, Lives); 
 
 // Health 
 DrawHUDItem(HUDHealth, PlayerOwner.Pawn.Health); 
  
 // Game Over 
 if (ExampleCh6PC(PlayerOwner).GameOVer) 
 { 
 DrawHUDItem(HUDGameOver, ""); 
 }  
} 
defaultProperties 
{ 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 6:  Environment: Sounds, Kismet, and HUD 204 

 DefaultTexture1= Texture2D'EditorResources.Ambientcreatures' // Yellow Chick 32 by 32 
 DefaultTexture2= Texture2D'EditorResources.Ammo' // Ammo Icon 32 by 32 
 DefaultTexture3= Texture2D'EditorResources.LookTarget' // Target 32 by 32 
 DefaultTexture4= Texture2D'EditorMaterials.Tick' // Green Check 32 by 32 
 DefaultTexture5= Texture2D'EditorMaterials.GreyCheck' // Grey Check 32 by 32 
} 

The key function in this class is the DrawHUDItem() function that draws the actual text on 

the HUD based on a HUDInfo entry along with the input value for that entry. 

The HUD displays the player’s score, lives left, and health. This custom HUD class also 

provides examples of how to draw various textures to the HUD in the commented out 

section. The preview of the HUD as part of the larger game play example that is created 

later in the next chapter is shown in Figure 6–28. 

 

Figure 6–28. Preview of the HUD for next chapter’s gameplay example 

Summary 
In this chapter we covered Sound Cues, the Sound Cue Editor that is used to create 

Sound Cues from sound data, how to use Sound Cues from within the Unreal Editor, 

from within UnrealScript in real-time during gameplay, and from within Kismet. Next, we 

discussed how to use Kismet and Matinee to control the movement of platforms and 

locked gates, as well as how to add sounds to the opening of a gate. We then covered 

the Unreal Heads Up Display and showed you how to create a custom HUD in 

UnrealScript. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


 
205 

   Chapter 

Sample Game and 
GamePlay 
In this chapter we will discuss gameplay including the main categories that affect the 

quality of gameplay, which are game difficulty and game balance. Elements that make 

up game difficulty include such things as the characteristics of the enemies, the player, 

the weapons, and the projectiles used in the weapons. Game balance refers to finding 

the right combination of the above elements in order to create a fun game that the 

player will continue to come back to and play over and over again.  

Finally, we cover an actual gameplay example where we create a small working game 

that involves an enemy Bot following the player around the level and firing a weapon at 

the player.  

Gameplay Overview 
In this section we will cover game difficulty and game balance, both of which are 

essential in producing gameplay that is both fun and challenging. We cover the different 

elements of gameplay that contribute to a game’s difficulty level. We then discuss how 

balancing these different elements is also important to creating a fun game that the 

player will enjoy playing over and over again.   

Game Difficulty  
Game difficulty is an important part of creating good gameplay and making a game fun 

and entertaining. A game that is too difficult for the average user will frustrate him. A 

game that is too easy will lack any meaningful challenge and also make him lose interest 

in the game. The objective is to make a game easy enough for the average player but 

hard enough to keep him challenged.  

7 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 7:  Sample Game and GamePlay 206 

Elements of gameplay that affect game difficulty are: 

 Enemies: The number of enemies, the capabilities of the enemies 

(including their armor, weapons, health, and healing abilities), and 

other special abilities such as magic abilities are elements to consider 

concerning game difficulty. 

 The Player: The fundamental characteristics of the player such as 

number of lives, health, healing ability, armor, weapons, and other 

special abilities are factors that are related to game difficulty. 

 Power Ups: The nature, number, and location of power ups available 

inside the game world that would enhance the abilities of objects and 

characters, such as health bonus, weapon damage powerups, and 

extra lives, are also factors that would affect game difficulty. 

 Level Design: The way the level is designed also affects the game 

difficulty level in terms of where the enemies are placed and the 

amount and types of cover available to the player and enemies. For 

example, do the player’s enemies shoot at him from high ground in a 

fortified area? If so how much cover from hostile fire is there in the 

game arena? 

 Game Play Rules: The rules of the game including how victory is 

achieved would also determine how difficult the game is. For example, 

if the objective of the game is to just survive for a certain amount of 

time, then hiding out in an easily defensible area with lots of cover 

from enemy fire would be desirable. However, once the player is able 

to find such an area in the game level, then the game would become 

very easy and perhaps not as fun and challenging.   

Game Balance 
Game Balance is also an important element in good gameplay and in creating a fun 

game. Game balance refers to finding the best combinations of the different levels of 

difficulty in each of the elements of gameplay listed in the Game Difficulty section 

previously. 

For example, let’s take the situation from the previous section where the goal of the 

game is to survive for a set time and the player has found a location in the game where 

he is well protected from enemy fire and can just sit and wait for the game to end.  A 

way to change this game so that it is more balanced might be to: 

 Change the Game Play Rules so that the objective would be to not 

only survive a set amount of time but to achieve other objectives such 

as destroying a certain target or killing a certain number of enemies. 

 Change the Level Design so that any areas that are completely 

protected or mostly protected from enemy fire and attack are 

removed. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 7:  Sample Game and GamePlay 207 

 Increase the number of enemies around these heavily protected areas 

so that they are difficult to get to without the player taking heavy 

damage. 

Basic GamePlay  
In this section you will learn how to create a small working game with a working Heads 

Up Display, sound effects and the locked gate from the Kismet/Matinee section from the 

previous chapter. The knowledge used to create this game will be drawn from previous 

sections in this chapter and from previous chapters. A hands-on example will be 

presented to show you in detail how to create this basic game.  

Hands-On Example: Creating a Basic Game Framework. 
In this example we will create a small working game incorporating the code created in 

the Sound Cues, and HUD sections in this chapter. The final game will have a working 

HUD displaying the score, player’s health, and number of lives left in the game. An 

enemy bot is created on a custom spawn pad and then follows the player and fires its 

weapon at the player. The objective of the game would be to kill the enemy bot and gain 

the highest score before all your lives have been used up.   

Creating the Level 
In this example we will extend the level that you created for the Kismet and Matinee 

controlled gate example in the previous chapter. 

1. Bring up the Unreal Editor and load in the level you saved that contains the locked 

gate example using Kismet and Matinee. 

2. Copy and paste the cube all across the level. Right-click on an empty area near 

the center of the level and select Add Actor  Add Pylon to add a Pylon for the 

navigation mesh used to control the enemy Bot.   Rebuild the navigation mesh by 

selecting Build  AI Paths from the main Unreal Editor menu.  The resulting level 

should look similar to Figure 7–1. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 7:  Sample Game and GamePlay 208 

 

Figure 7–1. Creating a simple game level 

The level is complete except for the Spawn Pad for the Bot which will be added later 

after code for the Spawn Pad has been created. 

3. Save the level. 

Creating the Game Type 
Next, we need to create a new game type class for this example (See Listing 7–1). 

Create this new class in the following directory: 

C:\UDK\UDK-2011-06\Development\Src\ExampleCh7\Classes 

You should have already created this directory to store code for the Sound Cue section 

and the HUD section that we created earlier in Chapter 6. 

Listing 7–1. Game Type  

class ExampleCh7Game extends FrameworkGame; 
 
event OnEngineHasLoaded() 
{ 
    WorldInfo.Game.Broadcast(self,"ExampleCh7Game Type Active - Engine Has Loaded 
!!!!"); 
} 
function bool PreventDeath(Pawn KilledPawn, Controller Killer, class<DamageType> 
DamageType, vector HitLocation) 
{ 
    return true; 
} 
static event class<GameInfo> SetGameType(string MapName, string Options, string Portal) 
{ 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 7:  Sample Game and GamePlay 209 

    return super.SetGameType(MapName, Options, Portal); 
} 
defaultproperties 
{ 
    PlayerControllerClass=class'ExampleCh7.ExampleCh7PC'  
    DefaultPawnClass=class'ExampleCh7.Jazz3Pawn' 
    HUDType=class'ExampleCh7.ExtendedHUD'  
    bRestartLevel=false 
    bWaitingToStartMatch=true 
    bDelayedStart=false 
} 

Note that we have specified a custom player controller, pawn class, and HUD for this 

game type. Remember that we have already created the custom HUD class in Chapter 6 

so nothing more needs to be done with the HUD class. 

Creating the Player’s Code 
Next, we need to create the UnrealScript code for the Player. This code consists of a 

custom pawn, controller, weapon, and weapon projectile 

Pawn 
The player’s pawn is shown in Listing 7–2. The important modifications from previous 

code are shown in bold print.   

The main addition here is the TakeDamage() function. This function processes damage to 

the player and if the player’s health is equal to or less than zero and the player has more 

lives then reset the player’s health and move the player to his starting location. 

Listing 7–2. Player’s Pawn 

class Jazz3Pawn extends SimplePawn; 

var float CamOffsetDistance; 
var int CamAngle;  

var Inventory MainGun; 
var vector InitialLocation; 

var SoundCue PawnHitSound; 
var int Lives; 

event TakeDamage(int Damage, Controller InstigatedBy, vector HitLocation, vector 
Momentum, class<DamageType> DamageType, optional TraceHitInfo HitInfo, optional Actor 
DamageCauser) 
{  
    PlaySound(PawnHitSound);  
    Health = Health - Damage; 
    WorldInfo.Game.Broadcast(self,self @ " Has Taken Damage IN TAKEDAMAGE, HEALTH = " @ 
Health);  

    // If Died 
    if (Health <= 0) 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 7:  Sample Game and GamePlay 210 

    { 
        // Reduce number of lives left if above 0 
        if (Lives > 0) 
 { 
            Lives--; 
        } 
 
        // If player has more lives left then use them 
        if (Lives > 0) 
        { 
             SetLocation(InitialLocation); 
             SetPhysics(PHYS_Falling); 
             Health = 100; 
        } 
    } 
} 
simulated singular event Rotator GetBaseAimRotation() 
{ 
   local rotator TempRot; 
   TempRot = Rotation; 
   TempRot.Pitch = 0;   
   SetRotation(TempRot); 
   return TempRot; 
}    
function AddGunToSocket(Name SocketName) 
{ 
    local Vector SocketLocation; 
    local Rotator SocketRotation; 
 
    if (Mesh != None) 
    { 
        if (Mesh.GetSocketByName(SocketName) != None) 
        { 
            Mesh.GetSocketWorldLocationAndRotation(SocketName, SocketLocation, 
SocketRotation); 
    
            MainGun.SetRotation(SocketRotation); 
            MainGun.SetBase(Self,, Mesh, SocketName); 
        } 
        else 
        { 
            WorldInfo.Game.Broadcast(self,"!!!!!!SOCKET NAME NOT FOUND!!!!!"); 
        } 
    } 
    else 
    { 
        WorldInfo.Game.Broadcast(self,"!!!!!!MESH NOT FOUND!!!!!"); 
    } 
} 
function AddDefaultInventory() 
{  
    MainGun = InvManager.CreateInventory(class'JazzWeaponSound'); 
    MainGun.SetHidden(false); 
    AddGunToSocket('Weapon_R'); 
    Weapon(MainGun).FireOffset = vect(0,0,-70); 
} 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 7:  Sample Game and GamePlay 211 

///////////////////////////////// Third Person View ///////////////////////////////// 
simulated function bool CalcCamera( float fDeltaTime, out vector out_CamLoc, out rotator 
out_CamRot, out float out_FOV ) 
{ 
    local vector BackVector; 
    local vector UpVector; 
    local float  CamDistanceHorizontal; 
    local float  CamDistanceVertical; 
 
    // Set Camera Location 
    CamDistanceHorizontal = CamOffsetDistance * cos(CamAngle * UnrRotToRad); 
    CamDistanceVertical   = CamOffsetDistance * sin(CamAngle * UnrRotToRad); 
  
    BackVector = -Normal(Vector(Rotation)) * CamDistanceHorizontal; 
    UpVector   =  vect(0,0,1) * CamDistanceVertical; 
 
    out_CamLoc = Location + BackVector + UpVector; 
 
    // Set Camera Rotation 
    out_CamRot.pitch = -CamAngle; 
    out_CamRot.yaw   = Rotation.yaw; 
    out_CamRot.roll  = Rotation.roll; 
 
    return true; 
} 
defaultproperties 
{  
    Begin Object Class=SkeletalMeshComponent Name=JazzMesh      
        SkeletalMesh=SkeletalMesh'KismetGame_Assets.Anims.SK_Jazz' 
        AnimSets(0)=AnimSet'KismetGame_Assets.Anims.SK_Jazz_Anims' 
        AnimTreeTemplate=AnimTree'KismetGame_Assets.Anims.Jazz_AnimTree' 
        BlockRigidBody=true 
        CollideActors=true 
    End Object 
    Mesh = JazzMesh; // Set The mesh for this object 
    Components.Add(JazzMesh); // Attach this mesh to this Actor 
      
    CamAngle=3000; 
    CamOffsetDistance= 484.0 
 
    InventoryManagerClass=class'WeaponsIM1'  
  
    PawnHitSound = 
SoundCue'A_Character_CorruptEnigma_Cue.Mean_Efforts.A_Effort_EnigmaMean_Death_Cue'   
} 

For this pawn we added a Lives variable to indicate the number of lives this pawn has 

left. We also added code to the TakeDamage() function to only reset the player to the 

starting level position if he has more lives left. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 7:  Sample Game and GamePlay 212 

NOTE: The number of player lives, and the player’s health are key elements of gameplay that 
were discussed in the game overview section. In order to have a good game balance with a 
reasonable game difficulty level you can change the number of starting lives and the player’s 

starting health accordingly to help get the desired game balance and difficulty you desire. 

Controller 
Next, we need to create our custom player controller. See Listing 7–3. 

In this player controller we create the enemy bot on the bot spawn pad when the player 

is first created (PlayerTick() is first called). We also initialize the number of player’s 

lives. In the main control loop for player which is the PlayerTick() function we 

continually check to see if the game is over, that is the number of player lives remaining 

is 0. The player’s score is also kept in the variable Score. As in previous examples the 

function SwipeZoneCallback() handles touch input. 

In this class we added the FindSpawnPadLocation() function to support spawning an enemy 
Bot on a pad that can be placed in the level using the Unreal Editor. 

The ResetGame() function helps reset the player’s score, lives, health, and so on after the 

player dies and the game is restarted. 

Listing 7–3. Player Controller 

class ExampleCh7PC extends SimplePC; 
 
var Controller FollowBot; 
Var Pawn FollowPawn; 
var bool BotSpawned; 
 
var bool GameOver; 
var int Score; 
 
function vector FindSpawnPadLocation() 
{ 
    local SpawnPad TempSpawnPad; 
    local vector TempLocation;  
    foreach AllActors (class 'SpawnPad', TempSpawnPad ) 
    { 
         TempLocation = TempSpawnPad.Location;    
    } 
    return TempLocation; 
} 
function SpawnBot(Vector SpawnLocation) 
{ 
    SpawnLocation.z = SpawnLocation.z + 500; 
    WorldInfo.Game.Broadcast(self,"SPAWNING A BOT AT LOCATION " @ Spawnlocation); 
    FollowBot = Spawn(class'BotControllerAttack',,,SpawnLocation);   
    FollowPawn = Spawn(class'BotPawn2',,,SpawnLocation);  
    FollowBot.Possess(FollowPawn,false);  
    BotControllerAttack(FollowBot).CurrentGoal = Pawn; 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 7:  Sample Game and GamePlay 213 

    Botpawn2(FollowPawn).AddDefaultInventory(); 
    BotPawn2(Followpawn).InitialLocation = SpawnLocation; 
    FollowPawn.SetPhysics(PHYS_Falling); 
    BotSpawned = true; 
} 
function ResetGame() 
{ 
    GameoVer = false; 
    Jazz3Pawn(Pawn).Lives = 3; 
    Score = 0; 
    Pawn.Health = 100; 
    Pawn.SetHidden(false); 
    Pawn.Weapon.SetHidden(false); 
    Pawn.SetLocation(Jazz3Pawn(Pawn).InitialLocation); 
} 
function bool SwipeZoneCallback(MobileInputZone Zone,  
                                float DeltaTime,  
                                int Handle, 
                                EZoneTouchEvent EventType,  
                                Vector2D TouchLocation) 
{  
    local bool retval; 
    retval = true; 
    if (EventType == ZoneEvent_Touch) 
    { 
        WorldInfo.Game.Broadcast(self,"You touched the screen at = "  
                                      @ TouchLocation.x @ " , "  
                                      @ TouchLocation.y @ ", Zone Touched = "  
                                      @ Zone); 
 
        // Reset Game  
        if (GameOver) 
        {    
            ResetGame();             
        }  
        else 
        { 
            // Start Firing pawn's weapon 
           StartFire(0); 
        } 
    } 
    else 
    if(EventType == ZoneEvent_Update) 
    {  
    }   
    else 
    if (EventType == ZoneEvent_UnTouch) 
    {  
        // Stop Firing Pawn's weapon 
        StopFire(0); 
    }  
    return retval; 
} 
function SetupZones() 
{ 
    Super.SetupZones(); 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 7:  Sample Game and GamePlay 214 

    // If we have a game class, configure the zones 
    if (MPI != None && WorldInfo.GRI.GameClass != none)  
    { 
        LocalPlayer(Player).ViewportClient.GetViewportSize(ViewportSize); 
 
        if (FreeLookZone != none) 
        { 
            FreeLookZone.OnProcessInputDelegate = SwipeZoneCallback; 
        }  
    } 
} 
function PlayerTick(float DeltaTime) 
{   
    Super.PlayerTick(DeltaTime); 
    if (!BotSpawned) 
    { 
        SpawnBot(FindSpawnPadLocation()); 
        BotSpawned = true; 
 
        Jazz3Pawn(Pawn).InitialLocation = Pawn.Location; 
        Jazz3Pawn(Pawn).Lives = 3; 
    } 
    If (Jazz3Pawn(Pawn).Lives <= 0) 
    { 
        GameoVer = true; 
    } 
    if (GameOver) 
    { 
        Pawn.SetHidden(true); 
        Pawn.Weapon.SetHidden(true); 
        Pawn.Velocity = vect(0,0,0); 
    } 
} 
defaultproperties 
{ 
    GameOver = false; 
    BotSpawned = false; 
} 

NOTE: The number of enemy bots in a level is one of the key gameplay elements. In this class 
you can modify the code so that additional enemy bots could be added to your level if needed to 

help you get the right game difficulty and game balance. 

Weapon 
The player’s weapon has already been created in the Sound Cues section. See Listing 6-1 

in the preceding chapter that covers the JazzWeaponSound class. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 7:  Sample Game and GamePlay 215 

NOTE: In terms of good gameplay the characteristics of the weapons used and projectiles used 
are extremely important. The most important property in the Weapon class in relation to game 
difficulty is the FireInterval variable that controls the delay between shots in seconds. Set 

this variable to make the player’s weapon fire at a faster or slower rate. 

Weapon Projectile 
The player’s weapon projectile class JazzBulletSound was created previously in the 

Sound Cues sections. See Listing 6-2. 

NOTE: In terms of the weapon’s projectile the most important properties related to good 
gameplay are the projectile’s speed and the amount of damage it does to the object it hits. 
Slower projectiles might be avoided especially if fired from a long distance.  Projectiles that do 
small amounts of damage might not be effective against enemies that can heal themselves 

quickly for example. 

Creating the Enemy Bot’s Code 
Next, we need to create the code for the enemy bot which involves the bot’s pawn, 

controller, weapon, weapon projectile, and spawn pad. 

Pawn 

The code for the bot’s pawn is in Listing 7–4. The pawn for the enemy bot is similar in 

structure to previous pawns. 

The TakeDamage() function processes damage done to the enemy bot. The 

AddDefaultInventory() function creates the enemy bot’s weapons, adds it into the bot’s 

inventory and initialized it. The AddGunToSocket() function then physically attaches the 

bot’s weapon’s 3d mesh to the actual bot pawn so that it appears the enemy bot is 

holding the weapon. 

Listing 7–4. Enemy Bot’s Pawn 

class BotPawn2 extends SimplePawn; 
 
var Inventory MainGun; 
var SoundCue JazzHitSound; 
var vector InitialLocation; 
 
var int KillValue; 
 
event TakeDamage(int Damage, Controller InstigatedBy, vector HitLocation, vector 
Momentum, class<DamageType> DamageType, optional TraceHitInfo HitInfo, optional Actor 
DamageCauser) 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 7:  Sample Game and GamePlay 216 

{ 
    PlaySound(JazzHitSound);  
    Health = Health - Damage; 
    WorldInfo.Game.Broadcast(self,self @ " Has Taken Damage IN TAKEDAMAGE, HEALTH = " @ 
Health);  
    
    if (Health <= 0) 
    { 
        SetLocation(InitialLocation); 
        SetPhysics(PHYS_Falling); 
        Health = 100; 
 
        // Process Kill 
        if (PlayerController(InstigatedBy) != None) 
        { 
            // Add kill to Player's Score 
            ExampleCh7PC(InstigatedBy).Score += KillValue;  
        } 
    } 
} 
function AddGunToSocket(Name SocketName) 
{ 
    local Vector SocketLocation; 
    local Rotator SocketRotation; 
 
    if (Mesh != None) 
    { 
        if (Mesh.GetSocketByName(SocketName) != None) 
        { 
            Mesh.GetSocketWorldLocationAndRotation(SocketName, SocketLocation, 
SocketRotation); 
            MainGun.SetRotation(SocketRotation); 
            MainGun.SetBase(Self,, Mesh, SocketName); 
        } 
        else 
        { 
            WorldInfo.Game.Broadcast(self,"!!!!!!SOCKET NAME NOT FOUND!!!!!"); 
        } 
    } 
    else 
    { 
        WorldInfo.Game.Broadcast(self,"!!!!!!MESH NOT FOUND!!!!!"); 
    } 
} 
function AddDefaultInventory() 
{  
    MainGun = InvManager.CreateInventory(class'JazzWeapon2Damage'); 
    MainGun.SetHidden(false); 
    AddGunToSocket('Weapon_R'); 
    Weapon(MainGun).FireOffset = vect(0,13,-70); 
} 
 
defaultproperties 
{ 
    // Jazz Mesh Object  
    Begin Object Class=SkeletalMeshComponent Name=JazzMesh      
        SkeletalMesh=SkeletalMesh'KismetGame_Assets.Anims.SK_Jazz' 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 7:  Sample Game and GamePlay 217 

        AnimSets(0)=AnimSet'KismetGame_Assets.Anims.SK_Jazz_Anims' 
        AnimTreeTemplate=AnimTree'KismetGame_Assets.Anims.Jazz_AnimTree' 
        BlockRigidBody=true 
        CollideActors=true 
    End Object 
    Mesh = JazzMesh; 
    Components.Add(JazzMesh); 
  
    // Collision Component for This actor  
    Begin Object Class=CylinderComponent NAME=CollisionCylinder2 
        CollideActors=true 
        CollisionRadius=+25.000000 
        CollisionHeight=+60.000000 //Nav Mesh 
    End Object 
    CollisionComponent=CollisionCylinder2 
    CylinderComponent=CollisionCylinder2 
    Components.Add(CollisionCylinder2) 
   
    JazzHitSound = SoundCue'KismetGame_Assets.Sounds.Jazz_Death_Cue' 
    InventoryManagerClass=class'WeaponsIM1' 
 
    KillValue = 50; 
} 

The KillValue is the value that is added to the player’s score when the pawn is killed. 

The TakeDamage() function adds the KillValue to the player’s score if the pawn’s health 

is zero or less. 

NOTE: The value of various enemies is another factor in creating good gameplay.  Enemies that 
are harder to kill should be worth more points than enemies that are easier to kill. Enemies that 
are key to achieving some critical game objective should also be worth more points than 

enemies that are not related to any major objective. 

Controller 
Next, we need to create a new class for the bot’s controller which is called 

BotControllerAttack. See Listing 7–5. The controller for our enemy bot is built upon the 

code for the bot that followed the player in Chapter 5. 

The ExecuteWhatToDoNext() function is the main entry point for the enemy bot’s AI 

decision making. The bot starts out in the Initial state and transitions to the 

FollowTarget state where the bot follows the player then to the Firing state where the 

enemy bot fires its weapon at the player. While in the FollowTarget state the bot uses 

the navigation mesh method of path finding to determine a path to the player. The 

GeneratePathTo() function generates the actual path using the navigation mesh and 

stores it in the NavigationHandle variable.  

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 7:  Sample Game and GamePlay 218 

Listing 7–5. Enemy Bot Controller 

class BotControllerAttack extends UDKBot; 
 
var Actor CurrentGoal; 
var Vector TempDest; 
var float FollowDistance;    
var Actor TempGoal; 
 
event bool GeneratePathTo(Actor Goal, optional float WithinDistance, optional bool 
bAllowPartialPath) 
{ 
    if( NavigationHandle == None ) 
    return FALSE; 
 
    // Clear cache and constraints (ignore recycling for the moment) 
    NavigationHandle.PathConstraintList = none; 
    NavigationHandle.PathGoalList = none; 
 
    class'NavMeshPath_Toward'.static.TowardGoal( NavigationHandle, Goal ); 
    class'NavMeshGoal_At'.static.AtActor( NavigationHandle, Goal, WithinDistance, 
bAllowPartialPath ); 
 
    return NavigationHandle.FindPath(); 
} 
state FollowTarget 
{ 
    Begin: 
    WorldInfo.Game.Broadcast(self,"BotController-USING NAVMESH FOR FOLLOWTARGET STATE"); 
    // Move Bot to Target 
    if (CurrentGoal != None) 
    { 
        if(GeneratePathTo(CurrentGoal)) 
        { 
            NavigationHandle.SetFinalDestination(CurrentGoal.Location);   
  
            if( NavigationHandle.ActorReachable(CurrentGoal) ) 
            {    
                // then move directly to the actor  
                MoveTo(CurrentGoal.Location, CurrentGoal,FollowDistance);  
                GotoState('Firing', 'Begin');  
            } 
            else 
            { 
                // move to the first node on the path 
                if( NavigationHandle.GetNextMoveLocation(TempDest, 
Pawn.GetCollisionRadius()) ) 
                { 
                    // suggest move preparation will return TRUE when the edge's 
                    // logic is getting the bot to the edge point 
                    // FALSE if we should run there ourselves 
                    if (!NavigationHandle.SuggestMovePreparation(TempDest,self)) 
                    { 
                        MoveTo(TempDest); 
                    } 
                } 
            }  
        } 

4
www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 7:  Sample Game and GamePlay 219 

        else 
        { 
            //give up because the nav mesh failed to find a path 
            `warn("FindNavMeshPath failed to find a path!");  
            WorldInfo.Game.Broadcast(self,"FindNavMeshPath failed to find a path!, 
CurrentGoal = " @ CurrentGoal); 
            MoveTo(Pawn.Location); 
        }    
    } 
    LatentWhatToDoNext(); 
} 
state Firing 
{ 
    Begin: 
    WorldInfo.Game.Broadcast(self,"BotController-IN Firing State");  
    Sleep(3); 
    Pawn.StartFire(0);            
    Sleep(0.5); 
    LatentWhatToDoNext(); 
} 
auto state Initial 
{ 
    Begin: 
    LatentWhatToDoNext(); 
} 
event WhatToDoNext() 
{ 
    DecisionComponent.bTriggered = true; 
} 
protected event ExecuteWhatToDoNext() 
{ 
    if (IsInState('Initial')) 
    { 
        GotoState('FollowTarget', 'Begin'); 
    } 
    else  
    if (IsInState('Firing')) 
    { 
        Pawn.StopFire(0); 
        GotoState('FollowTarget', 'Begin'); 
    } 
    else 
    { 
        GotoState('FollowTarget', 'Begin'); 
    }    
} 
defaultproperties 
{ 
    CurrentGoal = None; 
    FollowDistance = 700;   
} 

The key difference between this class and the Bot controller class from the chapter on 

UDK bots is the addition of the Firing state. The bot’s pawn is given the command to 

start firing its weapon in this state.  In the previous chapter the bot just followed the 

player around the level.     

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 7:  Sample Game and GamePlay 220 

Now, the bot’s behavior is to: 

1. Move toward the player. 

2. Stop and wait 3 seconds by suspending the state execution using the 

Sleep() function. 

3. Fire the weapon at the player for a half a second 

4. Go to step 1. 

NOTE: In terms of good gameplay the exact behavior of the bot concerning such things as how 
frequently it fires it weapon, does it seek cover from player fire, does it try to get a health 
powerup when its health is low, and other behaviors will affect the game difficulty and game 

balance. You can change these behaviors in this class by modifying the existing code framework. 

Weapon 

The weapon for the enemy bot is the JazzWeapon2Damage class which is already defined 

from Chapter 5. See Listing 5-13. 

NOTE: The issues regarding the bot’s weapon characteristics and weapon projectile 
characteristics with respect to gameplay are similar to those of the player’s weapon and weapon 

projectile discussed previously. 

Weapon Projectile 
The enemy bot’s weapon’s projectile is the JazzBullet2Damage class which we created 

previously in Chapter 5. See Listing 5-14. 

SpawnPad 
Next, we need to create the class that represents the enemy bot’s spawn pad where 

new enemy bots are created and placed. See Listing 7–6. 

NOTE: The number and location of enemy bot spawn pads are also a factor in gameplay.  You 
can expand on the existing game framework presented in this chapter by for example creating 
more spawn pads in different locations and modifying existing code to create many enemy bots 

attacking the player instead of just one enemy bot. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 7:  Sample Game and GamePlay 221 

Listing 7–6. Spawn Pad for the enemy Bot 

class SpawnPad extends Actor 
placeable; 
 
event Touch(Actor Other, PrimitiveComponent OtherComp, vector HitLocation, vector 
HitNormal) 
{ 
    WorldInfo.Game.Broadcast(self,"SpawnPad Has Been Touched"); 
} 
defaultproperties 
{ 
    Begin Object Class=StaticMeshComponent Name=StaticMeshComponent0 
        StaticMesh=StaticMesh'HU_Deco.SM.Mesh.S_HU_Deco_SM_Metalbase01' 
        Scale3D=(X=0.250000,Y=0.250000,Z=0.25000) 
    End Object 
    Components.Add(StaticMeshComponent0) 
  
    Begin Object Class=CylinderComponent NAME=CollisionCylinder 
        CollideActors=true 
        CollisionRadius=+0040.000000 
        CollisionHeight=+0040.000000 
    End Object 
    CollisionComponent=CollisionCylinder 
    Components.Add(CollisionCylinder) 
  
    bCollideActors=true 
} 

Creating the HUD Display 
The custom HUD display was created in the HUD section in Chapter 6 as the 

ExtendedHUD class. You can use this same class for our example. See Listing 6-3. 

Configuring the Game Type 
Next, you need to configure your Unreal Script for compilation and the new game type 

to run on the mobile previewer. In your configuration files located at C:\UDK\UDK-2011-

06\UDKGame\Config change the following configuration files. 

For the UDKEngine.ini file make the following changes: 

[UnrealEd.EditorEngine] 
ModEditPackages=ExampleCh7 
 

For the Mobile-UDKGame.ini file make the following changes: 

[ExampleCh7.ExampleCh7Game] 
RequiredMobileInputConfigs=(GroupName="UberGroup",RequireZoneNames=("UberStickMoveZone",
"UberStickLookZone","UberLookZone")) 

Bring up the Unreal Frontend and compile your scripts. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 7:  Sample Game and GamePlay 222 

NOTE: This sets up the dual virtual joysticks and the ability to process touch input for the rest of 
the screen. In terms of gameplay the final game should be play tested on an actual iOS device 
not just the mobile previewer. The reason is that the iOS device can handle multiple touches at 

one time where you can control both the movement and rotation of your pawn at the same time.  
In the mobile previewer you are limited to one touch at a time through the mouse.  The differing 

user interfaces would affect the gameplay.  

Setting up the Spawn Pad  
Now, you need to place the spawn pad in your level.  

1. Start up the Unreal Editor.  

2. Load in the level you saved at the beginning of this exercise. A good 

place to put it would be behind the gates in an open area.   

3. Go to the Actor Classes tab and search for Spawnpad. This should 

bring up that class in the viewing pane. Click on the class.   

4. Right-click on the level where you wish to place the pad and select Add 

SpawnPad here. Save the level (see Figure 7–2). 

 

Figure 7–2. Creating the enemy bot’s spawnpad 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 7:  Sample Game and GamePlay 223 

Running the Game 
Finally, it’s time to run this new game on the Mobile Previewer.  

1. Bring up the World Properties window by selecting View  World 
Properties from the Unreal Editor menu.   

2. Change the Default Game Type property under the Game Type category 

to ExampleCh7Game. 

3. Run the game on the Mobile Previewer by selecting Play  On Mobile 
Previewer from the main Unreal Editor menu.  You should see something 

similar to Figures 7–3 and 7–4. 

A quick rundown of some gameplay elements shown in this example are: 

 Enemy bot behavior (Artificial Intelligence) 

 Enemy bot weapon and projectiles 

 Player weapon and projectiles 

 Level design 

As you test your game, you can adjust these elements until you get the right user 

experience. 

For example, note the behavior of the enemy bot. The general behavior of the enemy bot 

is move toward the player so that the player is directly reachable to the enemy bot (no 

obstructions), wait for a time period, and then fire at the player. This cycle then repeats. 

Let’s see how this appears in the game itself. 

When the game first comes up in the mobile previewer, wait until the enemy bot comes 

around the corner of the block and stops. See Figure 7–3. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 7:  Sample Game and GamePlay 224 

 

Figure 7–3. At the Gates 

After three seconds, the enemy bot starts firing at the player.  In terms of gameplay, here 

you can change the delay time between the enemy bot stopping and starting to fire to 

change the game difficulty as well as the game balance.  

Next, try moving farther into the area with the large blocks. Move in between the blocks 

so that they obstruct the path directly to the enemy bot. The bot should follow you and 

move around these obstacles in order to get a clear shot at you. Once the enemy bot 

moves into a position where it gets a clear shot at you it stops again. (See Figure 7–4.) It 

then waits for three seconds and then fires its weapon at you. Here level design can 

affect gameplay by affecting game difficulty. Basically the player is exposed to enemy 

fire at the corners of each of the blocks where the enemy bot can get a clear shot at the 

player. If the blocks were longer or wider, for example, it would take more time for the 

bot to move into a good position to shoot at the player thus affecting game difficulty and 

gameplay generally since the enemy cannot jump over the blocks to get at the player.  

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 7:  Sample Game and GamePlay 225 

 

Figure 7–4. Inside the Compound 

Summary 
In this chapter we covered the elements of gameplay.  First we gave background 

information on the elements that affect the quality of gameplay which are game difficulty 

and game balance. Then, we presented a hands-on example where we created a small 

game that incorporated Sound Cues, a custom HUD, a moving locked gate, and a 

custom enemy bot that follows and attacks the player. In the hands-on example 

important gameplay elements are highlighted and suggestions are given on how you 

could adjust the game difficulty and game balance of these elements in order to create 

superior gameplay. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


 
227 

   Chapter 

3D Math Review 
In this chapter we will review some basic 3D math concepts needed to fully understand 
the hands-on examples presented in the other chapters, including the frameworks that 
follow.  

Understanding 3D math is needed for such things as positioning objects such as a 
camera in a 3D world, applying forces to objects, finding distances in between two 
objects, and finding if a cover node protects an actor hiding behind it from enemy fire. In 
general anything that deals with positioning an object, motion (which is nothing more 
than positioning an object in different locations at certain time intervals), or with 
measuring angles in a 3D world will require some knowledge of 3D math. 

In this chapter you will learn about: 

 Vector addition  

 Vector multiplication 

 Dot products  

 Cross products 

 Cover nodes that protect an actor from the enemy. 

 Third-person camera positioning 

 Deriving the direction vector for kicking objects at an arbitrary angle 

Vectors 
Vectors are essential to understanding 3D math. Vectors are quantities that have a 
magnitude and a direction. Vectors can represent quantities like forces that are applied 
to objects or represent the location of objects in the game world. Vectors can also 
represent location, velocity, or acceleration of objects in the game world. 

Scalars, by contrast, are quantities that just have magnitude, like a speed 55 miles per 
hour, for example. A velocity vector would have both magnitude and direction, such as 
55 miles per hour in a northwest direction.  

8 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 8:  3D Math Review 228 

Direction with respect to vectors is indicated by an arrow. Magnitude can be shown 
graphically by the length of this arrow.  

Some properties of vectors are that they: 

 Can be added together to produce a resultant vector that represents 
the net direction and magnitude of the vectors that are added.  

 Can be multiplied by a scalar to change the magnitude of a vector but 
not the direction.  

 Are used in dot products and cross products to find the angle between 
two vectors and to find a vector that is perpendicular to a pair of 
vectors.  

You can visualize vectors as arrows that indicate direction and that have a length or 
magnitude like in Figure 8–1. This represents vectors on a 2D plane. 

 

Figure 8–1. Vectors represented as arrows with magnitude and direction on a 2D plane 

To visualize vectors within the Unreal 3D game world a better picture would be like in 
Figure 8–2. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 8:  3D Math Review 229 

 

Figure 8–2. A vector in the 3D Unreal world coordinate system 

In the Unreal world the X and Y axes represent the ground plane and the Z axis points 
upward toward the sky. As you can see from Figure 8–2 a vector is defined by two or 
three numbers in the form (X, Y, Z) depending if the vector is a 2D vector or a 3D vector.  

The X, Y, and Z values represent the location of the head of the vector’s arrow on the X, 
Y, and Z axes. For example, the Vector A in Figure 8–2 would be defined as –3.7 units 
on the X axis, -1.3 units on the Y axis, and 4 units on the Z axis. Based on these values 
we know the direction the vector is pointing. From these values we can also find the 
magnitude of this vector. 

Vector Magnitude 
The standard formula for finding the length or magnitude of a vector is as shown in 
Figure 8–3. 

 

Figure 8–3. Finding the length of a vector 

The above formula states that the length of vector A is the square root of the sum of the 
squares of each component of vector A. The components of A being the X, Y, and Z 
values of the vector which are (Ax, Ay, Az). The ||A|| notation indicates the absolute value 
of A, which means the result is always a positive number.  

Using Vector A in Figure 8–2 as an example, Ax would be –3.7, Ay would be -1.3, and Az 
would be 4. Each of these terms would be squared and then added together. Then the 
square root would be taken from the sum, and the result would be the magnitude of 
Vector A. 

(-3.7, -1.3, 4)

Vector A

Z Axis

Y Axis

X Axis

Unreal World Axis Orientation

||A|| = A2
x + A2

y + A2
z

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 8:  3D Math Review 230 

MagA = SquareRoot((-3.7 * -3.7) + (-1.3 * -1.3) + (4 * 4)) 

MagA = SquareRoot(13.69 + 1.69 + 16) 

MagA = SquareRoot(31.38) 

MagA = 5.60 

You can do the above in an UnrealScript class function as: 

local vector VectorA; 
local float Length; 
VectorA = vect(-3.7, -1.3, 4); 

In UnrealScript there is a built in function to perform this operation which is the VSize()
function. So in order to get the length of Vector A, you would just send Vector A as in 
input parameter like this: 

Length = VSize(VectorA); 

The Length variable would now contain the magnitude of Vector A. 

Rotator to Vector Conversion 
An Actor’s rotation in the UDK game world is defined by a rotator which is a structure 
defined in the Object class. 

struct immutable Rotator 
{ 
    var() int Pitch, Yaw, Roll; 
}; 

The pitch, yaw, and roll define an object’s rotation around the X, Z, and Y axes. 

You use the SetRotation() function to change the rotation of the Actor. The variable 
Rotation in the Actor class holds the object’s rotation values in a Rotator structure. 

For example to set an Actor to a state where it is not rotated you would use the 
following code in that Actor’s class:  

function ResetRotation() 
{  
    local Rotator TempRot; 

    TempRot.pitch = 0; 
    TempRot.yaw = 0; 
    TempRot.Roll = 0; 
    SetRotation(TempRot); 
} 

Since we are using the UDK, rotations are handled by the UDK graphics engine and we 
don’t have to do any more work besides setting the rotation using SetRotation(). 
Without the UDK, we would need to rotate each object using matrix multiplication to get 
the desired rotation in the X, Y, and Z axes. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 8:  3D Math Review 231 

NOTE: If you are interested in the non UDK method of using matrices to transform and rotate 

objects then check out 3D Computer Graphics, Third Edition, by Alan Watt. 

In UnrealScript there is an easy way to convert the rotation of an object to a vector value 
that points in the direction the front of the object is facing. For example, to get a vector 
that points in the direction the player’s pawn is facing you would do the following: 

PawnFrontVector = Vector(Pawn.Rotation); 

You would use this in your player controller class. 

Normalizing Vectors 
Normalized vectors are vectors of length 1 and are also called unit vectors. The 
importance of normalized vectors is that you can isolate the direction of the vector from 
the magnitude. That is, once you find the unit vector that indicates direction, then you 
can make this vector have any magnitude you want by multiplying the desired 
magnitude by the unit vector. Figure 8–4 shows the formula used for normalizing a 
vector. 

 

Figure 8–4. Calculating Normal Vectors 

You normalize a vector by dividing each vector component by the magnitude of the 
original vector. 

In UnrealScript there is a built in function called Normal() to perform this calculation.  
For example, the following would normalize vector V and return the new vector.  

NormalizedV = Normal(V); 

Vector Addition 
Two vectors can be added by adding each of the components of the vectors. For 
example, two vectors A and B can be added together by adding the X, Y, and Z 
components of each vector. 

ResultantVector = (Ax + Bx, Ay + By, Az + Bz); 

For example, vector A is (1,0,0) which is a normal vector that points along the X axis, 
and vector B is (0,0,1) which is a normal vector that points upward along the Z axis. The 
resultant vector would be: 

ResultantVector = (1 + 0, 0 + 0, 0 + 1) 

ResultantVector = (1,0,1) 

Normalized V = 
Vx , Vy, Vz

||V|| ||V|| ||V||

Vector V = (Vx, Vy, Vz)

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 8:  3D Math Review 232 

You can also add vectors graphically. However, this is not recommended as it gets 
complex quickly when dealing with many vectors. 

Graphically, adding a group of vectors would look as in Figure 8–5. 

 

Figure 8–5. Adding Vectors  

In order to add vectors together graphically you need to put them together head to tail. 
The resultant vector is the vector from the tail of the beginning vector to the head of the 
ending vector. Figure 8–5 illustrates how Vectors A, B, C, and D can be added together 
to get a final vector that is the net result of all the vectors combined. 

It is much easier to add multiple vectors numerically. For example to add four vectors: 

Vector A = (1,0,0) 

Vector B = (0,0,1) 

Vector C = (0,1,0) 

Vector D = (1,1,1) 

ResultantVector = (2,2,2) 

In UnrealScript, you don’t need to add the components but just add the vectors 
themselves as follows: 

var vector VectorA,VectorB,VectorC,VectorD; 
var vector ResultantVector; 
VectorA = vect(1,0,0); 
VectorB = vect(0,0,1); 
VectorC = vect(0,1,0); 
VectorD = vect(1,1,1); 
ResultantVector = VectorA + VectorB + VectorC + VectorD; 

Scalar Multiplication 
A scalar value is a quantity that has only a magnitude and no direction, such as a 
number representing things like the speed of an object. A vector can be multiplied by a 
scalar value by multiplying each vector component by the scalar.   

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 8:  3D Math Review 233 

For example, assume we have a unit vector B that is pointing along the x axis: 

Vector B = (1,0,0) 

We want to multiply this vector by scalar S which is 10. The resulting vector would be: 

Resultant Vector = (1 * 10, 0 * 10, 0 * 10) 

Resultant Vector = (10,0,0) 

A unit vector can be multiplied by a scalar so that the resulting vector is of length scalar. 
See Figure 8–6. 

 

Figure 8–6. Unit vector being scaled by a scalar 

The resulting vector is the same direction as the unit vector but the length has been 
changed to the value of S.  

An example of where this would be useful is when you want to apply a certain amount of 
force to an object in a certain direction. You would make the direction vector into a unit 
vector of length 1, and then you would multiply the unit vector times the amount of force 
you want to apply to the object. The resulting vector is the force vector that includes the 
direction and amount of force to apply to the object. In the above example, Vector B 
would represent the unit direction vector and the scalar value S which is 10 would 
represent the force. The resultant vector represents a force of 10 along the x axis.  

You can also change the direction of a vector to point in the opposite direction by 
multiplying it by a scalar value of –1. See Figure 8–7. 

 

Figure 8–7. Changing the direction of a vector 

For example, you want to find a vector that represents the back side of the player’s 
pawn. In order to do this you would multiply the vector representing the front of the 
player’s pawn by –1 to get a vector that points in the opposite direction. 

V

-V

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 8:  3D Math Review 234 

Unit Circle 
In order to understand fundamental trigonometry functions like sine and cosine you 
need to understand the unit circle. See Figure 8–8. 

 

Figure 8–8. The Unit Circle with an angle Theta shown 

A unit circle is a circle of radius of length 1 and is used to illustrate how cosine and sine 
values are derived. Understanding how cosine and sine values are derived from the unit 
circle is important since cosine and sine functions are involved in so many key things 
like vectors, dot products, and trigonometric identities that are needed to program 
games in a 3D world. The x axis of the unit circle defines cosine values which range from 
–1 to 1. The y axis defines sine values which also range from –1 to 1. An angle that is 
defined by  (theta) can range from 0 to 360 degrees. 

NOTE: Rotation angles in the UDK are measured in Unreal Rotation Units. For example, the value 

of PI is 32768 Unreal Rotation Units. The value UnrRotToRad is defined in the Object.uc file and is 

used to convert Unreal Rotation Units to Radians. 

Sine and cosine values are determined by the angle’s intersection with the unit circle.  
For example, at 0 degrees the cosine value is 1 and the sine value is 0. At 90 degrees 
the cosine value is 0 and the sine value is 1. At 180 degrees the cosine value is –1 and 
the sine value is 0.   

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 8:  3D Math Review 235 

Right Triangle 
The right triangle is important because it is used in several important trigonometric 
identities. See Figure 8–9. 

 

Figure 8–9. The right triangle 

Key trigonometric identities are: 

 Sin( ) = Opposite/Hypotenuse 

 Cos( ) = Adjacent/Hypotenuse 

And 

 Hypotenuse * Sin( ) = Opposite 

 Hypotenuse * Cos( ) = Adjacent  

The above identities are useful when trying to break a vector into its components. For 
example, imagine you kick an object that has a velocity vector that is 20 ft/s and makes 
an angle with the ground of 45 degrees. Let’s assume you want to find the horizontal 
speed of the ball along the ground. The velocity vector can be considered the 
hypotenuse of a right triangle and the ground would be the adjacent side of the triangle:  

Adjacent = Hypotenuse * cos(45) 

VelocityGround = VelocityTotal * cos(45) 

VelocityGround = 20 * cos(45) = 14.14 

Adjacent

Hypotenuse

θ

Opposite

8
www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 8:  3D Math Review 236 

Dot Product 
Imagine two vectors with an angle theta between them as in Figure 8–10. 

 

Figure 8–10. Two vectors with an angle theta  

The definition of the dot product is given in Figure 8–11. 

 

Figure 8–11. Dot Product definition 

The dot product of two vectors is equal to the magnitude of vector A multiplied by the 
magnitude of vector B multiplied by the cosine of the angle between the two vectors. 

To find the angle between the two vectors from the dot product you would use the 
formula in Figure 8–12. 

 

Figure 8–12. Finding an angle from the dot product of two vectors 

The angle between objects in the 3D game world can be an important factor. One 
example is displaying information about important game objects only when they are in 
the view of the player. To do this you would only display information onscreen when 
these objects are within a certain angle with respect to the front of the player’s pawn. 
One vector would be the one from the player to the object you are testing. The other 
vector would be the one pointing outward from the front of the player’s pawn. You can 
then find the angle between these vectors using the equation in Figure 8–12. If the angle 
is within a certain range then you can display information about this object on screen. 

In UnrealScript there is a built in dot function to perform the dot product between two 
vectors. For example, the following code finds the angle in degrees between two vectors 
assuming the two vectors have already been normalized. 

AngleDegrees = acos(SlotNormal Dot DirectionToThreat) * RadToDeg; 

Vector B

Vector A

θ

Vector B

Vector A

θ

A dot B = ||A|| ||B||cos(θ)

θ = arccos A dot B
||A|| ||B||(    )

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 8:  3D Math Review 237 

A dot product can also be used to project a vector onto a unit vector as shown in 
Figure 8–13. 

 

Figure 8–13. Dot product projection onto a unit vector 

Note in the figure that using the dot product to project an arbitrary vector on a unit 
vector is basically another way of finding out the value of the Adjacent side of a right 
triangle. The Adjacent side of the triangle would be the one with the unit vector. 

Cross Product 
The cross product between two vectors generates a vector that is perpendicular to both 
vectors. See Figure 8–14. 

 

Figure 8–14. Cross Product 

The cross product comes in handy when trying to find a vector to the left and right side 
of an Actor. For example, an enemy bot is hiding in cover and you want it to move 
sideways out of cover and fire at the player and then move back into cover. In order to 
do this you will need to find a vector that is perpendicular to both the bot’s pawn front 

Vector A

Unit Vector B

(Vector A) dot (Vector B)

θ

Vector B

(Vector B) Cross (Vector A)

Vector A

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 8:  3D Math Review 238 

vector and the game world’s up vector which would be the same as the positive Z axis. 
To do this you would take the cross product of these two vectors. 

In UnrealScript there is a built in cross operator that calculates the cross product of two 
vectors. For example, the code below generates a perpendicular vector to the two input 
vectors using the cross operator. 

RightVec = FrontVec cross vect(0,0,1); 

Cover Nodes 
A good applied example that uses vectors, angles, dot products, and trigonometric 
functions like sine and cosine is an example that involves creating cover nodes. In this 
section we will give an overview of cover nodes and a hands-on example that 
demonstrates their use in the Unreal world. 

Cover Node Overview 
A cover node is an area designated by the user that can provide protection or cover to a 
player or a computer-controlled bot from enemy fire. The cover node is implemented in 
the UDK in the class CoverLink. See Figure 8–15. 

 

Figure 8–15. The UDK Cover Link (green and black image on the right) and Cover Slot (red block) 

The cover node in the UDK consists of the actual node which is represented by a 
circular image with a picture of a man in the center and one or more cover slots. The 
cover slots are represented by a red block with an arrow pointing outward representing 
the cover slot’s normal or perpendicular vector. For the examples in this book we 
assume a cover node has only 1 cover slot. Multiple cover slots per cover node are 
supported by the UDK; however, for simplicity we assume only 1 cover slot per cover 
node.  

i
www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 8:  3D Math Review 239 

The general idea is that the cover slot be placed against an object that will serve as 
the cover with the cover slot’s normal vector pointing toward the cover object. See 
Figure 8–16. 

 

Figure 8–16. New Custom Cover Node System  

In Figure 8–16 we have the cover node and a cover slot. The cover slot is placed against 
an object that will serve as cover from enemy fire. The cover slot’s normal vector is 
oriented so that it faces the cover. The threat angle on the figure is the angle between 
the cover slot normal vector and the vector that goes from the cover node slot to the 
threat.   

In addition, we have something new not in the default CoverLink class in the UDK base 
code. The cover protection angle is a new value that we have added to the new cover 
node class CoverLinkEx. This new class that is derived from the CoverLink class will be 
created in the hands-on example that follows this section. The cover protection angle is 
a value specified by the user which defaults to 45 degrees and measures from the cover 
slot normal to both the right and left sides of the normal. 

A threat is covered if it is in the area between the two vectors that represent the cover 
protection angle. That is, the threat angle is less than the cover protection angle.   

Hands-on Example: Cover Nodes 
In this example we will be creating the new cover node class mentioned previously and 
showing it off in a demo where multiple bots take cover from the player who is 
considered by the bots to be the threat to take cover from. First we will create the new 
game type for this demo. Then, we will create the player controller, the bot’s controller, 
the bot’s pawn, and then the new cover node class. We will need to compile the code 
first so that the new cover node class is put into the UDK system before we start 
creating our new level that uses this new cover node class. 

Cover Node

Cover Node Slot

Threat (Not Covered)

Threat (Not Covered)

Threat (Covered)

Threat (Covered)

Threat Angle

Protection Angle

Cover Slot Normal

Protection Angle
Cover

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 8:  3D Math Review 240 

Creating the Game Type 
We need to create a new directory under our source directory located at: 

C:\UDK\UDK-2011-06\Development\Src 

for the June 2011 version of the UDK. If you are using a different version of the UDK 
then the above default directory will be different. Under the above directory create the 
folder ExampleCh8. Under that directory create the Classes directory. You will be 
putting all your source code for this hands-on example in this Classes directory.  

The new game type that you will need to create is in Listing 8–1. 

Listing 8–1. Game Type 

class ExampleCh8Game extends FrameworkGame; 

event OnEngineHasLoaded() 
{ 
    WorldInfo.Game.Broadcast(self,"ExampleCh8Game Type Active - Engine Has Loaded 
!!!!"); 
} 

function bool PreventDeath(Pawn KilledPawn, Controller Killer, class<DamageType> 
DamageType, vector HitLocation) 
{ 
    return true; 
} 
static event class<GameInfo> SetGameType(string MapName, string Options, string Portal) 
{ 
    return super.SetGameType(MapName, Options, Portal); 
} 
defaultproperties 
{ 
    PlayerControllerClass=class'ExampleCh8.ExampleCh8PC'  
    DefaultPawnClass=class'JazzPawnDamage' 
    HUDType=class'UDKBase.UDKHUD' 
  
    bRestartLevel=false 
    bWaitingToStartMatch=true 
    bDelayedStart=false 
} 

The PlayerControllerClass variable points to our new custom player controller for this 
example. 

Creating the Player Controller 
Next, you will need to create the new player controller class shown in Listing 8–2. This 
code should be familiar from earlier chapters. The important changes are set in bold. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 8:  3D Math Review 241 

Listing 8–2. Player Controller 

class ExampleCh8PC extends SimplePC; 
 
var Controller FollowBot; 
Var Pawn FollowPawn; 
var bool BotSpawned; 
var Actor BotTarget; 
var float PickDistance; 
 
function Actor PickActor(Vector2D PickLocation, out Vector HitLocation, out TraceHitInfo 
HitInfo) 
{ 
    local Vector TouchOrigin, TouchDir; 
    local Vector HitNormal; 
    local Actor  PickedActor; 
    local vector Extent; 
 
    //Transform absolute screen coordinates to relative coordinates 
    PickLocation.X = PickLocation.X / ViewportSize.X; 
    PickLocation.Y = PickLocation.Y / ViewportSize.Y; 
    
    //Transform to world coordinates to get pick ray 
    LocalPlayer(Player).Deproject(PickLocation, TouchOrigin, TouchDir); 
    
    //Perform trace to find touched actor 
    Extent = vect(0,0,0); 
    PickedActor = Trace(HitLocation, 
                        HitNormal,  
                        TouchOrigin + (TouchDir * PickDistance),  
                        TouchOrigin,  
                        True,  
                        Extent,  
                        HitInfo); 
    //Return the touched actor for good measure 
    return PickedActor; 
} 
function SpawnBot(Vector SpawnLocation, optional Vector Offset) 
{ 
    SpawnLocation = SpawnLocation + Offset; 
    FollowBot = Spawn(class'BotCoverController',,,SpawnLocation);   
    FollowPawn = Spawn(class'BotCoverPawn',,,SpawnLocation);  
    FollowBot.Possess(FollowPawn,false);  
    BotCoverController(FollowBot).BotThreat = Pawn; 
    BotCoverpawn(FollowPawn).AddDefaultInventory(); 
    BotCoverPawn(Followpawn).InitialLocation = SpawnLocation; 
    FollowPawn.SetPhysics(PHYS_Falling); 
} 
function bool SwipeZoneCallback(MobileInputZone Zone,  
                                float DeltaTime,  
                                int Handle, 
                                EZoneTouchEvent EventType,  
                                Vector2D TouchLocation) 
{  
    local bool retval; 
    retval = true; 
    if (EventType == ZoneEvent_Touch) 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 8:  3D Math Review 242 

    { 
        WorldInfo.Game.Broadcast(self,"You touched the screen at = " @  
                                       TouchLocation.x @ " , " @ TouchLocation.y @ 
                                       ", Zone Touched = " @ Zone); 
        // Start Firing pawn's weapon 
        StartFire(0); 
    } 
    else 
    if(EventType == ZoneEvent_Update) 
    {  
    }   
    else 
    if (EventType == ZoneEvent_UnTouch) 
    {  
        // Stop Firing Pawn's weapon 
        StopFire(0); 
    } 
    return retval; 
} 
function SetupZones() 
{ 
    Super.SetupZones(); 
    // If we have a game class, configure the zones 
    if (MPI != None && WorldInfo.GRI.GameClass != none)  
    { 
        LocalPlayer(Player).ViewportClient.GetViewportSize(ViewportSize); 
        if (FreeLookZone != none) 
        { 
            FreeLookZone.OnProcessInputDelegate = SwipeZoneCallback; 
        }  
    } 
} 
function PlayerTick(float DeltaTime) 
{   
    Super.PlayerTick(DeltaTime);  
    if (!BotSpawned) 
    { 
        SpawnBot(Pawn.Location,vect(0,0,500)); 
        SpawnBot(Pawn.Location,vect(0,0,1000)); 
        SpawnBot(Pawn.Location,vect(0,0,1500)); 
        SpawnBot(Pawn.Location,vect(0,0,2000)); 
        SpawnBot(Pawn.Location,vect(0,0,2500)); 
        BotSpawned = true; 
        JazzPawnDamage(Pawn).InitialLocation = Pawn.Location; 
    } 
} 
defaultproperties 
{ 
    BotSpawned=false 
    PickDistance = 10000 
} 

Again, most of this code should look familiar to you from previous chapters. The key 
changes are in the SpawnBot() function where the bot’s controller has been changed to 
the BotCoverController class and the bot’s pawn has been changed to the 
BotCoverPawn class. The SpawnBot() function has also been modified to accept an offset 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 8:  3D Math Review 243 

vector that is added to SpawnLocation. The PlayerTick() function has been modified to 
create five bots that will be controlled by the new BotCoverController class using the 
new SpawnBot() function. 

Creating the Bot’s Pawn 
Next, you need to create the pawn class for the bot. See Listing 8–3. You will recognize 
most of this code from previous examples. The line with the important change is set in 
bold. 

Listing 8–3. Bot Pawn 

class BotCoverPawn extends SimplePawn; 
 
var Inventory MainGun; 
var SoundCue JazzHitSound; 
var vector InitialLocation; 
 
event TakeDamage(int Damage, Controller InstigatedBy, vector HitLocation, vector 
Momentum, class<DamageType> DamageType, optional TraceHitInfo HitInfo, optional Actor 
DamageCauser) 
{ 
    PlaySound(JazzHitSound);  
    Health = Health - Damage; 
    WorldInfo.Game.Broadcast(self,self @ " Has Taken Damage IN TAKEDAMAGE, HEALTH = " @ 
Health);  
    
    if (Health <= 0) 
    { 
        SetLocation(InitialLocation); 
        SetPhysics(PHYS_Falling); 
        Health = 100; 
    } 
} 
function AddGunToSocket(Name SocketName) 
{ 
    local Vector SocketLocation; 
    local Rotator SocketRotation; 
    if (Mesh != None) 
    { 
        if (Mesh.GetSocketByName(SocketName) != None) 
        { 
            Mesh.GetSocketWorldLocationAndRotation(SocketName, SocketLocation, 
SocketRotation); 
            MainGun.SetRotation(SocketRotation); 
            MainGun.SetBase(Self,, Mesh, SocketName); 
        } 
        else 
        { 
            WorldInfo.Game.Broadcast(self,"!!!!!!SOCKET NAME NOT FOUND!!!!!"); 
        } 
    } 
    else 
    { 
        WorldInfo.Game.Broadcast(self,"!!!!!!MESH NOT FOUND!!!!!"); 
    } 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 8:  3D Math Review 244 

} 
function AddDefaultInventory() 
{  
    MainGun = InvManager.CreateInventory(class'JazzWeapon2Damage'); 
    MainGun.SetHidden(false); 
    AddGunToSocket('Weapon_R'); 
    Weapon(MainGun).FireOffset = vect(0,13,-70); 
} 
defaultproperties 
{ 
    // Jazz Mesh Object  
    Begin Object Class=SkeletalMeshComponent Name=JazzMesh      
        SkeletalMesh=SkeletalMesh'KismetGame_Assets.Anims.SK_Jazz' 
        AnimSets(0)=AnimSet'KismetGame_Assets.Anims.SK_Jazz_Anims' 
        AnimTreeTemplate=AnimTree'KismetGame_Assets.Anims.Jazz_AnimTree' 
        BlockRigidBody=true 
        CollideActors=true 
    End Object 
    Mesh = JazzMesh; 
    Components.Add(JazzMesh); 
  
    // Collision Component for This actor  
    Begin Object Class=CylinderComponent NAME=CollisionCylinder2 
        CollideActors=true 
        CollisionRadius=+15.000000      
        CollisionHeight=+45.000000 
    End Object 
    CollisionComponent=CollisionCylinder2 
    CylinderComponent=CollisionCylinder2 
    Components.Add(CollisionCylinder2) 
   
    JazzHitSound = SoundCue'KismetGame_Assets.Sounds.Jazz_Death_Cue' 
    InventoryManagerClass=class'WeaponsIM1' 
} 

Most the code in the pawn was presented in previous chapters. The key change from 
previous versions is that the CollisionRadius is now set to 15 from 25. Refer to Chapter 5 
(Figure 5-4) for a visual of a collision radius within a collision cylinder. The reason for this 
is that the collision radius was too large and was interfering with the movement of the 
bot around sharp corners of an object such as a box that had cover nodes on all four 
sides. 

Creating the Bot’s Controller 
Next, we need to create the new controller for the bot. The first piece of code in 
Listing 8–4 deals with class variables and a function to free occupied slots in the UDK 
cover system. 

The UnclaimAllSlots() function loops through the linked list of cover nodes pointed to 
by the WorldInfo.Coverlist variable and calls the Unclaim() function on the cover node 
to mark all the slots of that node as free that are occupied by the bot. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 8:  3D Math Review 245 

Listing 8–4. Bot Controller 

class BotCoverController extends UDKBot; 
 
// Navigation  
var Actor CurrentGoal; 
var Vector TempDest; 
var Actor TempGoal; 
  
// Cover Link  
var CoverLink CurrentCover; 
var bool BotInCover;  
 
// Bot's Enemy  
var Pawn BotThreat; 
 
function UnclaimAllSlots() 
{ 
    local CoverLink CoverNodePointer; 
    local CoverLink TempNodePointer; 
    local bool done; 
 
    CoverNodePointer = WorldInfo.Coverlist; 
 
    done = false; 
    while (!done) 
    { 
        CoverNodePointer.Unclaim(Pawn, 0, true);    
        if (CoverNodePointer.NextCoverLink != None) 
        { 
            TempNodePointer = CoverNodePointer.NextCoverLink; 
            CoverNodePointer = TempNodePointer; 
        } 
        else 
        {  
            done = true; 
        }   
    } 
    Pawn.ShouldCrouch(false); 
    BotInCover = false; 
} 

The next piece of code, shown in Listing 8–5, deals with finding available cover nodes. 

The FindClosestEmptyCoverNodeWithinRange() loops through all the available cover 
nodes and picks the cover node that is valid for the threat, available, and closest to the 
bot. The slot is tested for validity by calling the IsCoverSlotValid() function on the new 
cover node class object. The slot is tested for availability by calling the 
IsCoverSlotAvailable() function on the new cover node object.  

Listing 8–5. Finding the closest valid and empty cover node  

function CoverLink FindClosestEmptyCoverNodeWithinRange(Vector ThreatLocation, vector 
Position, float Radius) 
{ 
    local CoverLink CoverNodePointer; 
    local CoverLink TempNodePointer; 
    local bool done; 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 8:  3D Math Review 246 

 
    local CoverLink ValidCoverNode; 
    local bool SlotValid; 
    local bool SlotAvailable; 
    local bool NodeFound; 
    local int DefaultSlot; 
  
    local float Dist2Cover; 
    local float ClosestCoverNode; 
 
    CoverNodePointer = WorldInfo.Coverlist; 
    DefaultSlot = 0;  // Assume only 1 slot per cover node. 
    ClosestCoverNode = 999999999; 
 
    ValidCoverNode = None; 
    NodeFound = false; 
 
    done = false; 
    while (!done) 
    {  
        SlotValid = CoverLinkEx(CoverNodePointer).IsCoverSlotValid(0,ThreatLocation); 
        SlotAvailable = CoverLinkEx(CoverNodePointer).IsCoverSlotAvailable(0); 
        
        Dist2Cover =  VSize(CoverNodePointer.GetSlotLocation(DefaultSlot) - Position);        
        if (SlotValid && SlotAvailable && (Dist2Cover < ClosestCoverNode))  
        { 
            ValidCoverNode = CoverNodePointer; 
            ClosestCoverNode = Dist2Cover; 
            NodeFound = true; 
        } 
        
        // Goto Next CoverNode 
        if (CoverNodePointer.NextCoverLink != None) 
        { 
            TempNodePointer = CoverNodePointer.NextCoverLink; 
            CoverNodePointer = TempNodePointer; 
        } 
        else 
        {  
            // No more Cover Nodes 
            done = true; 
        }    
    }    
    if (!NodeFound) 
    { 
        WorldInfo.Game.Broadcast(self,"!!! Can Not Find Valid CoverNode"); 
    } 
    return ValidCoverNode; 
} 

The code in Listing 8–6 determines if the current cover is valid for the current threat. The 
FindEnemyLocation() returns the current location of the bot’s enemy. The 
IsCurrentCoverValid() function returns true if the current cover node is valid and 
protects the bot from incoming fire from the enemy. Otherwise the function returns false. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 8:  3D Math Review 247 

Listing 8–6. Determining if the current cover is valid 

function FindEnemyLocation(out vector EnemyLocation) 
{  
    EnemyLocation = BotThreat.Location; 
} 
function bool IsCurrentCoverValid() 
{ 
    local bool RetVal; 
    local vector ThreatLoc;  
 
    RetVal = false; 
    FindEnemyLocation(ThreatLoc); 
    RetVal = CoverLinkEx(CurrentCover).IsCoverSlotValid(0, ThreatLoc);  
    return Retval; 
} 

The next segment of code, shown in Listing 8–7, covers the function that is used to 
prepare the bot to move to another cover.  

In the PrepMoveToCover() function: 

1. The Threat’s location is found (the Player’s location) 

2. The closest available cover node is found using the function 

FindClosestEmptyCoverNodeWithinRange() and returned in the variable 

NextCover. 

3. If a cover has been found then the CurrentCover variable is set to the NextCover. 

The CurrentGoal of the bot is then set to this new cover node. All current cover 

nodes occupied by this bot are marked as empty. Next, the bot claims the cover 

node that it will move to which is held in CurrentCover. 

Listing 8–7. Preparing to move to a cover node 

function PrepMoveToCover() 
{ 
    local vector ThreatLoc; 
    local CoverLink NextCover; 
  
    FindEnemyLocation(ThreatLoc); 
    NextCover = FindClosestEmptyCoverNodeWithinRange(ThreatLoc, Pawn.Location, 9999999);  
    if (NextCover != None) 
    { 
        WorldInfo.Game.Broadcast(self,"Moving to Next Cover " @ NextCover); 
        CurrentCover = NextCover; 
        CurrentGoal = CurrentCover; 
        BotInCover = false;      
        UnclaimAllSlots();  
        CurrentCover.Claim(Pawn, 0); 
    }  
} 

The code in Listing 8–8 generates the actual path to the goal using the navigation mesh. 
This function was originally presented in Chapter 5. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 8:  3D Math Review 248 

Listing 8–8. GeneratePathTo 

event bool GeneratePathTo(Actor Goal, optional float WithinDistance, optional bool 
bAllowPartialPath) 
{ 
    if( NavigationHandle == None ) 
    return FALSE; 
 
    // Clear cache and constraints (ignore recycling for the moment) 
    NavigationHandle.PathConstraintList = none; 
    NavigationHandle.PathGoalList = none; 
 
    class'NavMeshPath_Toward'.static.TowardGoal( NavigationHandle, Goal ); 
    class'NavMeshGoal_At'.static.AtActor( NavigationHandle, Goal, WithinDistance, 
bAllowPartialPath ); 
 
    return NavigationHandle.FindPath(); 
} 

Listing 8–9 involves the TakeCover state. The TakeCover state moves the bot to the 
location of the current covernode as shown in Figure 8–16. 

Listing 8–9. TakeCover State 

state TakeCover 
{ 
    Begin: 
 
    //WorldInfo.Game.Broadcast(self,"NAVMESH, CurrentGoal = " @ CurrentGoal @ " , 
BotInCover = " @ BotInCover); 
 
    if (CurrentGoal != None) 
    { 
        if(GeneratePathTo(CurrentGoal)) 
        { 
            NavigationHandle.SetFinalDestination(CurrentGoal.Location);   
  
            if( NavigationHandle.ActorReachable(CurrentGoal) ) 
            {    
                // then move directly to the actor 
                MoveTo(CurrentGoal.Location, BotThreat); 
                BotInCover = true;  
            } 
            else 
            { 
                // move to the first node on the path 
                if( NavigationHandle.GetNextMoveLocation(TempDest, 
Pawn.GetCollisionRadius()) ) 
                { 
                    // suggest move preparation will return TRUE when the edge's 
                    // logic is getting the bot to the edge point 
                    // FALSE if we should run there ourselves 
                    if (!NavigationHandle.SuggestMovePreparation(TempDest,self)) 
                    { 
                        MoveTo(TempDest, BotThreat);     
  
                    } 
                } 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 8:  3D Math Review 249 

            }  
        } 
        else 
        { 
            //give up because the nav mesh failed to find a path  
            WorldInfo.Game.Broadcast(self,"FindNavMeshPath failed to find a path!, 
CurrentGoal = " @ CurrentGoal); 
            MoveTo(Pawn.Location); 
        }    
    } 
    LatentWhatToDoNext(); 
} 

 

Figure 8–17. Bots are Taking Cover from Player (shown on far left) 

The code for the bot’s AI is shown in Listing 8–10. 

Listing 8–10. The main AI point 

auto state Initial 
{ 
    Begin: 
    LatentWhatToDoNext(); 
} 
event WhatToDoNext() 
{ 
    DecisionComponent.bTriggered = true; 
} 
protected event ExecuteWhatToDoNext() 
{ 
    if (IsInState('Initial')) 
    { 
        PrepMoveToCover(); 
        GotoState('TakeCover', 'Begin'); 
    } 
    else 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 8:  3D Math Review 250 

    if (IsInState('TakeCover')) 
    { 
        if (BotInCover) 
        { 
            //Pawn.StopFire(0); 
            if (IsCurrentCoverValid()) 
            { 
                GotoState('TakeCover', 'Begin'); 
            } 
            else 
            { 
                PrepMoveToCover(); 
                GotoState('TakeCover', 'Begin'); 
                //Pawn.StartFire(0); 
            } 
        } 
        else 
        { 
            GotoState('TakeCover', 'Begin'); 
        } 
    } 
} 
defaultproperties 
{ 
    CurrentGoal = None; 
    BotInCover = false;  
} 

The main bot AI logic occurs in the ExecuteWhatToDoNext() function. After the bot is first 
created it is in the Initial state. From the Initial state the PrepMoveToCover() function 
is called to prepare the bot to move to a new cover. Next, the bot moves into the 
TakeCover state. 

If the bot is already in the TakeCover state and if the bot has not reached the target cover 
node yet, then continue with the bot moving toward the cover node. The TakeCover state 
moves the bot toward the target cover node.  

If the bot is already in cover then, check to see if the current cover node is valid. If the 
current cover node is valid then go back to the TakeCover state. If the current cover node 
is invalid then call the PrepMoveToCover() function and go to the TakeCover state. 

Creating the New Cover Node Class 
Next, we need to create the new cover node class called CoverLinkEx shown in Listing 8–11. 

Listing 8–11. CoverLinkEx Cover Node  

class CoverLinkEx extends CoverLink; 

var() float CoverProtectionAngle; 

function bool IsCoverSlotValid(int SlotIndex, vector ThreatLocation) 
{ 
    local bool Valid;  

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 8:  3D Math Review 251 

    local vector SlotLocation; 
    local Rotator SlotRotation; 
    local vector SlotNormal; 
 
    local vector DirectionToThreat; 
    local float AngleDegrees; 
 
    Valid = false; 
 
    SlotLocation = GetSlotLocation(SlotIndex); 
    SlotRotation = GetSlotRotation(SlotIndex); 
 
    SlotNormal = Normal(Vector(SlotRotation));  
    DirectionToThreat = Normal(ThreatLocation - SlotLocation); 
    AngleDegrees = acos(SlotNormal Dot DirectionToThreat) * RadToDeg;   
  
    if (AngleDegrees < CoverProtectionAngle) 
    { 
        Valid = true; 
    } 
    return Valid; 
} 
function bool IsCoverSlotAvailable(int SlotIndex) 
{ 
    local bool SlotAvailable; 
 
    SlotAvailable = false; 
    if (Slots[SlotIndex].SlotOwner == None) 
    { 
        SlotAvailable = true;  
    } 
    return SlotAvailable; 
} 
defaultproperties 
{ 
    CoverProtectionAngle = 45.0  
} 

The following are the key things to notice in the listing: 

 This class is derived from the default cover node class CoverLink 
provided in the base UDK code. Here a key change is the addition of 
the CoverProtectionAngle variable that holds the angle measured from 
the cover slot normal in which the cover gives protection. The 
CoverProtectionAngle variable is shown in Figure 8–16 as the 
Protection Angle with one side of the angle denoted by dotted lines.  

 The IsCoverSlotValid() function returns true if the cover slot is valid 
for the input slot number and threat location. The angle in degrees 
formed by the SlotNormal vector and the DirectionToThreat vector is 
calculated. This angle is called the Threat Angle in Figure 8–16. If this 
angle is less than the CoverProtectionAngle then this cover slot is 
valid for this threat. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 8:  3D Math Review 252 

 The IsCoverSlotAvailable() function returns true if the cover node 
slot indicated by the SlotIndex parameter is empty and has no owner.  
Otherwise a false value is returned. 

 The CoverProtectionAngle is specified by default as 45 degrees but can be 

changed using the Editor since it is declared as a var(). The parentheses denote 

that this variable is editable in the Unreal Editor. 

Setting Up the Game Configuration 
Next, we need to set up this new example for compilation and for playing on the mobile 
previewer. In the configuration directory located at 

C:\UDK\UDK-2011-06\UDKGame\Config 

change the UDKEngine.ini and Mobile-UDKGame.ini configuration files to the following. 
(If you are using a different UDK version then the above directory will be different.) 

UDKEngine.ini 
[UnrealEd.EditorEngine] 
ModEditPackages=ExampleCh8 
Mobile-UDKGame.ini 
[ExampleCh8.ExampleCh8Game] 
RequiredMobileInputConfigs=(GroupName="UberGroup",RequireZoneNames=("UberStickMoveZone",
"UberStickLookZone","UberLookZone")) 

Save the configuration files. You may need to write protect them to preserve the 
contents since the UDK sometimes overwrites them. Although this does not usually 
happen, it is advisable to take this precaution if you are working on a project over an 
extended period of time. 

Bring up the Unreal Frontend and compile the scripts. 

Setting Up the Level 
Next, we need to actually the build the level that uses the new CoverLinkEx class that we 
created.  

1. Bring up the Unreal Editor. 

2. In the Content Browser search for vendorcrate. 

3. This should bring up a static mesh of a crate. Select the crate and then copy and 

paste it, or drag and drop it into the empty default level in an open area. 

4. In the Generic Browser, change to the Actor Classes tab.  

5. Under the Cover  CoverLink section select the CoverLinkEx class. 

6. Right click on an empty area in the level and select the Add CoverLinkEx Here 

option to put the new modified coverlink in the level. See Figure 8–18. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 8:  3D Math Review 253 

 

Figure 8–18. Creating the CoverLinkEx 

7. The arrow that points outward from the cover node slot is the cover node slot 

normal. This should be placed against the object that is going to serve as cover. 

Move and rotate the cover node until the slot normal faces one side of the crate 

and is located against it. See Figure 8–19.  

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 8:  3D Math Review 254 

 

Figure 8–19. Rotating the Cover Node  

8. Repeat steps 6 and 7 to put cover nodes on all four sides of the vendor crate. 

9. Select the vendor crate and all the cover nodes by holding down the Ctrl key and 

clicking on the crate and the cover nodes.  

10. Copy the vendor crate and all the cover nodes by holding down the Alt key and 

moving these objects to another open area. 

11. Create a total of five of these crates with cover nodes by repeating step 10 four 

more times. 

12. Add a pylon to the level in an open area by right clicking and selecting Add Actor  

Add Pylon. 

13. Build the AI paths by selecting Build  AI Paths from the Unreal Editor menu. 

14. Save this level by selecting File  Save Current Level from the Unreal Editor menu. 

See Figure 8–20 to see what this level should roughly look like. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 8:  3D Math Review 255 

 

Figure 8–20. Level with cover and cover nodes 

Running the Final Game 
Next, while still in the Unreal Editor, change the default game type to ExampleCh8Game. 
Select the View  World Properties menu item, and then set this value in the World 
Properties window. 

Now run the game on the mobile previewer. Jazz bots should be dropping on your head 
and moving toward cover. Move your pawn around and you should see the bots trying 
to hide from you (see Figure 8–21 and 8–22). Ignore the message about the lighting 
needing to be rebuilt, as that does not have any effect on the actual gameplay. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 8:  3D Math Review 256 

 

Figure 8–21. Bots taking cover from the player 

 

Figure 8–22. Bots taking cover from player 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 8:  3D Math Review 257 

In-Depth Example Explanations 
In this section we will provide more in depth explanations of key issues dealing with 
vectors, trigonometry, and 3D math.  

Specifically we will cover  

 How to position the camera in the world behind the player. 

 How to apply a force to an object at a certain angle. 

Third-Person Camera Positioning  
In Chapter 3, we used third-person camera positioning to move the camera behind the 
player’s pawn. The key issue is how to find the exact location to place the camera so 
that it is at a certain distance behind the player’s pawn and makes a certain angle with 
the ground.   

The key function in terms of moving the camera behind the player is the CalcCamera() 
function from the Jazz1Pawn class shown in Listing 8–12. 

Listing 8–12. CalcCamera function from the Jazz1Pawn class 

simulated function bool CalcCamera( float fDeltaTime, out vector out_CamLoc, out rotator 
out_CamRot, out float out_FOV ) 
{ 
    local vector BackVector; 
    local vector UpVector; 
 
    local float  CamDistanceHorizontal; 
    local float  CamDistanceVertical; 
 
    // Set Camera Location 
    CamDistanceHorizontal = CamOffsetDistance * cos(CamAngle * UnrRotToRad); 
    CamDistanceVertical   = CamOffsetDistance * sin(CamAngle * UnrRotToRad); 
  
    BackVector = -Normal(Vector(Rotation)) * CamDistanceHorizontal; 
    UpVector   =  vect(0,0,1) * CamDistanceVertical; 
 
    out_CamLoc = Location + BackVector + UpVector; 
 
    // Set Camera Rotation 
    out_CamRot.pitch = -CamAngle; 
    out_CamRot.yaw   = Rotation.yaw; 
    out_CamRot.roll  = Rotation.roll; 
 
    return true; 
} 

Here’s what the code does: 

 The camera’s final position is the location of the player’s pawn moved 
horizontally backward by the BackVector offset vector and upward by 
the UpVector offset vector.   

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 8:  3D Math Review 258 

 The BackVector points in the opposite direction from the player’s front 
and has a magnitude of CamDistanceHorizontal units. 

 The UpVector points upward and has a magnitude of 
CamDistanceVertical units. 

 The CamDistanceHorizontal and CamDistanceVertical variables are 
calculated using the properties of a right triangle that were dicussed 
earlier in this chapter.  

 The CamOffsetDistance is the distance between the player’s pawn and 
the camera. 

See Figure 8–23 for a diagram. 

 

Figure 8–23. Third-Person Camera Diagram 

The final position of the camera is calculated by adding the Resultant Vector to the 
player location. The Resultant vector is calculated by adding the BackVector to the 
UpVector. Graphically, to represent the addition of two vectors you put them head to tail 
with each other then draw the resultant vector from the tail of the first vector to the head 
of the last vector. CamDistanceVertical and CamDistanceHorizontal are scalar values 
derived from the CamOffsetDistance scalar value and the angle Theta which is the angle 
the camera makes with the ground. CamDistanceHorizontal is equal to 
CamOffsetDistance * cos(Theta). CamDistanceVertical is equal to CamOffsetDistance * 
sin(Theta). 

Deriving a Direction Vector for Kicking an Object 
In Chapter 4, we had to derive a direction vector for kicking an object in a 3D world. The 
issues involved finding the direction vector to kick the ball assuming a 2D world and 
then translating this vector into a full 3D world.   

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 8:  3D Math Review 259 

As part of determining the direction vector, we needed to first break it down into 
horizontal and vertical components. The key parts of the code in terms of setting the 
angle to kick an object are shown in Listing 8–13. 

Listing 8–13. Kicking an Object 

KickAngle = 15 * DegToRad;  
ImpulseDir = (Normal(Vector(Pawn.Rotation)) * cos(KickAngle)) + (vect(0,0,1) * 
sin(KickAngle));  
ImpulseMag = 500; 

The general idea is to first get the normalized vector that represents the direction that 
the object will be kicked. Then you can multiply this vector by the magnitude of the force 
you wish to apply to the object.   

The first thing you will need to do is build the direction vector. The direction vector is 
composed of a horizontal component which is the FrontUnitVector and the vertical 
component which is vect(0,0,1). See Figure 8–24. 

 

Figure 8–24. Building the direction vector 

If we just added both vectors together then we would get a KickAngle of 45 degrees 
since the slope of the vector would be 1 since both vectors are unit vectors that have a 
length of 1. 

To calculate the direction vector for an arbitrary angle is more complex. First let’s find 
the direction vector for a KickAngle in 2 dimensions. See Figure 8–25. 

Z Axis

Y Axis

X Axis

vect(0,0,1)

KickAngle

Front Unit Vector * cos(KickAngle)
vect(0,0,1) * sin(KickAngle)

Front Unit Vector

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 8:  3D Math Review 260 

Figure 8–25. Calculating a direction vector in 2D 

In Figure 8–25 you see the unit circle which has a radius of 1. According to the identities 
associated with a right triangle the horizontal value of the direction vector is 
cos(KickAngle) and the vertical value of the direction vector is sin(KickAngle). 

Now we know how to get the direction vector from an arbitrary KickAngle on a 2D plane. 
However, our world is 3D so now we must somehow project this 2D direction vector into 
our 3D world. 

We do this by multiplying the FrontUnitVector by cos(KickAngle) and the up unit vector 
which is vect(0,0,1) by sin(KickAngle) and adding them together to get the final 
direction vector in the 3D world. 

Summary 
In this chapter we covered vectors, vector addition, vector multiplication, dot and cross 
products using vectors. Next we went through a hands-on example that created a new 
cover node type where the user was able to set an angle of protection. If the threat was 
within this angle then the cover node provided protection to the occupant from this 
threat. Otherwise it does not. Finally we discussed in detail how certain things in 
previous chapters were accomplished such as the third-person camera and deriving the 
direction vector for kicking an object at a certain angle. The final few chapters are the 
framework chapters that will give you a good starting point for creating your own games. 

Y Axis

X Axis
1

( cos(KickAngle), sin(KickAngle) )

KickAngle

0

θ

1

Unit Circle

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


 
261 

   Chapter 

Physics Game Framework 
In this chapter we will build a basic game framework for a physics-based game. A 

physics game uses realistic models for such things as collisions, forces applied to game 

objects, behavior of game objects, and gravity. The goal is usually to destroy key 

objects and perhaps avoid destroying other key objects.   

Probably the most famous physics game for the iOS platform, or any mobile platform for 

that matter, is Angry Birds. In Angry Birds the player throws birds at targets at a user 

defined angle. The level is complete when all the targets are destroyed. We develop a 

similar game in this chapter with the added benefit that the game is in 3D instead of 2D 

as in Angry Birds. 

The basic physics game framework that will be presented in this chapter involves: 

 Creating a collision object that is to be thrown 

 Setting the angle that the object will be launched 

 Launching the object and having it collide with other objects in a 

realistic manner 

 Providing sound effects where appropriate 

 Implementing a custom HUD (Heads Up Display) to keep track of vital 

game statistics 

 Providing a mechanism to restart a new game or level 

Physics Game Framework Overview 
In this section we will give a general and specific overview of the physics game 

framework presented here in this chapter. The general overview explains in non-

technical terms the framework and how you could extend the framework to meet your 

own needs. The specific overview outlines in detail the major elements of the framework 

and how to extend it. 

9 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 9:  Physics Game Framework 262 

General Overview 
In a general sense this chapter provides you with a basic model and starting point for 

creating your own physics game.   

This chapter provides the core information and techniques for creating a collision object. 

You are shown how to apply a force to this object at a user defined angle. You are also 

shown how to create other collision objects that will serve as the targets. These targets 

will be destroyed if enough force is applied to them. 

This framework can be extended in many ways. For example, currently the force used to 

launch the object at the targets is fixed. The framework can be modified so that the user 

is able to set the force applied to the launch object. Also, the current game objective in 

the framework is to destroy all the target objects. This objective can be modified to 

include avoiding destroying other types of objects and deducting points or applying 

other penalties if these objects are destroyed. 

Other kinds of physics-based games could be developed using this framework as a 

starting point. One way to do this is to change how the player launches the collision 

object. Instead of clicking on an object to launch it the player can throw it by touching it 

and moving the object with his finger and then releasing it. To implement this you would 

use the RB_Handle class which has built in functions to grab, release and move a 

KActor or KAsset type object. You can also change the player input so that the collision 

object is launched like an arrow. For example the player would pull the object back a 

certain distance then let go to launch it like an arrow.   

Specific Overview 
In a specific sense this chapter provides you with the detailed code you need to start 

implementing the ideas you have for your own physics game. 

In the framework we create a custom class called GameBall which extends the 

KActorSpawnable class. This will be used as the player’s launch object. This class can be 

created or spawned dynamically from within the game and can be used for realistic rigid 

body collisions with other objects. The key benefit here is that the Unreal physics engine 

takes care of all the difficult and time consuming calculations for you. You can extend 

this concept to the creation of dynamic collision objects that are skeletal meshes of the 

KAssetSpawnable class. Skeletal meshes are generally used for characters that have 

moveable parts. See Chapter 4 for more background information on KActors and 

KAssets.    

The angle to launch the object can be set within a range of 0 to 90 degrees using the 

right controller. Move the right controller upward to increase the launch angle and 

downward to decrease the launch angle. You could extend this concept further by also 

allowing the user to set the amount of force applied to the launch object.  

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 9:  Physics Game Framework 263 

Currently the value is set to a constant in the variable ImpulseMag. ImpulseMag is set to 

500 in the SwipeZoneCallback() function. The ApplyForceRigidBody() function is then 

called to actually apply the force. 

The blocks that are destroyed by the player’s ball are created from classes derived from 

the KActor class. Remember that the KActor and KAsset classes are the two types of 

collision objects that can be used in realistic rigid body collisions. 

In terms of the target blocks you can extend the game’s objectives to including penalties 

for destroying certain types of blocks. Currently the function AllBlocksDestroyed() 

checks to see if all of the target blocks of class RigidBodyCube have been destroyed 

using the built in AllActors() iterator and returns a true value when they have all been 

eliminated. A similar function based on this code could be used to determine if any 

blocks of another class were destroyed and impose penalties if they were.  

A customized HUD has been created that displays the player’s score, the time since the 

game has started and the launch angle of the player’s ball. This HUD can be extended 

by adding other statistics that you find important. For example, you could add a variable 

that would track the total number of blocks destroyed and display that number on the 

HUD. A new variable of type HUDInfo called HUDTotalBlocksDestroyed could be created 

to hold the HUD related placement information. This variable would be initialized in the 

PostBeginPlay() function. The call to actually draw the new information onscreen will be 

called form the DrawHUD() function. For more background information on the HUD see 

Chapter 6. 

Hands-on Example: A Basic Physics Game 
In this hands-on example we will create a basic physics game that can serve as a basic 

framework for creating your own physics game. First we create code for a new game 

type, a new player controller, a game ball which the player kicks into a group of blocks, 

a new HUD, and a new class of block used to create the target blocks. We then set up 

the game to compile and run on the mobile previewer. After compiling the new code we 

build the level using the new RigidBodyCubeEx class that we created then run the game 

on the mobile previewer. 

Creating the Game Type 
The first thing we need to do is create a new directory for the code for this project. 

Create the ExampleCh9 directory under your default UDK installation directory at 

C:\UDK\UDK-2011-06\Development\Src.  

NOTE: As a reminder, we are using the June 2011 UDK. If you are using a different version of the 

UDK, then your default path will be different.   

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 9:  Physics Game Framework 264 

Create a directory called Classes under the new directory you just created and put all 

your source code files in this directory. 

Create the following class and save it under the filename “ExampleCh9Game.uc”. Again 

as with all previous examples in this book the filenames must match the classnames and 

the file extension must be “.uc”. See Listing 9–1, and note that the 

PlayerControllerClass and HUDType variables are set to our new custom classes. Also 

note that the variable Score which keeps track of the player’s score in this game type.  

Listing 9–1. Game Type 

class ExampleCh9Game extends FrameworkGame; 
 
var int Score; 
 
event OnEngineHasLoaded() 
{ 
    WorldInfo.Game.Broadcast(self,"ExampleCh9Game Type Active - Engine Has Loaded 
!!!!"); 
} 
 
function bool PreventDeath(Pawn KilledPawn, Controller Killer, class<DamageType> 
DamageType, vector HitLocation) 
{ 
    return true; 
} 
 
static event class<GameInfo> SetGameType(string MapName, string Options, string Portal) 
{ 
    return super.SetGameType(MapName, Options, Portal); 
} 
 
defaultproperties 
{ 
    PlayerControllerClass=class'ExampleCh9.ExampleCh9PC' 
    DefaultPawnClass=class'UDKBase.SimplePawn' 
    HUDType=class'KickBallHUD' 
  
    bRestartLevel=false 
    bWaitingToStartMatch=true 
    bDelayedStart=false 
} 

FRAMEWORK NOTE: Here you can set your customized classes for the player controller, 
player’s pawn, and player’s HUD. You do this by setting the PlayerControllerClass, 

DefaultPawnClass, and HUDType variables to your new class. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 9:  Physics Game Framework 265 

Creating the Player Controller 
Next, we need to create our player controller class. For a full version of the code in this 

section, without the explanations, please see the source code available for this book. 

Code that is new and not used in previous chapters is highlighted in bold print. 

The first part of the controller code, shown in Listing 9–2, changes the behavior of the 

right virtual joystick controller so that pushing the virtual joystick up increases the kick 

angle and pushing it downward decreases the kick angle.  

Key things to notice in the listing include: 

 A function InputDelayTimer() is used to delay the update of the 

KickAngle variable. For example, originally the KickAngle variable 

would update too quickly and the rate of update needed to be slowed 

down. 

 The ProcessLookUpInput() function updates the KickAngle based on 

the user’s input. A call to the SetTimer() function initiates the call to 

InputDelayTimer() at a certain delay interval. During this delay interval 

the KickAngle is not updated. The KickAngle is also clamped to the 

range 0 to 90 degrees using the built in Clamp() function.  

 The UpdateRotation() function is overridden by our custom function. 

The only difference here from the default function in the UDK base 

code is that the line  

DeltaRot.Pitch = PlayerInput.aLookUp;  

is commented out so that the player’s up/down view is not changed 

and the function ProcessLookUpInput() is called to change the 

KickAngle instead of updating the player’s up/down view. 

Listing 9–2. Customizing the Controls 

class ExampleCh9PC extends SimplePC; 
 
var float PickDistance; 
var int KickAngle; 
var int BallCreationDist; 
var float GameTime; 
var bool bGameOver; 
var Actor Ball; 
var bool bInitDone; 
var bool bInputDelayFinished; 
var int GameTimeDelta; 
var SoundCue BallHitSound; 
var SoundCue BallSpawnSound; 
function InputDelayTimer() 
{ 
    bInputDelayFinished = true; 
} 
function ProcessLookUpInput() 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 9:  Physics Game Framework 266 

{ 
    local float TimerDelta; 
 
    if (!bInputDelayFinished) 
    return;    
    if (PlayerInput.aLookUp > 0) 
    { 
        KickAngle++; 
    } 
    else  
    if (PlayerInput.aLookUp < 0) 
    { 
        KickAngle--; 
    } 
    KickAngle = Clamp(KickAngle,0,90); 
    TimerDelta = 0.05; 
    bInputDelayFinished = false; 
    SetTimer(TimerDelta, false, 'InputDelayTimer');     
} 
function UpdateRotation( float DeltaTime ) 
{ 
    local Rotator DeltaRot, newRotation, ViewRotation; 
 
    ViewRotation = Rotation; 
    if (Pawn!=none) 
    { 
        Pawn.SetDesiredRotation(ViewRotation); 
    } 
 
    // Calculate Delta to be applied on ViewRotation 
    DeltaRot.Yaw = PlayerInput.aTurn; 
 
    //DeltaRot.Pitch = PlayerInput.aLookUp; 
    ProcessLookUpInput(); 
 
    ProcessViewRotation( DeltaTime, ViewRotation, DeltaRot ); 
    SetRotation(ViewRotation); 
 
    ViewShake( deltaTime ); 
 
    NewRotation = ViewRotation; 
    NewRotation.Roll = Rotation.Roll; 
 
    if ( Pawn != None ) 
        Pawn.FaceRotation(NewRotation, deltatime); 
} 

The next piece of the code, shown in Listing 9–3, creates and initializes the game timer. 

The GameTimer() function updates the amount of time that has passed since the level 

has started. The PostBeginPlay() function sets a looping timer which continuously calls 

the GameTimer() function to update the GameTime variable. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 9:  Physics Game Framework 267 

Listing 9–3. The Game Timer 

function GameTimer() 
{ 
    if (bGameOVer)  
    { 
        return; 
    } 
    GameTime = GameTime + GameTimeDelta;  
} 
simulated function PostBeginPlay() 
{ 
    Super.PostBeginPlay();    
    SetTimer(GameTimeDelta, true, 'GameTimer');     
} 

The next section of code, shown in Listing 9–4, should be familiar to you from Chapter 4, 

in which we covered UDK collisions. The ApplyForceRigidBody() function applies a 

force to a KActor or a KAsset object. 

Listing 9–4. Applying Force to a Rigid Body 

function ApplyForceRigidBody(Actor SelectedActor, Vector ImpulseDir,float ImpulseMag, 
Vector HitLocation) 
{ 
    if (SelectedActor.IsA('KActor')) 
    { 
        WorldInfo.Game.Broadcast(self,"*** Thrown object " @ SelectedActor @  
                                 ", ImpulseDir = " @ ImpulseDir @ 
                                 ", ImpulseMag = " @ ImpulseMag @ 
                                 ", HitLocation = " @ HitLocation); 
        KActor(SelectedActor).ApplyImpulse(ImpulseDir,ImpulseMag, HitLocation); 
    } 
    else 
    if (SelectedActor.IsA('KAsset')) 
    { 
        WorldInfo.Game.Broadcast(self,"*** Thrown object " @ SelectedActor @  
                                 ", ImpulseDir = " @ ImpulseDir @ 
                                 ", ImpulseMag = " @ ImpulseMag @ 
                                 ", HitLocation = " @ HitLocation); 
        KAsset(SelectedActor).SkeletalMeshComponent.AddImpulse(ImpulseDir* ImpulseMag, 
,'Bone06'); 
    } 
    else 
    { 
        WorldInfo.Game.Broadcast(self,"!!!ERROR Selected Actor " @ SelectedActor @  
                                 "is not a KActor or KAsset, you can not apply  
                                  an impulse to this object!!!"); 
    } 
} 

The next section of code, shown in Listing 9–5, also should be familiar to you from 

Chapter 4. The PickActor() function determines if the user has touched an actor and 

returns a reference to this actor. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 9:  Physics Game Framework 268 

Listing 9–5. Picking an Actor 

function Actor PickActor(Vector2D PickLocation, out Vector HitLocation, out TraceHitInfo 
HitInfo) 
{ 
    local Vector TouchOrigin, TouchDir; 
    local Vector HitNormal; 
    local Actor  PickedActor; 
    local vector Extent; 
 
    //Transform absolute screen coordinates to relative coordinates 
    PickLocation.X = PickLocation.X / ViewportSize.X; 
    PickLocation.Y = PickLocation.Y / ViewportSize.Y; 
    
    //Transform to world coordinates to get pick ray 
    LocalPlayer(Player).Deproject(PickLocation, TouchOrigin, TouchDir); 
    
    //Perform trace to find touched actor 
    Extent = vect(0,0,0); 
    PickedActor = Trace(HitLocation,  
                        HitNormal,  
                        TouchOrigin + (TouchDir * PickDistance),  
                        TouchOrigin,  
                        True,  
                        Extent,  
                        HitInfo); 
    //Return the touched actor for good measure 
    return PickedActor; 
} 

The next piece of code, shown in Listing 9–6, is called to create the player’s ball that will 

be used to destroy blocks in the level. Figure 9–1 shows the result of this code. 

The CreateNewGameBall() function creates a new GameBall class object and applies a 

small force downward to activate the object’s rigid body physics simulation. A sound is 

also played. 

Listing 9–6. Creating the Game Ball 

function CreateNewGameBall() 
{ 
    local vector FrontVec;         
    local vector BallLocation; 
 
    local Vector HitLocation; 
    local Vector ImpulseDir;  
    local float ImpulseMag;  
 
    FrontVec = Normal(Vector(Pawn.Rotation)); 
    BallLocation = Pawn.Location + (FrontVec * BallCreationDist); 
 
    Ball = Spawn(class'GameBall',,,BallLocation);   
    PlaySound(BallSpawnSound); 
  
    ImpulseDir = Vect(0,0,1); 
    ImpulseMag = 5; 
    HitLocation = Vect(0,0,0); 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 9:  Physics Game Framework 269 

    ApplyForceRigidBody(Ball, ImpulseDir, ImpulseMag, HitLocation);  
} 

 

Figure 9–1. The Game Ball 

The next piece of code, shown in Listing 9–7, involves code related to player input 

through touching the screen. Key parts of the listing include: 

 The LoadLevel(string LevelName) function loads in the level with the 

input LevelName string parameter. 

 The ResetGame() function restarts the game by loading in the original 

level. In the UDK environment whenever a level is loaded, the game is 

restarted and all variables such as Score and GameTime are reset. 

 In the SwipeZoneCallback() function, code has been added to create a 

new ball when the screen is touched and to reset the game if the 

current game is over. A sound is also played when the ball is kicked. 

 The SetupZones() function initializes the input zones and this function 

should be familiar to you from the hands-on example in Chapter 2. 

Listing 9–7. Player Input 

function LoadLevel(string LevelName) 
{ 
    local string Command; 
 
    Command = "open " @ LevelName;    
    ConsoleCommand(Command); 
} 
 
function ResetGame() 
{ 
    LoadLevel("ExampleCh9Map"); 
} 
function bool SwipeZoneCallback(MobileInputZone Zone,  
                                float DeltaTime,  
                                int Handle, 
                                EZoneTouchEvent EventType,  
                                Vector2D TouchLocation) 
{  
    local bool retval; 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 9:  Physics Game Framework 270 

    local Actor PickedActor; 
    local Vector HitLocation; 
    local TraceHitInfo HitInfo; 

    // Variables for physics 
    local Vector ImpulseDir;  
    local float ImpulseMag;  
    local float RadKickAngle; 

    retval = true; 

    if (EventType == ZoneEvent_Touch) 
    { 
        // If screen touched then pick actor 
        PickedActor = PickActor(TouchLocation,HitLocation,HitInfo); 
   
        // Reset Game  
        if (bGameOver) 
        {    
            ResetGame(); 
            return retval;             
        }  
        if (PickedActor.IsA('GameBall')) 
        {              
            RadKickAngle = KickAngle * DegToRad;  
          
            ImpulseDir = (Normal(Vector(Pawn.Rotation)) * cos(RadKickAngle)) + 
(vect(0,0,1) * sin(RadKickAngle));  
            ImpulseMag = 500; 

            ApplyForceRigidBody(PickedActor,ImpulseDir,ImpulseMag,HitLocation); 
            PlaySound(BallHitSound); 
        }     
        else 
        { 
            CreateNewGameBall();    
        }   
    } 
    else 
    if(EventType == ZoneEvent_Update) 
    {  
    }   
    else 
    if (EventType == ZoneEvent_UnTouch) 
    {  
    }  
    return retval; 
} 
function SetupZones() 
{ 
    Super.SetupZones(); 

    // If we have a game class, configure the zones 
    if (MPI != None && WorldInfo.GRI.GameClass != none)  
    { 
        LocalPlayer(Player).ViewportClient.GetViewportSize(ViewportSize); 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 9:  Physics Game Framework 271 

 
        if (FreeLookZone != none) 
        { 
            FreeLookZone.OnProcessInputDelegate = SwipeZoneCallback; 
        }  
    } 
} 

The next code section, shown in Listing 9–8, contains the main loop of code that is 

executed continuously in the function PlayerTick(). Notice the following things: 

 The AllBlocksDestroyed() function returns true if all the target blocks 

have been destroyed by the player and false otherwise. 

 The InitKickBallGame() function is called in the beginning to do any 

initialization after the player is first created and after PlayerTick() is 

first called. 

 In the main PlayerTick() loop the function AllBlocksDestroyed() is 

continually called to check to see if all the target blocks in the level 

have been destroyed. If they have, then bGameOver is set to true.  

Listing 9–8. Main Loop 

function bool AllBlocksDestroyed() 
{ 
    local RigidBodyCube TempBlock; 
    local bool bAllBlocksDestroyed; 
 
    bAllBlocksDestroyed = true; 
    foreach AllActors(class'RigidBodyCube', TempBlock) 
    { 
        if (!TempBlock.bDestroyed) 
        { 
            bAllBlocksDestroyed = false; 
        }  
    } 
    return bAllBlocksDestroyed; 
} 
function InitKickBallGame() 
{   
    bInitDone = true; 
} 
function PlayerTick(float DeltaTime) 
{   
    Super.PlayerTick(DeltaTime); 
 
    if (!bInitDone) 
    { 
        InitKickBallGame(); 
    }    
    if (AllBlocksDestroyed()) 
    { 
        bGameOver = true; 
    } 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 9:  Physics Game Framework 272 

    if (bGameOver) 
    { 
        Pawn.SetHidden(true); 
        Pawn.Velocity = vect(0,0,0); 
    } 
} 

Listing 9–9 contains the final piece of the controller code, which defines the default 

values for some of the variables in this class.  

Listing 9–9. Default Properties 

defaultproperties 
{ 
    PickDistance = 10000   
    KickAngle = 45 
    bInitDone = false; 
    bInputDelayFinished = true 
    BallCreationDist = 500 
    GameTime=0 
    GameTimeDelta = 1 
    bGameOver = false; 
    BallHitSound = SoundCue'A_Weapon_BioRifle.Weapon.A_BioRifle_FireImpactFizzle_Cue' 
    BallSpawnSound = SoundCue'A_Pickups.Generic.Cue.A_Pickups_Generic_ItemRespawn_Cue' 
} 

FRAMEWORK NOTE: Any changes on how the player interacts with the game should be 

implemented in this class.   

Creating the Game Ball 
Next, we need to create the GameBall class that will represent the player’s ball that will 

be used to destroy the target blocks (see Listing 9–10). The important things to note in 

this code are 

 The RigidBodyCollision() function plays a sound if the ball makes an 

impact with another object with a minimum force defined by the 

MinimumForceForSound variable. 

 The Touch() function is called if another object touches this ball. 

Currently this function does nothing useful but is a placeholder in case 

you need this function in a future derived version of this class for your 

own game. 

 The defaultproperties block defines the 3d mesh used for this ball as 

well as defining some default values such as the sound cue to use for 

the impact sound. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 9:  Physics Game Framework 273 

Listing 9–10. The Player’s Ball 

class GameBall extends KActorSpawnable; 
 
var SoundCue BallImpact; 
var float MinimumForceForSound; 
 
event RigidBodyCollision(PrimitiveComponent HitComponent,  
                         PrimitiveComponent OtherComponent, 
                         const out CollisionImpactData RigidCollisionData,  
                         int ContactIndex) 
{ 
    local float CollisionForce; 
 
    CollisionForce = VSize(RigidCollisionData.TotalNormalForceVector); 
    if (CollisionForce >= MinimumForceForSound) 
    {  
        PlaySound(BallImpact); 
    } 
} 
 
event Touch(Actor Other, PrimitiveComponent OtherComp, vector HitLocation, vector 
HitNormal) 
{ 
    WorldInfo.Game.Broadcast(self,"GameBall Has Been Touched"); 
} 
 
defaultproperties 
{ 
    Begin Object Class=StaticMeshComponent Name=GameBallMesh 
        StaticMesh=StaticMesh'EngineMeshes.Sphere' 
        Translation=(X=0.000000,Y=0.000000,Z=0.000000) 
        Scale3D=(X=0.10000,Y=0.10000,Z=0.1000) 
         
        CollideActors=true 
        BlockActors=true 
        BlockRigidBody=true 
        bNotifyRigidBodyCollision=true  
        ScriptRigidBodyCollisionThreshold=0.001   
        RBChannel=RBCC_GameplayPhysics 
        
RBCollideWithChannels=(Default=TRUE,BlockingVolume=TRUE,GameplayPhysics=TRUE,EffectPhysi
cs=TRUE) 
    End Object 
    Components.Add(GameBallMesh) 
    CollisionComponent = GameBallMesh 
 
    BallImpact = 
SoundCue'A_Character_BodyImpacts.BodyImpacts.A_Character_RobotImpact_GibLarge_Cue' 
    MinimumForceForSound = 50; 
} 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 9:  Physics Game Framework 274 

Creating the HUD  
Next, we need to create the custom HUD class that will display the player’s score, 

game time, and the KickAngle that defines the angle that a force will act on the ball 

(see Listing 9–11). The structure of this HUD class is similar to the one discussed 

previously in Chapter 6. The key differences are highlighted in bold print.  

The following items are the key points to notice in the listing: 

 The variables that hold the key information that is displayed on screen 

are HUDKickAngle, HUDGameTime, HUDScore. 

 As before, the PostBeginPlay() function sets up the values of the HUD 

related variables. 

 The DrawHUDItem() function draws the key statistics to the screen. 

 The DrawHUD() function is overridden allowing us to add our own 

custom drawing routines to the HUD’s normal drawing routines. 

Listing 9–11. Custom HUD 

class KickBallHUD extends UDKHud; 
 
struct HUDInfo 
{ 
    var string Label; 
    var Vector2D TextLocation; 
    var Color TextColor; 
    var Vector2D Scale; 
}; 
// HUD  
var HUDInfo HUDKickAngle; 
var HUDInfo HUDGameTime; 
var HUDInfo HUDGameOver; 
var HUDInfo HUDScore; 
simulated function PostBeginPlay() 
{ 
    Super.PostBeginPlay(); 
 
    HUDKickAngle.Label = "KickAngle:";  
    HUDKickAngle.TextLocation.x = 1000; 
    HUDKickAngle.TextLocation.y = 50; 
    HUDKickAngle.TextColor.R = 0; 
    HUDKickAngle.TextColor.G = 0; 
    HUDKickAngle.TextColor.B = 255; 
    HUDKickAngle.Scale.X = 2; 
    HUDKickAngle.Scale.Y = 4; 
 
    HUDGameTime.Label = "Time:";  
    HUDGameTime.TextLocation.x = 600; 
    HUDGameTime.TextLocation.y = 50; 
    HUDGameTime.TextColor.R = 255; 
    HUDGameTime.TextColor.G = 255; 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 9:  Physics Game Framework 275 

    HUDGameTime.TextColor.B = 0; 
    HUDGameTime.Scale.X = 2; 
    HUDGameTime.Scale.Y = 4; 
 
    HUDGameOver.Label = "Level Complete";  
    HUDGameOver.TextLocation.x = 250; 
    HUDGameOver.TextLocation.y = 300; 
    HUDGameOver.TextColor.R = 255; 
    HUDGameOver.TextColor.G = 0; 
    HUDGameOver.TextColor.B = 255; 
    HUDGameOver.Scale.X = 7; 
    HUDGameOver.Scale.Y = 7; 
 
    HUDScore.Label = "Score:";  
    HUDScore.TextLocation.x = 0; 
    HUDScore.TextLocation.y = 50; 
    HUDScore.TextColor.R = 255; 
    HUDScore.TextColor.G = 0; 
    HUDScore.TextColor.B = 0; 
    HUDScore.Scale.X = 2; 
    HUDScore.Scale.Y = 4; 
} 
function DrawHUDItem(HUDInfo Info, coerce string Value) 
{ 
    local Vector2D TextSize; 
 
    Canvas.SetDrawColor(Info.TextColor.R, Info.TextColor.G, Info.TextColor.B);  
    Canvas.SetPos(Info.TextLocation.X, Info.TextLocation.Y); 
    Canvas.DrawText(Info.Label, ,Info.Scale.X,Info.Scale.Y); 
    Canvas.TextSize(Info.Label, TextSize.X, TextSize.Y); 
    Canvas.SetPos(Info.TextLocation.X + (TextSize.X * Info.Scale.X), 
Info.TextLocation.Y); 
    Canvas.DrawText(Value, , Info.Scale.X, Info.Scale.Y); 
} 
function DrawHUD() 
{ 
    local int Time; 
     
    super.DrawHUD(); 
 
    Canvas.Font = class'Engine'.static.GetLargeFont(); 
    // Score 
    DrawHUDItem(HUDScore, ExampleCh9Game(WorldInfo.Game).Score); 
    
    // Time 
    Time = ExampleCh9PC(PlayerOwner).GameTime; 
    DrawHUDItem(HUDGameTime, Time); 
 
    // Kick Angle 
    DrawHUDItem(HUDKickAngle,ExampleCh9PC(PlayerOwner).KickAngle); 
  
    // Game Over 
    if (ExampleCh9PC(PlayerOwner).bGameOVer) 
    { 
         DrawHUDItem(HUDGameOver, ""); 
    }   

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 9:  Physics Game Framework 276 

} 
defaultProperties 
{ 
} 

FRAMEWORK NOTE: Modify this class in order to add in more key statistics or change the key 

statistics that will be displayed in your game. 

Creating the RigidBodyCubeEx Object 
Next, we need to create the new RigidBodyCubeEx class that extends from our previously 

defined RigidBodyCube class from the Chapter 4.  

Notice in Listing 9–12 that the RigidBodyCollision() function overrides the parent 

function in RigidBodyCube. It calls the parent function and also adds to the player’s score 

the value of the cube and plays an explosion sound if the cube is destroyed. 

Listing 9–12. RigidBodyCubeEx class 

class RigidBodyCubeEx extends RigidBodyCube; 
 
var SoundCue ExplosionSound; 
var() float ItemValue;  
 
event RigidBodyCollision(PrimitiveComponent HitComponent,  
                         PrimitiveComponent OtherComponent, 
                         const out CollisionImpactData RigidCollisionData,  
                         int ContactIndex) 
{ 
    super.RigidBodyCollision(HitComponent, OtherComponent, RigidCollisionData, 
ContactIndex); 
 
    if (bDestroyed) 
    { 
        PlaySound(ExplosionSound); 
        ExampleCh9Game(WorldInfo.Game).Score += ItemValue; 
    } 
} 
 
defaultproperties 
{ 
    ExplosionSound = SoundCue'A_Weapon_ShockRifle.Cue.A_Weapon_SR_ComboExplosionCue' 
    ItemValue = 10; 
} 

FRAMEWORK NOTE: You can derive or extend a new class from this class to create a new type 

of target object for your own game.   

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 9:  Physics Game Framework 277 

Configuring the Game Type  
Next, we need to set up this new example for compilation and for playing on the mobile 

previewer. In the configuration directory located at 

C:\UDK\UDK-2011-06\UDKGame\Config 

Change the UDKEngine.ini and Mobile-UDKGame.ini configuration files to the following. 

UDKEngine.ini 
[UnrealEd.EditorEngine] 
ModEditPackages=ExampleCh9 
Mobile-UDKGame.ini 
[ExampleCh9.ExampleCh9Game] 
RequiredMobileInputConfigs=(GroupName="UberGroup",RequireZoneNames=("UberStickMoveZone",
"UberStickLookZone","UberLookZone")) 

Save the configuration files. You may need to write protect them to preserve the 

contents since the UDK sometimes overwrites them. Generally, this does not happen. 

However, if you are working on a project over a period of many months, then you 

probably should take this extra step. If you use this framework or the other frameworks 

in this book to build your own games, then I would advise you to write protect the 

configuration files.   

Bring up the Unreal Frontend and compile the scripts. 

Creating the Level 
Next, we need to create the level. Follow these steps: 

1. Bring up the Unreal Editor. 

2. Type in vendorcrate into the search box in the Content Browser and 

the static mesh of a vendor crate should show up. 

3. Click on the vendor crate static mesh and then drag and drop the crate 

into the default level (see Figure 9–2).  

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 9:  Physics Game Framework 278 

 

Figure 9–2. Creating a vendor crate 

4. Create stacks of crates of various heights.  An easy way to do this is to 

select multiple crates at once by holding down the Ctrl key and clicking on 

a stack of crates. After the crates are selected, release the Ctrl key, hold 

down the Alt key, and click on the transformation widget and move it to 

another location to create a copy of that stack of crates (see Figure 9–3). 

 

Figure 9–3. Duplicating Crates 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 9:  Physics Game Framework 279 

5. Click on the Actor Classes tab and search for RigidbodyCubeEx. Click on 

that class. Right-click on an empty area in the level and select the Add 

RigidBodyCubeEx Here option.  

6. The Cube will be too big so double-click on it and set the Draw Scale 

under the Display category to 0.20 (see Figure 9–4). 

 

Figure 9–4. Resizing the Cube 

7. Make copies of this cube and put them at the tops of the vendor crates 

you just created (see Figure 9–5). 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 9:  Physics Game Framework 280 

Figure 9–5. The Finished Level 

Running the Game 
Now, we are ready to run our game. Follow these steps: 

1. Select View  World Properties from the Unreal Editor main menu. This 

would bring up the World Properties window. 

2. In the World Properties window set the Default Game Type under the 

Game Type category to ExampleCh9Game. 

3. Select the Play  On Mobile Previewer option to run the game on the 

mobile previewer form the Editor. 

Click somewhere on the screen to create a new ball. Click on this ball to kick it toward 

the checkered cubes. Use the left virtual joystick to move forward/backward and 

left/right. Use the right virtual joystick to turn left/right and raise and lower the KickAngle. 

You should see something like in Figure 9–6. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 9:  Physics Game Framework 281 

 

Figure 9–6. Final Physics Game in Action  

Summary 
In this chapter we created a basic framework for a physics game. Various custom 

collision objects were created such as the player’s ball and the target cube that is to be 

destroyed. Sound effects were added in where appropriate. A level consisting of stacks 

of different heights of crates topped with target cubes was created. The final product 

was a basic playable physics game that the reader can use as a base to build his own 

physics games from. The last few chapters of this book will concentrate on creating 

basic game frameworks such as this one. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


 
283 

                       Chapter 

First-Person Shooter 
Game Framework 
This chapter provides a framework for a first-person shooter based on a one-on-one 

deathmatch type combat game. The gameplay consists of a one player vs. one 

computer-controlled bot taking place in a level full of crates that serve as cover for the 

bot. Both the player and bot are respawned upon death.  

This framework provides for a: 

 First-person perspective weapon view and operation 

 Custom bot controller that moves from cover to cover and attacks the 

player 

 Spawning a bot on a spawnpad determined at random 

 Custom HUD 

 Health Power Up 

 Mechanism to respawn dead bots and players 

First the overall game framework will be discussed in both general and specific terms. 

This is followed by the actual hands-on example which will present the actual game 

framework.      

Game Framework Overview 
In this section we will cover a general overview and a specific overview for this chapter’s 

game framework. The general overview will give you an idea of the key features of the 

game framework and the specific overview discusses features of the game framework in 

code-specific terms and tells you how you might be able to modify the framework for 

your own custom needs.   

10 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 10:  First-Person Shooter Game Framework 284 

General Overview 
This framework provides for a first-person player world viewpoint with a weapon that is 

visible within this view. The weapon is placed so that the player appears to be holding it. 

This framework can be modified to add in a different weapon and to place this new 

weapon in a different position within the player’s view if needed. 

A basic framework for a computer controlled bot that can use the cover nodes feature of 

the UDK is presented. The bot framework also features the ability to attack the player 

and to retrieve health powerups when its health is below a certain level. You can change 

the bot’s behavior by adding in new states or modifying the states that already exist.        

A method to randomly select a spawnpad from a set of spawnpads is presented. Code 

for respawning the enemy bot on one of these spawnpads is also given. 

A custom Heads Up Display or HUD is presented. You can extend this HUD by adding 

or eliminating items to display using the existing HUD items in the framework as a guide. 

A method to process health powerups is given in this game framework. This method 

could be expanded to include other types of powerups such as weapon powerups. 

Specific Overview 
In terms of generating a first-person perspective for weapons, the PlaceWeapon() 

function located in the player controller ExampleCh10PC actually does the work of placing 

the weapon 3d mesh in the 3d world in front of the player. In the JazzCh10Pawn class 

which is the player’s pawn the function AddDefaultInventory() initialized the player’s 

weapon which is the JazzWeaponCh10 class and adds it into the player’s inventory. The 

WeaponsIM1 class is set as the inventory manager for the player’s pawn.   

You can expand on this basic framework through creating a new weapon and replacing 

it with the one now used by changing the JazzWeaponCh10 weapon to your custom 

weapon in the CreateInventory() function in the AddDefaultInventory() function. 

For example, the code 

InvManager.CreateInventory(class'YourCustomWeaponClass'); 

would place your new custom weapon in the player’s inventory. 

The bot controller is BotAttackCoverController and consists of three states: 

 TakeCover—Bot moves to the cover node specified in the CurrentGoal 

variable. When the target cover node is reached, then BotInCover is 

set to true. 

 GettingHealthPickup—Bot moves to the location of the Bonus 

specified in the CurrentGoal variable. When the Bonus has been 

reached then bGotHealthPickup is set to true.  

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 10:  First-Person Shooter Game Framework 285 

 AttackingEnemy—Bot moves toward the enemy specified by the 

BotThreat variable and stops AttackOffsetDist distance from the 

threat if there is a clear path to the threat and then sets bAttackDone to 

true. Bot fires its weapon during this state. 

When the bot is spawned it goes into the TakeCover state and the bot takes cover from 

the player. Once in cover, if the bot has health that is lower than the 

HealthPickupTrigger variable and a health powerup is available, it goes into the 

GettingHealthPickup state, picks up the bonus health, and then returns to the 

TakeCover state. If the bot is in cover and has been in the TakeCover state greater than 

the AttackTimeInterval time, then the bot goes into the AttackEnemy state and attacks 

the player. Once the attack is finished then the bot goes back into the TakeCover state 

and takes cover from the player.  

You can extend this bot behavior by adding new states to the bot controller or changing 

the way the current states interact with one another. 

In the BotPawnCh10 class, which is the enemy bot’s pawn class, the function 

GetRandomSpawnPosition()chooses a random pad from those in the game level and 

returns the position of that pad so that a new enemy bot can be respawned there.   

You can expand this feature by increasing the number of pads available to the bot or 

how the bot selects a new pad to respawn on. 

The game’s custom HUD is defined in the class FPSHUD, and you can easily extend this 

class to provide for modifications of the key statistics displayed in the game. 

The health powerup is implemented in the class Bonus1 and can be used as a starting 

point template for other powerups you may have in mind. 

Hands-On Example: First-Person Shooter Game 
Framework 
In this hands-on example we build a first-person shooter deathmatch style game that 

involves one enemy computer controlled bot and one player. The bot will move from 

cover to cover and attack the player, retrieving health bonus powerups as needed. This 

section covers creating code for the game type, player related classes, enemy bot 

related classes, the HUD, and the health bonus powerup. Then a new game level is 

created and the game is configured to run on the mobile previewer. 

Creating the Game Type 
The first thing we need to do is create a new directory for the code for this project. 

Create the ExampleCh10 directory under your default UDK installation directory at 

C:\UDK\UDK-2011-06\Development\Src. (This is for the June 2011 UDK. If you are using a 

different version of the UDK then this directory will be different.) Create a directory called 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 10:  First-Person Shooter Game Framework 286 

Classes under the new directory you just created and put all your source code files in 

this directory. 

Create the following class (see Listing 10–1) and save it under the filename 

“ExampleCh10Game.uc”. Again as with all previous examples in this book the filenames 

must match the classnames and the file extension must be “.uc”. The code in bold is 

specific to this example. (See the hands-on example in Chapter 2 for an example of the 

base game type class.)  

In the listing, note the following variables:  

 The variable Score holds the player’s score.  

 The variable MaxSpawnPads holds the maximum number of bot spawn 

pads in the level.  

 The variable bGameOver indicates whether the current game is over. 

Also, notice the following classes: 

 The PlayerControllerClass is set to the custom player controller class 

for this framework.  

 The DefaultPawnClass is set to the custom player pawn for this 

framework.  

 The HUDType is set to the custom HUD class for this framework. 

Listing 10–1. Game Type 

class ExampleCh10Game extends FrameworkGame; 
var int Score; 
var int MaxSpawnPads; 
var bool bGameOver; 
event OnEngineHasLoaded() 
{ 
    WorldInfo.Game.Broadcast(self,"ExampleCh10Game Type Active - Engine Has Loaded 
!!!!"); 
} 
function bool PreventDeath(Pawn KilledPawn, Controller Killer, class<DamageType> 
DamageType, vector HitLocation) 
{ 
    return true; 
} 
static event class<GameInfo> SetGameType(string MapName, string Options, string Portal) 
{ 
    return super.SetGameType(MapName, Options, Portal); 
} 
defaultproperties 
{ 
    PlayerControllerClass=class'ExampleCh10.ExampleCh10PC'   
    DefaultPawnClass=class'JazzCh10Pawn' 
    HUDType=class'FPSHUD'  
    bRestartLevel=false 
    bWaitingToStartMatch=true 
    bDelayedStart=false 
    Score = 0 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 10:  First-Person Shooter Game Framework 287 

    MaxSpawnPads = 4 
    bGameOver = false; 
} 

FRAMEWORK NOTE: You can expand the number of bot spawnpads in the level by increasing 
the MaxSpawnPads variable and placing additional number of spawnpads in your level using the 

Unreal Editor and setting the PadNumber in each additional pad. 

Creating the Player-Related Classes 
Next, we need to create the player related classes. These classes include the player 

controller, the player’s pawn, the player’s weapon, and the player’s projectile that is fired 

from the weapon. 

Creating the Player Controller 
In this section we will discuss the player controller class. For a full version of this code 

without the explanations, please download the source code for this book. 

The first part of the code, shown in Listing 10–2, covers the class variables and the 

function that resets the player: 

 The variable EnemyBot holds a reference to the enemy bot’s controller 

and the EnemyPawn variable holds a reference to the enemy bot’s pawn. 

These variables are used in creating the enemy bot controller and 

enemy bot pawn when the player controller is first initialized. 

 The SpawnPadLocations array holds the locations of the enemy bot’s 

spawn pads for this level. 

 The ResetGame() function resets key game variables such as player’s 

score and player’s health after the player dies and is respawned. 

Listing 10–2. Resetting the Game 

class ExampleCh10PC extends SimplePC; 
 
var Controller EnemyBot; 
Var Pawn EnemyPawn; 
var bool BotSpawned; 
var Actor BotTarget; 
var bool bGameOver; 
var array<vector> SpawnPadLocations; 
function ResetGame() 
{ 
    ExampleCh10Game(WorldInfo.Game).bGameOver = false; 
    ExampleCh10Game(WorldInfo.Game).Score = 0; 
    Pawn.Health = 100; 
 
    Pawn.SetHidden(false); 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 10:  First-Person Shooter Game Framework 288 

    Pawn.Weapon.SetHidden(false); 
    Pawn.SetLocation(JazzCh10Pawn(Pawn).InitialLocation); 
} 

The next piece of code, shown in Listing 10–3, covers the creation or spawning of the 

enemy bot. These are the important elements: 

 The FindSpawnPad() function finds the spawnpad in the level that has a 

PadNumber equal to the input parameter and returns a reference to it or 

None if no pad is found. 

 The SpawnBot() function spawns the enemy bot at a location in the 3d 

world with a bot controller BotAttackCoverController and bot pawn 

BotPawnCh10 and initializes it. 

 The function SpawnBotOnRandomPad() randomly chooses a bot spawn 

pad in the level. It then finds a reference to the pad using the 

FindSpawnPad() function and creates this bot at that location using the 

SpawnBot() function. 

Listing 10–3. Spawning Bots 

function Actor FindSpawnPad(int PadNumber) 
{ 
    local BotSpawnPad TempSpawnPad; 
    local Actor ReturnSpawnPad; 
 
    ReturnSpawnPad = None; 
    foreach AllActors(class'BotSpawnPad', TempSpawnPad) 
    { 
        SpawnPadLocations.Additem(TempSpawnPad.Location); 
        if(TempSpawnPad.PadNumber == PadNumber) 
        { 
            ReturnSpawnPad = TempSpawnPad;  
        }             
    } 
    return ReturnSpawnPad;    
} 
function SpawnBot(Vector SpawnLocation, optional Vector Offset) 
{ 
    SpawnLocation = SpawnLocation + Offset; 
    EnemyBot = Spawn(class'BotAttackCoverController',,,SpawnLocation;  
    EnemyPawn = Spawn(class'BotPawnCh10',,,SpawnLocation);  
    EnemyBot.Possess(EnemyPawn,false);  
    BotAttackCoverController(EnemyBot).BotThreat = Pawn; 
    BotPawnCh10(EnemyPawn).AddDefaultInventory(); 
    BotPawnCh10(EnemyPawn).InitialLocation = SpawnLocation;  
    BotPawnCh10(EnemyPawn).SpawnPadLocations = SpawnPadLocations; 
    EnemyPawn.SetPhysics(PHYS_Falling); 
} 
function SpawnBotOnRandomPad(vector AlternateLocation, vector offset) 
{ 
    local int RandomPadNumber; 
    local Actor SpawnPad; 
    local int MaxPads; 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 10:  First-Person Shooter Game Framework 289 

 
    MaxPads = ExampleCh10Game(WorldInfo.Game).MaxSpawnPads; 
    RandomPadNumber = Rand(MaxPads);// Number from 0 to Max-1. 
    WorldInfo.Game.Broadcast(self,"RANDOMPADNUMBER = " @ RandomPadNumber); 
    SpawnPad = FindSpawnPad(RandomPadNumber); 
    if (SpawnPad != None) 
    { 
        SpawnBot(SpawnPad.Location, offset); 
    }     
    else 
    { 
        SpawnBot(AlternateLocation, Offset);            
    } 
} 

The next piece of code, which is in Listing 10–4, deals with player touch input. Again, 

the bold code is specific to this example, and the base code for the functions in this 

listing can be found in the hands-on example in Chapter 2. 

In the SwipeZoneCallback() function code has been added to reset our game and to fire 

our weapon. 

Listing 10–4. Player Input 

function bool SwipeZoneCallback(MobileInputZone Zone,  
                                 float DeltaTime,  
                                 int Handle, 
                                 EZoneTouchEvent EventType,  
                                 Vector2D TouchLocation) 
{  
    local bool retval; 
    retval = true; 
    if (EventType == ZoneEvent_Touch) 
    {      
        // Reset Game  
        if (ExampleCh10Game(WorldInfo.Game).bGameOver) 
        {    
            ResetGame();             
        }  
        else 
        {  
            // Start Firing pawn's weapon 
        StartFire(0); 
        } 
    } 
    else 
    if(EventType == ZoneEvent_Update) 
    {  
    }   
    else 
    if (EventType == ZoneEvent_UnTouch) 
    {  
        // Stop Firing Pawn's weapon 
        StopFire(0); 
    } 
    return retval; 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 10:  First-Person Shooter Game Framework 290 

} 
 
function SetupZones() 
{ 
    Super.SetupZones(); 
    // If we have a game class, configure the zones 
    if (MPI != None && WorldInfo.GRI.GameClass != none)  
    { 
        LocalPlayer(Player).ViewportClient.GetViewportSize(ViewportSize); 
        if (FreeLookZone != none) 
        { 
            FreeLookZone.OnProcessInputDelegate = SwipeZoneCallback; 
        }  
    } 
} 

The code segment in Listing 10–5 deals with placing the player’s weapon in the first-

person view. This PlaceWeapon() function is exactly the same as the one in Listing 3-

18, which created the player controller class in Chapter 3. 

Listing 10–5. Placing the Weapon 

function PlaceWeapon() 
{ 
    // First Person   
    local vector WeaponLocation; 
    local Rotator WeaponRotation,TempRot; 
    local Weapon TestW; 
    local vector WeaponAimVect; 
  
    WeaponRotation.yaw = -16000; // 90 Degrees turn = OFFSET  
    TempRot = Pawn.GetBaseAimRotation(); 
    WeaponRotation.pitch = TempRot.roll; 
    WeaponRotation.yaw   += TempRot.yaw;  
    WeaponRotation.roll  -= TempRot.pitch; // Switch due to weapon local axes 
orientation 
    WeaponAimVect = Normal(Vector(TempRot)); 
    WeaponLocation = Pawn.Location + (40 * WeaponAimVect) + vect(0,0,30); 
 
    TestW = Pawn.Weapon; //Pawn.InvManager.GetBestWeapon(); 
    if (TestW != None) 
    { 
        TestW.SetLocation(WeaponLocation);  
        TestW.SetRotation(WeaponRotation); 
    } 
    else 
    { 
        WorldInfo.Game.Broadcast(self,"Player has no weapon!!!!!"); 
    } 
} 

The code segment in Listing 10–6 is the PlayerTick() function, which is called 

continuously or “ticked”. The PlayerTick() function adds in code for testing for the 

game over status and implementing code for a game over status. In terms of the game 

over status, if bGameOver is true, then the game is over because the player has died. If 

the player is still alive, bGameOver is false. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 10:  First-Person Shooter Game Framework 291 

Listing 10–6. PlayerTick Function 

function PlayerTick(float DeltaTime) 
{ 
    Super.PlayerTick(DeltaTime);  
    PlaceWeapon(); 
    if (!BotSpawned) 
    { 
        SpawnBotOnRandomPad(Pawn.Location, vect(0,0,500)); 
        BotSpawned = true; 
        JazzCh10Pawn(Pawn).InitialLocation = Pawn.Location; 
    } 
    if (Pawn.Health <= 0) 
    { 
        ExampleCh10Game(WorldInfo.Game).bGameOver = true; 
    } 
    if (ExampleCh10Game(WorldInfo.Game).bGameOver) 
    { 
        Pawn.Health = 0; 
        StopFire(0); 
        Pawn.SetHidden(true); 
        Pawn.Weapon.SetHidden(true); 
        Pawn.Velocity = vect(0,0,0); 
    } 
} 
defaultproperties 
{ 
    BotSpawned = false; 
} 

FRAMEWORK NOTE: When adding a new weapon you may also have to modify the 

PlaceWeapon() function which places the weapon mesh into the player’s first-person view. 

Creating the Player’s Pawn 
Next, the code for the player’s pawn must be created (see Listing 10–7).  

Several key elements from this listing: 

The key new function is the AddHealthBonus() function which 

processes the health powerup bonus. (Listing 3-17 in Chapter 3 is the 

base class for a player’s pawn using the default first-person view.) 

The function TakeDamage() plays a sound when this pawn is hit and 

calculates damage to health. 

The AddDefaultInventory() function adds in our new custom weapon 

for this framework. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 10:  First-Person Shooter Game Framework 292 

Listing 10–7. Player’s Pawn 

class JazzCh10Pawn extends SimplePawn; 
 
var Inventory MainGun; 
var vector InitialLocation; 
var SoundCue PawnHitSound; 
 
function AddHealthBonus(int Value) 
{ 
    Health = Health + value; 
} 
 
event TakeDamage(int Damage, Controller InstigatedBy, vector HitLocation, vector 
Momentum, class<DamageType> DamageType, optional TraceHitInfo HitInfo, optional Actor 
DamageCauser) 
{  
    PlaySound(PawnHitSound);  
    Health = Health - Damage; 
} 
 
function AddDefaultInventory() 
{  
    MainGun = InvManager.CreateInventory(class'JazzWeaponCh10'); 
    MainGun.SetHidden(false); 
    Weapon(MainGun).FireOffset = vect(0,0,-70); 
} 
 
defaultproperties 
{ 
    InventoryManagerClass=class'WeaponsIM1' 
    PawnHitSound = 
SoundCue'A_Character_CorruptEnigma_Cue.Mean_Efforts.A_Effort_EnigmaMean_Death_Cue'   
} 

Creating the Player’s Weapon 
Next, we need to create the player’s weapon, as shown in Listing 10–8. The key new 

code here is the setting of the WeaponProjectiles array to the new JazzBulletCh10 

class.  

Listing 10–8. Player’s Weapon 

class JazzWeaponCh10 extends Weapon; 
 
defaultproperties 
{ 
    Begin Object Class=SkeletalMeshComponent Name=FirstPersonMesh 
        SkeletalMesh=SkeletalMesh'KismetGame_Assets.Anims.SK_JazzGun' 
    End Object 
    Mesh=FirstPersonMesh 
    Components.Add(FirstPersonMesh); 
 
    Begin Object Class=SkeletalMeshComponent Name=PickupMesh 
        SkeletalMesh=SkeletalMesh'KismetGame_Assets.Anims.SK_JazzGun' 
    End Object 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 10:  First-Person Shooter Game Framework 293 

    DroppedPickupMesh=PickupMesh 
    PickupFactoryMesh=PickupMesh 
 
    WeaponFireTypes(0)=EWFT_Projectile 
    WeaponFireTypes(1)=EWFT_NONE 
  
    WeaponProjectiles(0)=class'JazzBulletCh10'   
    WeaponProjectiles(1)=class'JazzBulletCh10'    
  
    FiringStatesArray(0)=WeaponFiring  
    FireInterval(0)=0.25 
    Spread(0)=0 
} 

The player’s weapon in the first-person view should look like that shown in Figure 10–1. 

 

Figure 10–1. Player’s Weapon 

FRAMEWORK NOTE: You can expand on this class by using a new custom class for the 
projectile or changing other weapon variables such as FireInterval which determines the 

time between shots. 

Creating the Player’s Projectile 
Next, we need to create the projectile for the player’s weapon (see Listing 10–9). The 

key changes from past versions of our custom projectile class here are new sound cues 

defined in variables ImpactSound and SpawnSound.  

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 10:  First-Person Shooter Game Framework 294 

Listing 10–9. Player weapon’s bullet 

class JazzBulletCh10 extends Projectile; 
 
var SoundCue FireSound; 
var bool ImpactSoundPlayed; 
 
simulated singular event Touch(Actor Other, PrimitiveComponent OtherComp, vector 
HitLocation, vector HitNormal) 
{ 
    Other.TakeDamage(33, InstigatorController, HitLocation, -HitNormal, None); 
} 
simulated function Explode(vector HitLocation, vector HitNormal) 
{ 
    if (!ImpactSoundPlayed) 
    { 
        PlaySound(ImpactSound); 
        ImpactSoundPlayed = true; 
    } 
    SetPhysics(Phys_Falling); 
} 
function Init( Vector Direction ) 
{ 
    super.Init(Direction); 
    RandSpin(90000); 
    PlaySound(SpawnSound); 
    PlaySound(FireSound, , , true,,); 
} 
defaultproperties 
{ 
    Begin Object Class=StaticMeshComponent Name=Bullet  
        StaticMesh=StaticMesh'Castle_Assets.Meshes.SM_RiverRock_01' 
        Scale3D=(X=0.300000,Y=0.30000,Z=0.3000) 
    End Object 
    Components.Add(Bullet) 
 
    Begin Object Class=ParticleSystemComponent  Name=BulletTrail 
        Template=ParticleSystem'Castle_Assets.FX.P_FX_Fire_SubUV_01' 
    End Object 
    Components.Add(BulletTrail) 
 
    MaxSpeed=+05000.000000 
    Speed=+05000.000000 
 
    FireSound = SoundCue'A_Vehicle_Generic.Vehicle.Vehicle_Damage_FireLoop_Cue' 
    ImpactSound = 
SoundCue'A_Character_BodyImpacts.BodyImpacts.A_Character_RobotImpact_HeadshotRoll_Cue' 
    SpawnSound = SoundCue'KismetGame_Assets.Sounds.S_WeaponRespawn_01_Cue' 
    ImpactSoundPlayed = false 
} 

The player’s projectile is shown in Figure 10–2. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 10:  First-Person Shooter Game Framework 295 

 

Figure 10–2. Player’s Projectile 

Creating the Enemy Bot Related Classes 
In this section we will create classes for our enemy bot. These classes will include those 

for the bot’s pawn, controller, weapon, projectile, and spawnpad. 

Creating the Bot Pawn 
The first thing we need to do is create the enemy bot’s pawn, as shown in Listing 10–10. 

Key elements from the listing: 

 New in this class are separate sounds that are played when an enemy 

bot dies which is DeathSound and when an enemy bot is injured which 

is HurtSound. 

 The function GetRandomSpawnPosition() chooses a random pad from 

those stored in the array SpawnPadLocations and returns the location of 

that pad. 

 The function AddHealthBonus() is used to process the bot’s pickup of 

the bonus powerup and adds this bonus to the enemy bot’s health. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 10:  First-Person Shooter Game Framework 296 

Listing 10–10. Enemy bot’s pawn 

class BotPawnCh10 extends BotPawn2; 
 
var array<vector> SpawnPadLocations; 
var SoundCue DeathSound; 
var SoundCue HurtSound; 
 
function vector GetRandomSpawnPosition() 
{ 
    local int RandPad; 
    local int MaxPads; 
    local vector returnvec; 
 
    MaxPads = ExampleCh10Game(WorldInfo.Game).MaxSpawnPads; 
    Randpad = Rand(MaxPads); 
    WorldInfo.Game.Broadcast(self,"*************** " @ self @ " RESPAWNED at pad number 
" @ RandPad); 
    if (RandPad >= SpawnPadLocations.length) 
    { 
        // error 
        return InitialLocation; 
    } 
    else 
    { 
        returnvec = SpawnPadLocations[RandPad];               
    }   
    return returnvec; 
} 
function AddHealthBonus(int Value) 
{ 
    Health = Health + value; 
} 
event TakeDamage(int Damage, Controller InstigatedBy, vector HitLocation, vector 
Momentum, class<DamageType> DamageType, optional TraceHitInfo HitInfo, optional Actor 
DamageCauser) 
{ 
    PlaySound(HurtSound);  
    Health = Health - Damage;   
    if (Health <= 0) 
    { 
        PlaySound(DeathSound);  
        SetLocation(GetRandomSpawnPosition());      
        SetPhysics(PHYS_Falling); 
        Health = 100; 
        BotAttackCoverController(Controller).ResetAfterSpawn(); 
        // Process Kill 
        if (PlayerController(InstigatedBy) != None) 
        { 
            // Add kill to Player's Score 
            ExampleCh10Game(WorldInfo.Game).Score += KillValue; 
        } 
    } 
} 
function AddDefaultInventory() 
{  

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 10:  First-Person Shooter Game Framework 297 

    MainGun = InvManager.CreateInventory(class'BotWeaponCh10'); 
    MainGun.SetHidden(false); 
    AddGunToSocket('Weapon_R'); 
    Weapon(MainGun).FireOffset = vect(0,50,-70); 
} 
defaultproperties 
{ 
    DeathSound = SoundCue'KismetGame_Assets.Sounds.Jazz_Death_Cue' 
    HurtSound = SoundCue'KismetGame_Assets.Sounds.Jazz_SpinStop_Cue' 
} 

Creating the Bot Controller 
Next, we need to create the bot’s controller class. For a full version of this code without 

explanations, please download the source code for this book.   

This new class builds upon the code presented in Chapter 8 where the bot moves from 

cover to cover and considers the player to be the threat. Important new code is 

highlighted in bold. 

The first segment of code, shown in Listing 10–11, involves the variables that will be 

used in this class and cover node related functions: 

 The bGotHealthPickup is true when the enemy bot has just taken the 

health bonus. If the enemy bot’s health is less than the value of 

HealthPickupTrigger then the bot will retrieve a health powerup if one 

is available. 

 The variable bJustRespawned is set to true just after the enemy bot is 

respawned and placed on a random spawn pad. 

 When the bot is in the TakeCover state and an AttackTimeInterval has 

passed then bStartAttackEnemy is set to true and bot starts its attack 

on the player and bAttackDone is set to false. When the bot has a clear 

path to the player and is within AttackOffsetDist from the player then 

bAttackDone is set to true and the bot stops its attack. 

Listing 10–11. Class Variables and Cover Node Related Functions 

class BotAttackCoverController extends UDKBot; 
 
// Navigation  
var Actor CurrentGoal; 
var Vector TempDest; 
var Actor TempGoal; 
  
// Cover Link  
var CoverLink CurrentCover; 
var bool BotInCover;  
 
// Bot's Enemy  
var Pawn BotThreat; 
// Health Pickups 
var bool bGotHealthPickup; 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 10:  First-Person Shooter Game Framework 298 

var int HealthPickupTrigger; 
// Respawn 
var bool bJustRespawned; 
// Attack State  
var int AttackOffsetDist; 
var bool bAttackDone; 
var int AttackTimeInterval; 
var bool bStartAttackEnemy; 
 
function UnclaimAllSlots() 
{ 
    local CoverLink CoverNodePointer; 
    local CoverLink TempNodePointer; 
    local bool done; 
 
    CoverNodePointer = WorldInfo.Coverlist; 
    done = false; 
    while (!done) 
    { 
        CoverNodePointer.Unclaim(Pawn, 0, true);   
        if (CoverNodePointer.NextCoverLink != None) 
        { 
            TempNodePointer = CoverNodePointer.NextCoverLink; 
            CoverNodePointer = TempNodePointer; 
        } 
        else 
        {  
            done = true; 
        }   
    } 
    Pawn.ShouldCrouch(false); 
    BotInCover = false; 
} 
function FindEnemyLocation(out vector EnemyLocation) 
{  
    EnemyLocation = BotThreat.Location; 
} 
function CoverLink FindClosestEmptyCoverNodeWithinRange(Vector ThreatLocation, vector 
Position, float Radius) 
{ 
    local CoverLink CoverNodePointer; 
    local CoverLink TempNodePointer; 
    local bool done; 
 
    local CoverLink ValidCoverNode; 
    local bool SlotValid; 
    local bool SlotAvailable; 
    local bool NodeFound; 
    local int DefaultSlot; 
  
    local float Dist2Cover; 
    local float ClosestCoverNode; 
 
    CoverNodePointer = WorldInfo.Coverlist; 
    DefaultSlot = 0;  // Assume only 1 slot per cover node. 
    ClosestCoverNode = 999999999; 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 10:  First-Person Shooter Game Framework 299 

    ValidCoverNode = None; 
    NodeFound = false; 
 
    done = false; 
    while (!done) 
    {  
        SlotValid = CoverLinkEx(CoverNodePointer).IsCoverSlotValid(0,ThreatLocation); 
        SlotAvailable = CoverLinkEx(CoverNodePointer).IsCoverSlotAvailable(0);    
        Dist2Cover =  VSize(CoverNodePointer.GetSlotLocation(DefaultSlot) - Position);          
        if (SlotValid && SlotAvailable && (Dist2Cover < ClosestCoverNode))  
        { 
            ValidCoverNode = CoverNodePointer; 
            ClosestCoverNode = Dist2Cover; 
            NodeFound = true; 
        } 
        
        // Goto Next CoverNode 
        if (CoverNodePointer.NextCoverLink != None) 
        { 
            TempNodePointer = CoverNodePointer.NextCoverLink; 
            CoverNodePointer = TempNodePointer; 
        } 
        else 
        {  
            // No more Cover Nodes 
            done = true; 
        }    
    }    
    if (!NodeFound) 
    { 
        WorldInfo.Game.Broadcast(self,"!!! Can Not Find Valid CoverNode"); 
    } 
    return ValidCoverNode; 
} 
function bool IsCurrentCoverValid() 
{ 
    local bool RetVal; 
    local vector ThreatLoc;  
 
    RetVal = false; 
    if (CurrentCover != None) 
    { 
        FindEnemyLocation(ThreatLoc); 
        RetVal = CoverLinkEx(CurrentCover).IsCoverSlotValid(0, ThreatLoc);  
    }  
    return Retval; 
} 
function PrepMoveToCover() 
{ 
    local vector ThreatLoc; 
    local CoverLink NextCover;  
 
    FindEnemyLocation(ThreatLoc); 
    NextCover = FindClosestEmptyCoverNodeWithinRange(ThreatLoc, Pawn.Location, 9999999); 
    if (NextCover != None) 
    { 
        WorldInfo.Game.Broadcast(self, self @ " moving to Next Cover " @ NextCover); 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 10:  First-Person Shooter Game Framework 300 

        CurrentCover = NextCover; 
        CurrentGoal = CurrentCover; 
        BotInCover = false;      
        UnclaimAllSlots();  
        CurrentCover.Claim(Pawn, 0); 
    }  
} 

Listing 10–12 contains the next piece of code that contains the GeneratePathTo() 

function that actually generates the navigation path that the computer controlled bot will 

use. This is the exact same function that was used in Chapter 5 on bots. 

Listing 10–12. GeneratePathTo  

event bool GeneratePathTo(Actor Goal, optional float WithinDistance, optional bool 
bAllowPartialPath) 
{ 
    if( NavigationHandle == None ) 
    return FALSE; 
 
    // Clear cache and constraints (ignore recycling for the moment) 
    NavigationHandle.PathConstraintList = none; 
    NavigationHandle.PathGoalList = none; 
    class'NavMeshPath_Toward'.static.TowardGoal( NavigationHandle, Goal ); 
    class'NavMeshGoal_At'.static.AtActor( NavigationHandle, Goal, WithinDistance, 
bAllowPartialPath ); 
    return NavigationHandle.FindPath(); 
} 

The next code segment, in Listing 10–13, involves the TakeCover state in which the 

enemy bot uses the UDK cover node system to shield itself from incoming fire.  

The AttackEnemyTimer() function is called after the AttackTimeInterval amount of time 

when the bot is in the TakeCover state to flag that the bot’s attack on the player should 

start. 

NOTE: In the BeginState and EndState functions, the “Put Code Here” comments in the code 

refer to new code you can add to extend this framework for you own customized game. 

Listing 10–13. TakeCover State 

function AttackEnemyTimer() 
{ 
    bStartAttackEnemy = true; 
} 
state TakeCover 
{ 
    event BeginState( Name PreviousStateName ) 
    { 
        // Put code here that is to only be executed when the state is first entered  
        bStartAttackEnemy = false; 
        SetTimer(AttackTimeInterval, false, 'AttackEnemyTimer');   
    } 
    event EndState( Name NextStateName ) 
    { 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 10:  First-Person Shooter Game Framework 301 

        // Put code here that is to be executed only when exiting this state   
    } 

    Begin: 
    WorldInfo.Game.Broadcast(self,"*********** In State TAKECOVER"); 
    if (CurrentGoal != None) 
    { 
        if(GeneratePathTo(CurrentGoal)) 
        { 
            NavigationHandle.SetFinalDestination(CurrentGoal.Location);   
  
            if( NavigationHandle.ActorReachable(CurrentGoal) ) 
            {    
                // then move directly to the actor 
                MoveTo(CurrentGoal.Location, BotThreat); 
                BotInCover = true;  
            } 
            else 
            { 
                // move to the first node on the path 
                if( NavigationHandle.GetNextMoveLocation(TempDest, 
Pawn.GetCollisionRadius()) ) 
                { 
                    if (!NavigationHandle.SuggestMovePreparation(TempDest,self)) 
                    { 
                        MoveTo(TempDest, BotThreat);    
                    } 
                } 
            }  
        } 
        else 
        { 
            WorldInfo.Game.Broadcast(self,"FindNavMeshPath failed to find a path!, 
CurrentGoal = " @ CurrentGoal); 
            MoveTo(Pawn.Location); 
        }    
    } 
    LatentWhatToDoNext(); 
} 

The next piece of code, shown in Listing 10–14, involves code related to the enemy bot 

retrieving the health powerup. These are the key components: 

The NeedHealthPickup() returns true if the enemy bot’s health is less 

than the HealthPickupTrigger value. The HealthPickupAvailable()
function returns a reference to the Health Bonus powerup closest to 

the enemy bot if one exists or None if no health powerups exist. 

The PrepGettingHealthPickup() function releases the ownership of 

any cover node that the bot may be occupying, sets the goal of the 

bot to point to the health bonus, and does other initializations in 

preparation for the bot transitioning to the GettingHealthPickup state. 

The GettingHealthPickup state moves the enemy bot toward the 

health powerup and sets bGotHealthPickup to true when the bot 

moves over it. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 10:  First-Person Shooter Game Framework 302 

Listing 10–14. Getting the Health Pickup 

function bool NeedHealthPickup() 
{ 
    local bool bresult; 
    if (Pawn.Health < HealthPickupTrigger) 
    { 
        bresult = true; 
    } 
    else  
    { 
        bresult = false; 
    } 
    return bresult; 
} 
function Actor HealthPickupAvailable() 
{ 
    local Bonus1 TempBonus; 
    local Actor ReturnActor; 
    local float ClosestDist; 
    local float TempDist; 
 
    ReturnActor = None; 
    ClosestDist = 999999; 
 
    foreach AllActors(class'Bonus1', TempBonus) 
    {     
        TempDist = VSize(Pawn.Location - TempBonus.Location); 
        If (TempDist < ClosestDist) 
        {         
            ReturnActor = TempBonus; 
            ClosestDist = TempDist; 
        } 
    } 
    return ReturnActor; 
} 
function PrepGettingHealthPickup(Actor Pickup) 
{ 
    UnclaimAllSlots();    
    CurrentGoal = Pickup; 
    CurrentCover = None; 
    bGotHealthPickup = false;  
} 
state GettingHealthPickup 
{ 
    event BeginState( Name PreviousStateName ) 
    { 
        // Put code here that is to only be executed when the state is first entered        
    } 
    event EndState( Name NextStateName ) 
    { 
        // Put code here that is to be executed only when exiting this state   
    } 
    Begin: 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 10:  First-Person Shooter Game Framework 303 

    WorldInfo.Game.Broadcast(self,"-----------> In state GettingHealthPickup"); 
    if (CurrentGoal != None) 
    { 
        if(GeneratePathTo(CurrentGoal)) 
        { 
            NavigationHandle.SetFinalDestination(CurrentGoal.Location);   
  
            if( NavigationHandle.ActorReachable(CurrentGoal) ) 
            {    
                // then move directly to the actor           
                MoveTo(CurrentGoal.Location); 
                bGotHealthPickup = true;     
            } 
            else 
            { 
                // move to the first node on the path 
                if( NavigationHandle.GetNextMoveLocation(TempDest, 
Pawn.GetCollisionRadius()) ) 
                {              
                    if (!NavigationHandle.SuggestMovePreparation(TempDest,self)) 
                    { 
                        MoveTo(TempDest, BotThreat);    
                    } 
                } 
            }  
        } 
        else 
        {         
            MoveTo(Pawn.Location); 
        }    
    } 
    LatentWhatToDoNext(); 
} 

The code in Listing 10–15 deals with the enemy bot attacking the player: 

 The PrepAttackingEnemy() function initializes the enemy bot for 

coming out of cover and entering the AttackingEnemy state by 

releasing any cover nodes that the bot currently occupies. The bot is 

ordered to start firing its weapon and other initializations take place.  

 The AttackingEnemy state moves the enemy bot toward the player and 

when the player is directly reachable by the bot (has a clear line of 

sight without obstacles) within AttackOffsetDist distance bAttackDone 

is set to true and the attack is finished. 

Listing 10–15. Attacking the Player 

function PrepAttackingEnemy() 
{ 
    bAttackDone = false; 
    UnclaimAllSlots();    
    CurrentGoal = BotThreat; 
    CurrentCover = None; 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 10:  First-Person Shooter Game Framework 304 

    Pawn.StartFire(0); 
} 
state AttackingEnemy 
{ 
    event BeginState( Name PreviousStateName ) 
    { 
        // Put code here that is to only be executed when the state is first entered   
        PrepAttackingEnemy();      
    } 
    event EndState( Name NextStateName ) 
    { 
        // Put code here that is to be executed only when exiting this state 
        Pawn.StopFire(0);   
    } 
    Begin: 
    WorldInfo.Game.Broadcast(self,"############# In State AttackingEnemy"); 
    if (CurrentGoal != None) 
    { 
        if(GeneratePathTo(CurrentGoal)) 
        { 
            NavigationHandle.SetFinalDestination(CurrentGoal.Location);   
  
            if( NavigationHandle.ActorReachable(CurrentGoal) ) 
            {    
                // then move directly to the actor 
                MoveTo(CurrentGoal.Location, BotThreat, AttackOffsetDist); 
                bAttackDone = true;  
            } 
            else 
            { 
                // move to the first node on the path 
                if( NavigationHandle.GetNextMoveLocation(TempDest, 
Pawn.GetCollisionRadius()) ) 
                { 
                    if (!NavigationHandle.SuggestMovePreparation(TempDest,self)) 
                    { 
                        MoveTo(TempDest, BotThreat);    
                    } 
                } 
            }  
        } 
        else 
        { 
            MoveTo(Pawn.Location); 
        }    
    } 
    LatentWhatToDoNext(); 
} 

The next code piece is shown in Listing 10–16. It involves resetting the enemy bot after it 

dies: 

 The function ResetAfterSpawn() is called from the BotPawnCh10 class in the 

TakeDamage() function if the enemy bot dies.  

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 10:  First-Person Shooter Game Framework 305 

 The function ExecuteResetAfterSpawn() actually executes the reset/respawn of 

the enemy bot when bJustRespawned is true.  In addition this function unclaims 

any cover nodes owned by the enemy bot and sets up the move to the TakeCover 

state. 

Listing 10–16. Resetting the Bot 

function ResetAfterSpawn() 
{ 
    bJustRespawned = true; 
} 
function ExecuteResetAfterSpawn() 
{ 
    UnclaimAllSlots(); 
    CurrentCover = None; 
    CurrentGoal = None; 
    bGotHealthPickup = false;  
    BotInCover = false; 
    PrepMoveToCover(); 
} 

Listing 10–17 shows the supporting code related to the enemy bot’s Artificial 

Intelligence. This was originally presented in Chapter 5. 

Listing 10–17. AI-related code 

auto state Initial 
{ 
    Begin: 
    LatentWhatToDoNext(); 
} 
event WhatToDoNext() 
{ 
    DecisionComponent.bTriggered = true; 
} 

The piece of code in Listing 10–18 is related to the enemy bot’s AI. A simplified state 

diagram of the enemy bot’s AI is shown in Figure 10–3. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 10:  First-Person Shooter Game Framework 306 

 

Figure 10–3. Simplified state diagram for enemy bot 

In Listing 10–18, the ExecuteWhatToDoNext() function is the main decision-making 
function for the enemy bot. Here the bot makes the decision of which state to transition 
to based on certain conditions such as its health, whether it’s time to attack the 
player or not. 

Listing 10–18. ExecuteWhatToDoNext 

protected event ExecuteWhatToDoNext() 
{ 
    local Actor TempActor; 
 
    if (bJustRespawned) 
    { 
        bJustRespawned = false; 
        ExecuteResetAfterSpawn(); 
        GotoState('TakeCover', 'Begin');        
    } 
    else 
    if (IsInState('Initial')) 
    { 
        PrepMoveToCover(); 
        GotoState('TakeCover', 'Begin'); 
    } 
    else 

BotInCover = false
Spawn

TakeCover

bGotHealthPickup = true
GettingHealthPickup

bGotHealthPickup = false

BotInCover = true AND
HealthPickupAvailable() = true AND
NeedHealthPickup() = true

bStartAttackEnemy = true AND
BotInCover = true AND
IsCurrentCoverValid() = true

bAttackDone = true

AttackingEnemy

bAttackDone = false

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 10:  First-Person Shooter Game Framework 307 

    if (IsInState('TakeCover')) 
    { 
        if (BotInCover) 
        { 
            TempActor = HealthPickupAvailable(); 
            if (NeedHealthPickup() && (TempActor != None)) 
            { 
                // Health Pickup available and needed 
                PrepGettingHealthPickup(TempActor); 
                GotoState('GettingHealthPickup','Begin');                 
            } 
            else 
            if (IsCurrentCoverValid()) 
            { 
               if (bStartAttackEnemy) 
               {                
                   GotoState('AttackingEnemy', 'Begin'); 
               }  
               else 
               { 
                   GotoState('TakeCover', 'Begin'); 
               } 
            } 
            else 
            { 
                PrepMoveToCover(); 
                GotoState('TakeCover', 'Begin'); 
            } 
        } 
        else 
        { 
            GotoState('TakeCover', 'Begin'); 
        } 
    } 
    else 
    if (IsInState('GettingHealthPickup')) 
    { 
        if (!bGotHealthPickup) 
        { 
            GotoState('GettingHealthPickup','Begin');     
        } 
        else 
        { 
            // Got Pickup Now Take Cover 
            PrepMoveToCover(); 
            GotoState('TakeCover', 'Begin'); 
        }   
    } 
    else 
    if (IsInState('AttackingEnemy')) 
    { 
        if (!bAttackDone) 
        { 
            GotoState('AttackingEnemy', 'Begin');      

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 10:  First-Person Shooter Game Framework 308 

        } 
        else  
        { 
            PrepMoveToCover(); 
            GotoState('TakeCover', 'Begin'); 
        } 
    } 
} 

Listing 10–19 contains the next piece of code for this class, which sets the default 

values for the variables in this class. 

Here in the defaultproperties block, you can set key variables such as 

AttackTimeInterval which controls the time the bot waits in cover before attacking and 

AttackOffsetDist which controls how close the enemy bot will get to the player when 

attacking. 

Listing 10–19. Default Properties 

defaultproperties 
{ 
    CurrentGoal = None 
    CurrentCover = None 
    BotInCover = false 
 
    bGotHealthPickup = false 
    HealthPickupTrigger = 49 
    bJustRespawned = false 
 
    AttackOffsetDist = 700 
    bAttackDone = false 
    AttackTimeInterval = 3 
    bStartAttackEnemy = false 
} 

Creating the Bot Weapon 
Next, we need to create the code for the enemy bot’s weapon, shown in Listing 10–20. 

The key new code here is which class of projectiles the weapon will fire and is now set 

to the BotBulletCh10 class. 

Listing 10–20. Enemy bots’s weapon 

class BotWeaponCh10 extends Weapon; 
defaultproperties 
{ 
    Begin Object Class=SkeletalMeshComponent Name=FirstPersonMesh 
        SkeletalMesh=SkeletalMesh'KismetGame_Assets.Anims.SK_JazzGun' 
    End Object 
    Mesh=FirstPersonMesh 
    Components.Add(FirstPersonMesh); 
 
    Begin Object Class=SkeletalMeshComponent Name=PickupMesh 
        SkeletalMesh=SkeletalMesh'KismetGame_Assets.Anims.SK_JazzGun' 
    End Object 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 10:  First-Person Shooter Game Framework 309 

    DroppedPickupMesh=PickupMesh 
    PickupFactoryMesh=PickupMesh 
 
    WeaponFireTypes(0)=EWFT_Projectile 
    WeaponFireTypes(1)=EWFT_NONE 
   
    WeaponProjectiles(0)=class'BotBulletCh10'   
    WeaponProjectiles(1)=class'BotBulletCh10'    
  
    FiringStatesArray(0)=WeaponFiring  
    FireInterval(0)=0.25 
    Spread(0)=0 
} 

Creating the Bot Projectile 
Next, we need to create the projectile class for the enemy bot’s weapon. Listing 10–21 

contains the code. 

The key change here is the lowering of the amount of health damage this projectile does 

to the pawn that it hits from 33 in the JazzBulletSound class to 2 in this derived class. 

This makes it easier to play around with this framework and not get killed so often. 

Listing 10–21. Enemy bot’s weapon’s projectile 

class BotBulletCh10 extends JazzBulletSound;  
simulated singular event Touch(Actor Other, PrimitiveComponent OtherComp, vector 
HitLocation, vector HitNormal) 
{ 
    Other.TakeDamage(2, InstigatorController, HitLocation, -HitNormal, None); 
} 

Creating the Bot Spawn Pad 
Next, we need to create the enemy bot’s spawn pad. The one created in Listing 10–22 is 

similar to the one we created for the sample game in Chapter 7. However, with this pad, 

we add a new 3d mesh graphic to represent our pad and we add a user editable variable 

called PadNumber. You can place an object of this class in a level using the Unreal Editor 

and edit its PadNumber in the properties window. 

Listing 10–22. Bot spawn pad 

class BotSpawnPad extends Actor 
placeable; 
 
var() int PadNumber; 
 
defaultproperties 
{ 
    Begin Object Class=StaticMeshComponent Name=StaticMeshComponent0 
        StaticMesh=StaticMesh'Pickups.jump_pad.S_Pickups_Jump_Pad' 
    End Object 
    Components.Add(StaticMeshComponent0) 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 10:  First-Person Shooter Game Framework 310 

    Begin Object Class=CylinderComponent NAME=CollisionCylinder 
        CollideActors=true 
        CollisionRadius=+0040.000000 
        CollisionHeight=+0040.000000 
    End Object 
    CollisionComponent=CollisionCylinder 
    Components.Add(CollisionCylinder) 
  
    bCollideActors=true 
    PadNumber = 0 
} 

Creating the HUD 
Next, we need to create a custom HUD class. Most of the code will be the same as 

other HUD code from Chapter 6. The custom HUD code is in Listing 10–23, and the 

difference are set in bold print. Notably in this listing, 

 The variable HUDEnemyHealth displays the health of the enemy bot. 

 The HUDEnemyHealth variable is initialized in the PostBeginPlay() 

function. 

 Modifications have been made to the DrawHUD() function to draw the 

enemy bot’s health on the HUD as well as changes needed due to the 

new game type which is ExampleCh10Game. 

Listing 10–23. The Custom HUD 

class FPSHUD extends UDKHud; 
 
struct HUDInfo 
{ 
    var string Label; 
    var Vector2D TextLocation; 
    var Color TextColor; 
    var Vector2D Scale; 
}; 
 
// HUD  
var HUDInfo HUDHealth; 
 
var HUDInfo HUDEnemyHealth; 
var HUDInfo HUDGameOver; 
var HUDInfo HUDScore; 
 
simulated function PostBeginPlay() 
{ 
    Super.PostBeginPlay(); 
 
    HUDHealth.Label = "Health:";  
    HUDHealth.TextLocation.x = 1100; 
    HUDHealth.TextLocation.y = 0; 
    HUDHealth.TextColor.R = 255; 
    HUDHealth.TextColor.G = 0; 
    HUDHealth.TextColor.B = 0; 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 10:  First-Person Shooter Game Framework 311 

    HUDHealth.Scale.X = 2; 
    HUDHealth.Scale.Y = 4; 

    HUDEnemyHealth.Label = "Enemy Health:";  
    HUDEnemyHealth.TextLocation.x = 500; 
    HUDEnemyHealth.TextLocation.y = 0; 
    HUDEnemyHealth.TextColor.R = 255; 
    HUDEnemyHealth.TextColor.G = 0; 
    HUDEnemyHealth.TextColor.B = 0; 
    HUDEnemyHealth.Scale.X = 2; 
    HUDEnemyHealth.Scale.Y = 4; 

    HUDGameOver.Label = "GAME OVER";  
    HUDGameOver.TextLocation.x = 400; 
    HUDGameOver.TextLocation.y = 300; 
    HUDGameOver.TextColor.R = 255; 
    HUDGameOver.TextColor.G = 0; 
    HUDGameOver.TextColor.B = 255; 
    HUDGameOver.Scale.X = 7; 
    HUDGameOver.Scale.Y = 7; 

    HUDScore.Label = "Score:";  
    HUDScore.TextLocation.x = 0; 
    HUDScore.TextLocation.y = 0; 
    HUDScore.TextColor.R = 255; 
    HUDScore.TextColor.G = 0; 
    HUDScore.TextColor.B = 0; 
    HUDScore.Scale.X = 2; 
    HUDScore.Scale.Y = 4; 
} 

function DrawHUDItem(HUDInfo Info, coerce string Value) 
{ 
    local Vector2D TextSize; 

    Canvas.SetDrawColor(Info.TextColor.R, Info.TextColor.G, Info.TextColor.B);  
    Canvas.SetPos(Info.TextLocation.X, Info.TextLocation.Y); 
    Canvas.DrawText(Info.Label, ,Info.Scale.X,Info.Scale.Y); 
    Canvas.TextSize(Info.Label, TextSize.X, TextSize.Y); 
    Canvas.SetPos(Info.TextLocation.X + (TextSize.X * Info.Scale.X), 
Info.TextLocation.Y); 
    Canvas.DrawText(Value, , Info.Scale.X, Info.Scale.Y); 
} 
function DrawHUD() 
{     
    super.DrawHUD(); 
    Canvas.Font = class'Engine'.static.GetLargeFont(); 
    // Score 
    DrawHUDItem(HUDScore,ExampleCh10Game(WorldInfo.Game).Score); 
    // Enemy Health 
    DrawHUDItem(HUDEnemyHealth, ExampleCh10PC(PlayerOwner).EnemyPawn.Health); 
    // Health 
    DrawHUDItem(HUDHealth,PlayerOwner.Pawn.Health); 
    // Game Over 
    if (ExampleCh10Game(WorldInfo.Game).bGameOver) 
    { 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 10:  First-Person Shooter Game Framework 312 

        DrawHUDItem(HUDGameOver, ""); 
    }   
} 
defaultProperties 
{ 
} 

Creating the Bonus  
The next class we need to create is the class that represents the Health Bonus power-

up class. This class is shown in Listing 10–24. 

The key functions in this class are the Touch() and Tick() functions. The Touch() 

function is called when this object touches another object. If the object touched is a 

player then the player’s health powerup function is called. If the object is an enemy bot 

then the enemy bot’s health powerup function is called. The Tick() function is called 

continuously and is used to update the rotation of the health bonus 3d mesh in the 

game world. 

The Value variable is the amount of health to add to the player or an enemy bot. 

Listing 10–24. Health Bonus power-up class 

class Bonus1 extends Actor 
placeable; 
 
var() float Value; 
var SoundCue PickupSound; 
var int SoundCueLength; 
 
event Touch(Actor Other, PrimitiveComponent OtherComp, vector HitLocation, vector 
HitNormal) 
{     
    WorldInfo.Game.Broadcast(self,"Health Bonus1 Has Been Touched by " @ Other @ ", 
Bonus Value = " @ Value); 
    if (Other.IsA('JazzCh10Pawn')) 
    { 
        JazzCh10Pawn(Other).AddHealthBonus(Value);   
        PlaySound(PickUpSound);  
        destroy();  
    } 
    else  
    if (Other.IsA('BotPawnCh10')) 
    { 
        BotPawnCh10(Other).AddHealthBonus(Value);  
        PlaySound(PickUpSound);    
        destroy();  
    }      
} 
 
function Tick(FLOAT DeltaTime) 
{ 
    local Rotator TempRot; 
         
    TempRot = Rotation; 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 10:  First-Person Shooter Game Framework 313 

    TempRot.yaw = Rotation.yaw + (15000 * DeltaTime); 
    SetRotation(TempRot); 
} 
 
defaultproperties 
{ 
    Begin Object Class=StaticMeshComponent Name=HealthMesh      
        StaticMesh=StaticMesh'Pickups.Health_Large.Mesh.S_Pickups_Health_Large_Keg' 
    End Object 
    Components.Add(HealthMesh) 
  
    Begin Object Class=CylinderComponent NAME=CollisionCylinder 
        CollideActors=true 
        CollisionRadius=+0040.000000 
        CollisionHeight=+0040.000000 
    End Object 
    CollisionComponent=CollisionCylinder 
    Components.Add(CollisionCylinder) 
  
    bCollideActors=true 
    bEdShouldSnap=True 
   
    value = 25 
    PickupSound = SoundCue'A_Pickups.Health.Cue.A_Pickups_Health_Super_Cue' 
    SoundCueLength = 3    
} 

Configuring the Game Type  
Next, we need to set up this new example for compilation and for playing on the mobile 

previewer. In the configuration directory located at 

C:\UDK\UDK-2011-06\UDKGame\Config 

change the UDKEngine.ini and Mobile-UDKGame.ini configuration files to the following. 

(This path is for the June 2011 version of the UDK. If you are using a different UDK 

version, then this default directory will be different.) 

UDKEngine.ini 
[UnrealEd.EditorEngine] 
ModEditPackages=ExampleCh10 
Mobile-UDKGame.ini 
[ExampleCh10.ExampleCh10Game] 
RequiredMobileInputConfigs=(GroupName="UberGroup",RequireZoneNames=("UberStickMoveZone",
"UberStickLookZone","UberLookZone")) 

Save the configuration files. You may need to write protect them to preserve the 

contents since the UDK sometimes overwrites them (see the section “Configuring the 

Game Type” in Chapter 9). 

Bring up the Unreal Frontend and compile the scripts. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 10:  First-Person Shooter Game Framework 314 

Creating the Level 
The next thing we need to do is create the level. Perform the following steps: 

1. Bring up the Unreal Editor. 

2. Load in the level that you created in Chapter 8 that involves the bot moving from 

cover to cover and hiding from the player. (You also can find the level—

ExampleCh8Map.zip—with the source code for this book.)  

3. Save the level as a new level by selecting File  Save As from the main menu and 

entering a new filename for the map. Choose whatever filename you wish. 

4. The level should consist of a group of crates with cover nodes placed on each 

side of the box with cover slots facing each side of the box. See Figure 10–4. 

 

Figure 10–4. Crate with cover nodes 

5. Select the crate and cover nodes by holding down the Ctrl key and clicking on the 

crate and all the cover nodes around it. Then make copies of these objects until 

they are spread across the level. Hold down the Alt key and move the 

transformation widget to create a new copy and move it to an open area. See 

Figure 10–5. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 10:  First-Person Shooter Game Framework 315 

 

Figure 10–5. Level with crates with cover nodes 

6. Now we need to create and place the enemy bot spawn pad. Go to the Actor 

Classes tab in the generic browser and type in BotSpawnPad into the search box 

to bring up the new BotSpawnPad class. Click on the class and drag and drop it 

into an empty corner of the level.  

7. Type in Bonus1 into the search box in the Actor Classes tab to bring up the 

Bonus1 class. Click on this class and drag and drop it near the spawn pad you just 

placed in the level (see Figure 10–6).  

 

Figure 10–6. Putting a bot spawn pad and bonus in a corner of the level 

8. Put spawn pads and Bonus power-ups in each of the four corners of the level. For 

the first bot spawn pad, set the number to 0 and number each one consecutively 

higher. 

9. Rebuild the AI paths by selecting Build  AI Paths from the Unreal Editor menu. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 10:  First-Person Shooter Game Framework 316 

10. Save the level by selecting File  Save Current Level.  

Running the Game 
Now, we are ready to run our game. Follow these steps: 

1. Select View  World Properties from the Unreal Editor main menu. This brings up the 

World Properties window. 

2. In the World Properties window set the Default Game Type under the Game Type 

category to ExampleCh10Game. 

3. Select the Play  On Mobile Previewer option to run the game on the mobile 

previewer form the Editor. 

Figure 10–7 shows the player being attacked by the enemy bot. Figure 10–8 shows the 

enemy bot taking cover from the player. Figure 10–9 shows the bot getting a health 

power-up. 

 

Figure 10–7. Enemy bot attacking the player 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 10:  First-Person Shooter Game Framework 317 

 

Figure 10–8. Enemy bot taking cover from player 

 

Figure 10–9. Enemy bot retrieving a health power up 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 10:  First-Person Shooter Game Framework 318 

Summary 
In this chapter we created a game framework for a first-person deathmatch style combat 

game. We first gave a general overview of the game and a specific overview including 

code-specific ways on how this game framework could be extended. Next we created 

the actual game framework. We then built the level and ran the game on the mobile 

previewer from the Unreal Editor. In conclusion, the game framework presented in this 

chapter would be a good starting point for your own first-person shooter style game that 

involves enemy bots moving into and out of cover and attacking the player. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


 
319 

                         Chapter 

Third-Person 
Shooter/Adventure Game 
Framework 
In this chapter we will cover a third-person shooter / adventure game framework. A 

third-person shooter is distinct from a first-person shooter in that the player’s pawn is 

visible. The great advantage of this is that it adds a movie like quality to the game. The 

player can see the in-game representation of himself perform various actions such as 

running, jumping, reloading, and firing weapons. An adventure game has the distinction 

of the player commanding other members of his party or squad to perform certain 

actions. This framework adds that feature whereby the player can command a 

computer-controlled character. 

First a game framework overview is given. In this overview we give a general overview of 

the features of the framework, and then we give more code specific details on how 

these features are implemented. Next, we create the actual framework.  

The general framework presented in this chapter consists of: 

 A controllable player ally bot that can move to a location designated by the 

player, attack enemies selected by the player, and follows the player by default. 

 An enemy bot that guards an asset and responds to attacks on that 

asset by attacking the player or bot responsible. 

 An enemy asset that has a link to an enemy bot that guards it. 

 A custom HUD that displays the player’s health, the health of the 

player’s bot ally, and the health of the objective (the enemy asset that 

is guarded) that the player must destroy. 

 Framework code that tracks the health of the guarded enemy asset 

and displays a message when that enemy asset has been destroyed. 

11 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 11:  Third-Person Shooter/Adventure Game Framework 320 

Game Framework Overview 
In this section we give you an overview of the game framework from a general 

standpoint and a specific standpoint. The general overview will give you in general non-

code specific terms the key features of this framework. The specific overview will give 

you a more detailed code specific overview of the game framework.   

General Overview 
This framework provides the basis for games you can define and create. It consists of 

various models, such as bots, meshes, and a HUD, that you can use or build on to 

produce the kind of game experience you want. 

In this framework we build a player-controlled bot. This bot is issued commands by the 

player and then executes these commands. You can extend this framework by adding in 

new commands and the new states that will be needed to implement these commands. 

For a shooter type game a modification might be to modify the attack command so that 

your bot will attack certain target types with certain weapons that the player can specify. 

For an adventure style game a modification might be to add in a new set of commands 

specific to the needs of your adventure game. For example, you can expand the 

command set to include a command to have your bot negotiate with enemy forces.   

In a general sense we have shown how to link the behaviors of objects of two different 

classes: 

 We have created a computer-controlled bot that can respond to a 

threat to another Actor that it is guarding by attacking the threat and 

discontinuing that attack if certain conditions are true. Currently, that 

attack is broken off if the bot moves to a location that is too far away 

from the item it is guarding. You can expand on this framework by 

changing what specific type of Actor the bot is guarding, how the bot 

responds to a threat, and what conditions are needed for the bot to 

stop its attack on the threat.   

 A new placeable class is created that includes a 3d mesh and is linked 

to another Actor that protects it. You can expand on this framework by 

changing the type of 3d mesh or the type of Actor that is associated 

with this class. For example, associate this object with the enemy that 

is assigned to destroy it.    

This basic idea can be expanded to include any situation when you need to link events 

that occur to one type of object to behavior that needs to occur to another type of 

object. 

A new HUD class that displays critical game statistics is presented. You can expand on 

this framework by adding or subtracting statistics that you want to add or delete from 

the HUD display using existing statistics as examples of how to do this. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 11:  Third-Person Shooter/Adventure Game Framework 321 

Specific Overview 
The artificial intelligence for the player’s bot ally is implemented in the 

BotAllyController class. The player issues commands to the bot through the player 

controller class which is ExampleCh11PC. The ally bot is controlled by the player by 

issuing the commands: 

Follow, to have the bot follow the player around the level  

Move, to have the bot move to a specific location in the game world, and  

Attack, to have the bot start its attack on the enemy bot that is guarding 

the objective. 

The enemy bot’s artificial intelligence is implemented in the BotControllerGuard class 

and the bot’s physical body is implemented in the GuardPawn class. 

The player’s objective which is the power generator is implemented in the Generator

class. This objective is guarded by an enemy bot that is referenced by the Guard

variable that is of the Pawn class. 

The custom Heads Up Display is implemented in the Ch11HUD class and displays the 

player’s health, the player’s bot’s health, and the objective’s health as well as displays 

the mission accomplished message when the enemy asset is destroyed. 

Hands-on Example: Third-Person Shooter/Adventure 
Game Framework 
In this section we will build a framework suitable for a third-person shooter, third-person 

adventure game or a perhaps a combination. You will be able to control an ally bot and 

move it around the game world and order it to attack the enemy bot guarding the power 

generator. Your objective would be to destroy this generator. We create new classes for 

a game type, player controller, enemy guard controller, enemy guard pawn, player bot 

ally controller, generator, HUD, and a custom bot marker that indicates toward what the 

player’s ally bot is to move.   

Creating the Game Type 
The first thing we need to do is create a new directory for the code for this project. 

Create the ExampleCh11 directory under your default UDK installation directory at 

C:\UDK\UDK-2011-06\Development\Src. If you are using a different version of the UDK 

other than the June 2011 UDK then this default directory will be different. Create a 

directory called Classes under the new directory you just created and put all your source 

code files in this directory. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 11:  Third-Person Shooter/Adventure Game Framework 322 

Create the following class, shown in Listing 11–1, and save it under the filename 

“ExampleCh11Game.uc”. Again, as with all previous examples in this book, the filenames 

must match the classnames and the file extension must be “.uc”. 

The code in bold represents new or modified code from what was presented in previous 

chapters as well as important code that the reader should pay special attention to. 

Listing 11–1. Game type 

class ExampleCh11Game extends FrameworkGame; 
 
event OnEngineHasLoaded() 
{ 
    WorldInfo.Game.Broadcast(self,"ExampleCh11Game Type Active - Engine Has Loaded 
!!!!"); 
} 
function bool PreventDeath(Pawn KilledPawn, Controller Killer, class<DamageType> 
DamageType, vector HitLocation) 
{ 
    return true; 
} 
static event class<GameInfo> SetGameType(string MapName, string Options, string Portal) 
{ 
    return super.SetGameType(MapName, Options, Portal); 
} 
defaultproperties 
{ 
    PlayerControllerClass=class'ExampleCh11.ExampleCh11PC'  
    DefaultPawnClass=class'JazzPawnDamage' 
    HUDType=class'Ch11HUD' 
    bRestartLevel=false 
    bWaitingToStartMatch=true 
    bDelayedStart=false 
} 

The PlayerControllerClass variable points to our custom player controller class 

ExampleCh11PC. The HUDType variable points to our custom HUD for this framework which 

is Ch11HUD. 

Creating the Player Controller 
Next, we need to create our custom player controller class. This class is similar to the 

player controller class in Chapter 5 covering bots in that the player can click on an area 

in the game world and have the bot move to that area. However, much has been 

changed and added. Now, the player must first select the ally bot and then direct the 

ally bot to an area to move to or an enemy bot to attack.   

When the player is first initialized, the function SpawnAllyBot() is called to create the 

player’s ally bot and the function CreateNewGuardBot() is called to create the enemy 

guard bot that guards the player’s objective. In the PlayerTick() function that is 

continuously called, the FindObjectiveHealth() function is called to determine the 

damage done to the enemy structure and sets the bGameOver variable to true if this is 

true. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 11:  Third-Person Shooter/Adventure Game Framework 323 

When the user touches the screen the function ProcessTouch() is called to process this 

user generated touch. It is this function that determines if the player is commanding the 

ally bot to move to a new location, to attack an enemy or is just firing the player’s own 

weapon. 

The listings in this section detail the controller class with explanations. You can find the 

complete source code listing without comments with the source code for the book. 

The first section of code for this class is in Listing 11–2 and covers the class variables 

and the function that determines the objective’s (which is the enemy power generator) 

health. 

Listing 11–2. Class Variables and FindObjectiveHealth 

class ExampleCh11PC extends SimplePC; 
var Controller AllyBot; 
Var Pawn AllyPawn; 
var Controller GuardBot; 
Var Pawn GuardPawn; 
var bool BotSpawned; 
var Actor BotTarget; 
var float PickDistance; 
var bool bBotCommandStateActive; 
var int ObjectiveHealth; 
var bool bGameOver; 
function FindObjectiveHealth() 
{ 
    local Generator TempGenerator; 
 
    foreach AllActors(class'Generator', TempGenerator) 
    { 
        ObjectiveHealth = TempGenerator.Health;             
    } 
} 

Key things to note in this listing are: 

 The AllyBot and AllyPawn variables hold references to the controller 

for the player-controlled bot ally and the pawn for that ally. 

 The GuardBot and GuardPawn variables are used to create the controller 

and pawn for the enemy guard that protects the enemy asset and is 

the player’s goal to destroy. 

 The bBotCommandStateActive variable is true if the player’s bot ally is 

currently selected (last object touched). The next touch will be the 

enemy bot to attack or the place in the game world to move to. 

 The ObjectiveHealth holds the health of enemy asset that the player 

needs to destroy in order to win the game. 

 The bGameOver is true if the player has destroyed the generator, false 

otherwise. 

r
www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 11:  Third-Person Shooter/Adventure Game Framework 324 

 The FindObjectiveHealth() function searches all the actors in the 

level and retrieves the health of the player’s objective which is the 

power generator that needs to be destroyed. 

The next piece of code is in Listing 11–3 and deals with picking an Actor. The 

PickActor() function determines if the user has touched and Actor on the screen and is 

the same function as in the hands-on example in Chapter 2. 

Listing 11–3. PickActor 

function Actor PickActor(Vector2D PickLocation, out Vector HitLocation, out TraceHitInfo 
HitInfo) 
{ 
    local Vector TouchOrigin, TouchDir; 
    local Vector HitNormal; 
    local Actor  PickedActor; 
    local vector Extent; 
 
    //Transform absolute screen coordinates to relative coordinates 
    PickLocation.X = PickLocation.X / ViewportSize.X; 
    PickLocation.Y = PickLocation.Y / ViewportSize.Y; 
    
    //Transform to world coordinates to get pick ray 
    LocalPlayer(Player).Deproject(PickLocation, TouchOrigin, TouchDir); 
    
    //Perform trace to find touched actor 
    Extent = vect(0,0,0); 
    PickedActor = Trace(HitLocation, 
                        HitNormal,  
                        TouchOrigin + (TouchDir * PickDistance),  
                        TouchOrigin,  
                        True,  
                        Extent,  
                        HitInfo); 
 
    //Return the touched actor for good measure 
    return PickedActor; 
} 

The next code segment, shown in Listing 11–4, includes functions related to 

commanding the player’s ally bot. The key ones to notice: 

 The SetBotMarkerGraphic() function creates a new botmarker if one 

does not currently exist and sets the position of it based on the Loc 

input parameter modified by the offset input vector. 

 The ExecuteBotMoveCommand() function sets the bot graphic marker to 

the input HitLocation position and sends a Move command to the 

player-controlled bot to move the bot to the location of the bot marker. 

 The ExecuteBotAttackCommand() function sets the bot marker graphic 

to a location above the attack target with the arrow pointing 

downward. The player-controlled bot is also given the Attack 

command directed against the Target.  

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 11:  Third-Person Shooter/Adventure Game Framework 325 

 The SelectBotAllyGraphic() function sets the location of the bot marker when 

selecting the player-controlled ally bot. The location of the bot marker is offset so 

that it is just above the ally bot. 

Listing 11–4. Bot Command Related Functions 

function SetBotMarkerGraphic(vector Loc, optional vector offset) 
{ 
    Loc = Loc + offset; 
    If (BotTarget == None) 
    { 
        WorldInfo.Game.Broadcast(None,"Creating New Move Marker!!!!!!!!");  
        BotTarget = Spawn(class'BotMarker2',,,Loc);  
    } 
    else 
    {    
        BotTarget.SetLocation(Loc);  
    } 
} 
reliable server function ExecuteBotMoveCommand(Vector HitLocation) 
{ 
    // 1. Set Marker  
    Hitlocation.z += 50; // Add offset to help bot navigate to point 
    SetBotMarkerGraphic(Hitlocation);   
    // 2. Send Move Command to bot along with target location  
    BotAllyController(AllyBot).SetCommand(Move, BotTarget); 
} 
function ExecuteBotAttackCommand(Actor Target) 
{ 
    // 1. Set Marker  
    SetBotMarkerGraphic(Target.Location, vect(0,0,200));  
    // 2. Send Attack Command to bot along with target location 
    BotAllyController(AllyBot).SetCommand(Attack, Target); 
} 
function SelectBotAllyGraphic(vector Loc) 
{  
    Loc.z += 200; // Add offset to help bot navigate to point 
    SetBotMarkerGraphic(Loc); 
} 

The code segment in Listing 11–5 involves the creation of the enemy bot that guards the 

power generator. Note the following functions included in this listing: 

 The FindSpawnPad() function is the same as the one in the Chapter 10 

framework.  

 The SpawnGuardBot() function creates a new enemy guard bot that will 

seek out a generator that is unguarded and will guard it. The bot uses 

the BotControllerGuard controller class and the GuardPawn pawn class 

and is created at SpawnLocation location offset by the Offset vector. 

 The CreateNewGuardBot() function finds the spawn pad in the level 

and creates the enemy guard bot on that spawn pad. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 11:  Third-Person Shooter/Adventure Game Framework 326 

Listing 11–5. Enemy Guard Bot Creation 

function Actor FindSpawnPad(int PadNumber) 
{ 
    local BotSpawnPad TempSpawnPad; 
    local Actor ReturnSpawnPad; 
    ReturnSpawnPad = None; 
    foreach AllActors(class'BotSpawnPad', TempSpawnPad) 
    { 
        if(TempSpawnPad.PadNumber == PadNumber) 
        { 
            ReturnSpawnPad = TempSpawnPad;  
        }             
    } 
    return ReturnSpawnPad;    
} 
 
function SpawnGuardBot(Vector SpawnLocation,optional Vector Offset) 
{ 
    SpawnLocation = SpawnLocation + Offset; 
    GuardBot = Spawn(class'BotControllerGuard',,,SpawnLocation);   
    GuardPawn = Spawn(class'GuardPawn',,,SpawnLocation);  
    GuardBot.Possess(GuardPawn,false); 
    GuardPawn(GuardPawn).AddDefaultInventory(); 
    GuardPawn(GuardPawn).InitialLocation = SpawnLocation; 
    GuardPawn.SetPhysics(PHYS_Falling); 
} 
function CreateNewGuardBot() 
{ 
    local Actor TempPad; 
    TempPad = FindSpawnPad(0); 
    if (TempPad != None) 
    { 
        SpawnGuardBot(TempPad.Location); 
    } 
} 

In Listing 11–6, the Player’s ally bot is created. The SpawnAllyBot() function creates a 

new player-controlled ally bot using the BotAllyController class for the controller and 

the BotPawn class for the pawn. The bot is created at SpawnLocation location offset by 

the Offset vector. 

Listing 11–6. Creating the Player’s Ally Bot 

function SpawnAllyBot(Vector SpawnLocation, optional Vector Offset) 
{ 
    SpawnLocation = SpawnLocation + Offset; 
    AllyBot = Spawn(class'BotAllyController',,,SpawnLocation);   
    AllyPawn = Spawn(class'BotPawn',,,SpawnLocation);  
    AllyBot.Possess(AllyPawn,false);  
    BotAllyController(AllyBot).SetCommand(Follow, Pawn); 
    BotAllyController(AllyBot).BotOwner = Pawn;  
    BotPawn(AllyPawn).AddDefaultInventory(); 
    BotPawn(AllyPawn).InitialLocation = SpawnLocation; 
    AllyPawn.SetPhysics(PHYS_Falling); 
} 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 11:  Third-Person Shooter/Adventure Game Framework 327 

The next piece of code involves functions that test whether the actor that is touched by 

the player is an ally bot or an enemy bot (see Listing 11–7): 

 The IsActorAllyBot() function returns true if the touched Actor input 

in the TestBot parameter is of the type of pawn used by the bot ally. 

 The IsActorGuardBot() function returns true if the tested Actor is of a 

pawn type used by the enemy guard bot. 

Listing 11–7. Ally or Enemy Bot Test Functions 

function bool IsActorAllyBot(Actor TestBot) 
{ 
    local bool bretval; 
    bretval = TestBot.IsA('BotPawn'); 
    return bretval; 
} 
 
function bool IsActorGuardBot(Actor TestBot) 
{ 
    local bool bretval; 
    bretval = TestBot.IsA('GuardPawn'); 
    return bretval; 
} 

The next code segment, shown in Listing 11–8, processes the player’s touch input. 

The ProcessTouch() function is the main processing function for user generated 

touches. If the bBotCommandStateActive is true that is the ally bot has been selected then 

if the touched actor is an enemy bot then execute the command to attack it. Otherwise if 

it is another location in the game world and not the ally bot’s position then execute the 

command to move the ally bot to that location. 

If the bBotCommandStateActive is false then if the touched actor is the ally bot then set 

the bBotCommandStateActive to true so that the next touch can execute a bot command 

either moving to a new location or attacking an enemy bot. Otherwise, start firing the 

player’s weapon. 

Listing 11–8. Processing the Player’s Touch Input 

function ProcessTouch(Actor TouchedActor, vector HitLocation) 
{ 
    if (bBotCommandStateActive) 
    { 
        if (IsActorGuardBot(TouchedActor)) 
        { 
            ExecuteBotAttackCommand(TouchedActor); 
            bBotCommandStateActive = false; 
        } 
        else  
        if (!IsActorAllyBot(TouchedActor)) 
        { 
            ExecuteBotMoveCommand(HitLocation); 
            bBotCommandStateActive = false; 
        } 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 11:  Third-Person Shooter/Adventure Game Framework 328 

    } 
    else 
    { 
        if (IsActorAllyBot(TouchedActor)) 
        { 
            SelectBotAllyGraphic(TouchedActor.Location); 
            bBotCommandStateActive = true; 
        } 
        else 
        { 
            // Start Firing pawn's weapon 
     StartFire(0);             
        } 
    } 
} 

The SwipeZoneCallback() function in Listing 11–9 is modified from previous versions 

used in previous chapters, in that the ProcessTouch() function is now called to process 

the user’s touch input. The original function was defined in the hands-on example in 

Chapter 2. 

Listing 11–9. SwipeZoneCallback 

function bool SwipeZoneCallback(MobileInputZone Zone,  
                                float DeltaTime,  
                                int Handle, 
                                EZoneTouchEvent EventType,  
                                Vector2D TouchLocation) 
{  
    local bool retval; 
    local Actor TempActor; 
    local Vector HitLocation; 
    local TraceHitInfo HitInfo; 
     
    retval = true; 
    if (EventType == ZoneEvent_Touch) 
    { 
        // Code for Setting Bot WayPoint 
        TempActor = PickActor(TouchLocation, HitLocation, HitInfo); 
        ProcessTouch(TempActor, HitLocation); 
    } 
    else 
    if(EventType == ZoneEvent_Update) 
    {  
    }   
    else 
    if (EventType == ZoneEvent_UnTouch) 
    {  
 // Stop Firing Pawn's weapon 
 StopFire(0); 
    }  
    return retval; 
} 
function SetupZones() 
{ 
    Super.SetupZones(); 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 11:  Third-Person Shooter/Adventure Game Framework 329 

    // If we have a game class, configure the zones 
    if (MPI != None && WorldInfo.GRI.GameClass != none)  
    { 
        LocalPlayer(Player).ViewportClient.GetViewportSize(ViewportSize); 
        if (FreeLookZone != none) 
        { 
            FreeLookZone.OnProcessInputDelegate = SwipeZoneCallback; 
        }  
    } 
} 

The last chunk of code for this class is shown in Listing 11–10. It covers the 

PlayerTick() function and default properties. The function has been modified to create 

the enemy bot and player’s ally bot when the controller is first ticked. Also, the health of 

the player’s objective is monitored and the game over status is set to true if the power 

generator’s health is equal to or less than 0. 

Listing 11–10. PlayerTick  

function PlayerTick(float DeltaTime) 
{ 
    local vector AllyBotPos;   
    Super.PlayerTick(DeltaTime);  
    if (!BotSpawned) 
    { 
        AllyBotPos = Pawn.Location + Normal(Vector(Pawn.Rotation)) * 100;         
        SpawnAllyBot(AllyBotPos,vect(0,0,500)); 
        BotSpawned = true; 
 JazzPawnDamage(Pawn).InitialLocation = Pawn.Location; 
        CreateNewGuardBot(); 
    } 
    FindObjectiveHealth(); 
    if (ObjectiveHealth <= 0) 
    { 
        bGameOver = true; 
    } 
} 
defaultproperties 
{ 
    BotSpawned=false 
    PickDistance = 10000 
    bBotCommandStateActive = false 
    bGameOver = false 
} 

FRAMEWORK NOTE: This class can be modified in many ways such as to allow the player to 
control more bots or to change the way the player actually selects and gives the ally bot or bots 

their orders.  

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 11:  Third-Person Shooter/Adventure Game Framework 330 

Creating the Bot Ally Controller 
Next, we need to create the code for the controller for the player’s ally bot. 

The artificial intelligence for the player’s bot ally is implemented in this class with the 

function ExecuteWhatToDoNext() being the main entry point for programmer defined 

custom behavior. The bot starts in the Initial state and goes to the FollowingTarget 

state. The bot is given the default command to follow the player when it is first created. 

Each of the available bot commands maps to a state within the BotAllyController class 

that implements that command. 

The Follow command maps to the FollowingTarget state. The Move command maps to 

the MovingToMarker state. The Attack command maps to the AttackingEnemy state. 

The first piece of code for this class, shown in Listing 11–11, involves bot commands. 

Key items in this listing are that: 

 The FollowTarget holds a reference to the player’s pawn that the ally 

bot will follow. 

 The MoveToTarget holds a reference to the bot marker that the ally bot 

will move to. 

 The AttackTarget holds a reference to the enemy bot’s pawn that the 

ally bot will attack. 

 The Command variable holds a player specified order for the ally bot. The 

orders are to Follow the player, Move to the location of the bot marker, 

or to Attack the enemy bot that is guarding the power generator. 

 The SetCommand() function sets the command that the ally bot will 

follow as well as does some initializations that are command specific. 

Listing 11–11. Bot Commands 

class BotAllyController extends UDKBot; 
 
var Vector TempDest; 
var float FollowDistanceTarget; 
var float FollowDistanceMarker;     
var Actor TempGoal; 
var float AttackOffsetDist; 
var bool bAttackDone; 
var int AttackDuration; 
var Pawn BotOwner; 
var Actor FollowTarget; 
var Actor MoveToTarget; 
var Actor AttackTarget; 
 
enum BotCommand 
{ 
    Follow, 
    Move, 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 11:  Third-Person Shooter/Adventure Game Framework 331 

    Attack 
}; 
var BotCommand Command; 
function SetCommand(BotCommand Order, Actor Target) 
{ 
    Command = Order;     
    if (Command == Follow) 
    { 
       FollowTarget = Target; 
    } 
    else 
    if (Command == Move) 
    { 
        MoveToTarget = Target; 
    } 
    else 
    if (Command == Attack) 
    { 
        AttackTarget = Target; 
        bAttackDone = false; 
    } 
} 

The next piece of code is the GeneratePathTo() function from Chapter 5 that does the 

actual pathfinding using a navigation mesh (see Listing 11–12).  

Listing 11–12. GeneratePathTo 

event bool GeneratePathTo(Actor Goal, optional float WithinDistance, optional bool 
bAllowPartialPath) 
{ 
    if( NavigationHandle == None ) 
    return FALSE; 
    // Clear cache and constraints (ignore recycling for the moment) 
    NavigationHandle.PathConstraintList = none; 
    NavigationHandle.PathGoalList = none; 
    class'NavMeshPath_Toward'.static.TowardGoal( NavigationHandle, Goal ); 
    class'NavMeshGoal_At'.static.AtActor( NavigationHandle, Goal, WithinDistance, 
bAllowPartialPath ); 
    return NavigationHandle.FindPath(); 
} 

The FollowingTarget state, shown in Listing 11–13, makes this bot follow the player 

around the level. When the actor is directly reachable, the bot stops when it is within 

FollowDistanceTarget Unreal units of distance from the player. 

NOTE: In the BeginState and EndState functions, the “Put Code Here” comments in the code 

refer to new code you can add to extend this framework for you own customized game. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 11:  Third-Person Shooter/Adventure Game Framework 332 

Listing 11–13. FollowingTarget State 

state FollowingTarget 
{ 
    event BeginState( Name PreviousStateName ) 
    { 
        // Put code here that is to only be executed when the state is first entered        
    } 
    event EndState( Name NextStateName ) 
    { 
        // Put code here that is to be executed only when exiting this state        
    } 
    Begin: 
    WorldInfo.Game.Broadcast(self,"************** IN State FollowTarget "); 
    // Move Bot to Target 
    if (FollowTarget != None) 
    { 
        if(GeneratePathTo(FollowTarget)) 
        { 
            NavigationHandle.SetFinalDestination(FollowTarget.Location);  
   
            if( NavigationHandle.ActorReachable(FollowTarget) ) 
            {    
                // then move directly to the actor  
                MoveTo(FollowTarget.Location, ,FollowDistanceTarget);   
            } 
            else 
            { 
                // move to the first node on the path 
                if( NavigationHandle.GetNextMoveLocation(TempDest, 
Pawn.GetCollisionRadius()) ) 
                {                
                    if (!NavigationHandle.SuggestMovePreparation(TempDest,self)) 
                    { 
                        MoveTo(TempDest);       
                    } 
                } 
            }  
        } 
        else 
        { 
            //give up because the nav mesh failed to find a path 
            `warn("FindNavMeshPath failed to find a path!");  
            WorldInfo.Game.Broadcast(self,"FindNavMeshPath failed to find a path!, 
FollowTarget= " @ FollowTarget); 
            MoveTo(Pawn.Location); 
        }    
    } 
    LatentWhatToDoNext(); 
} 

Listing 11–14 shows the MovingToMarker state. This state makes the bot move toward 

the bot marker, and when the bot marker is directly reachable, it stops the bot when it is 

within FollowDistanceMarker using Unreal units of distance of the marker. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 11:  Third-Person Shooter/Adventure Game Framework 333 

Listing 11–14. MovingToMarker State 

state MovingToMarker 
{ 
    event BeginState( Name PreviousStateName ) 
    { 
        // Put code here that is to only be executed when the state is first entered         
    } 
    event EndState( Name NextStateName ) 
    { 
        // Put code here that is to be executed only when exiting this state       
 
    } 
    Begin: 
    WorldInfo.Game.Broadcast(self,"************** IN State MoveToMarker "); 
    // Move Bot to Target 
    if (MoveToTarget != None) 
    { 
        if(GeneratePathTo(MoveToTarget)) 
        { 
            NavigationHandle.SetFinalDestination(MoveToTarget.Location);  
   
            if( NavigationHandle.ActorReachable(MoveToTarget) ) 
            {    
                // then move directly to the actor  
                MoveTo(MoveToTarget.Location, ,FollowDistanceMarker);   
            } 
            else 
            { 
                // move to the first node on the path 
                if( NavigationHandle.GetNextMoveLocation(TempDest, 
Pawn.GetCollisionRadius()) ) 
                {                   
                    if (!NavigationHandle.SuggestMovePreparation(TempDest,self)) 
                    { 
                        MoveTo(TempDest);    
                    } 
                } 
            }  
        } 
        else 
        { 
            //give up because the nav mesh failed to find a path 
            `warn("FindNavMeshPath failed to find a path!");  
            WorldInfo.Game.Broadcast(self,"FindNavMeshPath failed to find a path!, 
MoveToTarget= " @ MoveToTarget); 
            MoveTo(Pawn.Location); 
        }    
    } 
    LatentWhatToDoNext(); 
} 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 11:  Third-Person Shooter/Adventure Game Framework 334 

The AttackingEnemy state shown in Listing 11–15 makes this bot move toward the 

enemy pawn and attack it. When the enemy bot is directly reachable, it stops the bot 

when it is within AttackOffsetDist Unreal units of distance of the enemy. 

Listing 11–15. AttackingEnemy State 

state AttackingEnemy 
{ 
    event BeginState( Name PreviousStateName ) 
    { 
        // Put code here that is to only be executed when the state is first entered   
        Pawn.StartFire(0);   
        bAttackDone = false;        
    } 
    event EndState( Name NextStateName ) 
    { 
        // Put code here that is to be executed only when exiting this state 
        Pawn.StopFire(0);      
    } 
 
    Begin: 
    WorldInfo.Game.Broadcast(self,"############# In State AttackingEnemy"); 
     
    if (AttackTarget != None) 
    { 
        if(GeneratePathTo(AttackTarget)) 
        { 
            NavigationHandle.SetFinalDestination(AttackTarget.Location);  
   
            if( NavigationHandle.ActorReachable(AttackTarget) ) 
            {    
                // then move directly to the actor  
                MoveTo(AttackTarget.Location, AttackTarget, AttackOffsetDist);  
                Sleep(AttackDuration);  
                bAttackDone = true;     
            } 
            else 
            { 
                // move to the first node on the path 
                if( NavigationHandle.GetNextMoveLocation(TempDest, 
Pawn.GetCollisionRadius()) ) 
                {              
                    if (!NavigationHandle.SuggestMovePreparation(TempDest,self)) 
                    { 
                        MoveTo(TempDest, AttackTarget);   
                    } 
                } 
            }  
        } 
        else 
        { 
            //give up because the nav mesh failed to find a path  
            WorldInfo.Game.Broadcast(self,"FindNavMeshPath failed to find a 
path!,AttackTarget = " @ AttackTarget); 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 11:  Third-Person Shooter/Adventure Game Framework 335 

            MoveTo(Pawn.Location); 
        }    
    } 
 
    LatentWhatToDoNext(); 
} 

Next is the code in Listing 11–16 that provides support to the bot’s AI and originally 

appeared in Chapter 5.  

Listing 11–16. AI Support Code 

auto state Initial 
{ 
    Begin: 
 
    LatentWhatToDoNext(); 
} 
event WhatToDoNext() 
{ 
    DecisionComponent.bTriggered = true; 
} 

The final piece of code for this class is shown in Listing 11–17 and contains the 

ExecuteWhatToDoNext() function and default properties. The ExecuteWhatToDoNext() 

function processes the player’s commands and executes them through state transitions. 

Listing 11–17. ExecuteWhatToDoNext 

protected event ExecuteWhatToDoNext() 
{ 
    if (IsInState('Initial')) 
    { 
        GotoState('FollowingTarget', 'Begin'); 
    } 
    else  
    if (Command == Follow) 
    { 
        GotoState('FollowingTarget', 'Begin'); 
    } 
    else  
    if (Command == Move) 
    { 
        GotoState('MovingToMarker', 'Begin'); 
    } 
    else  
    if (Command == Attack) 
    {    
        if (!bAttackDone) 
        { 
            GotoState('AttackingEnemy', 'Begin'); 
        } 
        else 
        { 
            Command = Follow; 
            GotoState('FollowingTarget', 'Begin');           

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 11:  Third-Person Shooter/Adventure Game Framework 336 

        } 
    }   
} 
defaultproperties 
{ 
    FollowDistanceTarget = 250 
    FollowDistanceMarker = 75 
    AttackOffsetDist = 500  
    bAttackDone = false  
    AttackDuration = 2; 
} 

FRAMEWORK NOTE: This bot controller class can be easily modified by adding in additional 

types of commands and processing them in the ExecuteWhatToDoNext() function. For 
example, you can add in the command Heal to the list of enumerations in BotCommand. You 
would add in a new state called HealingTarget that would move the bot to the target Actor you 

wanted to heal and then perform the healing. The new command would be tested for in the 

ExecuteWhatToDoNext() function and if true the bot’s state would go to the HealingTarget state.  

Creating the BotMarker 
Next, we create the class for the bot marker that denotes the location the player wants 

the bot to move to in the game world (see Listing 11–18). The Tick() function rotates the 

marker continuously. The StaticMesh variable defines the actual 3d mesh graphic used 

for the bot marker. The Scale3D variable resizes the marker to twice its normal size. 

Listing 11–18. BotMarker class 

class BotMarker2 extends Actor; 
 
event Touch(Actor Other, PrimitiveComponent OtherComp, vector HitLocation, vector 
HitNormal) 
{ 
    //WorldInfo.Game.Broadcast(self,"BotMarker Has Been Touched");  
} 
function Tick(FLOAT DeltaTime) 
{ 
    local Rotator TempRot;       
    TempRot = Rotation; 
    TempRot.yaw = Rotation.yaw + (15000 * DeltaTime); 
    SetRotation(TempRot); 
} 
defaultproperties 
{ 
    Begin Object Class=StaticMeshComponent Name=StaticMeshComponent0 
        StaticMesh=StaticMesh'CastleEffects.TouchToMoveArrow' 
        Scale3D=(X=2.0000,Y=2.0000,Z=2.000) 
    End Object 
    Components.Add(StaticMeshComponent0) 
} 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 11:  Third-Person Shooter/Adventure Game Framework 337 

Creating the Enemy Guard Bot Controller 
Next, we need to create the controller class for the enemy bot that guards the power 

generator. 

After the guard bot is created it automatically tries to find an unguarded generator to 

guard. If an unguarded power generator is found then the bot goes into the Guarding 

state and guards the structure. While guarding the power generator if a threat occurs, 

the bot goes to the Attacking state and attacks the threat to the power generator. The 

bot will move toward the threat and attack it but if the bot is out of its patrol range then it 

will go back to the generator and go back into the Guarding state. The 

ExecuteWhatToDoNext() function is the key entry point to this AI behavior. 

The first piece of code for this class is in Listing 11–19 and covers the class variables 

and navigation mesh pathfinding. Key things to notice: 

 GuardedStructure references the asset that this enemy guard is 

protecting. 

 Threat holds a reference to an Actor that has attacked the power 

generator this bot is guarding. 

 The GeneratePathTo() function does the actual navigation mesh 

pathfinding and is the same function as in the hands-on examples 

presented in Chapter 5. 

Listing 11–19. Mesh Navigation 

class BotControllerGuard extends UDKBot; 
 
var Actor CurrentGoal; 
var Vector TempDest; 
var Actor TempGoal; 
var float GuardDistance; 
var float AttackDistance; 
var float GuardRadius; 
var Actor GuardedStructure; 
var Pawn Threat;  
    
///////////////// Navigation Mesh Related Functions  ///////////////// 
event bool GeneratePathTo(Actor Goal, optional float WithinDistance, optional bool 
bAllowPartialPath) 
{ 
    if( NavigationHandle == None ) 
    return FALSE; 
 
    // Clear cache and constraints (ignore recycling for the moment) 
    NavigationHandle.PathConstraintList = none; 
    NavigationHandle.PathGoalList = none; 
    class'NavMeshPath_Toward'.static.TowardGoal( NavigationHandle, Goal ); 
    class'NavMeshGoal_At'.static.AtActor( NavigationHandle, Goal, WithinDistance, 
bAllowPartialPath ); 
    return NavigationHandle.FindPath(); 
} 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 11:  Third-Person Shooter/Adventure Game Framework 338 

Next consider Listing 11–20, which involves functions related to guarding the power 

generator: 

 The FindUnguardedGenerator() function finds a generator that has no 

enemy bot guarding it and returns a reference to it if one is found. 

 The Guarding state moves the bot to the structure that it is going to 

guard against attack. 

 The IsInPatrolRange() function returns true if the distance the bot is 

from the guarded structure is equal to or less than the GuardRadius.  

Otherwise a value of false is returned. 

Listing 11–20. Guarding Related Functions 

function Actor FindUnguardedGenerator() 
{ 
    local Generator TempGenerator; 
    local Actor ReturnGenerator; 
    ReturnGenerator = None; 
    foreach AllActors(class'Generator', TempGenerator) 
    { 
        if(TempGenerator.Guard == None) 
        {  
            ReturnGenerator = TempGenerator;  
        }             
    } 
    return ReturnGenerator;    
} 
state Guarding 
{ 
    event BeginState( Name PreviousStateName ) 
    { 
        // Put code here that is to only be executed when the state is first entered  
        CurrentGoal = GuardedStructure;  
        Threat = None;  
    } 
    event EndState( Name NextStateName ) 
    { 
        // Put code here that is to be executed only when exiting this state   
    } 
 
    Begin:   
    // Move Bot to Target 
    if (CurrentGoal != None) 
    { 
        if(GeneratePathTo(CurrentGoal)) 
        { 
            NavigationHandle.SetFinalDestination(CurrentGoal.Location);   
  
            if( NavigationHandle.ActorReachable(CurrentGoal) ) 
            {    
                // then move directly to the actor  
                MoveTo(CurrentGoal.Location,CurrentGoal,GuardDistance); 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 11:  Third-Person Shooter/Adventure Game Framework 339 

            } 
            else 
            { 
                // move to the first node on the path 
                if( NavigationHandle.GetNextMoveLocation(TempDest, 
Pawn.GetCollisionRadius()) ) 
                { 
                    if (!NavigationHandle.SuggestMovePreparation(TempDest,self)) 
                    { 
                        MoveTo(TempDest);     
                    } 
                } 
            }  
        } 
        else 
        { 
            //give up because the nav mesh failed to find a path 
            `warn("FindNavMeshPath failed to find a path!");  
            WorldInfo.Game.Broadcast(self,"GUARDING - FindNavMeshPath failed to find a 
path!, CurrentGoal = " @ CurrentGoal); 
            MoveTo(Pawn.Location); 
        }    
    } 
    LatentWhatToDoNext(); 
} 
function bool IsInPatrolRange() 
{ 
    local bool retval; 
    local float Distance; 
    Distance = VSize(Pawn.Location - GuardedStructure.Location); 
    if (Distance <= GuardRadius) 
    { 
        retval = true;    
    } 
    else 
    { 
        retval = false;   
    } 
    return retval;   
} 

Now, Listing 11–21 shows the Attacking state, in which the bot moves toward the 

Threat and begins firing its weapon. If the bot is out of the patrol range, that is 

IsInPatrolRange() returns false, then the attack is finished and the bot returns to the 

Guarding state. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 11:  Third-Person Shooter/Adventure Game Framework 340 

Listing 11–21. Attacking State 

state Attacking 
{ 
   event BeginState( Name PreviousStateName ) 
    { 
        // Put code here that is to only be executed when the state is first entered  
        CurrentGoal = Threat; 
        Pawn.StartFire(0);           
    } 
    event EndState( Name NextStateName ) 
    { 
        // Put code here that is to be executed only when exiting this state  
        Pawn.StopFire(0);  
    } 
    Begin: 
    // Move Bot to Target 
    if (CurrentGoal != None) 
    { 
        if(GeneratePathTo(CurrentGoal)) 
        { 
            NavigationHandle.SetFinalDestination(CurrentGoal.Location);   
  
            if( NavigationHandle.ActorReachable(CurrentGoal) ) 
            {    
                // then move directly to the actor  
                MoveTo(CurrentGoal.Location,CurrentGoal, 
                       AttackDistance);  
            } 
            else 
            { 
                // move to the first node on the path 
                if( NavigationHandle.GetNextMoveLocation(TempDest, 
Pawn.GetCollisionRadius()) ) 
                {                     
                    if (!NavigationHandle.SuggestMovePreparation(TempDest,self)) 
                    { 
                        MoveTo(TempDest);     
                    } 
                } 
            }  
        } 
        else 
        { 
            //give up because the nav mesh failed to find a path 
            `warn("FindNavMeshPath failed to find a path!");  
            WorldInfo.Game.Broadcast(self,"GUARDING - FindNavMeshPath failed to find a 
path!, CurrentGoal = " @ CurrentGoal); 
            MoveTo(Pawn.Location); 
        }    
    } 
    if (!IsInPatrolRange()) 
    { 
         GotoState('Guarding', 'Begin'); 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 11:  Third-Person Shooter/Adventure Game Framework 341 

    } 

    LatentWhatToDoNext(); 
} 

Listing 11–22 involves functions that support the AI of the bot and were previously 

shown in Chapter 5. 

Listing 11–22. AI Support Functions 

auto state Initial 
{ 
    Begin: 
    LatentWhatToDoNext(); 
} 
event WhatToDoNext() 
{ 
    DecisionComponent.bTriggered = true; 
} 

Next is the ExecuteWhatToDoNext() function (see Listing 11–23), which is the main entry 

point for user defined AI and is a good place for testing to see if the bot needs to 

transition to a new state. The default properties for this class are also shown. 

Listing 11–23. The ExecuteWhatToDoNext() function 

protected event ExecuteWhatToDoNext() 
{ 
    local Actor TempGenerator; 
    if (IsInState('Initial')) 
    {      
        TempGenerator = FindUnguardedGenerator(); 
        if (TempGenerator != None) 
        { 
            Generator(TempGenerator).Guard = Pawn;  
            GuardedStructure = TempGenerator;  
            GotoState('Guarding', 'Begin'); 
        } 
        else 
        { 
            GotoState('Inital', 'Begin'); 
        } 
    } 
    else 
    if (IsInState('Guarding')) 
    { 
        if (Threat != None) 
        { 
            GotoState('Attacking', 'Begin'); 
        }      
        else 
        { 
            GotoState('Guarding', 'Begin'); 
        } 
    } 
    else  

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 11:  Third-Person Shooter/Adventure Game Framework 342 

    if (IsInState('Attacking')) 
    { 
       GotoState('Attacking', 'Begin'); 
    }   
} 
defaultproperties 
{ 
    CurrentGoal = None 
    GuardDistance = 300 
    AttackDistance = 500 
    Threat = None 
    GuardRadius = 1000;   
} 

Creating Enemy Guard Bot Pawn 
Next, we need to create the pawn class for the enemy guard. Listing 11–24 shows the 

code. 

Listing 11–24. GuardPawn class 

class GuardPawn extends BotPawnCh10; 
 
event TakeDamage(int Damage, Controller InstigatedBy, vector HitLocation, vector 
Momentum, class<DamageType> DamageType, optional TraceHitInfo HitInfo, optional Actor 
DamageCauser) 
{ 
    PlaySound(HurtSound);  
    Health = Health - Damage;    
    if (Health <= 0) 
    { 
        PlaySound(DeathSound);  
        destroy(); 
    } 
    BotControllerGuard(Controller).Threat = InstigatedBy.Pawn; 
} 
defaultproperties 
{ 
    Health = 500; 
} 

The most important feature in this new pawn class is that the guard’s Threat variable 

located in the bot’s controller class will be set to the pawn that causes the guard 

damage.  

Creating the Heads Up Display 
Next, we need to create the class for our custom Heads Up Display, shown in Listing 

11–25. This HUD will display the power generator’s health, the player-controlled ally 

bot’s health and the player’s health. Key changes to the code from previous versions of 

the HUD in other chapters are highlighted in bold print.  

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 11:  Third-Person Shooter/Adventure Game Framework 343 

Key things to notice in the following code listing: 

 The HUDInfo structure holds the data for a text label that will be 

displayed on the screen. 

 The DrawHUDItem() function actually draws the information to the 

screen for an individual HUD item. 

 The DrawHUD() function is the hook where we can draw extra 

information to the HUD in addition to the standard graphics which 

include things like the virtual joysticks. DrawHUDItem() is called from 

this function. 

Listing 11–25. Custom HUD 

class Ch11HUD extends UDKHud; 
 
struct HUDInfo 
{ 
    var string Label; 
    var Vector2D TextLocation; 
    var Color TextColor; 
    var Vector2D Scale; 
}; 
// HUD  
var HUDInfo HUDHealth; 
var HUDInfo HUDAllyHealth; 
var HUDInfo HUDObjectiveHealth; 
var HUDInfo HUDGameOver; 
 
simulated function PostBeginPlay() 
{ 
    Super.PostBeginPlay(); 
    HUDHealth.Label = "Health:";  
    HUDHealth.TextLocation.x = 1100; 
    HUDHealth.TextLocation.y = 50; 
    HUDHealth.TextColor.R = 0; 
    HUDHealth.TextColor.G = 0; 
    HUDHealth.TextColor.B = 255; 
    HUDHealth.Scale.X = 2; 
    HUDHealth.Scale.Y = 4; 
 
    HUDAllyHealth.Label = "AllyHealth:";  
    HUDAllyHealth.TextLocation.x = 600; 
    HUDAllyHealth.TextLocation.y = 50; 
    HUDAllyHealth.TextColor.R = 0; 
    HUDAllyHealth.TextColor.G = 255; 
    HUDAllyHealth.TextColor.B = 0; 
    HUDAllyHealth.Scale.X = 2; 
    HUDAllyHealth.Scale.Y = 4; 
 
    HUDGameOver.Label = "Objective Killed";  
    HUDGameOver.TextLocation.x = 300; 
    HUDGameOver.TextLocation.y = 300; 
    HUDGameOver.TextColor.R = 255; 
    HUDGameOver.TextColor.G = 0; 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 11:  Third-Person Shooter/Adventure Game Framework 344 

    HUDGameOver.TextColor.B = 255; 
    HUDGameOver.Scale.X = 7; 
    HUDGameOver.Scale.Y = 7; 
 
    HUDObjectiveHealth.Label = "ObjectiveHealth:";  
    HUDObjectiveHealth.TextLocation.x = 0; 
    HUDObjectiveHealth.TextLocation.y = 50; 
    HUDObjectiveHealth.TextColor.R = 255; 
    HUDObjectiveHealth.TextColor.G = 0; 
    HUDObjectiveHealth.TextColor.B = 0; 
    HUDObjectiveHealth.Scale.X = 2; 
    HUDObjectiveHealth.Scale.Y = 4; 
} 
function DrawHUDItem(HUDInfo Info, coerce string Value) 
{ 
    local Vector2D TextSize; 
    Canvas.SetDrawColor(Info.TextColor.R, Info.TextColor.G, Info.TextColor.B);  
    Canvas.SetPos(Info.TextLocation.X, Info.TextLocation.Y); 
    Canvas.DrawText(Info.Label, ,Info.Scale.X,Info.Scale.Y); 
    Canvas.TextSize(Info.Label, TextSize.X, TextSize.Y); 
    Canvas.SetPos(Info.TextLocation.X + (TextSize.X * Info.Scale.X), 
Info.TextLocation.Y); 
    Canvas.DrawText(Value, , Info.Scale.X, Info.Scale.Y); 
} 
function DrawHUD() 
{ 
    local int Health;  
    super.DrawHUD(); 
    Canvas.Font = class'Engine'.static.GetLargeFont(); 
    // Objective Health  
DrawHUDItem(HUDObjectiveHealth,ExampleCh11PC(PlayerOwner).ObjectiveHealth); 
    
    // Ally Bot Health 
    Health = ExampleCh11PC(PlayerOwner).AllyBot.Pawn.Health; 
    DrawHUDItem(HUDAllyHealth, Health); 
 
    // Health 
    DrawHUDItem(HUDHealth,PlayerOwner.Pawn.Health); 
  
    // Game Over 
    if (ExampleCh11PC(PlayerOwner).bGameOVer) 
    { 
         DrawHUDItem(HUDGameOver, ""); 
    }   
} 
defaultProperties 
{ 
} 

The new custom HUD is shown in Figure 11–1. 

 

Figure 11–1. New HUD 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 11:  Third-Person Shooter/Adventure Game Framework 345 

Creating the Power Generator 
Next, we need to create the class for the power generator that will be the player’s 

objective to destroy. The key code is in the TakeDamage() class which is called by a 

weapon’s projectile when it hits the generator. If the generator is attacked by the player 

or the player’s ally bot then the enemy bot that is guarding the power generator will 

attack that pawn. 

Listing 11–26. Power Generator 

class Generator extends Actor 
placeable; 
 
var ParticleSystem ExplosionTemplate; 
var ParticleSystemComponent Explosion; 
var SoundCue HitSound; 
var int Health; 
var Pawn Guard; 
event TakeDamage(int Damage, Controller InstigatedBy, vector HitLocation, vector 
Momentum, class<DamageType> DamageType, optional TraceHitInfo HitInfo, optional Actor 
DamageCauser) 
{   
    PlaySound(HitSound); 
    Explosion = WorldInfo.MyEmitterPool.SpawnEmitter(ExplosionTemplate, HitLocation);  
    BotControllerGuard(Guard.Controller).Threat = InstigatedBy.Pawn;  
    if (InstigatedBy.IsA('ExampleCh11PC')) 
    { 
        Health = Health - Damage; 
    } 
} 
event Touch(Actor Other, PrimitiveComponent OtherComp, vector HitLocation, vector 
HitNormal) 
{ 
    WorldInfo.Game.Broadcast(self,"Generator Has Been Touched by " @ Other );  
} 
defaultproperties 
{ 
    Begin Object Class=StaticMeshComponent Name=StaticMeshComponent0 
        StaticMesh=StaticMesh'Pickups.Health_Large.Mesh.S_Pickups_Health_Large_Keg' 
        Scale3D=(X=5.0000,Y=5.0000,Z=5.000) 
        CollideActors=true 
        BlockActors=true 
    End Object 
    Components.Add(StaticMeshComponent0) 
   
    Begin Object Class=CylinderComponent NAME=CollisionCylinder 
        CollideActors=true 
        BlockActors=true 
        CollisionRadius=+0140.000000 
        CollisionHeight=+0140.000000 
    End Object 
    Components.Add(CollisionCylinder) 
    CollisionComponent = CollisionCylinder 
   
    bCollideActors=true 
    bBlockActors = true 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 11:  Third-Person Shooter/Adventure Game Framework 346 

    HitSound = SoundCue'A_Gameplay.Gameplay.A_Gameplay_ArmorHitCue' 
    ExplosionTemplate = ParticleSystem'Castle_Assets.FX.P_FX_Fire_SubUV_01' 
    Guard = None; 
    Health = 300;    
} 

The Power Generator is shown in Figure 11–2. 

 

Figure 11–2. Power Generator 

Configuring the Game Type  
Next, we need to set up this new example for compilation and for playing on the mobile 

previewer. In the configuration directory located at 

C:\UDK\UDK-2011–06\UDKGame\Config 

(it will be different if you are using a different UDK version), change the UDKEngine.ini 

and Mobile-UDKGame.ini configuration files to the following: 

UDKEngine.ini 
[UnrealEd.EditorEngine] 
ModEditPackages=ExampleCh11 
Mobile-UDKGame.ini 
[ExampleCh11.ExampleCh11Game] 
RequiredMobileInputConfigs=(GroupName="UberGroup",RequireZoneNames=("UberStickMoveZone",
"UberStickLookZone","UberLookZone")) 

Save the configuration files. You may need to write protect them to preserve the 

contents since the UDK sometimes overwrites them. 

Bring up the Unreal Frontend and compile the scripts. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 11:  Third-Person Shooter/Adventure Game Framework 347 

Creating the Level 
Next, we need to create the level for this game framework. 

1. Start up the Unreal Editor. 

2. Load the level you created for Chapter 10, the one with many vendor crates 

surrounded by cover nodes. (You also can find the level—ExampleCh10Map.zip—

with the source code for this book.) 

3. Save the level as a new level by selecting File  Save As from the main menu and 

entering a new filename for the map. You can use whatever filename you wish. 

4. Select the Actor Classes tab in the Generic Browser. 

5. Search for generator in the Actor Classes tab. 

6. Select the generator class in the Actor Classes tab. 

7. Right Click on an empty area and select Add Generator Here to add a power 

generator to the level. Position the generator so that it is just above the ground. 

8. In the Actor Classes tab search for botspawnpad in the search area. Select the 

botspawnpad class and right click to place this item in an empty area in the level. 

Adjust the pad so that it is just touching the ground. The level with the generator 

and botspawnpad should look something like Figure 11–3.  

 

Figure 11–3. The level with generator and one botspawnpad 

9. Save the level. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 11:  Third-Person Shooter/Adventure Game Framework 348 

Running the Game 
Now, we are ready to run our game. Follow these steps: 

1. Select View  World Properties from the Unreal Editor main menu. This would bring 

up the World Properties window. 

2. In the World Properties window set the Default Game Type under the Game Type 

category to ExampleCh11Game. 

3. Select the Play  On Mobile Previewer option to run the game on the mobile 

previewer form the Editor. 

4. Once the game is running move your character around the level and your ally bot 

should follow you around. 

5. Click on your ally bot to select it as indicated by the orange arrow hovering over 

the bot and to activate the bot command mode (see Figure 11–4). 

 

Figure 11–4. Selecting your ally bot  

6. Next, direct your bot to a position nearer to the enemy guard bot by clicking on an 

empty area closer to the generator (see Figure 11–5). 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 11:  Third-Person Shooter/Adventure Game Framework 349 

 

Figure 11–5. Direct your bot to move to a location nearer the enemy guard bot 

7. Next, click on the ally bot again to select it and then click on the enemy guard bot 

to have your bot attack it. After the attack is finished the ally bot should return to 

following you. 

8. Repeat this process until the guard is killed. 

9. Finally, destroy the power generator by firing your weapon at it until the objective 

killed message is displayed, as in Figure 11–6. 

 

Figure 11–6. Power generator is destroyed. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 11:  Third-Person Shooter/Adventure Game Framework 350 

Summary 
In this chapter we covered a game framework that is suitable for a third-person shooter 

or a third-person shooter / adventure type game where you control other team members 

that have special abilities and you need to direct them to accomplish specific tasks. We 

first covered an overview of the game framework discussing features of the framework 

in both general and code specific terms. Then we created the actual framework. We 

created new code, discussed how to set up the game to run on the mobile previewer, 

discussed how to build the level, and finally we gave a walkthrough of this game 

framework that showed you how to accomplish the goal of destroying the power 

generator. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


351 

                    Chapter 

Top-Down Shooter/RPG 
Game Framework 
In this chapter we will create a game framework suitable for a top-down shooter/role 

playing type game.  

Of course, role playing games do not need to be from the top-down perspective. 

However, the old roleplaying games such as the original Ultima series featured a 2D top-

down view of the playfield and used 2D icons for characters. This is the sort of feel we 

want to create here in this game framework although everything will be in 3D. Elements 

in the framework presented in this chapter that specifically relate to role playing games 

are: 

The ability to display and save individual character statistics such as 

hit points, experience, and so forth. 

The ability to direct members of the player’s group to perform actions 

such as attacking an enemy and moving to a new location.  

First we give a general overview of the framework and then code-specific details of the 

implementation. Next, we create the actual framework. We create new code for the 

game, modify an existing game level we created in Chapter 11, and adapt it to our new 

game framework. We also configure this new game type to run on the mobile previewer 

and then demonstrate the completed framework. 

The game framework in this chapter specifically consists of: 

A top-down view of gameplay 

The ability of selecting player- or bot-specific information and 

displaying it on the HUD by clicking on the character. 

An ability of commanding a bot to move to another area of the level or 

to attack an enemy bot. 

The ability to save and load character information by having the 

player’s pawn touch a statue. 

12 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 12:  Top-Down Shooter/RPG Game Framework 352 

Game Framework Overview 
In this section we will discuss the game framework in general and specific terms. First 

we give you a general overview of the game framework by listing its main features. Next, 

we give you a more code-specific overview of the framework as to how exactly the 

general features are implemented in code. 

General Framework Overview 
This framework provides for a top-down view of the playfield and player’s pawn. You 

can adjust the distance the camera is from the ground and set whether the camera 

rotates with the player or has a fixed rotation. Another feature of this framework is a 

custom Heads Up Display or HUD that allows the player to display the statistics specific 

to the player or a member of the player’s group by clicking on that Actor. You can 

extend this HUD by adding or deleting entries including those specific to the type of 

pawn being selected.  

In a shooter type game you might extend the HUD by adding the amount of ammo or 

other physical items that the player is carrying. In an RPG you might add intangible 

items like character traits such as strength, agility, dexterity, endurance, and negotiating 

skills. 

This framework also provides for a bot under player command that the player can direct 

to move from one location to another in the game world and can direct to attack an 

enemy. You can build on this by adding other bots to the player’s squad or modifying 

the code to change the exact behavior of the bot. For example, you can add in new 

code to make your bot repair damaged structures. For a role playing game you might 

add in the ability to use magic to attack enemies and to heal members of your party. 

Additionally, the framework includes a method to load and save character statistics for 

the player and the player’s ally bot. You can extend this method by adding in more data 

for the characters that will be saved and loaded or by changing the exact method that 

character data will be saved. Currently, character data is saved or loaded when the 

player’s pawn touches a statue in the game world. You can change this by using some 

kind of menu system to load and save character data. You can also customize this 

method by loading and saving other data besides character data, including the game 

state such as the player’s location. For a shooter type game you could save the 

character’s physical possessions, and for a role playing game you could also save the 

character’s intangible traits like magic ability, spell casting experience, combat 

experience, and so on. 

Specific Framework Overview 
The top-down view is implemented in the player’s pawn class which is the 

PlayerPawnCh12 class. The function CalcCamera() is the function that actually changes 

the camera’s view from the default first-person view to the new top-down third-person 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 12:  Top-Down Shooter/RPG Game Framework 353 

viewpoint. A top-down third-person viewpoint means that the player’s viewpoint is 

above the player’s pawn and is looking straight down at the player’s pawn and the game 

playfield. This viewpoint should remind players of the older 2d role-playing style games 

such as the original Ultima series for the Commodore 64 and Apple II. More recent 

examples of top-down style role playing games are Across Age, Dungeon Hunter, Inotia 2: 

A Wanderer of Luone, Rough Touch, Sword of Fargoal, and Zenonia. All of these games 

are available for the iPhone. 

The custom HUD for this class is implemented in the Ch12HUD class. This class depends 

on the HUDPawn variable located in the ExampleCh12PC class to determine which Pawn’s 

information should be displayed on the HUD. 

The SaveMarker class implements the 3d mesh graphic that the player’s pawn needs to 

touch in order to save his own as well as his team member’s character info. The 

SaveMarker class calls the SaveSquadInfo() function located in ExampleCh12PC class that 

implements the actual saving of the character data. 

The LoadMarker class implements the 3d mesh graphic that the player’s pawn needs to 

touch in order to load in his own as well as his team member’s character info. The 

LoadMarker class calls the LoadSquadInfo() function located in ExampleCh12PC class that 

implements the actual loading of the character data. 

Hands-On Example: Creating a Top-Down Shooter / 
Role-Playing Game Framework 
In this hands-on example we will create a game framework suitable for a top-down 

shooter or a role-playing game. We add to the functionality of the game framework 

presented in Chapter 11 for a third-person shooter game. For this framework you again 

control a bot that you can move to different locations and command to attack an enemy 

bot but you do it from a top-down perspective. In addition, you can click on the bot or 

player and bring up character specific statistics such as hitpoints (which is health) and 

experience and display these on the HUD. Also, you can load and save the character 

data of the player and the ally bot by having the player’s pawn touch two different 3d 

mesh graphics that represent the load and save markers. 

In a role-playing game, saving your progress through the game world is essential. One 

reason it is essential is that one characteristic of a role-playing game is building up the 

character’s attributes, such as experience points, strength, magical ability, and so forth, 

in order to defeat more powerful enemies and progress through the game. Since it is 

unlikely you will be able to do this in one play session, you need a method to save your 

character’s status. We have chosen the marker method; however, you can extend this 

framework if you wish and develop some kind of menu system to load and save 

character data based on what you have learned from this book. 

First we need create some new code such as a new game type, player controller, player 

pawn, ally bot pawn, enemy bot pawn, character information class, save marker, load 

marker, and HUD. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 12:  Top-Down Shooter/RPG Game Framework 354 

Creating the Game Type 
The first thing we need to do is create a new directory for the code for this project. 

Create the ExampleCh12 directory under your default UDK installation directory at 

C:\UDK\UDK-2011-06\Development\Src. If you are using a different version of the UDK 

other than the June 2011 UDK then this default directory will be different. Create a 

directory called Classes under the new directory you just created and put all your source 

code files in this directory. 

Then create the following class (see Listing 12–1) and save it under the filename 

“ExampleCh12Game.uc”. Again as with all previous examples in this book the filenames 

must match the classnames and the file extension must be “.uc”. 

Listing 12–1. Game type 

class ExampleCh12Game extends FrameworkGame; 
 
event OnEngineHasLoaded() 
{ 
    WorldInfo.Game.Broadcast(self,"ExampleCh12Game Type Active - Engine Has Loaded 
!!!!"); 
} 
function bool PreventDeath(Pawn KilledPawn, Controller Killer, class<DamageType> 
DamageType, vector HitLocation) 
{ 
    return true; 
} 
static event class<GameInfo> SetGameType(string MapName, string Options, string Portal) 
{ 
    return super.SetGameType(MapName, Options, Portal); 
} 
defaultproperties 
{ 
    PlayerControllerClass=class'ExampleCh12.ExampleCh12PC'  
    DefaultPawnClass=class'PlayerPawnCh12' 
    HUDType=class'Ch12HUD' 
    bRestartLevel=false 
    bWaitingToStartMatch=true 
    bDelayedStart=false 
} 

The key code is highlighted in bold. Note that the PlayerControllerClass, 

DefaultpawnClass, and HUDType are set to new classes created for the game framework 

in this chapter. 

Creating the Player Controller 
Next, we need to create the player controller for this game framework. This player 

controller builds upon the one in Chapter 11. The new code is shown below. In the 

interest of saving space, we have abbreviated this code so that only key important 

changes from the controller in Chapter 11 are shown. Each function listed below is 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 12:  Top-Down Shooter/RPG Game Framework 355 

complete with the changes or additions highlighted in bold. However, there are functions 

that have been eliminated from this listing but are in the full source code for this book. 

The important functions employed in this framework and their roles include the 

following: 

 The key functions that involve saving character data are the 

SaveSquadInfo() and SaveCharacterInfo() functions.   

 The key functions that involve loading character data are the 

LoadSquadInfo() and LoadCharacterInfo() functions. 

 The key function involving changing the player controls so that moving 

the player forward moves the player up the screen and moving the 

player side to side in a strafing manner moves the player left and right 

across the screen is the PlayerMove() function located in the 

PlayerWalking state. 

Listing 12–2 contains the first segment of controller code and deals with class variables 

and the functions that load and save character data to a file on the iOS device. 

Listing 12–2. Loading and Saving 

class ExampleCh12PC extends SimplePC; 
var Pawn HUDPawn; 
var CharacterInfo CharacterFile; 
function SaveCharacterInfo() 
{ 
    class'Engine'.static.BasicSaveObject(CharacterFile, "CharacterInfo.bin", true, 1); 
} 
function LoadCharacterInfo() 
{ 
    class'Engine'.static.BasicLoadObject(CharacterFile, "CharacterInfo.bin", true, 1); 
} 
function SaveSquadInfo() 
{ 
    CharacterFile.PlayerHitPoints = PlayerPawnCh12(Pawn).Health; 
    CharacterFile.PlayerExperience = PlayerPawnCh12(Pawn).Experience; 
    CharacterFile.AllyHitPoints = BotPawnCh12(AllyPawn).Health; 
    CharacterFile.AllyExperience = BotPawnCh12(AllyPawn).Experience; 
    SaveCharacterInfo(); 
} 
function LoadSquadInfo() 
{ 
    LoadCharacterInfo(); 
    // Put data back into variables 
    PlayerPawnCh12(Pawn).Health = CharacterFile.PlayerHitPoints; 
    PlayerPawnCh12(Pawn).Experience = CharacterFile.PlayerExperience; 
    BotPawnCh12(AllyPawn).Health = CharacterFile.AllyHitPoints; 
    BotPawnCh12(AllyPawn).Experience = CharacterFile.AllyExperience;    
} 
simulated function PostBeginPlay() 
{ 
    Super.PostBeginPlay(); 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 12:  Top-Down Shooter/RPG Game Framework 356 

    CharacterFile = Spawn(class'CharacterInfo');  
} 

The important things to notice in the preceding listing are 

 The HUDPawn variable holds a reference to the pawn that will have its 

statistics displayed on the HUD. 

 The CharacterFile variable will hold the character data for the player 

and the ally bot that will be written to a file. 

 The SaveCharacterInfo() function uses the BasicSaveObject to save 

the character data for the player and the ally bot located in the variable 

CharacterFile into the file "CharacterInfo.bin". 

 The LoadCharacterInfo() function uses the BasicLoadObject to load in 

the data from the file "CharacterInfo.bin" into the variable 

CharacterFile. 

 The SaveSquadInfo() function sets the CharacterFile variable with the 

player and the ally bot’s statistics and saves them into a file by calling 

the SaveCharacterInfo() function. 

 The LoadSquadInfo() function loads in the player and ally bot’s data 

and puts them back into the correct player and bot ally variables. The 

LoadCharacterInfo() function actually loads in the character data from 

a file and is called first. 

 The PostBeginPlay() function was added so that a new CharacterFile 

variable will be created when gameplay starts. This variable will hold 

the data for the characters. 

The next piece of code, shown in Listing 12–3, involves the PlayerWalking State and 

changes made within that state to the PlayerMove() function. The additions are in bold 

print. 

Here the PlayerMove() function is overridden in the PlayerWalking state. It is in the 

PlayerMove() function that the player’s controls are remapped so that moving forward is 

moving up the screen and moving side to side or strafing is remapped to moving the 

player left and right on the screen in the top-down view. 

Listing 12–3. PlayerWalking State 

state PlayerWalking 
{ 
ignores SeePlayer, HearNoise, Bump; 
 
    function PlayerMove( float DeltaTime ) 
    { 
        local vector X,Y,Z, NewAccel; 
        local eDoubleClickDir DoubleClickMove; 
        local rotator OldRotation; 
        local bool bSaveJump; 
 
        if( Pawn == None ) 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 12:  Top-Down Shooter/RPG Game Framework 357 

        { 
            GotoState('Dead'); 
        } 
        else 
        { 
            GetAxes(Pawn.Rotation,X,Y,Z); 
 
            // New Custom Code 
            NewAccel.y = PlayerInput.aStrafe; 
            NewAccel.x = PlayerInput.aForward; 
            NewAccel.Z = 0; 
            NewAccel = Pawn.AccelRate * Normal(NewAccel); 
 
            if (IsLocalPlayerController()) 
            { 
                AdjustPlayerWalkingMoveAccel(NewAccel); 
            } 
 
            DoubleClickMove = PlayerInput.CheckForDoubleClickMove( 
DeltaTime/WorldInfo.TimeDilation ); 
 
            // Update rotation. 
            OldRotation = Rotation; 
            UpdateRotation( DeltaTime ); 
            bDoubleJump = false; 
 
            if( bPressedJump && Pawn.CannotJumpNow() ) 
            { 
                bSaveJump = true; 
                bPressedJump = false; 
            } 
            else 
            { 
                bSaveJump = false; 
            } 
 
            if( Role < ROLE_Authority ) // then save this move and replicate it 
            { 
                ReplicateMove(DeltaTime, NewAccel, DoubleClickMove, OldRotation - 
Rotation); 
            } 
            else 
            { 
                ProcessMove(DeltaTime, NewAccel, DoubleClickMove, OldRotation - 
Rotation); 
            } 
            bPressedJump = bSaveJump; 
         } 
    } 
} 

Listing 12–4 includes the functions that spawn bots. In the SpawnGuardBot() function the 

enemy bot has a new body which is in the form of the GuardPawn2 class. In the 

SpawnAllyBot() function the player’s ally bot has a new body in the form of the 

BotPawnCh12 class. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 12:  Top-Down Shooter/RPG Game Framework 358 

Listing 12–4. Spawn Functions 

function SpawnGuardBot(Vector SpawnLocation,optional Vector Offset) 
{ 
    SpawnLocation = SpawnLocation + Offset; 
    GuardBot = Spawn(class'BotControllerGuard',,,SpawnLocation);   
    GuardPawn = Spawn(class'GuardPawn2',,,SpawnLocation);  
    GuardBot.Possess(GuardPawn,false); 
    GuardPawn2(GuardPawn).AddDefaultInventory(); 
    GuardPawn2(GuardPawn).InitialLocation = SpawnLocation; 
    GuardPawn.SetPhysics(PHYS_Falling); 
} 
function SpawnAllyBot(Vector SpawnLocation, optional Vector Offset) 
{ 
    SpawnLocation = SpawnLocation + Offset; 
    AllyBot = Spawn(class'BotAllyController',,,SpawnLocation);   
    AllyPawn = Spawn(class'BotPawnCh12',,,SpawnLocation);  
    AllyBot.Possess(AllyPawn,false);  
    BotAllyController(AllyBot).SetCommand(Follow, Pawn); 
    BotAllyController(AllyBot).BotOwner = Pawn;    
    BotPawnCh12(AllyPawn).AddDefaultInventory(); 
    BotPawnCh12(AllyPawn).InitialLocation = SpawnLocation; 
    AllyPawn.SetPhysics(PHYS_Falling); 
} 

Listing 12–5 involves the SetHUDPawn function and its use in the SwipeZoneCallback() 

function:  

 The SetHUDPawn() function sets the Pawn which is set in HUDPawn that will have its 

statistics displayed on the HUD. 

 In the function SwipeZoneCallback() the function SetHUDPawn() is called every 

time the user touches the screen in order to determine the pawn that will have its 

statistics displayed on the HUD. Either the pawn will be the player’s pawn or the 

ally bot’s pawn. 

Listing 12–5. SetHUDPawn  

function SetHUDPawn(Actor TouchedActor) 
{ 
    if (IsActorAllyBot(TouchedActor)) 
    { 
        HUDPawn = Pawn(TouchedActor);     
    } 
    else  
    { 
        // Set Default to Player Pawn 
        HUDPawn = Pawn; 
    } 
} 
function bool SwipeZoneCallback(MobileInputZone Zone,  
                                float DeltaTime,  
                                int Handle, 
                                EZoneTouchEvent EventType,  
                                Vector2D TouchLocation) 
{  

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 12:  Top-Down Shooter/RPG Game Framework 359 

    local bool retval; 
    local Actor TempActor; 
    local Vector HitLocation; 
    local TraceHitInfo HitInfo; 
     
    retval = true; 
    if (EventType == ZoneEvent_Touch) 
    { 
        // Code for Setting Bot WayPoint 
        TempActor = PickActor(TouchLocation, HitLocation, HitInfo); 
        ProcessTouch(TempActor, HitLocation); 
        SetHUDPawn(TempActor); 
    } 
    else 
    if(EventType == ZoneEvent_Update) 
    {  
    }   
    else 
    if (EventType == ZoneEvent_UnTouch) 
    {  
        // Stop Firing Pawn's weapon 
        StopFire(0); 
    }  
    return retval; 
} 

FRAMEWORK NOTE: You can easily expand this class to load and save additional character data 

for your own game by modifying the functions SaveSquadInfo() and LoadSquadInfo(). 

Creating the Player Pawn 
Next, we need to create the player’s body or pawn (see Listing 12–6). The key things to 

notice in this listing are 

 Player statistics are added here in the form of the variables 

CharacterName and Experience. 

 The function CalcCamera() does the actual work of changing the 

camera view to a top-down view with CamOffsetDistance distance the 

height of the camera from the ground. The pitch which is the up/down 

movement of the camera is set to –90 degrees which points 

downward.  

 If the bFollowPlayerRotation is true then the camera turns (yaw 

changes, left or right) to track the player when the player turns. 

 The function GetBaseAimRotation() sets the aim rotation for weapons 

firing to straight ahead, which means the pitch is 0. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 12:  Top-Down Shooter/RPG Game Framework 360 

Listing 12–6. Player’s Pawn 

class PlayerPawnCh12 extends JazzPawnDamage; 
 
var bool bFollowPlayerRotation; 
var string CharacterName; 
var int Experience; 
 
////////// Top Down View /////// 
simulated function bool CalcCamera( float fDeltaTime, out vector out_CamLoc, out rotator 
out_CamRot, out float out_FOV ) 
{ 
    out_CamLoc = Location; 
    out_CamLoc.Z += CamOffsetDistance; 
    if(!bFollowPlayerRotation) 
    { 
        out_CamRot.Pitch = -16384; 
        out_CamRot.Yaw = 0; 
        out_CamRot.Roll = 0; 
    } 
    else 
    { 
        out_CamRot.Pitch = -16384; 
        out_CamRot.Yaw = Rotation.Yaw; 
        out_CamRot.Roll = 0; 
    } 
    return true; 
} 
simulated singular event Rotator GetBaseAimRotation() 
{ 
    local rotator   POVRot, tempRot; 
 
    tempRot = Rotation; 
    tempRot.Pitch = 0; 
    SetRotation(tempRot); 
    POVRot = Rotation; 
    POVRot.Pitch = 0;  
    return POVRot; 
}    
defaultproperties 
{ 
    bFollowPlayerRotation = false 
    CamOffsetDistance= 1500.0 
    CharacterName = "Player" 
    Experience = 0 
} 

FRAMEWORK NOTE: You can expand on this class by adding additional statistics to your player 

in this class. 

c
www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 12:  Top-Down Shooter/RPG Game Framework 361 

Creating the Ally Bot Pawn 
Next, we need to create the pawn for the player’s ally bot (see Listing 12–7). The Ally 

bot’s statistics are added here in the form of the variables CharacterName and 

Experience. The TakeDamage() function processes damage for the ally bot and resets the 

experience points.  

Listing 12–7. Ally Bot’s Pawn 

class BotPawnCh12 extends BotPawn; 
var string CharacterName; 
var int Experience; 

event TakeDamage(int Damage, Controller InstigatedBy, vector HitLocation, vector 
Momentum, class<DamageType> DamageType, optional TraceHitInfo HitInfo, optional Actor 
DamageCauser) 
{ 
    PlaySound(JazzHitSound);  
    Health = Health - Damage; 
    if (Health <= 0) 
    { 
        SetLocation(InitialLocation); 
        SetPhysics(PHYS_Falling);       
        Health = 100; 
        Experience = 0; 
    } 
} 
defaultproperties 
{ 
    CharacterName = "TeamMember1" 
    Experience = 0; 
} 

FRAMEWORK NOTE: You can add in more statistics specific for this type of pawn here. For 

example, if this type of pawn is planned to have magic abilities you might add properties such as 
SpellCastingLevel to your list of character statistics. Although we have not discussed magic 
before, the general idea is that the character will have some power such as healing, or the ability 

to cause damage to enemies using some supernatural ability not based on a physical device or 
weapon. In terms of the property SpellCastingLevel, this variable would denote the ability of this 
character to use magic with a higher number indicating a greater ability. For example, a higher 

number would perhaps make special types of spells available.    

Creating the Enemy Bot Pawn 
Now, we create the pawn for the enemy guard bot (see Listing 12–8). The 

ExperienceValue variable is the value that is added to the experience statistic of the 

character that kills this pawn. The character must be either the player or the player’s ally 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 12:  Top-Down Shooter/RPG Game Framework 362 

bot. The TakeDamage() function is where the experience points are actually added to the 

character that has successfully killed a pawn of this class. 

Listing 12–8. Guard Pawn 

class GuardPawn2 extends BotPawnCh10; 
 
var int ExperienceValue; 
 
event TakeDamage(int Damage, Controller InstigatedBy, vector HitLocation, vector 
Momentum, class<DamageType> DamageType, optional TraceHitInfo HitInfo, optional Actor 
DamageCauser) 
{ 
    PlaySound(HurtSound);  
    Health = Health - Damage;  
    if (Health <= 0) 
    { 
        PlaySound(DeathSound);  
        /*Add experience points to player or member of player's group 
          if this pawn is killed by one of them*/ 
        if (InstigatedBy.IsA('ExampleCh12PC')) 
        { 
            PlayerPawnCh12(InstigatedBy.Pawn).Experience += ExperienceValue; 
        } 
        else  
        if (InstigatedBy.IsA('BotAllyController')) 
        {        
            BotPawnCh12(InstigatedBy.Pawn).Experience += ExperienceValue; 
        } 
        //destroy(); 
        SetLocation(InitialLocation); 
        SetPhysics(PHYS_Falling); 
        Health = 100; 
    } 
    BotControllerGuard(Controller).Threat = InstigatedBy.Pawn; 
} 
defaultproperties 
{ 
    ExperienceValue = 100; 
} 

Creating the Character Information Class 
Next, we need to create the class that actually holds the character information for the 

player’s squad that will be saved to the character file. See Listing 12–9. 

Listing 12–9. Squad Information Class 

class CharacterInfo extends Actor; 
 
var int PlayerHitPoints; 
var int PlayerExperience; 
var int AllyHitPoints; 
var int AllyExperience; 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 12:  Top-Down Shooter/RPG Game Framework 363 

FRAMEWORK NOTE: You can expand on this class by adding in characteristics for additional 

squad members and/or adding in additional statistics for existing squad members. 

Creating the Save Marker 
Next, we need to create the 3d mesh graphic that represents the save marker and is 

used to save the player’s squad data (see Listing 12–10). The 3d mesh for this marker is 

set in the StaticMesh variable and is scaled up 3 times the normal size using the Scale3D 

variable. The Touch() function implements the save marker’s key behavior. If the actor 

that touches this marker is the player’s pawn then a sound is played and the character 

information for the player’s squad is saved to a file on the iOS device. 

Listing 12–10. SaveMarker Class 

class SaveMarker extends Actor 
placeable; 
 
var SoundCue SaveSound; 
 
event Touch(Actor Other, PrimitiveComponent OtherComp, vector HitLocation, vector 
HitNormal) 
{ 
    if (!Other.IsA('PlayerPawnCh12')) 
    { 
        return; 
    }  
    PlaySound(SaveSound); 
    ExampleCh12PC(Pawn(Other).Controller).SaveSquadInfo(); 
} 
defaultproperties 
{ 
    Begin Object Class=StaticMeshComponent Name=StaticMeshComponent0 
        StaticMesh=StaticMesh'FoliageDemo2.Mesh.S_Statue_01' 
        Scale3D=(X=3.0000,Y=3.0000,Z=3.000) 
    End Object 
    Components.Add(StaticMeshComponent0) 
 
    Begin Object Class=CylinderComponent NAME=CollisionCylinder 
        CollideActors=true 
        BlockActors=false 
        CollisionRadius=+0140.000000 
        CollisionHeight=+0240.000000 
    End Object 
    Components.Add(CollisionCylinder) 
    CollisionComponent = CollisionCylinder 
    bCollideActors=true 
    bBlockActors = false 
    SaveSound = SoundCue'A_Interface.menu.UT3MenuAcceptCue' 
} 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 12:  Top-Down Shooter/RPG Game Framework 364 

Creating the Load Marker 
Next, we need to create the Load Marker class. See Listing 12–11. The key points to 

note are 

 The LoadMarker class contains a 3d graphic mesh that represents the 

object the player’s pawn needs to touch in order to load in previously 

saved squad character data. 

 The 3d mesh for this marker is set in the StaticMesh variable and is 

scaled up 2 times the normal size using the Scale3D variable. 

 In the Touch() function if the actor that touches this marker is the 

player’s pawn then the player’s previously saved squad character 

information is loaded in from the iOS device. 

Listing 12–11. LoadMarker Class 

class LoadMarker extends Actor 
placeable; 
 
var SoundCue SaveSound; 
 
event Touch(Actor Other, PrimitiveComponent OtherComp, vector HitLocation, vector 
HitNormal) 
{ 
    if (!Other.IsA('PlayerPawnCh12')) 
    { 
        return; 
    }  
    PlaySound(SaveSound); 
    ExampleCh12PC(Pawn(Other).Controller).LoadSquadInfo(); 
} 
defaultproperties 
{ 
    Begin Object Class=StaticMeshComponent Name=StaticMeshComponent0 
        StaticMesh=StaticMesh'HU_Deco_Statues.SM.Mesh.S_HU_Deco_Statues_SM_Statue03_01' 
        Scale3D=(X=2.0000,Y=2.0000,Z=2.000) 
    End Object 
    Components.Add(StaticMeshComponent0) 
 
    Begin Object Class=CylinderComponent NAME=CollisionCylinder 
        CollideActors=true 
        BlockActors=false 
        CollisionRadius=+0140.000000 
        CollisionHeight=+0240.000000 
    End Object 
    Components.Add(CollisionCylinder) 
    CollisionComponent = CollisionCylinder 
    bCollideActors=true 
    bBlockActors = false 
    SaveSound = SoundCue'A_Interface.menu.UT3MenuAcceptCue' 
} 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 12:  Top-Down Shooter/RPG Game Framework 365 

Creating the HUD 
Next, we need to create the new class for the Heads Up Display (see Listing 12–12). The 

key changes from previous versions of the HUD class are highlighted in bold print. 

Depending on the type of pawn in the HUDPawn variable in the player controller which is 

an ExampleCh12PC class then either the HUD is drawn using the DrawPlayerHUD() 

function to draw the HUD for the player or the DrawAllyHUD() function to draw the HUD 

for the ally bot. 

Listing 12–12. Heads Up Display 

class Ch12HUD extends UDKHud; 
 
struct HUDInfo 
{ 
    var string Label; 
    var Vector2D TextLocation; 
    var Color TextColor; 
    var Vector2D Scale; 
}; 
 
// HUD  
var HUDInfo HUDHealth; 
var HUDInfo HUDName; 
var HUDInfo HUDExperience; 
var HUDInfo HUDGameOver; 
simulated function PostBeginPlay() 
{ 
    Super.PostBeginPlay(); 
 
    HUDHealth.Label = "HitPoints:";  
    HUDHealth.TextLocation.x = 1100; 
    HUDHealth.TextLocation.y = 50; 
    HUDHealth.TextColor.R = 0; 
    HUDHealth.TextColor.G = 0; 
    HUDHealth.TextColor.B = 255; 
    HUDHealth.Scale.X = 2; 
    HUDHealth.Scale.Y = 4; 
 
    HUDName.Label = "Name:";  
    HUDName.TextLocation.x = 600; 
    HUDName.TextLocation.y = 50; 
    HUDName.TextColor.R = 0; 
    HUDName.TextColor.G = 255; 
    HUDName.TextColor.B = 0; 
    HUDName.Scale.X = 2; 
    HUDName.Scale.Y = 4; 
 
    HUDGameOver.Label = "Objective Killed";  
    HUDGameOver.TextLocation.x = 300; 
    HUDGameOver.TextLocation.y = 300; 
    HUDGameOver.TextColor.R = 255; 
    HUDGameOver.TextColor.G = 0; 
    HUDGameOver.TextColor.B = 255; 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 12:  Top-Down Shooter/RPG Game Framework 366 

    HUDGameOver.Scale.X = 7; 
    HUDGameOver.Scale.Y = 7; 
 
    HUDExperience.Label = "Experience:";  
    HUDExperience.TextLocation.x = 0; 
    HUDExperience.TextLocation.y = 50; 
    HUDExperience.TextColor.R = 255; 
    HUDExperience.TextColor.G = 0; 
    HUDExperience.TextColor.B = 0; 
    HUDExperience.Scale.X = 2; 
    HUDExperience.Scale.Y = 4; 
} 
function DrawHUDItem(HUDInfo Info, coerce string Value) 
{ 
    local Vector2D TextSize; 
 
    Canvas.SetDrawColor(Info.TextColor.R, Info.TextColor.G, Info.TextColor.B);  
    Canvas.SetPos(Info.TextLocation.X, Info.TextLocation.Y); 
    Canvas.DrawText(Info.Label, ,Info.Scale.X,Info.Scale.Y); 
    Canvas.TextSize(Info.Label, TextSize.X, TextSize.Y); 
    Canvas.SetPos(Info.TextLocation.X + (TextSize.X * Info.Scale.X), 
Info.TextLocation.Y); 
    Canvas.DrawText(Value, , Info.Scale.X, Info.Scale.Y); 
} 
function DrawPlayerHUD(Pawn HUDPawn) 
{ 
    local string CharacterName; 
    local int Experience; 
    local int HitPoints; 
 
    CharacterName = PlayerPawnCh12(HUDPawn).CharacterName; 
    Experience = PlayerPawnCh12(HUDPawn).Experience; 
    HitPoints = HUDPawn.Health; 
 
    DrawHUDItem(HUDExperience, Experience); 
    DrawHUDItem(HUDName, CharacterName); 
    DrawHUDItem(HUDHealth, HitPoints); 
} 
function DrawAllyHUD(Pawn HUDPawn) 
{ 
    local string CharacterName; 
    local int Experience; 
    local int HitPoints; 
 
    CharacterName = BotPawnCh12(HUDPawn).CharacterName; 
    Experience = BotPawnCh12(HUDPawn).Experience; 
    HitPoints = HUDPawn.Health; 
    DrawHUDItem(HUDExperience, Experience); 
    DrawHUDItem(HUDName, CharacterName); 
    DrawHUDItem(HUDHealth, HitPoints);    
} 
function DrawHUD() 
{ 
    local Pawn HUDPawn; 
   

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 12:  Top-Down Shooter/RPG Game Framework 367 

    super.DrawHUD(); 
    Canvas.Font = class'Engine'.static.GetLargeFont(); 
 
    HUDPawn = ExampleCh12PC(PlayerOwner).HUDPawn; 
    if (HUDPawn.IsA('PlayerPawnCh12')) 
    { 
       DrawPlayerHUD(HUDPawn); 
    } 
    else  
    if (HUDPawn.IsA('BotPawnCh12'))  
    { 
       DrawAllyHUD(HUDPawn); 
    } 
  
    // Game Over 
    if (ExampleCh12PC(PlayerOwner).bGameOVer) 
    { 
         DrawHUDItem(HUDGameOver, ""); 
    }   
} 
defaultProperties 
{ 
} 

Configuring the Game Type  
Next, we need to set up this new example for compilation and for playing on the mobile 

previewer. In the configuration directory located at 

C:\UDK\UDK-2011-06\UDKGame\Config 

(it will be different if you are using a different UDK version), change the UDKEngine.ini 

and Mobile-UDKGame.ini configuration files to the following: 

UDKEngine.ini 
[UnrealEd.EditorEngine] 
ModEditPackages=ExampleCh12 
Mobile-UDKGame.ini 
[ExampleCh12.ExampleCh12Game] 
RequiredMobileInputConfigs=(GroupName="UberGroup",RequireZoneNames=("UberStickMoveZone",
"UberStickLookZone","UberLookZone")) 

Save the configuration files. You may need to write protect them to preserve the 

contents since the UDK sometimes overwrites them (see the section “Configuring the 

Game Type” in Chapter 9). 

Bring up the Unreal Frontend and compile the scripts. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 12:  Top-Down Shooter/RPG Game Framework 368 

Creating the Level 
To create the level for this example, complete the following steps: 

1. Bring up the Unreal Editor. 

2. Load in the level you created for the game framework in Chapter 11 (see the 

section “Creating the Level”). (You also can find the level—ExampleCh11Map.zip—

with the source code for this book.)  

3. Save a copy of this level by selecting File  Save As to bring up the windows save 

dialog and typing in a new name for this new level then saving it. 

4. Next, select the Actor Class tab from the generic browser and search for 

savemarker in the search box. Select the SaveMarker class when it comes up.  

5. Right click on an empty area in the level and select Add SaveMarker Here to add 

the marker to the level (see Figure 12–1). 

 

Figure 12–1. Adding the Save Marker to the Level 

6. Next search for loadmarker in the search box in the Actor Classes tab. Select the 

LoadMarker class when it comes up. 

7. Right click on an empty area in the level and select Add LoadMarker Here to add 

the marker to the level (see Figure 12–2). 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 12:  Top-Down Shooter/RPG Game Framework 369 

 

Figure 12–2. Adding the Load Marker to the Level 

8. Save the level. 

Running the Game 
Now, we are ready to run our game.  

1. Select View  World Properties from the Unreal Editor main menu. This would bring 

up the World Properties window. 

2. In the World Properties window set the Default Game Type under the Game Type 

category to ExampleCh12Game. 

3. Select the Play  On Mobile Previewer option to run the game on the mobile 

previewer from the Editor. 

4. Select your bot ally by clicking on it. The Name in the HUD should be 

TeamMember1, as shown in Figure 12–3. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 12:  Top-Down Shooter/RPG Game Framework 370 

 

Figure 12–3. Selecting your ally bot 

5. Next, build up your ally bot’s experience points by clicking on the enemy guard 

bot to attack it. Repeat this process of clicking on your bot and then on the 

enemy guard several times to attack it. When the enemy guard is dead it will 

respawn. 

6. Save your squad’s character statistics by having the player’s pawn touch the 

SaveMarker statue in the level which is the rectangular statue. The round statue is 

the LoadMarker statue. See Figure 12–4. 

 

Figure 12–4. LoadMarker on Left and SaveMarker on Right 

7. Exit the mobile previewer then restart it. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


CHAPTER 12:  Top-Down Shooter/RPG Game Framework 371 

8. Load in the previously saved character data by having your player’s pawn touch 

the LoadMarker. Click on your ally bot to bring up its statistics. Note that the 

Experience points are the same as when you saved it previously. You should see 

something like Figure 12–5. 

Figure 12–5. After loading in the character data 

Summary 
In this chapter we created a new game framework suitable for a top-down shooter and 

or a role playing game. We discussed the framework’s features and then discussed how 

these features were implemented in terms of code. We then created the actual game 

framework. New code was created, a new level was created from an existing level that 

was made in a previous framework, the game type was then set up to run on the mobile 

previewer and finally we gave the reader a demonstration of the game. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


 373 

Index 

■ A
AddDefaultInventory() function, 215, 

284, 291 

AddGunToSocket() function, 215 

AddHealthBonus() function, 291, 295 

AllBlocksDestroyed() function, 271 

Angry Birds, 261 

Angular constraints, 111–112 

Apple developer’s license, 23 

Artificial Intelligence path finding. See 

Path finding 

AttackEnemyTimer() function, 300 

■ B
Ball and Socket constraint, 112 

BotAttackCoverController states, 284 

Bots 

descripton, 137 

UDK (see UDK bots) 

Breakable angular constraints, 112 

■ C
Camera system, 59–60 

Class declarations, 41 

Code execution flow control statements 

For Statement, 40 

If Statement, 39 

Switch/Case Statement, 40–41 

While Statement, 39 

Collisions models 

Convex Mesh Primitive, 85 

cube static mesh, 84 

description, 83 

K-DOP, 85 

sphere collision mesh, 85 

static mesh editor, 83–85 

Collisions objects 

description, 86 

KActor and KAsset 

AddImpulse() function, 87 

ApplyImpulse() function, 87 

applying a force, 87–88 

BoneName, 88 

custom, 86–87 

PrimitiveComponent class, 88 

rigid body collisions, 86 

RigidBodyCubeMesh, 86 

SkeletalMeshComponent, 86, 87 

StaticMeshComponent, 86 

Combat game. See First-person 

shooter game framework 

Convex Mesh Primitive, 85 

Cover nodes 

AI point, 249–250 

bot controller, 244–250 

bot pawn, 243–244 

BotCoverController class, 242 

CoverLink class, 239 

CoverLinkEx cover node, 250–252 

CoverProtectionAngle variable, 251 

custom cover node system, 239 

description, 238 

FindClosestEmptyCoverNodeWithin

Range loops, 245 

FindEnemyLocation() function, 246 

game configuration, 252 

game type creation, 240 

IsCoverSlotAvailable() function, 245 

IsCoverSlotValid() function, 245, 251 

IsCurrentCoverValid() function, 246 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


Index 374 

level setting, 252–255 

player controller, 240–243 

PrepMoveToCover() function, 247 

running the game, 255–256 

SpawnBot() function, 242 

TakeCover state, 248–249 

UDK cover link, 238 

UnclaimAllSlots function, 244 

CreateNewGameBall() function, 268 

■ D
Direction vector 

calculation, 260 

construction, 259 

description, 258 

kicking an object, 259 

DrawHUD() function, 274 

DrawHUDItem() function, 274 

■ E
Enemy bot’s code 

BotControllerAttack class, 217–220 

pawn, 215–217 

SpawnPad, 220–221 

weapon projectile, 220 

EWFT_Custom weapon, 63 

EWFT_InstantHit weapon, 63 

EWFT_Projectile weapon, 63 

ExecuteResetAfterSpawn() function, 

305 

ExecuteWhatToDoNext() function, 217 

■ F
FindSpawnPad() function, 288 

First-person shooter game framework 

AddDefaultInventory function, 284 

bot controller creation 

AI-related code, 305 

attacking the player, 303 

class variables and cover node 

functions, 297 

default properties, 308 

ExecuteWhatToDoNext, 306 

GeneratePathTo, 300 

Getting Health Pickup, 302 

resetting the bot, 305 

TakeCover State, 300 

bot pawn creation, 295–297 

bot projectile creation, 309 

bot spawn pad creation, 309 

bot weapon creation, 308 

BotAttackCoverController states, 

284 

computer-controlled bot, 284 

game type configuration, 313 

game type creation, 285–287 

GetRandomSpawnPosition() funtion, 

285 

Health Bonus power-up class,  

312–313 

HUD creation, 310–312 

level creation, 314–316 

PlaceWeapon function, 284 

player controller class creation 

FindSpawnPad() function, 288 

player input, 289 

PlayerTick function, 290 

ResetGame() function, 287 

SpawnBot() function, 288 

SpawnBotOnRandomPad() 

function, 288 

spawning bots, 288 

SwipeZoneCallback function, 289 

Weapon placement, 290 

player’s pawn creation, 291–292 

player’s projectile creation, 293–295 

player’s weapon creation, 292–293 

running game, 316–317 

For Statement, 40 

■ G
Game balance, 205, 206 

Game frameworks. See First-person 

shooter game framework; 

Physics game framework; 

Third-person adventure game 

framework 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


Index 375 

GamePlay 

creating basic game framework 

configuring game type, 221 

enemy bot’s code, 215–221 

HUD display, 221 

level, 207–208 

player’s code, 209–215 

running game, 223–225 

setting up spawn pad, 222 

type, 208–209 

difficulty 

enemies, 206 

game play rules, 206 

level design, 206 

player, 206 

power ups, 206 

game balance, 206 

GameTimer() function, 266 

Gaming environment 

description, 175 

Kismet 

description, 185 

locked gates creation, 193–199 

moving platform creation, 185–193 

usage, 185 

UDK HUD 

basic HUD addition, 201–204 

description, 199 

DrawHUD() function, 200 

text display, 200–201 

textures display, 201 

UDK Sound Cues 

description, 175 

Editor, 175–180 

using Kismet, 181–182 

using Unreal Editor, 180–181 

using UnrealScript, 181 

weapon, 182–185 

GeneratePathTo() function, 217 

GetRandomSpawnPosition() function, 

285, 295 

■ H
Hard angular constraints, 111 

Heads Up Display (HUD) 

basic HUD addition, 201–204 

creation 

custom function, 310 

DrawHUD function, 310 

PostBeginPlay function, 310 

description, 199 

DrawHUD() function, 200 

DrawHUDItem() function, 204 

text display, 200–201 

textures display, 201 

Health Bonus power-up class 

Tick() function, 312 

Touch() function, 312 

HealthPickupAvailable() function, 301 

Hinge constraint, 112 

■ I, J
If Statement, 39 

InitKickBallGame() function, 271 

InputDelayTimer() function, 265 

■ K
KActor 

creation 

ApplyForceRigidBody() function, 

95, 97 

ApplyImpulse() function, 95 

custom game type, 93–94 

custom player controller, 94–99 

IsA() function, 95 

level, 88–93 

new game type configuration, 99 

OnEngineHasLoaded() function, 

94 

PickActor() function, 95 

PickDistance, 99 

properties, 90 

running game type, 99–100 

SetupZones() function, 98 

sphere transformation widget, 91 

SwipeZone() callback function, 96 

Unreal Script Code, 93–99 

custom, 86–87 

description, 86 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


Index 376 

KAsset 

creation 

ApplyForceRigidBody function, 

107 

bounding box, 103 

custom game type, 106 

custom player controller,  

107–109 

level creation, 103–106 

new game type, 109 

new Physics Asset, 100–103 

properties, 105 

running game type, 109–110 

Unreal Script Code, 106–109 

custom, 86–87 

description, 86 

K-DOP, 85 

Kismet 

description, 29, 185 

limitation, 29 

locked gates creation 

gate with trigger, 194 

key frame, 195–197 

opening the gate, 198 

sound effects creation, 199 

trigger controlling Matinee 

sequence, 195 

moving platform creation 

Gate Mesh platform, 186 

Initializing, 192 

key frame, 189–192 

Kismet nodes, 187 

Matinee node, 187 

Red marker, 188–189 

working platform, 193 

Unreal Kismet Editor, 31 

Unreal Matinee, 31–32 

usage, 185 

See also GamePlay 

■ L, M
Linear constraints, 111 

LoadLevel() function, 269 

■ N
Navigation mesh 

advantages, 141 

bot creation 

bot controller, 157–160 

description, 154 

game type configuration, 160 

level, 155–156 

parts, 156 

running the game, 160–161 

description, 141 

usage, 141 

NeedHealthPickup() function, 301 

■ O
Operators, UnrealScript 

artithmetic, 38 

conditional, 38–39 

description, 38 

■ P, Q
Path finding 

bot equipping, weapon and taking 

damage 

pawn modification, 166–168, 

171–172 

player controller modification, 

170–171 

player’s weapon modification, 

172 

running the game, 173 

weapon and projectile creation, 

168–170 

bot movement 

botmarker creation, 161 

description, 161 

player controller, 162–165 

running the game, 165 

description, 140 

navigation mesh 

advantages, 141 

bot creation, 154–161 

description, 141 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


Index 377 

usage, 141 

path nodes 

bot creation, 142–154 

description, 140 

usage, 140–141 

Path nodes 

bot creation 

bot controller and pawn, 150–153 

collision cylinder, 151 

description, 142 

FindPathToward() function, 152 

game type, 144 

game type configuration, 153–154 

level, 142–144 

MoveTo() function, 152 

player controller and pawn,  

145–148 

player weapon, 148–150 

projectile, 148–150 

running the game type, 154 

weapon inventory manager,  

148–150 

description, 140 

usage, 140–141 

Pawn class 

BackVector variable, 61 

CalcCamera() function, 60, 62 

CamDistanceHorizontal variable, 61 

CamOffsetDistance variable, 61 

Jazz1Pawn modification, 60 

out_CamRot.pitch variable, 61 

third-person view, 62 

See also Player controller 

Physics constraints 

angular constraints, 111–112 

creation, Unreal Editor 

ball and socket joint, 113 

constraining objects, 113–119 

new objects insertion, 113 

properties, 116 

running game type, 120–121 

SwipeZoneCallback() function, 

119 

description, 110 

dynamic, 112 

linear constraints, 111 

predefined constraints, 112 

Physics game framework 

angle of launching collision object, 

262–263 

Angry Birds, 261 

creating collision object, 262 

sample game 

game ball creation, 272–273 

game type configuration, 277 

game type creation, 263–264 

HUD class creation, 274–276 

level creation, 277–280 

player controller class creation, 

265–272 

RigidBodyCubeEx object 

creation, 276 

running game, 280–281 

PickActor() function, 267 

PlaceWeapon() function, 284 

Player controller 

3D skeletal mesh character 

default first-person view, 55 

JazzMesh, 58 

player’s default view, 59 

skeletal mesh addition, 58–59 

SkeletalMeshComponent, 58 

CalcCamera() function, 59 

camera system, 59–60 

description, 53 

PlayerController class, 53 

PlayerMove() function, 54 

PlayerTick() function, 54 

ProcessMove() function, 54, 59 

SimplePC class, 53 

UpdateRotation() function, 54, 59 

Player input controls 

motion input, 22 

touch input, 20 

SetupZone function, 21 

SwipeZoneCallback, 21 

virtual joysticks, 18 

location, 18 

type, 19 

UberGroup, 18 

Player weapon’s bullet, 294 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


Index 378 

Player’s code 

controller, 212–214 

pawn, 209–212 

weapon, 214 

weapon projectile, 215 

PlayerTick function, 290 

PostBeginPlay() function, 266, 274 

Predefined constraints, 112 

PrepAttackingEnemy() function, 303 

PrepGettingHealthPickup() function, 301 

Prismatic constraint, 112 

ProcessLookUpInput() function, 265 

Provisioning, UDK game, 23 

Pulley constraint, 112 

■ R
ResetAfterSpawn() function, 304 

ResetGame() function, 269, 287 

RigidBodyCollision() function, 272, 276 

RigidBodyCube() function, 276 

Role-playing game (RPG) framework. 

See Top-down shooter, RPG 

game framework 

■ S
SetupZones() function, 269 

Skeletal mesh, 10 

AnimSet Editor, 12 

Setting Materials, 12 

SK_Jazz, 12 

Soft angular constraints, 111–112 

Sound Cues Editor 

attenuation 

A_Powerup_UDamage_SpawnCue, 

176 

distance algorithm, 177 

properties, 176, 177 

description, 175 

looping 

description, 177 

properties, 178 

Vehicle_Damage_FireLoop_Cue, 

177 

modulator node 

A_Effort_EnigmaMean_Death_Cue, 

179 

description, 179 

property, 180 

random node 

description, 178 

properties, 179 

S_BulletImpact_01_Cue, 178 

SpawnBot() function, 288 

SpawnBotOnRandomPad() function, 

288 

State diagram for enemy bot, 305, 306 

SwipeZoneCallback() function, 269, 289 

Switch/Case Statement, 40–41 

■ T
TakeDamage() function, 215, 217, 291 

Third-person adventure game 

framework 

advantages, 319 

bot ally controller 

AI support code, 335 

AttackingEnemy state, 334–335 

bot commands, 330–331 

ExecuteWhatToDoNext() 

function, 330, 335–336 

FollowingTarget state, 331–332 

GeneratePathTo() function, 331 

MovingToMarker state, 332–333 

SetCommand() function, 330 

BotAllyController class, 321 

BotControllerGuard class, 321 

BotMarker creation, 336 

computer-controlled bot, 320 

DrawHUD() function, 343 

DrawHUDItem() function, 343 

enemy guard bot controller 

AI support functions, 341 

Attacking state, 339–341 

ExecuteWhatToDoNext() 

function, 341–342 

FindUnguardedGenerator() 

function, 338 

GeneratePathTo() function, 337 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


Index 379 

GuardedStructure, 337 

guarding related functions,  

338–339 

Guarding state, 337 

IsInPatrolRange() function, 338 

mesh navigation, 337 

threat, 337 

enemy guard bot pawn creation, 342 

features, 320 

game type configuration, 346 

game type creation, 321–322 

Generator class, 321 

GuardPawn class, 321, 342 

HUD class, 320 

HUD creation, 342–344 

HUDInfo structure, 343 

level creation, 347 

Pawn class, 321 

player controller 

AllyBot and AllyPawn variables, 

323 

bBotCommandStateActive 

variable, 323, 327 

bGameOver, 323 

bot command related functions, 

325 

BotAllyController class, 326 

CreateNewGuardBot() function, 

322, 325 

enemy guard bot creation, 326 

ExecuteBotAttackCommand() 

function, 324 

ExecuteBotMoveCommand() 

function, 324 

FindObjectiveHealth() function, 

322, 324 

FindSpawnPad() function, 325 

GuardBot and GuardPawn 

variables, 323 

IsActorAllyBot() function, 327 

IsActorGuardBot() function, 327 

ObjectiveHealth, 323 

PickActor() function, 324 

PlayerTick() function, 322, 329 

ProcessTouch() function, 323, 

327, 328 

SelectBotAllyGraphic() function, 

325 

SetBotMarkerGraphic() function, 

324 

SpawnAllyBot() function, 322, 326 

SpawnGuardBot() function, 325 

SwipeZoneCallback, 328 

SwipeZoneCallback() function, 

328 

touch input process, 327–328 

PlayerControllerClass variable, 322 

power generator creation, 345–346 

running the game, 348–349 

StaticMesh variable, 336 

TakeDamage() class, 345 

Tick() function, 336 

3D math 

CalcCamera function, 257 

cover nodes 

AI point, 249–250 

bot controller, 244–250 

bot pawn, 243–244 

BotCoverController class, 242 

CoverLink class, 239 

CoverLinkEx cover node,  

250–252 

CoverProtectionAngle variable, 

251 

custom cover node system, 239 

description, 238 

FindClosestEmptyCoverNodeWit

hinRange loops, 245 

FindEnemyLocation() function, 

246 

game configuration, 252 

game type creation, 240 

IsCoverSlotAvailable() function, 

245 

IsCoverSlotValid() function, 245, 

251 

IsCurrentCoverValid() function, 

246 

level setting, 252–255 

player controller, 240–243 

PrepMoveToCover() function, 247 

running game, 255–256 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


Index 380 

SpawnBot() function, 242 

TakeCover state, 248–249 

UDK cover link, 238 

UnclaimAllSlots function, 244 

description, 227 

direction vector 

calculation, 260 

construction, 259 

description, 258 

kicking an object, 259 

scalars, 227 

third-person camera positioning, 

257–258 

vectors 

2D plane, 228 

3D Unreal world coordinate 

system, 229 

addition, 231–232 

cross product, 237–238 

description, 227 

dot product, 236–237 

magnitude, 229–230 

normalized, 231 

properties, 228 

right triangle, 235 

rotator to vector conversion,  

230–231 

scalar multiplication, 232–233 

SetRotation() function, 230 

unit circle, 234 

Tick() function, 312 

Top-down shooter, RPG game 

framework 

Ally bot pawn, 361 

CalcCamera() function, 352, 359 

character information class, 362 

characteristics, 353 

description, 351, 371 

DrawAllyHUD() function, 365 

DrawPlayerHUD() function, 365 

enemy bot pawn, 361–362 

features, 352 

game type configuration, 367 

game type creation, 354 

GetBaseAimRotation() function, 359 

guard pawn, 361–362 

HUD creation, 365–367 

level creation, 368–369 

LoadMarker class, 353, 364 

player controller 

CharacterFile variable, 356 

functions, 355 

HUDPawn variable, 356 

LoadCharacterInfo() function, 

355, 356 

loading and saving, 355–356 

LoadSquadInfo() function, 355, 

356 

PlayerMove() function, 355, 356 

PlayerWalking state, 356–357 

PostBeginPlay() function, 356 

SaveCharacterInfo() function, 

355, 356 

SaveSquadInfo() function, 355, 

356 

SetHUDPawn function, 358–359 

SpawnGuardBot() function,  

357–358 

SwipeZoneCallback() function, 

358 

player pawn, 359–360 

running the game, 369–371 

SaveMarker class, 353, 363 

SaveSquadInfo() function, 353 

Scale3D variable, 363 

TakeDamage() function, 361, 362 

Touch() function, 272, 312, 363 

■ U
Unreal Development Kit (UDK) 

Apple developer’s license, 23 

Asset Search, 6 

blockwall, 8 

configuring custom game types,  

27–28 

Content Browser, 5 

installation, 1–2 

Actor classes tab, 3–4 

checkbox, 4 

content browser and UDK 

Assets, 5 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


Index 381 

generic browser, 2 

Material Assets, 9–10 

Mesh Assets, 10–13 

Particle System Assets, 13–14 

Sound Cue Assets, 14–16 

system, 6 

texture assets, 8 

UDK Assets, 6–8 

iOS platform 

input controls (see Player input 

controls) 

saving data, 16 

textures an iOS device, 17 

iOS requirements, 22 

Materials Editor, 9 

provisioning, 23 

running UDK game on iOS device, 

23–27 

setting textures, 9, 10 

Sound Cue Editor, 14, 16 

Startup Screen, 2 

Static Mesh Editor, 10, 11 

Texture Properties, 8 

Unreal Cascade, 14 

website, 1 

Unreal Development Kit (UDK) bots 

AddDefaultInventory() function, 166 

AddGunToSocket() function, 166 

AIController class, 138 

classes, 138 

controller class, 139 

CylinderComponent class, 151 

description, 137 

ExecuteBotMoveCommand() 

function, 162 

JazzPawnDamage, 145 

JazzWeaponDamage, 148 

key functions 

ExecuteWhatToDoNext() 

function, 139 

LatentWhatToDoNext() function, 

138 

WhatToDoNext() function, 139 

path finding 

bot creation, 142–161 

bot equipping, weapon and 

taking damage, 166–173 

bot movement, 161–166 

description, 140 

navigation mesh, 141–142 

path nodes, 140–141 

PickActor() function, 162 

Possess() function, 139 

PossessedBy() function, 139 

possession, 139–140 

Spawn() function, 140 

SwipeZoneCallback() function, 171 

TakeDamage() function, 166 

UDKBot class, 138 

UnPossess() function, 140 

Unreal Development Kit (UDK) collisions 

bBlockActors variable, 123 

bCollideActors variable, 123 

BlockActors variable, 122 

BlockRigidBody variable, 122 

bNotifyRigidBodyCollision variable, 

122 

bWakeOnLevelStart variable, 122 

CollideActors variable, 122 

exploding wall of blocks 

kicking objects, 135 

MinimumForceToExplode 

variable, 132 

OutOfViewLocation variable, 132 

particle system, 133 

RigidBodyCollision() function, 133 

SpawnEmitter() function, 132 

meshes 

Convex Mesh Primitive, 85 

cube static mesh, 84 

description, 83 

K-DOP, 85 

sphere collision mesh, 85 

static mesh editor, 83–85 

objects 

custom game type, 123–124 

custom player controller,  

124–127 

description, 86 

game type setup, 128 

KActor and KAsset, 86–88 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


Index 382 

level setting, 129–131 

RigidBodyCollision() function, 123 

RigidBodyCube class, 127–128 

running game type, 131–132 

Unreal Script, 123–128 

physics constraints 

angular constraints, 111–112 

creation, Unreal Editor, 113–120 

description, 110 

dynamic, 112 

linear constraints, 111 

predefined constraints, 112 

Physics variable, 122 

RBChannel variable, 122 

RigidBodyCollision() function, 121 

RigidBodyCubeMesh, 122 

Unreal Physics system, 83 

Unreal Development Kit (UDK) Sound 

Cues 

description, 175 

Editor 

attenuation, 176–177 

description, 175 

looping, 177–178 

modulator node, 179–180 

random node, 178–179 

PlaySound() function, 181 

using Kismet, 181–182 

using Unreal Editor, 180–181 

using UnrealScript, 181 

weapon 

creation, 183 

description, 182 

projectile, 184–185 

Unreal Development Kit (UDK) weapons 

Activate() function, 66 

active state, 66 

BeginFire() function, 66 

BeginState() function, 66 

bullets creation, 70–71 

ChangedWeapon() function, 66 

custom inventory manager creation 

AddDefaultInventory() function, 73 

AddGunToSocket() function, 73 

GetBaseAimRotation() function, 73 

Jazz1Pawn class, 71–73 

WeaponsIM1 class, 71 

description, 63 

EndState() function, 66 

EWFT_Custom, 63 

EWFT_InstantHit, 63 

EWFT_Projectile, 63 

Explode() function, 71 

FireAmmunition() function, 64, 67 

firing, 67–68 

first-person view 

new game type, 80 

pawn creation, 77 

PlaceWeapon() function, 78 

player controller creation, 78–79 

PlayerTick() function, 78 

projectile creation, 77 

running game type, 81–82 

weapon creation, 76 

inactive state, 66 

Init() function, 71 

inventory manager, 63 

MaxSpeed variable, 71 

pawn 

final custom weapon, 70 

FiringStatesArray, 69 

mesh variable, 69 

weapon creation, 68–70 

WeaponFireTypes array, 69 

player controller 

flames, 75 

SwipeZoneCallback() function, 74 

weapon demonstration, 75 

Scale3D variable, 71 

selection, 66 

SendToFiringState() function, 67 

SetPendingFire() function, 67 

StartFire() function, 67 

states, 64–66 

SwipezoneCallback() function, 67 

Template variable, 71 

types, 63–64 

WeaponEquipping state, 66 

WeaponFiring state, 66 

WeaponPuttingDown state, 66 

UnrealScript programming language 

automatic garbage collection, 33 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


Index 383 

BeginState functions, 42 

Broadcast() function, 43 

class declarations, 41 

code execution flow control 

statements 

For Statement, 40 

If Statement, 39 

Switch/Case Statement, 40–41 

While Statement, 39 

comments, 34 

creating and compiling 

actual compiling1, 44 

compile scripts, 45 

notepad, 43 

Unreal Frontend, 43–44 

debug messages, 43 

description, 29 

EndState functions, 42 

finite state machine (FSM), 42 

functions, 41 

key features, 33–34 

Kismet 

description, 29 

limitation, 29 

Unreal Kismet Editor, 31 

Unreal Matinee, 31–32 

Latent functions, 33 

None references, 33 

object with touch selection 

game type configuration, 49–50 

game type creation, 46–47 

level creation, 45–46 

OnEngineHasLoaded() function, 

46 

PickActor() function, 47 

player controller creation, 47–49 

PreventDeath() function, 46 

running the game type, 50–51 

SetGameType() function, 47 

SetupZones() function, 49 

SwipeZoneCallback() function, 48 

objects execute script 

independently, 33 

operators 

artithmetic, 38 

conditional, 38–39 

description, 38 

single inheritance, 33 

state function, 42–43 

variables 

description, 34 

scope modifiers, 35 

types, 35–38 

UpdateRotation() function, 265 

■ V
Variables, UnrealScript 

description, 34 

scope modifiers, 35 

types 

bool, 35 

class reference, 37–38 

dynamic arrays, 36 

enum, 35 

float, 35 

int, 35 

object reference, 37 

static arrays, 36 

string, 35 

struct, 36 

Vectors 

2D plane, 228 

3D Unreal world coordinate system, 

229 

addition, 231–232 

cross product, 237–238 

description, 227 

dot product, 236–237 

magnitude, 229–230 

normalized, 231 

properties, 228 

right triangle, 235 

rotator to vector conversion, 230–231 

scalar multiplication, 232–233 

SetRotation() function, 230 

unit circle, 234 

■ W, X, Y, Z
While Statement, 39 

 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


   i 

Beginning iOS 3D Unreal 
Games Development 

 

 

 

 

  
 

  

■ ■ ■ 

Robert Chin 

 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


Beginning iOS 3D Unreal Games Development  

Copyright © 2012 by Robert Chin 

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any 
means, electronic or mechanical, including photocopying, recording, or by any information 
storage or retrieval system, without the prior written permission of the copyright owner and the 
publisher. 

ISBN-13 (pbk): 978-1-4302- 4035-8 

ISBN-13 (electronic): 978-1-4302- 4036-5 

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1 

Trademarked names, logos, and images may appear in this book. Rather than use a trademark 
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, 
and images only in an editorial fashion and to the benefit of the trademark owner, with no 
intention of infringement of the trademark. 

The use in this publication of trade names, trademarks, service marks, and similar terms, even if 
they are not identified as such, is not to be taken as an expression of opinion as to whether or not 
they are subject to proprietary rights. 

President and Publisher: Paul Manning 
Lead Editor: Michelle Lowman 
Development Editor: Chris Nelson   
Technical Reviewers: Thomas Havlik and David Franson  
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Louise Corrigan,  

Morgan Ertel, Jonathan Gennick, Jonathan Hassell, Robert Hutchinson,  
Michelle Lowman, James Markham, Matthew Moodie, Jeff Olson, Jeffrey Pepper,  
Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing,  
Matt Wade, Tom Welsh 

Copy Editor: Lori Cavanaugh 
Compositor: MacPS, LLC 
Indexer: SPi Global 
Artist: SPi Global 
Cover Designer: Anna Ishchenko 

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring 
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail 
orders-ny@springer-sbm.com, or visit www.springeronline.com.  

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.  

Apress and friends of ED books may be purchased in bulk for academic, corporate, or 
promotional use. eBook versions and licenses are also available for most titles. For more 
information, reference our Special Bulk Sales–eBook Licensing web page at 
www.apress.com/bulk-sales. 

The information in this book is distributed on an “as is” basis, without warranty. Although every 
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall 
have any liability to any person or entity with respect to any loss or damage caused or alleged to 
be caused directly or indirectly by the information contained in this work.  

Any source code or other supplementary materials referenced by the author in this text is 
available to readers at www.apress.com. For detailed information about how to locate your book’s 
source code, go to http://www.apress.com/source-code/. 

www.it-ebooks.info

http://freepdf-books.com

mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com
http://www.apress.com/source-code/
http://www.it-ebooks.info/


iv 

 

Contents 

Contents at a Glance .......................................................................................... iii
About the Author ................................................................................................ ix
About the Technical Reviewers .......................................................................... x
Acknowledgments ............................................................................................. xi
Introduction ...................................................................................................... xii
 
■Chapter 1: UDK Overview ................................................................................. 1

Getting Started ........................................................................................................................................................ 1
Unreal Editor Overview ........................................................................................................................................... 1

The Generic Browser ......................................................................................................................................... 2
Actor Classes Tab .............................................................................................................................................. 3
The Content Browser and UDK Assets ............................................................................................................... 5
Importing New Content ...................................................................................................................................... 6
Searching for UDK Assets .................................................................................................................................. 6
UDK Texture Assets ............................................................................................................................................ 8
UDK Material Assets .......................................................................................................................................... 9
UDK Mesh Assets ............................................................................................................................................. 10
UDK Particle System Assets ............................................................................................................................. 13
UDK Sound Cue Assets .................................................................................................................................... 14

IOS Specific UDK Information ................................................................................................................................ 16
Saving Data on an iOS Device .......................................................................................................................... 16
Textures on an iOS Device ............................................................................................................................... 17
Player Input Controls on an iOS Device ............................................................................................................ 17

PC to iOS Setup ..................................................................................................................................................... 22
iOS Requirements ............................................................................................................................................ 22
Apple Developer’s License ............................................................................................................................... 23
Provisioning ..................................................................................................................................................... 23
Running the UDK Game on the iOS Device ....................................................................................................... 23
Configuring Custom Game Types ..................................................................................................................... 27

Summary .............................................................................................................................................................. 28

■Chapter 2: UnrealScript Overview ................................................................. 29
Kismet or UnrealScript? ........................................................................................................................................ 29
Overview of UnrealScript ...................................................................................................................................... 32

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


■ CONTENTS 

 

 

v 

UnrealScript Comments ................................................................................................................................... 34
UnrealScript Variables ..................................................................................................................................... 34
Operators ......................................................................................................................................................... 38
Code Execution Flow Control Statements ........................................................................................................ 39
Class Declarations ........................................................................................................................................... 41
Functions ......................................................................................................................................................... 41
States ............................................................................................................................................................... 42
Debug Messages ............................................................................................................................................. 43

Creating and Compiling UnrealScript .................................................................................................................... 43
Hands-On Example: Selecting an Object with Touch ............................................................................................ 45

Creating the Game Type .................................................................................................................................. 46
Creating the Player Controller .......................................................................................................................... 47
Settting up the Game Type Configuration ........................................................................................................ 49
Running the Game Type ................................................................................................................................... 50

Summary .............................................................................................................................................................. 51

■Chapter 3: Player Controllers, Pawns, and Weapons .................................... 53
Player Controller and Pawn Overview ................................................................................................................... 53
Hands-on Example: Making your pawn visible with a 3D skeletal mesh character ............................................. 55

Creating the Default First-Person View ............................................................................................................ 55
Adding a Skeletal Mesh to represent your pawn ............................................................................................. 58

UDK Camera Overview .......................................................................................................................................... 59
Hands-on Example: Changing the view of your pawn. ......................................................................................... 60
UDK Weapons Overview ........................................................................................................................................ 63

Inventory Manager ........................................................................................................................................... 63
Weapon Types .................................................................................................................................................. 63
Weapon States ................................................................................................................................................. 64
Weapon Selection ............................................................................................................................................ 66
Weapon Firing .................................................................................................................................................. 67

Hands-on Example: Adding a weapon to your pawn ............................................................................................ 68
Creating the Weapon ....................................................................................................................................... 68
Creating the Bullets for the Weapon ................................................................................................................ 70
Creating the Custom Inventory Manager ......................................................................................................... 71
Adding to the Player Controller ........................................................................................................................ 74

Hands-On Example: Adding a weapon to your first-person view. ........................................................................ 76
Creating the Weapon ....................................................................................................................................... 76
Creating the Projectile for the Weapon ............................................................................................................ 77
Creating the Pawn ........................................................................................................................................... 77
Creating the Player Controller .......................................................................................................................... 78
Creating a New Game Type ............................................................................................................................. 80
Setting up your new Game Type ...................................................................................................................... 80
Running the new Game Type ........................................................................................................................... 81

Summary .............................................................................................................................................................. 82

■Chapter 4: UDK Collisions .............................................................................. 83
Collision Meshes ................................................................................................................................................... 83
Collision Objects ................................................................................................................................................... 86

KActor and KAsset Overview ............................................................................................................................ 86
Hands-on Example: Creating a KActor and applying a force to it ......................................................................... 88

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


■ CONTENTS 

 

 

vi 

Hands-On Example: Creating a KAsset and applying a force to it ................................................................. 100
Physics Constraints ............................................................................................................................................. 110

Physics Constraints Overview ........................................................................................................................ 110
Hands-On Example: Creating physics constraints with the Unreal Editor ..................................................... 113

Collisions ............................................................................................................................................................. 121
Collision Overview .......................................................................................................................................... 121
Hands-on Example: Creating a Collision Object and Putting It in a Level ...................................................... 123
Hands-On Example: Making an exploding wall of blocks .............................................................................. 132

Summary ............................................................................................................................................................ 135

■Chapter 5: UDK Bots .................................................................................... 137
UDK Bot Overview ............................................................................................................................................... 137

Bot Related Classes ....................................................................................................................................... 138
Key Bot Related Functions ............................................................................................................................. 138
Possession ..................................................................................................................................................... 139

Path Finding ........................................................................................................................................................ 140
Path Nodes ..................................................................................................................................................... 140
Navigation Mesh ............................................................................................................................................ 141
Hands-On Example: Creating a bot and having it follow you using Path Nodes. ........................................... 142
Hands-On Example: Creating a bot and having it follow you using a Navigation Mesh ................................ 154

Hands-On Example: Moving a Bot to a point in the world specified by the Player ............................................. 161
Hands-On Example: Equipping your bot with a weapon and Taking Damage ............................................... 166

Summary ............................................................................................................................................................ 174

■Chapter 6: Environment: Sounds, Kismet, and HUD .................................... 175
UDK Sound Cues ................................................................................................................................................. 175

Overview of the UDK Sound Cue Editor .......................................................................................................... 175
Adding Sound Cues Using the Unreal Editor .................................................................................................. 180
Adding Sound Cues Dynamically using UnrealScript ..................................................................................... 181
Adding Sound Cues Using Kismet .................................................................................................................. 181
Hands-On Example: Adding Sound Cues to a Weapon .................................................................................. 182

Kismet, Matinee and Moving Objects ................................................................................................................. 185
Hands-On Example: Using Kismet to create a Moving Platform .................................................................... 185
Hands-on Example: Using Kismet to create Locked Gates ............................................................................ 193

UDK Heads Up Display ........................................................................................................................................ 199
Overview of the HUD ...................................................................................................................................... 200
Hands-on Example: Adding a Basic Heads Up Display .................................................................................. 201

Summary ............................................................................................................................................................ 204

■Chapter 7: Sample Game and GamePlay ..................................................... 205
Gameplay Overview ............................................................................................................................................ 205

Game Difficulty .............................................................................................................................................. 205
Game Balance ................................................................................................................................................ 206

Basic GamePlay .................................................................................................................................................. 207
Hands-On Example: Creating a Basic Game Framework. .............................................................................. 207

Summary ............................................................................................................................................................ 225

■Chapter 8: 3D Math Review ......................................................................... 227
Vectors ................................................................................................................................................................ 227

Vector Magnitude ........................................................................................................................................... 229
Rotator to Vector Conversion ......................................................................................................................... 230

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


■ CONTENTS 

 

 

vii 

Normalizing Vectors ....................................................................................................................................... 231
Vector Addition ............................................................................................................................................... 231
Scalar Multiplication ...................................................................................................................................... 232
Unit Circle ...................................................................................................................................................... 234
Right Triangle ................................................................................................................................................. 235
Dot Product .................................................................................................................................................... 236
Cross Product ................................................................................................................................................. 237

Cover Nodes ........................................................................................................................................................ 238
Cover Node Overview ..................................................................................................................................... 238
Hands-on Example: Cover Nodes ................................................................................................................... 239

In-Depth Example Explanations .......................................................................................................................... 257
Third-Person Camera Positioning .................................................................................................................. 257
Deriving a Direction Vector for Kicking an Object .......................................................................................... 258

Summary ............................................................................................................................................................ 260

■Chapter 9: Physics Game Framework ......................................................... 261
Physics Game Framework Overview .................................................................................................................. 261

General Overview ........................................................................................................................................... 262
Specific Overview .......................................................................................................................................... 262

Hands-on Example: A Basic Physics Game ......................................................................................................... 263
Creating the Game Type ................................................................................................................................ 263
Creating the Player Controller ........................................................................................................................ 265
Creating the Game Ball .................................................................................................................................. 272
Creating the HUD ........................................................................................................................................... 274
Creating the RigidBodyCubeEx Object ........................................................................................................... 276
Configuring the Game Type ........................................................................................................................... 277
Creating the Level .......................................................................................................................................... 277
Running the Game ......................................................................................................................................... 280

Summary ............................................................................................................................................................ 281

■Chapter 10: First-Person Shooter Game Framework .................................. 283
Game Framework Overview ................................................................................................................................ 283

General Overview ........................................................................................................................................... 284
Specific Overview .......................................................................................................................................... 284

Hands-On Example: First-Person Shooter Game Framework ............................................................................. 285
Creating the Game Type ................................................................................................................................ 285
Creating the Player-Related Classes .............................................................................................................. 287
Creating the Enemy Bot Related Classes ....................................................................................................... 295
Creating the HUD ........................................................................................................................................... 310
Creating the Bonus ........................................................................................................................................ 312
Configuring the Game Type ........................................................................................................................... 313
Creating the Level .......................................................................................................................................... 314
Running the Game ......................................................................................................................................... 316

Summary ............................................................................................................................................................ 318

■Chapter 11: Third-Person Shooter/Adventure Game Framework ................ 319
Game Framework Overview ................................................................................................................................ 320

General Overview ........................................................................................................................................... 320
Specific Overview .......................................................................................................................................... 321

Hands-on Example: Third-Person Shooter/Adventure Game Framework ........................................................... 321

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


■ CONTENTS 

 

 

viii 

Creating the Game Type ................................................................................................................................ 321
Creating the Player Controller ........................................................................................................................ 322
Creating the Bot Ally Controller ...................................................................................................................... 330
Creating the BotMarker .................................................................................................................................. 336
Creating the Enemy Guard Bot Controller ...................................................................................................... 337
Creating Enemy Guard Bot Pawn ................................................................................................................... 342
Creating the Heads Up Display ...................................................................................................................... 342
Creating the Power Generator ....................................................................................................................... 345
Configuring the Game Type ........................................................................................................................... 346
Creating the Level .......................................................................................................................................... 347
Running the Game ......................................................................................................................................... 348

Summary ............................................................................................................................................................ 350

■Chapter 12: Top-Down Shooter/RPG Game Framework .............................. 351
Game Framework Overview ................................................................................................................................ 352

General Framework Overview ........................................................................................................................ 352
Specific Framework Overview ....................................................................................................................... 352

Hands-On Example: Creating a Top-Down Shooter / Role-Playing Game Framework ....................................... 353
Creating the Game Type ................................................................................................................................ 354
Creating the Player Controller ........................................................................................................................ 354
Creating the Player Pawn .............................................................................................................................. 359
Creating the Ally Bot Pawn ............................................................................................................................ 361
Creating the Enemy Bot Pawn ....................................................................................................................... 361
Creating the Character Information Class ...................................................................................................... 362
Creating the Save Marker .............................................................................................................................. 363
Creating the Load Marker .............................................................................................................................. 364
Creating the HUD ........................................................................................................................................... 365
Configuring the Game Type ........................................................................................................................... 367
Creating the Level .......................................................................................................................................... 368
Running the Game ......................................................................................................................................... 369

Summary ............................................................................................................................................................ 371

Index ............................................................................................................... 373 
 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


ix 

 

About the Author 

Robert Chin has a bachelor of science degree in computer engineering and is experienced in 
C/C++ and UnrealScript. He has written 3D games in C/C++ using the DirectX and OpenGL 
graphics APIs for the Windows platform. He has served as an Unreal UDK consultant and written 
UDK UnrealScript-based programs for clients, including an entire commercial game coded 
specifically for the iOS platform. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


x 

About the Technical Reviewers 

David Franson has been involved in networking, programming, and 2D and 3D computer 
graphics since 1990. He is the author of 2D Artwork and 3D Game Modeling for Game Artists
(Cengage, 2002) and The Dark Side of Game Texturing (Course Technology, 2004). He has also 
produced digital artwork for 3D video games, film, and television. 

Thomas Havlik is the lead developer at Action Mobile as well as the website administrator and a 
programmer at Raw Games. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/


xi 

 

Acknowledgments 

I would like to thank Chris Nelson for providing critical suggestions as to the direction of this 
book and for serving as the development editor. I would also like to thank technical reviewers 
Thomas Havlik and David Franson. I would also like to thank Jennifer Blackwell who helped keep 
me on track with reminders on when material was due in her role as coordinating editor. Finally I 
would like to thank Michelle Lowman who helped me get this book contract in the first place by 
presenting my proposal to the Apress editorial board. 

www.it-ebooks.info

http://freepdf-books.com

http://www.it-ebooks.info/

	Cover
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Introduction

	UDK Overview
	Getting Started
	Unreal Editor Overview
	The Generic Browser
	Actor Classes Tab
	The Content Browser and UDK Assets
	Importing New Content
	Searching for UDK Assets
	UDK Texture Assets
	UDK Material Assets
	UDK Mesh Assets
	UDK Particle System Assets
	UDK Sound Cue Assets

	IOS Specific UDK Information
	Saving Data on an iOS Device
	Textures on an iOS Device
	Player Input Controls on an iOS Device

	PC to iOS Setup
	iOS Requirements
	Apple Developer’s License
	Provisioning
	Running the UDK Game on the iOS Device
	Configuring Custom Game Types

	Summary

	UnrealScript Overview
	Kismet or UnrealScript?
	Overview of UnrealScript
	UnrealScript Comments
	UnrealScript Variables
	Operators
	Code Execution Flow Control Statements
	Class Declarations
	Functions
	States
	Debug Messages

	Creating and Compiling UnrealScript
	Hands-On Example: Selecting an Object with Touch
	Creating the Game Type
	Creating the Player Controller
	Settting up the Game Type Configuration
	Running the Game Type

	Summary

	Player Controllers, Pawns, and Weapons
	Player Controller and Pawn Overview
	Hands-on Example: Making your pawn visible with a 3D skeletal mesh character
	Creating the Default First-Person View
	Adding a Skeletal Mesh to represent your pawn

	UDK Camera Overview
	Hands-on Example: Changing the view of your pawn.
	UDK Weapons Overview
	Inventory Manager
	Weapon Types
	Weapon States
	Weapon Selection
	Weapon Firing

	Hands-on Example: Adding a weapon to your pawn
	Creating the Weapon
	Creating the Bullets for the Weapon
	Creating the Custom Inventory Manager
	Adding to the Player Controller

	Hands-On Example: Adding a weapon to your firstperson view.
	Creating the Weapon
	Creating the Projectile for the Weapon
	Creating the Pawn
	Creating the Player Controller
	Creating a New Game Type
	Setting up your new Game Type
	Running the new Game Type

	Summary

	UDK Collisions
	Collision Meshes
	Collision Objects
	KActor and KAsset Overview

	Hands-on Example: Creating a KActor and applying a force to it
	Hands-On Example: Creating a KAsset and applying a force to it

	Physics Constraints
	Physics Constraints Overview
	Hands-On Example: Creating physics constraints with the Unreal Editor

	Collisions
	Collision Overview
	Hands-on Example: Creating a Collision Object and Putting It in a Level
	Hands-On Example: Making an exploding wall of blocks

	Summary

	UDK Bots
	UDK Bot Overview
	Bot Related Classes
	Key Bot Related Functions
	Possession

	Path Finding
	Path Nodes
	Navigation Mesh
	Hands-On Example: Creating a bot and having it follow you using Path Nodes.
	Hands-On Example: Creating a bot and having it follow you using a Navigation Mesh

	Hands-On Example: Moving a Bot to a point in the world specified by the Player
	Hands-On Example: Equipping your bot with a weapon and Taking Damage

	Summary

	Environment: Sounds, Kismet, and HUD
	UDK Sound Cues
	Overview of the UDK Sound Cue Editor
	Adding Sound Cues Using the Unreal Editor
	Adding Sound Cues Dynamically using UnrealScript
	Adding Sound Cues Using Kismet
	Hands-On Example: Adding Sound Cues to a Weapon

	Kismet, Matinee and Moving Objects
	Hands-On Example: Using Kismet to create a Moving Platform
	Hands-on Example: Using Kismet to create Locked Gates

	UDK Heads Up Display
	Overview of the HUD
	Hands-on Example: Adding a Basic Heads Up Display

	Summary

	Sample Game and GamePlay
	Gameplay Overview
	Game Difficulty
	Game Balance

	Basic GamePlay
	Hands-On Example: Creating a Basic Game Framework.

	Summary

	3D Math Review
	Vectors
	Vector Magnitude
	Rotator to Vector Conversion
	Normalizing Vectors
	Vector Addition
	Scalar Multiplication
	Unit Circle
	Right Triangle
	Dot Product
	Cross Product

	Cover Nodes
	Cover Node Overview
	Hands-on Example: Cover Nodes

	In-Depth Example Explanations
	Third-Person Camera Positioning
	Deriving a Direction Vector for Kicking an Object

	Summary

	Physics Game Framework
	Physics Game Framework Overview
	General Overview
	Specific Overview

	Hands-on Example: A Basic Physics Game
	Creating the Game Type
	Creating the Player Controller
	Creating the Game Ball
	Creating the HUD
	Creating the RigidBodyCubeEx Object
	Configuring the Game Type
	Creating the Level
	Running the Game

	Summary

	First-Person Shooter Game Framework
	Game Framework Overview
	General Overview
	Specific Overview

	Hands-On Example: First-Person Shooter Game Framework
	Creating the Game Type
	Creating the Player-Related Classes
	Creating the Enemy Bot Related Classes
	Creating the HUD
	Creating the Bonus
	Configuring the Game Type
	Creating the Level
	Running the Game

	Summary

	Third-Person Shooter/Adventure Game Framework
	Game Framework Overview
	General Overview
	Specific Overview

	Hands-on Example: Third-Person Shooter/Adventure Game Framework
	Creating the Game Type
	Creating the Player Controller
	Creating the Bot Ally Controller
	Creating the BotMarker
	Creating the Enemy Guard Bot Controller
	Creating Enemy Guard Bot Pawn
	Creating the Heads Up Display
	Creating the Power Generator
	Configuring the Game Type
	Creating the Level
	Running the Game

	Summary

	Top-Down Shooter/RPG Game Framework
	Game Framework Overview
	General Framework Overview
	Specific Framework Overview

	Hands-On Example: Creating a Top-Down Shooter / Role-Playing Game Framework
	Creating the Game Type
	Creating the Player Controller
	Creating the Player Pawn
	Creating the Ally Bot Pawn
	Creating the Enemy Bot Pawn
	Creating the Character Information Class
	Creating the Save Marker
	Creating the Load Marker
	Creating the HUD
	Configuring the Game Type
	Creating the Level
	Running the Game

	Summary

	Index
	A 
	B 
	C 
	D
	E 
	F 
	G
	H 
	I, J
	K
	L, M 
	N
	O
	P, Q
	R
	S
	T
	U
	V
	W, X, Y, Z



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice


