

Beginning Angular 2 with
Typescript

Greg Lim

Copyright © 2017 Greg Lim

All rights reserved.

COPYRIGHT © 2017 BY GREG LIM

ALL RIGHTS RESERVED.

NO PART OF THIS BOOK MAY BE REPRODUCED IN ANY FORM OR BY ANY

ELECTRONIC OR MECHANICAL MEANS INCLUDING INFORMATION STORAGE

AND RETRIEVAL SYSTEMS, WITHOUT PERMISSION IN WRITING FROM THE

AUTHOR. THE ONLY EXCEPTION IS BY A REVIEWER, WHO MAY QUOTE

SHORT EXCERPTS IN A REVIEW.

FIRST EDITION: FEBRUARY 2017

Table of Contents
PREFACE

CHAPTER 1: INTRODUCTION

CHAPTER 2: ANGULAR 2 QUICKSTART

CHAPTER 3: RENDERING DATA AND HANDLING EVENTS

CHAPTER 4: BUILDING RE-USABLE COMPONENTS

CHAPTER 5: CONTROLLING RENDERING OF HTML
CHAPTER 6: TEMPLATE DRIVEN FORMS

CHAPTER 7: MODEL DRIVEN FORMS

CHAPTER 8: INTRODUCTION TO OBSERVABLES

CHAPTER 9: CONNECTING TO SERVER

CHAPTER 10: BUILDING SINGLE PAGE APPS WITH ROUTING

CHAPTER 11: STRUCTURING LARGE APPS WITH MODULES

CHAPTER 12: C.R.U.D. WITH FIREBASE

ABOUT THE AUTHOR

PREFACE

About this book

Angular 2 is one of the leading frameworks to develop apps across all platforms. Reuse
your code and build fast and high performing apps for any platform be it web, mobile
web, native mobile and native desktop. You use small manageable components to build
a large powerful app. No more wasting time hunting for DOM nodes!

In this book, we take you on a fun, hands-on and pragmatic journey to master Angular 2
from a web development point of view. You'll start building Angular 2 apps within
minutes. Every section is written in a bite-sized manner and straight to the point as I
don’t want to waste your time (and most certainly mine) on the content you don't need. In
the end, you will have what it takes to develop a real-life app.

Requirements

Basic familiarity with HTML, CSS, Javascript and object-oriented programming

Contact and Code Examples

Please address comments and questions concerning this book to support@i-ducate.com.
Code examples can be also be obtained by contacting me at the same.

mailto:support@i-ducate.com

CHAPTER 1: INTRODUCTION

1.1 What is Angular 2?

Angular is the leading framework for building Javascript heavy applications. It is often
used to build ‘Single Page Apps’ or SPA for short. What is a single page app? In a
standard web application, when we click on a link, the entire page is reloaded. In a
SPA, instead of reloading the entire page, we reload only the view whose content is
requested. A SPA also keeps track of history, so if a user navigates using back and
forward buttons, the application is reasserted in the right state. All these provide a fast
and fluid experience for the user. Gmail is a good example of a SPA.

There are other frameworks out there that provide similar functions, so why Angular?
Angular is one of the leading frameworks in this space. It has been around for quite a
few years, it has a huge community support, it is backed by Google, and demand for
Angular developers are constantly increasing.

In this book, I will teach you about Angular 2 from scratch in a step by step fashion. It
doesn’t matter whether you are familiar with Angular 1 or not because Angular 2 is an
entirely new framework. I will not be touching on Angular 1 and how it is different from
Angular 2 because not every reader of this book is familiar with Angular 1 and we do
not want to distract you with the old way of development. If you have an existing
Angular 1 application that you want to upgrade to Angular 2, your best source is the
Angular website. They have documented processes and strategies on how to upgrade to
Angular 2. You can run Angular 1 and 2 side by side in the Angular website, and
progressively upgrade one module at a time.

We will be using Typescript for Angular 2 development. Why not Javascript? Typescript
is actually a superset of Javascript (fig. 1.1.1).

fig. 1.1.1

Any valid Javascript code is valid Typescript which means that you do not have to learn
a new programming language. Typescript brings some useful features that are missing in
the current version of Javascript supported by most browsers. It has modules, classes,
interfaces, access modifiers like private and public, intellisense and compile time
checking, so we can catch many programming errors during compile time.

In the course of this book, you will build an application where you can input search
terms and receive the search results via Spotify RESTful api (fig. 1.1.2).

figure 1.1.2

At the end, you will also build a real world application with full C.R.U.D. operations
(fig. 1.1.3).

figure 1.1.3

These are the patterns you see on a lot of real world applications. In this book, you will
learn how to implement these patterns with Angular 2.

1.2 Architecture of Angular 2 Apps

The four key players in an Angular 2 app are components, directives, routers and
services.

Components

At the very core, we have components. A component encapsulates the template, data and
behavior of a view. It is actually more accurate to call it a view component. For
example, if we want to build an application like Amazon, we can divide it into three
components. The search bar component, sidebar component and products component
(fig. 1.1.2). A real world application would typically consists of tens or hundreds of
components.

fig. 1.2.1

Each component will have its own html markup in its template as well as its
own data and logic. Components can also contain other components. In
products component where we display a list of products, we do so using
multiple product components. Also, in each product component, we can have a
rating component (fig. 1.2.2).

fig. 1.2.2

The benefit of such an architecture helps us to breakup a large application into smaller
manageable components. Plus, we can reuse components within the application or even
in a different application. For example, we can re-use the rating component in a different
application.

What are components like in code? A component is nothing but a plain TypeScript class
(see below code). Like any other class, it can have properties and methods. The
properties hold the data for the view and the methods implement the behavior of a view,
like what should happen if I click a button.

export class ProductComponent {
 averateRating: number
 setRating(value){
 ...
 }
}

One thing that might be new for you if you have not worked with Angular 1 before is that
these components are decoupled from the Document Object Model or DOM. In
applications written with plain Javascript or JQuery, we get a reference to a DOM
element in order to modify or handle its events. In Angular, we don’t do that. Instead we
use binding. In the view, we bind to the properties and methods of our components. We
will cover binding in detail later in the book.
Services

Sometimes, our components need to talk to backend servers (e.g. Node, ASP.NET, Ruby
on Rails) to get or save data. To have good separation of concerns in our application,

we delegate any logic that is not related to the user interface, to a ‘service’. A service is
just a plain class that encapsulates any non user interface logic like making http calls,
logging, business rules etc.

Router

The router is responsible for navigation. As we navigate from one page to another, it
will figure out which component to present to the user based on changes in router name.

Directives

Similar to components, we use directives to work with the DOM. We use directives to
add behavior to existing DOM elements. For example, we use the autoGrow directive
to make the textbox automatically grow when it receives focus.

<input type=”text” autoGrow />

Angular has a bunch of directives for common task like adding or removing DOM
elements, adding classes or styles to them, repeating them. We can also create our own
custom directives.

This is the big picture for components, services, router and directives. As you progress
through this book, you will see each of these building blocks in action.

1.3 Getting the Tools

Installing Node

First, we need to install NodeJS. NodeJS is a server side language and we don’t need it
because we are not writing any server side code. We mostly need it because of
its npm or Node Package Manager. npm is very popular for managing dependencies of
your applications. We will use npm to install other later tools that we need including
Angular CLI.

Get the latest version of NodeJS from nodejs.org and install it on your machine. At this
time of writing, we require at least NodeJS 4.x.x and npm 3.x.x. Installing NodeJS
should be pretty easy and straightforward.

To check if Node has been properly installed, type the below on your command line
(Command Prompt on Windows or Terminal on Mac):

node -v

and you should see the node version displayed.

To see if npm is installed, type the below on your command line:

npm -v

and you should see the npm version displayed.

Installing TypeScript

As explained, we will be using TypeScript for our Angular 2 development. To install
TypeScript, type the following command:

npm install -g typescript

or

sudo npm install -g typescript

if you are a Mac user.

With -g specified, we install TypeScript globally on our machine so that we can use it
no matter which folder we navigate too. The same applies for our other installations.

Installing Typings

Once TypeScript is installed, we install Typings. Typings is a module that allows us to
bring in Javascript libraries into TypeScript. We will learn more about it later. So in
Command Prompt type

npm install -g typings or sudo npm install -g typings for Mac users.

Installing Angular CLI

Angular CLI (Command Line Interface) is an official tool supported by the Angular 2
team which makes creating and managing Angular 2 projects simple. Setting up an
Angular 2 project can be difficult on your own, but with the Angular CLI, it becomes
much easier.

To install Angular CLI from the command line, type

npm install -g angular-cli

or for Mac,

sudo npm install -g angular-cli

TypeScript Editor

Next, we need a code editor that supports TypeScript. In this book, I will be using
VScode (https://code.visualstudio.com/) which is a good, lightweight and cross
platform editor from Microsoft. You can use Sublime, IntelliJ or any other editor that
supports TypeScript.

Chrome Browser

Finally, I will be using Chrome as my browser. You can use other browsers but I highly
recommend you use Chrome as we will be using Chrome developer tools in this book
and I want to make sure you have the exact same experience as we go through the coding
lessons.

1.4 Your First Angular 2 App

First, navigate to the folder where you want to create your Angular project. Next, simply
create your Angular 2 project with the following command (ng refers to the Angular
CLI tool),

ng new PROJECT_NAME

This will create your project folder and install everything you need to create your
Angular 2 application. Note that this might take a couple of seconds.

When the folder is created, navigate to it by typing.

cd PROJECT_NAME

Next, type

ng serve

With the above command, the Angular 2 lite web server will start up on our machine so
that we can run our application. It also compiles our TypeScript code back into
Javascript since the browser is not able to run TypeScript.

Now, navigate to http://localhost:4200/ and you should the message displayed as in
fig.1.4.1.

http://localhost:4200/

fig. 1.4.1

Now let’s look at our project files that have been created for us. When you open the
project folder in VScode editor, you will find a couple of configuration files (fig. 1.4.2).

fig. 1.4.2

We will not go through all the files as our focus is to quickly get started with our first
Angular 2 app, but we will briefly go through some of the more important files
like package.json , tsconfig.json , typings.son , index.html and the app folder which is
the container for our application (the app folder is where we will work 99% of the
time!). In the course of this book, you will come to appreciate the uses for the rest of the
configuration files.

In the src folder, we have main.ts which is the starting module for our application. ts
stands for TypeScript since this file is written in TypeScript. You will notice later that
many of our other source files end with .ts since they are written in TypeScript

tsconfig.json is the configuration file for the TypeScript compiler. It determines how to
transpile our TypeScript files into Javascript.

{
 "compilerOptions": {
 "declaration": false,

 "emitDecoratorMetadata": true,
 "experimentalDecorators": true,
 "lib": ["es6", "dom"],
 "mapRoot": "./",
 "module": "es6",
 "moduleResolution": "node",
 "outDir": "../dist/out-tsc",
 "sourceMap": true,
 "target": "es5",
 "typeRoots": [
 "../node_modules/@types"
]
 }
}

For example in our tsconfig.json file above, we see in boldthat the Javascript version
the compiler transpiles to is ‘es5’ which is the current version of Javascript (at point of
writing). To understand more information about the tsconfig file, it is best to look at
tsconfig documentation on GitHub.

package.json is a standard node package configuration.
{
 "name": "angular2-firstapp",
 "version": "0.0.0",
 "license": "MIT",
 "angular-cli": {},
 "scripts": {
 "start": "ng serve",
 "lint": "tslint \"src/**/*.ts\"",
 "test": "ng test",
 "pree2e": "webdriver-manager update",
 "e2e": "protractor"
 },
 "private": true,
 "dependencies": {
 "@angular/common": "2.0.0",
 "@angular/compiler": "2.0.0",
 "@angular/core": "2.0.0",
 "@angular/forms": "2.0.0",
 ...

You see in bold above the name of our application and its version.

In dependencies , we have the list of dependencies for our application.
 "dependencies": {
 "@angular/common": "2.0.0",
 "@angular/compiler": "2.0.0",

 "@angular/core": "2.0.0",
 "@angular/forms": "2.0.0",

In the scripts section, we have a few custom node commands. If you run npm start it
actually runs ng serve . ng serve runs the TypeScript compiler in ‘watch’ mode and
starts our lite web server.

 "scripts": {
 "start": "ng serve",
 "lint": "tslint \"src/**/*.ts\"",
 "test": "ng test",
 "pree2e": "webdriver-manager update",
 "e2e": "protractor"
 },

With TypeScript compiler running in ‘watch’ mode, we can modify and save a
TypeScript file, and the TypeScript compiler automatically watch for file changes and
loads the changes in the browser. We will illustrate this later.

In the app folder, we find a couple of other TypeScript files:

app.module.ts

app.module.ts is the entry point to our application. An Angular application comprises of
separate modules which are closely related blocks of functionality. Every Angular
application has at least one module: the root module, named AppModule here. For many
small applications, the root module AppModule alone is enough. For bigger modules,
we can create multiple modules. We will illustrate this in Chapter 11 - Structuring
Large Apps With Modules.

import { BrowserModule } from '@angular/platform-browser';
import { NgModule } from '@angular/core';
import { FormsModule } from '@angular/forms';
import { HttpModule } from '@angular/http';

import { AppComponent } from './app.component';

@NgModule({
 declarations: [
 AppComponent
],
 imports: [
 BrowserModule,
 FormsModule,
 HttpModule
],
 providers: [],

 bootstrap: [AppComponent]
})
export class AppModule { }

A module is a plain TypeScript class with the @NgModule decorator. The decorator
tells Angular that this class is going to be a module. This decorator adds metadata above
this class. All modules and components in Angular are essentially decorated TypeScript
classes. In the decorator are array attributes which Angular looks for in a module class:

declarations - to declare which components, directives or pipes are in this module. For
now, it is just AppComponent . But we will soon start adding other components to this
array.

imports - to specify what other modules do we use for this module. Angular 2 comes
with other pre-defined modules like
the BrowserModule , FormsModule and HttpModule . As a brief introduction,
the BrowserModule contains browser related functionality. It also contains the common
module which has ngIf , ngFor which we will introduce later. The FormsModule is
needed when working with input fields and other forms related functionality.
The HttpModule is needed when working with http access.

providers - to specify any application wide services we want to use

Since our application is a web application that runs in a browser, the root module needs
to import the BrowserModule from @angular/platform-browser to the imports array.
For now, our application doesn't do anything else, so you don't need any other modules.
In a real application, you'd likely import FormsModule and HttpModule and that is why
we keep it there.

app.component.ts

import { Component } from '@angular/core';

@Component({
 selector: 'app-root',
 templateUrl: './app.component.html',
 styleUrls: ['./app.component.css']
})
export class AppComponent {
 title = 'app works!';
}

Every Angular application has at least one component: the root component,
named AppComponent in app.component.ts . Components are the basic building blocks
of Angular applications. A component controls a portion of the screen, a view - through

its associated html template, app.component.html . app.component.css is the css file
referenced from app.component.ts

For now, our root app component is nothing but a plain TypeScript class with a
variable title ,

This class is decorated with the Component decorator @Component . Like the module
decorator, the component decorator adds metadata above this class. Because decorators
are functions, we need to use the prefix @ sign to call the @Component function with its
brackets @Component(...) . All components in Angular are essentially decorated
TypeScript classes.

@Component({
 selector: 'app-root',
 templateUrl: './app.component.html',
 styleUrls: ['./app.component.css']
})

1.5 TypeScript Compilation

Because our TypeScript compiler is running in ‘watch’ mode, our app will automatically
reload if we change any of the source files. To illustrate this, change the value of ‘title’
variable to

export class AppComponent {
 title = 'My Second Angular App!';
}

and save the file.

Because TypeScript compiler in running in the ‘watch’ mode, it detects that there is a
file change and re-compiles the file. If you switch back to your Chrome browser, the app
gets refreshed automatically so you don’t have to refresh the page every time your code
changes. On your browser, you should see something like below.

How does this happen? The html markup of our component is stored
in app.component.html which has the following code

<h1>
 {{title}}
</h1>

With {{title}} we are using string interpolation which we will explore this in detail
later. But basically, this allows you to output any property of your component
dynamically into the html. So {{title}} here actually refers to the title property in
our app.component.ts .

Summary

In this chapter, we have been introduced to the core building blocks of Angular 2 apps
which are components, directives, services and routers. We have also been introduced
to the Angular 2 development experience which is coding in TypeScript and having
TypeScript compiler automatically generate our app for us that we can view on the
browser. In the next chapter, we will begin implementing an Angular 2 app.

CHAPTER 2: ANGULAR 2 QUICKSTART

In the previous chapter, you learned about the core building blocks of Angular 2 apps,
components, directives, services and routers. In this chapter, we will implement a
component, directive and service from scratch to have an idea on what it is like to build
an Angular 2 app.

2.1 Creating Components

In VScode, open the project folder that you have created in chapter 1. We first add a
new file in the app folder and call it products.component.ts .

Note the naming convention, we start with the name of the component products followed
by component.ts . Remember that ts stands for TypeScript.

Type out the below code into products.component.ts:

import { Component } from '@angular/core'

@Component({
 selector: 'products',
 template: '<h2>Products</h2>'
})
export class ProductsComponent{

}

Code Explanation

import { Component } from '@angular/core' imports the component decorator from
the core Angular module.

The component decorator @Component tells Angular that this class is going to be a
component.

The @Component function takes in an object {} with 2 attributes, selector and template
both of type string as shown below:

@Component({
 selector: 'products',
 template: '<h2>Products</h2>'
})

selector specifies a css selector for a host html element. When Angular sees an element
that matches this css selector, it will create an instance of our component in the host
element. Here, our host element is an element with tag, products .

template specifies the html that will be inserted into the DOM when the component’s
view is rendered. We can either write the html here inline, or reference to it in a
separate html file with the attribute templateUrl which we see in app.component.ts . Our
currenthtml markup is <h2>Products</h2>.

Lastly, the export keyword makes this class available for other files in our application to
import this class.

With these simple lines of code, we have just built our first component!

2.2 Using Components

Now, go back to app.component.ts . In the VScode editor, you can use the ‘Ctrl-P’ or
‘Command-P’ shortcut on Mac to quickly navigate to files by typing in the filename.
Else, you can just navigate to your file using the navigation directory on the left.

You should by now notice that the contents of app.component.ts is very similar
to products.component.ts .

import { Component } from '@angular/core';

@Component({
 selector: 'app-root',
 templateUrl: './app.component.html',
 styleUrls: ['./app.component.css']
})
export class AppComponent {

 title = 'My Second Angular App';
}

To re-iterate, we import the component decorator, import { Component } from
'@angular/core';

We then call it using @Component() and give it an object with
fields, selector , templateUrl and styleUrls . With the field templateUrl , we refer to our
html markup in a separate file app.component.html . When the html markup is big, it is
better to put it in a separate file using templateUrl . However, if the html markup is not
too big, it is easier to have it in the component.ts file as we can view it all at a single
glance. Let’s do this now by changing templateUrl to template and inserting our html
markup in app.component.ts . Change your code to the below:

@Component({
 selector: 'app-root',
 template: '<h1>{{title}}</h1>',
 styleUrls: ['./app.component.css']
})
export class AppComponent {
 title = 'My Second Angular App';
}

The same applies for the styleUrls attribute, which refers to app.component.css as the
css file. Because app.component.css is currently empty, and we have no use of it yet,
we can just remove that attribute to make the code cleaner as in below (remember to
remove the comma at the end of the template line):

import { Component } from '@angular/core';

@Component({
 selector: 'app-root',
 template: '<h1>{{title}}</h1>'
})
export class AppComponent {
 title = 'My Second Angular App';
}

At this point, we can actually delete app.component.html and app.component.css file.

Lastly, we export this component in export class AppComponent.
Remember that App component is the root of our application. It is the view component
that controls our entire app or page.

Now, add <products></products> to the template as shown below.

import { Component } from '@angular/core';

@Component({
 selector: 'app-root',
 template:
 `<h1>{{title}}</h1>
 <products></products>`
})
export class AppComponent {
 title = 'My Second Angular App';
}

export class AppComponent { }

*Do note that the slashes used in the template attribute is the backtick character `. The
backtick ` is located in the top left of the keyboard just before the number 1. The
backtick allows us to put html markup into multiple lines.

app.module.ts

Next, edit the file app.module.ts to import your new ProductsComponent and add it in
the declarations array in the NgModule decorator (see below code in bold).
Because ProductsComponent is added to the declarations array
of AppModule , AppComponent does not have to import ProductsComponent again
since we have specified that AppComponent and ProductsComponent belong to the
same module and therefore have access to one another.

import { BrowserModule } from '@angular/platform-browser';
import { NgModule } from '@angular/core';
import { FormsModule } from '@angular/forms';
import { HttpModule } from '@angular/http';

import { AppComponent } from './app.component';

import { ProductsComponent } from './products.component';

@NgModule({
 declarations: [
 AppComponent, ProductsComponent
],
 imports: [
 BrowserModule,
 FormsModule,
 HttpModule,
],
 providers: [],
 bootstrap: [AppComponent]

})
export class AppModule { }

Save the file and go to your browser. You should see the Products component markup
displayed as in fig. 2.2.1.

fig. 2.2.1

Code Explanation

We first import our ProductsComponent using

import { ProductsComponent } from './products.component';

For custom components that we have defined, we need to specify their path in the file
system. Since App component and ProductsComponent are in the same folder app , we
use ‘./’ which means start searching from the current folder followed by the name of the
component, products.component (without .ts extension).

When we add ProductsComponent to the declarations array, we are saying that it is part
of this module. So when Angular sees the <products> tag, Angular will know
that ProductsComponent is responsible for that.

template: `
 <h1>{{title}}</h1>
 <products></products>
`

<products></products> here acts as a custom directive. Remember that a directive is a
class that allows us to extend or control our Document Object Model. In this way,we
can design custom elements that are not part of standard html. In our case, we use
the ProductsComponent to define a new element. Every component is technically a
directive. The difference is that a component has a template and a directive doesn’t.

If we inspect the html element (fig. 2.2.2), we see that the root element is <app-
root> having two child elements <h1>My Second Angular App</h1> and <products> .
<products> has in turn <h2>Products</h2> .

fig. 2.2.2

This is because our root component’s template is defined as
@Component({
 selector: 'app-root',
 template:
 `<h1>{{title}}</h1>
 <products></products>`
})

And why is <app-root> rendered? If we look at index.html below, we see the
element <app-root> referenced in <body> . Angular saw this and rendered the App
component.

<html>
<head>
 <meta charset="utf-8">
 <title>Angular2Firstapp</title>
 <base href="/">

 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="icon" type="image/x-icon" href="favicon.ico">
</head>
<body>
 <app-root>Loading...</app-root>
</body>
</html>

2.3 Templates

Because a component encapsulates the data and the logic behind the view, we can define
properties and display them in the template. For example, App component has a
property title which holds the value ‘My Second Angular App’.

export class AppComponent {
 title = 'My Second Angular App';
}

Note that Angular can automatically infer the type of the variable by the value assigned

to it. But we can explicitly set the type of the variable (if we want to) as shown below.

title: string = 'My Second Angular App';

Interpolation

The value of title is rendered on to our template with doubly curly braces {{title}}.

 template:
 `<h1>{{title}}</h1>
 <products></products>`

This is called interpolation. If the value of this property in the component changes, the
view will be automatically refreshed. This is called one way binding (where the value
displayed in the html markup is binded to the component’s property). We also have two
way binding which is used in forms. For example, when we type something into an input
field that is bound to a property, as you modify the value of the input field, the
component’s property will be updated automatically. You will see that later in the Forms
chapter.
Displaying a List

We will illustrate usingproperties further by displaying a list of products
in ProductsComponent . First, we declare an array products in ProductsComponent
which contains the names of the products that we are listing.

export class ProductsComponent{
 products = ["Learning Angular 2","Pro TypeScript","ASP.NET"];
}

Next in the template, we use and to render the list of products.

@Component({
 selector: 'products',
 template: `
 <h2>Products</h2>

 <li *ngFor="let product of products">
 {{product}}

 `
})

Navigate to your browser and you should see the result in fig. 2.3.1

fig. 2.3.1
 `
Code Explanation

<li *ngFor="let product of products"> allows us to repeat for each product.
The *ngFor keyword acts like a for-loop, where we let product be the temporary local
variable representing each element in the array products .

For each product, we use interpolation {{product}} to display the product.

Templates in Angular looks similar to html most of the time. Sometimes, we use special
attributes like *ngFor which is an example of a directive provided by Angular. This
directive extends the html and adds extra behavior, in this case, repeating the
element based on the expression assigned to it.

Services and Dependency Injection

Currently, our component is rendering a hardcoded list of products. In a real world
application however, we would get the data from a server. Components should only
contain logic related to the view. Logic to get data from a server should not be in a
component but instead be encapsulated in a separate class called a service. We will
now create a service that will get data from a server.

In the app folder, create a new file called product.service.ts . Note the naming
convention, we start with the name of the service and then ‘ .service.ts ’. Type in the
below code into ‘ product.service.ts ’.

export class ProductService{
 getProducts() : string[] {
 return ["Learning Angular 2","Pro TypeScript","ASP.NET"];
 }
}

Code Explanation

If you notice, a service (like a component) is just a plain class. It contains a

method getProducts() of return type string array as represented by getProducts() :string[] .
For now, we illustrate by returning the same hard-coded array as before so as not to get
distracted by how to call a RESTful api in our service (we will do that later in chapter
8 and 9).

Dependency Injection

Back in products.component.ts , change the code to below.

export class ProductsComponent{
 products;

 constructor(productService: ProductService){
 this.products = productService.getProducts();
 }
}

Code Explanation

Our string array products is populated by the constructor. The constructor takes in
a ProductService object. We call the getProducts() method of the ProductService object
and assign the results to our products array.

You might ask, how do we create the Product service and pass it into the constructor?
That’s when Dependency Injection which is built into Angular comes into the picture.
Dependency injection injects dependencies of your classes when creating them. So when
creating a ProductsComponent , it looks at the constructor and see that we need
a ProductService , it will create an instance of ProductService and then inject it into the
constructor of the ProductsComponent class.

Finishing Up

Lastly, in app.component.ts , add the lines in bold.

import { Component } from '@angular/core';

import { ProductService } from './product.service';

@Component({
 selector: 'app-root',
 template:
 `<h1>{{title}}</h1>
 <products></products>`,
 providers: [ProductService]
})

export class AppComponent {
 title: string = 'My Second Angular App';
}

The providers array contain the dependencies of the ProductsComponent . So here, we
say that ProductService is a dependency of ProductsComponent .

If you run the application now, you should see the same list ofproducts as before. Only
now that we have encapsulated the data retrieval logic to ProductService and ensure
that ProductsComponent contains only user-interface related logic.

Try This

You have learnt a lot in this chapter. Now to crystalize all that you have learnt, try to do
the following task. Extend this application to have a AdvertisementsComponent which
displays a list of advertisements below the products. You can do this by going through
the same steps as we did. First,
create AdvertisementsComponent and AdvertisementService . Then, use the *ngFor and
interpolation {{}} to render the list of advertisments.

It would be beneficial to do this exercise as we are going on to more complex topics in
the following chapter and I want to make sure that you master the fundamental topics
before we get there. If you get stuck or if you would like to get the sample code we have
used in this chapter, contact me at support@i-ducate.com.

Summary

In this chapter, we briefly looked at Components, Directives, Services and Dependency
Injection. We have created a ProductsComponent that retrieves product data through a
Service, and later displays that data on the page.

mailto:support@i-ducate.com

CHAPTER 3: RENDERING DATA AND HANDLING EVENTS

In this chapter, we will explore different kinds of bindings in Angular 2 apps like
binding various properties of DOM elements to component properties, how to apply css
classes on styles dynamically and how to handle events raised from DOM elements.

3.1 Property Binding

We have learnt about interpolation where we display properties of a component in the
view for example, <h1>{{title}}</h1> . Interpolation can also be applied to other
elements like to display an image in the view as shown below.

import { Component } from '@angular/core';

@Component({
 selector: 'app-root',
 template: `
 <h1>{{title}}</h1>

 `
})
export class AppComponent {
 title = 'My Second Angular App';
 imageUrl = "http://lorempixel.com/400/200/";
}

In the code above, using interpolation, we bind the src property of our DOM element to
the imageUrl property in component. Whenthere are changes in the imageUrl property
of the component, it will be reflected in the DOM. Any changes in the DOM however
are not reflected in the component. This is one way binding.

There are also two alternative syntaxes to bind properties.

For the first alternative, we put the DOM property in square brackets [] . For the second
alternative, we prefix it with bind- . Although all three syntaxes are identical, it is
preferable to use

 as it is cleaner.

3.2 CSS Class Binding

In the below code, we show a button in our view using two bootstrap css
classes btn and btn-primary to make our button look more professional. If you are not
familiar with bootstrap, it is an html, css, javascript framework to help build user
interface components for websites or web applications. It contains html and css-based
design templates for typography, forms, buttons, navigation and other interface
components, as well as optional JavaScript extensions. For now, we are interested in its
templates for buttons to make them look better.

@Component({
 selector: 'app-root',
 template: `
 <button class="btn btn-primary">Submit</button>
 `
})

We first however need to reference bootstrap.css in our index.html . Go
to getbootstrap.com and under ‘Getting Started’, copy the stylesheet link (3.2.1),

fig. 3.2.1

and paste the link into index.html as shown below in bold.

<html>
<head>
 <meta charset="utf-8">
 <title>Angular2Firstapp</title>
 <base href="/">

 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="icon" type="image/x-icon" href="favicon.ico">
 <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/.../bootstrap.min.css" ...>
</head>
<body>
 <app-root>Loading...</app-root>

</body>
</html>

If you have successfully linked your bootstrap class, you should get your button
displayed like in fig. 3.2.2.

fig. 3.2.2

There are times when we want to use different css classes on an element based on
different conditions. For example, if I want to add the active class to the button based
on varying conditions, I can do the following

@Component({
 selector: 'app-root',
 template: `
 <button

class="btn btn-primary"
[class.active]="isActive">Submit</button>

 `
})
export class AppComponent {
 isActive = true;
}

That is, when isActive = true the active css class will be applied to the button making it
slightly darker.

If isActive = false the active css class will not be applied to the button making it lighter.

3.3 Style Binding

Style binding is a variation of property binding, similar to css class binding. Style
binding applies inline styles to our button for example:

@Component({
 selector: 'app-root',
 template: `
 <button

 class="btn btn-primary"
 [style.backgroundColor]="isActive ? 'blue':'gray'">Submit</button>
 `
})
export class AppComponent {
 isActive = true;
}

In the above code, we bind style property backgroundColor to blue if isActive is true
and gray if isActive is false.

if isActive is true

if isActive is false

3.4 Event Binding

We use event binding to handle events raised by the DOM like clicks, mouse
movements, key strokes and so on. Similar to property binding, we have two syntaxes
for event binding. parenthesis () or prefix.

@Component({
 selector: 'app-root',
 template: `
 <button (click)="onClick($event)">Submit</button>
 `
})
export class AppComponent {
 onClick($event){
 console.log("Clicked",$event)
 }
}

In the above code, we illustrate event binding using parenthesis. We put the target event
name (click) name in the parenthesis and then assign it to the onClick($event) method in
our component.

Alternatively, we can also have,
<button on-click="onClick($event)">Submit</button> where we add the prefix on- before
the target event.

When the button is clicked, the onClick method is called. The $event argument
in onClick($event) allows us to get access to the event raised. For example, in mouse
movements, the event object will tell us the x and y position. We can also use the event
object to get access to the DOM element that raised the event. Note that there is

a $ prefix in $event because this is built into Angular. The event object is a standard
DOM event object and has got nothing to do with Angular.

3.5 Two-way Binding

In Angular, there is a directive called ngModel to create two way binding between a
component property and a DOM property in the view. Remember that a directive is a
class that allows us to control or extend the behavior of a DOM. We illustrate two way
binding using ngModel in the below code.

@Component({
 selector: 'app-root',
 template: `
 <input type="text" [(ngModel)]="title" />
 You have typed: {{title}}
 `
})
export class AppComponent {
 title = "hello";
}

When you run the app, whatever you type in the input field is displayed in the DOM as
well (fig. 3.5.1).

fig. 3.5.1

Code Explanation

In the input field, we add [(ngModel)]="title" to bind our DOM input property to the
component’s title property. But realize that the component property is also binded to the
DOM in the code You have typed: {{title}}
3.6 Example Application

We will now put into practise what we have learnt about data binding. We will build a
rating component like in figure 3.6.1.

fig. 3.6.1

You have seen such a rating component in many places e.g. Amazon. So we can
implement this as a component and reuse it in many places. A user can click select from
a rating of one star to five stars. For now, don’t worry about calling a server or any
other logic. We just want to implement the UI.

Open the existing project folder from chapter two, create a new component
class rating.component.ts and fill it with the below code.

import { Component } from '@angular/core'

@Component({
 selector: 'rating',
 template: `
 <i
 class="glyphicon"
 [class.glyphicon-star-empty]="rating < 1"
 [class.glyphicon-star]="rating >= 1"
 (click)="onClick(1)"
 >
 </i>
 `
})
export class RatingComponent{
 rating = 0;

 onClick(ratingValue){
 this.rating = ratingValue;
 }
}

Next in app.module.ts, import the rating component and add it to the declarations array
by adding the below lines in bold. By adding RatingComponent to declarations , we
specify that it is part of AppModule and can therefore be used in AppComponent .

import { ProductsComponent } from './products.component';
import { RatingComponent } from './rating.component';

import { ProductService } from './product.service';

@NgModule({
 declarations: [
 AppComponent, ProductsComponent, RatingComponent
],
 imports: [
 BrowserModule,
 FormsModule,
 HttpModule,
],
 //providers: [ProductService],
 providers: [],
 bootstrap: [AppComponent]
})
export class AppModule { }

Lastly, in app.component.ts , add the < rating> element in the template as shown below:

import { Component } from '@angular/core';

@Component({
 selector: 'app-root',
 template: `
 <rating></rating>
 `
})
export class AppComponent {
 title = "hello";
}

Code Explanation

@Component({
 selector: 'rating',
 template: `
 <i
 class="glyphicon"
 [class.glyphicon-star-empty]="rating < 1"
 [class.glyphicon-star]="rating >= 1"
 (click)="onClick(1)"
 >
 </i>
 `
})

We define a component called Rating Component with selector as 'rating' so
in app.component.ts , we create an instance of it with <rating></rating>.

In the template, we render bootstrap glyphicons using class="glyphicon" and use class
binding to conditionally render a secondary class with

[class.glyphicon-star-empty]="rating < 1"
[class.glyphicon-star]="rating >= 1"

The condition is based on the property rating defined in the RatingComponent class
below.

export class RatingComponent{
 rating = 0;

 onClick(ratingValue){

 this.rating = ratingValue;
 }
}

The condition works like the following, if the rating is less than one, we render the
empty star icon.
[class.glyphicon-star-empty]="rating < 1"

If the rating is more than or equal to one, we render the normal star icon.
[class.glyphicon-star]="rating >= 1"

We add a click handler (click)="onClick(1)" to assign a rating of one if a user clicks on
this star.

You would probably notice that we have only one star at this point of time, when ratings
usually have five stars. This is because I wanted you to be familiar with the logic of one
star. To then extend it to five stars is easy. Simply copy and paste the glyphicon code in
the template for additional stars as shown below.

@Component({
 selector: 'rating',
 template: `
 <i
 class="glyphicon"
 [class.glyphicon-star-empty]="rating < 1"
 [class.glyphicon-star]="rating >= 1"
 (click)="onClick(1)"
 >
 </i>
 <i
 class="glyphicon"
 [class.glyphicon-star-empty]="rating < 2"
 [class.glyphicon-star]="rating >= 2"
 (click)="onClick(2)"
 >
 </i>
 <i
 class="glyphicon"
 [class.glyphicon-star-empty]="rating < 3"
 [class.glyphicon-star]="rating >= 3"
 (click)="onClick(3)"
 >
 </i>
 <i
 class="glyphicon"
 [class.glyphicon-star-empty]="rating < 4"
 [class.glyphicon-star]="rating >= 4"

 (click)="onClick(4)"
 >
 </i>
 <i
 class="glyphicon"
 [class.glyphicon-star-empty]="rating < 5"
 [class.glyphicon-star]="rating >= 5"
 (click)="onClick(5)"
 >
 </i>
 `
})

Note that you need to do two things. Firstly, change the value of each condition
depending on which star it is. The second star’s condition should be

 [class.glyphicon-star-empty]="rating < 2"
 [class.glyphicon-star]="rating >= 2"

The second star should be empty if the rating is less than two. It should be filled if the
rating is more than or equal to two. The same goes for the third, fourth and fifth star.

Secondly, change the value of the argument when you called the onClick method
depending on which star it is. The second star’s onClick should
be (click)="onClick(2)" . So when a user clicks on the second star, the onClick method
is called with property rating of value two. When a user clicks on the third star,
the onClick method is called with property rating of value three and so on.

Summary

In this chapter, you learnt about property binding, class binding, style binding, event
binding, and two way binding. In the next chapter, we will take a closer look at Angular
components.

Contact me at support@i-ducate.com if you have not already to have the full source code
for this chapter or if you encounter any errors with your code.

mailto:support@i-ducate.com

CHAPTER 4: BUILDING RE-USABLE COMPONENTS

In this chapter, we will learn more about components and how to reuse them in an
application.

4.1 Component Input Properties

We can mark properties in our component as input or output properties. In doing so, we
are defining a public API for our component. Properties marked as input or output will
be visible from the outside and available for property or event binding. For example, in
our button element, we can bind its value property to a property in our component.

<button [value] = "title" (click)="onClick($event)">Submit</button>

Value here is an example of an input property. We can use it to pass data to our button.
Buttonsalso have events like (click) that we can bind to methods in our components.
(click) is an example of an output property. The input and output properties form the
API of a button.

We can also define the public api for a custom component. Why would we want to do
that? Suppose we want to display a list of products with its rating. We will need to
assign the rating value to our rating component beforehand. However, we can only use
our rating component like this <rating></rating> now.

If we want to do something like, <rating [rating]=”4”></rating> to display a rating of 4
stars, we have to declare our component property rating with the @Input decorator. And
that is the purpose of public APIs.

To declare an input property, first we needto import Input (see code in bold below).

import { Component, Input } from '@angular/core'

Next, add the @Input() decorator before the property as shown below.

@Component({
 selector: 'rating',
 template: `
 ...
 `
})
export class RatingComponent{

 @Input() rating = 0;

 onClick(ratingValue){
 this.rating = ratingValue;
 }
}

Aliasing

If you want to expose the property using a different name, for example
<rating [rating-value]="4"></rating> , you can do this by supplying the new name to
the @Input function like @Input('rating-value') rating = 0;

4.2 Templates

Till now, we have been writing our template inline with our component.

@Component({
 selector: 'rating',
 template: `
 <i
 class="glyphicon"
 [class.glyphicon-star-empty]="rating < 1"
 [class.glyphicon-star]="rating >= 1"
 (click)="onClick(1)"
 >

If a template code is small enough, it is better to define it in our component rather than in
a separate file. Why? If we want to reuse this component, we simply take the file and we
are done. The component is self contained. But if the template is in a separate file, we
have to remember to copy both files.

If a template gets large however, we shouldn’t write our templates inline. We should
move it to a separate file for better separation of concerns. In our rating component,
notice that the template can get quite big.

To put the template in a separate file, we create a new file, rating.component.html in
the app folder. Cut and paste the template html
from rating.component.ts into rating.component.html .

In rating.component.ts , make the changes as highlighted in bold below.

import { Component, Input } from '@angular/core'

@Component({
 selector: 'rating',
 templateUrl: 'rating.component.html'
})
export class RatingComponent{
 @Input('rating-value') rating = 0;

 onClick(ratingValue){
 this.rating = ratingValue;
 }
}

Instead of having our html in template , we specify the url to our template file
in templateUrl . At the risk of sounding obvious, do note that youcannot use
both template and templateUrl at the same time.

4.3 Styles

Another useful field in the component metadata is styles or styleUrls . Similar
to template , you can define css styles required by your component in the styles array or
in a separate file(s) with styleUrls . A notable feature is that these styles are scoped to
your component. They won’t effect to the outer html or other components.

To illustrate, suppose we want our filled glyphicon stars to be orange, we add the
following in bold.

@Component({
 selector: 'rating',
 templateUrl: 'rating.component.html',
 styles: [`
 .glyphicon-star {
 color: orange;
 }
 `]
})

When we run our application, we will see our filled stars with the orange css applied to

it.

4.4 Example Application

We will reuse the rating component that we have made and implement a product listing
like in figure 4.4.1.

fig. 4.4.1

This is like the list of products on Amazon. For each product, we have an image, the
product name, the product release date, the rating component and the number of ratings it
has.

In the same project folder you have used to create the rating component, create a new
component file product.component.ts that contains ProductComponent . This component
will be used to render one product. Fill in the file with the below code.

import {Component, Input} from '@angular/core';

@Component({
 selector: 'product',
 template: `
 `,
 styles: [`
 .media {
 margin-bottom: 20px;
 }
 `]
})
export class ProductComponent {

 @Input() data;
}

Now, how do we get our template to render each product listing like in figure 4.4.1? We
use the media object in bootstrap. Go to getbootstrap.com , in the componentspage,
click on media object and copy the markup there into the template field
of ProductComponent .

fig. 4.4.2

Next in the template, we use interpolation to assign values of our product into the DOM.
Type in the below codes in bold into the template.

@Component({
 selector: 'product',
 template: `
 <div class="media">
 <div class="media-left">

 </div>
 <div class="media-body">

<div class="media-body">
 <h4 class="media-heading">
 {{ data.productName }}
 </h4>
 {{ data.releasedDate }}
 <rating

[rating-value]="data.rating"
[numOfReviews]="data.numOfReviews">

 </rating>

 {{ data.description }}
</div>

 </div>

 </div>
 `,
 styles: [`
 .media {
 margin-bottom: 20px;
 }
 `]
})

With the above code, our product component is expecting a data object with the fields:
imageUrl, productName, releasedData and description .

We have also added our rating component that expects input rating and number of
reviews.

 <rating
[rating-value]="data.rating"
[numOfReviews]="data.numOfReviews">

 </rating>

Our rating component currently only has rating-value as input. Add the below code in
boldinto rating.component.ts to add numOfReviews as input.

import { Component, Input } from '@angular/core'

...
export class RatingComponent{
 @Input('rating-value') rating = 0;
 @Input() numOfReviews = 0;

 onClick(ratingValue){
 this.rating = ratingValue;
 }
}

Next, we create a new file product.service.ts that contains a service
class ProductService that is responsible for returning a list of products. Type in the
below code into ProductService class.

export class ProductService{
 getProducts() {
 return [
 {
 imageUrl: "http://loremflickr.com/150/150?random=1",
 productName: "Product 1",
 releasedDate: "May 31, 2016",
 description: "Cras sit amet nibh libero, in gravida... ",
 rating: 4,

 numOfReviews: 2
 },
 {
 imageUrl: "http://loremflickr.com/150/150?random=2",
 productName: "Product 2",
 releasedDate: "October 31, 2016",
 description: "Cras sit amet nibh libero, in gravida... ",
 rating: 2,
 numOfReviews: 12
 },
 {
 imageUrl: "http://loremflickr.com/150/150?random=3",
 productName: "Product 3",
 releasedDate: "July 30, 2016",
 description: "Cras sit amet nibh libero, in gravida... ",
 rating: 5,
 numOfReviews: 2
 }];
 }
}

Notice that in our class, we currently hardcode an array of product objects. Later on, we
will explore how to receive data from a server.

For imageUrl , we use http://loremflickr.com/150/150?random=1to render a random
image 150 pixels by 150 pixels. For multiple product images, we change the query
string parameter random=2, 3,4 and so on to get a different random image.

Just like before, the getProducts method in ProductService will be called
by ProductsComponent . The code remains largely the same (see below) and that is the
benefit for having separation of concerns to have data retrieving functionality (non UI
related) in a separate service class rather than in a component.

import { Component } from '@angular/core'
import { ProductService} from './product.service'

@Component({
 selector: 'products',
 template: `
 <h2>Products</h2>
 <div *ngFor="let product of products">
 <product [data]="product"></product>
 </div>
 `,
 providers: [ProductService]
})
export class ProductsComponent{

http://loremflickr.com/150/150?random=1

 products;

 constructor(productService: ProductService){
 this.products = productService.getProducts();
 }
}

The ngFor loops through products array as retrieved from ProductService and inputs
each data element in the products array for each product component. Each data element
provides Product component with values from properties imageUrl, productName,
releasedData and description .

We also import ProductService and declare it in the providers array to specify that we
depend on ProductService as a service provider.

Lastly in app.module.ts in the lines in boldbelow, we import ProductComponent and
add it to the declarations array to declare ProductComponent as part of AppModule .

import { BrowserModule } from '@angular/platform-browser';
import { NgModule } from '@angular/core';
import { FormsModule } from '@angular/forms';
import { HttpModule } from '@angular/http';

import { AppComponent } from './app.component';

import { ProductsComponent } from './products.component';
import { ProductComponent } from './product.component';
import { RatingComponent } from './rating.component';

import { ProductService } from './product.service';

@NgModule({
 declarations: [
 AppComponent, ProductsComponent, RatingComponent, ProductComponent
],
 imports: [
 BrowserModule,
 FormsModule,
 HttpModule,
],
 providers: [],
 bootstrap: [AppComponent]
})
export class AppModule { }

Save all your files and you should have your application running fine like in figure 4.4.3.

figure 4.4.3

Summary

In this chapter, we illustrate how to define input properties in a component, use both
inline templates and templates defined in a separate file with templateUrl , use styles to
define css styles used in a component and borrow markup from bootstrap to put all
these together in our example Product Listing application.

Contact me at support@i-ducate.com if you encounter any issues or if you had not
requested the full source code for this chapter.

mailto:support@i-ducate.com

CHAPTER 5: CONTROLLING RENDERING OF HTML

We have worked with ngFor which is one of the built in directives in Angular 2. In this
chapter, we will explore more built in directives which will give us more control in
rendering html.

5.1 ngIf

Suppose you want to show or hide part of a view depending on some condition. For
example, we have earlier displayed our list of products. But if there are no products to
display, we want to display a message like “No products to display” on the page.

In products.component.ts , we add the codes in bold

import { Component } from '@angular/core'
import { ProductService} from './product.service'

@Component({
 selector: 'products',
 template: `
 <h2>Products</h2>
 <div *ngIf="products.length > 0">
 <div *ngFor="let product of products">
 <product [data]="product"></product>
 </div>
 </div>
 <div *ngIf="products.length == 0">
 No products to display
 </div>

 `,
 providers: [ProductService]
})
export class ProductsComponent{
 products;

 constructor(productService: ProductService){
 this.products = productService.getProducts();
 }
}

Now when we run our app again, we should see the products displayed as same as
before. But if we comment out our hard-coded data in ProductService and return an

empty array instead, we should get the following message.

Code Explanation

 <div *ngIf="products.length > 0">
 <div *ngFor="let product of products">
 <product [data]="product"></product>
 </div>
 </div>

We used the *ngIf directive to add a i f- condition in our DOM and assign an expression
“ products.length > 0 ” to it. If the expression evaluates to true, the div element and its
children will be inserted into the DOM. If it evaluates to false, it will be removed from
the DOM. When there are products returned from ProductService , the expression
evaluates to true and renders the products in the ngFor loop.

The following expression however evaluates to false and therefore, we don’t display the
message.

 <div *ngIf="products.length == 0">
 No products to display
 </div>

When we return an empty array however, “ products.length > 0 ” evaluates to false and
we do not render the list of products. Instead we display the “No products to display
message”.

5.2 ngSwitch

In a similar fashion as ngIf , the ngSwitch statement allows us to render elements and its
children based on a condition against a list of values.

Suppose we want to add a comment based on the product rating as in figure 5.2.1,

fig. 5.2.1

where one star means ‘Poor’, two star - ‘Fair’, three star - Good, four star - ‘Very
Good’, five star - ‘Excellent’. We can achieve this by adding the below code in boldinto
the template fieldof product.component.ts .

 template: `
 <div class="media">
 <div class="media-left">

 </div>
 <div class="media-body">
 <h4 class="media-heading">
 {{ data.productName }}
 </h4>
 {{ data.releasedDate }}
 <rating
 [rating-value]="data.rating"
 [numOfReviews]="data.numOfReviews">
 </rating>
 <div [ngSwitch]="data.rating">
 <div *ngSwitchCase="1">Poor</div>
 <div *ngSwitchCase="2">Fair</div>
 <div *ngSwitchCase="3">Good</div>
 <div *ngSwitchCase="4">Very Good</div>
 <div *ngSwitchCase="5">Excellent</div>
 <div *ngSwitchDefault>Not Rated</div>

 </div>

 {{ data.description }}
 </div>
 </div>
 `,

So depending on the value of data.rating , we display different product comments. We
use *ngSwitchDefault in the case where the value of data.rating does not match any of
the cases, we display a default message ‘Not Rated’.

5.3 Pipes

To format data in Angular, we can use ‘pipes’. A pipe takes in data as input and
transforms it to a desired output. Angular has built in pipes
like DatePipe , UpperCasePipe , LowerCasePipe , CurrencyPipe , and PercentPipe . We
can also create custom pipes which we will visit in the next section. Because pipes are
relatively straightforward, we will illustrate the DatePipe and you can go on to explore
the rest of the built in pipes on your own.

First, we change the value of releasedDate in the object returned by ProductService to a
Javascript Date object as shown in bold below.

 return [
 {
 imageUrl: "http://loremflickr.com/150/150?random=1",
 productName: "Product 1",
 releasedDate: new Date(2016,5,30),
 description: "...",
 rating: 4,
 numOfReviews: 2
 },

We have assigned releasedDate with a Date object with value 30 Jun, 2016. (Note that
the month count starts from 0). Now, the date gets displayed as “ Thu Jun 30 2016
00:00:00 GMT+0800 (SGT) ” which is not what we want to display to the user. To use
pipe formating, in product.component.ts , we do the below,

{{ data.releasedDate | date }}

The date now gets displayed as Jun 30, 2016.

Parameterizing a Pipe

We can also supply pipes with optional parameters to fine tune its format. We do so by
adding a colon (:) and then the parameter value (e.g., date:"MM/dd/yy"). The below

code returns our date 06/30/16 in the specified format of MM/dd/yy.

{{ data.releasedDate | date:"MM/dd/yy" }} // 06/30/16

Chaining Pipes

We can also chain pipes together for useful combinations. In the below example, we
chain releasedDate to DatePipe and on to UpperCasePipe to display the date in
uppercase. The following birthday displays as JUN 30, 2016 .

{{ data.releasedDate | date | uppercase }} // JUN 30, 2016

5.4 Custom Pipes

We can also write our own custom pipes. We use custom pipes the same way we use
built-in pipes. We will implement a custom pipe that takes a string and truncate it to a
specified length. This is useful for displaying a truncated product description in the
view if it is too long like in figure 5.4.1.

fig. 5.4.1

First, create a new file truncate.pipe.ts in the app folder. Type in the below codes into
the file.

import { Pipe, PipeTransform } from '@angular/core';

@Pipe({name: 'truncate'})

export class TruncatePipe implements PipeTransform {
 transform(value: string, limit:number): string{
 return value.substring(0,limit) + "...";
 }
}

Code Explanation

A pipe is a plain TypeScript class decorated with pipe metadata @Pipe({name:
'truncate'}) . We tell Angular this is a pipe by applying the @Pipe decorator which we
import from the core Angular library. The @Pipe decorator allows us to define the pipe
name that we'll use within template expressions. Our pipe's name is truncate .

Every pipe class implements the PipeTransform interface's transform method.
The transform method accepts an input value followed by optional parameters and
returns the transformed value. In our code, value is the string we want to truncate
and limit determines the limit of our truncation.

export class TruncatePipe implements PipeTransform {
 transform(value: string, limit:number): string{
 return value.substring(0,limit) + "...";
 }
}

Final Steps

Next, we have to include our pipe in the declarations array of the AppModule to
specify that our pipe is part of the AppModule. Add the lines below in
boldto app.module.ts .

import { BrowserModule } from '@angular/platform-browser';
...
...
import { RatingComponent } from './rating.component';

import { TruncatePipe } from './truncate.pipe';

@NgModule({
 declarations: [
 AppComponent, ProductsComponent, RatingComponent, ProductComponent, TruncatePipe
],
 imports: [

...
],
 providers: [],

 bootstrap: [AppComponent]
})
export class AppModule { }

Finally in product.component.ts , add the pipe to the data.description interpolation like,
{{ data.description | truncate: 20}}

5.6 ng-content

Sometimes, we need to insert content into our component from the outside. For example,
we want to implement a component that wraps a bootstrap jumbotron. A bootstrap
jumbotron (fig. 5.6.1) as defined on getbootstrap.com is “A lightweight, flexible
component that can optionally extend the entire viewport to showcase key content on
your site.”

fig. 5.5.1

Here is an implementation of the bootstrap jumbotron component.

import { Component, Input } from '@angular/core';

@Component({
 selector: 'bs-jumbotron',
 template: `
 <div class="jumbotron">
 <p></p>
 <p></p>
 </div>
`
})
export class JumboTronComponent {
}

The markup above can be obtained from
http://getbootstrap.com/components/#jumbotron.

The selector is bs-jumbotron . We add a prefix bs- (‘bs’ as an abbreviation for
bootstrap) to distinguish this component from other components that potentially might

have the same name. The jumbotron component is called in app.component.ts using,

import { Component } from '@angular/core';

@Component({
 selector: 'app-root',
 template: `
 <bs-jumbotron></bs-jumbotron>
 `
})
export class AppComponent {
}

To supply content to the jumbotron component, we can use Input properties. We can
define an Input property in our jumbotron component and use property binding as shown
below:

<bs-jumbotron [body]=”...”></bs-jumbotron>

This is not ideal however. For we probably want to write a lengthier html markup here
like,

<bs-jumbotron>
 This is a simple hero unit, a simple jumbotron-style component for calling extra attention to
featured content or information.
</bs-jumbotron>

We want to insert content into the jumbotron component from the outside. To do so, we
define insertion points with ng-content as shown below into our jumbotron component
template.

@Component({
 selector: 'bs-jumbotron',
 template: `
 <div class="jumbotron">
 <p><ng-content></ng-content></p>
 <p></p>
 </div>
`
})
export class JumboTronComponent {
}

Multiple Insertion Points

We can also define multiple insertion points by adding the select directive. In bs-
jumbotron.component.ts , we do this by using ng-content and specifying a css class to
the select attribute to distinguish where content should go.

import { Component, Input } from '@angular/core';

@Component({
 selector: 'bs-jumbotron',
 template: `
 <div class="jumbotron">
 <h1><ng-content select=".heading"></ng-content></h1>
 <p><ng-content select=".body"></ng-content></p>
 <p>

<ng-content select=".button"></ng-content></p>
 </div>
`
})
export class JumboTronComponent {
}

In the above code, we specify that content with the class heading will be placed in
the h1 heading tag. Content with class body will be placed in the body and content with
class button will be in the button.

We now add in app.component.ts the rest of the text with the various css classes as
shown below.

@Component({
 selector: 'app-root',
 template: `
 <bs-jumbotron>
 <div class="heading">
 Hello World!
 </div>
 <div class="body">
 This is a simple hero unit, a simple jumbotron-style component for calling extra
attention to featured content or information.
 </div>
 <div class="button">
 Learn more
 </div>
 </bs-jumbotron>
 `

})
export class AppComponent {
}

If you run your app now, you should now see something like in figure 5.6.2.

fig. 5.6.2

Summary

In this chapter, we introduced built in directives like ngFor , ngIf and ngSwitch that
gives us more control in rendering our html. We learnt about formatting data using built
in pipes like DatePipe , UpperCasePipe and creating our own custom pipes for custom
formatting. We have also learnt about inserting content into components from the outside
using ng-content .

Contact me at support@i-ducate.com if you encounter any issues or if you had not
requested the full source code for this chapter.

mailto:support@i-ducate.com

CHAPTER 6: TEMPLATE DRIVEN FORMS

In Angular 2, we have template driven and model driven forms. Template driven forms
are easier to implement and involve writing less code. But they give us limited control
over validation. Model driven forms have more code but we have full control over
validation. In this chapter, we will look at template driven forms.

6. 1 Create the User Model Class

Before we create our form, we want to define a class or model that can hold the data
that we receive from the form. A model is represented by a simple class that contains
properties. We will create a User class with two required fields (first name, email) and
one optional field (country).

Create a new file in the app folder called user.ts with the following code:

export class Hero {
 constructor(
 public firstName: string,
 public email: string,
 public country?: string
) { }
}

Note thatthe ? in country specifies that its an optional field.

Next, create a new file called user-form.component.ts and give it the following
definition:

import { Component } from '@angular/core';
import { User } from './user';

@Component({
 selector: 'user-form',
 templateUrl: 'user-form.component.html'
})
export class UserFormComponent {
 countries = ['United States', 'Singapore',
 'Hong Kong', 'Australia'];

 model = new User('','','');

 submitted = false;

 onSubmit() {
 this.submitted = true;
 }
}

In the UserFormComponent , we import the User model we just created. We specify our
selector to be user-form . Because the html markup will be quite long, we use
the templateUrl property to point to a separate html file user-form.component.html for
our template.

6.2 Revising app.module.ts

Because template-driven form features are in FormsModule , we need to add it to
the imports array in app.module.ts if we have not already done so. FormsModule gives
our application access to template-driven forms features, including ngModel .

We also import the UserFormComponent and add it to declarations array
in app.module.ts so that UserFormComponent is accessible throughout this module.

*Note: I was initially confused on whether a component should be in
the imports or declarations array. The simple rule is, if a component, directive, or pipe
belongs to a module in the imports array, don’t​ declare it in the declarations array. If
you wrote a component and it should belong to this module, ​do​ declare it in
the declarations array.

6.3 Create an initial HTML Form Template

Next, create our template file user-form.component.html and give it the following
definition:

<div class="container">
 <h1>User Form</h1>
 <form>
 <div class="form-group">
 <label for="firstName">First Name</label>
 <input type="text" class="form-control" id="firstName" required>
 </div>
 <div class="form-group">
 <label for="email">Email</label>
 <input type="text" class="form-control" id="email" required>
 </div>
 <div class="form-group">
 <label for="country">Country</label>

 <input type="text" class="form-control" id="country">
 <select class="form-control" id="country">
 <option *ngFor="let c of countries" [value]="c">{{c}}</option>
 </select>
 </div>
 <button type="submit" class="btn btn-default">Submit</button>
 </form>
</div>

Our form definition till now is just plain html5. We are not using Angular yet. We
allow firstName and email fields for user input in input boxes.
Both firstName and email has the html5 required attribute; the country does not
have required because it is optional.

At the end we have a Submit button.

6.4 Using *ngFor to Display Options

In the country field, we choose one country from a fixed list of countries
using select dropdown. We will retrieve the list of countries from an array
in UserFormComponent and bind the options to the country list using ngFor with the
below code.

 <div class="form-group">
 <label for="country">Country</label>
 <select class="form-control" id="country">
 <option *ngFor="let c of countries" [value]="c">{{c}}</option>
 </select>
 </div>

With *ngFor , we repeat the <option> tag for each country in the list of countries. The
variable c holds a different country element in each iteration and we display it using
interpolation {{c}} .

6.5 Two-way data binding with ngModel

We use [(ngModel)] to easily create two way binding between our form and the User
model.

Now, update <input> for firstName like this

 <div class="form-group">
 <label for="firstName">First Name</label>
 <input type="text" class="form-control" id="firstName" required

[(ngModel)]="model.firstName" name="firstName">
 </div>

We have also added a name attribute to our <input> tag and set it to firstName . We can
assign any unique value, but we should use a descriptive name like the name of the input.
The name attribute is required by Angular Forms to register the control with the form.

Do the same for the rest of the fields as in below.

<div class="container">
 <h1>User Form</h1>
 <form>
 <div class="form-group">
 <label for="firstName">First Name</label>
 <input type="text" class="form-control" id="firstName" required

[(ngModel)]="model.firstName" name="firstName">
 </div>
 <div class="form-group">
 <label for="email">Email</label>
 <input type="text" class="form-control" id="email" required

[(ngModel)]="model.email" name="email">
 </div>
 <div class="form-group">
 <label for="country">Country</label>
 <select class="form-control" id="country"

[(ngModel)]="model.country" name="country">
 <option *ngFor="let c of countries" [value]="c">{{c}}</option>
 </select>
 </div>
 <button type="submit" class="btn btn-default">Submit</button>
 </form>
</div>

Note that the id property in each input or select is used by the label to match to its for
attribute so that when a user clicks on the label, the input or select receives the focus
therefore enabling better user interaction since a user can either click on the label or
input itself for the right focus.

If we run the application now, we should get something like in figure 6.5.1.

figure 6.5.1

6.6 Track change-state and validity with ngModel

ngModel not only provide us with two way data binding between the form and controls,
it also allows us to track change state and validity of the controls. This is useful to let us
know if an input has been filled in and if the input is valid so that we can display alert or
warning messages to the user.

For a control with ngModel directive, if a user has touched the control, the control’s
Angular css class ng-touched returns true and ng-untouched returns false. The reverse is
true.
If the value of the control is changed, its ng-dirty class returns true and ng-
pristine returns false. The reverse is true.
If the value of the control is valid, ng-valid class returns true and ng-invalid returns
false. The reverse is true.

In the following, we illustrate how to make use of these css classes to display alert or
warning messages when an input is improperly filled in.

Show and Hide Validation Error messages

In the below code, we firstly add the #firstName variable and give it the
value ngModel to create a reference to the firstName input control so that we can
access its css classes. Next, we show the “ First Name is required ” message
if firstName.touched is true and firstName.valid is false. Note that we have divided the
markup of the input element into multiple lines instead of one single line so that it is
easier to see its attributes.
 <div class="form-group">
 <label for="firstName">First Name</label>
 <input type="text"
 class="form-control"
 id="firstName" required

 [(ngModel)]="model.firstName"
 name="firstName"
 #firstName="ngModel"
 >
 <div class="alert alert-danger"
 *ngIf="firstName.touched && !firstName.valid ">
 First name is required
 </div>
 </div>

Why do we check touched ? This is to avoid showing errors before the user has had a
chance to edit the value, for example when the form is freshly loaded. This prevents
premature display of errors.

We proceed to do the same for email input.

 <div class="form-group">
 <label for="email">Email</label>
 <input type="text"
 class="form-control"
 id="email" required
 [(ngModel)]="model.email"
 name="email"
 #email="ngModel">
 <div *ngIf="email.touched && !email.valid"
 class="alert alert-danger">Email is required.
 </div>
 </div>

We don’t show or hide any validation messages for country since it is optional so we
leave it as it is.

6.7 Showing Specific Validation Errors

Other than the required validation, we can also specify our input validation on an
element’s minimum and maximum length using its minlength and maxlength html
validation attributes. The below code illustrates this.

 <div *ngIf="firstName.touched && firstName.errors">
 <div class="alert alert-danger"
 *ngIf="firstName.errors.required">
 First name is required
 </div>
 <div class="alert alert-danger"
 *ngIf="firstName.errors.minlength">
 First name should be minimum 3 characters.

 </div>
 </div>

The first *ngIf on the outer <div> element reveals two nested message divs if the control
is touched and there are firstName errors.

Inside the outer <div> are two nested <div> which presents a custom message
for required and minlength validation error.

6.8 Submit the form with ngSubmit

To implement submitting of forms, we update the <form> tag with the Angular
directive NgSubmit and bind it to the UserFormComponent.submit() method with an
event binding in the below code.

<form (ngSubmit)="onSubmit()" #userForm="ngForm">

In the <form> tag, we also define a variable #userForm and assign the value “ngForm”
to it to make userForm a reference to the form as a whole. The ngForm directive
allows userForm to hold control to its contained elements with the ngModel directive
and name attribute. userForm thus allows us to monitor these contained control
elements’ properties including their validity. userForm also has its own valid property
which is true only if every contained control is valid. This enables us tobind
the Submit button's disabled property to the form's over-all validity via
the #userForm variable. That is, the Submit button remains disabled until all required
inputs are filled up properly. We do this with the below code in the Submit button.

<button type="submit" class="btn btn-default"

[disabled]="!userForm.form.valid">Submit</button>

Now when either firstName or email field is not filled up, the error is shown and
the Submit button is disabled.

6.9 Getting Submitted Values

To show that we have successfully submitted our form with its values, add the below
code to the bottom of user-form.component.html .

<div [hidden]="!submitted">
 You submitted the following:
 First Name: {{ model.firstName }}

 Email: {{ model.email }}

 Country: {{ model.country }}

 <button class="btn btn-default"

 (click)="submitted=false">Remove</button>
</div>

When we click submit, we display the values entered with interpolation bindings (fig.
6.9.1). The values only appears while the component is in the submitted state. We added
a Remove button whose click event sets submitted to false which removes the values.

fig. 6.9.1

Here is the final code of user-form.component.html

<div class="container">
 <h1>User Form</h1>
 <form (ngSubmit)="onSubmit()" #userForm="ngForm">
 <div class="form-group">
 <label for="firstName">First Name</label>
 <input type="text"
 class="form-control"
 id="firstName" required
 [(ngModel)]="model.firstName"
 name="firstName"
 #firstName="ngModel"
 minlength="3">
 <!-- display validation error-->
 <div *ngIf="firstName.touched && firstName.errors">
 <div class="alert alert-danger"
 *ngIf="firstName.errors.required">
 First name is required
 </div>
 <div class="alert alert-danger"
 *ngIf="firstName.errors.minlength">
 First name should be minimum 3 characters.
 </div>
 </div>

 </div>
 <div class="form-group">
 <label for="email">Email</label>
 <input type="text"
 class="form-control"
 id="email" required
 [(ngModel)]="model.email"
 name="email"
 #email="ngModel"
 minlength="3">
 <!-- display validation error-->
 <div *ngIf="email.touched && email.errors">
 <div class="alert alert-danger"
 *ngIf="email.errors.required">
 Email is required
 </div>
 <div class="alert alert-danger"
 *ngIf="email.errors.minlength">
 Email should be minimum 3 characters.
 </div>
 </div>
 </div>
 <div class="form-group">
 <label for="country">Country</label>
 <select class="form-control" id="country"

[(ngModel)]="model.country" name="country">
 <option *ngFor="let c of countries"

[value]="c">{{c}}</option>
 </select>
 </div>
 <button type="submit" class="btn btn-default"

[disabled]="!userForm.form.valid">Submit</button>
 </form>
</div>
<div [hidden]="!submitted">
 You submitted the following:
 First Name: {{ model.firstName }}

 Email: {{ model.email }}

 Country: {{ model.country }}

 <button class="btn btn-default" (click)="submitted=false">Remove</button>
</div>

Here is the final code of user-form.component.ts

import { Component } from '@angular/core';
import { User } from './user';

@Component({

 selector: 'user-form',
 templateUrl: 'user-form.component.html'
})
export class UserFormComponent {
 countries = ['United States', 'Singapore',
 'Hong Kong', 'Australia'];

 model = new User('','','');

 submitted = false;

 onSubmit() {
 this.submitted = true;
 }
}

Summary

In this chapter, we learnt how to create a template driven form. We created a model
class to represent the data in the form, used *ngFor to display the list of options in
a select dropdown, created two-way binding with form and component properties
using ngModel , used ngModel to help us show form field validation errors, and finally
learnt form submission using ngSubmit .

CHAPTER 7: MODEL DRIVEN FORMS

In the previous chapter, we learn about template driven forms. With template driven
forms however, we are limited to a few basic validators. If we want to implement
custom validation, we need to use model driven forms which we will cover in this
chapter.

7.1 Building a Basic Login Form

We will first create a component that renders a simple login form. In app , create a new
file login.component.ts with the below code.

import { Component } from '@angular/core';

@Component({
 selector:'login',
 templateUrl: 'login.component.html'

})
export class LoginComponent {

}

Next create login.component.html as referenced in templateUrl property
in login.component.ts . Fill in login.component.html with the below code.

<form>
 <div class="form-group">
 <label for="username">Username</label>
 <input id="username" type="text" class="form-control">
 </div>
 <div class="form-group">
 <label for="password">Password</label>
 <input id="username" type="password" class="form-control">
 </div>
 <button class="btn btn-primary" type="submit">Login</button>
</form>

The template above is currently just pure html with a few bootstrap classes. It does not
have any validation or any Angular directives yet. In the next few sections, we will
upgrade our form and implement custom validation on the username and password field.

7.2 Creating Controls Explicitly

To upgrade our form into an Angular form that can perform validation, we have to
create FormControl and FormGroup objects. A FormControl object represents a form
control in a form. With it, we can track the value and validation status of an individual
form control. A FormGroup object tracks the value and validity state of a
groupof FormControl objects.

In login.component.ts , add the codes in bold shown below.

import { Component } from '@angular/core';
import { FormGroup, FormControl } from '@angular/forms';

@Component({
 selector:'login',
 templateUrl: 'login.component.html'
})
export class LoginComponent {
 form = new FormGroup();
}

We have created a property called form and initialize it with new
FormGroup() . FormGroup and FormControl are imported from angular/forms .

We next pass in two FormControl objects, username and password into FormGroup() .
as show below.

import { Component } from '@angular/core';
import { FormGroup, FormControl, Validators } from '@angular/forms';

@Component({
 selector:'login',
 templateUrl: 'login.component.html'
})
export class LoginComponent {
 form = new FormGroup({
 username: new FormControl (‘’, Validators.required),
 password: new FormControl (‘’, Validators.required)
 });
}

The first parameter in the FormControl constructor is optional. It is the default value we
give to the control. This is useful when we display existing data in the control for user to
edit. We first retrieve the existing value from the server and populate the control with it.

The second parameter takes in a Validator function. Validators is defined
in angular/commons and provides a set of validators
like required , minlength and maxlength . For now, we have used Validators.required .

Back in the template, we need to tell Angular that we have created a FormGroup and
its FormControls explicitly so that Angular will not create them for us as in the case of
template driven forms.

In login.component.html , add the codes in bold.

<form [formGroup]="form">
 <div class="form-group">
 <label for="username">Username</label>

 <input id="username" type="text" class="form-control"
formControlName="username">

 </div>
 <div class="form-group">
 <label for="password">Password</label>
 <input id="username" type="password" class="form-control"

formControlName="password">
 </div>
 <button class="btn btn-primary" type="submit">Login</button>

</form>

Code Explanation

<form [formGroup]="form">

In the form element, we apply the formGroup directive and bind it to “form”.

 <input id="username" type="text" class="form-control"
formControlName="username">

We then associate each input field to the FormControl object by
using formControlName directive formControlName="username" . This is important for
referencing our FormControl object from FormGroup. Angular will look at
the FormGroup object and expects to find the FormControl object with the exact name
we specify in formControlName="username" . If it can’t find the control with that name, it
will thrown an exception.

Implementing Validation

Next, we define validation message placeholders that will be displayed when the input
is invalid. Add the following codes in bold.

<form [formGroup]="form">
 <div class="form-group">
 <label for="username">Username</label>
 <input type="text" class="form-control"

formControlName="username">
 <div *ngIf="form.controls.username.touched &&

!form.controls.username.valid" class="alert alert-danger">
 Username is required
 </div>
 </div>
 <div class="form-group">
 <label for="password">Password</label>

 <input type="password" class="form-control"
formControlName="password">

 <div *ngIf="form.controls.password.touched &&
!form.controls.password.valid" class="alert alert-danger">

 Password is required
 </div>
 </div>
 <button class="btn btn-primary" type="submit">Login</button>
</form>

Code Explanation

We check username css classes touched and valid to see if the control has been touched
and input value is not valid. If so, display the div validation placeholder message
“Username is required” with alert and alert-danger bootstrap classes. We do the same
for password (figure 7.2.1).

figure 7.2.1

Submitting the Form

To handle the submit event of the form, bind the ngSubmit event to the login() method in
the form element as shown below.

<form [formGroup]="form" (ngSubmit)="login()">

Now in login.component.ts , we implement the login method.

export class LoginComponent {
 form = new FormGroup({
 username: new FormControl ('', Validators.required),
 password: new FormControl ('', Validators.required)
 });

 login(){
 console.log(this.form.value); // prints form values in json format
 }
}

login() currently just prints the submitted values in json format.

app.component.ts

Next in app.component.ts , render the login component in the template:

import { Component } from '@angular/core';

@Component({
 selector: 'app-root',
 template: `
 <login></login>
 `
})
export class AppComponent {
}

Lastly in app.module.ts , import ReactiveFormsModule and add it to the imports array
as shown below. ReactiveFormsModule provides the classes for implementing model
driven forms.

import { BrowserModule } from '@angular/platform-browser';
import { NgModule } from '@angular/core';
import { ReactiveFormsModule } from '@angular/forms';

import { AppComponent } from './app.component';
import { LoginComponent } from './login.component';

@NgModule({
 declarations: [
 AppComponent,
],
 imports: [
 BrowserModule,
 ReactiveFormsModule
],
 providers: [],
 bootstrap: [AppComponent]
})
export class AppModule { }

What we have covered so far for model driven forms (e.g. Validation) is similar to
template driven forms. The difference is that in model driven forms we are explicitly
creating FormGroup and FormControl objects explicitly (in template driven forms,

Angular creates it for you), and we tell Angular about it in the template by using
the formGroup and formControlName directive.

7.3 Using FormBuilder

We can use the FormBuilder class to declare FormControl and FormGroup objects in a
more compact way. For example, the previous form can also be implemented with
FormBuilder as shown below.

import { Component } from '@angular/core';
import { FormBuilder, FormGroup, FormControl, Validators } from '@angular/forms';

@Component({
 selector:'login',
 templateUrl: 'login.component.html'
})
export class LoginComponent {

 form: FormGroup;

 constructor(fb: FormBuilder){
 this.form = fb.group({
 username:['',Validators.required],
 password:['',Validators.required]
 })
 }

 login(){
 console.log(this.form.value);
 }
}

Code Explanation

import { FormBuilder, FormGroup, FormControl, Validators } from '@angular/forms';

We first import the FormBuilder class from @angular/forms . Because we are no longer
using FormControl class, we can remove it from the import.

 form: FormGroup;

 constructor(fb: FormBuilder){
 this.form = fb.group({
 username:['',Validators.required],
 password:['',Validators.required]
 })

 }

In the constructor, we use dependency injection to get an instance
of FormBuilder , fb . FormBuilder has a method group which takes in a shortened code
for new FormControl as compared to:

 form = new FormGroup({
 username: new FormControl ('', Validators.required),
 password: new FormControl ('', Validators.required)
 });

Essentially, FormBuilder is syntactic sugar that shortens the new FormGroup() , new
FormControl() code that can build up in larger forms. This results in cleaner and more
compact for large forms.

 this.form = fb.group({
 username:['',Validators.required],
 password:['',Validators.required]
 })

Like new FormControl , the first element is the default value and the second element is
the validator function. Note that both are optional and it is not mandatory to specify
them.

Finally, the group method returns a FormGroup object as a result and we store it
in form .

7.4 Implementing Custom Validation

While there are a couple of built-in validators provided by Angular like required,
min/maxlength , we often need to add some custom validation capabilities to our
application’s form to fulfill our needs for example, a valid password cannot contain a
space. In this section, we will implement a custom validator that checks if a password
has space in it.

First, in app , add a new file passwordValidator.ts . This class will include all
validation rules for the password field. Fill it in with the below codes.

import { FormControl } from '@angular/forms';

export class PasswordValidator{
 static cannotContainSpace(formControl: FormControl){
 if(formControl.value.indexOf(' ') >= 0)
 return { cannotContainSpace: true };

 return null;
 }
}

Code Explanation

We declare a static method cannotContainSpace that takes in a FormControl object as
argument. We access the value string property of the formControl and check if there are
spaces in it with the indexOf method. If there are, we return { cannotContainSpace: true
} and if there are not spaces, we return null .

Note that Angular validators work this way; If the validation passes, return null . If it
fails, return {<validationRule>:<value>} where <value> can be anything. It can be a
boolean true/false , or an object that supplies more data about the validation error.

login.component.ts

Next, we apply the cannotContainSpace validator to the password field. Back
in login.component.ts , add the lines in bold.

import { Component } from '@angular/core';
import { FormBuilder, FormGroup, Validators } from '@angular/forms';

import { PasswordValidator } from './passwordValidator';

@Component({
 selector:'login',
 templateUrl: 'login.component.html'
})
export class LoginComponent {

 form: FormGroup;

 constructor(fb: FormBuilder){
 this.form = fb.group({

username:['',Validators.required],
 password:['',Validators.compose([Validators.required,

PasswordValidator.cannotContainSpace])]

 })
 }

 login(){
 console.log(this.form.value);
 }
}

Code Explanation

First, we import our PasswordValidator , and apply it to password . Because we have
more than one validator on password form control, we need to compose the multiple
validators by calling Validators compose method. The compose method takes in an array
of Validators
[Validators.required, PasswordValidator.cannotContainSpace]

login.component.html

Finally, we implement the custom validation message placeholder. Back
in login.component.html , replace the validation codes for password as shown in bold
below.

<form [formGroup]="form" (ngSubmit)="login()">
 <div class="form-group">
 <label for="username">Username</label>
 <input type="text" class="form-control" formControlName="username">
 <div *ngIf="form.controls.username.touched

&& !form.controls.username.valid" class="alert alert-danger">
 Username is required
 </div>
 </div>
 <div class="form-group">
 <label for="password">Password</label>
 <input type="password" class="form-control" formControlName="password">
 <div *ngIf="form.controls.password.touched

&& form.controls.password.errors">
 <div *ngIf="form.controls.password.errors.required"

class="alert alert-danger">
 Password is required.
 </div>
 <div *ngIf="form.controls.password.errors.cannotContainSpace"

class="alert alert-danger">
 Password cannot contain space.
 </div>
 </div>
 </div>
 <button class="btn btn-primary" type="submit">Login</button>
</form>

Notice that we instead of checking for ! password.valid , we now check
for password.errors . This is because there are now more than one kinds of error
for password namely, required and cannotContainSpace , so we need to further have a
nested *ngIf for each error to check for each kind of error specifically.

When you run your app now and try to enter a password with space in it, you will get a
validation error message like in figure 7.4.1.

figure 7.4.1

7.5 Validating Upon Form Submit

There are times when you have to do validation upon submitting the form to the server.
For example, validating username and password against the application’s database. In
the below example, we will illustrate validation of username and password upon
submitting the login form.

First in app folder, create a new file login.service.ts which is the service class
for login functionality. Remember that we should implement logic in service
classes to keep our component classes lightweight and mainly for rendering
displays. Fill in login.service.ts with the below code.

import {Injectable} from '@angular/core';

@Injectable()
export class LoginService {
 login(username, password){
 if(username === "jason" && password === "123")
 return true;
 else
 return false;
 }
}

Our login service class is a simple class with a method login that takes in
argument username and password credentials. We mark our Login service class as
available for dependency injection by decorating it with the @Injectable() annotation.

In a real application, our login method should call an authentication api on a server
with the credentials. To simplify our illustration for now, we authenticate with

hardcoded values.

Do note that whenever we create a new service class and want to use it, we should
specify it in the providers array of our module class to state that we want to use this
service in that module. In our case, since we have only one module AppModule , we
specify it in providers: [LoginService] of app.module.ts . We will cover more about
modules and their providers in Chapter 11 - Structuring Large Apps With Modules.

Next in login.component.ts , add the below codes in bold.

import { Component } from '@angular/core';
import { FormBuilder, FormGroup, Validators } from '@angular/forms';

import { PasswordValidator } from './passwordValidator';
import { LoginService } from './login.service';

@Component({
 selector:'login',
 templateUrl: 'login.component.html'
})
export class LoginComponent {

 form: FormGroup;

 constructor(fb: FormBuilder, private _loginService: LoginService){

 this.form = fb.group({
 username:['',Validators.required],

 password:['',Validators.compose([Validators.required,
PasswordValidator.cannotContainSpace])]

 })
 }

 login(){

var result = this._loginService.login(this.form.controls['username'].value,
 this.form.controls['password'].value);

 if(!result){
 this.form.controls['password'].setErrors({
 invalidLogin: true
 });
 }
 }
}

Code Explanation

We import and use dependency injection in the constructor to get an instance

of LoginService . We then have a method login() that calls the login method in
our loginService instance with the user-keyed in values of username and password.

this.form.controls['username'].value
this.form.controls['password'].value

With the above code, we access the value property of username and password control
inside form to get the user keyed-in values.

 if(!result){
 this.form.controls['password'].setErrors({
 invalidLogin: true
 });
 }

The login method returns result as true if the login credentials are valid. If false , we
access the password FormControl with this.form.controls['password'] and call
its setErrors method to supply the error invalidLogin: true . As mentioned earlier, true
can also be replaced with a value or object to provide more details about the validation.

login.component.html

Lastly, we add a div to login.component.html for our login validation message.

In login.component.html , add the below codes in bold.

<div class="form-group">
 <label for="password">Password</label>
 <input type="password" class="form-control" formControlName="password">
 <div *ngIf="form.controls.password.touched && form.controls.password.errors">
 <div *ngIf="form.controls.password.errors.invalidLogin"

class="alert alert-danger">
 Username or password is invalid.
 </div>
 <div *ngIf="form.controls.password.errors.required"

class="alert alert-danger">
 Password is required.
 </div>
 <div *ngIf="form.controls.password.errors.cannotContainSpace"

class="alert alert-danger">
 Password cannot contain space.
 </div>
 </div>
</div>

We use a *ngIf to check for the error invalidLogin and display the alert message
“Username or password is invalid”. Run your app now and if you do not supply a

valid username and password , you should get the invalid login message as shown in
figure 7.5.1.

figure 7.5.1

Summary

In this chapter, we learnt how to implement model driven forms in Angular. We learnt
how to create FormControl and FormGroup objects, use FormBuilder to make our code
more compact, how to implement custom validation, and how to validate the form upon
submit. Now after submitting a form, we need to persist the data by calling the api
endpoint of the server. We will begin to explore on how to communicate with the server
in the next few chapters.

CHAPTER 8: INTRODUCTION TO OBSERVABLES

For Angular 2 to connect to backend servers, we need Observables which is a concept
introduced in a library called Reactive extensions. Reactive Extensions is a
comprehensive library by itself independent from Angular. If you wish to know more
about it, you can go to reactivex.io . Reactive Extensions have been implemented for
Java, Javascript, .Net, Scala, Clojure, Swift and other languages. Reactive Extensions is
used in a few parts of Angular 2 especially in the classes we use to connect to a server.
The rxjs folder in node_modules contains the Reactive Extensions library for Javascript
used by Angular 2.

8.1 Observables

Observables are at the core of Reactive Extensions. An Observable represents an
asynchronous data stream where data arrives asynchronously. An example is the keyup
event from a textbox. Another example is a web socket. A server uses web-sockets to
send data to the client. Data arrives asynchronously and we can model it as an
Observable stream.

We can think of Observables as a collection. The difference is that in a collection we
iterate through the collection and pull each object one at a time as shown below

foreach(var obj in collection){
 …
}

For an Observable stream, we subscribe to it and give it a callback function.

function(newData){
 …
}

When a new data element arrives, it will push that data element to us by calling the
provided function back. We thus call the provided function a callback function.

Because we observe Observable streams and get notified when data arrives
asynchronously, we call them Observables.

8.2 Creating an observable from DOM events

We will illustrate Observables by creating an Observable stream from the keyup event
of a textbox. Suppose we want to implement a search service to look up artists’ data
on spotify.com . We do this by typing a search term into the input box and then call the
spotify api to get artists data with a similar name.

First, either re-use the project you have from previous chapters or create a new project
using Angular CLI. Then, copy the following code into app component.

import { Component } from '@angular/core';
import { FormControl } from '@angular/forms';

@Component({
 selector: 'app-root',
 template: `
 <input class="form-control" type="search"

[formControl]="searchControl">
 `
})
export class AppComponent {
 searchControl = new FormControl();

 constructor(){
 this.searchControl.valueChanges.subscribe(value => {
 console.log(value);
 });
 }
}

Code Explanation

 <input class="form-control" type="search"

[formControl]="searchControl">

Because our search input consists of just one input control, we do not need
a <form> element for it. We can use the formControl directive in the input control.
The formControl represents our input field.

The formControl class has a property valueChanges (see below) which returns an
Observable. We can subscribe to this observable by calling the subscribe method. In
this way, we get notified whenever the value in the input field changes.

 constructor() {
 this.searchControl.valueChanges.subscribe(value => {
 console.log(value);
 });
 }

The subscribe method requires a function as argument. This function will be called by
the Observable when new data arrives (i.e. value in input field changes). You can
declare a function using the traditional anonymous function syntax like

function (value){
 console.log(value);
}

or you can shorten this code and use the arrow function (or lambda expression syntax).

value => {
 console.log(value);
}

Every time we press a key in the textbox, we get the text value pushed to us in an
Observable stream. Our callback function gets called and we print the value to the
console (fig. 7.2.1).

figure 8.2.1

8.3 Observable Operators

So what are the benefit of Observables? The benefit of Observables are that it provides
a set of operators that we can use to transform, filter, aggregate and combine data
received from the observable stream. In the following, we look at some of the operators:

filter Operator

In our input, say we want to call Spotify only if the user types at least three characters so
as not to flood Spotify with too many requests. To do so, we can apply the filter
operator. We do so by first importing the filter operator with the below code

import 'rxjs/add/operator/filter';

and add the filter operator as shown below in bold.

 this.searchControl.valueChanges
 .filter(text => text.length >= 3)
 .subscribe(value => {
 console.log(value);
 });

The filter operator takes an expression text.length >= 3 and determines that the value
should be selected only if the expression returns true. filter then returns another
Observable that we can either subscribe to or apply another operator. If we run the app
now, we see only text of length greater or equal to three logged in the console.

debounceTime Operator

Suppose we wantto wait 400 milliseconds in between requests before calling Spotify,
we can apply the debounceTime operator. We do so by first importing
the debounceTime operator with the below code

import 'rxjs/add/operator/debounceTime';

Next, we add the debounceTime operator as shown below.

 this.searchControl.valueChanges
 .filter(text => text.length >= 3)
 .debounceTime(400)
 .subscribe(value => {
 console.log(value);
 });

Like the filter operator, the debounceTime operator returns an Observable which can be
subscribed to. Thus, you can see that the benefit of Observables is that you can keep
applying operators for the custom logic that you want.

distinctUntilChanged Operator

Say if a user presses theleft and right arrow keys to move the cursor, the valueChange
event is fired and we send multiple requests with the same input string to Spotify since
the text in the input field is not changed. To avoid such multiple requests with the same
search term, we can apply the distinctUntilChanged operator which will let us receive
our Observable only when the text is changed. We do so by first importing
the distinctUntilChanged operator with the below code

import 'rxjs/add/operator/distinctUntilChanged';

Next, add the distinctUntilChanged operator as shown below.

 this.searchControl.valueChanges
 .filter(text => text.length >= 3)
 .debounceTime(400)
 .distinctUntilChanged()
 .subscribe(value => {
 console.log(value);
 });

Final Code

Below shows the final code for our app component.

import { Component } from '@angular/core';
import { Observable } from 'rxjs/Rx';
import 'rxjs/add/operator/filter';
import 'rxjs/add/operator/debounceTime';
import 'rxjs/add/operator/distinctUntilChanged';
import { FormControl } from '@angular/forms';

@Component({
 selector: 'app-root',
 template: `
 <input class="form-control" type="search"

[formControl]="searchControl">
 `
})
export class AppComponent {
 searchControl = new FormControl();

 constructor(){
 this.searchControl.valueChanges
 .filter(text => text.length >= 3)
 .debounceTime(400)
 .distinctUntilChanged()
 .subscribe(value => {
 console.log(value);
 });
 }
}

Summary

In this chapter, we are introduced to Observables, how to subscribe to Observables
from DOM events, and how to apply certain Observable operators

like filter , debounceTime and distinctUntilChanged to avoid sending multiple repeated
requests.

Now that we can get an Observable stream from an input, we will learn how to use the
search terms keyed into the input to get data from a server in the next chapter.

CHAPTER 9: CONNECTING TO SERVER

With the knowledge of how to subscribe to Observables, we will see how to call
backend services to get data through RESTful APIs in this chapter.

9.1 A Simple RESTful API

Building RESTful APIs is beyond the scope of Angular because Angular is a client side
technology whereas building RESTful APIs require server side technology like NodeJS,
ASP.NET, Ruby on Rails and so on. (But later on in chapter 12, we will introduce
Firebase, which provides us with a simple way for us to create and store server-side
data that we can utilize to build a fully functioning Angular application!)

We will illustrate by connecting to the Spotify RESTful API to retrieve and manage
spotify content. You can know more about the Spotify API at

https://developer.spotify.com/web-api/user-guide/.

But as a quick introduction, we can get Spotify data with the following url,

https://api.spotify.com/v1/search?q=<search term>&type=artist

We simply specify our search term in the url to get Spotify data for artists with name
matching our search term. An example is shown below with search term jason .

https://api.spotify.com/v1/search?q=jason&type=artist

When we make a call to this url, we will get the following json objects as a result (fig.
9.1.1).

https://developer.spotify.com/web-api/user-guide/
https://api.spotify.com/v1/search?q=jason&type=artist
https://api.spotify.com/v1/search?q=jason&type=artist
https://api.spotify.com/v1/search?q=jason&type=artist
https://api.spotify.com/v1/search?q=jason&type=artist
https://api.spotify.com/v1/search?q=jason&type=artist
https://api.spotify.com/v1/search?q=jason&type=artist

fig. 9.1.1

9.2 Getting Data from the Server

To get data using a RESTful API, we are going to use the Http class in Angular. We use
it to make ajax calls to the server. The Http class provides the get() method for getting a
resource, post() for creating it, put() for updating it, delete() for deleting resource
and head() for getting metadata regarding a resource.

We will first create a service which will be responsible for talking to our RESTful API.
Our components should not make http calls directly but rather delegate that role to
services.

In the app folder, create a new file spotify.service.ts with the below code.

import {Http} from '@angular/http';
import 'rxjs/add/operator/map';

export class SpotifyService{
 constructor(private _http: Http){

 }

 getSpotifyData(){

 return this._http.get("https://api.spotify.com/v1/search?q=jason&type=artist")
 .map(res => res.json())
 }
}

getSpotifyData is a method that will return Spotify data from our api end point. To call
our api end point, we need to use the Http service of Angular. We import it using

import {Http} from '@angular/http' .

We inject the Http class into the constructor of our Spotify Service. Remember
dependency injection? We let Angular create an instance of Http class and give it to us.
Our constructor has a parameter _http which is of type Http . By convention, we prefix
private fields with an underscore ‘ _ ’.

 constructor(private _http: Http){

 }

In getSpotifyData , we use the get() method of http and give the url of our api endpoint.
Note that we are currently hard-coding our search term to be jason . This will be
changed later when we use the search term provided by the user from an input. The
return type of get() is an Observable of <Response> . So we will return this Observable
in our service and our component will be the consumer of this Observable. We will
subscribe to it and when an ajax call is completed, the response is fed to the Observable
and then pushed to the component.

 getSpotifyData(){
 return this._http.get("https://api.spotify.com/v1/search?q=jason&type=artist")
 .map(res => res.json());
 }

We use the map operator to transform our response object into json type.

.map(res => res.json())

The map operator has previously been imported with import 'rxjs/add/operator/map';

9.3 Dependency Injection

Next, we inject our service into our component. As covered in chapter 7, we do so by
first marking our Spotify service class as available for dependency injection. We
decorate it with the @Injectable() annotation as shown below.

import {Http} from '@angular/http';

import 'rxjs/add/operator/map';
import { Injectable } from '@angular/core';

@Injectable()
export class SpotifyService{
 constructor(private _http: Http){

 }

 getSpotifyData(){
 return this._http
 .get("https://api.spotify.com/v1/search?q=jason&type=artist")
 .map(res => res.json());
 }
}

Code Explanation

After importing the Injectable annotation.

import { Injectable } from '@angular/core';

We then apply it to the top of the class

@Injectable()
export class SpotifyService{

and the service is now ready for injection. Now let’s go to app.component.ts .

app.component.ts

import { Component } from '@angular/core';
import { Observable } from 'rxjs/Rx';

import { SpotifyService } from './spotify.service';

@Component({
 selector: 'app-root',
 template: `
 `,
 providers: [SpotifyService]
})
export class AppComponent {
 constructor(private _spotifyService: SpotifyService){
 this._spotifyService.getSpotifyData()

 .subscribe(data => console.log(data));
 }

}

Code Explanation

First, we import the service.

import { SpotifyService } from './spotify.service';

We then inject it into the constructor.

constructor(private _spotifyService: SpotifyService){
 this._spotifyService.getSpotifyData()

.subscribe(data => console.log(data));
}

Remember that in dependency injection, Angular looks at the constructor and sees a
parameter of type SpotifyService and seeks to create an instance of it. To let the injector
know where to find the SpotifyService to create it, we register the SpotifyService by
specifying it in the providers property in the component’s metadata.

@Component({
 selector: 'app-root',
 template: `
 `,
 providers: [SpotifyService]
})

Now that we are done with the dependency injection, let’s use our service. In the
constructor, we call the getSpotifyData method from our _sportifyService instance.
The getSpotifyData method returns an Observable which we need to subscribe to.

constructor(private _spotifyService: SpotifyService){
 this._spotifyService.getSpotifyData()

 .subscribe(data => console.log(data));
}

We then pass in our callback function data =>console.log(data) . Back in the
implementation of getSpotifyData (see below), we use the map method to transform the
response into a json object. So when our ajax call is completed, a json object is placed
in the observable and then pushed into our callback function

 getSpotifyData(){
 return this._http
 .get("https://api.spotify.com/v1/search?q=jason&type=artist")
 .map(res => res.json());
 }

When we run our app in the browser, we get the following result from the server (fig.
9.4.1).

figure 9.3.1

Our json object is a single object containing an artists object containing an items array
of size 20 each representing the data of an artist (fig. 9.3.2).

figure 9.3.2

Each artist object has properties followers , images , name , popularity and so on.

To get the items array direct, (since that is the data we want), we can further specify it
like below

this._spotifyService.getSpotifyData()
 .subscribe(data => console.log(data.artists.items));

Doing so will get us the items array objects straight like in figure 9.3.3

figure 9.3.3

9.4 Component’s Lifecycle Hooks

Even though our code currently works, it doesn’t follow best practises. We are currently
calling the server in the constructor of the app component. As a best practise,
constructors should be lightweight and should not contain any costly operations making
it easier to test and debug. So where should we move our code to?

Components have a lifecycle which is managed by Angular. There are lifecycle hooks
which we can tap into during key moments in the component’s lifecycle. To do this, we
need to implement one or more of the following interfaces in the component.

OnInit
OnDestroy
DoCheck
OnChanges
AfterContentInit
AfterContentChecked
AfterViewInit
AfterViewChecked

Each of the interfaces has a method that we can implement in our component. When the
right moment arrives, Angular will call these methods. For example, we can implement
the OnInit interface to be notified when a component is first instantiated.

By convention, the name of the method is the same name as the interface with the
prefix ng . For e.g. ngOnInit .

We will implement the ngOnInit() method. This method will be called when Angular
instantiates our component. In terms of lifecycle, it is called after the constructor. So in
the constructor, we do lightweight and basic initialization and if we need to call the
server, we do it in ngOnInit . So we shift the code to call Spotify from the constructor
to ngOnInit as shown below.

export class AppComponent {

 constructor(private _spotifyService: SpotifyService){

 }

 ngOnInit() {
 this._spotifyService.getSpotifyData()

 .subscribe(data => console.log(data.artists.items));
 }

}

9.5 Showing a Loader Icon

When getting content from a server, it is often useful to show a loading icon to the user.
To do so, in app component, create a variable called isLoading and set it to true like in
the below code.

export class AppComponent {
 isLoading = true;
 ...

Next, in the subscribe method, set isLoading to false because at this point, we get the
results from the server and loading is finished.

 ngOnInit() {
 this._spotifyService.getSpotifyData()
 .subscribe(data => {
 this.isLoading = false;
 console.log(this.artists);
 });
 }

Lastly, in the template, add a div that shows the loading icon. We use *ngIf to make
the div visible only when the component is loading.

template: `
 <div *ngIf="isLoading">Getting data...</div>
 `,

If you load your app in the browser, you should see the “Getting data” message being
displayed for a short moment before data from the server is loaded.

We will now replace the “Getting data” message with the loading icon. To get the
loading icon, google ‘font awesome’ and the first result should be
http://fontawesome.io/. Font awesome is a library similar to glyphicons that gives us
many useful icons. Go to ‘Get Started’ and follow the instructions to copy the embed
code and paste it into the head section of index.html .

Back in app component, replace the message with the icon like in the below code.

template: `
 <div *ngIf="isLoading">

http://fontawesome.io/

 <i class="fa fa-spinner fa-spin fa-3x"></i>
 </div>
 `,

To add a font awesomeicon, we use the <i> tag. fa is the base class for all font awesome
icons. fa-spinner renders the spinner icon. fa-spin adds the animation to it. fa-3x makes
the icon three times bigger so that it is easier to see.

9.6 Implementing a Spotify Results Display Page

We will now implement a page which displays our Spotify data nicely like in figure
9.6.1. To do so, we use the Bootstrap Media Object component from
http://getbootstrap.com/components/#media as what we have done previously. We will
be copying the markup from getbootstrap, pasting it into our component and filling
the missing parts with interpolation strings.

figure 9.6.1

Firstly, note that the images that we get from Spotify are of different height and width. To
make all images of different height and width display the same in our page for e.g.
100px by 100px, we define the following inline css style class img .

@Component({
 selector: 'app-root',
 styles: [`

http://getbootstrap.com/components/%23media

 .img {
 position: relative;
 float: left;
 width: 100px;
 height: 100px;
 background-position: 50% 50%;
 background-repeat: no-repeat;
 background-size: cover;
 }
 `],

In the template, we will be copy the markup from getbootstrap and paste it into our
component as shown below.

 template: `
 <h3>Spotify Results</h3>
 <div *ngIf="isLoading">
 <i class="fa fa-spinner fa-spin fa-3x"></i>
 </div>
 <div *ngFor="let artist of artists" class="media">
 <div class="media-left">

 <img class="media-object img"

 src="{{ artist.images[2]?.url }}" alt="...">

 </div>
 <div class="media-body">
 <h4 class="media-heading">{{ artist.name }}</h4>
 Followers: {{ artist.followers.total}}
 Popularity: {{ artist.popularity }}
 </div>
 </div>
 `,

Code Explanation

 <div *ngIf="isLoading">
 <i class="fa fa-spinner fa-spin fa-3x"></i>
 </div>

We have added the loading icon as implemented previously.

 <div *ngFor="let artist of artists" class="media">

We then apply *ngFor to repeat the media object for each artist we get from Spotify.

We then add four string interpolations inside the template. The artist’s name, image,
number of followers and her popularity. Note that Spotify displays larger image sizes in
the first few elements of the image array. I therefore use the third element
i.e. artist.images[2]?.url for a reasonably appropriate image size.

You can of course change this to use the first or second element if you want. Not all
artist however have images. And you might get an error if you try to display an artist that
does have an image array. To handle this, we add the ? operator after the field to
specify that it is optional.

 <div *ngFor="let artist of artists" class="media">
 <div class="media-left">

 <img class="media-object img"

 src="{{ artist.images[2]?.url }}" alt="...">

 </div>
 <div class="media-body">
 <h4 class="media-heading">{{ artist.name }}</h4>
 Followers: {{ artist.followers.total}}
 Popularity: {{ artist.popularity }}
 </div>
 </div>

In our *ngFor , we state let artist of artists . But where do we get our artists array
instantiated and assigned with content? We declare it in app component artists = [] as
shown below. We then subscribe to our Observable returned from our Spotify service
and assign the returned result to artists array. Note that we assign it with data.artists.items
as this is the artists item array structured in the json response.

export class AppComponent {
 isLoading = true;

 artists = [];

 constructor(private _spotifyService: SpotifyService){

 }

 ngOnInit() {
 this._spotifyService.getSpotifyData()
 .subscribe(data => {
 this.isLoading = false;
 this.artists = data.artists.items;
 console.log(this.artists);
 });
 }

}

If you run your app now, you should get a similar page as shown below.

9.7 Adding an Input to Spotify Results Display Page

We are currently hard-coding our search term to jason in the url used to request from
Spotify. We will now use the search input that we have implemented in chapter 8 and
combine it with our code here so that as a user types in her search terms, the result can
be displayed (figure 9.7.1).

figure 9.7.1

In chapter 8, we subscribe to an Observable stream from our input in the constructor of
app component as shown below.

 constructor(){
 this.searchControl.valueChanges
 .filter(text => text.length >= 3)
 .debounceTime(400)
 .distinctUntilChanged()
 .subscribe(value => {
 console.log(value);
 });
 }

As mentioned earlier, such code should instead be placed in ngOnInit since the
constructor should be lightweight. Also, we will move the code to subscribe to our
Spotify Service into the callback function code block of valueChanges (see below).

 ngOnInit() {
 this.searchControl.valueChanges
 .filter(text => text.length >= 3)
 .debounceTime(400)
 .distinctUntilChanged()
 .subscribe(value => {

// insert call to spotify service here
 });

 });
 }

The final app component code will look like below. Note that we
initialize isLoading to false at first since no call to Spotify is made at the beginning.
Once we get a notification from valueChanges Observable, we then
set isLoading to true just before the call to getSpotifyData to show the loading icon.
Once we get notified of results from our spotify service Observable, we
set isLoading to false to hide the loading icon.

export class AppComponent {
 searchControl = new FormControl();
 isLoading = false;
 artists = [];

 constructor(private _spotifyService: SpotifyService){
 }

 ngOnInit() {
 this.searchControl.valueChanges
 .filter(text => text.length >= 3)
 .debounceTime(400)
 .distinctUntilChanged()
 .subscribe(value => {
 this.isLoading = true;
 this._spotifyService.getSpotifyData(value)
 .subscribe(data => {
 this.isLoading = false;
 this.artists = data.artists.items;
 });
 });
 }
}

Finally, add the <input> tag to the template at the top:

template: `
 <input class="form-control" type="search"

[formControl]="searchControl">
 <h3>Spotify Results</h3>
 <div *ngIf="isLoading">
 <i class="fa fa-spinner fa-spin fa-3x"></i>
 </div>
 <div *ngFor="let artist of artists" class="media">
 <div class="media-left">

 </div>
 <div class="media-body">
 <h4 class="media-heading">{{ artist.name }}</h4>
 Followers: {{ artist.followers.total}}
 Popularity: {{ artist.popularity }}
 </div>
 </div>
 `,

You can now see Spotify results displayed as you key in your search terms. And
remember, because of the operators that we have earlier applied to our Observable, we
do not send unnecessary multiple requests to Spotify.

Summary

In the chapter, we learned how implement a Spotify Search application by connecting
our Angular apps to the server RESTful api using Observables, Http, component
lifecycle hooks and display loader icons.

CHAPTER 10: BUILDING SINGLE PAGE APPS WITH ROUTING

We have so far covered components, directives and services. But what if we have
multiple views that a user needs to navigate from one to the next? In this chapter, we
will explore Routers that provide screen navigation in our Single Page Application.

We are familiar with navigating websites. We enter a URL in the address bar and the
browser navigates to a corresponding page. We click links on the page and the browser
navigates to a new page. We click the browser's back and forward buttons and the
browser navigates backward and forward through the history of pages we've seen.

The Angular Router borrows from this model. It interprets a browser URL as an
instruction to navigate to a client-generated view and can also pass optional parameters
along to the supporting view component to help it decide what specific content to
present.

We can bind the router to links on a page and it will navigate to the appropriate
application view when the user clicks a link. We can also navigate imperatively when
the user clicks a button, selects from a drop box, or from other user generated events.
And because the router logs activity in the browser's history journal, so the back and
forward buttons work as well.

In this chapter, we will extend our project from chapter 9 to add routing to navigate
between Home, Spotify, User Signup Form components.

10.1 Enabling Routing

The first step to building a Single Page application is to enable routing. We need to
ensure that we have set the <base href="/"> base url in our index.html . Angular will use
this to compose relative urls. If you have created your Angular project using theAngular
CLI, <base href="/"> should have been added for you under the head element
in index.html as show below:

<head>
 <meta charset="utf-8">
 <title>Angular2Firstapp</title>
 <base href="/">

The / means that our Angular app is currently in the application root. If your application
has a lot of modules, your directory might look something like the below:

/users
 /app
 index.html
/posts
 /app
 index.html
/albums
 /app
 index.html

The base href for albums index.html will then be <base href=”/albums/”> .

10.2 Configuring Routes

After enabling routing, we need to define our routes. We define our routes in a separate
new file. In your project from chapter 9, add a new file app.routing.ts with the below
code:

import { NgModule } from '@angular/core';
import { Routes, RouterModule } from '@angular/router';

import { HomeComponent } from './home.component';
import { NotFoundComponent } from './notfound.component';
import { SpotifyComponent } from './spotify.component';

export const routing = RouterModule.forRoot([
 {path: '', component: HomeComponent},
 {path: 'spotify', component: SpotifyComponent},
 {path: '**', component: NotFoundComponent}
]);

Code Explanation

app.routing.ts contains our route definitions.

import { Routes, RouterModule } from '@angular/router';

We import Routes and RouterModule from Router library which provide the essential
routing functionalities.

export const routing = RouterModule.forRoot([
 {path: '', component: HomeComponent},
 {path: 'spotify', component: SpotifyComponent},
 {path: '**', component: NotFoundComponent}
]);

RouterModule has a method forRoot which takes an array of Route definition
objects. forRoot returns a module object and we assign it to variable routing . We need
to export routing so that we can later import it in App Module. Note that routing is
declared as a const which is a good practise so that no one will modify our routes
making our application more reliable.

Wethen pass in our array of Route definition objects into the forRoot method. Each route
definition associates a path to a component. Each route definition has at least two
properties, path , which is the unique name we assign to our route, and component
which specifies the associated component.

In our route definition, we have specified three
components. HomeComponent , NotFoundComponent and our previously
developed SpotifyComponent . We have not yet
created HomeComponent and NotFoundComponent . So create the below components
in app folder now.

home.component.ts

import { Component } from '@angular/core';

@Component({
 template: '<h1>Home</h1>'
})
export class HomeComponent {
}

notfound.component.ts

import { Component } from '@angular/core';

@Component({
 template: `
 <h1>Not Found</h1>
 `
})
export class NotFoundComponent { }

You will realize that HomeComponent and NotFoundComponent are very basic
components that simply displays a message. This is for the purpose of illustrating
navigating to different views.

Back in app.routing.ts , we import the components we will use in our route definitions
as shown below in bold.

...
import { HomeComponent } from './home.component';
import { NotFoundComponent } from './notfound.component';
import { SpotifyComponent } from './spotify.component';
...

const routes: Routes = [
 {path: '', component: HomeComponent},
 {path: 'spotify', component: SpotifyComponent},
 {path: '**', component: NotFoundComponent}
];

Now, our route definition tells Angular that:

- if the path changes to '' , Angular should create an instance
of HomeComponent and render it in the DOM.
- if the path changes to 'spotify' , Angular should create an instance
of SpotifyComponent and render it in the DOM.
- if a user navigates to a route that we have not defined, the path '**' is a
wildcard that catches all invalid routes and directs to NotFoundComponent .

Next, in app.module.ts , we have to import and add our new
components HomeComponent and NotFoundComponent to declarations array to declare
that they are part of AppModule . We have to also import routing into the imports array
as routing is a module which AppModule is dependent on.

The below lines in bold illustrate this.

app.module.ts

import { BrowserModule } from '@angular/platform-browser';
import { NgModule } from '@angular/core';
import { FormsModule } from '@angular/forms';
import { HttpModule } from '@angular/http';

import { AppComponent } from './app.component';
import { ReactiveFormsModule } from '@angular/forms';

import { UserFormComponent } from './user-form.component';
import { UserFormReactiveComponent } from './user-form-reactive.component';

import { HomeComponent } from './home.component';
import { NotFoundComponent } from './notfound.component';
import { SpotifyComponent } from './spotify.component';

import { routing } from './app.routing';

@NgModule({
 declarations: [
 AppComponent,
 HomeComponent,
 NotFoundComponent,
 SpotifyComponent
],
 imports: [
 BrowserModule,
 FormsModule,
 ReactiveFormsModule,
 HttpModule,
 routing
],
 providers: [],
 bootstrap: [AppComponent]
})
export class AppModule { }

10.3 Router Outlet and Links

Router Outlet

To specify where we want Angular to render our requested component when the user
clicks on a link, we specify <router-outlet></router-outlet> in the DOM. For example
in app.component.ts ,

import { Component } from '@angular/core';

@Component({
 selector: 'app-root',
 template: `
 <h1>Hello</h1>
 <router-outlet></router-outlet>
 `
})
export class AppComponent {
}

Router Links

Having defined and configured our routes in app.routing.ts , we can now add our

navigation links to Home and Spotify component. In app.component.ts , add the below
codes in bold.

import { Component } from '@angular/core';

@Component({
 selector: 'app-root',
 template: `

 Home
 Spotify

 <router-outlet></router-outlet>
 `
})
export class AppComponent {
}

Code Explanation

 Home
 Spotify

Note that we use routerLink directive instead of href to declare path to our routes. If we
implement links using the traditional href way like below,

Home
Spotify

the href attribute will cause a full page reload which is contrary to the idea of Single
Page Applications. In an SPA, we want our application to be loaded only once, and as
as we click on different links, only a part of the page is refreshed with the content of the
target page. This results in much faster loading of pages.

We thus replace href with the routerLink directive and supply the name of the target
route.

 Home
 Spotify

routerLink tells our routing component to navigate the user to the target route specified.
The routing component finds the route definition with that name. It will then create an
instance of the component and render it in the router-outlet element.

And if we try a non-existent route, we get a ‘not found’ page because we have earlier
declared the wildcard path to direct to NotFoundComponent .

const routes: Routes = [
 {path: '', component: HomeComponent},
 {path: 'spotify', component: SpotifyComponent},
 {path: '**', component: NotFoundComponent}
];

If we run our app now, we'll get a view like in figure 10.3.1.

figure 10.3.1

And if we navigate to Spotify, we get the view like in figure 10.3.2

figure 10.3.2

Improving the Look of our Navbar Component

Our navbar currently does not look very professional. We will use the navbar
component from getbootstrap (http://getbootstrap.com/components/#navbar) to beautify
our navigation bar. Use the default navbar markup in the template of navbar component.
The default navbar renders a complex navbar with many complex items like a form. Get
rid of all the unnecessary stuff (like dropdown and search) and keep only the Home and
Spotify links.

Below shows the code for app.component.ts with the navbar component markup
in template copied from getbootstrap. Unnecessary navbar elements
like dropdown and search have been removed to result in a cleaner code. You can see
the code for the router links in bold.

app.component.ts

import { Component } from '@angular/core';

http://getbootstrap.com/components/%23navbar

@Component({
 selector: 'app-root',
 template: `
 <nav class="navbar navbar-default">
 <div class="container-fluid">
 <!-- Brand and toggle get grouped for better mobile display -->
 <div class="navbar-header">

 <button type="button" class="navbar-toggle collapsed"
data-toggle="collapse" data-target="#bs-example-navbar-collapse-1"

aria-expanded="false">
 Toggle navigation

 </button>
 ngProject
 </div>

 <!-- Collect the nav links, forms, and other content for toggling -->

 <div class="collapse navbar-collapse"
id="bs-example-navbar-collapse-1">

 <ul class="nav navbar-nav">
 Home
 <a routerLink="spotify"

routerLinkActive="active">Spotify

 </div><!-- /.navbar-collapse -->
 </div><!-- /.container-fluid -->
 </nav>
 <router-outlet></router-outlet>
 `
})
export class AppComponent {
}

When you run your app now, you should get a more professional navigation bar like in
figure 10.3.3.

figure 10.3.3

And when you try to enter in an unspecified url, you get the NotFoundComponent
rendered like in figure 10.3.4

figure 10.3.4

Adding a new Router

Now let’s try adding a new link called Sign Up that will take us to the User Form that
we have implemented earlier in chapter six (figure 10.3.5).

figure 10.3.5

To do so, we add a new routerLink signup in App Component template.

<ul class="nav navbar-nav">
 Home
 Spotify
 Sign Up

Then in App Module, make sure that you have imported UserFormComponent and add it
to declarations array as shown below.

import { UserFormComponent } from './user-form.component';
...

@NgModule({
 declarations: [
 AppComponent,
 HomeComponent,
 NotFoundComponent,
 SpotifyComponent,
 UserFormComponent
],

Next in app.routing.ts , import UserFormComponent and add the path to the array
in RouterModule.forRoot as shown below.

import { HomeComponent } from './home.component';
...
import { UserFormComponent } from './user-form.component';

export const routing = RouterModule.forRoot([
 {path: '', component: HomeComponent},
 {path: 'spotify', component: SpotifyComponent},
 {path: 'signup', component: UserFormComponent},
 {path: '**', component: NotFoundComponent}
]);

10.4 Route Parameters

We will now illustrate how to create routes that takes in route parameters. Why do we
need this? For example, from the Spotify results page, we want to navigate to a page to
see the details of a specific Spotify artist, we can pass in the information via route
parameters.

In app.routing.ts , we add a route that takes in two route parameters as shown below in
bold.

import { NgModule } from '@angular/core';
import { Routes, RouterModule } from '@angular/router';

import { HomeComponent } from './home.component';
import { NotFoundComponent } from './notfound.component';
import { SpotifyComponent } from './spotify.component';
import { UserFormComponent } from './user-form.component';

import { ArtistComponent } from './artist.component';

export const routing = RouterModule.forRoot([
 {path: '', component: HomeComponent},
 {path: 'spotify', component: SpotifyComponent},
 {path: 'spotify/artist/:id/:name', component: ArtistComponent},
 {path: 'signup', component: UserFormComponent},
 {path: '**', component: NotFoundComponent}
]);

Code Explanation

We first import the ArtistComponent which we will implement later.
The ArtistComponent simply displays some information about a specific artist.

Next, we add a route

{path: 'spotify/artist/:id/:name', component: ArtistComponent}

/:id/:name represents the id route parameter and the name route parameter. If we want to
pass in only one parameter for e.g. id , it will be just spotify/artist/:id . We can pass in

multiple parameters (more than two) if we want to.

With this route, whenever we navigate to a url for e.g.

http://localhost:4200/spotify/artist/3Q8wgwyVVv0z4UEh1HB0KY/Jason%20Isbell

Angular will render the ArtistComponent with the parameter id
3Q8wgwyVVv0z4UEh1HB0KYand name Jason%20Isbell.

You might ask, why is our route spotify/artist/:id/:name and not artist/:id/:name ? That is
because our Spotify search results is displayed in http://localhost:4200/spotify/. If our
search results is displayed in the root i.e. http://localhost:4200/, then our route will
be artist/:id/:name . We will explore different techniques to handle such routing later in the
Feature Routes section.

Specifying Route Parameters

Next, in the template of spotify.component.ts , we add the line in bold.

 template: `

<input class="form-control" type="search"
 [formControl]="searchControl">

 <h3>Spotify Results</h3>
 <div *ngIf="isLoading">
 <i class="fa fa-spinner fa-spin fa-3x"></i>
 </div>
 <div *ngFor="let artist of artists" class="media">
 <div class="media-left">
 <a [routerLink]="['artist',artist.id, artist.name]">
 <img class="media-object img"

src="{{ artist.images[2]?.url }}" alt="...">

 </div>
 <div class="media-body">
 <h4 class="media-heading">{{ artist.name }}</h4>
 Followers: {{ artist.followers.total}}
 Popularity: {{ artist.popularity }}
 </div>
 </div>
 `,

Code Explanation

 <a [routerLink]="['artist',artist.id, artist.name]">
 <img class="media-object img"

 src="{{ artist.images[2]?.url }}" alt="...">

http://localhost:4200/spotify/artist/3Q8wgwyVVv0z4UEh1HB0KY/Jason%2520Isbell
http://localhost:4200/spotify/artist/3Q8wgwyVVv0z4UEh1HB0KY/Jason%2520Isbell
http://localhost:4200/spotify/artist/3Q8wgwyVVv0z4UEh1HB0KY/Jason%2520Isbell
http://localhost:4200/spotify/
http://localhost:4200/

We add a routerLink to the artist image of each search result. When a user clicks on the
artist image, she will be routed to ArtistComponent with parameters id and name .

<a [routerLink]="['artist',artist.id, artist.name]">

We use property binding syntax to bind our route parameters array to routerLink .
 ['artist',artist.id, artist.name] is our route parameters array. The first element is a
string which contains our path artist . The second and third element are our route
parameter values. If our route had more parameters, we can add them
like ['artist',artist.id, artist.name, artist.popularity]

Retrieving Route Parameters

Next, we create ArtistComponent that shows the details of a particular artist. In our
case, we will just show the id and name of the artist. Create and fill
in artist.component.ts with the below code.

import { Component, OnInit } from '@angular/core';
import { ActivatedRoute } from '@angular/router';

@Component({
 selector: 'artist',
 template: `
 <h1>Artist Id: {{ id }}</h1>
 <h2>Artist Name: {{ name }}</h2>
 `
})
export class ArtistComponent implements OnInit {
 id;
 name;
 subscription;

 constructor(private _route: ActivatedRoute){
 }

 ngOnInit(){
 this.subscription = this._route.params.subscribe(params => {
 this.id = params["id"];
 this.name = params["name"];
 })
 }
}

Code Explanation

@Component({
 selector: 'artist',
 template: `
 <h1>Artist Id: {{ id }}</h1>
 <h2>Artist Name: {{ name }}</h2>`
})

In the template, we use string interpolation to display id and name . But how do we get
the route parameters?

 constructor(private _route: ActivatedRoute){
 }

First, we use dependency injection to get an instance
of ActivatedRoute . ActivatedRoute contains route information of a component and we
subscribe to its params method to get our route parameters.

 ngOnInit(){
 this.subscription = this._route.params.subscribe(params => {
 this.id = params["id"];
 this.name = params["name"];
 })
 }

We implement the ngOnInit method (remember to implement OnInit in the class
definition) and in it subscribe to _route.params which returns an Observable. We then
get the value of the parameters using:

 this.id = params["id"];
 this.name = params["name"];

Additionally, to improve on memory, we can implement ngOnDestroy() so that we
remove the subscription object from memory when this component instance is destroyed.
See the complete code below with the OnDestroy code in bold.

import { Component, OnInit, OnDestroy } from '@angular/core';
import { ActivatedRoute } from '@angular/router';

@Component({
 selector: 'artist',
 template: `
 <h1>Artist Id: {{ id }}</h1>
 <h2>Artist Name: {{ name }}</h2>
 `
})

export class ArtistComponent implements OnInit, OnDestroy {
 id;
 name;
 subscription;

 constructor(private _route: ActivatedRoute){
 }

 ngOnInit(){
 this.subscription = this._route.params.subscribe(params => {
 this.id = params["id"];
 this.name = params["name"];
 })
 }

 ngOnDestroy(){
 this.subscription.unsubscribe();
 }
}

Lastly, remember to import ArtistComponent and add it
to declarations in app.module.ts as shown below in bold.

import { BrowserModule } from '@angular/platform-browser';
import { NgModule } from '@angular/core';
import { FormsModule } from '@angular/forms';
import { HttpModule } from '@angular/http';
...

import { ArtistComponent } from './artist.component';

import { routing } from './app.routing';

@NgModule({
 declarations: [
 AppComponent,
 HomeComponent,
 NotFoundComponent,
 SpotifyComponent,
 UserFormComponent,
 ArtistComponent
],
 imports: [
 BrowserModule,
 FormsModule,
 ReactiveFormsModule,
 HttpModule,
 routing

],
 providers: [],
 bootstrap: [AppComponent]
})
export class AppModule { }

10.5 Imperative Navigation

Suppose we want to redirect a user to another page upon clicking a button or upon
clicking submit in a form. In such a case, we cannot use routerLink directive. Instead,
we need to talk to the router object directly and this is what we called imperative or
programmatic navigation.

To implement this, add the below codes in boldin home.component.ts

import { Component } from '@angular/core';
import { Router } from '@angular/router';

@Component({
 template: `
 <h1>Home</h1>
 <button (click)="onClick()">Sign Up</button>
 `
})
export class HomeComponent {

 constructor(private _router: Router){

 }

 onClick(){
 this._router.navigate(['signup']);
 }
}

Code Explanation

 <button (click)="onClick()">Sign Up</button>

In the template, we have a Sign Upbutton and we do event binding to bind it to
the onClick() method.

constructor(private _router: Router){
}

Next, we import and inject Router into the constructor of HomeComponent .

 onClick(){
 this._router.navigate(['signup']);
 }

In the onClick method, we call the navigate method of Router which takes in a route
parameters array similar to the routes we have implemented earlier. The first element of
the array will be the name of the target route and we supply any parameters in the
second element of the array.

10.6 Route Guards

In a SPA, we may need to protect routes for example, preventing users from accessing
areas that they’re not allowed to access, or asking them for confirmation when leaving a
certain area. Angular’s router provides Route Guards that try to solve this problem.

There are two interfaces CanActivate and CanDeactivate which we can use to protect
our routes. We use CanActivate to control if a user is allowed to navigate to a path,
where certain pages are allowed only to logged in users or users with certain
permissions or role. We use CanDeactivate to display a confirmation box to the user
and ask if they really want to navigate away for example, if they have entered values
into a form and tries to navigate away before saving the changes.

We refer to CanActivate and CanDeactivate as Route Guards because they act as guards
to routes. We implement Route Guards in a separate service class and apply this service
class on the routes we want to guard.

RouteGuard CanActivate

Suppose we want to let users access the User Form page only if they have logged in.
In app , create a new file auth-guard.service.ts with the following codes.

import { Injectable } from '@angular/core';
import { CanActivate } from '@angular/router';

@Injectable()
export class AuthGuard implements CanActivate {

 canActivate(){
 return false;
 }

}

In the above code, we have currently set canActivate() to always return false and user
will therefore never be able to access the page with this guard applied.

app.routing.ts

Next in app.routing.ts , add the codes in bold.

import { NgModule } from '@angular/core';
import { Routes, RouterModule } from '@angular/router';

import { HomeComponent } from './home.component';
import { NotFoundComponent } from './notfound.component';
import { UserFormComponent } from './users/user-form.component';

import {AuthGuard} from './auth-guard.service';

export const routing = RouterModule.forRoot([
 {path: '', component: HomeComponent},
 {path: 'signup',

component: UserFormComponent,
canActivate: [AuthGuard]},

 {path: '**', component: NotFoundComponent}
]);

Code Explnanation

canActivate: [AuthGuard]}

We import and add the parameter canActivate to the signup route. canActivate takes in
an array of guards, which means we can apply multiple guards to a given route if
needed. If the first one returns false, the execution stops there. Otherwise, control is
passed to the next guard. For now, we pass in an array with a single guard
element AuthGuard .

If we run the app now, and you try to navigate to Sign Up, nothing will happen and you
will remain on the current page. This is because our route guard is at work here
preventing access.

User Login

Now, how do we know if a user is currently logged in or not? Back in chapter 7, we
implemented a separate login service class for authentication. The class had
a login method. We further enhance the login class by adding a logout method and a
boolean field isLoggedIn that tells us if a user is logged in or not.

The complete code for login.service.ts in app folder is shown below.

import {Injectable} from '@angular/core';
import {CanActivate} from '@angular/router';

@Injectable()
export class LoginService {
 isLoggedIn = false;

 login(username, password){
 if(username === "jason" && password === "123")
 this.isLoggedIn = true;
 else
 this.isLoggedIn = false;

 return this.isLoggedIn;
 }

 logout(){
 this.isLoggedIn = false;
 return this.isLoggedIn;
 }
}

As shown previously, the login service class is a simple plain Typescript class used
behind our login form component. The values of username and password come in from
the login form. In a real world application, login() should call a remote service with
username/password and await a true or false return value. In this instance to simplify
things, we will not be calling a remote service but instead hard code a specific
username and password for successful login.

For the logout method, we don’t call a remote service because the server is not aware if
a user is logged in or not. This will be the client’s responsibility which falls in the
scope of Angular.

Do note that this is a basic implementation of an authentication service and in a real
world application, you would probably have additional security measures like using
encryption libraries to encrypt username/password and so on. We will next use this in
our route guard.

auth-guard.service.ts

Back in auth-guard.service.ts , add the following codes in bold.

import { Injectable } from '@angular/core';
import { CanActivate, Router } from '@angular/router';

import { LoginService } from './login.service';

@Injectable()
export class AuthGuard implements CanActivate {

 constructor(private _loginService: LoginService,

private _router:Router){
 }

 canActivate(){
 if(this._loginService.isLoggedIn)
 return true;

 // imperative navigation
 this._router.navigate(['login'])

 return false;
 }

}

We import Router and LoginService and use dependency injection to get an instance of
these two classes. In canActivate() , we then check if isLoggedIn in loginService is true.
If yes, return true and allow the route to continue the navigation. If isLoggedIn is false ,
navigate to the login page and return false so that that the request page remains
inaccessible.

app.routing.ts

Next in app.routing.ts , we import and apply the auth-guard route guard to our routes
for Home, Spotify, Artist and UserForm as shown below in bold.

import { NgModule } from '@angular/core';
import { Routes, RouterModule } from '@angular/router';

import { HomeComponent } from './home.component';
import { NotFoundComponent } from './notfound.component';
import { SpotifyComponent } from './spotify.component';
import { UserFormComponent } from './user-form.component';
import { ArtistComponent } from './artist.component';
import { LoginComponent } from './login.component';

import {AuthGuard} from './auth-guard.service';

export const routing = RouterModule.forRoot([
 {path: '', component: HomeComponent, canActivate: [AuthGuard]},
 {path: 'spotify', component: SpotifyComponent, canActivate: [AuthGuard]},
{path: 'spotify/artist/:id/:name', component: ArtistComponent, canActivate: [AuthGuard]},

 {path: 'signup', component: UserFormComponent, canActivate: [AuthGuard]},
 {path: 'login', component: LoginComponent},
 {path: '**', component: NotFoundComponent}
]);

AppModule

Lastly, remember to register AuthGuard and LoginService in the providers array
in AppModule if you have not already done so.

Running the App

If you run your app now and try to access either Home, Spotify, Artist or UserForm, you
will be directed to the login form. And when you sign in with ‘jason’ and ‘123’, you
will be able to access the pages.

If for any reason you cannot get your app to run, contact me at support@i-ducate.com .

RouteGuard CanDeactivate

We will illustrate implementing our CanDeactivate route guard on our login page. That
is, when a user has entered values into the login form and tries to navigate away, we
will prompt a pop up message ‘Are you sure’ first before confirming user decision to
navigate away.

We implement our CanDeactivate route guard in a separate service class. In app , add a
new file
prevent-unsaved-changes-guard.service.ts .

import { CanDeactivate} from '@angular/router';
import { LoginComponent } from './login.component';

export class PreventUnsavedChangesGuard implements CanDeactivate<LoginComponent>{

 canDeactivate(component: LoginComponent){
 if(component.form.dirty)
 return confirm("Are you sure?");

 return true;
 }
}

We implement the canDeactivate method and in it, we check if the form’s dirty property
which indicates if any of its form controls have been filled in. If yes, pop up the
confirmation box. Else let the navigation away continue.

app.routing.ts

Next in app.routing.ts , apply the guard PreventUnsavedChangesGuard to the login
route.

...
import { PreventUnsavedChangesGuard } from './prevent-unsaved-changes-guard.service';

export const routing = RouterModule.forRoot([
 {path: '', component: HomeComponent, canActivate: [AuthGuard]},
 {path: 'signup', component: UserFormComponent, canActivate: [AuthGuard]},
 {path: 'login', component: LoginComponent, canDeactivate:

[PreventUnsavedChangesGuard]},
 {path: '**', component: NotFoundComponent}
]);

AppModule

Remember to register PreventUnsavedChangesGuard in the providers array
in AppModule .

Running the App

Now run the app and enter some values into the login form fields. Try navigating away
and you should see the below pop up box confirmation your decision.

Summary

In this chapter, we see how to build single page apps with routing. We learnt how to
define and configure routes, rendering requested component using the router outlet,
providing router links, how to create routes with parameters, how to retrieve the
parameters, using route guards for authorization with the CanActivate interface and
preventing unsaved changes with the CanDeactivate interface.

We have covered a lot in this chapter. Contact me at support@i-ducate.com if you have
not already to have the full source code for this chapter or if you encounter any errors
with your code.

mailto:support@i-ducate.com

CHAPTER 11: STRUCTURING LARGE APPS WITH MODULES

The application we have built in chapter nine and ten so far has three main function
areas. The Home page, the Search Spotify page and the Sign Up page. But once our app
grows, maintenance becomes more important and challenging. It is then better to divide
a large app into smaller parts each focusing on one specific functionality. Each part will
have a group of highly related classes that work together to fulfil a specific function.

Gmail for example is a huge application. In it, we find different functionalities like
Inbox, Contacts and Compose. Each function would have been formed from their own
set of highly related classes which we term as one module.

In Angular, each application has at least one module, which is our main or root module
App Module. We so far have been adding our components to this single root module.

But as our app grows, we should refactor this into smaller and more focused modules
for better maintainablility.

For example, in our application, our module directory will look something like:

/AppModule
 /SpotifyModule
 /UserModule
 ...
11.1 NgModule Decorator

A module is really just a class decorated with the NgModule decorator. We already seen
it in app.module.ts in chapter 10 and earlier chapters (shortened code snippet shown
below).

import ...

@NgModule({
 declarations: [
 AppComponent,
 HomeComponent,
 NotFoundComponent,
 SpotifyComponent,
 UserFormComponent,
 ArtistComponent
],
 imports: [

 BrowserModule,
 FormsModule,
 ReactiveFormsModule,
 HttpModule,
 routing
],
 providers: [],
 bootstrap: [AppComponent]
})
export class AppModule { }

As mentioned earlier, the imports array specify what other modules this present module
depends on. We can see that the above AppModule depends on BrowserModule,
FormsModule, ReactiveFormsModule, HttpModule and our routing Module.

The declarations array specify what components, directives and pipes are part of this
module. We currently have AppComponent, HomeComponent, NotFoundComponent,
SpotifyComponent, UserFormComponent, ArtistComponent as part of AppModule.

We specify the boot or entry module in the bootstrap array of our app. We have
specified AppComponent as the entry point for our application. Note that this is only
required in the root module AppModule and not needed in the sub-modules we create.

The providers array specify mainly service classes that we use through dependency
injection.

So what is the benefit of listing components and services in these arrays? The benefit is
that we don’t have to individually import components for every other component in the
same module. For e.g. in SpotifyComponent , we already have access
to ArtistComponent without importing it since it is declared to be in the same module.
So as long as components are in the same module, they will be available to one another
in the module. This results in much cleaner code where we don’t have to keep repeating
similar import statements in multiple classes.

11.2 Refactoring

Our AppModule now is beginning to get quite huge and messy. Currently, all files are in
one single module. So how do we re-structure it into smaller, focused modules like in
the below structure?

/AppModule
 /SpotifyModule
 /UserModule
 ...
We will try to refactor some classes out from AppModule to

form SpotifyModule and UserModule . The related classes for SpotifyModule will
be SpotifyComponent , ArtistComponent , SpotifyService .

The related classes for UserModule will be UserFormComponent and User .

HomeComponent and NotFoundComponent will remain in AppModule since they are
generic to the application.

We create two new folders spotify and users in / app . So that the folder structure looks
like below:

/app
 /spotify
 /users
...

Refactoring SpotifyModule

We first refactor for SpotifyModule . Move the below files from /app to /app/spotify

artist.component.ts
spotify.component.ts
spotify.service.ts

In /app/spotify , create spotify.module.ts with the below code.

import { NgModule } from '@angular/core';
import { CommonModule } from '@angular/common';
import { ReactiveFormsModule } from '@angular/forms';
import { RouterModule } from '@angular/router';
import { HttpModule } from '@angular/http';

import { SpotifyComponent } from './spotify.component';
import { ArtistComponent } from './artist.component';
import { SpotifyService } from './spotify.service';

@NgModule({
 imports: [
 CommonModule,
 ReactiveFormsModule,
 HttpModule,
 RouterModule
],
 declarations: [
 SpotifyComponent,
 ArtistComponent

],
 exports: [
],
 providers: [
 SpotifyService
]
})
export class SpotifyModule {
}

Code Explanation

Notice that spotify.module.ts is very much similar to app.module.t s except that it
contains files specific to the Spotify Module which we store in a separate Spotify
folder.

A difference is that we import CommonModule instead of BrowserModule . In an
Angular app, only the root application module AppModule should
import BrowserModule . BrowserModule provides services that are essential to launch
and run a browser app. Feature modules (or sub-modules) should
import CommonModule instead. They need the common directives and don't need to re-
install the app-wide providers.

Refactoring UserModule

Next, we refactor for UserModule . Move the below files from /app to /app/users .

user.ts
user-form.component.ts
user-form.component.html

In /app/users/ , create user.module.ts with the below code.

import { NgModule } from '@angular/core';
import { CommonModule } from '@angular/common';
import { FormsModule } from '@angular/forms';

import { UserFormComponent } from './user-form.component';

@NgModule({
 imports: [
 CommonModule,
 FormsModule
],
 declarations: [
 UserFormComponent

],
 exports: [
],
 providers: [
]
})
export class UserModule {
}

Refactoring AppModule

Because we have already imported ReactiveFormsModule, HttpModule, RouterModule in
SpotifyModule and FormsModule in UserModule , we can remove them from AppModule.

Similarly, because we have imported SpotifyComponent, ArtistComponent,
SpotifyService in SpotifyModule and UserFormComponent , User in UserModule , we
can remove the import statements for these classes from AppModule as shown below.
Instead, we import SpotifyModule and UserModule .

app.module.ts

import { BrowserModule } from '@angular/platform-browser';
import { NgModule } from '@angular/core';

import { AppComponent } from './app.component';
import { HomeComponent } from './home.component';
import { NotFoundComponent } from './notfound.component';

import { routing } from './app.routing';

import { SpotifyModule } from './spotify/spotify.module';
import { UserModule } from './users/user.module';

@NgModule({
 declarations: [
 AppComponent,
 HomeComponent,
 NotFoundComponent
],
 imports: [
 BrowserModule,
 SpotifyModule,
 UserModule,
 routing
],
 providers: [],
 bootstrap: [AppComponent]

})
export class AppModule { }

Realize that after refactoring, AppModule becomes much smaller? We only make code
changes to AppModule when we add new modules to it. And
both SpotifyModule and UserModule can grow on its own. We can add new classes,
components, pipes, directives to the them without impacting AppModule. This is the
benefit of modularity.

Finally in app.routing.ts , do the below minor changes in bold.

import { NgModule } from '@angular/core';
import { Routes, RouterModule } from '@angular/router';

import { HomeComponent } from './home.component';
import { NotFoundComponent } from './notfound.component';
import { SpotifyComponent } from './spotify/spotify.component';
import { UserFormComponent } from './users/user-form.component';

import { ArtistComponent } from './spotify/artist.component';

export const routing = RouterModule.forRoot([
 {path: '', component: HomeComponent},
 {path: 'spotify', component: SpotifyComponent},
 {path: 'spotify/artist/:id/:name', component: ArtistComponent},
 {path: 'signup', component: UserFormComponent},
 {path: '**', component: NotFoundComponent}
]);

11.3 Refactoring Routes

Although app.module.ts has been structured to be more modular, app.routing.ts still
contains all the routes in a single file. If the number of routes increases to hundreds or
thousands, app.routing.ts will become messy and unmaintainable. So just as we have
refactored app.module.ts , we can also divide our routes into smaller more manageable
routing files.

With this structure, instead of having a gigantic app.routing.ts with hundreds of routes,
we will have a feature route file per module and app.routing.ts will delegate all the
routing for that module to that feature routing file.

That is, we move routes in a feature area to its corresponding module. For example, we
move the below two routes to their own Spotify Module routing file.

 {path: 'spotify', component: SpotifyComponent},

 {path: 'spotify/artist/:id/:name', component: ArtistComponent},

In Spotify folder, add a new file spotify.routing.ts with the below code. This will be the
routing file for Spotify Module.

import { NgModule } from '@angular/core';
import { Routes, RouterModule } from '@angular/router';
import { SpotifyComponent } from './spotify.component';
import { ArtistComponent } from './artist.component';

export const spotifyRouting = RouterModule.forChild([
 {path: 'spotify', component: SpotifyComponent},
 {path: 'spotify/artist/:id/:name', component: ArtistComponent}
]);

app.routing.ts

app.routing.ts will have the below code. Note that the Spotify related routes have been
removed resulting in much cleaner and modular code.

import { NgModule } from '@angular/core';
import { Routes, RouterModule } from '@angular/router';

import { HomeComponent } from './home.component';
import { NotFoundComponent } from './notfound.component';
import { UserFormComponent } from './users/user-form.component';

export const routing = RouterModule.forRoot([
 {path: '', component: HomeComponent},
 {path: 'signup', component: UserFormComponent},
 {path: '**', component: NotFoundComponent}
]);

app.module.ts

app.module.ts will have the below code changes in bold.

import { BrowserModule } from '@angular/platform-browser';
import { NgModule } from '@angular/core';

import { AppComponent } from './app.component';
import { HomeComponent } from './home.component';
import { NotFoundComponent } from './notfound.component';

import { routing } from './app.routing';
import { spotifyRouting } from './spotify/spotify.routing'

import { SpotifyModule } from './spotify/spotify.module';
import { UserModule } from './users/user.module';

@NgModule({
 declarations: [
 AppComponent,
 HomeComponent,
 NotFoundComponent
],
 imports: [
 BrowserModule,
 SpotifyModule,
 UserModule,
 spotifyRouting,
 routing
],
 providers: [],
 bootstrap: [AppComponent]
})
export class AppModule { }

Here, we import both our routing modules into AppModule .

Summary

In this chapter, we covered how to refactor our application as it grows, into smaller and
more focused modules for better maintainability. We learnt how to declare a module
with the NgModule decorator, how to refactor files into separate module folder
structures and also how to refactor routes to their own modules.

CHAPTER 12: C.R.U.D. WITH FIREBASE

In this chapter, we will cover how to implement full C.R.U.D. operations in Angular
with a backend server. A typical web application architecture consists of the server side
and client side. This book teaches you how to implement the client side using Angular.
The client side talks to a backend server to get or save data via RESTful http services
built using server side frameworks like ASP.NET, Node.js and Ruby on Rails. We have
explored this when we got data from the Spotify server in chapter nine.

Building the server side however is often time consuming and not in the scope of this
course. In this chapter however, we will explore using Firebase as our backend server.
Firebase is a very powerful backend platform for building fast and scalable real-time
apps. It has been gaining popularity since 2015 and we will introduce it here, so don’t
worry if you have never worked with Firebase before.

With Firebase, we don’t have to write server side code or design relational databases.
Firebase provides us with a real-time, fast and scalable NoSQL database in the cloud
and also a library to talk to this database. This allow us to focus on building our
application according to requirements rather than debugging server side code.

You might ask, what is a NoSQL database? In contrast to relational databases which
consists of tables and relationships, in a NoSQL database, we have a tree of JSON
objects and each node in the tree can have a different structure. Because we do not have
to maintain table schemas, NoSQL databases provide us with one thing less to worry
about thereby increasing productivity. However, if you application involves lots of data
aggregating, complex querying and reporting, a relational database might still be a better
choice.

The aim of this chapter is to however illustrate create, read, update and delete
functionality with Angular and Firebase integrated so that you can go on and create a
fully working app. And if you choose to have a different backend server like ASP.NET,
Node.js, the same principles will apply.

More on Firebase

Firebase is a real time database. which means that as data is modified, all connected
clients are automatically refreshed in an optimised way. If one user adds a new item
either through a browser or a mobile app, another user (again either through a browser
or mobile app) sees the addition in real time without refreshing the page. Firebase of
course provides more than just a real time database. It provides other services like
Authentication, cloud messaging, disk space, hosting an analytics. You not only can

develop Angular apps with Firebase as backend, but also iOS, Android and web
applications.

12.1 Using Firebase

We can use Firebase features for free and only pay when our application grows bigger.
You can choose between a subscription based or ‘pay as you use’ model. Find out more
at firebase.google.com/pricing .

Before adding Firebase to our Angular project, we need to first create a Firebase
account. Go to firebase.google.com and sign in with your Google account.

Click ‘Get Started for Free’ to go to the Firebase console. In the console, click on
‘Create New Project’ (figure 12.1)

figure 12.1.1

Fill in the project name, country and click ‘Create Project’.

figure 12.1.2

In the Welcome screen, click on ‘Add Firebase to your web app’ (figure 12.3).

figure 12.1.3

You will see some configuration code that you need to add in your project (fig. 12.1.4).

figure 12.1.4

Code Explanation

<script src="https://www.gstatic.com/firebasejs/3.6.4/firebase.js"></script>

This is a script reference to Firebase SDK. firebase.js gives us a library to work with
firebase.

<script>
 // Initialize Firebase
 var config = {
 apiKey: "AIzaSyBN9WlmRc3SedmC4agM1G-rYqezGR22iZE",
 authDomain: "crudproject-45834.firebaseapp.com",
 databaseURL: "https://crudproject-45834.firebaseio.com",
 storageBucket: "crudproject-45834.appspot.com",
 messagingSenderId: "590481645308"
 };
 firebase.initializeApp(config);
</script>

We have a config or configuration object with properties apiKey , authDomain (a
subdomain under firebaseapp.com), databaseUrl , storageBucket (for storing files like
photos, videos etc.) and messagingSenderId (used for sending push notifications).

12.2 Adding Firebase to our Angular App

To illustrate connecting Firebase to our Angular app, we will create a new project using
Angular CLI (I have named my project CRUDProject).

ng new CRUDProject

We will next use npm to add firebase and another library called angularfire to our
project.

npm install firebase angularfire2 --save

After the installation, in package.json , an entry for firebase will have been added (see
lines below in bold).

 "dependencies": {
 "@angular/common": "2.0.0",
 "@angular/compiler": "2.0.0",
 "@angular/core": "2.0.0",
 "@angular/forms": "2.0.0",
 "@angular/http": "2.0.0",
 "@angular/platform-browser": "2.0.0",
 "@angular/platform-browser-dynamic": "2.0.0",
 "@angular/router": "3.0.0",
 "angularfire2": "^2.0.0-beta.6",
 "core-js": "^2.4.1",
 "firebase": "^3.6.4",
 "rxjs": "5.0.0-beta.12",
 "ts-helpers": "^1.1.1",
 "zone.js": "^0.6.23"
 },

(Note: At time of writing, the version for "angularfire2": "^2.0.0-beta.6", and "firebase":
"^3.6.4")

app.module.ts

Next, we need to import AngularFireModule into our App Module. In app.module.ts,
add the lines in bold. Note that the credential properties in firebaseConfig should be
your own (copied from firebase console)

import { BrowserModule } from '@angular/platform-browser';
import { NgModule } from '@angular/core';
import { HttpModule } from '@angular/http';
import { AngularFireModule } from 'angularfire2';

import { AppComponent } from './app.component';

export const firebaseConfig = {
 apiKey: "AIzaSyBN9WlmRc3SedmC4agM1G-rYqezGR22iZE",
 authDomain: "crudproject-45834.firebaseapp.com",
 databaseURL: "https://crudproject-45834.firebaseio.com",
 storageBucket: "crudproject-45834.appspot.com",
 messagingSenderId: "590481645308"
};

@NgModule({
 declarations: [
 AppComponent
],
 imports: [
 BrowserModule,
 HttpModule,
 AngularFireModule.initializeApp(firebaseConfig)
],
 providers: [],
 bootstrap: [AppComponent]
})
export class AppModule {

}

Code Explanation

import { AngularFireModule } from 'angularfire2';

angularfire2 is a library that sits on top of firebase and makes it easier to build Angular
2 apps that use firebase as the backend as we will see shortly.

app.component.ts

Now to make sure that we have added firebase correctly to our project, go
to app.component.ts and add the lines bold.

import { Component, OnInit } from '@angular/core';
import { AngularFire} from 'angularfire2';

@Component({
 selector: 'app-root',
 template: `

 `
})
export class AppComponent {
 constructor(af: AngularFire){
 console.log(af);
 }
}

Now, make sure that the lite web server is running, (by executing ng serve) and in the
console, you should see the AngularFire object printed as shown below to prove that we
have added Angular Fire correctly.

12.3 Working with a Firebase Database

Now let’s look at our Firebase database. Go to console.firebase.google.com . Click on
your project, and from the menu bar on the left, click on Database.

We will store our data here. If you have not worked with NoSQL databases before, you
might find it odd in the beginning because there is no concept of tables or relationships
here. Our database is basically a tree of key value pair objects. We basically store json
objects here that map natively to json objects in javascript. So when working with a
NoSQL database on the backend, we get a json object from the server and we simply
display in on the client. Or we construct a json object on the client and send it to server
and we store it as it is. There is no additional mapping needed i.e. from relational
format to json format or vice-versa.

Click + to add a new child node to the tree. Each node has a name and a value. Value
can be a primitive type like string, boolean, number or it can be a complex object.

When you click Add, a new node will be added.

(Note that when you add a new child node, the child node gets highlighted in green and
the parent node in yellow for a few seconds. If you try deleting a node, that node gets
highlighted in red.)

Our values can also be complex objects. You can add complex objects by clicking on
the + sign in Value of an existing child node. The below tree has a childnode 0 that
contains further properties.

You can of course have complex objects in complex, for e.g.

Essentially, we have a hierarchy of key value pairs in a NoSQL database. We don’t have
tables and relationships. The modelling of objects and their relationships vital to an
enterprise level application is beyond the scope of this book (but you can contact me at
support@i-ducate.com to enquire about my upcoming book on in-depth Firebase).

In the next sections, we will illustrate with a simple example of user objects in our

mailto:support@i-ducate.com

NoSQL database.

12.4 Displaying List of Users

We will illustrate how to display a list of users. But before that, we need to have
existing user data in Firebase. We will use users data from jsonplaceholder at
http://jsonplaceholder.typicode.com/. jsonplaceholder provides with with a fake online
REST api and data for testing. So head to

http://jsonplaceholder.typicode.com/users

and save the json file. I have saved it as users.json . We can import this json file into our
Firebase database by going to Database, click on the most right icon, and select ‘Import
JSON’ (fig. 12.4.1).

figure 12.4.1

Browse to the user json file you saved and click ‘Import’ (fig. 12.4.2).

figure 12.4.2

The users data will be imported into firebase (fig. 12.4.3).

http://jsonplaceholder.typicode.com/
http://jsonplaceholder.typicode.com/users

figure 12.4.3

user.component.ts

Next, we will create a user component to display our list of users.
Create user.component.ts in app with the following code.

import { Component, OnInit } from '@angular/core';
import { AngularFire } from 'angularfire2';

@Component({
 selector: 'users',
 templateUrl: './user.component.html'
})
export class UserComponent {
 users;

 constructor(private af:AngularFire){
 }

 ngOnInit(){
 this.users = this.af.database.list('/');
 }
}

Code Explanation

import { AngularFire } from 'angularfire2';

We import AngularFire and get an instance of it from injecting it in our constructor.

 ngOnInit(){
 this.users = this.af.database.list('/');
 }

In ngOnInit , we specify the location of a node in firebase as an argument to the list
method to retrieve our list of users. In our case, our list of users is at the root node and
thus, we specify ‘/’ . But say if our list of users is a child node under the parent node
‘spotify’, we would then have something like

 this.users = this.af.database.list('/spotify');

You might be asking, isn’t the code to list users too simple? How is that we can use the
Observable directly here and not have to subscribe to an rxjs Observable like what we
have done when we got data from Spotify? The answer is
because af.database.list returns a FirebaseListObservable type which is firebase’s own
Observable that wraps around the standard rxjs Observable. FirebaseListObservable is
an rxjs Observable internally but it wraps around it and provides additional methods
which makes it easy for us to execute create, read, update and delete functions on it.

If we did not use the FirebaseListObservable directly, the old way would be to
subscribe to it as what we have done earlier (in chapter nine) like the below:

 ngOnInit(){
 this.subscription = this.af.database.list(‘/’).subscribe(x =>{
 this.users = x;
 });
 }

 ngOnDestroy(){
 this.subscription.unsubscribe();
 // so that we do not consume memory ever increasingly
 }
}

See how much simpler it is to use FirebaseListObservable?

user.component.html

Next, create user.component.html with the below code:

<h1>Users</h1>
<table class="table table-bordered">

<thead>
<tr>

<th>Username</th>
<th>Email</th>
<th>Edit</th>
<th>Delete</th>
</tr>
</thead>
<tbody>
<tr *ngFor="let user of users | async">
<td>{{ user.name }}</td>
<td>{{ user.email }}</td>
<td>

 <a>
 <i class="glyphicon glyphicon-edit"></i>

</td>
<td>

 <a>
 <i class="glyphicon glyphicon-remove"></i>

 </td>

</tr>
</tbody>

</table>

Code Explanation

<table class="table table-bordered">

We use the bootstrap classes table and table-bordered to create a nice looking table for
listing our users.

 <a>
 <i class="glyphicon glyphicon-edit"></i>

</td>
<td>

 <a>
 <i class="glyphicon glyphicon-remove"></i>

We also use glyphicons edit and remove for the edit and delete operations we will
implement later.

<tr *ngFor="let user of users | async">
<td>{{ user.name }}</td>

<td>{{ user.email }}</td>

Notice that we have applied the async pipe in our *ngFor to display users. Because data
in users arrive asynchronously, the async pipe subscribes to user (which is a
FirebaseObjectObservable) and returns the latest value emitted. The async pipe marks
the component to be checked for changes. It also removes the subscription once the
component is destroyed (thus no longer needing ngOnDestroy).

app.routing.ts

Create the routing file app.routing.ts in app as shown below.

import { RouterModule } from '@angular/router';
import { UserComponent } from './user.component';

export const routing = RouterModule.forRoot([
 { path:'', component:UserComponent },
]);

It currently contain only one route which points to User component. We will extend the
routes later to include the route to the User Add and Edit form.

app.module.ts

Add the below lines in boldto app.module.ts to import and declare that UserComponent
belongs to App Module. We also import routing .

import { BrowserModule } from '@angular/platform-browser';
import { NgModule } from '@angular/core';
import { HttpModule } from '@angular/http';
import { AngularFireModule } from 'angularfire2';

import { AppComponent } from './app.component';
import { UserComponent } from './user.component';

import { routing } from './app.routing';

export const firebaseConfig = {
 apiKey: "AIzaSyC94rD8wXG0aRLTcG29qVGw8CFfvCK7XVQ",
 authDomain: "myfirstfirebaseproject-6da6c.firebaseapp.com",
 databaseURL: "https://myfirstfirebaseproject-6da6c.firebaseio.com",
 storageBucket: "myfirstfirebaseproject-6da6c.appspot.com",
 messagingSenderId: "138019512918"
};

@NgModule({

 declarations: [
 AppComponent,
 UserComponent,
],
 imports: [
 BrowserModule,
 HttpModule,
 AngularFireModule.initializeApp(firebaseConfig),
 routing
],
 providers: [],
 bootstrap: [AppComponent]
})
export class AppModule {

}

app.component.ts

Back in app.component.ts , we add router-outlet into the template as shown below to
render our content.

import { Component, OnInit } from '@angular/core';
import { AngularFire} from 'angularfire2';

@Component({
 selector: 'app-root',
 template: `
 <router-outlet></router-outlet>
 `
})
export class AppComponent {
 constructor(af: AngularFire){
 console.log(af);
 }
}

To make the code cleaner, we also remove the previous logging code (to see if we have
installed AngularFire correctly).

index.html

Remember to add the bootstrap link in index.html as shown below to make sure that our
table borders are rendered correctly.

<!doctype html>
<html>

<head>
 <meta charset="utf-8">
 <title>CRUDproject</title>
 <base href="/">

 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="icon" type="image/x-icon" href="favicon.ico">
 <link rel="stylesheet"
 href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css" integrity="sha384-
BVYiiSIFeK1dGmJRAkycuHAHRg32OmUcww7on3RYdg4Va+PmSTsz/K68vbdEjh4u"
crossorigin="anonymous">
</head>
<body>
 <app-root>Loading...</app-root>
</body>
</html>

Setting Permissions for Read

If we run our app now, we will get an error saying something like “Permission denied.
Client doesn’t have permission to access the desired data.” This is because in firebase,
our firebase permission rules are currently configured as:

{
 "rules": {
 ".read": "auth != null",
 ".write": "auth != null"
 }
}

The above code is a json object that determines the rules for reading and writing of data.
You can access these rules in firebase console, under Database, Rules tab. Essentially,
the code is saying that read and write permission is only granted to those who are
logged in or authenticated (auth != null). Because firebase authentication and
authorisation is beyond the scope of this book, and to quickly get a fully working
Angular app, we will set both read and write permissions to be public, where anyone
can read or write to our database. (I will teach about firebase permissioning in a future
book, contact me at support@i-ducate.com for more information)

So in firebase console in the Rules tab, edit the permission rules as shown below and
click Publish. Note that whenever we make changes to our permission rules, we need to
publish the changes.

{
 "rules": {
 ".read": true,
 ".write": true

mailto:support@i-ducate.com

 }
}

Running your App

Now if you run your app, you should see a list of users rendered like in figure 12.4.4.

figure 12.4.4

Now, try going back to the firebase console and add a new user node. When you go back
to your Angular app, you will realize that the user list is refreshed automatically with the
new node! Or if you delete a node from the firebase console, the list is refreshed to
reflect the deletion as well. And that’s the beauty of firebase. We achieved auto-refresh
upon adding, updated, delete with just the single line of code below:

this.users = this.af.database.list('/');

If we were to try to do this without firebase, it would take a lot more code.

12.5 Adding a User

user.component.html

Next, we will implement adding a user to our app. First, add a button called Add
Userjust before the user list in user.component.html . Decorate it with css button
classes btn and btn-primary as shown below.

<h1>Users</h1>
<button class="btn btn-primary" (click)="add()">Add</button>
<table class="table table-bordered">
...

user.component.ts

When we click this button, we route to a new page with a form to add a new user. To
create this route, implement the add() method in user.component.ts as shown below.

import { Component, OnInit } from '@angular/core';
import { AngularFire } from 'angularfire2';
import { Router } from '@angular/router';

@Component({
 selector: 'users',
 templateUrl: './user.component.html'
})
export class UserComponent {
 users;

 constructor(private af:AngularFire, private _router: Router){
 }

 ngOnInit(){
 this.users = this.af.database.list('/');
 }

 add(){
 this._router.navigate(['add']);
 }
}

app.routing.ts

In app.routing.ts , import and add the path to UserForm component as shown below. We
will create UserForm component in the next section.

import { RouterModule } from '@angular/router';
import { UserComponent } from './user.component';
import { UserFormComponent } from './user-form.component';

export const routing = RouterModule.forRoot([
 { path:'', component:UserComponent },
 { path:'add',component:UserFormComponent }
]);

user.ts

We represent the model data behind our User form with the class User in user.ts . So add
this class in app .

export class User{
 id: string;
 username: string;
 email: string;
}

user-form.component.ts

Next, create a new component user-form.component.ts that implements a model driven
form with fields, username and email as shown below.

import { Component } from '@angular/core';
import { FormBuilder, FormGroup, Validators } from '@angular/forms';
import { Router } from '@angular/router';
import { AngularFire } from 'angularfire2';

import { User } from './user';

@Component({
 selector:'user-form',
 templateUrl: 'user-form.component.html'
})
export class UserFormComponent {
 form: FormGroup;
 title: string;
 user = new User();

 constructor(fb: FormBuilder, private _router:Router,

private af:AngularFire){
 this.form = fb.group({
 username:['',Validators.required],
 email:['',Validators.required]
 })
 }

 ngOnInit(){
 this.title = "New User";
 }

 submit(){
 this.af.database.list('/').push({
 name: this.user.username,
 email: this.user.email
 });

 this._router.navigate(['']);
 }

}

Code Explanation

The code pertaining to generating a model driven form should be familiar to you as
explained in chapter 7: Model Driven Forms. We will provide a brief explanation in
the following sections.

export class UserFormComponent {
 form: FormGroup;
 title: string;
 user = new User();

We want to remind you that it is important to initialize user to be a blank User object to
avoid any null reference exception that might occur in the loading of the form either
when we add a new user or later when we reuse the form again to edit an existing user.

 this.form = fb.group({
 username:['',Validators.required],
 email:['',Validators.required]
 })

We create our form using the FormBuilder object that has two
controls, username and email (each having the required validator applied on it). You
can of course implement and apply your own custom validators as we have gone through
in chapter 7.

FirebaseListObservable Push

Here I would like to focus on the submit() method which will be called by the form
upon submit.

 submit(){
 this.af.database.list('/').push({
 name: this.user.username,
 email: this.user.email
 });

 this._router.navigate(['']);
 }

To add an object to firebase, we use the push method from our FirebaseListObservable
this.af.database.list which we covered earlier in listing users. As
mentioned, FirebaseListObservable wraps the standard Observable that comes with
rxjs and adds additional method such as push which we use to add a new object to

firebase.

To be able to add an object to firebase, we need to have write permission. Earlier on,
we have set this to true in the firebase console.

After adding the new user, we navigate back to the list of users with
this._router.navigate(['']).

user-form.component.html

Next, create the template of UserForm Component in user-form.component.html with the
below codes.

<h1>{{ title }}</h1>
<form [formGroup]="form" (ngSubmit)="submit()">
 <div class="form-group">
 <label for="username">Username</label>
 <input [(ngModel)]="user.username" type="text" class="form-control"

formControlName="username">
 <div *ngIf="form.controls.username.touched &&

!form.controls.username.valid" class="alert alert-danger">
 Username is required
 </div>
 </div>
 <div class="form-group">
 <label for="email">Email</label>
 <input [(ngModel)]="user.email" class="form-control"

formControlName="email">
 <div *ngIf="form.controls.email.touched && form.controls.email.errors">
 <div *ngIf="form.controls.email.errors.required"

class="alert alert-danger">
 Email is required.
 </div>
 </div>
 </div>
 <button [disabled]="!form.valid" class="btn btn-primary" type="submit">{{ title }}</button>
</form>

Code Explanation

The markup for the form should be familiar to you. If not, go back to chapter 6 and 7 for
a revision.

 <label for="username">Username</label>
 <input [(ngModel)]="user.username" type="text" class="form-control"

formControlName="username">
 <div *ngIf="form.controls.username.touched &&

!form.controls.username.valid" class="alert alert-danger">

 Username is required
 </div>

Essentially, we have done some basic validation to the username and email fields. If no
username is supplied, we display an alert message “Username is required”. If no email
is supplied, we display the alert message “Email is required”. We have also applied
the form-control class to give our form the bootstrap looking feel.

<button [disabled]="!form.valid" class="btn btn-primary" type="submit">{{ title }}</button>

We disable the Submit button till all fields are valid.

app.module.ts

Lastly, in app.module.ts , we import ReactiveFormsModule because we need it for
model driven forms. We also import and declare UserForm Component to be part of
App Module.

import { BrowserModule } from '@angular/platform-browser';
import { NgModule } from '@angular/core';
import { ReactiveFormsModule } from '@angular/forms';
import { HttpModule } from '@angular/http';
import { AngularFireModule } from 'angularfire2';

import { AppComponent } from './app.component';
import { UserComponent } from './user.component';
import { UserFormComponent } from './user-form.component';

import { routing } from './app.routing';

export const firebaseConfig = {
 apiKey: "AIzaSyC94rD8wXG0aRLTcG29qVGw8CFfvCK7XVQ",
 authDomain: "myfirstfirebaseproject-6da6c.firebaseapp.com",
 databaseURL: "https://myfirstfirebaseproject-6da6c.firebaseio.com",
 storageBucket: "myfirstfirebaseproject-6da6c.appspot.com",
 messagingSenderId: "138019512918"
};

@NgModule({
 declarations: [
 AppComponent,
 UserComponent,
 UserFormComponent,
],
 imports: [
 BrowserModule,
 ReactiveFormsModule,

 HttpModule,
 AngularFireModule.initializeApp(firebaseConfig),
 routing
],
 providers: [],
 bootstrap: [AppComponent]
})
export class AppModule {

}

Try it yourself

As an exercise, implement dirty tracking on the form. That is, if we fill out the fields in
the form and accidentally navigate away from the form page, show a confirmation box
warning us that we have unsaved changes. And we click Cancel to stay on the form
or Ok to navigate away. We have explained this in chapter 10where we covered
the CanDeactivate interface.

Running your app

Run your app now. Go to the Add form, enter in a new username and email and upon
submitting the form, you should be able to see your new user object added to the list.

12.6 Deleting a User

Next, we want to delete a user by clicking on the delete icon in a row of the user list,
and a confirmation box will appear asking us if we want to delete the user.

user.component.html

First in user.component.html , we bind the click event of the delete icon to
the delete() method with user object (from firebase) as argument.

<h1>Users</h1>
<button class="btn btn-primary" (click)="add()">Add</button>
<table class="table table-bordered">

<thead>
<tr>
<th>Username</th>
<th>Email</th>
<th>Edit</th>
<th>Delete</th>
</tr>

</thead>
<tbody>
<tr *ngFor="let user of users | async">
<td>{{ user.name }}</td>
<td>{{ user.email }}</td>
<td>

 <a>
 <i class="glyphicon glyphicon-edit"></i>

</td>
<td>

 <a>
 <i (click)="delete(user)" class="glyphicon glyphicon-remove"></i>

 </td>

</tr>
</tbody>

</table>

user.component.ts

In user.component.ts , we implement the delete() method as shown below.

import { Component, OnInit } from '@angular/core';
import { AngularFire } from 'angularfire2';
import { Router } from '@angular/router';

@Component({
 selector: 'users',
 templateUrl: './user.component.html'
})
export class UserComponent {
 users;

 constructor(private af:AngularFire, private _router: Router){
 }

 ngOnInit(){
 this.users = this.af.database.list('/');
 }

 add(){
 this._router.navigate(['add']);
 }

 delete(user){
 if (confirm("Are you sure you want to delete " + user.name + "?")){

 this.af.database.object(user.$key).remove()
 .then(x=> console.log("SUCCESS"))
 .catch(error => {
 alert("Could not delete the user.");
 console.log("ERROR", error)
 });
 }
 }
}

In the delete() method, we first display a confirmation box asking for confirmation to
delete. If true, we call the remove() method of this.af.database.object .

 this.af.database.object(user.$key).remove()

The object() method allows us to get one single specific object from firebase. We need
to specify the location of the data in firebase as argument in object() . In this case, the
location of the object is contained in the $key property of the user object we have
clicked to delete. How did we get this $key property? Whenever we add an object to
firebase, a unique key is generated for us. We use this unique key stored in $key to
retrieve the object for deletion, and also later for retrieval and update.

Having specified the targeted object using object() , we call the remove() method to
remove it from firebase. remove() returns a promise which you can optionally subscribe
to be notified if the deletion is successful. (the same applies for push() and update())

 this.af.database.object(user.$key).remove()
 .then(x=> console.log("SUCCESS"))
 .catch(error => {
 alert("Could not delete the user.");
 console.log("ERROR", error)
 });

If successful, we log “Success”, and if an error is caught, we log a error message.

12.7 Populating the Form on Edit

Having implemented, list, add and delete, we will now implement edit. But before we
can implement edit, we need to retrieve the existing requested user object and populate
it on the form first. When a user clicks on the Edit icon, she would be navigated to the
User Form with the given user details populated in the input fields. We also change the
title of the page to Edit User instead of Add User. And if we access the User Form via
the Add User button, title should be New User.

First in app.routing.ts , we define a new route add/:id with id being a parameter as

shown below. id will contain our user object id used to retrieve our user object and
populate the Edit form.

app.routing.ts

import { RouterModule } from '@angular/router';
import { UserComponent } from './user.component';
import { UserFormComponent } from './user-form.component';

export const routing = RouterModule.forRoot([
 { path:'', component:UserComponent },
 { path:'add',component:UserFormComponent },
 { path:'add/:id', component: UserFormComponent }
]);

user.component.html

Next, in user.component.html , we add the router link to the Editicon with the
parameter user.$key used to retrieve our user object and populate our form.

 <a [routerLink]="['/add', user.$key]">
 <i class="glyphicon glyphicon-edit"></i>

user-form.component.ts

Next in user-form.component.ts , add the codes below in bold.

import { Component } from '@angular/core';
import { FormBuilder, FormGroup, Validators } from '@angular/forms';
import { Router, ActivatedRoute } from '@angular/router';
import { AngularFire } from 'angularfire2';

import { User } from './user';

@Component({
 selector:'user-form',
 templateUrl: 'user-form.component.html'
})
export class UserFormComponent {
 id;
 form: FormGroup;
 title: string;
 user = new User();
 item;

 constructor(fb: FormBuilder, private _router:Router, private _route:ActivatedRoute, private
af:AngularFire){
 this.form = fb.group({
 username:['',Validators.required],
 email:['',Validators.required]
 })
 }

 ngOnInit(){
 this._route.params.subscribe(params => {
 this.id = params["id"];
 });

 if(!this.id){
 this.title = "New User";
 }
 else{
 this.title = "Edit User";
 this.item = this.af.database.object(this.id);
 }
 }

 submit(){
 this.af.database.list('/').push({
 name: this.user.username,
 email: this.user.email
 });

 this._router.navigate(['']);
 }
}

Code Explanation

import { Router, ActivatedRoute } from '@angular/router';

We import ActivatedRoute and inject it in our constructor. This is used to retrieve the
parameter id passed in from User component as shown below.

 ngOnInit(){
 this._route.params.subscribe(params => {
 this.id = params["id"];
 });

 if(!this.id){
 this.title = "New User";
 }
 else{

 this.title = "Edit User";
 this.item = this.af.database.object(this.id);
 }
 }

We retrieve id from _route.params and if it is null, it means that we arrive at UserForm
without a parameter and want to perform adding a new user. We thus set the title to
“New User”.

If id is not null, it means we want to edit a user of that given id and therefore display
title as “Edit User”. We then proceed to retrieve the user object with the below code:

 this.item = this.af.database.object(this.id);

After retrieving our user object with the object method, we assign it to item variable.
With item now containing our requested user object, we can populate our edit form.

user-form.component.html

In user-form.component.html , add the below two portions of code in bold.

<h1>{{ title }}</h1>
<form [formGroup]="form" (ngSubmit)="submit()">
 <div class="form-group">
 <label for="username">Username</label>
 <input [(ngModel)]="user.username" type="text" class="form-control"

formControlName="username" value={{(item|async)?.name}}>
 <div *ngIf="form.controls.username.touched &&

!form.controls.username.valid" class="alert alert-danger">
 Username is required
 </div>
 </div>
 <div class="form-group">
 <label for="email">Email</label>
 <input [(ngModel)]="user.email" class="form-control"

formControlName="email" value={{(item|async)?.email}}>
 <div *ngIf="form.controls.email.touched && form.controls.email.errors">
 <div *ngIf="form.controls.email.errors.required"

class="alert alert-danger">
 Email is required.
 </div>
 </div>
 </div>
 <button [disabled]="!form.valid" class="btn btn-primary" type="submit">{{ title }}</button>
</form>

The code above populates the value property of the username and email input fields
from the item object. We use string interpolation {{(item|async)?.email}} to render the

values. As mentioned earlier, we use the async pipe to subscribe to item which is
a FirebaseObjectObservable to check for the latest value emitted.

After applying the async pipe, we need to apply the elvis operator ? which means we
access the email property only when item|async is not null. This is because item|async is
created dynamically at runtime and can be initially null as there is a bit of delay from the
moment we subscribe till the moment we get the result from firebase.

12.8 Updating a User

Finally to update the user, we make some code changes and additions
to submit() in user-form.component.ts . Fill in the below code into submit() .

user-form.component.ts

 submit(){
 if (this.id) {
 this.af.database.object(this.id).update({
 name: this.user.username,
 email: this.user.email
 });
 }
 else{
 this.af.database.list('/').push({
 name: this.user.username,
 email: this.user.email
 });
 }

 this._router.navigate(['']);
 }

Code Explanation

We first check if there is an id , which means the form is in edit mode. If so, we call the
update method of object to update . Else, which means the form is in Add New User
mode, we call push() of object to add the new user object to firebase.

Running your App

If you run your app now, your app should have full functionality to create, update, delete
and read user data from and to firebase.

Summary

In this chapter, we learnt how to implement C.R.U.D. operations using Firebase as our
backend. We learnt how to add firebase to our application, how to work with the
firebase database from the firebase console, how to display a list of users, how to add a
user with the push method, how to delete a user with the remove method, retrieve a
single firebase object to prepare our form for edit and how to update a user.

With this knowledge, you can move on and build more complicated enterprise level
fully functional Angular applications of your own!

Hopefully you've enjoyed this book and would like to learn more from me. I would love
to get your feedback, learning what you liked and didn't for us to improve. Please feel
free to email me at support@i-ducate.com. Contact me also if you have not already to
have the full source code for this chapter or if you encounter any errors with your code.

If you didn't like the book, please email us and let us know how we could improve it.
This book can only get better thanks to readers like you.

If you like the book, I would appreciate if you could leave us a review too.

Thank you and all the best to your learning journey in Angular!

mailto:support@i-ducate.com

ABOUT THE AUTHOR

Greg Lim is a technologist and author of several programming books. Greg has many
years in teaching programming in tertiary institutions and he places special emphasis on

learning by doing.

Outside the programming world, Greg is happily married to his wife, a proud father of
three boys and greatly involved in church work. Contact Greg at support@i-ducate.com.

mailto:support@i-ducate.com

